Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Based on arch/arm/include/asm/cacheflush.h * * Copyright (C) 1999-2002 Russell King. * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_CACHEFLUSH_H #define __ASM_CACHEFLUSH_H #include <linux/kgdb.h> #include <linux/mm.h> /* * This flag is used to indicate that the page pointed to by a pte is clean * and does not require cleaning before returning it to the user. */ #define PG_dcache_clean PG_arch_1 /* * MM Cache Management * =================== * * The arch/arm64/mm/cache.S implements these methods. * * Start addresses are inclusive and end addresses are exclusive; start * addresses should be rounded down, end addresses up. * * See Documentation/core-api/cachetlb.rst for more information. Please note that * the implementation assumes non-aliasing VIPT D-cache and (aliasing) * VIPT I-cache. * * All functions below apply to the interval [start, end) * - start - virtual start address (inclusive) * - end - virtual end address (exclusive) * * caches_clean_inval_pou(start, end) * * Ensure coherency between the I-cache and the D-cache region to * the Point of Unification. * * caches_clean_inval_user_pou(start, end) * * Ensure coherency between the I-cache and the D-cache region to * the Point of Unification. * Use only if the region might access user memory. * * icache_inval_pou(start, end) * * Invalidate I-cache region to the Point of Unification. * * dcache_clean_inval_poc(start, end) * * Clean and invalidate D-cache region to the Point of Coherency. * * dcache_inval_poc(start, end) * * Invalidate D-cache region to the Point of Coherency. * * dcache_clean_poc(start, end) * * Clean D-cache region to the Point of Coherency. * * dcache_clean_pop(start, end) * * Clean D-cache region to the Point of Persistence. * * dcache_clean_pou(start, end) * * Clean D-cache region to the Point of Unification. */ extern void caches_clean_inval_pou(unsigned long start, unsigned long end); extern void icache_inval_pou(unsigned long start, unsigned long end); extern void dcache_clean_inval_poc(unsigned long start, unsigned long end); extern void dcache_inval_poc(unsigned long start, unsigned long end); extern void dcache_clean_poc(unsigned long start, unsigned long end); extern void dcache_clean_pop(unsigned long start, unsigned long end); extern void dcache_clean_pou(unsigned long start, unsigned long end); extern long caches_clean_inval_user_pou(unsigned long start, unsigned long end); extern void sync_icache_aliases(unsigned long start, unsigned long end); static inline void flush_icache_range(unsigned long start, unsigned long end) { caches_clean_inval_pou(start, end); /* * IPI all online CPUs so that they undergo a context synchronization * event and are forced to refetch the new instructions. */ /* * KGDB performs cache maintenance with interrupts disabled, so we * will deadlock trying to IPI the secondary CPUs. In theory, we can * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that * just means that KGDB will elide the maintenance altogether! As it * turns out, KGDB uses IPIs to round-up the secondary CPUs during * the patching operation, so we don't need extra IPIs here anyway. * In which case, add a KGDB-specific bodge and return early. */ if (in_dbg_master()) return; kick_all_cpus_sync(); } #define flush_icache_range flush_icache_range /* * Copy user data from/to a page which is mapped into a different * processes address space. Really, we want to allow our "user * space" model to handle this. */ extern void copy_to_user_page(struct vm_area_struct *, struct page *, unsigned long, void *, const void *, unsigned long); #define copy_to_user_page copy_to_user_page /* * flush_dcache_folio is used when the kernel has written to the page * cache page at virtual address page->virtual. * * If this page isn't mapped (ie, page_mapping == NULL), or it might * have userspace mappings, then we _must_ always clean + invalidate * the dcache entries associated with the kernel mapping. * * Otherwise we can defer the operation, and clean the cache when we are * about to change to user space. This is the same method as used on SPARC64. * See update_mmu_cache for the user space part. */ #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 extern void flush_dcache_page(struct page *); void flush_dcache_folio(struct folio *); #define flush_dcache_folio flush_dcache_folio static __always_inline void icache_inval_all_pou(void) { if (alternative_has_cap_unlikely(ARM64_HAS_CACHE_DIC)) return; asm("ic ialluis"); dsb(ish); } #include <asm-generic/cacheflush.h> #endif /* __ASM_CACHEFLUSH_H */ |