Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

#include <asm/alternative-macros.h>
#include <asm/cpucaps.h>
#include <asm/cputype.h>
#include <asm/hwcap.h>
#include <asm/sysreg.h>

#define MAX_CPU_FEATURES	128
#define cpu_feature(x)		KERNEL_HWCAP_ ## x

#define ARM64_SW_FEATURE_OVERRIDE_NOKASLR	0
#define ARM64_SW_FEATURE_OVERRIDE_HVHE		4
#define ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF	8

#ifndef __ASSEMBLY__

#include <linux/bug.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/cpumask.h>

/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

enum ftr_type {
	FTR_EXACT,			/* Use a predefined safe value */
	FTR_LOWER_SAFE,			/* Smaller value is safe */
	FTR_HIGHER_SAFE,		/* Bigger value is safe */
	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)

struct arm64_ftr_bits {
	bool		sign;	/* Value is signed ? */
	bool		visible;
	bool		strict;	/* CPU Sanity check: strict matching required ? */
	enum ftr_type	type;
	u8		shift;
	u8		width;
	s64		safe_val; /* safe value for FTR_EXACT features */
};

/*
 * Describe the early feature override to the core override code:
 *
 * @val			Values that are to be merged into the final
 *			sanitised value of the register. Only the bitfields
 *			set to 1 in @mask are valid
 * @mask		Mask of the features that are overridden by @val
 *
 * A @mask field set to full-1 indicates that the corresponding field
 * in @val is a valid override.
 *
 * A @mask field set to full-0 with the corresponding @val field set
 * to full-0 denotes that this field has no override
 *
 * A @mask field set to full-0 with the corresponding @val field set
 * to full-1 denotes that this field has an invalid override.
 */
struct arm64_ftr_override {
	u64		val;
	u64		mask;
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
	const char			*name;
	u64				strict_mask;
	u64				user_mask;
	u64				sys_val;
	u64				user_val;
	struct arm64_ftr_override	*override;
	const struct arm64_ftr_bits	*ftr_bits;
};

extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

/*
 * CPU capabilities:
 *
 * We use arm64_cpu_capabilities to represent system features, errata work
 * arounds (both used internally by kernel and tracked in system_cpucaps) and
 * ELF HWCAPs (which are exposed to user).
 *
 * To support systems with heterogeneous CPUs, we need to make sure that we
 * detect the capabilities correctly on the system and take appropriate
 * measures to ensure there are no incompatibilities.
 *
 * This comment tries to explain how we treat the capabilities.
 * Each capability has the following list of attributes :
 *
 * 1) Scope of Detection : The system detects a given capability by
 *    performing some checks at runtime. This could be, e.g, checking the
 *    value of a field in CPU ID feature register or checking the cpu
 *    model. The capability provides a call back ( @matches() ) to
 *    perform the check. Scope defines how the checks should be performed.
 *    There are three cases:
 *
 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 *        matches. This implies, we have to run the check on all the
 *        booting CPUs, until the system decides that state of the
 *        capability is finalised. (See section 2 below)
 *		Or
 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 *        matches. This implies, we run the check only once, when the
 *        system decides to finalise the state of the capability. If the
 *        capability relies on a field in one of the CPU ID feature
 *        registers, we use the sanitised value of the register from the
 *        CPU feature infrastructure to make the decision.
 *		Or
 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
 *        feature. This category is for features that are "finalised"
 *        (or used) by the kernel very early even before the SMP cpus
 *        are brought up.
 *
 *    The process of detection is usually denoted by "update" capability
 *    state in the code.
 *
 * 2) Finalise the state : The kernel should finalise the state of a
 *    capability at some point during its execution and take necessary
 *    actions if any. Usually, this is done, after all the boot-time
 *    enabled CPUs are brought up by the kernel, so that it can make
 *    better decision based on the available set of CPUs. However, there
 *    are some special cases, where the action is taken during the early
 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 *    Virtualisation Host Extensions). The kernel usually disallows any
 *    changes to the state of a capability once it finalises the capability
 *    and takes any action, as it may be impossible to execute the actions
 *    safely. A CPU brought up after a capability is "finalised" is
 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 *    CPUs are treated "late CPUs" for capabilities determined by the boot
 *    CPU.
 *
 *    At the moment there are two passes of finalising the capabilities.
 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
 *         setup_boot_cpu_capabilities().
 *      b) Everything except (a) - Run via setup_system_capabilities().
 *
 * 3) Verification: When a CPU is brought online (e.g, by user or by the
 *    kernel), the kernel should make sure that it is safe to use the CPU,
 *    by verifying that the CPU is compliant with the state of the
 *    capabilities finalised already. This happens via :
 *
 *	secondary_start_kernel()-> check_local_cpu_capabilities()
 *
 *    As explained in (2) above, capabilities could be finalised at
 *    different points in the execution. Each newly booted CPU is verified
 *    against the capabilities that have been finalised by the time it
 *    boots.
 *
 *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
 *	except for the primary boot CPU.
 *
 *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
 *	user after the kernel boot are verified against the capability.
 *
 *    If there is a conflict, the kernel takes an action, based on the
 *    severity (e.g, a CPU could be prevented from booting or cause a
 *    kernel panic). The CPU is allowed to "affect" the state of the
 *    capability, if it has not been finalised already. See section 5
 *    for more details on conflicts.
 *
 * 4) Action: As mentioned in (2), the kernel can take an action for each
 *    detected capability, on all CPUs on the system. Appropriate actions
 *    include, turning on an architectural feature, modifying the control
 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 *    alternatives. The kernel patching is batched and performed at later
 *    point. The actions are always initiated only after the capability
 *    is finalised. This is usally denoted by "enabling" the capability.
 *    The actions are initiated as follows :
 *	a) Action is triggered on all online CPUs, after the capability is
 *	finalised, invoked within the stop_machine() context from
 *	enable_cpu_capabilitie().
 *
 *	b) Any late CPU, brought up after (1), the action is triggered via:
 *
 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 *
 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 *    the system state, we could have the following combinations :
 *
 *		x-----------------------------x
 *		| Type  | System   | Late CPU |
 *		|-----------------------------|
 *		|  a    |   y      |    n     |
 *		|-----------------------------|
 *		|  b    |   n      |    y     |
 *		x-----------------------------x
 *
 *     Two separate flag bits are defined to indicate whether each kind of
 *     conflict can be allowed:
 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 *
 *     Case (a) is not permitted for a capability that the system requires
 *     all CPUs to have in order for the capability to be enabled. This is
 *     typical for capabilities that represent enhanced functionality.
 *
 *     Case (b) is not permitted for a capability that must be enabled
 *     during boot if any CPU in the system requires it in order to run
 *     safely. This is typical for erratum work arounds that cannot be
 *     enabled after the corresponding capability is finalised.
 *
 *     In some non-typical cases either both (a) and (b), or neither,
 *     should be permitted. This can be described by including neither
 *     or both flags in the capability's type field.
 *
 *     In case of a conflict, the CPU is prevented from booting. If the
 *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
 *     then a kernel panic is triggered.
 */


/*
 * Decide how the capability is detected.
 * On any local CPU vs System wide vs the primary boot CPU
 */
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
/*
 * The capabilitiy is detected on the Boot CPU and is used by kernel
 * during early boot. i.e, the capability should be "detected" and
 * "enabled" as early as possibly on all booting CPUs.
 */
#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
#define ARM64_CPUCAP_SCOPE_MASK			\
	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
	 ARM64_CPUCAP_SCOPE_BOOT_CPU)

#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK

/*
 * Is it permitted for a late CPU to have this capability when system
 * hasn't already enabled it ?
 */
#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
/* Is it safe for a late CPU to miss this capability when system has it */
#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
/* Panic when a conflict is detected */
#define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))

/*
 * CPU errata workarounds that need to be enabled at boot time if one or
 * more CPUs in the system requires it. When one of these capabilities
 * has been enabled, it is safe to allow any CPU to boot that doesn't
 * require the workaround. However, it is not safe if a "late" CPU
 * requires a workaround and the system hasn't enabled it already.
 */
#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on system-wide value of a
 * feature. It is safe for a late CPU to have this feature even though
 * the system hasn't enabled it, although the feature will not be used
 * by Linux in this case. If the system has enabled this feature already,
 * then every late CPU must have it.
 */
#define ARM64_CPUCAP_SYSTEM_FEATURE	\
	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on feature of one or more CPUs.
 * All possible conflicts for a late CPU are ignored.
 * NOTE: this means that a late CPU with the feature will *not* cause the
 * capability to be advertised by cpus_have_*cap()!
 */
#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)

/*
 * CPU feature detected at boot time, on one or more CPUs. A late CPU
 * is not allowed to have the capability when the system doesn't have it.
 * It is Ok for a late CPU to miss the feature.
 */
#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)

/*
 * CPU feature used early in the boot based on the boot CPU. All secondary
 * CPUs must match the state of the capability as detected by the boot CPU. In
 * case of a conflict, a kernel panic is triggered.
 */
#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)

/*
 * CPU feature used early in the boot based on the boot CPU. It is safe for a
 * late CPU to have this feature even though the boot CPU hasn't enabled it,
 * although the feature will not be used by Linux in this case. If the boot CPU
 * has enabled this feature already, then every late CPU must have it.
 */
#define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)

struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
	u16 type;
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
	/*
	 * Take the appropriate actions to configure this capability
	 * for this CPU. If the capability is detected by the kernel
	 * this will be called on all the CPUs in the system,
	 * including the hotplugged CPUs, regardless of whether the
	 * capability is available on that specific CPU. This is
	 * useful for some capabilities (e.g, working around CPU
	 * errata), where all the CPUs must take some action (e.g,
	 * changing system control/configuration). Thus, if an action
	 * is required only if the CPU has the capability, then the
	 * routine must check it before taking any action.
	 */
	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
	union {
		struct {	/* To be used for erratum handling only */
			struct midr_range midr_range;
			const struct arm64_midr_revidr {
				u32 midr_rv;		/* revision/variant */
				u32 revidr_mask;
			} * const fixed_revs;
		};

		const struct midr_range *midr_range_list;
		struct {	/* Feature register checking */
			u32 sys_reg;
			u8 field_pos;
			u8 field_width;
			u8 min_field_value;
			u8 max_field_value;
			u8 hwcap_type;
			bool sign;
			unsigned long hwcap;
		};
	};

	/*
	 * An optional list of "matches/cpu_enable" pair for the same
	 * "capability" of the same "type" as described by the parent.
	 * Only matches(), cpu_enable() and fields relevant to these
	 * methods are significant in the list. The cpu_enable is
	 * invoked only if the corresponding entry "matches()".
	 * However, if a cpu_enable() method is associated
	 * with multiple matches(), care should be taken that either
	 * the match criteria are mutually exclusive, or that the
	 * method is robust against being called multiple times.
	 */
	const struct arm64_cpu_capabilities *match_list;
	const struct cpumask *cpus;
};

static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}

/*
 * Generic helper for handling capabilities with multiple (match,enable) pairs
 * of call backs, sharing the same capability bit.
 * Iterate over each entry to see if at least one matches.
 */
static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
			       int scope)
{
	const struct arm64_cpu_capabilities *caps;

	for (caps = entry->match_list; caps->matches; caps++)
		if (caps->matches(caps, scope))
			return true;

	return false;
}

static __always_inline bool is_vhe_hyp_code(void)
{
	/* Only defined for code run in VHE hyp context */
	return __is_defined(__KVM_VHE_HYPERVISOR__);
}

static __always_inline bool is_nvhe_hyp_code(void)
{
	/* Only defined for code run in NVHE hyp context */
	return __is_defined(__KVM_NVHE_HYPERVISOR__);
}

static __always_inline bool is_hyp_code(void)
{
	return is_vhe_hyp_code() || is_nvhe_hyp_code();
}

extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);

extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);

#define for_each_available_cap(cap)		\
	for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)

bool this_cpu_has_cap(unsigned int cap);
void cpu_set_feature(unsigned int num);
bool cpu_have_feature(unsigned int num);
unsigned long cpu_get_elf_hwcap(void);
unsigned long cpu_get_elf_hwcap2(void);

#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))

static __always_inline bool boot_capabilities_finalized(void)
{
	return alternative_has_cap_likely(ARM64_ALWAYS_BOOT);
}

static __always_inline bool system_capabilities_finalized(void)
{
	return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
}

/*
 * Test for a capability with a runtime check.
 *
 * Before the capability is detected, this returns false.
 */
static __always_inline bool cpus_have_cap(unsigned int num)
{
	if (__builtin_constant_p(num) && !cpucap_is_possible(num))
		return false;
	if (num >= ARM64_NCAPS)
		return false;
	return arch_test_bit(num, system_cpucaps);
}

/*
 * Test for a capability without a runtime check.
 *
 * Before boot capabilities are finalized, this will BUG().
 * After boot capabilities are finalized, this is patched to avoid a runtime
 * check.
 *
 * @num must be a compile-time constant.
 */
static __always_inline bool cpus_have_final_boot_cap(int num)
{
	if (boot_capabilities_finalized())
		return alternative_has_cap_unlikely(num);
	else
		BUG();
}

/*
 * Test for a capability without a runtime check.
 *
 * Before system capabilities are finalized, this will BUG().
 * After system capabilities are finalized, this is patched to avoid a runtime
 * check.
 *
 * @num must be a compile-time constant.
 */
static __always_inline bool cpus_have_final_cap(int num)
{
	if (system_capabilities_finalized())
		return alternative_has_cap_unlikely(num);
	else
		BUG();
}

static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
{
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features, int field)
{
	return cpuid_feature_extract_signed_field_width(features, field, 4);
}

static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

/*
 * Fields that identify the version of the Performance Monitors Extension do
 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
 * "Alternative ID scheme used for the Performance Monitors Extension version".
 */
static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
{
	u64 val = cpuid_feature_extract_unsigned_field(features, field);
	u64 mask = GENMASK_ULL(field + 3, field);

	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
	if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
		val = 0;

	if (val > cap) {
		features &= ~mask;
		features |= (cap << field) & mask;
	}

	return features;
}

static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
{
	if (WARN_ON_ONCE(!width))
		width = 4;
	return (sign) ?
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
}

static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
{
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
}

static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
{
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
}

static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);

	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
}

static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);

	return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
}

static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);

	return val > 0;
}

static inline bool id_aa64pfr1_sme(u64 pfr1)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);

	return val > 0;
}

static inline bool id_aa64pfr1_mte(u64 pfr1)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);

	return val >= ID_AA64PFR1_EL1_MTE_MTE2;
}

void __init setup_boot_cpu_features(void);
void __init setup_system_features(void);
void __init setup_user_features(void);

void check_local_cpu_capabilities(void);

u64 read_sanitised_ftr_reg(u32 id);
u64 __read_sysreg_by_encoding(u32 sys_id);

static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}


static inline bool supports_csv2p3(int scope)
{
	u64 pfr0;
	u8 csv2_val;

	if (scope == SCOPE_LOCAL_CPU)
		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
	else
		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
							ID_AA64PFR0_EL1_CSV2_SHIFT);
	return csv2_val == 3;
}

static inline bool supports_clearbhb(int scope)
{
	u64 isar2;

	if (scope == SCOPE_LOCAL_CPU)
		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
	else
		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);

	return cpuid_feature_extract_unsigned_field(isar2,
						    ID_AA64ISAR2_EL1_CLRBHB_SHIFT);
}

const struct cpumask *system_32bit_el0_cpumask(void);
DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);

static inline bool system_supports_32bit_el0(void)
{
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
	       id_aa64pfr0_32bit_el0(pfr0);
}

static inline bool system_supports_4kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_EL1_TGRAN4_SHIFT);

	return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
	       (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
}

static inline bool system_supports_64kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_EL1_TGRAN64_SHIFT);

	return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
	       (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
}

static inline bool system_supports_16kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_EL1_TGRAN16_SHIFT);

	return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
	       (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
}

static inline bool system_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
}

static inline bool system_supports_mixed_endian(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_EL1_BIGEND_SHIFT);

	return val == 0x1;
}

static __always_inline bool system_supports_fpsimd(void)
{
	return alternative_has_cap_likely(ARM64_HAS_FPSIMD);
}

static inline bool system_uses_hw_pan(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_PAN);
}

static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
		!system_uses_hw_pan();
}

static __always_inline bool system_supports_sve(void)
{
	return alternative_has_cap_unlikely(ARM64_SVE);
}

static __always_inline bool system_supports_sme(void)
{
	return alternative_has_cap_unlikely(ARM64_SME);
}

static __always_inline bool system_supports_sme2(void)
{
	return alternative_has_cap_unlikely(ARM64_SME2);
}

static __always_inline bool system_supports_fa64(void)
{
	return alternative_has_cap_unlikely(ARM64_SME_FA64);
}

static __always_inline bool system_supports_tpidr2(void)
{
	return system_supports_sme();
}

static __always_inline bool system_supports_fpmr(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_FPMR);
}

static __always_inline bool system_supports_cnp(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_CNP);
}

static inline bool system_supports_address_auth(void)
{
	return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH);
}

static inline bool system_supports_generic_auth(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH);
}

static inline bool system_has_full_ptr_auth(void)
{
	return system_supports_address_auth() && system_supports_generic_auth();
}

static __always_inline bool system_uses_irq_prio_masking(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING);
}

static inline bool system_supports_mte(void)
{
	return alternative_has_cap_unlikely(ARM64_MTE);
}

static inline bool system_has_prio_mask_debugging(void)
{
	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
	       system_uses_irq_prio_masking();
}

static inline bool system_supports_bti(void)
{
	return cpus_have_final_cap(ARM64_BTI);
}

static inline bool system_supports_bti_kernel(void)
{
	return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) &&
		cpus_have_final_boot_cap(ARM64_BTI);
}

static inline bool system_supports_tlb_range(void)
{
	return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE);
}

static inline bool system_supports_lpa2(void)
{
	return cpus_have_final_cap(ARM64_HAS_LPA2);
}

int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
bool try_emulate_mrs(struct pt_regs *regs, u32 isn);

static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
{
	switch (parange) {
	case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
	case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
	case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
	case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
	case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
	case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
	case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
	/*
	 * A future PE could use a value unknown to the kernel.
	 * However, by the "D10.1.4 Principles of the ID scheme
	 * for fields in ID registers", ARM DDI 0487C.a, any new
	 * value is guaranteed to be higher than what we know already.
	 * As a safe limit, we return the limit supported by the kernel.
	 */
	default: return CONFIG_ARM64_PA_BITS;
	}
}

/* Check whether hardware update of the Access flag is supported */
static inline bool cpu_has_hw_af(void)
{
	u64 mmfr1;

	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
		return false;

	/*
	 * Use cached version to avoid emulated msr operation on KVM
	 * guests.
	 */
	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
	return cpuid_feature_extract_unsigned_field(mmfr1,
						ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
}

static inline bool cpu_has_pan(void)
{
	u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
	return cpuid_feature_extract_unsigned_field(mmfr1,
						    ID_AA64MMFR1_EL1_PAN_SHIFT);
}

#ifdef CONFIG_ARM64_AMU_EXTN
/* Check whether the cpu supports the Activity Monitors Unit (AMU) */
extern bool cpu_has_amu_feat(int cpu);
#else
static inline bool cpu_has_amu_feat(int cpu)
{
	return false;
}
#endif

/* Get a cpu that supports the Activity Monitors Unit (AMU) */
extern int get_cpu_with_amu_feat(void);

static inline unsigned int get_vmid_bits(u64 mmfr1)
{
	int vmid_bits;

	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
						ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
	if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
		return 16;

	/*
	 * Return the default here even if any reserved
	 * value is fetched from the system register.
	 */
	return 8;
}

s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);

extern struct arm64_ftr_override id_aa64mmfr0_override;
extern struct arm64_ftr_override id_aa64mmfr1_override;
extern struct arm64_ftr_override id_aa64mmfr2_override;
extern struct arm64_ftr_override id_aa64pfr0_override;
extern struct arm64_ftr_override id_aa64pfr1_override;
extern struct arm64_ftr_override id_aa64zfr0_override;
extern struct arm64_ftr_override id_aa64smfr0_override;
extern struct arm64_ftr_override id_aa64isar1_override;
extern struct arm64_ftr_override id_aa64isar2_override;

extern struct arm64_ftr_override arm64_sw_feature_override;

static inline
u64 arm64_apply_feature_override(u64 val, int feat, int width,
				 const struct arm64_ftr_override *override)
{
	u64 oval = override->val;

	/*
	 * When it encounters an invalid override (e.g., an override that
	 * cannot be honoured due to a missing CPU feature), the early idreg
	 * override code will set the mask to 0x0 and the value to non-zero for
	 * the field in question. In order to determine whether the override is
	 * valid or not for the field we are interested in, we first need to
	 * disregard bits belonging to other fields.
	 */
	oval &= GENMASK_ULL(feat + width - 1, feat);

	/*
	 * The override is valid if all value bits are accounted for in the
	 * mask. If so, replace the masked bits with the override value.
	 */
	if (oval == (oval & override->mask)) {
		val &= ~override->mask;
		val |= oval;
	}

	/* Extract the field from the updated value */
	return cpuid_feature_extract_unsigned_field(val, feat);
}

static inline bool arm64_test_sw_feature_override(int feat)
{
	/*
	 * Software features are pseudo CPU features that have no underlying
	 * CPUID system register value to apply the override to.
	 */
	return arm64_apply_feature_override(0, feat, 4,
					    &arm64_sw_feature_override);
}

static inline bool kaslr_disabled_cmdline(void)
{
	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOKASLR);
}

u32 get_kvm_ipa_limit(void);
void dump_cpu_features(void);

static inline bool cpu_has_bti(void)
{
	if (!IS_ENABLED(CONFIG_ARM64_BTI))
		return false;

	return arm64_apply_feature_override(read_cpuid(ID_AA64PFR1_EL1),
					    ID_AA64PFR1_EL1_BT_SHIFT, 4,
					    &id_aa64pfr1_override);
}

static inline bool cpu_has_pac(void)
{
	u64 isar1, isar2;

	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
		return false;

	isar1 = read_cpuid(ID_AA64ISAR1_EL1);
	isar2 = read_cpuid(ID_AA64ISAR2_EL1);

	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_APA_SHIFT, 4,
					 &id_aa64isar1_override))
		return true;

	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_API_SHIFT, 4,
					 &id_aa64isar1_override))
		return true;

	return arm64_apply_feature_override(isar2, ID_AA64ISAR2_EL1_APA3_SHIFT, 4,
					    &id_aa64isar2_override);
}

static inline bool cpu_has_lva(void)
{
	u64 mmfr2;

	mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
	mmfr2 &= ~id_aa64mmfr2_override.mask;
	mmfr2 |= id_aa64mmfr2_override.val;
	return cpuid_feature_extract_unsigned_field(mmfr2,
						    ID_AA64MMFR2_EL1_VARange_SHIFT);
}

static inline bool cpu_has_lpa2(void)
{
#ifdef CONFIG_ARM64_LPA2
	u64 mmfr0;
	int feat;

	mmfr0 = read_sysreg(id_aa64mmfr0_el1);
	mmfr0 &= ~id_aa64mmfr0_override.mask;
	mmfr0 |= id_aa64mmfr0_override.val;
	feat = cpuid_feature_extract_signed_field(mmfr0,
						  ID_AA64MMFR0_EL1_TGRAN_SHIFT);

	return feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2;
#else
	return false;
#endif
}

#endif /* __ASSEMBLY__ */

#endif