Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2007 - 2018 Intel Corporation. */
  3
  4#include <linux/bitfield.h>
  5#include <linux/delay.h>
  6#include <linux/if_ether.h>
  7#include "e1000_mac.h"
  8#include "e1000_nvm.h"
  9
 10/**
 11 *  igb_raise_eec_clk - Raise EEPROM clock
 12 *  @hw: pointer to the HW structure
 13 *  @eecd: pointer to the EEPROM
 14 *
 15 *  Enable/Raise the EEPROM clock bit.
 16 **/
 17static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 18{
 19	*eecd = *eecd | E1000_EECD_SK;
 20	wr32(E1000_EECD, *eecd);
 21	wrfl();
 22	udelay(hw->nvm.delay_usec);
 23}
 24
 25/**
 26 *  igb_lower_eec_clk - Lower EEPROM clock
 27 *  @hw: pointer to the HW structure
 28 *  @eecd: pointer to the EEPROM
 29 *
 30 *  Clear/Lower the EEPROM clock bit.
 31 **/
 32static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 33{
 34	*eecd = *eecd & ~E1000_EECD_SK;
 35	wr32(E1000_EECD, *eecd);
 36	wrfl();
 37	udelay(hw->nvm.delay_usec);
 38}
 39
 40/**
 41 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
 42 *  @hw: pointer to the HW structure
 43 *  @data: data to send to the EEPROM
 44 *  @count: number of bits to shift out
 45 *
 46 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 47 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 48 *  In order to do this, "data" must be broken down into bits.
 49 **/
 50static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 51{
 52	struct e1000_nvm_info *nvm = &hw->nvm;
 53	u32 eecd = rd32(E1000_EECD);
 54	u32 mask;
 55
 56	mask = 1u << (count - 1);
 57	if (nvm->type == e1000_nvm_eeprom_spi)
 58		eecd |= E1000_EECD_DO;
 59
 60	do {
 61		eecd &= ~E1000_EECD_DI;
 62
 63		if (data & mask)
 64			eecd |= E1000_EECD_DI;
 65
 66		wr32(E1000_EECD, eecd);
 67		wrfl();
 68
 69		udelay(nvm->delay_usec);
 70
 71		igb_raise_eec_clk(hw, &eecd);
 72		igb_lower_eec_clk(hw, &eecd);
 73
 74		mask >>= 1;
 75	} while (mask);
 76
 77	eecd &= ~E1000_EECD_DI;
 78	wr32(E1000_EECD, eecd);
 79}
 80
 81/**
 82 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
 83 *  @hw: pointer to the HW structure
 84 *  @count: number of bits to shift in
 85 *
 86 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 87 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 88 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 89 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 90 *  always be clear.
 91 **/
 92static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 93{
 94	u32 eecd;
 95	u32 i;
 96	u16 data;
 97
 98	eecd = rd32(E1000_EECD);
 99
100	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
101	data = 0;
102
103	for (i = 0; i < count; i++) {
104		data <<= 1;
105		igb_raise_eec_clk(hw, &eecd);
106
107		eecd = rd32(E1000_EECD);
108
109		eecd &= ~E1000_EECD_DI;
110		if (eecd & E1000_EECD_DO)
111			data |= 1;
112
113		igb_lower_eec_clk(hw, &eecd);
114	}
115
116	return data;
117}
118
119/**
120 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
121 *  @hw: pointer to the HW structure
122 *  @ee_reg: EEPROM flag for polling
123 *
124 *  Polls the EEPROM status bit for either read or write completion based
125 *  upon the value of 'ee_reg'.
126 **/
127static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
128{
129	u32 attempts = 100000;
130	u32 i, reg = 0;
131	s32 ret_val = -E1000_ERR_NVM;
132
133	for (i = 0; i < attempts; i++) {
134		if (ee_reg == E1000_NVM_POLL_READ)
135			reg = rd32(E1000_EERD);
136		else
137			reg = rd32(E1000_EEWR);
138
139		if (reg & E1000_NVM_RW_REG_DONE) {
140			ret_val = 0;
141			break;
142		}
143
144		udelay(5);
145	}
146
147	return ret_val;
148}
149
150/**
151 *  igb_acquire_nvm - Generic request for access to EEPROM
152 *  @hw: pointer to the HW structure
153 *
154 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
155 *  Return successful if access grant bit set, else clear the request for
156 *  EEPROM access and return -E1000_ERR_NVM (-1).
157 **/
158s32 igb_acquire_nvm(struct e1000_hw *hw)
159{
160	u32 eecd = rd32(E1000_EECD);
161	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
162	s32 ret_val = 0;
163
164
165	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
166	eecd = rd32(E1000_EECD);
167
168	while (timeout) {
169		if (eecd & E1000_EECD_GNT)
170			break;
171		udelay(5);
172		eecd = rd32(E1000_EECD);
173		timeout--;
174	}
175
176	if (!timeout) {
177		eecd &= ~E1000_EECD_REQ;
178		wr32(E1000_EECD, eecd);
179		hw_dbg("Could not acquire NVM grant\n");
180		ret_val = -E1000_ERR_NVM;
181	}
182
183	return ret_val;
184}
185
186/**
187 *  igb_standby_nvm - Return EEPROM to standby state
188 *  @hw: pointer to the HW structure
189 *
190 *  Return the EEPROM to a standby state.
191 **/
192static void igb_standby_nvm(struct e1000_hw *hw)
193{
194	struct e1000_nvm_info *nvm = &hw->nvm;
195	u32 eecd = rd32(E1000_EECD);
196
197	if (nvm->type == e1000_nvm_eeprom_spi) {
198		/* Toggle CS to flush commands */
199		eecd |= E1000_EECD_CS;
200		wr32(E1000_EECD, eecd);
201		wrfl();
202		udelay(nvm->delay_usec);
203		eecd &= ~E1000_EECD_CS;
204		wr32(E1000_EECD, eecd);
205		wrfl();
206		udelay(nvm->delay_usec);
207	}
208}
209
210/**
211 *  e1000_stop_nvm - Terminate EEPROM command
212 *  @hw: pointer to the HW structure
213 *
214 *  Terminates the current command by inverting the EEPROM's chip select pin.
215 **/
216static void e1000_stop_nvm(struct e1000_hw *hw)
217{
218	u32 eecd;
219
220	eecd = rd32(E1000_EECD);
221	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
222		/* Pull CS high */
223		eecd |= E1000_EECD_CS;
224		igb_lower_eec_clk(hw, &eecd);
225	}
226}
227
228/**
229 *  igb_release_nvm - Release exclusive access to EEPROM
230 *  @hw: pointer to the HW structure
231 *
232 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
233 **/
234void igb_release_nvm(struct e1000_hw *hw)
235{
236	u32 eecd;
237
238	e1000_stop_nvm(hw);
239
240	eecd = rd32(E1000_EECD);
241	eecd &= ~E1000_EECD_REQ;
242	wr32(E1000_EECD, eecd);
243}
244
245/**
246 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
247 *  @hw: pointer to the HW structure
248 *
249 *  Setups the EEPROM for reading and writing.
250 **/
251static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
252{
253	struct e1000_nvm_info *nvm = &hw->nvm;
254	u32 eecd = rd32(E1000_EECD);
255	s32 ret_val = 0;
256	u16 timeout = 0;
257	u8 spi_stat_reg;
258
259
260	if (nvm->type == e1000_nvm_eeprom_spi) {
261		/* Clear SK and CS */
262		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263		wr32(E1000_EECD, eecd);
264		wrfl();
265		udelay(1);
266		timeout = NVM_MAX_RETRY_SPI;
267
268		/* Read "Status Register" repeatedly until the LSB is cleared.
269		 * The EEPROM will signal that the command has been completed
270		 * by clearing bit 0 of the internal status register.  If it's
271		 * not cleared within 'timeout', then error out.
272		 */
273		while (timeout) {
274			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
275					       hw->nvm.opcode_bits);
276			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
277			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
278				break;
279
280			udelay(5);
281			igb_standby_nvm(hw);
282			timeout--;
283		}
284
285		if (!timeout) {
286			hw_dbg("SPI NVM Status error\n");
287			ret_val = -E1000_ERR_NVM;
288			goto out;
289		}
290	}
291
292out:
293	return ret_val;
294}
295
296/**
297 *  igb_read_nvm_spi - Read EEPROM's using SPI
298 *  @hw: pointer to the HW structure
299 *  @offset: offset of word in the EEPROM to read
300 *  @words: number of words to read
301 *  @data: word read from the EEPROM
302 *
303 *  Reads a 16 bit word from the EEPROM.
304 **/
305s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
306{
307	struct e1000_nvm_info *nvm = &hw->nvm;
308	u32 i = 0;
309	s32 ret_val;
310	u16 word_in;
311	u8 read_opcode = NVM_READ_OPCODE_SPI;
312
313	/* A check for invalid values:  offset too large, too many words,
314	 * and not enough words.
315	 */
316	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
317	    (words == 0)) {
318		hw_dbg("nvm parameter(s) out of bounds\n");
319		ret_val = -E1000_ERR_NVM;
320		goto out;
321	}
322
323	ret_val = nvm->ops.acquire(hw);
324	if (ret_val)
325		goto out;
326
327	ret_val = igb_ready_nvm_eeprom(hw);
328	if (ret_val)
329		goto release;
330
331	igb_standby_nvm(hw);
332
333	if ((nvm->address_bits == 8) && (offset >= 128))
334		read_opcode |= NVM_A8_OPCODE_SPI;
335
336	/* Send the READ command (opcode + addr) */
337	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
338	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
339
340	/* Read the data.  SPI NVMs increment the address with each byte
341	 * read and will roll over if reading beyond the end.  This allows
342	 * us to read the whole NVM from any offset
343	 */
344	for (i = 0; i < words; i++) {
345		word_in = igb_shift_in_eec_bits(hw, 16);
346		data[i] = (word_in >> 8) | (word_in << 8);
347	}
348
349release:
350	nvm->ops.release(hw);
351
352out:
353	return ret_val;
354}
355
356/**
357 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
358 *  @hw: pointer to the HW structure
359 *  @offset: offset of word in the EEPROM to read
360 *  @words: number of words to read
361 *  @data: word read from the EEPROM
362 *
363 *  Reads a 16 bit word from the EEPROM using the EERD register.
364 **/
365s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
366{
367	struct e1000_nvm_info *nvm = &hw->nvm;
368	u32 i, eerd = 0;
369	s32 ret_val = 0;
370
371	/* A check for invalid values:  offset too large, too many words,
372	 * and not enough words.
373	 */
374	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
375	    (words == 0)) {
376		hw_dbg("nvm parameter(s) out of bounds\n");
377		ret_val = -E1000_ERR_NVM;
378		goto out;
379	}
380
381	for (i = 0; i < words; i++) {
382		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
383			E1000_NVM_RW_REG_START;
384
385		wr32(E1000_EERD, eerd);
386		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
387		if (ret_val)
388			break;
389
390		data[i] = (rd32(E1000_EERD) >>
391			E1000_NVM_RW_REG_DATA);
392	}
393
394out:
395	return ret_val;
396}
397
398/**
399 *  igb_write_nvm_spi - Write to EEPROM using SPI
400 *  @hw: pointer to the HW structure
401 *  @offset: offset within the EEPROM to be written to
402 *  @words: number of words to write
403 *  @data: 16 bit word(s) to be written to the EEPROM
404 *
405 *  Writes data to EEPROM at offset using SPI interface.
406 *
407 *  If e1000_update_nvm_checksum is not called after this function , the
408 *  EEPROM will most likley contain an invalid checksum.
409 **/
410s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
411{
412	struct e1000_nvm_info *nvm = &hw->nvm;
413	s32 ret_val = -E1000_ERR_NVM;
414	u16 widx = 0;
415
416	/* A check for invalid values:  offset too large, too many words,
417	 * and not enough words.
418	 */
419	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
420	    (words == 0)) {
421		hw_dbg("nvm parameter(s) out of bounds\n");
422		return ret_val;
423	}
424
425	while (widx < words) {
426		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
427
428		ret_val = nvm->ops.acquire(hw);
429		if (ret_val)
430			return ret_val;
431
432		ret_val = igb_ready_nvm_eeprom(hw);
433		if (ret_val) {
434			nvm->ops.release(hw);
435			return ret_val;
436		}
437
438		igb_standby_nvm(hw);
439
440		/* Send the WRITE ENABLE command (8 bit opcode) */
441		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
442					 nvm->opcode_bits);
443
444		igb_standby_nvm(hw);
445
446		/* Some SPI eeproms use the 8th address bit embedded in the
447		 * opcode
448		 */
449		if ((nvm->address_bits == 8) && (offset >= 128))
450			write_opcode |= NVM_A8_OPCODE_SPI;
451
452		/* Send the Write command (8-bit opcode + addr) */
453		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
454		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
455					 nvm->address_bits);
456
457		/* Loop to allow for up to whole page write of eeprom */
458		while (widx < words) {
459			u16 word_out = data[widx];
460
461			word_out = (word_out >> 8) | (word_out << 8);
462			igb_shift_out_eec_bits(hw, word_out, 16);
463			widx++;
464
465			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
466				igb_standby_nvm(hw);
467				break;
468			}
469		}
470		usleep_range(1000, 2000);
471		nvm->ops.release(hw);
472	}
473
474	return ret_val;
475}
476
477/**
478 *  igb_read_part_string - Read device part number
479 *  @hw: pointer to the HW structure
480 *  @part_num: pointer to device part number
481 *  @part_num_size: size of part number buffer
482 *
483 *  Reads the product board assembly (PBA) number from the EEPROM and stores
484 *  the value in part_num.
485 **/
486s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
487{
488	s32 ret_val;
489	u16 nvm_data;
490	u16 pointer;
491	u16 offset;
492	u16 length;
493
494	if (part_num == NULL) {
495		hw_dbg("PBA string buffer was null\n");
496		ret_val = E1000_ERR_INVALID_ARGUMENT;
497		goto out;
498	}
499
500	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
501	if (ret_val) {
502		hw_dbg("NVM Read Error\n");
503		goto out;
504	}
505
506	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
507	if (ret_val) {
508		hw_dbg("NVM Read Error\n");
509		goto out;
510	}
511
512	/* if nvm_data is not ptr guard the PBA must be in legacy format which
513	 * means pointer is actually our second data word for the PBA number
514	 * and we can decode it into an ascii string
515	 */
516	if (nvm_data != NVM_PBA_PTR_GUARD) {
517		hw_dbg("NVM PBA number is not stored as string\n");
518
519		/* we will need 11 characters to store the PBA */
520		if (part_num_size < 11) {
521			hw_dbg("PBA string buffer too small\n");
522			return E1000_ERR_NO_SPACE;
523		}
524
525		/* extract hex string from data and pointer */
526		part_num[0] = (nvm_data >> 12) & 0xF;
527		part_num[1] = (nvm_data >> 8) & 0xF;
528		part_num[2] = (nvm_data >> 4) & 0xF;
529		part_num[3] = nvm_data & 0xF;
530		part_num[4] = (pointer >> 12) & 0xF;
531		part_num[5] = (pointer >> 8) & 0xF;
532		part_num[6] = '-';
533		part_num[7] = 0;
534		part_num[8] = (pointer >> 4) & 0xF;
535		part_num[9] = pointer & 0xF;
536
537		/* put a null character on the end of our string */
538		part_num[10] = '\0';
539
540		/* switch all the data but the '-' to hex char */
541		for (offset = 0; offset < 10; offset++) {
542			if (part_num[offset] < 0xA)
543				part_num[offset] += '0';
544			else if (part_num[offset] < 0x10)
545				part_num[offset] += 'A' - 0xA;
546		}
547
548		goto out;
549	}
550
551	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
552	if (ret_val) {
553		hw_dbg("NVM Read Error\n");
554		goto out;
555	}
556
557	if (length == 0xFFFF || length == 0) {
558		hw_dbg("NVM PBA number section invalid length\n");
559		ret_val = E1000_ERR_NVM_PBA_SECTION;
560		goto out;
561	}
562	/* check if part_num buffer is big enough */
563	if (part_num_size < (((u32)length * 2) - 1)) {
564		hw_dbg("PBA string buffer too small\n");
565		ret_val = E1000_ERR_NO_SPACE;
566		goto out;
567	}
568
569	/* trim pba length from start of string */
570	pointer++;
571	length--;
572
573	for (offset = 0; offset < length; offset++) {
574		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
575		if (ret_val) {
576			hw_dbg("NVM Read Error\n");
577			goto out;
578		}
579		part_num[offset * 2] = (u8)(nvm_data >> 8);
580		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
581	}
582	part_num[offset * 2] = '\0';
583
584out:
585	return ret_val;
586}
587
588/**
589 *  igb_read_mac_addr - Read device MAC address
590 *  @hw: pointer to the HW structure
591 *
592 *  Reads the device MAC address from the EEPROM and stores the value.
593 *  Since devices with two ports use the same EEPROM, we increment the
594 *  last bit in the MAC address for the second port.
595 **/
596s32 igb_read_mac_addr(struct e1000_hw *hw)
597{
598	u32 rar_high;
599	u32 rar_low;
600	u16 i;
601
602	rar_high = rd32(E1000_RAH(0));
603	rar_low = rd32(E1000_RAL(0));
604
605	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
606		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
607
608	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
609		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
610
611	for (i = 0; i < ETH_ALEN; i++)
612		hw->mac.addr[i] = hw->mac.perm_addr[i];
613
614	return 0;
615}
616
617/**
618 *  igb_validate_nvm_checksum - Validate EEPROM checksum
619 *  @hw: pointer to the HW structure
620 *
621 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
622 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
623 **/
624s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
625{
626	s32 ret_val = 0;
627	u16 checksum = 0;
628	u16 i, nvm_data;
629
630	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
631		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
632		if (ret_val) {
633			hw_dbg("NVM Read Error\n");
634			goto out;
635		}
636		checksum += nvm_data;
637	}
638
639	if (checksum != (u16) NVM_SUM) {
640		hw_dbg("NVM Checksum Invalid\n");
641		ret_val = -E1000_ERR_NVM;
642		goto out;
643	}
644
645out:
646	return ret_val;
647}
648
649/**
650 *  igb_update_nvm_checksum - Update EEPROM checksum
651 *  @hw: pointer to the HW structure
652 *
653 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
654 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
655 *  value to the EEPROM.
656 **/
657s32 igb_update_nvm_checksum(struct e1000_hw *hw)
658{
659	s32  ret_val;
660	u16 checksum = 0;
661	u16 i, nvm_data;
662
663	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
664		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
665		if (ret_val) {
666			hw_dbg("NVM Read Error while updating checksum.\n");
667			goto out;
668		}
669		checksum += nvm_data;
670	}
671	checksum = (u16) NVM_SUM - checksum;
672	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
673	if (ret_val)
674		hw_dbg("NVM Write Error while updating checksum.\n");
675
676out:
677	return ret_val;
678}
679
680/**
681 *  igb_get_fw_version - Get firmware version information
682 *  @hw: pointer to the HW structure
683 *  @fw_vers: pointer to output structure
684 *
685 *  unsupported MAC types will return all 0 version structure
686 **/
687void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
688{
689	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
690	u8 q, hval, rem, result;
691	u16 comb_verh, comb_verl, comb_offset;
692
693	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
694
695	/* basic eeprom version numbers and bits used vary by part and by tool
696	 * used to create the nvm images. Check which data format we have.
697	 */
698	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
699	switch (hw->mac.type) {
700	case e1000_i211:
701		igb_read_invm_version(hw, fw_vers);
702		return;
703	case e1000_82575:
704	case e1000_82576:
705	case e1000_82580:
706		/* Use this format, unless EETRACK ID exists,
707		 * then use alternate format
708		 */
709		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
710			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
711			fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK,
712						       fw_version);
713			fw_vers->eep_minor = FIELD_GET(NVM_MINOR_MASK,
714						       fw_version);
715			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
716			goto etrack_id;
717		}
718		break;
719	case e1000_i210:
720		if (!(igb_get_flash_presence_i210(hw))) {
721			igb_read_invm_version(hw, fw_vers);
722			return;
723		}
724		fallthrough;
725	case e1000_i350:
726		/* find combo image version */
727		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
728		if ((comb_offset != 0x0) &&
729		    (comb_offset != NVM_VER_INVALID)) {
730
731			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
732					 + 1), 1, &comb_verh);
733			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
734					 1, &comb_verl);
735
736			/* get Option Rom version if it exists and is valid */
737			if ((comb_verh && comb_verl) &&
738			    ((comb_verh != NVM_VER_INVALID) &&
739			     (comb_verl != NVM_VER_INVALID))) {
740
741				fw_vers->or_valid = true;
742				fw_vers->or_major =
743					comb_verl >> NVM_COMB_VER_SHFT;
744				fw_vers->or_build =
745					(comb_verl << NVM_COMB_VER_SHFT)
746					| (comb_verh >> NVM_COMB_VER_SHFT);
747				fw_vers->or_patch =
748					comb_verh & NVM_COMB_VER_MASK;
749			}
750		}
751		break;
752	default:
753		return;
754	}
755	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
756	fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK, fw_version);
757
758	/* check for old style version format in newer images*/
759	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
760		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
761	} else {
762		eeprom_verl = FIELD_GET(NVM_MINOR_MASK, fw_version);
763	}
764	/* Convert minor value to hex before assigning to output struct
765	 * Val to be converted will not be higher than 99, per tool output
766	 */
767	q = eeprom_verl / NVM_HEX_CONV;
768	hval = q * NVM_HEX_TENS;
769	rem = eeprom_verl % NVM_HEX_CONV;
770	result = hval + rem;
771	fw_vers->eep_minor = result;
772
773etrack_id:
774	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
775		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
776		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
777		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
778			| eeprom_verl;
779	}
780}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2007 - 2018 Intel Corporation. */
  3
  4#include <linux/bitfield.h>
  5#include <linux/delay.h>
  6#include <linux/if_ether.h>
  7#include "e1000_mac.h"
  8#include "e1000_nvm.h"
  9
 10/**
 11 *  igb_raise_eec_clk - Raise EEPROM clock
 12 *  @hw: pointer to the HW structure
 13 *  @eecd: pointer to the EEPROM
 14 *
 15 *  Enable/Raise the EEPROM clock bit.
 16 **/
 17static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 18{
 19	*eecd = *eecd | E1000_EECD_SK;
 20	wr32(E1000_EECD, *eecd);
 21	wrfl();
 22	udelay(hw->nvm.delay_usec);
 23}
 24
 25/**
 26 *  igb_lower_eec_clk - Lower EEPROM clock
 27 *  @hw: pointer to the HW structure
 28 *  @eecd: pointer to the EEPROM
 29 *
 30 *  Clear/Lower the EEPROM clock bit.
 31 **/
 32static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 33{
 34	*eecd = *eecd & ~E1000_EECD_SK;
 35	wr32(E1000_EECD, *eecd);
 36	wrfl();
 37	udelay(hw->nvm.delay_usec);
 38}
 39
 40/**
 41 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
 42 *  @hw: pointer to the HW structure
 43 *  @data: data to send to the EEPROM
 44 *  @count: number of bits to shift out
 45 *
 46 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 47 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 48 *  In order to do this, "data" must be broken down into bits.
 49 **/
 50static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 51{
 52	struct e1000_nvm_info *nvm = &hw->nvm;
 53	u32 eecd = rd32(E1000_EECD);
 54	u32 mask;
 55
 56	mask = 1u << (count - 1);
 57	if (nvm->type == e1000_nvm_eeprom_spi)
 58		eecd |= E1000_EECD_DO;
 59
 60	do {
 61		eecd &= ~E1000_EECD_DI;
 62
 63		if (data & mask)
 64			eecd |= E1000_EECD_DI;
 65
 66		wr32(E1000_EECD, eecd);
 67		wrfl();
 68
 69		udelay(nvm->delay_usec);
 70
 71		igb_raise_eec_clk(hw, &eecd);
 72		igb_lower_eec_clk(hw, &eecd);
 73
 74		mask >>= 1;
 75	} while (mask);
 76
 77	eecd &= ~E1000_EECD_DI;
 78	wr32(E1000_EECD, eecd);
 79}
 80
 81/**
 82 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
 83 *  @hw: pointer to the HW structure
 84 *  @count: number of bits to shift in
 85 *
 86 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 87 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 88 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 89 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 90 *  always be clear.
 91 **/
 92static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 93{
 94	u32 eecd;
 95	u32 i;
 96	u16 data;
 97
 98	eecd = rd32(E1000_EECD);
 99
100	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
101	data = 0;
102
103	for (i = 0; i < count; i++) {
104		data <<= 1;
105		igb_raise_eec_clk(hw, &eecd);
106
107		eecd = rd32(E1000_EECD);
108
109		eecd &= ~E1000_EECD_DI;
110		if (eecd & E1000_EECD_DO)
111			data |= 1;
112
113		igb_lower_eec_clk(hw, &eecd);
114	}
115
116	return data;
117}
118
119/**
120 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
121 *  @hw: pointer to the HW structure
122 *  @ee_reg: EEPROM flag for polling
123 *
124 *  Polls the EEPROM status bit for either read or write completion based
125 *  upon the value of 'ee_reg'.
126 **/
127static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
128{
129	u32 attempts = 100000;
130	u32 i, reg = 0;
131	s32 ret_val = -E1000_ERR_NVM;
132
133	for (i = 0; i < attempts; i++) {
134		if (ee_reg == E1000_NVM_POLL_READ)
135			reg = rd32(E1000_EERD);
136		else
137			reg = rd32(E1000_EEWR);
138
139		if (reg & E1000_NVM_RW_REG_DONE) {
140			ret_val = 0;
141			break;
142		}
143
144		udelay(5);
145	}
146
147	return ret_val;
148}
149
150/**
151 *  igb_acquire_nvm - Generic request for access to EEPROM
152 *  @hw: pointer to the HW structure
153 *
154 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
155 *  Return successful if access grant bit set, else clear the request for
156 *  EEPROM access and return -E1000_ERR_NVM (-1).
157 **/
158s32 igb_acquire_nvm(struct e1000_hw *hw)
159{
160	u32 eecd = rd32(E1000_EECD);
161	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
162	s32 ret_val = 0;
163
164
165	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
166	eecd = rd32(E1000_EECD);
167
168	while (timeout) {
169		if (eecd & E1000_EECD_GNT)
170			break;
171		udelay(5);
172		eecd = rd32(E1000_EECD);
173		timeout--;
174	}
175
176	if (!timeout) {
177		eecd &= ~E1000_EECD_REQ;
178		wr32(E1000_EECD, eecd);
179		hw_dbg("Could not acquire NVM grant\n");
180		ret_val = -E1000_ERR_NVM;
181	}
182
183	return ret_val;
184}
185
186/**
187 *  igb_standby_nvm - Return EEPROM to standby state
188 *  @hw: pointer to the HW structure
189 *
190 *  Return the EEPROM to a standby state.
191 **/
192static void igb_standby_nvm(struct e1000_hw *hw)
193{
194	struct e1000_nvm_info *nvm = &hw->nvm;
195	u32 eecd = rd32(E1000_EECD);
196
197	if (nvm->type == e1000_nvm_eeprom_spi) {
198		/* Toggle CS to flush commands */
199		eecd |= E1000_EECD_CS;
200		wr32(E1000_EECD, eecd);
201		wrfl();
202		udelay(nvm->delay_usec);
203		eecd &= ~E1000_EECD_CS;
204		wr32(E1000_EECD, eecd);
205		wrfl();
206		udelay(nvm->delay_usec);
207	}
208}
209
210/**
211 *  e1000_stop_nvm - Terminate EEPROM command
212 *  @hw: pointer to the HW structure
213 *
214 *  Terminates the current command by inverting the EEPROM's chip select pin.
215 **/
216static void e1000_stop_nvm(struct e1000_hw *hw)
217{
218	u32 eecd;
219
220	eecd = rd32(E1000_EECD);
221	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
222		/* Pull CS high */
223		eecd |= E1000_EECD_CS;
224		igb_lower_eec_clk(hw, &eecd);
225	}
226}
227
228/**
229 *  igb_release_nvm - Release exclusive access to EEPROM
230 *  @hw: pointer to the HW structure
231 *
232 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
233 **/
234void igb_release_nvm(struct e1000_hw *hw)
235{
236	u32 eecd;
237
238	e1000_stop_nvm(hw);
239
240	eecd = rd32(E1000_EECD);
241	eecd &= ~E1000_EECD_REQ;
242	wr32(E1000_EECD, eecd);
243}
244
245/**
246 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
247 *  @hw: pointer to the HW structure
248 *
249 *  Setups the EEPROM for reading and writing.
250 **/
251static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
252{
253	struct e1000_nvm_info *nvm = &hw->nvm;
254	u32 eecd = rd32(E1000_EECD);
255	s32 ret_val = 0;
256	u16 timeout = 0;
257	u8 spi_stat_reg;
258
259
260	if (nvm->type == e1000_nvm_eeprom_spi) {
261		/* Clear SK and CS */
262		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263		wr32(E1000_EECD, eecd);
264		wrfl();
265		udelay(1);
266		timeout = NVM_MAX_RETRY_SPI;
267
268		/* Read "Status Register" repeatedly until the LSB is cleared.
269		 * The EEPROM will signal that the command has been completed
270		 * by clearing bit 0 of the internal status register.  If it's
271		 * not cleared within 'timeout', then error out.
272		 */
273		while (timeout) {
274			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
275					       hw->nvm.opcode_bits);
276			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
277			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
278				break;
279
280			udelay(5);
281			igb_standby_nvm(hw);
282			timeout--;
283		}
284
285		if (!timeout) {
286			hw_dbg("SPI NVM Status error\n");
287			ret_val = -E1000_ERR_NVM;
288			goto out;
289		}
290	}
291
292out:
293	return ret_val;
294}
295
296/**
297 *  igb_read_nvm_spi - Read EEPROM's using SPI
298 *  @hw: pointer to the HW structure
299 *  @offset: offset of word in the EEPROM to read
300 *  @words: number of words to read
301 *  @data: word read from the EEPROM
302 *
303 *  Reads a 16 bit word from the EEPROM.
304 **/
305s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
306{
307	struct e1000_nvm_info *nvm = &hw->nvm;
308	u32 i = 0;
309	s32 ret_val;
310	u16 word_in;
311	u8 read_opcode = NVM_READ_OPCODE_SPI;
312
313	/* A check for invalid values:  offset too large, too many words,
314	 * and not enough words.
315	 */
316	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
317	    (words == 0)) {
318		hw_dbg("nvm parameter(s) out of bounds\n");
319		ret_val = -E1000_ERR_NVM;
320		goto out;
321	}
322
323	ret_val = nvm->ops.acquire(hw);
324	if (ret_val)
325		goto out;
326
327	ret_val = igb_ready_nvm_eeprom(hw);
328	if (ret_val)
329		goto release;
330
331	igb_standby_nvm(hw);
332
333	if ((nvm->address_bits == 8) && (offset >= 128))
334		read_opcode |= NVM_A8_OPCODE_SPI;
335
336	/* Send the READ command (opcode + addr) */
337	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
338	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
339
340	/* Read the data.  SPI NVMs increment the address with each byte
341	 * read and will roll over if reading beyond the end.  This allows
342	 * us to read the whole NVM from any offset
343	 */
344	for (i = 0; i < words; i++) {
345		word_in = igb_shift_in_eec_bits(hw, 16);
346		data[i] = (word_in >> 8) | (word_in << 8);
347	}
348
349release:
350	nvm->ops.release(hw);
351
352out:
353	return ret_val;
354}
355
356/**
357 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
358 *  @hw: pointer to the HW structure
359 *  @offset: offset of word in the EEPROM to read
360 *  @words: number of words to read
361 *  @data: word read from the EEPROM
362 *
363 *  Reads a 16 bit word from the EEPROM using the EERD register.
364 **/
365s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
366{
367	struct e1000_nvm_info *nvm = &hw->nvm;
368	u32 i, eerd = 0;
369	s32 ret_val = 0;
370
371	/* A check for invalid values:  offset too large, too many words,
372	 * and not enough words.
373	 */
374	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
375	    (words == 0)) {
376		hw_dbg("nvm parameter(s) out of bounds\n");
377		ret_val = -E1000_ERR_NVM;
378		goto out;
379	}
380
381	for (i = 0; i < words; i++) {
382		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
383			E1000_NVM_RW_REG_START;
384
385		wr32(E1000_EERD, eerd);
386		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
387		if (ret_val)
388			break;
389
390		data[i] = (rd32(E1000_EERD) >>
391			E1000_NVM_RW_REG_DATA);
392	}
393
394out:
395	return ret_val;
396}
397
398/**
399 *  igb_write_nvm_spi - Write to EEPROM using SPI
400 *  @hw: pointer to the HW structure
401 *  @offset: offset within the EEPROM to be written to
402 *  @words: number of words to write
403 *  @data: 16 bit word(s) to be written to the EEPROM
404 *
405 *  Writes data to EEPROM at offset using SPI interface.
406 *
407 *  If e1000_update_nvm_checksum is not called after this function , the
408 *  EEPROM will most likley contain an invalid checksum.
409 **/
410s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
411{
412	struct e1000_nvm_info *nvm = &hw->nvm;
413	s32 ret_val = -E1000_ERR_NVM;
414	u16 widx = 0;
415
416	/* A check for invalid values:  offset too large, too many words,
417	 * and not enough words.
418	 */
419	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
420	    (words == 0)) {
421		hw_dbg("nvm parameter(s) out of bounds\n");
422		return ret_val;
423	}
424
425	while (widx < words) {
426		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
427
428		ret_val = nvm->ops.acquire(hw);
429		if (ret_val)
430			return ret_val;
431
432		ret_val = igb_ready_nvm_eeprom(hw);
433		if (ret_val) {
434			nvm->ops.release(hw);
435			return ret_val;
436		}
437
438		igb_standby_nvm(hw);
439
440		/* Send the WRITE ENABLE command (8 bit opcode) */
441		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
442					 nvm->opcode_bits);
443
444		igb_standby_nvm(hw);
445
446		/* Some SPI eeproms use the 8th address bit embedded in the
447		 * opcode
448		 */
449		if ((nvm->address_bits == 8) && (offset >= 128))
450			write_opcode |= NVM_A8_OPCODE_SPI;
451
452		/* Send the Write command (8-bit opcode + addr) */
453		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
454		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
455					 nvm->address_bits);
456
457		/* Loop to allow for up to whole page write of eeprom */
458		while (widx < words) {
459			u16 word_out = data[widx];
460
461			word_out = (word_out >> 8) | (word_out << 8);
462			igb_shift_out_eec_bits(hw, word_out, 16);
463			widx++;
464
465			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
466				igb_standby_nvm(hw);
467				break;
468			}
469		}
470		usleep_range(1000, 2000);
471		nvm->ops.release(hw);
472	}
473
474	return ret_val;
475}
476
477/**
478 *  igb_read_part_string - Read device part number
479 *  @hw: pointer to the HW structure
480 *  @part_num: pointer to device part number
481 *  @part_num_size: size of part number buffer
482 *
483 *  Reads the product board assembly (PBA) number from the EEPROM and stores
484 *  the value in part_num.
485 **/
486s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
487{
488	s32 ret_val;
489	u16 nvm_data;
490	u16 pointer;
491	u16 offset;
492	u16 length;
493
494	if (part_num == NULL) {
495		hw_dbg("PBA string buffer was null\n");
496		ret_val = E1000_ERR_INVALID_ARGUMENT;
497		goto out;
498	}
499
500	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
501	if (ret_val) {
502		hw_dbg("NVM Read Error\n");
503		goto out;
504	}
505
506	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
507	if (ret_val) {
508		hw_dbg("NVM Read Error\n");
509		goto out;
510	}
511
512	/* if nvm_data is not ptr guard the PBA must be in legacy format which
513	 * means pointer is actually our second data word for the PBA number
514	 * and we can decode it into an ascii string
515	 */
516	if (nvm_data != NVM_PBA_PTR_GUARD) {
517		hw_dbg("NVM PBA number is not stored as string\n");
518
519		/* we will need 11 characters to store the PBA */
520		if (part_num_size < 11) {
521			hw_dbg("PBA string buffer too small\n");
522			return E1000_ERR_NO_SPACE;
523		}
524
525		/* extract hex string from data and pointer */
526		part_num[0] = (nvm_data >> 12) & 0xF;
527		part_num[1] = (nvm_data >> 8) & 0xF;
528		part_num[2] = (nvm_data >> 4) & 0xF;
529		part_num[3] = nvm_data & 0xF;
530		part_num[4] = (pointer >> 12) & 0xF;
531		part_num[5] = (pointer >> 8) & 0xF;
532		part_num[6] = '-';
533		part_num[7] = 0;
534		part_num[8] = (pointer >> 4) & 0xF;
535		part_num[9] = pointer & 0xF;
536
537		/* put a null character on the end of our string */
538		part_num[10] = '\0';
539
540		/* switch all the data but the '-' to hex char */
541		for (offset = 0; offset < 10; offset++) {
542			if (part_num[offset] < 0xA)
543				part_num[offset] += '0';
544			else if (part_num[offset] < 0x10)
545				part_num[offset] += 'A' - 0xA;
546		}
547
548		goto out;
549	}
550
551	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
552	if (ret_val) {
553		hw_dbg("NVM Read Error\n");
554		goto out;
555	}
556
557	if (length == 0xFFFF || length == 0) {
558		hw_dbg("NVM PBA number section invalid length\n");
559		ret_val = E1000_ERR_NVM_PBA_SECTION;
560		goto out;
561	}
562	/* check if part_num buffer is big enough */
563	if (part_num_size < (((u32)length * 2) - 1)) {
564		hw_dbg("PBA string buffer too small\n");
565		ret_val = E1000_ERR_NO_SPACE;
566		goto out;
567	}
568
569	/* trim pba length from start of string */
570	pointer++;
571	length--;
572
573	for (offset = 0; offset < length; offset++) {
574		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
575		if (ret_val) {
576			hw_dbg("NVM Read Error\n");
577			goto out;
578		}
579		part_num[offset * 2] = (u8)(nvm_data >> 8);
580		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
581	}
582	part_num[offset * 2] = '\0';
583
584out:
585	return ret_val;
586}
587
588/**
589 *  igb_read_mac_addr - Read device MAC address
590 *  @hw: pointer to the HW structure
591 *
592 *  Reads the device MAC address from the EEPROM and stores the value.
593 *  Since devices with two ports use the same EEPROM, we increment the
594 *  last bit in the MAC address for the second port.
595 **/
596s32 igb_read_mac_addr(struct e1000_hw *hw)
597{
598	u32 rar_high;
599	u32 rar_low;
600	u16 i;
601
602	rar_high = rd32(E1000_RAH(0));
603	rar_low = rd32(E1000_RAL(0));
604
605	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
606		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
607
608	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
609		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
610
611	for (i = 0; i < ETH_ALEN; i++)
612		hw->mac.addr[i] = hw->mac.perm_addr[i];
613
614	return 0;
615}
616
617/**
618 *  igb_validate_nvm_checksum - Validate EEPROM checksum
619 *  @hw: pointer to the HW structure
620 *
621 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
622 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
623 **/
624s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
625{
626	s32 ret_val = 0;
627	u16 checksum = 0;
628	u16 i, nvm_data;
629
630	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
631		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
632		if (ret_val) {
633			hw_dbg("NVM Read Error\n");
634			goto out;
635		}
636		checksum += nvm_data;
637	}
638
639	if (checksum != (u16) NVM_SUM) {
640		hw_dbg("NVM Checksum Invalid\n");
641		ret_val = -E1000_ERR_NVM;
642		goto out;
643	}
644
645out:
646	return ret_val;
647}
648
649/**
650 *  igb_update_nvm_checksum - Update EEPROM checksum
651 *  @hw: pointer to the HW structure
652 *
653 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
654 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
655 *  value to the EEPROM.
656 **/
657s32 igb_update_nvm_checksum(struct e1000_hw *hw)
658{
659	s32  ret_val;
660	u16 checksum = 0;
661	u16 i, nvm_data;
662
663	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
664		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
665		if (ret_val) {
666			hw_dbg("NVM Read Error while updating checksum.\n");
667			goto out;
668		}
669		checksum += nvm_data;
670	}
671	checksum = (u16) NVM_SUM - checksum;
672	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
673	if (ret_val)
674		hw_dbg("NVM Write Error while updating checksum.\n");
675
676out:
677	return ret_val;
678}
679
680/**
681 *  igb_get_fw_version - Get firmware version information
682 *  @hw: pointer to the HW structure
683 *  @fw_vers: pointer to output structure
684 *
685 *  unsupported MAC types will return all 0 version structure
686 **/
687void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
688{
689	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
690	u8 q, hval, rem, result;
691	u16 comb_verh, comb_verl, comb_offset;
692
693	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
694
695	/* basic eeprom version numbers and bits used vary by part and by tool
696	 * used to create the nvm images. Check which data format we have.
697	 */
698	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
699	switch (hw->mac.type) {
700	case e1000_i211:
701		igb_read_invm_version(hw, fw_vers);
702		return;
703	case e1000_82575:
704	case e1000_82576:
705	case e1000_82580:
706		/* Use this format, unless EETRACK ID exists,
707		 * then use alternate format
708		 */
709		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
710			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
711			fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK,
712						       fw_version);
713			fw_vers->eep_minor = FIELD_GET(NVM_MINOR_MASK,
714						       fw_version);
715			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
716			goto etrack_id;
717		}
718		break;
719	case e1000_i210:
720		if (!(igb_get_flash_presence_i210(hw))) {
721			igb_read_invm_version(hw, fw_vers);
722			return;
723		}
724		fallthrough;
725	case e1000_i350:
726		/* find combo image version */
727		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
728		if ((comb_offset != 0x0) &&
729		    (comb_offset != NVM_VER_INVALID)) {
730
731			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
732					 + 1), 1, &comb_verh);
733			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
734					 1, &comb_verl);
735
736			/* get Option Rom version if it exists and is valid */
737			if ((comb_verh && comb_verl) &&
738			    ((comb_verh != NVM_VER_INVALID) &&
739			     (comb_verl != NVM_VER_INVALID))) {
740
741				fw_vers->or_valid = true;
742				fw_vers->or_major =
743					comb_verl >> NVM_COMB_VER_SHFT;
744				fw_vers->or_build =
745					(comb_verl << NVM_COMB_VER_SHFT)
746					| (comb_verh >> NVM_COMB_VER_SHFT);
747				fw_vers->or_patch =
748					comb_verh & NVM_COMB_VER_MASK;
749			}
750		}
751		break;
752	default:
753		return;
754	}
755	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
756	fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK, fw_version);
757
758	/* check for old style version format in newer images*/
759	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
760		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
761	} else {
762		eeprom_verl = FIELD_GET(NVM_MINOR_MASK, fw_version);
763	}
764	/* Convert minor value to hex before assigning to output struct
765	 * Val to be converted will not be higher than 99, per tool output
766	 */
767	q = eeprom_verl / NVM_HEX_CONV;
768	hval = q * NVM_HEX_TENS;
769	rem = eeprom_verl % NVM_HEX_CONV;
770	result = hval + rem;
771	fw_vers->eep_minor = result;
772
773etrack_id:
774	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
775		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
776		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
777		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
778			| eeprom_verl;
779	}
780}