Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 - Google LLC * Author: David Brazdil <dbrazdil@google.com> * * Generates relocation information used by the kernel to convert * absolute addresses in hyp data from kernel VAs to hyp VAs. * * This is necessary because hyp code is linked into the same binary * as the kernel but executes under different memory mappings. * If the compiler used absolute addressing, those addresses need to * be converted before they are used by hyp code. * * The input of this program is the relocatable ELF object containing * all hyp code/data, not yet linked into vmlinux. Hyp section names * should have been prefixed with `.hyp` at this point. * * The output (printed to stdout) is an assembly file containing * an array of 32-bit integers and static relocations that instruct * the linker of `vmlinux` to populate the array entries with offsets * to positions in the kernel binary containing VAs used by hyp code. * * Note that dynamic relocations could be used for the same purpose. * However, those are only generated if CONFIG_RELOCATABLE=y. */ #include <elf.h> #include <endian.h> #include <errno.h> #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <generated/autoconf.h> #define HYP_SECTION_PREFIX ".hyp" #define HYP_RELOC_SECTION ".hyp.reloc" #define HYP_SECTION_SYMBOL_PREFIX "__hyp_section_" /* * AArch64 relocation type constants. * Included in case these are not defined in the host toolchain. */ #ifndef R_AARCH64_ABS64 #define R_AARCH64_ABS64 257 #endif #ifndef R_AARCH64_PREL64 #define R_AARCH64_PREL64 260 #endif #ifndef R_AARCH64_PREL32 #define R_AARCH64_PREL32 261 #endif #ifndef R_AARCH64_PREL16 #define R_AARCH64_PREL16 262 #endif #ifndef R_AARCH64_PLT32 #define R_AARCH64_PLT32 314 #endif #ifndef R_AARCH64_LD_PREL_LO19 #define R_AARCH64_LD_PREL_LO19 273 #endif #ifndef R_AARCH64_ADR_PREL_LO21 #define R_AARCH64_ADR_PREL_LO21 274 #endif #ifndef R_AARCH64_ADR_PREL_PG_HI21 #define R_AARCH64_ADR_PREL_PG_HI21 275 #endif #ifndef R_AARCH64_ADR_PREL_PG_HI21_NC #define R_AARCH64_ADR_PREL_PG_HI21_NC 276 #endif #ifndef R_AARCH64_ADD_ABS_LO12_NC #define R_AARCH64_ADD_ABS_LO12_NC 277 #endif #ifndef R_AARCH64_LDST8_ABS_LO12_NC #define R_AARCH64_LDST8_ABS_LO12_NC 278 #endif #ifndef R_AARCH64_TSTBR14 #define R_AARCH64_TSTBR14 279 #endif #ifndef R_AARCH64_CONDBR19 #define R_AARCH64_CONDBR19 280 #endif #ifndef R_AARCH64_JUMP26 #define R_AARCH64_JUMP26 282 #endif #ifndef R_AARCH64_CALL26 #define R_AARCH64_CALL26 283 #endif #ifndef R_AARCH64_LDST16_ABS_LO12_NC #define R_AARCH64_LDST16_ABS_LO12_NC 284 #endif #ifndef R_AARCH64_LDST32_ABS_LO12_NC #define R_AARCH64_LDST32_ABS_LO12_NC 285 #endif #ifndef R_AARCH64_LDST64_ABS_LO12_NC #define R_AARCH64_LDST64_ABS_LO12_NC 286 #endif #ifndef R_AARCH64_MOVW_PREL_G0 #define R_AARCH64_MOVW_PREL_G0 287 #endif #ifndef R_AARCH64_MOVW_PREL_G0_NC #define R_AARCH64_MOVW_PREL_G0_NC 288 #endif #ifndef R_AARCH64_MOVW_PREL_G1 #define R_AARCH64_MOVW_PREL_G1 289 #endif #ifndef R_AARCH64_MOVW_PREL_G1_NC #define R_AARCH64_MOVW_PREL_G1_NC 290 #endif #ifndef R_AARCH64_MOVW_PREL_G2 #define R_AARCH64_MOVW_PREL_G2 291 #endif #ifndef R_AARCH64_MOVW_PREL_G2_NC #define R_AARCH64_MOVW_PREL_G2_NC 292 #endif #ifndef R_AARCH64_MOVW_PREL_G3 #define R_AARCH64_MOVW_PREL_G3 293 #endif #ifndef R_AARCH64_LDST128_ABS_LO12_NC #define R_AARCH64_LDST128_ABS_LO12_NC 299 #endif /* Global state of the processed ELF. */ static struct { const char *path; char *begin; size_t size; Elf64_Ehdr *ehdr; Elf64_Shdr *sh_table; const char *sh_string; } elf; #if defined(CONFIG_CPU_LITTLE_ENDIAN) #define elf16toh(x) le16toh(x) #define elf32toh(x) le32toh(x) #define elf64toh(x) le64toh(x) #define ELFENDIAN ELFDATA2LSB #elif defined(CONFIG_CPU_BIG_ENDIAN) #define elf16toh(x) be16toh(x) #define elf32toh(x) be32toh(x) #define elf64toh(x) be64toh(x) #define ELFENDIAN ELFDATA2MSB #else #error PDP-endian sadly unsupported... #endif #define fatal_error(fmt, ...) \ ({ \ fprintf(stderr, "error: %s: " fmt "\n", \ elf.path, ## __VA_ARGS__); \ exit(EXIT_FAILURE); \ __builtin_unreachable(); \ }) #define fatal_perror(msg) \ ({ \ fprintf(stderr, "error: %s: " msg ": %s\n", \ elf.path, strerror(errno)); \ exit(EXIT_FAILURE); \ __builtin_unreachable(); \ }) #define assert_op(lhs, rhs, fmt, op) \ ({ \ typeof(lhs) _lhs = (lhs); \ typeof(rhs) _rhs = (rhs); \ \ if (!(_lhs op _rhs)) { \ fatal_error("assertion " #lhs " " #op " " #rhs \ " failed (lhs=" fmt ", rhs=" fmt \ ", line=%d)", _lhs, _rhs, __LINE__); \ } \ }) #define assert_eq(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, ==) #define assert_ne(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, !=) #define assert_lt(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, <) #define assert_ge(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, >=) /* * Return a pointer of a given type at a given offset from * the beginning of the ELF file. */ #define elf_ptr(type, off) ((type *)(elf.begin + (off))) /* Iterate over all sections in the ELF. */ #define for_each_section(var) \ for (var = elf.sh_table; var < elf.sh_table + elf16toh(elf.ehdr->e_shnum); ++var) /* Iterate over all Elf64_Rela relocations in a given section. */ #define for_each_rela(shdr, var) \ for (var = elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset)); \ var < elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset) + elf64toh(shdr->sh_size)); var++) /* True if a string starts with a given prefix. */ static inline bool starts_with(const char *str, const char *prefix) { return memcmp(str, prefix, strlen(prefix)) == 0; } /* Returns a string containing the name of a given section. */ static inline const char *section_name(Elf64_Shdr *shdr) { return elf.sh_string + elf32toh(shdr->sh_name); } /* Returns a pointer to the first byte of section data. */ static inline const char *section_begin(Elf64_Shdr *shdr) { return elf_ptr(char, elf64toh(shdr->sh_offset)); } /* Find a section by its offset from the beginning of the file. */ static inline Elf64_Shdr *section_by_off(Elf64_Off off) { assert_ne(off, 0UL, "%lu"); return elf_ptr(Elf64_Shdr, off); } /* Find a section by its index. */ static inline Elf64_Shdr *section_by_idx(uint16_t idx) { assert_ne(idx, SHN_UNDEF, "%u"); return &elf.sh_table[idx]; } /* * Memory-map the given ELF file, perform sanity checks, and * populate global state. */ static void init_elf(const char *path) { int fd, ret; struct stat stat; /* Store path in the global struct for error printing. */ elf.path = path; /* Open the ELF file. */ fd = open(path, O_RDONLY); if (fd < 0) fatal_perror("Could not open ELF file"); /* Get status of ELF file to obtain its size. */ ret = fstat(fd, &stat); if (ret < 0) { close(fd); fatal_perror("Could not get status of ELF file"); } /* mmap() the entire ELF file read-only at an arbitrary address. */ elf.begin = mmap(0, stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (elf.begin == MAP_FAILED) { close(fd); fatal_perror("Could not mmap ELF file"); } /* mmap() was successful, close the FD. */ close(fd); /* Get pointer to the ELF header. */ assert_ge(stat.st_size, sizeof(*elf.ehdr), "%lu"); elf.ehdr = elf_ptr(Elf64_Ehdr, 0); /* Check the ELF magic. */ assert_eq(elf.ehdr->e_ident[EI_MAG0], ELFMAG0, "0x%x"); assert_eq(elf.ehdr->e_ident[EI_MAG1], ELFMAG1, "0x%x"); assert_eq(elf.ehdr->e_ident[EI_MAG2], ELFMAG2, "0x%x"); assert_eq(elf.ehdr->e_ident[EI_MAG3], ELFMAG3, "0x%x"); /* Sanity check that this is an ELF64 relocatable object for AArch64. */ assert_eq(elf.ehdr->e_ident[EI_CLASS], ELFCLASS64, "%u"); assert_eq(elf.ehdr->e_ident[EI_DATA], ELFENDIAN, "%u"); assert_eq(elf16toh(elf.ehdr->e_type), ET_REL, "%u"); assert_eq(elf16toh(elf.ehdr->e_machine), EM_AARCH64, "%u"); /* Populate fields of the global struct. */ elf.sh_table = section_by_off(elf64toh(elf.ehdr->e_shoff)); elf.sh_string = section_begin(section_by_idx(elf16toh(elf.ehdr->e_shstrndx))); } /* Print the prologue of the output ASM file. */ static void emit_prologue(void) { printf(".data\n" ".pushsection " HYP_RELOC_SECTION ", \"a\"\n"); } /* Print ASM statements needed as a prologue to a processed hyp section. */ static void emit_section_prologue(const char *sh_orig_name) { /* Declare the hyp section symbol. */ printf(".global %s%s\n", HYP_SECTION_SYMBOL_PREFIX, sh_orig_name); } /* * Print ASM statements to create a hyp relocation entry for a given * R_AARCH64_ABS64 relocation. * * The linker of vmlinux will populate the position given by `rela` with * an absolute 64-bit kernel VA. If the kernel is relocatable, it will * also generate a dynamic relocation entry so that the kernel can shift * the address at runtime for KASLR. * * Emit a 32-bit offset from the current address to the position given * by `rela`. This way the kernel can iterate over all kernel VAs used * by hyp at runtime and convert them to hyp VAs. However, that offset * will not be known until linking of `vmlinux`, so emit a PREL32 * relocation referencing a symbol that the hyp linker script put at * the beginning of the relocated section + the offset from `rela`. */ static void emit_rela_abs64(Elf64_Rela *rela, const char *sh_orig_name) { /* Offset of this reloc from the beginning of HYP_RELOC_SECTION. */ static size_t reloc_offset; /* Create storage for the 32-bit offset. */ printf(".word 0\n"); /* * Create a PREL32 relocation which instructs the linker of `vmlinux` * to insert offset to position <base> + <offset>, where <base> is * a symbol at the beginning of the relocated section, and <offset> * is `rela->r_offset`. */ printf(".reloc %lu, R_AARCH64_PREL32, %s%s + 0x%lx\n", reloc_offset, HYP_SECTION_SYMBOL_PREFIX, sh_orig_name, elf64toh(rela->r_offset)); reloc_offset += 4; } /* Print the epilogue of the output ASM file. */ static void emit_epilogue(void) { printf(".popsection\n"); } /* * Iterate over all RELA relocations in a given section and emit * hyp relocation data for all absolute addresses in hyp code/data. * * Static relocations that generate PC-relative-addressing are ignored. * Failure is reported for unexpected relocation types. */ static void emit_rela_section(Elf64_Shdr *sh_rela) { Elf64_Shdr *sh_orig = &elf.sh_table[elf32toh(sh_rela->sh_info)]; const char *sh_orig_name = section_name(sh_orig); Elf64_Rela *rela; /* Skip all non-hyp sections. */ if (!starts_with(sh_orig_name, HYP_SECTION_PREFIX)) return; emit_section_prologue(sh_orig_name); for_each_rela(sh_rela, rela) { uint32_t type = (uint32_t)elf64toh(rela->r_info); /* Check that rela points inside the relocated section. */ assert_lt(elf64toh(rela->r_offset), elf64toh(sh_orig->sh_size), "0x%lx"); switch (type) { /* * Data relocations to generate absolute addressing. * Emit a hyp relocation. */ case R_AARCH64_ABS64: emit_rela_abs64(rela, sh_orig_name); break; /* Allow position-relative data relocations. */ case R_AARCH64_PREL64: case R_AARCH64_PREL32: case R_AARCH64_PREL16: case R_AARCH64_PLT32: break; /* Allow relocations to generate PC-relative addressing. */ case R_AARCH64_LD_PREL_LO19: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADR_PREL_PG_HI21_NC: case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: break; /* Allow relative relocations for control-flow instructions. */ case R_AARCH64_TSTBR14: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_CALL26: break; /* Allow group relocations to create PC-relative offset inline. */ case R_AARCH64_MOVW_PREL_G0: case R_AARCH64_MOVW_PREL_G0_NC: case R_AARCH64_MOVW_PREL_G1: case R_AARCH64_MOVW_PREL_G1_NC: case R_AARCH64_MOVW_PREL_G2: case R_AARCH64_MOVW_PREL_G2_NC: case R_AARCH64_MOVW_PREL_G3: break; default: fatal_error("Unexpected RELA type %u", type); } } } /* Iterate over all sections and emit hyp relocation data for RELA sections. */ static void emit_all_relocs(void) { Elf64_Shdr *shdr; for_each_section(shdr) { switch (elf32toh(shdr->sh_type)) { case SHT_REL: fatal_error("Unexpected SHT_REL section \"%s\"", section_name(shdr)); case SHT_RELA: emit_rela_section(shdr); break; } } } int main(int argc, const char **argv) { if (argc != 2) { fprintf(stderr, "Usage: %s <elf_input>\n", argv[0]); return EXIT_FAILURE; } init_elf(argv[1]); emit_prologue(); emit_all_relocs(); emit_epilogue(); return EXIT_SUCCESS; } |