Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | // SPDX-License-Identifier: GPL-2.0-only /* * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions * * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <asm/simd.h> #include <asm/unaligned.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/internal/simd.h> #include <linux/cpufeature.h> #include <linux/module.h> #include "aes-ce-setkey.h" MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); struct aes_block { u8 b[AES_BLOCK_SIZE]; }; asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds); asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds); asmlinkage u32 __aes_ce_sub(u32 l); asmlinkage void __aes_ce_invert(struct aes_block *out, const struct aes_block *in); static int num_rounds(struct crypto_aes_ctx *ctx) { /* * # of rounds specified by AES: * 128 bit key 10 rounds * 192 bit key 12 rounds * 256 bit key 14 rounds * => n byte key => 6 + (n/4) rounds */ return 6 + ctx->key_length / 4; } static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); if (!crypto_simd_usable()) { aes_encrypt(ctx, dst, src); return; } kernel_neon_begin(); __aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx)); kernel_neon_end(); } static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[]) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); if (!crypto_simd_usable()) { aes_decrypt(ctx, dst, src); return; } kernel_neon_begin(); __aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx)); kernel_neon_end(); } int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len) { /* * The AES key schedule round constants */ static u8 const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, }; u32 kwords = key_len / sizeof(u32); struct aes_block *key_enc, *key_dec; int i, j; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) return -EINVAL; ctx->key_length = key_len; for (i = 0; i < kwords; i++) ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); kernel_neon_begin(); for (i = 0; i < sizeof(rcon); i++) { u32 *rki = ctx->key_enc + (i * kwords); u32 *rko = rki + kwords; rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0]; rko[1] = rko[0] ^ rki[1]; rko[2] = rko[1] ^ rki[2]; rko[3] = rko[2] ^ rki[3]; if (key_len == AES_KEYSIZE_192) { if (i >= 7) break; rko[4] = rko[3] ^ rki[4]; rko[5] = rko[4] ^ rki[5]; } else if (key_len == AES_KEYSIZE_256) { if (i >= 6) break; rko[4] = __aes_ce_sub(rko[3]) ^ rki[4]; rko[5] = rko[4] ^ rki[5]; rko[6] = rko[5] ^ rki[6]; rko[7] = rko[6] ^ rki[7]; } } /* * Generate the decryption keys for the Equivalent Inverse Cipher. * This involves reversing the order of the round keys, and applying * the Inverse Mix Columns transformation on all but the first and * the last one. */ key_enc = (struct aes_block *)ctx->key_enc; key_dec = (struct aes_block *)ctx->key_dec; j = num_rounds(ctx); key_dec[0] = key_enc[j]; for (i = 1, j--; j > 0; i++, j--) __aes_ce_invert(key_dec + i, key_enc + j); key_dec[i] = key_enc[0]; kernel_neon_end(); return 0; } EXPORT_SYMBOL(ce_aes_expandkey); int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); return ce_aes_expandkey(ctx, in_key, key_len); } EXPORT_SYMBOL(ce_aes_setkey); static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-ce", .cra_priority = 250, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, .cra_cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = ce_aes_setkey, .cia_encrypt = aes_cipher_encrypt, .cia_decrypt = aes_cipher_decrypt } }; static int __init aes_mod_init(void) { return crypto_register_alg(&aes_alg); } static void __exit aes_mod_exit(void) { crypto_unregister_alg(&aes_alg); } module_cpu_feature_match(AES, aes_mod_init); module_exit(aes_mod_exit); |