Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210{
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374{
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466
467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469
470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472
473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475
476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478
479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481
482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484
485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487
488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490
491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493
494 vfres->num_vsis = 1;
495 /* Tx and Rx queue are equal for VF */
496 vfres->num_queue_pairs = vsi->num_txq;
497 vfres->max_vectors = vf->num_msix;
498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501
502 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506 vf->hw_lan_addr);
507
508 /* match guest capabilities */
509 vf->driver_caps = vfres->vf_cap_flags;
510
511 ice_vc_set_caps_allowlist(vf);
512 ice_vc_set_working_allowlist(vf);
513
514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515
516err:
517 /* send the response back to the VF */
518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519 (u8 *)vfres, len);
520
521 kfree(vfres);
522 return ret;
523}
524
525/**
526 * ice_vc_reset_vf_msg
527 * @vf: pointer to the VF info
528 *
529 * called from the VF to reset itself,
530 * unlike other virtchnl messages, PF driver
531 * doesn't send the response back to the VF
532 */
533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534{
535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536 ice_reset_vf(vf, 0);
537}
538
539/**
540 * ice_vc_isvalid_vsi_id
541 * @vf: pointer to the VF info
542 * @vsi_id: VF relative VSI ID
543 *
544 * check for the valid VSI ID
545 */
546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547{
548 return vsi_id == ICE_VF_VSI_ID;
549}
550
551/**
552 * ice_vc_isvalid_q_id
553 * @vsi: VSI to check queue ID against
554 * @qid: VSI relative queue ID
555 *
556 * check for the valid queue ID
557 */
558static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
559{
560 /* allocated Tx and Rx queues should be always equal for VF VSI */
561 return qid < vsi->alloc_txq;
562}
563
564/**
565 * ice_vc_isvalid_ring_len
566 * @ring_len: length of ring
567 *
568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
569 * or zero
570 */
571static bool ice_vc_isvalid_ring_len(u16 ring_len)
572{
573 return ring_len == 0 ||
574 (ring_len >= ICE_MIN_NUM_DESC &&
575 ring_len <= ICE_MAX_NUM_DESC &&
576 !(ring_len % ICE_REQ_DESC_MULTIPLE));
577}
578
579/**
580 * ice_vc_validate_pattern
581 * @vf: pointer to the VF info
582 * @proto: virtchnl protocol headers
583 *
584 * validate the pattern is supported or not.
585 *
586 * Return: true on success, false on error.
587 */
588bool
589ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
590{
591 bool is_ipv4 = false;
592 bool is_ipv6 = false;
593 bool is_udp = false;
594 u16 ptype = -1;
595 int i = 0;
596
597 while (i < proto->count &&
598 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
599 switch (proto->proto_hdr[i].type) {
600 case VIRTCHNL_PROTO_HDR_ETH:
601 ptype = ICE_PTYPE_MAC_PAY;
602 break;
603 case VIRTCHNL_PROTO_HDR_IPV4:
604 ptype = ICE_PTYPE_IPV4_PAY;
605 is_ipv4 = true;
606 break;
607 case VIRTCHNL_PROTO_HDR_IPV6:
608 ptype = ICE_PTYPE_IPV6_PAY;
609 is_ipv6 = true;
610 break;
611 case VIRTCHNL_PROTO_HDR_UDP:
612 if (is_ipv4)
613 ptype = ICE_PTYPE_IPV4_UDP_PAY;
614 else if (is_ipv6)
615 ptype = ICE_PTYPE_IPV6_UDP_PAY;
616 is_udp = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_TCP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_TCP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_TCP_PAY;
623 break;
624 case VIRTCHNL_PROTO_HDR_SCTP:
625 if (is_ipv4)
626 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
627 else if (is_ipv6)
628 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
629 break;
630 case VIRTCHNL_PROTO_HDR_GTPU_IP:
631 case VIRTCHNL_PROTO_HDR_GTPU_EH:
632 if (is_ipv4)
633 ptype = ICE_MAC_IPV4_GTPU;
634 else if (is_ipv6)
635 ptype = ICE_MAC_IPV6_GTPU;
636 goto out;
637 case VIRTCHNL_PROTO_HDR_L2TPV3:
638 if (is_ipv4)
639 ptype = ICE_MAC_IPV4_L2TPV3;
640 else if (is_ipv6)
641 ptype = ICE_MAC_IPV6_L2TPV3;
642 goto out;
643 case VIRTCHNL_PROTO_HDR_ESP:
644 if (is_ipv4)
645 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
646 ICE_MAC_IPV4_ESP;
647 else if (is_ipv6)
648 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
649 ICE_MAC_IPV6_ESP;
650 goto out;
651 case VIRTCHNL_PROTO_HDR_AH:
652 if (is_ipv4)
653 ptype = ICE_MAC_IPV4_AH;
654 else if (is_ipv6)
655 ptype = ICE_MAC_IPV6_AH;
656 goto out;
657 case VIRTCHNL_PROTO_HDR_PFCP:
658 if (is_ipv4)
659 ptype = ICE_MAC_IPV4_PFCP_SESSION;
660 else if (is_ipv6)
661 ptype = ICE_MAC_IPV6_PFCP_SESSION;
662 goto out;
663 default:
664 break;
665 }
666 i++;
667 }
668
669out:
670 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
671}
672
673/**
674 * ice_vc_parse_rss_cfg - parses hash fields and headers from
675 * a specific virtchnl RSS cfg
676 * @hw: pointer to the hardware
677 * @rss_cfg: pointer to the virtchnl RSS cfg
678 * @hash_cfg: pointer to the HW hash configuration
679 *
680 * Return true if all the protocol header and hash fields in the RSS cfg could
681 * be parsed, else return false
682 *
683 * This function parses the virtchnl RSS cfg to be the intended
684 * hash fields and the intended header for RSS configuration
685 */
686static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
687 struct virtchnl_rss_cfg *rss_cfg,
688 struct ice_rss_hash_cfg *hash_cfg)
689{
690 const struct ice_vc_hash_field_match_type *hf_list;
691 const struct ice_vc_hdr_match_type *hdr_list;
692 int i, hf_list_len, hdr_list_len;
693 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
694 u64 *hash_flds = &hash_cfg->hash_flds;
695
696 /* set outer layer RSS as default */
697 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
698
699 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
700 hash_cfg->symm = true;
701 else
702 hash_cfg->symm = false;
703
704 hf_list = ice_vc_hash_field_list;
705 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
706 hdr_list = ice_vc_hdr_list;
707 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
708
709 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
710 struct virtchnl_proto_hdr *proto_hdr =
711 &rss_cfg->proto_hdrs.proto_hdr[i];
712 bool hdr_found = false;
713 int j;
714
715 /* Find matched ice headers according to virtchnl headers. */
716 for (j = 0; j < hdr_list_len; j++) {
717 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
718
719 if (proto_hdr->type == hdr_map.vc_hdr) {
720 *addl_hdrs |= hdr_map.ice_hdr;
721 hdr_found = true;
722 }
723 }
724
725 if (!hdr_found)
726 return false;
727
728 /* Find matched ice hash fields according to
729 * virtchnl hash fields.
730 */
731 for (j = 0; j < hf_list_len; j++) {
732 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
733
734 if (proto_hdr->type == hf_map.vc_hdr &&
735 proto_hdr->field_selector == hf_map.vc_hash_field) {
736 *hash_flds |= hf_map.ice_hash_field;
737 break;
738 }
739 }
740 }
741
742 return true;
743}
744
745/**
746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
747 * RSS offloads
748 * @caps: VF driver negotiated capabilities
749 *
750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
751 * else return false
752 */
753static bool ice_vf_adv_rss_offload_ena(u32 caps)
754{
755 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
756}
757
758/**
759 * ice_vc_handle_rss_cfg
760 * @vf: pointer to the VF info
761 * @msg: pointer to the message buffer
762 * @add: add a RSS config if true, otherwise delete a RSS config
763 *
764 * This function adds/deletes a RSS config
765 */
766static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
767{
768 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
769 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
770 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
771 struct device *dev = ice_pf_to_dev(vf->pf);
772 struct ice_hw *hw = &vf->pf->hw;
773 struct ice_vsi *vsi;
774
775 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
776 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
777 vf->vf_id);
778 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
779 goto error_param;
780 }
781
782 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786 goto error_param;
787 }
788
789 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
790 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
791 goto error_param;
792 }
793
794 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
795 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
796 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
797 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
798 vf->vf_id);
799 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800 goto error_param;
801 }
802
803 vsi = ice_get_vf_vsi(vf);
804 if (!vsi) {
805 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 goto error_param;
807 }
808
809 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
811 goto error_param;
812 }
813
814 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
815 struct ice_vsi_ctx *ctx;
816 u8 lut_type, hash_type;
817 int status;
818
819 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
820 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
821 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
822
823 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
824 if (!ctx) {
825 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
826 goto error_param;
827 }
828
829 ctx->info.q_opt_rss =
830 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
831 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
832
833 /* Preserve existing queueing option setting */
834 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
835 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
836 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
837 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
838
839 ctx->info.valid_sections =
840 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
841
842 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
843 if (status) {
844 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
845 status, ice_aq_str(hw->adminq.sq_last_status));
846 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
847 } else {
848 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
849 }
850
851 kfree(ctx);
852 } else {
853 struct ice_rss_hash_cfg cfg;
854
855 /* Only check for none raw pattern case */
856 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
857 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
858 goto error_param;
859 }
860 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
861 cfg.hash_flds = ICE_HASH_INVALID;
862 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
863
864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
865 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
866 goto error_param;
867 }
868
869 if (add) {
870 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
873 vsi->vsi_num, v_ret);
874 }
875 } else {
876 int status;
877
878 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
879 /* We just ignore -ENOENT, because if two configurations
880 * share the same profile remove one of them actually
881 * removes both, since the profile is deleted.
882 */
883 if (status && status != -ENOENT) {
884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886 vf->vf_id, status);
887 }
888 }
889 }
890
891error_param:
892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893}
894
895/**
896 * ice_vc_config_rss_key
897 * @vf: pointer to the VF info
898 * @msg: pointer to the msg buffer
899 *
900 * Configure the VF's RSS key
901 */
902static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903{
904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905 struct virtchnl_rss_key *vrk =
906 (struct virtchnl_rss_key *)msg;
907 struct ice_vsi *vsi;
908
909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911 goto error_param;
912 }
913
914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916 goto error_param;
917 }
918
919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 goto error_param;
922 }
923
924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 goto error_param;
927 }
928
929 vsi = ice_get_vf_vsi(vf);
930 if (!vsi) {
931 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 goto error_param;
933 }
934
935 if (ice_set_rss_key(vsi, vrk->key))
936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937error_param:
938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939 NULL, 0);
940}
941
942/**
943 * ice_vc_config_rss_lut
944 * @vf: pointer to the VF info
945 * @msg: pointer to the msg buffer
946 *
947 * Configure the VF's RSS LUT
948 */
949static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950{
951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953 struct ice_vsi *vsi;
954
955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957 goto error_param;
958 }
959
960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962 goto error_param;
963 }
964
965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 goto error_param;
968 }
969
970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 goto error_param;
973 }
974
975 vsi = ice_get_vf_vsi(vf);
976 if (!vsi) {
977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 goto error_param;
979 }
980
981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983error_param:
984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985 NULL, 0);
986}
987
988/**
989 * ice_vc_config_rss_hfunc
990 * @vf: pointer to the VF info
991 * @msg: pointer to the msg buffer
992 *
993 * Configure the VF's RSS Hash function
994 */
995static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
996{
997 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
998 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
999 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1000 struct ice_vsi *vsi;
1001
1002 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1003 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1004 goto error_param;
1005 }
1006
1007 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1008 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009 goto error_param;
1010 }
1011
1012 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 goto error_param;
1015 }
1016
1017 vsi = ice_get_vf_vsi(vf);
1018 if (!vsi) {
1019 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1020 goto error_param;
1021 }
1022
1023 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1024 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1025
1026 if (ice_set_rss_hfunc(vsi, hfunc))
1027 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1028error_param:
1029 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1030 NULL, 0);
1031}
1032
1033/**
1034 * ice_vc_cfg_promiscuous_mode_msg
1035 * @vf: pointer to the VF info
1036 * @msg: pointer to the msg buffer
1037 *
1038 * called from the VF to configure VF VSIs promiscuous mode
1039 */
1040static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1041{
1042 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1043 bool rm_promisc, alluni = false, allmulti = false;
1044 struct virtchnl_promisc_info *info =
1045 (struct virtchnl_promisc_info *)msg;
1046 struct ice_vsi_vlan_ops *vlan_ops;
1047 int mcast_err = 0, ucast_err = 0;
1048 struct ice_pf *pf = vf->pf;
1049 struct ice_vsi *vsi;
1050 u8 mcast_m, ucast_m;
1051 struct device *dev;
1052 int ret = 0;
1053
1054 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1055 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1056 goto error_param;
1057 }
1058
1059 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1060 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1061 goto error_param;
1062 }
1063
1064 vsi = ice_get_vf_vsi(vf);
1065 if (!vsi) {
1066 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1067 goto error_param;
1068 }
1069
1070 dev = ice_pf_to_dev(pf);
1071 if (!ice_is_vf_trusted(vf)) {
1072 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1073 vf->vf_id);
1074 /* Leave v_ret alone, lie to the VF on purpose. */
1075 goto error_param;
1076 }
1077
1078 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1079 alluni = true;
1080
1081 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1082 allmulti = true;
1083
1084 rm_promisc = !allmulti && !alluni;
1085
1086 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1087 if (rm_promisc)
1088 ret = vlan_ops->ena_rx_filtering(vsi);
1089 else
1090 ret = vlan_ops->dis_rx_filtering(vsi);
1091 if (ret) {
1092 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 goto error_param;
1095 }
1096
1097 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1098
1099 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1100 if (alluni) {
1101 /* in this case we're turning on promiscuous mode */
1102 ret = ice_set_dflt_vsi(vsi);
1103 } else {
1104 /* in this case we're turning off promiscuous mode */
1105 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1106 ret = ice_clear_dflt_vsi(vsi);
1107 }
1108
1109 /* in this case we're turning on/off only
1110 * allmulticast
1111 */
1112 if (allmulti)
1113 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1114 else
1115 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1116
1117 if (ret) {
1118 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1119 vf->vf_id, ret);
1120 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1121 goto error_param;
1122 }
1123 } else {
1124 if (alluni)
1125 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1126 else
1127 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1128
1129 if (allmulti)
1130 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1131 else
1132 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1133
1134 if (ucast_err || mcast_err)
1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 }
1137
1138 if (!mcast_err) {
1139 if (allmulti &&
1140 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1141 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1142 vf->vf_id);
1143 else if (!allmulti &&
1144 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1145 vf->vf_states))
1146 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1147 vf->vf_id);
1148 } else {
1149 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1150 vf->vf_id, mcast_err);
1151 }
1152
1153 if (!ucast_err) {
1154 if (alluni &&
1155 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1156 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1157 vf->vf_id);
1158 else if (!alluni &&
1159 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1160 vf->vf_states))
1161 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1162 vf->vf_id);
1163 } else {
1164 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1165 vf->vf_id, ucast_err);
1166 }
1167
1168error_param:
1169 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1170 v_ret, NULL, 0);
1171}
1172
1173/**
1174 * ice_vc_get_stats_msg
1175 * @vf: pointer to the VF info
1176 * @msg: pointer to the msg buffer
1177 *
1178 * called from the VF to get VSI stats
1179 */
1180static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1181{
1182 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1183 struct virtchnl_queue_select *vqs =
1184 (struct virtchnl_queue_select *)msg;
1185 struct ice_eth_stats stats = { 0 };
1186 struct ice_vsi *vsi;
1187
1188 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1189 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1190 goto error_param;
1191 }
1192
1193 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1194 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1195 goto error_param;
1196 }
1197
1198 vsi = ice_get_vf_vsi(vf);
1199 if (!vsi) {
1200 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1201 goto error_param;
1202 }
1203
1204 ice_update_eth_stats(vsi);
1205
1206 stats = vsi->eth_stats;
1207
1208error_param:
1209 /* send the response to the VF */
1210 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1211 (u8 *)&stats, sizeof(stats));
1212}
1213
1214/**
1215 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1216 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1217 *
1218 * Return true on successful validation, else false
1219 */
1220static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1221{
1222 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1223 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1224 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1225 return false;
1226
1227 return true;
1228}
1229
1230/**
1231 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1232 * @vsi: VSI of the VF to configure
1233 * @q_idx: VF queue index used to determine the queue in the PF's space
1234 */
1235static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1236{
1237 struct ice_hw *hw = &vsi->back->hw;
1238 u32 pfq = vsi->txq_map[q_idx];
1239 u32 reg;
1240
1241 reg = rd32(hw, QINT_TQCTL(pfq));
1242
1243 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1244 * this is most likely a poll mode VF driver, so don't enable an
1245 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1246 */
1247 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1248 return;
1249
1250 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1251}
1252
1253/**
1254 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1255 * @vsi: VSI of the VF to configure
1256 * @q_idx: VF queue index used to determine the queue in the PF's space
1257 */
1258static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1259{
1260 struct ice_hw *hw = &vsi->back->hw;
1261 u32 pfq = vsi->rxq_map[q_idx];
1262 u32 reg;
1263
1264 reg = rd32(hw, QINT_RQCTL(pfq));
1265
1266 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1267 * this is most likely a poll mode VF driver, so don't enable an
1268 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1269 */
1270 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1271 return;
1272
1273 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1274}
1275
1276/**
1277 * ice_vc_ena_qs_msg
1278 * @vf: pointer to the VF info
1279 * @msg: pointer to the msg buffer
1280 *
1281 * called from the VF to enable all or specific queue(s)
1282 */
1283static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1284{
1285 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1286 struct virtchnl_queue_select *vqs =
1287 (struct virtchnl_queue_select *)msg;
1288 struct ice_vsi *vsi;
1289 unsigned long q_map;
1290 u16 vf_q_id;
1291
1292 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1293 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1294 goto error_param;
1295 }
1296
1297 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1298 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1299 goto error_param;
1300 }
1301
1302 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1303 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304 goto error_param;
1305 }
1306
1307 vsi = ice_get_vf_vsi(vf);
1308 if (!vsi) {
1309 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1310 goto error_param;
1311 }
1312
1313 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1314 * Tx queue group list was configured and the context bits were
1315 * programmed using ice_vsi_cfg_txqs
1316 */
1317 q_map = vqs->rx_queues;
1318 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1319 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1320 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321 goto error_param;
1322 }
1323
1324 /* Skip queue if enabled */
1325 if (test_bit(vf_q_id, vf->rxq_ena))
1326 continue;
1327
1328 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1329 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1330 vf_q_id, vsi->vsi_num);
1331 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332 goto error_param;
1333 }
1334
1335 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1336 set_bit(vf_q_id, vf->rxq_ena);
1337 }
1338
1339 q_map = vqs->tx_queues;
1340 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1341 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1342 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1343 goto error_param;
1344 }
1345
1346 /* Skip queue if enabled */
1347 if (test_bit(vf_q_id, vf->txq_ena))
1348 continue;
1349
1350 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1351 set_bit(vf_q_id, vf->txq_ena);
1352 }
1353
1354 /* Set flag to indicate that queues are enabled */
1355 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1356 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1357
1358error_param:
1359 /* send the response to the VF */
1360 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1361 NULL, 0);
1362}
1363
1364/**
1365 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1366 * @vf: VF to disable queue for
1367 * @vsi: VSI for the VF
1368 * @q_id: VF relative (0-based) queue ID
1369 *
1370 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1371 * disabled then clear q_id bit in the enabled queues bitmap and return
1372 * success. Otherwise return error.
1373 */
1374static int
1375ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1376{
1377 struct ice_txq_meta txq_meta = { 0 };
1378 struct ice_tx_ring *ring;
1379 int err;
1380
1381 if (!test_bit(q_id, vf->txq_ena))
1382 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1383 q_id, vsi->vsi_num);
1384
1385 ring = vsi->tx_rings[q_id];
1386 if (!ring)
1387 return -EINVAL;
1388
1389 ice_fill_txq_meta(vsi, ring, &txq_meta);
1390
1391 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1392 if (err) {
1393 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1394 q_id, vsi->vsi_num);
1395 return err;
1396 }
1397
1398 /* Clear enabled queues flag */
1399 clear_bit(q_id, vf->txq_ena);
1400
1401 return 0;
1402}
1403
1404/**
1405 * ice_vc_dis_qs_msg
1406 * @vf: pointer to the VF info
1407 * @msg: pointer to the msg buffer
1408 *
1409 * called from the VF to disable all or specific queue(s)
1410 */
1411static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1412{
1413 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1414 struct virtchnl_queue_select *vqs =
1415 (struct virtchnl_queue_select *)msg;
1416 struct ice_vsi *vsi;
1417 unsigned long q_map;
1418 u16 vf_q_id;
1419
1420 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1421 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1422 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1423 goto error_param;
1424 }
1425
1426 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428 goto error_param;
1429 }
1430
1431 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1432 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1433 goto error_param;
1434 }
1435
1436 vsi = ice_get_vf_vsi(vf);
1437 if (!vsi) {
1438 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1439 goto error_param;
1440 }
1441
1442 if (vqs->tx_queues) {
1443 q_map = vqs->tx_queues;
1444
1445 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1446 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1447 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1448 goto error_param;
1449 }
1450
1451 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1452 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453 goto error_param;
1454 }
1455 }
1456 }
1457
1458 q_map = vqs->rx_queues;
1459 /* speed up Rx queue disable by batching them if possible */
1460 if (q_map &&
1461 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1462 if (ice_vsi_stop_all_rx_rings(vsi)) {
1463 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1464 vsi->vsi_num);
1465 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1466 goto error_param;
1467 }
1468
1469 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1470 } else if (q_map) {
1471 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1472 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1473 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1474 goto error_param;
1475 }
1476
1477 /* Skip queue if not enabled */
1478 if (!test_bit(vf_q_id, vf->rxq_ena))
1479 continue;
1480
1481 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1482 true)) {
1483 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1484 vf_q_id, vsi->vsi_num);
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 goto error_param;
1487 }
1488
1489 /* Clear enabled queues flag */
1490 clear_bit(vf_q_id, vf->rxq_ena);
1491 }
1492 }
1493
1494 /* Clear enabled queues flag */
1495 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1496 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1497
1498error_param:
1499 /* send the response to the VF */
1500 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1501 NULL, 0);
1502}
1503
1504/**
1505 * ice_cfg_interrupt
1506 * @vf: pointer to the VF info
1507 * @vsi: the VSI being configured
1508 * @vector_id: vector ID
1509 * @map: vector map for mapping vectors to queues
1510 * @q_vector: structure for interrupt vector
1511 * configure the IRQ to queue map
1512 */
1513static int
1514ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1515 struct virtchnl_vector_map *map,
1516 struct ice_q_vector *q_vector)
1517{
1518 u16 vsi_q_id, vsi_q_id_idx;
1519 unsigned long qmap;
1520
1521 q_vector->num_ring_rx = 0;
1522 q_vector->num_ring_tx = 0;
1523
1524 qmap = map->rxq_map;
1525 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1526 vsi_q_id = vsi_q_id_idx;
1527
1528 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1529 return VIRTCHNL_STATUS_ERR_PARAM;
1530
1531 q_vector->num_ring_rx++;
1532 q_vector->rx.itr_idx = map->rxitr_idx;
1533 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1534 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1535 q_vector->rx.itr_idx);
1536 }
1537
1538 qmap = map->txq_map;
1539 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540 vsi_q_id = vsi_q_id_idx;
1541
1542 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1543 return VIRTCHNL_STATUS_ERR_PARAM;
1544
1545 q_vector->num_ring_tx++;
1546 q_vector->tx.itr_idx = map->txitr_idx;
1547 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1548 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1549 q_vector->tx.itr_idx);
1550 }
1551
1552 return VIRTCHNL_STATUS_SUCCESS;
1553}
1554
1555/**
1556 * ice_vc_cfg_irq_map_msg
1557 * @vf: pointer to the VF info
1558 * @msg: pointer to the msg buffer
1559 *
1560 * called from the VF to configure the IRQ to queue map
1561 */
1562static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1563{
1564 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1565 u16 num_q_vectors_mapped, vsi_id, vector_id;
1566 struct virtchnl_irq_map_info *irqmap_info;
1567 struct virtchnl_vector_map *map;
1568 struct ice_vsi *vsi;
1569 int i;
1570
1571 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1572 num_q_vectors_mapped = irqmap_info->num_vectors;
1573
1574 /* Check to make sure number of VF vectors mapped is not greater than
1575 * number of VF vectors originally allocated, and check that
1576 * there is actually at least a single VF queue vector mapped
1577 */
1578 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1579 vf->num_msix < num_q_vectors_mapped ||
1580 !num_q_vectors_mapped) {
1581 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1582 goto error_param;
1583 }
1584
1585 vsi = ice_get_vf_vsi(vf);
1586 if (!vsi) {
1587 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1588 goto error_param;
1589 }
1590
1591 for (i = 0; i < num_q_vectors_mapped; i++) {
1592 struct ice_q_vector *q_vector;
1593
1594 map = &irqmap_info->vecmap[i];
1595
1596 vector_id = map->vector_id;
1597 vsi_id = map->vsi_id;
1598 /* vector_id is always 0-based for each VF, and can never be
1599 * larger than or equal to the max allowed interrupts per VF
1600 */
1601 if (!(vector_id < vf->num_msix) ||
1602 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1603 (!vector_id && (map->rxq_map || map->txq_map))) {
1604 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605 goto error_param;
1606 }
1607
1608 /* No need to map VF miscellaneous or rogue vector */
1609 if (!vector_id)
1610 continue;
1611
1612 /* Subtract non queue vector from vector_id passed by VF
1613 * to get actual number of VSI queue vector array index
1614 */
1615 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1616 if (!q_vector) {
1617 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618 goto error_param;
1619 }
1620
1621 /* lookout for the invalid queue index */
1622 v_ret = (enum virtchnl_status_code)
1623 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1624 if (v_ret)
1625 goto error_param;
1626 }
1627
1628error_param:
1629 /* send the response to the VF */
1630 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1631 NULL, 0);
1632}
1633
1634/**
1635 * ice_vc_cfg_qs_msg
1636 * @vf: pointer to the VF info
1637 * @msg: pointer to the msg buffer
1638 *
1639 * called from the VF to configure the Rx/Tx queues
1640 */
1641static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1642{
1643 struct virtchnl_vsi_queue_config_info *qci =
1644 (struct virtchnl_vsi_queue_config_info *)msg;
1645 struct virtchnl_queue_pair_info *qpi;
1646 struct ice_pf *pf = vf->pf;
1647 struct ice_lag *lag;
1648 struct ice_vsi *vsi;
1649 u8 act_prt, pri_prt;
1650 int i = -1, q_idx;
1651
1652 lag = pf->lag;
1653 mutex_lock(&pf->lag_mutex);
1654 act_prt = ICE_LAG_INVALID_PORT;
1655 pri_prt = pf->hw.port_info->lport;
1656 if (lag && lag->bonded && lag->primary) {
1657 act_prt = lag->active_port;
1658 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1659 lag->upper_netdev)
1660 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1661 else
1662 act_prt = ICE_LAG_INVALID_PORT;
1663 }
1664
1665 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1666 goto error_param;
1667
1668 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1669 goto error_param;
1670
1671 vsi = ice_get_vf_vsi(vf);
1672 if (!vsi)
1673 goto error_param;
1674
1675 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1676 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1677 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1678 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1679 goto error_param;
1680 }
1681
1682 for (i = 0; i < qci->num_queue_pairs; i++) {
1683 if (!qci->qpair[i].rxq.crc_disable)
1684 continue;
1685
1686 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1687 vf->vlan_strip_ena)
1688 goto error_param;
1689 }
1690
1691 for (i = 0; i < qci->num_queue_pairs; i++) {
1692 qpi = &qci->qpair[i];
1693 if (qpi->txq.vsi_id != qci->vsi_id ||
1694 qpi->rxq.vsi_id != qci->vsi_id ||
1695 qpi->rxq.queue_id != qpi->txq.queue_id ||
1696 qpi->txq.headwb_enabled ||
1697 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1698 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1699 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1700 goto error_param;
1701 }
1702
1703 q_idx = qpi->rxq.queue_id;
1704
1705 /* make sure selected "q_idx" is in valid range of queues
1706 * for selected "vsi"
1707 */
1708 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1709 goto error_param;
1710 }
1711
1712 /* copy Tx queue info from VF into VSI */
1713 if (qpi->txq.ring_len > 0) {
1714 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1715 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1716
1717 /* Disable any existing queue first */
1718 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1719 goto error_param;
1720
1721 /* Configure a queue with the requested settings */
1722 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1723 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1724 vf->vf_id, i);
1725 goto error_param;
1726 }
1727 }
1728
1729 /* copy Rx queue info from VF into VSI */
1730 if (qpi->rxq.ring_len > 0) {
1731 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1732 u32 rxdid;
1733
1734 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1735 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1736
1737 if (qpi->rxq.crc_disable)
1738 vsi->rx_rings[q_idx]->flags |=
1739 ICE_RX_FLAGS_CRC_STRIP_DIS;
1740 else
1741 vsi->rx_rings[q_idx]->flags &=
1742 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1743
1744 if (qpi->rxq.databuffer_size != 0 &&
1745 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1746 qpi->rxq.databuffer_size < 1024))
1747 goto error_param;
1748 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1749 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1750 if (qpi->rxq.max_pkt_size > max_frame_size ||
1751 qpi->rxq.max_pkt_size < 64)
1752 goto error_param;
1753
1754 vsi->max_frame = qpi->rxq.max_pkt_size;
1755 /* add space for the port VLAN since the VF driver is
1756 * not expected to account for it in the MTU
1757 * calculation
1758 */
1759 if (ice_vf_is_port_vlan_ena(vf))
1760 vsi->max_frame += VLAN_HLEN;
1761
1762 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1763 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1764 vf->vf_id, i);
1765 goto error_param;
1766 }
1767
1768 /* If Rx flex desc is supported, select RXDID for Rx
1769 * queues. Otherwise, use legacy 32byte descriptor
1770 * format. Legacy 16byte descriptor is not supported.
1771 * If this RXDID is selected, return error.
1772 */
1773 if (vf->driver_caps &
1774 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1775 rxdid = qpi->rxq.rxdid;
1776 if (!(BIT(rxdid) & pf->supported_rxdids))
1777 goto error_param;
1778 } else {
1779 rxdid = ICE_RXDID_LEGACY_1;
1780 }
1781
1782 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1783 vsi->rxq_map[q_idx],
1784 rxdid, 0x03, false);
1785 }
1786 }
1787
1788 if (lag && lag->bonded && lag->primary &&
1789 act_prt != ICE_LAG_INVALID_PORT)
1790 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1791 mutex_unlock(&pf->lag_mutex);
1792
1793 /* send the response to the VF */
1794 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1795 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1796error_param:
1797 /* disable whatever we can */
1798 for (; i >= 0; i--) {
1799 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1800 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1801 vf->vf_id, i);
1802 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1803 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1804 vf->vf_id, i);
1805 }
1806
1807 if (lag && lag->bonded && lag->primary &&
1808 act_prt != ICE_LAG_INVALID_PORT)
1809 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1810 mutex_unlock(&pf->lag_mutex);
1811
1812 ice_lag_move_new_vf_nodes(vf);
1813
1814 /* send the response to the VF */
1815 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1816 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1817}
1818
1819/**
1820 * ice_can_vf_change_mac
1821 * @vf: pointer to the VF info
1822 *
1823 * Return true if the VF is allowed to change its MAC filters, false otherwise
1824 */
1825static bool ice_can_vf_change_mac(struct ice_vf *vf)
1826{
1827 /* If the VF MAC address has been set administratively (via the
1828 * ndo_set_vf_mac command), then deny permission to the VF to
1829 * add/delete unicast MAC addresses, unless the VF is trusted
1830 */
1831 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1832 return false;
1833
1834 return true;
1835}
1836
1837/**
1838 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1839 * @vc_ether_addr: used to extract the type
1840 */
1841static u8
1842ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1843{
1844 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1845}
1846
1847/**
1848 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1849 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1850 */
1851static bool
1852ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1853{
1854 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1855
1856 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1857}
1858
1859/**
1860 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1861 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1862 *
1863 * This function should only be called when the MAC address in
1864 * virtchnl_ether_addr is a valid unicast MAC
1865 */
1866static bool
1867ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1868{
1869 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870
1871 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1872}
1873
1874/**
1875 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1876 * @vf: VF to update
1877 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1878 */
1879static void
1880ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1881{
1882 u8 *mac_addr = vc_ether_addr->addr;
1883
1884 if (!is_valid_ether_addr(mac_addr))
1885 return;
1886
1887 /* only allow legacy VF drivers to set the device and hardware MAC if it
1888 * is zero and allow new VF drivers to set the hardware MAC if the type
1889 * was correctly specified over VIRTCHNL
1890 */
1891 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1892 is_zero_ether_addr(vf->hw_lan_addr)) ||
1893 ice_is_vc_addr_primary(vc_ether_addr)) {
1894 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1895 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1896 }
1897
1898 /* hardware and device MACs are already set, but its possible that the
1899 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1900 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1901 * away for the legacy VF driver case as it will be updated in the
1902 * delete flow for this case
1903 */
1904 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1905 ether_addr_copy(vf->legacy_last_added_umac.addr,
1906 mac_addr);
1907 vf->legacy_last_added_umac.time_modified = jiffies;
1908 }
1909}
1910
1911/**
1912 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1913 * @vf: pointer to the VF info
1914 * @vsi: pointer to the VF's VSI
1915 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1916 */
1917static int
1918ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1919 struct virtchnl_ether_addr *vc_ether_addr)
1920{
1921 struct device *dev = ice_pf_to_dev(vf->pf);
1922 u8 *mac_addr = vc_ether_addr->addr;
1923 int ret;
1924
1925 /* device MAC already added */
1926 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1927 return 0;
1928
1929 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1930 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1931 return -EPERM;
1932 }
1933
1934 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1935 if (ret == -EEXIST) {
1936 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1937 vf->vf_id);
1938 /* don't return since we might need to update
1939 * the primary MAC in ice_vfhw_mac_add() below
1940 */
1941 } else if (ret) {
1942 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1943 mac_addr, vf->vf_id, ret);
1944 return ret;
1945 } else {
1946 vf->num_mac++;
1947 }
1948
1949 ice_vfhw_mac_add(vf, vc_ether_addr);
1950
1951 return ret;
1952}
1953
1954/**
1955 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1956 * @last_added_umac: structure used to check expiration
1957 */
1958static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1959{
1960#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1961 return time_is_before_jiffies(last_added_umac->time_modified +
1962 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1963}
1964
1965/**
1966 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1967 * @vf: VF to update
1968 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1969 *
1970 * only update cached hardware MAC for legacy VF drivers on delete
1971 * because we cannot guarantee order/type of MAC from the VF driver
1972 */
1973static void
1974ice_update_legacy_cached_mac(struct ice_vf *vf,
1975 struct virtchnl_ether_addr *vc_ether_addr)
1976{
1977 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1978 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1979 return;
1980
1981 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1982 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1983}
1984
1985/**
1986 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1987 * @vf: VF to update
1988 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1989 */
1990static void
1991ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1992{
1993 u8 *mac_addr = vc_ether_addr->addr;
1994
1995 if (!is_valid_ether_addr(mac_addr) ||
1996 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1997 return;
1998
1999 /* allow the device MAC to be repopulated in the add flow and don't
2000 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2001 * to be persistent on VM reboot and across driver unload/load, which
2002 * won't work if we clear the hardware MAC here
2003 */
2004 eth_zero_addr(vf->dev_lan_addr);
2005
2006 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2007}
2008
2009/**
2010 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2011 * @vf: pointer to the VF info
2012 * @vsi: pointer to the VF's VSI
2013 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2014 */
2015static int
2016ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2017 struct virtchnl_ether_addr *vc_ether_addr)
2018{
2019 struct device *dev = ice_pf_to_dev(vf->pf);
2020 u8 *mac_addr = vc_ether_addr->addr;
2021 int status;
2022
2023 if (!ice_can_vf_change_mac(vf) &&
2024 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2025 return 0;
2026
2027 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2028 if (status == -ENOENT) {
2029 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2030 vf->vf_id);
2031 return -ENOENT;
2032 } else if (status) {
2033 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2034 mac_addr, vf->vf_id, status);
2035 return -EIO;
2036 }
2037
2038 ice_vfhw_mac_del(vf, vc_ether_addr);
2039
2040 vf->num_mac--;
2041
2042 return 0;
2043}
2044
2045/**
2046 * ice_vc_handle_mac_addr_msg
2047 * @vf: pointer to the VF info
2048 * @msg: pointer to the msg buffer
2049 * @set: true if MAC filters are being set, false otherwise
2050 *
2051 * add guest MAC address filter
2052 */
2053static int
2054ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2055{
2056 int (*ice_vc_cfg_mac)
2057 (struct ice_vf *vf, struct ice_vsi *vsi,
2058 struct virtchnl_ether_addr *virtchnl_ether_addr);
2059 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2060 struct virtchnl_ether_addr_list *al =
2061 (struct virtchnl_ether_addr_list *)msg;
2062 struct ice_pf *pf = vf->pf;
2063 enum virtchnl_ops vc_op;
2064 struct ice_vsi *vsi;
2065 int i;
2066
2067 if (set) {
2068 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2069 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2070 } else {
2071 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2072 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2073 }
2074
2075 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2076 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2077 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2078 goto handle_mac_exit;
2079 }
2080
2081 /* If this VF is not privileged, then we can't add more than a
2082 * limited number of addresses. Check to make sure that the
2083 * additions do not push us over the limit.
2084 */
2085 if (set && !ice_is_vf_trusted(vf) &&
2086 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2087 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2088 vf->vf_id);
2089 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2090 goto handle_mac_exit;
2091 }
2092
2093 vsi = ice_get_vf_vsi(vf);
2094 if (!vsi) {
2095 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2096 goto handle_mac_exit;
2097 }
2098
2099 for (i = 0; i < al->num_elements; i++) {
2100 u8 *mac_addr = al->list[i].addr;
2101 int result;
2102
2103 if (is_broadcast_ether_addr(mac_addr) ||
2104 is_zero_ether_addr(mac_addr))
2105 continue;
2106
2107 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2108 if (result == -EEXIST || result == -ENOENT) {
2109 continue;
2110 } else if (result) {
2111 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2112 goto handle_mac_exit;
2113 }
2114 }
2115
2116handle_mac_exit:
2117 /* send the response to the VF */
2118 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2119}
2120
2121/**
2122 * ice_vc_add_mac_addr_msg
2123 * @vf: pointer to the VF info
2124 * @msg: pointer to the msg buffer
2125 *
2126 * add guest MAC address filter
2127 */
2128static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2129{
2130 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2131}
2132
2133/**
2134 * ice_vc_del_mac_addr_msg
2135 * @vf: pointer to the VF info
2136 * @msg: pointer to the msg buffer
2137 *
2138 * remove guest MAC address filter
2139 */
2140static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2141{
2142 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2143}
2144
2145/**
2146 * ice_vc_request_qs_msg
2147 * @vf: pointer to the VF info
2148 * @msg: pointer to the msg buffer
2149 *
2150 * VFs get a default number of queues but can use this message to request a
2151 * different number. If the request is successful, PF will reset the VF and
2152 * return 0. If unsuccessful, PF will send message informing VF of number of
2153 * available queue pairs via virtchnl message response to VF.
2154 */
2155static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2156{
2157 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158 struct virtchnl_vf_res_request *vfres =
2159 (struct virtchnl_vf_res_request *)msg;
2160 u16 req_queues = vfres->num_queue_pairs;
2161 struct ice_pf *pf = vf->pf;
2162 u16 max_allowed_vf_queues;
2163 u16 tx_rx_queue_left;
2164 struct device *dev;
2165 u16 cur_queues;
2166
2167 dev = ice_pf_to_dev(pf);
2168 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170 goto error_param;
2171 }
2172
2173 cur_queues = vf->num_vf_qs;
2174 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2175 ice_get_avail_rxq_count(pf));
2176 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2177 if (!req_queues) {
2178 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2179 vf->vf_id);
2180 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2181 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2182 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2183 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2184 } else if (req_queues > cur_queues &&
2185 req_queues - cur_queues > tx_rx_queue_left) {
2186 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2187 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2188 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2189 ICE_MAX_RSS_QS_PER_VF);
2190 } else {
2191 /* request is successful, then reset VF */
2192 vf->num_req_qs = req_queues;
2193 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2194 dev_info(dev, "VF %d granted request of %u queues.\n",
2195 vf->vf_id, req_queues);
2196 return 0;
2197 }
2198
2199error_param:
2200 /* send the response to the VF */
2201 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2202 v_ret, (u8 *)vfres, sizeof(*vfres));
2203}
2204
2205/**
2206 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2207 * @caps: VF driver negotiated capabilities
2208 *
2209 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2210 */
2211static bool ice_vf_vlan_offload_ena(u32 caps)
2212{
2213 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2214}
2215
2216/**
2217 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2218 * @vf: VF used to determine if VLAN promiscuous config is allowed
2219 */
2220static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2221{
2222 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2223 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2224 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2225 return true;
2226
2227 return false;
2228}
2229
2230/**
2231 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2232 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2233 * @vlan: VLAN used to enable VLAN promiscuous
2234 *
2235 * This function should only be called if VLAN promiscuous mode is allowed,
2236 * which can be determined via ice_is_vlan_promisc_allowed().
2237 */
2238static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2239{
2240 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2241 int status;
2242
2243 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2244 vlan->vid);
2245 if (status && status != -EEXIST)
2246 return status;
2247
2248 return 0;
2249}
2250
2251/**
2252 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2253 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2254 * @vlan: VLAN used to disable VLAN promiscuous
2255 *
2256 * This function should only be called if VLAN promiscuous mode is allowed,
2257 * which can be determined via ice_is_vlan_promisc_allowed().
2258 */
2259static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2260{
2261 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2262 int status;
2263
2264 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2265 vlan->vid);
2266 if (status && status != -ENOENT)
2267 return status;
2268
2269 return 0;
2270}
2271
2272/**
2273 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2274 * @vf: VF to check against
2275 * @vsi: VF's VSI
2276 *
2277 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2278 * wants to, so return false.
2279 *
2280 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2281 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2282 */
2283static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2284{
2285 if (ice_is_vf_trusted(vf))
2286 return false;
2287
2288#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2289 return ((ice_vsi_num_non_zero_vlans(vsi) +
2290 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2291}
2292
2293/**
2294 * ice_vc_process_vlan_msg
2295 * @vf: pointer to the VF info
2296 * @msg: pointer to the msg buffer
2297 * @add_v: Add VLAN if true, otherwise delete VLAN
2298 *
2299 * Process virtchnl op to add or remove programmed guest VLAN ID
2300 */
2301static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2302{
2303 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2304 struct virtchnl_vlan_filter_list *vfl =
2305 (struct virtchnl_vlan_filter_list *)msg;
2306 struct ice_pf *pf = vf->pf;
2307 bool vlan_promisc = false;
2308 struct ice_vsi *vsi;
2309 struct device *dev;
2310 int status = 0;
2311 int i;
2312
2313 dev = ice_pf_to_dev(pf);
2314 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2315 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316 goto error_param;
2317 }
2318
2319 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2320 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2321 goto error_param;
2322 }
2323
2324 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326 goto error_param;
2327 }
2328
2329 for (i = 0; i < vfl->num_elements; i++) {
2330 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2331 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332 dev_err(dev, "invalid VF VLAN id %d\n",
2333 vfl->vlan_id[i]);
2334 goto error_param;
2335 }
2336 }
2337
2338 vsi = ice_get_vf_vsi(vf);
2339 if (!vsi) {
2340 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2341 goto error_param;
2342 }
2343
2344 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2345 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2346 vf->vf_id);
2347 /* There is no need to let VF know about being not trusted,
2348 * so we can just return success message here
2349 */
2350 goto error_param;
2351 }
2352
2353 /* in DVM a VF can add/delete inner VLAN filters when
2354 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2355 */
2356 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2357 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358 goto error_param;
2359 }
2360
2361 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2362 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2363 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2364 */
2365 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2366 !ice_is_dvm_ena(&pf->hw) &&
2367 !ice_vf_is_port_vlan_ena(vf);
2368
2369 if (add_v) {
2370 for (i = 0; i < vfl->num_elements; i++) {
2371 u16 vid = vfl->vlan_id[i];
2372 struct ice_vlan vlan;
2373
2374 if (ice_vf_has_max_vlans(vf, vsi)) {
2375 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2376 vf->vf_id);
2377 /* There is no need to let VF know about being
2378 * not trusted, so we can just return success
2379 * message here as well.
2380 */
2381 goto error_param;
2382 }
2383
2384 /* we add VLAN 0 by default for each VF so we can enable
2385 * Tx VLAN anti-spoof without triggering MDD events so
2386 * we don't need to add it again here
2387 */
2388 if (!vid)
2389 continue;
2390
2391 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2392 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2393 if (status) {
2394 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395 goto error_param;
2396 }
2397
2398 /* Enable VLAN filtering on first non-zero VLAN */
2399 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2400 if (vf->spoofchk) {
2401 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2402 if (status) {
2403 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2404 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2405 vid, status);
2406 goto error_param;
2407 }
2408 }
2409 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2410 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2412 vid, status);
2413 goto error_param;
2414 }
2415 } else if (vlan_promisc) {
2416 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2417 if (status) {
2418 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2420 vid, status);
2421 }
2422 }
2423 }
2424 } else {
2425 /* In case of non_trusted VF, number of VLAN elements passed
2426 * to PF for removal might be greater than number of VLANs
2427 * filter programmed for that VF - So, use actual number of
2428 * VLANS added earlier with add VLAN opcode. In order to avoid
2429 * removing VLAN that doesn't exist, which result to sending
2430 * erroneous failed message back to the VF
2431 */
2432 int num_vf_vlan;
2433
2434 num_vf_vlan = vsi->num_vlan;
2435 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2436 u16 vid = vfl->vlan_id[i];
2437 struct ice_vlan vlan;
2438
2439 /* we add VLAN 0 by default for each VF so we can enable
2440 * Tx VLAN anti-spoof without triggering MDD events so
2441 * we don't want a VIRTCHNL request to remove it
2442 */
2443 if (!vid)
2444 continue;
2445
2446 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2447 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2448 if (status) {
2449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2450 goto error_param;
2451 }
2452
2453 /* Disable VLAN filtering when only VLAN 0 is left */
2454 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2455 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2456 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2457 }
2458
2459 if (vlan_promisc)
2460 ice_vf_dis_vlan_promisc(vsi, &vlan);
2461 }
2462 }
2463
2464error_param:
2465 /* send the response to the VF */
2466 if (add_v)
2467 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2468 NULL, 0);
2469 else
2470 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2471 NULL, 0);
2472}
2473
2474/**
2475 * ice_vc_add_vlan_msg
2476 * @vf: pointer to the VF info
2477 * @msg: pointer to the msg buffer
2478 *
2479 * Add and program guest VLAN ID
2480 */
2481static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2482{
2483 return ice_vc_process_vlan_msg(vf, msg, true);
2484}
2485
2486/**
2487 * ice_vc_remove_vlan_msg
2488 * @vf: pointer to the VF info
2489 * @msg: pointer to the msg buffer
2490 *
2491 * remove programmed guest VLAN ID
2492 */
2493static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2494{
2495 return ice_vc_process_vlan_msg(vf, msg, false);
2496}
2497
2498/**
2499 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2500 * @vsi: pointer to the VF VSI info
2501 */
2502static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2503{
2504 unsigned int i;
2505
2506 ice_for_each_alloc_rxq(vsi, i)
2507 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2508 return true;
2509
2510 return false;
2511}
2512
2513/**
2514 * ice_vc_ena_vlan_stripping
2515 * @vf: pointer to the VF info
2516 *
2517 * Enable VLAN header stripping for a given VF
2518 */
2519static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2520{
2521 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2522 struct ice_vsi *vsi;
2523
2524 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526 goto error_param;
2527 }
2528
2529 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2530 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2531 goto error_param;
2532 }
2533
2534 vsi = ice_get_vf_vsi(vf);
2535 if (!vsi) {
2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537 goto error_param;
2538 }
2539
2540 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2541 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2542 else
2543 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2544
2545error_param:
2546 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2547 v_ret, NULL, 0);
2548}
2549
2550/**
2551 * ice_vc_dis_vlan_stripping
2552 * @vf: pointer to the VF info
2553 *
2554 * Disable VLAN header stripping for a given VF
2555 */
2556static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2557{
2558 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2559 struct ice_vsi *vsi;
2560
2561 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563 goto error_param;
2564 }
2565
2566 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2567 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568 goto error_param;
2569 }
2570
2571 vsi = ice_get_vf_vsi(vf);
2572 if (!vsi) {
2573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574 goto error_param;
2575 }
2576
2577 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2578 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2579 else
2580 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2581
2582error_param:
2583 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2584 v_ret, NULL, 0);
2585}
2586
2587/**
2588 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2589 * @vf: pointer to the VF info
2590 */
2591static int ice_vc_get_rss_hena(struct ice_vf *vf)
2592{
2593 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2594 struct virtchnl_rss_hena *vrh = NULL;
2595 int len = 0, ret;
2596
2597 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2598 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2599 goto err;
2600 }
2601
2602 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2603 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2604 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605 goto err;
2606 }
2607
2608 len = sizeof(struct virtchnl_rss_hena);
2609 vrh = kzalloc(len, GFP_KERNEL);
2610 if (!vrh) {
2611 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2612 len = 0;
2613 goto err;
2614 }
2615
2616 vrh->hena = ICE_DEFAULT_RSS_HENA;
2617err:
2618 /* send the response back to the VF */
2619 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2620 (u8 *)vrh, len);
2621 kfree(vrh);
2622 return ret;
2623}
2624
2625/**
2626 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2627 * @vf: pointer to the VF info
2628 * @msg: pointer to the msg buffer
2629 */
2630static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2631{
2632 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2633 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2634 struct ice_pf *pf = vf->pf;
2635 struct ice_vsi *vsi;
2636 struct device *dev;
2637 int status;
2638
2639 dev = ice_pf_to_dev(pf);
2640
2641 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2642 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2643 goto err;
2644 }
2645
2646 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2647 dev_err(dev, "RSS not supported by PF\n");
2648 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2649 goto err;
2650 }
2651
2652 vsi = ice_get_vf_vsi(vf);
2653 if (!vsi) {
2654 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2655 goto err;
2656 }
2657
2658 /* clear all previously programmed RSS configuration to allow VF drivers
2659 * the ability to customize the RSS configuration and/or completely
2660 * disable RSS
2661 */
2662 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2663 if (status && !vrh->hena) {
2664 /* only report failure to clear the current RSS configuration if
2665 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2666 */
2667 v_ret = ice_err_to_virt_err(status);
2668 goto err;
2669 } else if (status) {
2670 /* allow the VF to update the RSS configuration even on failure
2671 * to clear the current RSS confguration in an attempt to keep
2672 * RSS in a working state
2673 */
2674 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2675 vf->vf_id);
2676 }
2677
2678 if (vrh->hena) {
2679 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2680 v_ret = ice_err_to_virt_err(status);
2681 }
2682
2683 /* send the response to the VF */
2684err:
2685 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2686 NULL, 0);
2687}
2688
2689/**
2690 * ice_vc_query_rxdid - query RXDID supported by DDP package
2691 * @vf: pointer to VF info
2692 *
2693 * Called from VF to query a bitmap of supported flexible
2694 * descriptor RXDIDs of a DDP package.
2695 */
2696static int ice_vc_query_rxdid(struct ice_vf *vf)
2697{
2698 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2699 struct virtchnl_supported_rxdids *rxdid = NULL;
2700 struct ice_hw *hw = &vf->pf->hw;
2701 struct ice_pf *pf = vf->pf;
2702 int len = 0;
2703 int ret, i;
2704 u32 regval;
2705
2706 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2707 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2708 goto err;
2709 }
2710
2711 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2712 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713 goto err;
2714 }
2715
2716 len = sizeof(struct virtchnl_supported_rxdids);
2717 rxdid = kzalloc(len, GFP_KERNEL);
2718 if (!rxdid) {
2719 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2720 len = 0;
2721 goto err;
2722 }
2723
2724 /* RXDIDs supported by DDP package can be read from the register
2725 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2726 * is not listed in DDP package, add it in the bitmap manually.
2727 * Legacy 16byte descriptor is not supported.
2728 */
2729 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2730
2731 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2732 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2733 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2734 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2735 rxdid->supported_rxdids |= BIT(i);
2736 }
2737
2738 pf->supported_rxdids = rxdid->supported_rxdids;
2739
2740err:
2741 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2742 v_ret, (u8 *)rxdid, len);
2743 kfree(rxdid);
2744 return ret;
2745}
2746
2747/**
2748 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2749 * @vf: VF to enable/disable VLAN stripping for on initialization
2750 *
2751 * Set the default for VLAN stripping based on whether a port VLAN is configured
2752 * and the current VLAN mode of the device.
2753 */
2754static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2755{
2756 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2757
2758 vf->vlan_strip_ena = 0;
2759
2760 if (!vsi)
2761 return -EINVAL;
2762
2763 /* don't modify stripping if port VLAN is configured in SVM since the
2764 * port VLAN is based on the inner/single VLAN in SVM
2765 */
2766 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2767 return 0;
2768
2769 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2770 int err;
2771
2772 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2773 if (!err)
2774 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2775 return err;
2776 }
2777
2778 return vsi->inner_vlan_ops.dis_stripping(vsi);
2779}
2780
2781static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2782{
2783 if (vf->trusted)
2784 return VLAN_N_VID;
2785 else
2786 return ICE_MAX_VLAN_PER_VF;
2787}
2788
2789/**
2790 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2791 * @vf: VF that being checked for
2792 *
2793 * When the device is in double VLAN mode, check whether or not the outer VLAN
2794 * is allowed.
2795 */
2796static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2797{
2798 if (ice_vf_is_port_vlan_ena(vf))
2799 return true;
2800
2801 return false;
2802}
2803
2804/**
2805 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2806 * @vf: VF that capabilities are being set for
2807 * @caps: VLAN capabilities to populate
2808 *
2809 * Determine VLAN capabilities support based on whether a port VLAN is
2810 * configured. If a port VLAN is configured then the VF should use the inner
2811 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2812 * capabilies.
2813 */
2814static void
2815ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2816{
2817 struct virtchnl_vlan_supported_caps *supported_caps;
2818
2819 if (ice_vf_outer_vlan_not_allowed(vf)) {
2820 /* until support for inner VLAN filtering is added when a port
2821 * VLAN is configured, only support software offloaded inner
2822 * VLANs when a port VLAN is confgured in DVM
2823 */
2824 supported_caps = &caps->filtering.filtering_support;
2825 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2826
2827 supported_caps = &caps->offloads.stripping_support;
2828 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829 VIRTCHNL_VLAN_TOGGLE |
2830 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2831 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2832
2833 supported_caps = &caps->offloads.insertion_support;
2834 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835 VIRTCHNL_VLAN_TOGGLE |
2836 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2840 caps->offloads.ethertype_match =
2841 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2842 } else {
2843 supported_caps = &caps->filtering.filtering_support;
2844 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2846 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2847 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2848 VIRTCHNL_VLAN_ETHERTYPE_AND;
2849 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851 VIRTCHNL_VLAN_ETHERTYPE_9100;
2852
2853 supported_caps = &caps->offloads.stripping_support;
2854 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2855 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2856 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2857 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2858 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2859 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2860 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2861 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2862 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2863
2864 supported_caps = &caps->offloads.insertion_support;
2865 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2866 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2867 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2868 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2869 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2871 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2872 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2873 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2874
2875 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2876
2877 caps->offloads.ethertype_match =
2878 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2879 }
2880
2881 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2882}
2883
2884/**
2885 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2886 * @vf: VF that capabilities are being set for
2887 * @caps: VLAN capabilities to populate
2888 *
2889 * Determine VLAN capabilities support based on whether a port VLAN is
2890 * configured. If a port VLAN is configured then the VF does not have any VLAN
2891 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2892 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2893 * VLAN fitlering and offload capabilities.
2894 */
2895static void
2896ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2897{
2898 struct virtchnl_vlan_supported_caps *supported_caps;
2899
2900 if (ice_vf_is_port_vlan_ena(vf)) {
2901 supported_caps = &caps->filtering.filtering_support;
2902 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2903 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2904
2905 supported_caps = &caps->offloads.stripping_support;
2906 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909 supported_caps = &caps->offloads.insertion_support;
2910 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2914 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2915 caps->filtering.max_filters = 0;
2916 } else {
2917 supported_caps = &caps->filtering.filtering_support;
2918 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2919 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2920 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921
2922 supported_caps = &caps->offloads.stripping_support;
2923 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2924 VIRTCHNL_VLAN_TOGGLE |
2925 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2926 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927
2928 supported_caps = &caps->offloads.insertion_support;
2929 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2930 VIRTCHNL_VLAN_TOGGLE |
2931 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2932 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2933
2934 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935 caps->offloads.ethertype_match =
2936 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2937 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2938 }
2939}
2940
2941/**
2942 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2943 * @vf: VF to determine VLAN capabilities for
2944 *
2945 * This will only be called if the VF and PF successfully negotiated
2946 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2947 *
2948 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2949 * is configured or not.
2950 */
2951static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2952{
2953 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2954 struct virtchnl_vlan_caps *caps = NULL;
2955 int err, len = 0;
2956
2957 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2958 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2959 goto out;
2960 }
2961
2962 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2963 if (!caps) {
2964 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2965 goto out;
2966 }
2967 len = sizeof(*caps);
2968
2969 if (ice_is_dvm_ena(&vf->pf->hw))
2970 ice_vc_set_dvm_caps(vf, caps);
2971 else
2972 ice_vc_set_svm_caps(vf, caps);
2973
2974 /* store negotiated caps to prevent invalid VF messages */
2975 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2976
2977out:
2978 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2979 v_ret, (u8 *)caps, len);
2980 kfree(caps);
2981 return err;
2982}
2983
2984/**
2985 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2986 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2987 * @tpid: VLAN TPID used for validation
2988 *
2989 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2990 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2991 */
2992static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2993{
2994 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2995
2996 switch (tpid) {
2997 case ETH_P_8021Q:
2998 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2999 break;
3000 case ETH_P_8021AD:
3001 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3002 break;
3003 case ETH_P_QINQ1:
3004 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3005 break;
3006 }
3007
3008 if (!(filtering_caps & vlan_ethertype))
3009 return false;
3010
3011 return true;
3012}
3013
3014/**
3015 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3016 * @vc_vlan: virtchnl_vlan to validate
3017 *
3018 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3019 * false. Otherwise return true.
3020 */
3021static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3022{
3023 if (!vc_vlan->tci || !vc_vlan->tpid)
3024 return false;
3025
3026 return true;
3027}
3028
3029/**
3030 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3031 * @vfc: negotiated/supported VLAN filtering capabilities
3032 * @vfl: VLAN filter list from VF to validate
3033 *
3034 * Validate all of the filters in the VLAN filter list from the VF. If any of
3035 * the checks fail then return false. Otherwise return true.
3036 */
3037static bool
3038ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3039 struct virtchnl_vlan_filter_list_v2 *vfl)
3040{
3041 u16 i;
3042
3043 if (!vfl->num_elements)
3044 return false;
3045
3046 for (i = 0; i < vfl->num_elements; i++) {
3047 struct virtchnl_vlan_supported_caps *filtering_support =
3048 &vfc->filtering_support;
3049 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3050 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3051 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3052
3053 if ((ice_vc_is_valid_vlan(outer) &&
3054 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3055 (ice_vc_is_valid_vlan(inner) &&
3056 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3057 return false;
3058
3059 if ((outer->tci_mask &&
3060 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3061 (inner->tci_mask &&
3062 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3063 return false;
3064
3065 if (((outer->tci & VLAN_PRIO_MASK) &&
3066 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3067 ((inner->tci & VLAN_PRIO_MASK) &&
3068 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3069 return false;
3070
3071 if ((ice_vc_is_valid_vlan(outer) &&
3072 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3073 outer->tpid)) ||
3074 (ice_vc_is_valid_vlan(inner) &&
3075 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3076 inner->tpid)))
3077 return false;
3078 }
3079
3080 return true;
3081}
3082
3083/**
3084 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3085 * @vc_vlan: struct virtchnl_vlan to transform
3086 */
3087static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3088{
3089 struct ice_vlan vlan = { 0 };
3090
3091 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3092 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3093 vlan.tpid = vc_vlan->tpid;
3094
3095 return vlan;
3096}
3097
3098/**
3099 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3100 * @vsi: VF's VSI used to perform the action
3101 * @vlan_action: function to perform the action with (i.e. add/del)
3102 * @vlan: VLAN filter to perform the action with
3103 */
3104static int
3105ice_vc_vlan_action(struct ice_vsi *vsi,
3106 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3107 struct ice_vlan *vlan)
3108{
3109 int err;
3110
3111 err = vlan_action(vsi, vlan);
3112 if (err)
3113 return err;
3114
3115 return 0;
3116}
3117
3118/**
3119 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3120 * @vf: VF used to delete the VLAN(s)
3121 * @vsi: VF's VSI used to delete the VLAN(s)
3122 * @vfl: virthchnl filter list used to delete the filters
3123 */
3124static int
3125ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3126 struct virtchnl_vlan_filter_list_v2 *vfl)
3127{
3128 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3129 int err;
3130 u16 i;
3131
3132 for (i = 0; i < vfl->num_elements; i++) {
3133 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3134 struct virtchnl_vlan *vc_vlan;
3135
3136 vc_vlan = &vlan_fltr->outer;
3137 if (ice_vc_is_valid_vlan(vc_vlan)) {
3138 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3139
3140 err = ice_vc_vlan_action(vsi,
3141 vsi->outer_vlan_ops.del_vlan,
3142 &vlan);
3143 if (err)
3144 return err;
3145
3146 if (vlan_promisc)
3147 ice_vf_dis_vlan_promisc(vsi, &vlan);
3148
3149 /* Disable VLAN filtering when only VLAN 0 is left */
3150 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3151 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3152 if (err)
3153 return err;
3154 }
3155 }
3156
3157 vc_vlan = &vlan_fltr->inner;
3158 if (ice_vc_is_valid_vlan(vc_vlan)) {
3159 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3160
3161 err = ice_vc_vlan_action(vsi,
3162 vsi->inner_vlan_ops.del_vlan,
3163 &vlan);
3164 if (err)
3165 return err;
3166
3167 /* no support for VLAN promiscuous on inner VLAN unless
3168 * we are in Single VLAN Mode (SVM)
3169 */
3170 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3171 if (vlan_promisc)
3172 ice_vf_dis_vlan_promisc(vsi, &vlan);
3173
3174 /* Disable VLAN filtering when only VLAN 0 is left */
3175 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3176 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3177 if (err)
3178 return err;
3179 }
3180 }
3181 }
3182 }
3183
3184 return 0;
3185}
3186
3187/**
3188 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3189 * @vf: VF the message was received from
3190 * @msg: message received from the VF
3191 */
3192static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3193{
3194 struct virtchnl_vlan_filter_list_v2 *vfl =
3195 (struct virtchnl_vlan_filter_list_v2 *)msg;
3196 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3197 struct ice_vsi *vsi;
3198
3199 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3200 vfl)) {
3201 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3202 goto out;
3203 }
3204
3205 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3206 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3207 goto out;
3208 }
3209
3210 vsi = ice_get_vf_vsi(vf);
3211 if (!vsi) {
3212 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213 goto out;
3214 }
3215
3216 if (ice_vc_del_vlans(vf, vsi, vfl))
3217 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218
3219out:
3220 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3221 0);
3222}
3223
3224/**
3225 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3226 * @vf: VF used to add the VLAN(s)
3227 * @vsi: VF's VSI used to add the VLAN(s)
3228 * @vfl: virthchnl filter list used to add the filters
3229 */
3230static int
3231ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3232 struct virtchnl_vlan_filter_list_v2 *vfl)
3233{
3234 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3235 int err;
3236 u16 i;
3237
3238 for (i = 0; i < vfl->num_elements; i++) {
3239 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3240 struct virtchnl_vlan *vc_vlan;
3241
3242 vc_vlan = &vlan_fltr->outer;
3243 if (ice_vc_is_valid_vlan(vc_vlan)) {
3244 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3245
3246 err = ice_vc_vlan_action(vsi,
3247 vsi->outer_vlan_ops.add_vlan,
3248 &vlan);
3249 if (err)
3250 return err;
3251
3252 if (vlan_promisc) {
3253 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3254 if (err)
3255 return err;
3256 }
3257
3258 /* Enable VLAN filtering on first non-zero VLAN */
3259 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3260 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3261 if (err)
3262 return err;
3263 }
3264 }
3265
3266 vc_vlan = &vlan_fltr->inner;
3267 if (ice_vc_is_valid_vlan(vc_vlan)) {
3268 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3269
3270 err = ice_vc_vlan_action(vsi,
3271 vsi->inner_vlan_ops.add_vlan,
3272 &vlan);
3273 if (err)
3274 return err;
3275
3276 /* no support for VLAN promiscuous on inner VLAN unless
3277 * we are in Single VLAN Mode (SVM)
3278 */
3279 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3280 if (vlan_promisc) {
3281 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3282 if (err)
3283 return err;
3284 }
3285
3286 /* Enable VLAN filtering on first non-zero VLAN */
3287 if (vf->spoofchk && vlan.vid) {
3288 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3289 if (err)
3290 return err;
3291 }
3292 }
3293 }
3294 }
3295
3296 return 0;
3297}
3298
3299/**
3300 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3301 * @vsi: VF VSI used to get number of existing VLAN filters
3302 * @vfc: negotiated/supported VLAN filtering capabilities
3303 * @vfl: VLAN filter list from VF to validate
3304 *
3305 * Validate all of the filters in the VLAN filter list from the VF during the
3306 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3307 * Otherwise return true.
3308 */
3309static bool
3310ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3311 struct virtchnl_vlan_filtering_caps *vfc,
3312 struct virtchnl_vlan_filter_list_v2 *vfl)
3313{
3314 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3315 vfl->num_elements;
3316
3317 if (num_requested_filters > vfc->max_filters)
3318 return false;
3319
3320 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3321}
3322
3323/**
3324 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3325 * @vf: VF the message was received from
3326 * @msg: message received from the VF
3327 */
3328static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3329{
3330 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3331 struct virtchnl_vlan_filter_list_v2 *vfl =
3332 (struct virtchnl_vlan_filter_list_v2 *)msg;
3333 struct ice_vsi *vsi;
3334
3335 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3336 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337 goto out;
3338 }
3339
3340 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3341 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3342 goto out;
3343 }
3344
3345 vsi = ice_get_vf_vsi(vf);
3346 if (!vsi) {
3347 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348 goto out;
3349 }
3350
3351 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3352 &vf->vlan_v2_caps.filtering,
3353 vfl)) {
3354 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355 goto out;
3356 }
3357
3358 if (ice_vc_add_vlans(vf, vsi, vfl))
3359 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360
3361out:
3362 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3363 0);
3364}
3365
3366/**
3367 * ice_vc_valid_vlan_setting - validate VLAN setting
3368 * @negotiated_settings: negotiated VLAN settings during VF init
3369 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3370 */
3371static bool
3372ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3373{
3374 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3375 return false;
3376
3377 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3378 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3379 */
3380 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3381 hweight32(ethertype_setting) > 1)
3382 return false;
3383
3384 /* ability to modify the VLAN setting was not negotiated */
3385 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3386 return false;
3387
3388 return true;
3389}
3390
3391/**
3392 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3393 * @caps: negotiated VLAN settings during VF init
3394 * @msg: message to validate
3395 *
3396 * Used to validate any VLAN virtchnl message sent as a
3397 * virtchnl_vlan_setting structure. Validates the message against the
3398 * negotiated/supported caps during VF driver init.
3399 */
3400static bool
3401ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3402 struct virtchnl_vlan_setting *msg)
3403{
3404 if ((!msg->outer_ethertype_setting &&
3405 !msg->inner_ethertype_setting) ||
3406 (!caps->outer && !caps->inner))
3407 return false;
3408
3409 if (msg->outer_ethertype_setting &&
3410 !ice_vc_valid_vlan_setting(caps->outer,
3411 msg->outer_ethertype_setting))
3412 return false;
3413
3414 if (msg->inner_ethertype_setting &&
3415 !ice_vc_valid_vlan_setting(caps->inner,
3416 msg->inner_ethertype_setting))
3417 return false;
3418
3419 return true;
3420}
3421
3422/**
3423 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3424 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3425 * @tpid: VLAN TPID to populate
3426 */
3427static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3428{
3429 switch (ethertype_setting) {
3430 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3431 *tpid = ETH_P_8021Q;
3432 break;
3433 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3434 *tpid = ETH_P_8021AD;
3435 break;
3436 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3437 *tpid = ETH_P_QINQ1;
3438 break;
3439 default:
3440 *tpid = 0;
3441 return -EINVAL;
3442 }
3443
3444 return 0;
3445}
3446
3447/**
3448 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3449 * @vsi: VF's VSI used to enable the VLAN offload
3450 * @ena_offload: function used to enable the VLAN offload
3451 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3452 */
3453static int
3454ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3455 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3456 u32 ethertype_setting)
3457{
3458 u16 tpid;
3459 int err;
3460
3461 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3462 if (err)
3463 return err;
3464
3465 err = ena_offload(vsi, tpid);
3466 if (err)
3467 return err;
3468
3469 return 0;
3470}
3471
3472#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3473#define ICE_L2TSEL_BIT_OFFSET 23
3474enum ice_l2tsel {
3475 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3476 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3477};
3478
3479/**
3480 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3481 * @vsi: VSI used to update l2tsel on
3482 * @l2tsel: l2tsel setting requested
3483 *
3484 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3485 * This will modify which descriptor field the first offloaded VLAN will be
3486 * stripped into.
3487 */
3488static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3489{
3490 struct ice_hw *hw = &vsi->back->hw;
3491 u32 l2tsel_bit;
3492 int i;
3493
3494 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3495 l2tsel_bit = 0;
3496 else
3497 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3498
3499 for (i = 0; i < vsi->alloc_rxq; i++) {
3500 u16 pfq = vsi->rxq_map[i];
3501 u32 qrx_context_offset;
3502 u32 regval;
3503
3504 qrx_context_offset =
3505 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3506
3507 regval = rd32(hw, qrx_context_offset);
3508 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3509 regval |= l2tsel_bit;
3510 wr32(hw, qrx_context_offset, regval);
3511 }
3512}
3513
3514/**
3515 * ice_vc_ena_vlan_stripping_v2_msg
3516 * @vf: VF the message was received from
3517 * @msg: message received from the VF
3518 *
3519 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3520 */
3521static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3522{
3523 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3524 struct virtchnl_vlan_supported_caps *stripping_support;
3525 struct virtchnl_vlan_setting *strip_msg =
3526 (struct virtchnl_vlan_setting *)msg;
3527 u32 ethertype_setting;
3528 struct ice_vsi *vsi;
3529
3530 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3531 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532 goto out;
3533 }
3534
3535 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537 goto out;
3538 }
3539
3540 vsi = ice_get_vf_vsi(vf);
3541 if (!vsi) {
3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543 goto out;
3544 }
3545
3546 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3547 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3548 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549 goto out;
3550 }
3551
3552 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3553 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3554 goto out;
3555 }
3556
3557 ethertype_setting = strip_msg->outer_ethertype_setting;
3558 if (ethertype_setting) {
3559 if (ice_vc_ena_vlan_offload(vsi,
3560 vsi->outer_vlan_ops.ena_stripping,
3561 ethertype_setting)) {
3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563 goto out;
3564 } else {
3565 enum ice_l2tsel l2tsel =
3566 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3567
3568 /* PF tells the VF that the outer VLAN tag is always
3569 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3570 * inner is always extracted to
3571 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3572 * support outer stripping so the first tag always ends
3573 * up in L2TAG2_2ND and the second/inner tag, if
3574 * enabled, is extracted in L2TAG1.
3575 */
3576 ice_vsi_update_l2tsel(vsi, l2tsel);
3577
3578 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3579 }
3580 }
3581
3582 ethertype_setting = strip_msg->inner_ethertype_setting;
3583 if (ethertype_setting &&
3584 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3585 ethertype_setting)) {
3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587 goto out;
3588 }
3589
3590 if (ethertype_setting)
3591 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3592
3593out:
3594 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3595 v_ret, NULL, 0);
3596}
3597
3598/**
3599 * ice_vc_dis_vlan_stripping_v2_msg
3600 * @vf: VF the message was received from
3601 * @msg: message received from the VF
3602 *
3603 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3604 */
3605static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3606{
3607 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3608 struct virtchnl_vlan_supported_caps *stripping_support;
3609 struct virtchnl_vlan_setting *strip_msg =
3610 (struct virtchnl_vlan_setting *)msg;
3611 u32 ethertype_setting;
3612 struct ice_vsi *vsi;
3613
3614 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3615 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3616 goto out;
3617 }
3618
3619 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3620 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621 goto out;
3622 }
3623
3624 vsi = ice_get_vf_vsi(vf);
3625 if (!vsi) {
3626 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627 goto out;
3628 }
3629
3630 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3631 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3632 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633 goto out;
3634 }
3635
3636 ethertype_setting = strip_msg->outer_ethertype_setting;
3637 if (ethertype_setting) {
3638 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640 goto out;
3641 } else {
3642 enum ice_l2tsel l2tsel =
3643 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3644
3645 /* PF tells the VF that the outer VLAN tag is always
3646 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3647 * inner is always extracted to
3648 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3649 * support inner stripping while outer stripping is
3650 * disabled so that the first and only tag is extracted
3651 * in L2TAG1.
3652 */
3653 ice_vsi_update_l2tsel(vsi, l2tsel);
3654
3655 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3656 }
3657 }
3658
3659 ethertype_setting = strip_msg->inner_ethertype_setting;
3660 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3661 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662 goto out;
3663 }
3664
3665 if (ethertype_setting)
3666 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3667
3668out:
3669 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3670 v_ret, NULL, 0);
3671}
3672
3673/**
3674 * ice_vc_ena_vlan_insertion_v2_msg
3675 * @vf: VF the message was received from
3676 * @msg: message received from the VF
3677 *
3678 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3679 */
3680static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3681{
3682 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3683 struct virtchnl_vlan_supported_caps *insertion_support;
3684 struct virtchnl_vlan_setting *insertion_msg =
3685 (struct virtchnl_vlan_setting *)msg;
3686 u32 ethertype_setting;
3687 struct ice_vsi *vsi;
3688
3689 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3690 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691 goto out;
3692 }
3693
3694 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3695 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3696 goto out;
3697 }
3698
3699 vsi = ice_get_vf_vsi(vf);
3700 if (!vsi) {
3701 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3702 goto out;
3703 }
3704
3705 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3706 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3707 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708 goto out;
3709 }
3710
3711 ethertype_setting = insertion_msg->outer_ethertype_setting;
3712 if (ethertype_setting &&
3713 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3714 ethertype_setting)) {
3715 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716 goto out;
3717 }
3718
3719 ethertype_setting = insertion_msg->inner_ethertype_setting;
3720 if (ethertype_setting &&
3721 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3722 ethertype_setting)) {
3723 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724 goto out;
3725 }
3726
3727out:
3728 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3729 v_ret, NULL, 0);
3730}
3731
3732/**
3733 * ice_vc_dis_vlan_insertion_v2_msg
3734 * @vf: VF the message was received from
3735 * @msg: message received from the VF
3736 *
3737 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3738 */
3739static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3740{
3741 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3742 struct virtchnl_vlan_supported_caps *insertion_support;
3743 struct virtchnl_vlan_setting *insertion_msg =
3744 (struct virtchnl_vlan_setting *)msg;
3745 u32 ethertype_setting;
3746 struct ice_vsi *vsi;
3747
3748 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3749 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750 goto out;
3751 }
3752
3753 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3754 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755 goto out;
3756 }
3757
3758 vsi = ice_get_vf_vsi(vf);
3759 if (!vsi) {
3760 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3761 goto out;
3762 }
3763
3764 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3765 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3766 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767 goto out;
3768 }
3769
3770 ethertype_setting = insertion_msg->outer_ethertype_setting;
3771 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3772 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773 goto out;
3774 }
3775
3776 ethertype_setting = insertion_msg->inner_ethertype_setting;
3777 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3778 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3779 goto out;
3780 }
3781
3782out:
3783 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3784 v_ret, NULL, 0);
3785}
3786
3787static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3788 .get_ver_msg = ice_vc_get_ver_msg,
3789 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3790 .reset_vf = ice_vc_reset_vf_msg,
3791 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3792 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3793 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3794 .ena_qs_msg = ice_vc_ena_qs_msg,
3795 .dis_qs_msg = ice_vc_dis_qs_msg,
3796 .request_qs_msg = ice_vc_request_qs_msg,
3797 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798 .config_rss_key = ice_vc_config_rss_key,
3799 .config_rss_lut = ice_vc_config_rss_lut,
3800 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3801 .get_stats_msg = ice_vc_get_stats_msg,
3802 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3803 .add_vlan_msg = ice_vc_add_vlan_msg,
3804 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3805 .query_rxdid = ice_vc_query_rxdid,
3806 .get_rss_hena = ice_vc_get_rss_hena,
3807 .set_rss_hena_msg = ice_vc_set_rss_hena,
3808 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3809 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3810 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3811 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3812 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3813 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3814 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3815 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3816 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3817 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3818 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3819 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3820};
3821
3822/**
3823 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3824 * @vf: the VF to switch ops
3825 */
3826void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3827{
3828 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3829}
3830
3831/**
3832 * ice_vc_repr_add_mac
3833 * @vf: pointer to VF
3834 * @msg: virtchannel message
3835 *
3836 * When port representors are created, we do not add MAC rule
3837 * to firmware, we store it so that PF could report same
3838 * MAC as VF.
3839 */
3840static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3841{
3842 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3843 struct virtchnl_ether_addr_list *al =
3844 (struct virtchnl_ether_addr_list *)msg;
3845 struct ice_vsi *vsi;
3846 struct ice_pf *pf;
3847 int i;
3848
3849 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3850 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3852 goto handle_mac_exit;
3853 }
3854
3855 pf = vf->pf;
3856
3857 vsi = ice_get_vf_vsi(vf);
3858 if (!vsi) {
3859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860 goto handle_mac_exit;
3861 }
3862
3863 for (i = 0; i < al->num_elements; i++) {
3864 u8 *mac_addr = al->list[i].addr;
3865
3866 if (!is_unicast_ether_addr(mac_addr) ||
3867 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3868 continue;
3869
3870 if (vf->pf_set_mac) {
3871 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3872 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3873 goto handle_mac_exit;
3874 }
3875
3876 ice_vfhw_mac_add(vf, &al->list[i]);
3877 vf->num_mac++;
3878 break;
3879 }
3880
3881handle_mac_exit:
3882 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3883 v_ret, NULL, 0);
3884}
3885
3886/**
3887 * ice_vc_repr_del_mac - response with success for deleting MAC
3888 * @vf: pointer to VF
3889 * @msg: virtchannel message
3890 *
3891 * Respond with success to not break normal VF flow.
3892 * For legacy VF driver try to update cached MAC address.
3893 */
3894static int
3895ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3896{
3897 struct virtchnl_ether_addr_list *al =
3898 (struct virtchnl_ether_addr_list *)msg;
3899
3900 ice_update_legacy_cached_mac(vf, &al->list[0]);
3901
3902 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3903 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3904}
3905
3906static int
3907ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3908{
3909 dev_dbg(ice_pf_to_dev(vf->pf),
3910 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3911 vf->vf_id);
3912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3913 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3914 NULL, 0);
3915}
3916
3917static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3918 .get_ver_msg = ice_vc_get_ver_msg,
3919 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3920 .reset_vf = ice_vc_reset_vf_msg,
3921 .add_mac_addr_msg = ice_vc_repr_add_mac,
3922 .del_mac_addr_msg = ice_vc_repr_del_mac,
3923 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3924 .ena_qs_msg = ice_vc_ena_qs_msg,
3925 .dis_qs_msg = ice_vc_dis_qs_msg,
3926 .request_qs_msg = ice_vc_request_qs_msg,
3927 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3928 .config_rss_key = ice_vc_config_rss_key,
3929 .config_rss_lut = ice_vc_config_rss_lut,
3930 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3931 .get_stats_msg = ice_vc_get_stats_msg,
3932 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3933 .add_vlan_msg = ice_vc_add_vlan_msg,
3934 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3935 .query_rxdid = ice_vc_query_rxdid,
3936 .get_rss_hena = ice_vc_get_rss_hena,
3937 .set_rss_hena_msg = ice_vc_set_rss_hena,
3938 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3939 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3940 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3941 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3942 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3943 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3944 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3945 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3946 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3947 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3948 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3949 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3950};
3951
3952/**
3953 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3954 * @vf: the VF to switch ops
3955 */
3956void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3957{
3958 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3959}
3960
3961/**
3962 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3963 * @vf: the VF to check
3964 * @mbxdata: data about the state of the mailbox
3965 *
3966 * Detect if a given VF might be malicious and attempting to overflow the PF
3967 * mailbox. If so, log a warning message and ignore this event.
3968 */
3969static bool
3970ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3971{
3972 bool report_malvf = false;
3973 struct device *dev;
3974 struct ice_pf *pf;
3975 int status;
3976
3977 pf = vf->pf;
3978 dev = ice_pf_to_dev(pf);
3979
3980 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3981 return vf->mbx_info.malicious;
3982
3983 /* check to see if we have a newly malicious VF */
3984 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3985 &report_malvf);
3986 if (status)
3987 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3988 vf->vf_id, vf->dev_lan_addr, status);
3989
3990 if (report_malvf) {
3991 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3992 u8 zero_addr[ETH_ALEN] = {};
3993
3994 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3995 vf->dev_lan_addr,
3996 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3997 }
3998
3999 return vf->mbx_info.malicious;
4000}
4001
4002/**
4003 * ice_vc_process_vf_msg - Process request from VF
4004 * @pf: pointer to the PF structure
4005 * @event: pointer to the AQ event
4006 * @mbxdata: information used to detect VF attempting mailbox overflow
4007 *
4008 * called from the common asq/arq handler to
4009 * process request from VF
4010 */
4011void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4012 struct ice_mbx_data *mbxdata)
4013{
4014 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4015 s16 vf_id = le16_to_cpu(event->desc.retval);
4016 const struct ice_virtchnl_ops *ops;
4017 u16 msglen = event->msg_len;
4018 u8 *msg = event->msg_buf;
4019 struct ice_vf *vf = NULL;
4020 struct device *dev;
4021 int err = 0;
4022
4023 dev = ice_pf_to_dev(pf);
4024
4025 vf = ice_get_vf_by_id(pf, vf_id);
4026 if (!vf) {
4027 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4028 vf_id, v_opcode, msglen);
4029 return;
4030 }
4031
4032 mutex_lock(&vf->cfg_lock);
4033
4034 /* Check if the VF is trying to overflow the mailbox */
4035 if (ice_is_malicious_vf(vf, mbxdata))
4036 goto finish;
4037
4038 /* Check if VF is disabled. */
4039 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4040 err = -EPERM;
4041 goto error_handler;
4042 }
4043
4044 ops = vf->virtchnl_ops;
4045
4046 /* Perform basic checks on the msg */
4047 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4048 if (err) {
4049 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4050 err = -EPERM;
4051 else
4052 err = -EINVAL;
4053 }
4054
4055error_handler:
4056 if (err) {
4057 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4058 NULL, 0);
4059 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4060 vf_id, v_opcode, msglen, err);
4061 goto finish;
4062 }
4063
4064 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4065 ice_vc_send_msg_to_vf(vf, v_opcode,
4066 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4067 0);
4068 goto finish;
4069 }
4070
4071 switch (v_opcode) {
4072 case VIRTCHNL_OP_VERSION:
4073 err = ops->get_ver_msg(vf, msg);
4074 break;
4075 case VIRTCHNL_OP_GET_VF_RESOURCES:
4076 err = ops->get_vf_res_msg(vf, msg);
4077 if (ice_vf_init_vlan_stripping(vf))
4078 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4079 vf->vf_id);
4080 ice_vc_notify_vf_link_state(vf);
4081 break;
4082 case VIRTCHNL_OP_RESET_VF:
4083 ops->reset_vf(vf);
4084 break;
4085 case VIRTCHNL_OP_ADD_ETH_ADDR:
4086 err = ops->add_mac_addr_msg(vf, msg);
4087 break;
4088 case VIRTCHNL_OP_DEL_ETH_ADDR:
4089 err = ops->del_mac_addr_msg(vf, msg);
4090 break;
4091 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4092 err = ops->cfg_qs_msg(vf, msg);
4093 break;
4094 case VIRTCHNL_OP_ENABLE_QUEUES:
4095 err = ops->ena_qs_msg(vf, msg);
4096 ice_vc_notify_vf_link_state(vf);
4097 break;
4098 case VIRTCHNL_OP_DISABLE_QUEUES:
4099 err = ops->dis_qs_msg(vf, msg);
4100 break;
4101 case VIRTCHNL_OP_REQUEST_QUEUES:
4102 err = ops->request_qs_msg(vf, msg);
4103 break;
4104 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4105 err = ops->cfg_irq_map_msg(vf, msg);
4106 break;
4107 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4108 err = ops->config_rss_key(vf, msg);
4109 break;
4110 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4111 err = ops->config_rss_lut(vf, msg);
4112 break;
4113 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4114 err = ops->config_rss_hfunc(vf, msg);
4115 break;
4116 case VIRTCHNL_OP_GET_STATS:
4117 err = ops->get_stats_msg(vf, msg);
4118 break;
4119 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4120 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4121 break;
4122 case VIRTCHNL_OP_ADD_VLAN:
4123 err = ops->add_vlan_msg(vf, msg);
4124 break;
4125 case VIRTCHNL_OP_DEL_VLAN:
4126 err = ops->remove_vlan_msg(vf, msg);
4127 break;
4128 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4129 err = ops->query_rxdid(vf);
4130 break;
4131 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4132 err = ops->get_rss_hena(vf);
4133 break;
4134 case VIRTCHNL_OP_SET_RSS_HENA:
4135 err = ops->set_rss_hena_msg(vf, msg);
4136 break;
4137 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4138 err = ops->ena_vlan_stripping(vf);
4139 break;
4140 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4141 err = ops->dis_vlan_stripping(vf);
4142 break;
4143 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4144 err = ops->add_fdir_fltr_msg(vf, msg);
4145 break;
4146 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4147 err = ops->del_fdir_fltr_msg(vf, msg);
4148 break;
4149 case VIRTCHNL_OP_ADD_RSS_CFG:
4150 err = ops->handle_rss_cfg_msg(vf, msg, true);
4151 break;
4152 case VIRTCHNL_OP_DEL_RSS_CFG:
4153 err = ops->handle_rss_cfg_msg(vf, msg, false);
4154 break;
4155 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4156 err = ops->get_offload_vlan_v2_caps(vf);
4157 break;
4158 case VIRTCHNL_OP_ADD_VLAN_V2:
4159 err = ops->add_vlan_v2_msg(vf, msg);
4160 break;
4161 case VIRTCHNL_OP_DEL_VLAN_V2:
4162 err = ops->remove_vlan_v2_msg(vf, msg);
4163 break;
4164 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4165 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4166 break;
4167 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4168 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4169 break;
4170 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4171 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4172 break;
4173 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4174 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4175 break;
4176 case VIRTCHNL_OP_UNKNOWN:
4177 default:
4178 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4179 vf_id);
4180 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4181 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4182 NULL, 0);
4183 break;
4184 }
4185 if (err) {
4186 /* Helper function cares less about error return values here
4187 * as it is busy with pending work.
4188 */
4189 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4190 vf_id, v_opcode, err);
4191 }
4192
4193finish:
4194 mutex_unlock(&vf->cfg_lock);
4195 ice_put_vf(vf);
4196}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210{
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374{
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466
467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469
470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472
473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475
476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478
479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481
482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484
485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487
488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490
491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493
494 vfres->num_vsis = 1;
495 /* Tx and Rx queue are equal for VF */
496 vfres->num_queue_pairs = vsi->num_txq;
497 vfres->max_vectors = vf->num_msix;
498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501
502 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506 vf->hw_lan_addr);
507
508 /* match guest capabilities */
509 vf->driver_caps = vfres->vf_cap_flags;
510
511 ice_vc_set_caps_allowlist(vf);
512 ice_vc_set_working_allowlist(vf);
513
514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515
516err:
517 /* send the response back to the VF */
518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519 (u8 *)vfres, len);
520
521 kfree(vfres);
522 return ret;
523}
524
525/**
526 * ice_vc_reset_vf_msg
527 * @vf: pointer to the VF info
528 *
529 * called from the VF to reset itself,
530 * unlike other virtchnl messages, PF driver
531 * doesn't send the response back to the VF
532 */
533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534{
535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536 ice_reset_vf(vf, 0);
537}
538
539/**
540 * ice_vc_isvalid_vsi_id
541 * @vf: pointer to the VF info
542 * @vsi_id: VF relative VSI ID
543 *
544 * check for the valid VSI ID
545 */
546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547{
548 struct ice_pf *pf = vf->pf;
549 struct ice_vsi *vsi;
550
551 vsi = ice_find_vsi(pf, vsi_id);
552
553 return (vsi && (vsi->vf == vf));
554}
555
556/**
557 * ice_vc_isvalid_q_id
558 * @vf: pointer to the VF info
559 * @vsi_id: VSI ID
560 * @qid: VSI relative queue ID
561 *
562 * check for the valid queue ID
563 */
564static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
565{
566 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
567 /* allocated Tx and Rx queues should be always equal for VF VSI */
568 return (vsi && (qid < vsi->alloc_txq));
569}
570
571/**
572 * ice_vc_isvalid_ring_len
573 * @ring_len: length of ring
574 *
575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
576 * or zero
577 */
578static bool ice_vc_isvalid_ring_len(u16 ring_len)
579{
580 return ring_len == 0 ||
581 (ring_len >= ICE_MIN_NUM_DESC &&
582 ring_len <= ICE_MAX_NUM_DESC &&
583 !(ring_len % ICE_REQ_DESC_MULTIPLE));
584}
585
586/**
587 * ice_vc_validate_pattern
588 * @vf: pointer to the VF info
589 * @proto: virtchnl protocol headers
590 *
591 * validate the pattern is supported or not.
592 *
593 * Return: true on success, false on error.
594 */
595bool
596ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
597{
598 bool is_ipv4 = false;
599 bool is_ipv6 = false;
600 bool is_udp = false;
601 u16 ptype = -1;
602 int i = 0;
603
604 while (i < proto->count &&
605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 switch (proto->proto_hdr[i].type) {
607 case VIRTCHNL_PROTO_HDR_ETH:
608 ptype = ICE_PTYPE_MAC_PAY;
609 break;
610 case VIRTCHNL_PROTO_HDR_IPV4:
611 ptype = ICE_PTYPE_IPV4_PAY;
612 is_ipv4 = true;
613 break;
614 case VIRTCHNL_PROTO_HDR_IPV6:
615 ptype = ICE_PTYPE_IPV6_PAY;
616 is_ipv6 = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_UDP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_UDP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_UDP_PAY;
623 is_udp = true;
624 break;
625 case VIRTCHNL_PROTO_HDR_TCP:
626 if (is_ipv4)
627 ptype = ICE_PTYPE_IPV4_TCP_PAY;
628 else if (is_ipv6)
629 ptype = ICE_PTYPE_IPV6_TCP_PAY;
630 break;
631 case VIRTCHNL_PROTO_HDR_SCTP:
632 if (is_ipv4)
633 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
634 else if (is_ipv6)
635 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
636 break;
637 case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 case VIRTCHNL_PROTO_HDR_GTPU_EH:
639 if (is_ipv4)
640 ptype = ICE_MAC_IPV4_GTPU;
641 else if (is_ipv6)
642 ptype = ICE_MAC_IPV6_GTPU;
643 goto out;
644 case VIRTCHNL_PROTO_HDR_L2TPV3:
645 if (is_ipv4)
646 ptype = ICE_MAC_IPV4_L2TPV3;
647 else if (is_ipv6)
648 ptype = ICE_MAC_IPV6_L2TPV3;
649 goto out;
650 case VIRTCHNL_PROTO_HDR_ESP:
651 if (is_ipv4)
652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
653 ICE_MAC_IPV4_ESP;
654 else if (is_ipv6)
655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
656 ICE_MAC_IPV6_ESP;
657 goto out;
658 case VIRTCHNL_PROTO_HDR_AH:
659 if (is_ipv4)
660 ptype = ICE_MAC_IPV4_AH;
661 else if (is_ipv6)
662 ptype = ICE_MAC_IPV6_AH;
663 goto out;
664 case VIRTCHNL_PROTO_HDR_PFCP:
665 if (is_ipv4)
666 ptype = ICE_MAC_IPV4_PFCP_SESSION;
667 else if (is_ipv6)
668 ptype = ICE_MAC_IPV6_PFCP_SESSION;
669 goto out;
670 default:
671 break;
672 }
673 i++;
674 }
675
676out:
677 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
678}
679
680/**
681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
682 * a specific virtchnl RSS cfg
683 * @hw: pointer to the hardware
684 * @rss_cfg: pointer to the virtchnl RSS cfg
685 * @hash_cfg: pointer to the HW hash configuration
686 *
687 * Return true if all the protocol header and hash fields in the RSS cfg could
688 * be parsed, else return false
689 *
690 * This function parses the virtchnl RSS cfg to be the intended
691 * hash fields and the intended header for RSS configuration
692 */
693static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 struct virtchnl_rss_cfg *rss_cfg,
695 struct ice_rss_hash_cfg *hash_cfg)
696{
697 const struct ice_vc_hash_field_match_type *hf_list;
698 const struct ice_vc_hdr_match_type *hdr_list;
699 int i, hf_list_len, hdr_list_len;
700 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 u64 *hash_flds = &hash_cfg->hash_flds;
702
703 /* set outer layer RSS as default */
704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
705
706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 hash_cfg->symm = true;
708 else
709 hash_cfg->symm = false;
710
711 hf_list = ice_vc_hash_field_list;
712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 hdr_list = ice_vc_hdr_list;
714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715
716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 struct virtchnl_proto_hdr *proto_hdr =
718 &rss_cfg->proto_hdrs.proto_hdr[i];
719 bool hdr_found = false;
720 int j;
721
722 /* Find matched ice headers according to virtchnl headers. */
723 for (j = 0; j < hdr_list_len; j++) {
724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725
726 if (proto_hdr->type == hdr_map.vc_hdr) {
727 *addl_hdrs |= hdr_map.ice_hdr;
728 hdr_found = true;
729 }
730 }
731
732 if (!hdr_found)
733 return false;
734
735 /* Find matched ice hash fields according to
736 * virtchnl hash fields.
737 */
738 for (j = 0; j < hf_list_len; j++) {
739 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740
741 if (proto_hdr->type == hf_map.vc_hdr &&
742 proto_hdr->field_selector == hf_map.vc_hash_field) {
743 *hash_flds |= hf_map.ice_hash_field;
744 break;
745 }
746 }
747 }
748
749 return true;
750}
751
752/**
753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754 * RSS offloads
755 * @caps: VF driver negotiated capabilities
756 *
757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
758 * else return false
759 */
760static bool ice_vf_adv_rss_offload_ena(u32 caps)
761{
762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
763}
764
765/**
766 * ice_vc_handle_rss_cfg
767 * @vf: pointer to the VF info
768 * @msg: pointer to the message buffer
769 * @add: add a RSS config if true, otherwise delete a RSS config
770 *
771 * This function adds/deletes a RSS config
772 */
773static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774{
775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 struct device *dev = ice_pf_to_dev(vf->pf);
779 struct ice_hw *hw = &vf->pf->hw;
780 struct ice_vsi *vsi;
781
782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
786 goto error_param;
787 }
788
789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 vf->vf_id);
792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
793 goto error_param;
794 }
795
796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 goto error_param;
799 }
800
801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 vf->vf_id);
806 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 goto error_param;
808 }
809
810 vsi = ice_get_vf_vsi(vf);
811 if (!vsi) {
812 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
813 goto error_param;
814 }
815
816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
818 goto error_param;
819 }
820
821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 struct ice_vsi_ctx *ctx;
823 u8 lut_type, hash_type;
824 int status;
825
826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
829
830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 if (!ctx) {
832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
833 goto error_param;
834 }
835
836 ctx->info.q_opt_rss =
837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
839
840 /* Preserve existing queueing option setting */
841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
845
846 ctx->info.valid_sections =
847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
848
849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
850 if (status) {
851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 status, ice_aq_str(hw->adminq.sq_last_status));
853 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
854 } else {
855 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
856 }
857
858 kfree(ctx);
859 } else {
860 struct ice_rss_hash_cfg cfg;
861
862 /* Only check for none raw pattern case */
863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
865 goto error_param;
866 }
867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 cfg.hash_flds = ICE_HASH_INVALID;
869 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
870
871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
873 goto error_param;
874 }
875
876 if (add) {
877 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 vsi->vsi_num, v_ret);
881 }
882 } else {
883 int status;
884
885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 /* We just ignore -ENOENT, because if two configurations
887 * share the same profile remove one of them actually
888 * removes both, since the profile is deleted.
889 */
890 if (status && status != -ENOENT) {
891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
893 vf->vf_id, status);
894 }
895 }
896 }
897
898error_param:
899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
900}
901
902/**
903 * ice_vc_config_rss_key
904 * @vf: pointer to the VF info
905 * @msg: pointer to the msg buffer
906 *
907 * Configure the VF's RSS key
908 */
909static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
910{
911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 struct virtchnl_rss_key *vrk =
913 (struct virtchnl_rss_key *)msg;
914 struct ice_vsi *vsi;
915
916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 goto error_param;
919 }
920
921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 goto error_param;
924 }
925
926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 goto error_param;
929 }
930
931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 goto error_param;
934 }
935
936 vsi = ice_get_vf_vsi(vf);
937 if (!vsi) {
938 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
939 goto error_param;
940 }
941
942 if (ice_set_rss_key(vsi, vrk->key))
943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
944error_param:
945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 NULL, 0);
947}
948
949/**
950 * ice_vc_config_rss_lut
951 * @vf: pointer to the VF info
952 * @msg: pointer to the msg buffer
953 *
954 * Configure the VF's RSS LUT
955 */
956static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
957{
958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
960 struct ice_vsi *vsi;
961
962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 goto error_param;
965 }
966
967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 goto error_param;
970 }
971
972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 goto error_param;
975 }
976
977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 goto error_param;
980 }
981
982 vsi = ice_get_vf_vsi(vf);
983 if (!vsi) {
984 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
985 goto error_param;
986 }
987
988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
990error_param:
991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 NULL, 0);
993}
994
995/**
996 * ice_vc_config_rss_hfunc
997 * @vf: pointer to the VF info
998 * @msg: pointer to the msg buffer
999 *
1000 * Configure the VF's RSS Hash function
1001 */
1002static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003{
1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 struct ice_vsi *vsi;
1008
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 goto error_param;
1012 }
1013
1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 goto error_param;
1017 }
1018
1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 goto error_param;
1022 }
1023
1024 vsi = ice_get_vf_vsi(vf);
1025 if (!vsi) {
1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027 goto error_param;
1028 }
1029
1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033 if (ice_set_rss_hfunc(vsi, hfunc))
1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035error_param:
1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037 NULL, 0);
1038}
1039
1040/**
1041 * ice_vc_cfg_promiscuous_mode_msg
1042 * @vf: pointer to the VF info
1043 * @msg: pointer to the msg buffer
1044 *
1045 * called from the VF to configure VF VSIs promiscuous mode
1046 */
1047static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1048{
1049 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1050 bool rm_promisc, alluni = false, allmulti = false;
1051 struct virtchnl_promisc_info *info =
1052 (struct virtchnl_promisc_info *)msg;
1053 struct ice_vsi_vlan_ops *vlan_ops;
1054 int mcast_err = 0, ucast_err = 0;
1055 struct ice_pf *pf = vf->pf;
1056 struct ice_vsi *vsi;
1057 u8 mcast_m, ucast_m;
1058 struct device *dev;
1059 int ret = 0;
1060
1061 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1062 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1063 goto error_param;
1064 }
1065
1066 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1067 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1068 goto error_param;
1069 }
1070
1071 vsi = ice_get_vf_vsi(vf);
1072 if (!vsi) {
1073 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1074 goto error_param;
1075 }
1076
1077 dev = ice_pf_to_dev(pf);
1078 if (!ice_is_vf_trusted(vf)) {
1079 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1080 vf->vf_id);
1081 /* Leave v_ret alone, lie to the VF on purpose. */
1082 goto error_param;
1083 }
1084
1085 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1086 alluni = true;
1087
1088 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1089 allmulti = true;
1090
1091 rm_promisc = !allmulti && !alluni;
1092
1093 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1094 if (rm_promisc)
1095 ret = vlan_ops->ena_rx_filtering(vsi);
1096 else
1097 ret = vlan_ops->dis_rx_filtering(vsi);
1098 if (ret) {
1099 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1100 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1101 goto error_param;
1102 }
1103
1104 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1105
1106 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1107 if (alluni) {
1108 /* in this case we're turning on promiscuous mode */
1109 ret = ice_set_dflt_vsi(vsi);
1110 } else {
1111 /* in this case we're turning off promiscuous mode */
1112 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1113 ret = ice_clear_dflt_vsi(vsi);
1114 }
1115
1116 /* in this case we're turning on/off only
1117 * allmulticast
1118 */
1119 if (allmulti)
1120 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1121 else
1122 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1123
1124 if (ret) {
1125 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1126 vf->vf_id, ret);
1127 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1128 goto error_param;
1129 }
1130 } else {
1131 if (alluni)
1132 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1133 else
1134 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1135
1136 if (allmulti)
1137 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1138 else
1139 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1140
1141 if (ucast_err || mcast_err)
1142 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1143 }
1144
1145 if (!mcast_err) {
1146 if (allmulti &&
1147 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1148 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1149 vf->vf_id);
1150 else if (!allmulti &&
1151 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1152 vf->vf_states))
1153 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1154 vf->vf_id);
1155 } else {
1156 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1157 vf->vf_id, mcast_err);
1158 }
1159
1160 if (!ucast_err) {
1161 if (alluni &&
1162 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1163 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1164 vf->vf_id);
1165 else if (!alluni &&
1166 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1167 vf->vf_states))
1168 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1169 vf->vf_id);
1170 } else {
1171 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1172 vf->vf_id, ucast_err);
1173 }
1174
1175error_param:
1176 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1177 v_ret, NULL, 0);
1178}
1179
1180/**
1181 * ice_vc_get_stats_msg
1182 * @vf: pointer to the VF info
1183 * @msg: pointer to the msg buffer
1184 *
1185 * called from the VF to get VSI stats
1186 */
1187static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1188{
1189 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1190 struct virtchnl_queue_select *vqs =
1191 (struct virtchnl_queue_select *)msg;
1192 struct ice_eth_stats stats = { 0 };
1193 struct ice_vsi *vsi;
1194
1195 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1196 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1197 goto error_param;
1198 }
1199
1200 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1201 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1202 goto error_param;
1203 }
1204
1205 vsi = ice_get_vf_vsi(vf);
1206 if (!vsi) {
1207 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1208 goto error_param;
1209 }
1210
1211 ice_update_eth_stats(vsi);
1212
1213 stats = vsi->eth_stats;
1214
1215error_param:
1216 /* send the response to the VF */
1217 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1218 (u8 *)&stats, sizeof(stats));
1219}
1220
1221/**
1222 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1223 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1224 *
1225 * Return true on successful validation, else false
1226 */
1227static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1228{
1229 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1230 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1231 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1232 return false;
1233
1234 return true;
1235}
1236
1237/**
1238 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1239 * @vsi: VSI of the VF to configure
1240 * @q_idx: VF queue index used to determine the queue in the PF's space
1241 */
1242static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1243{
1244 struct ice_hw *hw = &vsi->back->hw;
1245 u32 pfq = vsi->txq_map[q_idx];
1246 u32 reg;
1247
1248 reg = rd32(hw, QINT_TQCTL(pfq));
1249
1250 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1251 * this is most likely a poll mode VF driver, so don't enable an
1252 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1253 */
1254 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1255 return;
1256
1257 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1258}
1259
1260/**
1261 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1262 * @vsi: VSI of the VF to configure
1263 * @q_idx: VF queue index used to determine the queue in the PF's space
1264 */
1265static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1266{
1267 struct ice_hw *hw = &vsi->back->hw;
1268 u32 pfq = vsi->rxq_map[q_idx];
1269 u32 reg;
1270
1271 reg = rd32(hw, QINT_RQCTL(pfq));
1272
1273 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1274 * this is most likely a poll mode VF driver, so don't enable an
1275 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1276 */
1277 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1278 return;
1279
1280 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1281}
1282
1283/**
1284 * ice_vc_ena_qs_msg
1285 * @vf: pointer to the VF info
1286 * @msg: pointer to the msg buffer
1287 *
1288 * called from the VF to enable all or specific queue(s)
1289 */
1290static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1291{
1292 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1293 struct virtchnl_queue_select *vqs =
1294 (struct virtchnl_queue_select *)msg;
1295 struct ice_vsi *vsi;
1296 unsigned long q_map;
1297 u16 vf_q_id;
1298
1299 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301 goto error_param;
1302 }
1303
1304 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1305 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1306 goto error_param;
1307 }
1308
1309 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1310 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1311 goto error_param;
1312 }
1313
1314 vsi = ice_get_vf_vsi(vf);
1315 if (!vsi) {
1316 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1317 goto error_param;
1318 }
1319
1320 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1321 * Tx queue group list was configured and the context bits were
1322 * programmed using ice_vsi_cfg_txqs
1323 */
1324 q_map = vqs->rx_queues;
1325 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1326 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328 goto error_param;
1329 }
1330
1331 /* Skip queue if enabled */
1332 if (test_bit(vf_q_id, vf->rxq_ena))
1333 continue;
1334
1335 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1336 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1337 vf_q_id, vsi->vsi_num);
1338 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1339 goto error_param;
1340 }
1341
1342 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1343 set_bit(vf_q_id, vf->rxq_ena);
1344 }
1345
1346 q_map = vqs->tx_queues;
1347 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1348 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1349 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1350 goto error_param;
1351 }
1352
1353 /* Skip queue if enabled */
1354 if (test_bit(vf_q_id, vf->txq_ena))
1355 continue;
1356
1357 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1358 set_bit(vf_q_id, vf->txq_ena);
1359 }
1360
1361 /* Set flag to indicate that queues are enabled */
1362 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1363 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1364
1365error_param:
1366 /* send the response to the VF */
1367 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1368 NULL, 0);
1369}
1370
1371/**
1372 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1373 * @vf: VF to disable queue for
1374 * @vsi: VSI for the VF
1375 * @q_id: VF relative (0-based) queue ID
1376 *
1377 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1378 * disabled then clear q_id bit in the enabled queues bitmap and return
1379 * success. Otherwise return error.
1380 */
1381static int
1382ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1383{
1384 struct ice_txq_meta txq_meta = { 0 };
1385 struct ice_tx_ring *ring;
1386 int err;
1387
1388 if (!test_bit(q_id, vf->txq_ena))
1389 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1390 q_id, vsi->vsi_num);
1391
1392 ring = vsi->tx_rings[q_id];
1393 if (!ring)
1394 return -EINVAL;
1395
1396 ice_fill_txq_meta(vsi, ring, &txq_meta);
1397
1398 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1399 if (err) {
1400 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1401 q_id, vsi->vsi_num);
1402 return err;
1403 }
1404
1405 /* Clear enabled queues flag */
1406 clear_bit(q_id, vf->txq_ena);
1407
1408 return 0;
1409}
1410
1411/**
1412 * ice_vc_dis_qs_msg
1413 * @vf: pointer to the VF info
1414 * @msg: pointer to the msg buffer
1415 *
1416 * called from the VF to disable all or specific queue(s)
1417 */
1418static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1419{
1420 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1421 struct virtchnl_queue_select *vqs =
1422 (struct virtchnl_queue_select *)msg;
1423 struct ice_vsi *vsi;
1424 unsigned long q_map;
1425 u16 vf_q_id;
1426
1427 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1428 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1429 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1430 goto error_param;
1431 }
1432
1433 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1434 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1435 goto error_param;
1436 }
1437
1438 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1439 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1440 goto error_param;
1441 }
1442
1443 vsi = ice_get_vf_vsi(vf);
1444 if (!vsi) {
1445 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1446 goto error_param;
1447 }
1448
1449 if (vqs->tx_queues) {
1450 q_map = vqs->tx_queues;
1451
1452 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1453 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1454 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1455 goto error_param;
1456 }
1457
1458 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1459 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1460 goto error_param;
1461 }
1462 }
1463 }
1464
1465 q_map = vqs->rx_queues;
1466 /* speed up Rx queue disable by batching them if possible */
1467 if (q_map &&
1468 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1469 if (ice_vsi_stop_all_rx_rings(vsi)) {
1470 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1471 vsi->vsi_num);
1472 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1473 goto error_param;
1474 }
1475
1476 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1477 } else if (q_map) {
1478 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1479 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1480 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1481 goto error_param;
1482 }
1483
1484 /* Skip queue if not enabled */
1485 if (!test_bit(vf_q_id, vf->rxq_ena))
1486 continue;
1487
1488 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1489 true)) {
1490 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1491 vf_q_id, vsi->vsi_num);
1492 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1493 goto error_param;
1494 }
1495
1496 /* Clear enabled queues flag */
1497 clear_bit(vf_q_id, vf->rxq_ena);
1498 }
1499 }
1500
1501 /* Clear enabled queues flag */
1502 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1503 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1504
1505error_param:
1506 /* send the response to the VF */
1507 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1508 NULL, 0);
1509}
1510
1511/**
1512 * ice_cfg_interrupt
1513 * @vf: pointer to the VF info
1514 * @vsi: the VSI being configured
1515 * @vector_id: vector ID
1516 * @map: vector map for mapping vectors to queues
1517 * @q_vector: structure for interrupt vector
1518 * configure the IRQ to queue map
1519 */
1520static int
1521ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1522 struct virtchnl_vector_map *map,
1523 struct ice_q_vector *q_vector)
1524{
1525 u16 vsi_q_id, vsi_q_id_idx;
1526 unsigned long qmap;
1527
1528 q_vector->num_ring_rx = 0;
1529 q_vector->num_ring_tx = 0;
1530
1531 qmap = map->rxq_map;
1532 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1533 vsi_q_id = vsi_q_id_idx;
1534
1535 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1536 return VIRTCHNL_STATUS_ERR_PARAM;
1537
1538 q_vector->num_ring_rx++;
1539 q_vector->rx.itr_idx = map->rxitr_idx;
1540 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1541 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1542 q_vector->rx.itr_idx);
1543 }
1544
1545 qmap = map->txq_map;
1546 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1547 vsi_q_id = vsi_q_id_idx;
1548
1549 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1550 return VIRTCHNL_STATUS_ERR_PARAM;
1551
1552 q_vector->num_ring_tx++;
1553 q_vector->tx.itr_idx = map->txitr_idx;
1554 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1555 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1556 q_vector->tx.itr_idx);
1557 }
1558
1559 return VIRTCHNL_STATUS_SUCCESS;
1560}
1561
1562/**
1563 * ice_vc_cfg_irq_map_msg
1564 * @vf: pointer to the VF info
1565 * @msg: pointer to the msg buffer
1566 *
1567 * called from the VF to configure the IRQ to queue map
1568 */
1569static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1570{
1571 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1572 u16 num_q_vectors_mapped, vsi_id, vector_id;
1573 struct virtchnl_irq_map_info *irqmap_info;
1574 struct virtchnl_vector_map *map;
1575 struct ice_vsi *vsi;
1576 int i;
1577
1578 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1579 num_q_vectors_mapped = irqmap_info->num_vectors;
1580
1581 /* Check to make sure number of VF vectors mapped is not greater than
1582 * number of VF vectors originally allocated, and check that
1583 * there is actually at least a single VF queue vector mapped
1584 */
1585 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1586 vf->num_msix < num_q_vectors_mapped ||
1587 !num_q_vectors_mapped) {
1588 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1589 goto error_param;
1590 }
1591
1592 vsi = ice_get_vf_vsi(vf);
1593 if (!vsi) {
1594 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1595 goto error_param;
1596 }
1597
1598 for (i = 0; i < num_q_vectors_mapped; i++) {
1599 struct ice_q_vector *q_vector;
1600
1601 map = &irqmap_info->vecmap[i];
1602
1603 vector_id = map->vector_id;
1604 vsi_id = map->vsi_id;
1605 /* vector_id is always 0-based for each VF, and can never be
1606 * larger than or equal to the max allowed interrupts per VF
1607 */
1608 if (!(vector_id < vf->num_msix) ||
1609 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1610 (!vector_id && (map->rxq_map || map->txq_map))) {
1611 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1612 goto error_param;
1613 }
1614
1615 /* No need to map VF miscellaneous or rogue vector */
1616 if (!vector_id)
1617 continue;
1618
1619 /* Subtract non queue vector from vector_id passed by VF
1620 * to get actual number of VSI queue vector array index
1621 */
1622 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1623 if (!q_vector) {
1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625 goto error_param;
1626 }
1627
1628 /* lookout for the invalid queue index */
1629 v_ret = (enum virtchnl_status_code)
1630 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1631 if (v_ret)
1632 goto error_param;
1633 }
1634
1635error_param:
1636 /* send the response to the VF */
1637 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1638 NULL, 0);
1639}
1640
1641/**
1642 * ice_vc_cfg_qs_msg
1643 * @vf: pointer to the VF info
1644 * @msg: pointer to the msg buffer
1645 *
1646 * called from the VF to configure the Rx/Tx queues
1647 */
1648static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1649{
1650 struct virtchnl_vsi_queue_config_info *qci =
1651 (struct virtchnl_vsi_queue_config_info *)msg;
1652 struct virtchnl_queue_pair_info *qpi;
1653 struct ice_pf *pf = vf->pf;
1654 struct ice_lag *lag;
1655 struct ice_vsi *vsi;
1656 u8 act_prt, pri_prt;
1657 int i = -1, q_idx;
1658
1659 lag = pf->lag;
1660 mutex_lock(&pf->lag_mutex);
1661 act_prt = ICE_LAG_INVALID_PORT;
1662 pri_prt = pf->hw.port_info->lport;
1663 if (lag && lag->bonded && lag->primary) {
1664 act_prt = lag->active_port;
1665 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1666 lag->upper_netdev)
1667 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1668 else
1669 act_prt = ICE_LAG_INVALID_PORT;
1670 }
1671
1672 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1673 goto error_param;
1674
1675 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1676 goto error_param;
1677
1678 vsi = ice_get_vf_vsi(vf);
1679 if (!vsi)
1680 goto error_param;
1681
1682 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1683 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1684 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1685 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1686 goto error_param;
1687 }
1688
1689 for (i = 0; i < qci->num_queue_pairs; i++) {
1690 if (!qci->qpair[i].rxq.crc_disable)
1691 continue;
1692
1693 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1694 vf->vlan_strip_ena)
1695 goto error_param;
1696 }
1697
1698 for (i = 0; i < qci->num_queue_pairs; i++) {
1699 qpi = &qci->qpair[i];
1700 if (qpi->txq.vsi_id != qci->vsi_id ||
1701 qpi->rxq.vsi_id != qci->vsi_id ||
1702 qpi->rxq.queue_id != qpi->txq.queue_id ||
1703 qpi->txq.headwb_enabled ||
1704 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1705 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1706 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1707 goto error_param;
1708 }
1709
1710 q_idx = qpi->rxq.queue_id;
1711
1712 /* make sure selected "q_idx" is in valid range of queues
1713 * for selected "vsi"
1714 */
1715 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1716 goto error_param;
1717 }
1718
1719 /* copy Tx queue info from VF into VSI */
1720 if (qpi->txq.ring_len > 0) {
1721 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1722 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1723
1724 /* Disable any existing queue first */
1725 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1726 goto error_param;
1727
1728 /* Configure a queue with the requested settings */
1729 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1730 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1731 vf->vf_id, i);
1732 goto error_param;
1733 }
1734 }
1735
1736 /* copy Rx queue info from VF into VSI */
1737 if (qpi->rxq.ring_len > 0) {
1738 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1739 u32 rxdid;
1740
1741 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1742 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1743
1744 if (qpi->rxq.crc_disable)
1745 vsi->rx_rings[q_idx]->flags |=
1746 ICE_RX_FLAGS_CRC_STRIP_DIS;
1747 else
1748 vsi->rx_rings[q_idx]->flags &=
1749 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1750
1751 if (qpi->rxq.databuffer_size != 0 &&
1752 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1753 qpi->rxq.databuffer_size < 1024))
1754 goto error_param;
1755 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1756 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1757 if (qpi->rxq.max_pkt_size > max_frame_size ||
1758 qpi->rxq.max_pkt_size < 64)
1759 goto error_param;
1760
1761 vsi->max_frame = qpi->rxq.max_pkt_size;
1762 /* add space for the port VLAN since the VF driver is
1763 * not expected to account for it in the MTU
1764 * calculation
1765 */
1766 if (ice_vf_is_port_vlan_ena(vf))
1767 vsi->max_frame += VLAN_HLEN;
1768
1769 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1770 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1771 vf->vf_id, i);
1772 goto error_param;
1773 }
1774
1775 /* If Rx flex desc is supported, select RXDID for Rx
1776 * queues. Otherwise, use legacy 32byte descriptor
1777 * format. Legacy 16byte descriptor is not supported.
1778 * If this RXDID is selected, return error.
1779 */
1780 if (vf->driver_caps &
1781 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1782 rxdid = qpi->rxq.rxdid;
1783 if (!(BIT(rxdid) & pf->supported_rxdids))
1784 goto error_param;
1785 } else {
1786 rxdid = ICE_RXDID_LEGACY_1;
1787 }
1788
1789 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1790 vsi->rxq_map[q_idx],
1791 rxdid, 0x03, false);
1792 }
1793 }
1794
1795 if (lag && lag->bonded && lag->primary &&
1796 act_prt != ICE_LAG_INVALID_PORT)
1797 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1798 mutex_unlock(&pf->lag_mutex);
1799
1800 /* send the response to the VF */
1801 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1802 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1803error_param:
1804 /* disable whatever we can */
1805 for (; i >= 0; i--) {
1806 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1807 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1808 vf->vf_id, i);
1809 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1810 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1811 vf->vf_id, i);
1812 }
1813
1814 if (lag && lag->bonded && lag->primary &&
1815 act_prt != ICE_LAG_INVALID_PORT)
1816 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1817 mutex_unlock(&pf->lag_mutex);
1818
1819 ice_lag_move_new_vf_nodes(vf);
1820
1821 /* send the response to the VF */
1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1823 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1824}
1825
1826/**
1827 * ice_can_vf_change_mac
1828 * @vf: pointer to the VF info
1829 *
1830 * Return true if the VF is allowed to change its MAC filters, false otherwise
1831 */
1832static bool ice_can_vf_change_mac(struct ice_vf *vf)
1833{
1834 /* If the VF MAC address has been set administratively (via the
1835 * ndo_set_vf_mac command), then deny permission to the VF to
1836 * add/delete unicast MAC addresses, unless the VF is trusted
1837 */
1838 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1839 return false;
1840
1841 return true;
1842}
1843
1844/**
1845 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1846 * @vc_ether_addr: used to extract the type
1847 */
1848static u8
1849ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1850{
1851 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1852}
1853
1854/**
1855 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1856 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1857 */
1858static bool
1859ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1860{
1861 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1862
1863 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1864}
1865
1866/**
1867 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1868 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1869 *
1870 * This function should only be called when the MAC address in
1871 * virtchnl_ether_addr is a valid unicast MAC
1872 */
1873static bool
1874ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1875{
1876 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1877
1878 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1879}
1880
1881/**
1882 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1883 * @vf: VF to update
1884 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1885 */
1886static void
1887ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1888{
1889 u8 *mac_addr = vc_ether_addr->addr;
1890
1891 if (!is_valid_ether_addr(mac_addr))
1892 return;
1893
1894 /* only allow legacy VF drivers to set the device and hardware MAC if it
1895 * is zero and allow new VF drivers to set the hardware MAC if the type
1896 * was correctly specified over VIRTCHNL
1897 */
1898 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1899 is_zero_ether_addr(vf->hw_lan_addr)) ||
1900 ice_is_vc_addr_primary(vc_ether_addr)) {
1901 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1902 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1903 }
1904
1905 /* hardware and device MACs are already set, but its possible that the
1906 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1907 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1908 * away for the legacy VF driver case as it will be updated in the
1909 * delete flow for this case
1910 */
1911 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1912 ether_addr_copy(vf->legacy_last_added_umac.addr,
1913 mac_addr);
1914 vf->legacy_last_added_umac.time_modified = jiffies;
1915 }
1916}
1917
1918/**
1919 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1920 * @vf: pointer to the VF info
1921 * @vsi: pointer to the VF's VSI
1922 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1923 */
1924static int
1925ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1926 struct virtchnl_ether_addr *vc_ether_addr)
1927{
1928 struct device *dev = ice_pf_to_dev(vf->pf);
1929 u8 *mac_addr = vc_ether_addr->addr;
1930 int ret;
1931
1932 /* device MAC already added */
1933 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1934 return 0;
1935
1936 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1937 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1938 return -EPERM;
1939 }
1940
1941 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1942 if (ret == -EEXIST) {
1943 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1944 vf->vf_id);
1945 /* don't return since we might need to update
1946 * the primary MAC in ice_vfhw_mac_add() below
1947 */
1948 } else if (ret) {
1949 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1950 mac_addr, vf->vf_id, ret);
1951 return ret;
1952 } else {
1953 vf->num_mac++;
1954 }
1955
1956 ice_vfhw_mac_add(vf, vc_ether_addr);
1957
1958 return ret;
1959}
1960
1961/**
1962 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1963 * @last_added_umac: structure used to check expiration
1964 */
1965static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1966{
1967#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1968 return time_is_before_jiffies(last_added_umac->time_modified +
1969 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1970}
1971
1972/**
1973 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1974 * @vf: VF to update
1975 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1976 *
1977 * only update cached hardware MAC for legacy VF drivers on delete
1978 * because we cannot guarantee order/type of MAC from the VF driver
1979 */
1980static void
1981ice_update_legacy_cached_mac(struct ice_vf *vf,
1982 struct virtchnl_ether_addr *vc_ether_addr)
1983{
1984 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1985 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1986 return;
1987
1988 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1989 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1990}
1991
1992/**
1993 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1994 * @vf: VF to update
1995 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1996 */
1997static void
1998ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1999{
2000 u8 *mac_addr = vc_ether_addr->addr;
2001
2002 if (!is_valid_ether_addr(mac_addr) ||
2003 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2004 return;
2005
2006 /* allow the device MAC to be repopulated in the add flow and don't
2007 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2008 * to be persistent on VM reboot and across driver unload/load, which
2009 * won't work if we clear the hardware MAC here
2010 */
2011 eth_zero_addr(vf->dev_lan_addr);
2012
2013 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2014}
2015
2016/**
2017 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2018 * @vf: pointer to the VF info
2019 * @vsi: pointer to the VF's VSI
2020 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2021 */
2022static int
2023ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2024 struct virtchnl_ether_addr *vc_ether_addr)
2025{
2026 struct device *dev = ice_pf_to_dev(vf->pf);
2027 u8 *mac_addr = vc_ether_addr->addr;
2028 int status;
2029
2030 if (!ice_can_vf_change_mac(vf) &&
2031 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2032 return 0;
2033
2034 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2035 if (status == -ENOENT) {
2036 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2037 vf->vf_id);
2038 return -ENOENT;
2039 } else if (status) {
2040 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2041 mac_addr, vf->vf_id, status);
2042 return -EIO;
2043 }
2044
2045 ice_vfhw_mac_del(vf, vc_ether_addr);
2046
2047 vf->num_mac--;
2048
2049 return 0;
2050}
2051
2052/**
2053 * ice_vc_handle_mac_addr_msg
2054 * @vf: pointer to the VF info
2055 * @msg: pointer to the msg buffer
2056 * @set: true if MAC filters are being set, false otherwise
2057 *
2058 * add guest MAC address filter
2059 */
2060static int
2061ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2062{
2063 int (*ice_vc_cfg_mac)
2064 (struct ice_vf *vf, struct ice_vsi *vsi,
2065 struct virtchnl_ether_addr *virtchnl_ether_addr);
2066 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2067 struct virtchnl_ether_addr_list *al =
2068 (struct virtchnl_ether_addr_list *)msg;
2069 struct ice_pf *pf = vf->pf;
2070 enum virtchnl_ops vc_op;
2071 struct ice_vsi *vsi;
2072 int i;
2073
2074 if (set) {
2075 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2076 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2077 } else {
2078 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2079 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2080 }
2081
2082 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2083 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2084 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2085 goto handle_mac_exit;
2086 }
2087
2088 /* If this VF is not privileged, then we can't add more than a
2089 * limited number of addresses. Check to make sure that the
2090 * additions do not push us over the limit.
2091 */
2092 if (set && !ice_is_vf_trusted(vf) &&
2093 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2094 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2095 vf->vf_id);
2096 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2097 goto handle_mac_exit;
2098 }
2099
2100 vsi = ice_get_vf_vsi(vf);
2101 if (!vsi) {
2102 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2103 goto handle_mac_exit;
2104 }
2105
2106 for (i = 0; i < al->num_elements; i++) {
2107 u8 *mac_addr = al->list[i].addr;
2108 int result;
2109
2110 if (is_broadcast_ether_addr(mac_addr) ||
2111 is_zero_ether_addr(mac_addr))
2112 continue;
2113
2114 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2115 if (result == -EEXIST || result == -ENOENT) {
2116 continue;
2117 } else if (result) {
2118 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2119 goto handle_mac_exit;
2120 }
2121 }
2122
2123handle_mac_exit:
2124 /* send the response to the VF */
2125 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2126}
2127
2128/**
2129 * ice_vc_add_mac_addr_msg
2130 * @vf: pointer to the VF info
2131 * @msg: pointer to the msg buffer
2132 *
2133 * add guest MAC address filter
2134 */
2135static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2136{
2137 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2138}
2139
2140/**
2141 * ice_vc_del_mac_addr_msg
2142 * @vf: pointer to the VF info
2143 * @msg: pointer to the msg buffer
2144 *
2145 * remove guest MAC address filter
2146 */
2147static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2148{
2149 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2150}
2151
2152/**
2153 * ice_vc_request_qs_msg
2154 * @vf: pointer to the VF info
2155 * @msg: pointer to the msg buffer
2156 *
2157 * VFs get a default number of queues but can use this message to request a
2158 * different number. If the request is successful, PF will reset the VF and
2159 * return 0. If unsuccessful, PF will send message informing VF of number of
2160 * available queue pairs via virtchnl message response to VF.
2161 */
2162static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2163{
2164 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2165 struct virtchnl_vf_res_request *vfres =
2166 (struct virtchnl_vf_res_request *)msg;
2167 u16 req_queues = vfres->num_queue_pairs;
2168 struct ice_pf *pf = vf->pf;
2169 u16 max_allowed_vf_queues;
2170 u16 tx_rx_queue_left;
2171 struct device *dev;
2172 u16 cur_queues;
2173
2174 dev = ice_pf_to_dev(pf);
2175 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2176 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2177 goto error_param;
2178 }
2179
2180 cur_queues = vf->num_vf_qs;
2181 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2182 ice_get_avail_rxq_count(pf));
2183 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2184 if (!req_queues) {
2185 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2186 vf->vf_id);
2187 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2188 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2189 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2190 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2191 } else if (req_queues > cur_queues &&
2192 req_queues - cur_queues > tx_rx_queue_left) {
2193 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2194 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2195 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2196 ICE_MAX_RSS_QS_PER_VF);
2197 } else {
2198 /* request is successful, then reset VF */
2199 vf->num_req_qs = req_queues;
2200 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2201 dev_info(dev, "VF %d granted request of %u queues.\n",
2202 vf->vf_id, req_queues);
2203 return 0;
2204 }
2205
2206error_param:
2207 /* send the response to the VF */
2208 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2209 v_ret, (u8 *)vfres, sizeof(*vfres));
2210}
2211
2212/**
2213 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2214 * @caps: VF driver negotiated capabilities
2215 *
2216 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2217 */
2218static bool ice_vf_vlan_offload_ena(u32 caps)
2219{
2220 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2221}
2222
2223/**
2224 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2225 * @vf: VF used to determine if VLAN promiscuous config is allowed
2226 */
2227static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2228{
2229 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2230 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2231 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2232 return true;
2233
2234 return false;
2235}
2236
2237/**
2238 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2239 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2240 * @vlan: VLAN used to enable VLAN promiscuous
2241 *
2242 * This function should only be called if VLAN promiscuous mode is allowed,
2243 * which can be determined via ice_is_vlan_promisc_allowed().
2244 */
2245static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2246{
2247 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2248 int status;
2249
2250 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2251 vlan->vid);
2252 if (status && status != -EEXIST)
2253 return status;
2254
2255 return 0;
2256}
2257
2258/**
2259 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2260 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2261 * @vlan: VLAN used to disable VLAN promiscuous
2262 *
2263 * This function should only be called if VLAN promiscuous mode is allowed,
2264 * which can be determined via ice_is_vlan_promisc_allowed().
2265 */
2266static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2267{
2268 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2269 int status;
2270
2271 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2272 vlan->vid);
2273 if (status && status != -ENOENT)
2274 return status;
2275
2276 return 0;
2277}
2278
2279/**
2280 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2281 * @vf: VF to check against
2282 * @vsi: VF's VSI
2283 *
2284 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2285 * wants to, so return false.
2286 *
2287 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2288 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2289 */
2290static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2291{
2292 if (ice_is_vf_trusted(vf))
2293 return false;
2294
2295#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2296 return ((ice_vsi_num_non_zero_vlans(vsi) +
2297 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2298}
2299
2300/**
2301 * ice_vc_process_vlan_msg
2302 * @vf: pointer to the VF info
2303 * @msg: pointer to the msg buffer
2304 * @add_v: Add VLAN if true, otherwise delete VLAN
2305 *
2306 * Process virtchnl op to add or remove programmed guest VLAN ID
2307 */
2308static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2309{
2310 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2311 struct virtchnl_vlan_filter_list *vfl =
2312 (struct virtchnl_vlan_filter_list *)msg;
2313 struct ice_pf *pf = vf->pf;
2314 bool vlan_promisc = false;
2315 struct ice_vsi *vsi;
2316 struct device *dev;
2317 int status = 0;
2318 int i;
2319
2320 dev = ice_pf_to_dev(pf);
2321 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2322 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2323 goto error_param;
2324 }
2325
2326 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2328 goto error_param;
2329 }
2330
2331 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2332 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2333 goto error_param;
2334 }
2335
2336 for (i = 0; i < vfl->num_elements; i++) {
2337 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2338 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2339 dev_err(dev, "invalid VF VLAN id %d\n",
2340 vfl->vlan_id[i]);
2341 goto error_param;
2342 }
2343 }
2344
2345 vsi = ice_get_vf_vsi(vf);
2346 if (!vsi) {
2347 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2348 goto error_param;
2349 }
2350
2351 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2352 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2353 vf->vf_id);
2354 /* There is no need to let VF know about being not trusted,
2355 * so we can just return success message here
2356 */
2357 goto error_param;
2358 }
2359
2360 /* in DVM a VF can add/delete inner VLAN filters when
2361 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2362 */
2363 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365 goto error_param;
2366 }
2367
2368 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2369 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2370 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2371 */
2372 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2373 !ice_is_dvm_ena(&pf->hw) &&
2374 !ice_vf_is_port_vlan_ena(vf);
2375
2376 if (add_v) {
2377 for (i = 0; i < vfl->num_elements; i++) {
2378 u16 vid = vfl->vlan_id[i];
2379 struct ice_vlan vlan;
2380
2381 if (ice_vf_has_max_vlans(vf, vsi)) {
2382 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2383 vf->vf_id);
2384 /* There is no need to let VF know about being
2385 * not trusted, so we can just return success
2386 * message here as well.
2387 */
2388 goto error_param;
2389 }
2390
2391 /* we add VLAN 0 by default for each VF so we can enable
2392 * Tx VLAN anti-spoof without triggering MDD events so
2393 * we don't need to add it again here
2394 */
2395 if (!vid)
2396 continue;
2397
2398 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2399 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2400 if (status) {
2401 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2402 goto error_param;
2403 }
2404
2405 /* Enable VLAN filtering on first non-zero VLAN */
2406 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2407 if (vf->spoofchk) {
2408 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2409 if (status) {
2410 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2412 vid, status);
2413 goto error_param;
2414 }
2415 }
2416 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2417 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2419 vid, status);
2420 goto error_param;
2421 }
2422 } else if (vlan_promisc) {
2423 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2424 if (status) {
2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2426 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2427 vid, status);
2428 }
2429 }
2430 }
2431 } else {
2432 /* In case of non_trusted VF, number of VLAN elements passed
2433 * to PF for removal might be greater than number of VLANs
2434 * filter programmed for that VF - So, use actual number of
2435 * VLANS added earlier with add VLAN opcode. In order to avoid
2436 * removing VLAN that doesn't exist, which result to sending
2437 * erroneous failed message back to the VF
2438 */
2439 int num_vf_vlan;
2440
2441 num_vf_vlan = vsi->num_vlan;
2442 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2443 u16 vid = vfl->vlan_id[i];
2444 struct ice_vlan vlan;
2445
2446 /* we add VLAN 0 by default for each VF so we can enable
2447 * Tx VLAN anti-spoof without triggering MDD events so
2448 * we don't want a VIRTCHNL request to remove it
2449 */
2450 if (!vid)
2451 continue;
2452
2453 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2454 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2455 if (status) {
2456 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2457 goto error_param;
2458 }
2459
2460 /* Disable VLAN filtering when only VLAN 0 is left */
2461 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2462 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2463 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2464 }
2465
2466 if (vlan_promisc)
2467 ice_vf_dis_vlan_promisc(vsi, &vlan);
2468 }
2469 }
2470
2471error_param:
2472 /* send the response to the VF */
2473 if (add_v)
2474 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2475 NULL, 0);
2476 else
2477 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2478 NULL, 0);
2479}
2480
2481/**
2482 * ice_vc_add_vlan_msg
2483 * @vf: pointer to the VF info
2484 * @msg: pointer to the msg buffer
2485 *
2486 * Add and program guest VLAN ID
2487 */
2488static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2489{
2490 return ice_vc_process_vlan_msg(vf, msg, true);
2491}
2492
2493/**
2494 * ice_vc_remove_vlan_msg
2495 * @vf: pointer to the VF info
2496 * @msg: pointer to the msg buffer
2497 *
2498 * remove programmed guest VLAN ID
2499 */
2500static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2501{
2502 return ice_vc_process_vlan_msg(vf, msg, false);
2503}
2504
2505/**
2506 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2507 * @vsi: pointer to the VF VSI info
2508 */
2509static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2510{
2511 unsigned int i;
2512
2513 ice_for_each_alloc_rxq(vsi, i)
2514 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2515 return true;
2516
2517 return false;
2518}
2519
2520/**
2521 * ice_vc_ena_vlan_stripping
2522 * @vf: pointer to the VF info
2523 *
2524 * Enable VLAN header stripping for a given VF
2525 */
2526static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2527{
2528 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2529 struct ice_vsi *vsi;
2530
2531 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2532 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533 goto error_param;
2534 }
2535
2536 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2537 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2538 goto error_param;
2539 }
2540
2541 vsi = ice_get_vf_vsi(vf);
2542 if (!vsi) {
2543 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2544 goto error_param;
2545 }
2546
2547 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2548 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2549 else
2550 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2551
2552error_param:
2553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2554 v_ret, NULL, 0);
2555}
2556
2557/**
2558 * ice_vc_dis_vlan_stripping
2559 * @vf: pointer to the VF info
2560 *
2561 * Disable VLAN header stripping for a given VF
2562 */
2563static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2564{
2565 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2566 struct ice_vsi *vsi;
2567
2568 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2569 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2570 goto error_param;
2571 }
2572
2573 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2574 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2575 goto error_param;
2576 }
2577
2578 vsi = ice_get_vf_vsi(vf);
2579 if (!vsi) {
2580 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2581 goto error_param;
2582 }
2583
2584 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2585 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2586 else
2587 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2588
2589error_param:
2590 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2591 v_ret, NULL, 0);
2592}
2593
2594/**
2595 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2596 * @vf: pointer to the VF info
2597 */
2598static int ice_vc_get_rss_hena(struct ice_vf *vf)
2599{
2600 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2601 struct virtchnl_rss_hena *vrh = NULL;
2602 int len = 0, ret;
2603
2604 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2605 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2606 goto err;
2607 }
2608
2609 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2610 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2611 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2612 goto err;
2613 }
2614
2615 len = sizeof(struct virtchnl_rss_hena);
2616 vrh = kzalloc(len, GFP_KERNEL);
2617 if (!vrh) {
2618 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2619 len = 0;
2620 goto err;
2621 }
2622
2623 vrh->hena = ICE_DEFAULT_RSS_HENA;
2624err:
2625 /* send the response back to the VF */
2626 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2627 (u8 *)vrh, len);
2628 kfree(vrh);
2629 return ret;
2630}
2631
2632/**
2633 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2634 * @vf: pointer to the VF info
2635 * @msg: pointer to the msg buffer
2636 */
2637static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2638{
2639 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2640 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2641 struct ice_pf *pf = vf->pf;
2642 struct ice_vsi *vsi;
2643 struct device *dev;
2644 int status;
2645
2646 dev = ice_pf_to_dev(pf);
2647
2648 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2649 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2650 goto err;
2651 }
2652
2653 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2654 dev_err(dev, "RSS not supported by PF\n");
2655 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656 goto err;
2657 }
2658
2659 vsi = ice_get_vf_vsi(vf);
2660 if (!vsi) {
2661 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2662 goto err;
2663 }
2664
2665 /* clear all previously programmed RSS configuration to allow VF drivers
2666 * the ability to customize the RSS configuration and/or completely
2667 * disable RSS
2668 */
2669 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2670 if (status && !vrh->hena) {
2671 /* only report failure to clear the current RSS configuration if
2672 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2673 */
2674 v_ret = ice_err_to_virt_err(status);
2675 goto err;
2676 } else if (status) {
2677 /* allow the VF to update the RSS configuration even on failure
2678 * to clear the current RSS confguration in an attempt to keep
2679 * RSS in a working state
2680 */
2681 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2682 vf->vf_id);
2683 }
2684
2685 if (vrh->hena) {
2686 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2687 v_ret = ice_err_to_virt_err(status);
2688 }
2689
2690 /* send the response to the VF */
2691err:
2692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2693 NULL, 0);
2694}
2695
2696/**
2697 * ice_vc_query_rxdid - query RXDID supported by DDP package
2698 * @vf: pointer to VF info
2699 *
2700 * Called from VF to query a bitmap of supported flexible
2701 * descriptor RXDIDs of a DDP package.
2702 */
2703static int ice_vc_query_rxdid(struct ice_vf *vf)
2704{
2705 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2706 struct virtchnl_supported_rxdids *rxdid = NULL;
2707 struct ice_hw *hw = &vf->pf->hw;
2708 struct ice_pf *pf = vf->pf;
2709 int len = 0;
2710 int ret, i;
2711 u32 regval;
2712
2713 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2714 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2715 goto err;
2716 }
2717
2718 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2719 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2720 goto err;
2721 }
2722
2723 len = sizeof(struct virtchnl_supported_rxdids);
2724 rxdid = kzalloc(len, GFP_KERNEL);
2725 if (!rxdid) {
2726 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2727 len = 0;
2728 goto err;
2729 }
2730
2731 /* RXDIDs supported by DDP package can be read from the register
2732 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2733 * is not listed in DDP package, add it in the bitmap manually.
2734 * Legacy 16byte descriptor is not supported.
2735 */
2736 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2737
2738 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2739 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2740 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2741 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2742 rxdid->supported_rxdids |= BIT(i);
2743 }
2744
2745 pf->supported_rxdids = rxdid->supported_rxdids;
2746
2747err:
2748 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2749 v_ret, (u8 *)rxdid, len);
2750 kfree(rxdid);
2751 return ret;
2752}
2753
2754/**
2755 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2756 * @vf: VF to enable/disable VLAN stripping for on initialization
2757 *
2758 * Set the default for VLAN stripping based on whether a port VLAN is configured
2759 * and the current VLAN mode of the device.
2760 */
2761static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2762{
2763 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2764
2765 vf->vlan_strip_ena = 0;
2766
2767 if (!vsi)
2768 return -EINVAL;
2769
2770 /* don't modify stripping if port VLAN is configured in SVM since the
2771 * port VLAN is based on the inner/single VLAN in SVM
2772 */
2773 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2774 return 0;
2775
2776 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2777 int err;
2778
2779 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2780 if (!err)
2781 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2782 return err;
2783 }
2784
2785 return vsi->inner_vlan_ops.dis_stripping(vsi);
2786}
2787
2788static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2789{
2790 if (vf->trusted)
2791 return VLAN_N_VID;
2792 else
2793 return ICE_MAX_VLAN_PER_VF;
2794}
2795
2796/**
2797 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2798 * @vf: VF that being checked for
2799 *
2800 * When the device is in double VLAN mode, check whether or not the outer VLAN
2801 * is allowed.
2802 */
2803static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2804{
2805 if (ice_vf_is_port_vlan_ena(vf))
2806 return true;
2807
2808 return false;
2809}
2810
2811/**
2812 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2813 * @vf: VF that capabilities are being set for
2814 * @caps: VLAN capabilities to populate
2815 *
2816 * Determine VLAN capabilities support based on whether a port VLAN is
2817 * configured. If a port VLAN is configured then the VF should use the inner
2818 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2819 * capabilies.
2820 */
2821static void
2822ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2823{
2824 struct virtchnl_vlan_supported_caps *supported_caps;
2825
2826 if (ice_vf_outer_vlan_not_allowed(vf)) {
2827 /* until support for inner VLAN filtering is added when a port
2828 * VLAN is configured, only support software offloaded inner
2829 * VLANs when a port VLAN is confgured in DVM
2830 */
2831 supported_caps = &caps->filtering.filtering_support;
2832 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2833
2834 supported_caps = &caps->offloads.stripping_support;
2835 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2836 VIRTCHNL_VLAN_TOGGLE |
2837 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2838 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2839
2840 supported_caps = &caps->offloads.insertion_support;
2841 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2842 VIRTCHNL_VLAN_TOGGLE |
2843 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2844 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2845
2846 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2847 caps->offloads.ethertype_match =
2848 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2849 } else {
2850 supported_caps = &caps->filtering.filtering_support;
2851 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2852 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2853 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2854 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2855 VIRTCHNL_VLAN_ETHERTYPE_AND;
2856 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2857 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2858 VIRTCHNL_VLAN_ETHERTYPE_9100;
2859
2860 supported_caps = &caps->offloads.stripping_support;
2861 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2862 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2863 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2864 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2865 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2866 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2867 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2868 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2869 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2870
2871 supported_caps = &caps->offloads.insertion_support;
2872 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2873 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2874 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2875 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2876 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2877 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2878 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2879 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2880 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2881
2882 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2883
2884 caps->offloads.ethertype_match =
2885 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2886 }
2887
2888 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2889}
2890
2891/**
2892 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2893 * @vf: VF that capabilities are being set for
2894 * @caps: VLAN capabilities to populate
2895 *
2896 * Determine VLAN capabilities support based on whether a port VLAN is
2897 * configured. If a port VLAN is configured then the VF does not have any VLAN
2898 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2899 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2900 * VLAN fitlering and offload capabilities.
2901 */
2902static void
2903ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2904{
2905 struct virtchnl_vlan_supported_caps *supported_caps;
2906
2907 if (ice_vf_is_port_vlan_ena(vf)) {
2908 supported_caps = &caps->filtering.filtering_support;
2909 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2910 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2911
2912 supported_caps = &caps->offloads.stripping_support;
2913 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2914 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2915
2916 supported_caps = &caps->offloads.insertion_support;
2917 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2918 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2919
2920 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2921 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2922 caps->filtering.max_filters = 0;
2923 } else {
2924 supported_caps = &caps->filtering.filtering_support;
2925 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2926 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2928
2929 supported_caps = &caps->offloads.stripping_support;
2930 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2931 VIRTCHNL_VLAN_TOGGLE |
2932 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2933 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2934
2935 supported_caps = &caps->offloads.insertion_support;
2936 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2937 VIRTCHNL_VLAN_TOGGLE |
2938 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2939 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2940
2941 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2942 caps->offloads.ethertype_match =
2943 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2944 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2945 }
2946}
2947
2948/**
2949 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2950 * @vf: VF to determine VLAN capabilities for
2951 *
2952 * This will only be called if the VF and PF successfully negotiated
2953 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2954 *
2955 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2956 * is configured or not.
2957 */
2958static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2959{
2960 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2961 struct virtchnl_vlan_caps *caps = NULL;
2962 int err, len = 0;
2963
2964 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2965 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2966 goto out;
2967 }
2968
2969 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2970 if (!caps) {
2971 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2972 goto out;
2973 }
2974 len = sizeof(*caps);
2975
2976 if (ice_is_dvm_ena(&vf->pf->hw))
2977 ice_vc_set_dvm_caps(vf, caps);
2978 else
2979 ice_vc_set_svm_caps(vf, caps);
2980
2981 /* store negotiated caps to prevent invalid VF messages */
2982 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2983
2984out:
2985 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2986 v_ret, (u8 *)caps, len);
2987 kfree(caps);
2988 return err;
2989}
2990
2991/**
2992 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2993 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2994 * @tpid: VLAN TPID used for validation
2995 *
2996 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2997 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2998 */
2999static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3000{
3001 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3002
3003 switch (tpid) {
3004 case ETH_P_8021Q:
3005 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3006 break;
3007 case ETH_P_8021AD:
3008 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3009 break;
3010 case ETH_P_QINQ1:
3011 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3012 break;
3013 }
3014
3015 if (!(filtering_caps & vlan_ethertype))
3016 return false;
3017
3018 return true;
3019}
3020
3021/**
3022 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3023 * @vc_vlan: virtchnl_vlan to validate
3024 *
3025 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3026 * false. Otherwise return true.
3027 */
3028static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3029{
3030 if (!vc_vlan->tci || !vc_vlan->tpid)
3031 return false;
3032
3033 return true;
3034}
3035
3036/**
3037 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3038 * @vfc: negotiated/supported VLAN filtering capabilities
3039 * @vfl: VLAN filter list from VF to validate
3040 *
3041 * Validate all of the filters in the VLAN filter list from the VF. If any of
3042 * the checks fail then return false. Otherwise return true.
3043 */
3044static bool
3045ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3046 struct virtchnl_vlan_filter_list_v2 *vfl)
3047{
3048 u16 i;
3049
3050 if (!vfl->num_elements)
3051 return false;
3052
3053 for (i = 0; i < vfl->num_elements; i++) {
3054 struct virtchnl_vlan_supported_caps *filtering_support =
3055 &vfc->filtering_support;
3056 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3057 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3058 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3059
3060 if ((ice_vc_is_valid_vlan(outer) &&
3061 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3062 (ice_vc_is_valid_vlan(inner) &&
3063 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3064 return false;
3065
3066 if ((outer->tci_mask &&
3067 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3068 (inner->tci_mask &&
3069 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3070 return false;
3071
3072 if (((outer->tci & VLAN_PRIO_MASK) &&
3073 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3074 ((inner->tci & VLAN_PRIO_MASK) &&
3075 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3076 return false;
3077
3078 if ((ice_vc_is_valid_vlan(outer) &&
3079 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3080 outer->tpid)) ||
3081 (ice_vc_is_valid_vlan(inner) &&
3082 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3083 inner->tpid)))
3084 return false;
3085 }
3086
3087 return true;
3088}
3089
3090/**
3091 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3092 * @vc_vlan: struct virtchnl_vlan to transform
3093 */
3094static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3095{
3096 struct ice_vlan vlan = { 0 };
3097
3098 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3099 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3100 vlan.tpid = vc_vlan->tpid;
3101
3102 return vlan;
3103}
3104
3105/**
3106 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3107 * @vsi: VF's VSI used to perform the action
3108 * @vlan_action: function to perform the action with (i.e. add/del)
3109 * @vlan: VLAN filter to perform the action with
3110 */
3111static int
3112ice_vc_vlan_action(struct ice_vsi *vsi,
3113 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3114 struct ice_vlan *vlan)
3115{
3116 int err;
3117
3118 err = vlan_action(vsi, vlan);
3119 if (err)
3120 return err;
3121
3122 return 0;
3123}
3124
3125/**
3126 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3127 * @vf: VF used to delete the VLAN(s)
3128 * @vsi: VF's VSI used to delete the VLAN(s)
3129 * @vfl: virthchnl filter list used to delete the filters
3130 */
3131static int
3132ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3133 struct virtchnl_vlan_filter_list_v2 *vfl)
3134{
3135 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3136 int err;
3137 u16 i;
3138
3139 for (i = 0; i < vfl->num_elements; i++) {
3140 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3141 struct virtchnl_vlan *vc_vlan;
3142
3143 vc_vlan = &vlan_fltr->outer;
3144 if (ice_vc_is_valid_vlan(vc_vlan)) {
3145 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3146
3147 err = ice_vc_vlan_action(vsi,
3148 vsi->outer_vlan_ops.del_vlan,
3149 &vlan);
3150 if (err)
3151 return err;
3152
3153 if (vlan_promisc)
3154 ice_vf_dis_vlan_promisc(vsi, &vlan);
3155
3156 /* Disable VLAN filtering when only VLAN 0 is left */
3157 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3158 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3159 if (err)
3160 return err;
3161 }
3162 }
3163
3164 vc_vlan = &vlan_fltr->inner;
3165 if (ice_vc_is_valid_vlan(vc_vlan)) {
3166 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3167
3168 err = ice_vc_vlan_action(vsi,
3169 vsi->inner_vlan_ops.del_vlan,
3170 &vlan);
3171 if (err)
3172 return err;
3173
3174 /* no support for VLAN promiscuous on inner VLAN unless
3175 * we are in Single VLAN Mode (SVM)
3176 */
3177 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3178 if (vlan_promisc)
3179 ice_vf_dis_vlan_promisc(vsi, &vlan);
3180
3181 /* Disable VLAN filtering when only VLAN 0 is left */
3182 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3183 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3184 if (err)
3185 return err;
3186 }
3187 }
3188 }
3189 }
3190
3191 return 0;
3192}
3193
3194/**
3195 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3196 * @vf: VF the message was received from
3197 * @msg: message received from the VF
3198 */
3199static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3200{
3201 struct virtchnl_vlan_filter_list_v2 *vfl =
3202 (struct virtchnl_vlan_filter_list_v2 *)msg;
3203 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3204 struct ice_vsi *vsi;
3205
3206 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3207 vfl)) {
3208 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3209 goto out;
3210 }
3211
3212 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3213 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3214 goto out;
3215 }
3216
3217 vsi = ice_get_vf_vsi(vf);
3218 if (!vsi) {
3219 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3220 goto out;
3221 }
3222
3223 if (ice_vc_del_vlans(vf, vsi, vfl))
3224 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3225
3226out:
3227 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3228 0);
3229}
3230
3231/**
3232 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3233 * @vf: VF used to add the VLAN(s)
3234 * @vsi: VF's VSI used to add the VLAN(s)
3235 * @vfl: virthchnl filter list used to add the filters
3236 */
3237static int
3238ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3239 struct virtchnl_vlan_filter_list_v2 *vfl)
3240{
3241 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3242 int err;
3243 u16 i;
3244
3245 for (i = 0; i < vfl->num_elements; i++) {
3246 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3247 struct virtchnl_vlan *vc_vlan;
3248
3249 vc_vlan = &vlan_fltr->outer;
3250 if (ice_vc_is_valid_vlan(vc_vlan)) {
3251 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3252
3253 err = ice_vc_vlan_action(vsi,
3254 vsi->outer_vlan_ops.add_vlan,
3255 &vlan);
3256 if (err)
3257 return err;
3258
3259 if (vlan_promisc) {
3260 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3261 if (err)
3262 return err;
3263 }
3264
3265 /* Enable VLAN filtering on first non-zero VLAN */
3266 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3267 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3268 if (err)
3269 return err;
3270 }
3271 }
3272
3273 vc_vlan = &vlan_fltr->inner;
3274 if (ice_vc_is_valid_vlan(vc_vlan)) {
3275 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3276
3277 err = ice_vc_vlan_action(vsi,
3278 vsi->inner_vlan_ops.add_vlan,
3279 &vlan);
3280 if (err)
3281 return err;
3282
3283 /* no support for VLAN promiscuous on inner VLAN unless
3284 * we are in Single VLAN Mode (SVM)
3285 */
3286 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3287 if (vlan_promisc) {
3288 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3289 if (err)
3290 return err;
3291 }
3292
3293 /* Enable VLAN filtering on first non-zero VLAN */
3294 if (vf->spoofchk && vlan.vid) {
3295 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3296 if (err)
3297 return err;
3298 }
3299 }
3300 }
3301 }
3302
3303 return 0;
3304}
3305
3306/**
3307 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3308 * @vsi: VF VSI used to get number of existing VLAN filters
3309 * @vfc: negotiated/supported VLAN filtering capabilities
3310 * @vfl: VLAN filter list from VF to validate
3311 *
3312 * Validate all of the filters in the VLAN filter list from the VF during the
3313 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3314 * Otherwise return true.
3315 */
3316static bool
3317ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3318 struct virtchnl_vlan_filtering_caps *vfc,
3319 struct virtchnl_vlan_filter_list_v2 *vfl)
3320{
3321 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3322 vfl->num_elements;
3323
3324 if (num_requested_filters > vfc->max_filters)
3325 return false;
3326
3327 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3328}
3329
3330/**
3331 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3332 * @vf: VF the message was received from
3333 * @msg: message received from the VF
3334 */
3335static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3336{
3337 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3338 struct virtchnl_vlan_filter_list_v2 *vfl =
3339 (struct virtchnl_vlan_filter_list_v2 *)msg;
3340 struct ice_vsi *vsi;
3341
3342 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3343 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3344 goto out;
3345 }
3346
3347 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3348 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3349 goto out;
3350 }
3351
3352 vsi = ice_get_vf_vsi(vf);
3353 if (!vsi) {
3354 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355 goto out;
3356 }
3357
3358 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3359 &vf->vlan_v2_caps.filtering,
3360 vfl)) {
3361 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3362 goto out;
3363 }
3364
3365 if (ice_vc_add_vlans(vf, vsi, vfl))
3366 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3367
3368out:
3369 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3370 0);
3371}
3372
3373/**
3374 * ice_vc_valid_vlan_setting - validate VLAN setting
3375 * @negotiated_settings: negotiated VLAN settings during VF init
3376 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3377 */
3378static bool
3379ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3380{
3381 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3382 return false;
3383
3384 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3385 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3386 */
3387 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3388 hweight32(ethertype_setting) > 1)
3389 return false;
3390
3391 /* ability to modify the VLAN setting was not negotiated */
3392 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3393 return false;
3394
3395 return true;
3396}
3397
3398/**
3399 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3400 * @caps: negotiated VLAN settings during VF init
3401 * @msg: message to validate
3402 *
3403 * Used to validate any VLAN virtchnl message sent as a
3404 * virtchnl_vlan_setting structure. Validates the message against the
3405 * negotiated/supported caps during VF driver init.
3406 */
3407static bool
3408ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3409 struct virtchnl_vlan_setting *msg)
3410{
3411 if ((!msg->outer_ethertype_setting &&
3412 !msg->inner_ethertype_setting) ||
3413 (!caps->outer && !caps->inner))
3414 return false;
3415
3416 if (msg->outer_ethertype_setting &&
3417 !ice_vc_valid_vlan_setting(caps->outer,
3418 msg->outer_ethertype_setting))
3419 return false;
3420
3421 if (msg->inner_ethertype_setting &&
3422 !ice_vc_valid_vlan_setting(caps->inner,
3423 msg->inner_ethertype_setting))
3424 return false;
3425
3426 return true;
3427}
3428
3429/**
3430 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3431 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3432 * @tpid: VLAN TPID to populate
3433 */
3434static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3435{
3436 switch (ethertype_setting) {
3437 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3438 *tpid = ETH_P_8021Q;
3439 break;
3440 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3441 *tpid = ETH_P_8021AD;
3442 break;
3443 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3444 *tpid = ETH_P_QINQ1;
3445 break;
3446 default:
3447 *tpid = 0;
3448 return -EINVAL;
3449 }
3450
3451 return 0;
3452}
3453
3454/**
3455 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3456 * @vsi: VF's VSI used to enable the VLAN offload
3457 * @ena_offload: function used to enable the VLAN offload
3458 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3459 */
3460static int
3461ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3462 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3463 u32 ethertype_setting)
3464{
3465 u16 tpid;
3466 int err;
3467
3468 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3469 if (err)
3470 return err;
3471
3472 err = ena_offload(vsi, tpid);
3473 if (err)
3474 return err;
3475
3476 return 0;
3477}
3478
3479#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3480#define ICE_L2TSEL_BIT_OFFSET 23
3481enum ice_l2tsel {
3482 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3483 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3484};
3485
3486/**
3487 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3488 * @vsi: VSI used to update l2tsel on
3489 * @l2tsel: l2tsel setting requested
3490 *
3491 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3492 * This will modify which descriptor field the first offloaded VLAN will be
3493 * stripped into.
3494 */
3495static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3496{
3497 struct ice_hw *hw = &vsi->back->hw;
3498 u32 l2tsel_bit;
3499 int i;
3500
3501 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3502 l2tsel_bit = 0;
3503 else
3504 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3505
3506 for (i = 0; i < vsi->alloc_rxq; i++) {
3507 u16 pfq = vsi->rxq_map[i];
3508 u32 qrx_context_offset;
3509 u32 regval;
3510
3511 qrx_context_offset =
3512 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3513
3514 regval = rd32(hw, qrx_context_offset);
3515 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3516 regval |= l2tsel_bit;
3517 wr32(hw, qrx_context_offset, regval);
3518 }
3519}
3520
3521/**
3522 * ice_vc_ena_vlan_stripping_v2_msg
3523 * @vf: VF the message was received from
3524 * @msg: message received from the VF
3525 *
3526 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3527 */
3528static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3529{
3530 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3531 struct virtchnl_vlan_supported_caps *stripping_support;
3532 struct virtchnl_vlan_setting *strip_msg =
3533 (struct virtchnl_vlan_setting *)msg;
3534 u32 ethertype_setting;
3535 struct ice_vsi *vsi;
3536
3537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3538 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3539 goto out;
3540 }
3541
3542 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3543 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3544 goto out;
3545 }
3546
3547 vsi = ice_get_vf_vsi(vf);
3548 if (!vsi) {
3549 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3550 goto out;
3551 }
3552
3553 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3554 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3555 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3556 goto out;
3557 }
3558
3559 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3560 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3561 goto out;
3562 }
3563
3564 ethertype_setting = strip_msg->outer_ethertype_setting;
3565 if (ethertype_setting) {
3566 if (ice_vc_ena_vlan_offload(vsi,
3567 vsi->outer_vlan_ops.ena_stripping,
3568 ethertype_setting)) {
3569 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3570 goto out;
3571 } else {
3572 enum ice_l2tsel l2tsel =
3573 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3574
3575 /* PF tells the VF that the outer VLAN tag is always
3576 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3577 * inner is always extracted to
3578 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3579 * support outer stripping so the first tag always ends
3580 * up in L2TAG2_2ND and the second/inner tag, if
3581 * enabled, is extracted in L2TAG1.
3582 */
3583 ice_vsi_update_l2tsel(vsi, l2tsel);
3584
3585 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3586 }
3587 }
3588
3589 ethertype_setting = strip_msg->inner_ethertype_setting;
3590 if (ethertype_setting &&
3591 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3592 ethertype_setting)) {
3593 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3594 goto out;
3595 }
3596
3597 if (ethertype_setting)
3598 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3599
3600out:
3601 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3602 v_ret, NULL, 0);
3603}
3604
3605/**
3606 * ice_vc_dis_vlan_stripping_v2_msg
3607 * @vf: VF the message was received from
3608 * @msg: message received from the VF
3609 *
3610 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3611 */
3612static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3613{
3614 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3615 struct virtchnl_vlan_supported_caps *stripping_support;
3616 struct virtchnl_vlan_setting *strip_msg =
3617 (struct virtchnl_vlan_setting *)msg;
3618 u32 ethertype_setting;
3619 struct ice_vsi *vsi;
3620
3621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3622 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623 goto out;
3624 }
3625
3626 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3627 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3628 goto out;
3629 }
3630
3631 vsi = ice_get_vf_vsi(vf);
3632 if (!vsi) {
3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3634 goto out;
3635 }
3636
3637 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3638 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640 goto out;
3641 }
3642
3643 ethertype_setting = strip_msg->outer_ethertype_setting;
3644 if (ethertype_setting) {
3645 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3646 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3647 goto out;
3648 } else {
3649 enum ice_l2tsel l2tsel =
3650 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3651
3652 /* PF tells the VF that the outer VLAN tag is always
3653 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3654 * inner is always extracted to
3655 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3656 * support inner stripping while outer stripping is
3657 * disabled so that the first and only tag is extracted
3658 * in L2TAG1.
3659 */
3660 ice_vsi_update_l2tsel(vsi, l2tsel);
3661
3662 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3663 }
3664 }
3665
3666 ethertype_setting = strip_msg->inner_ethertype_setting;
3667 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3668 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3669 goto out;
3670 }
3671
3672 if (ethertype_setting)
3673 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3674
3675out:
3676 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3677 v_ret, NULL, 0);
3678}
3679
3680/**
3681 * ice_vc_ena_vlan_insertion_v2_msg
3682 * @vf: VF the message was received from
3683 * @msg: message received from the VF
3684 *
3685 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3686 */
3687static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3688{
3689 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3690 struct virtchnl_vlan_supported_caps *insertion_support;
3691 struct virtchnl_vlan_setting *insertion_msg =
3692 (struct virtchnl_vlan_setting *)msg;
3693 u32 ethertype_setting;
3694 struct ice_vsi *vsi;
3695
3696 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3697 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3698 goto out;
3699 }
3700
3701 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3702 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3703 goto out;
3704 }
3705
3706 vsi = ice_get_vf_vsi(vf);
3707 if (!vsi) {
3708 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3709 goto out;
3710 }
3711
3712 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3713 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3714 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3715 goto out;
3716 }
3717
3718 ethertype_setting = insertion_msg->outer_ethertype_setting;
3719 if (ethertype_setting &&
3720 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3721 ethertype_setting)) {
3722 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3723 goto out;
3724 }
3725
3726 ethertype_setting = insertion_msg->inner_ethertype_setting;
3727 if (ethertype_setting &&
3728 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3729 ethertype_setting)) {
3730 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3731 goto out;
3732 }
3733
3734out:
3735 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3736 v_ret, NULL, 0);
3737}
3738
3739/**
3740 * ice_vc_dis_vlan_insertion_v2_msg
3741 * @vf: VF the message was received from
3742 * @msg: message received from the VF
3743 *
3744 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3745 */
3746static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3747{
3748 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3749 struct virtchnl_vlan_supported_caps *insertion_support;
3750 struct virtchnl_vlan_setting *insertion_msg =
3751 (struct virtchnl_vlan_setting *)msg;
3752 u32 ethertype_setting;
3753 struct ice_vsi *vsi;
3754
3755 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3756 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3757 goto out;
3758 }
3759
3760 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3761 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3762 goto out;
3763 }
3764
3765 vsi = ice_get_vf_vsi(vf);
3766 if (!vsi) {
3767 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3768 goto out;
3769 }
3770
3771 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3772 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3773 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3774 goto out;
3775 }
3776
3777 ethertype_setting = insertion_msg->outer_ethertype_setting;
3778 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3779 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3780 goto out;
3781 }
3782
3783 ethertype_setting = insertion_msg->inner_ethertype_setting;
3784 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3785 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3786 goto out;
3787 }
3788
3789out:
3790 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3791 v_ret, NULL, 0);
3792}
3793
3794static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3795 .get_ver_msg = ice_vc_get_ver_msg,
3796 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3797 .reset_vf = ice_vc_reset_vf_msg,
3798 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3799 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3800 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3801 .ena_qs_msg = ice_vc_ena_qs_msg,
3802 .dis_qs_msg = ice_vc_dis_qs_msg,
3803 .request_qs_msg = ice_vc_request_qs_msg,
3804 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3805 .config_rss_key = ice_vc_config_rss_key,
3806 .config_rss_lut = ice_vc_config_rss_lut,
3807 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3808 .get_stats_msg = ice_vc_get_stats_msg,
3809 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3810 .add_vlan_msg = ice_vc_add_vlan_msg,
3811 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3812 .query_rxdid = ice_vc_query_rxdid,
3813 .get_rss_hena = ice_vc_get_rss_hena,
3814 .set_rss_hena_msg = ice_vc_set_rss_hena,
3815 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3816 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3817 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3818 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3819 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3820 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3821 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3822 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3823 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3824 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3825 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3826 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3827};
3828
3829/**
3830 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3831 * @vf: the VF to switch ops
3832 */
3833void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3834{
3835 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3836}
3837
3838/**
3839 * ice_vc_repr_add_mac
3840 * @vf: pointer to VF
3841 * @msg: virtchannel message
3842 *
3843 * When port representors are created, we do not add MAC rule
3844 * to firmware, we store it so that PF could report same
3845 * MAC as VF.
3846 */
3847static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3848{
3849 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3850 struct virtchnl_ether_addr_list *al =
3851 (struct virtchnl_ether_addr_list *)msg;
3852 struct ice_vsi *vsi;
3853 struct ice_pf *pf;
3854 int i;
3855
3856 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3857 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3858 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3859 goto handle_mac_exit;
3860 }
3861
3862 pf = vf->pf;
3863
3864 vsi = ice_get_vf_vsi(vf);
3865 if (!vsi) {
3866 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3867 goto handle_mac_exit;
3868 }
3869
3870 for (i = 0; i < al->num_elements; i++) {
3871 u8 *mac_addr = al->list[i].addr;
3872
3873 if (!is_unicast_ether_addr(mac_addr) ||
3874 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3875 continue;
3876
3877 if (vf->pf_set_mac) {
3878 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3879 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3880 goto handle_mac_exit;
3881 }
3882
3883 ice_vfhw_mac_add(vf, &al->list[i]);
3884 vf->num_mac++;
3885 break;
3886 }
3887
3888handle_mac_exit:
3889 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3890 v_ret, NULL, 0);
3891}
3892
3893/**
3894 * ice_vc_repr_del_mac - response with success for deleting MAC
3895 * @vf: pointer to VF
3896 * @msg: virtchannel message
3897 *
3898 * Respond with success to not break normal VF flow.
3899 * For legacy VF driver try to update cached MAC address.
3900 */
3901static int
3902ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3903{
3904 struct virtchnl_ether_addr_list *al =
3905 (struct virtchnl_ether_addr_list *)msg;
3906
3907 ice_update_legacy_cached_mac(vf, &al->list[0]);
3908
3909 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3910 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3911}
3912
3913static int
3914ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3915{
3916 dev_dbg(ice_pf_to_dev(vf->pf),
3917 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3918 vf->vf_id);
3919 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3920 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3921 NULL, 0);
3922}
3923
3924static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3925 .get_ver_msg = ice_vc_get_ver_msg,
3926 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3927 .reset_vf = ice_vc_reset_vf_msg,
3928 .add_mac_addr_msg = ice_vc_repr_add_mac,
3929 .del_mac_addr_msg = ice_vc_repr_del_mac,
3930 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3931 .ena_qs_msg = ice_vc_ena_qs_msg,
3932 .dis_qs_msg = ice_vc_dis_qs_msg,
3933 .request_qs_msg = ice_vc_request_qs_msg,
3934 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3935 .config_rss_key = ice_vc_config_rss_key,
3936 .config_rss_lut = ice_vc_config_rss_lut,
3937 .config_rss_hfunc = ice_vc_config_rss_hfunc,
3938 .get_stats_msg = ice_vc_get_stats_msg,
3939 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3940 .add_vlan_msg = ice_vc_add_vlan_msg,
3941 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3942 .query_rxdid = ice_vc_query_rxdid,
3943 .get_rss_hena = ice_vc_get_rss_hena,
3944 .set_rss_hena_msg = ice_vc_set_rss_hena,
3945 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3946 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3947 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3948 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3949 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3950 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3951 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3952 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3953 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3954 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3955 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3956 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3957};
3958
3959/**
3960 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3961 * @vf: the VF to switch ops
3962 */
3963void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3964{
3965 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3966}
3967
3968/**
3969 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3970 * @vf: the VF to check
3971 * @mbxdata: data about the state of the mailbox
3972 *
3973 * Detect if a given VF might be malicious and attempting to overflow the PF
3974 * mailbox. If so, log a warning message and ignore this event.
3975 */
3976static bool
3977ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3978{
3979 bool report_malvf = false;
3980 struct device *dev;
3981 struct ice_pf *pf;
3982 int status;
3983
3984 pf = vf->pf;
3985 dev = ice_pf_to_dev(pf);
3986
3987 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3988 return vf->mbx_info.malicious;
3989
3990 /* check to see if we have a newly malicious VF */
3991 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3992 &report_malvf);
3993 if (status)
3994 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3995 vf->vf_id, vf->dev_lan_addr, status);
3996
3997 if (report_malvf) {
3998 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3999 u8 zero_addr[ETH_ALEN] = {};
4000
4001 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4002 vf->dev_lan_addr,
4003 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4004 }
4005
4006 return vf->mbx_info.malicious;
4007}
4008
4009/**
4010 * ice_vc_process_vf_msg - Process request from VF
4011 * @pf: pointer to the PF structure
4012 * @event: pointer to the AQ event
4013 * @mbxdata: information used to detect VF attempting mailbox overflow
4014 *
4015 * called from the common asq/arq handler to
4016 * process request from VF
4017 */
4018void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4019 struct ice_mbx_data *mbxdata)
4020{
4021 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4022 s16 vf_id = le16_to_cpu(event->desc.retval);
4023 const struct ice_virtchnl_ops *ops;
4024 u16 msglen = event->msg_len;
4025 u8 *msg = event->msg_buf;
4026 struct ice_vf *vf = NULL;
4027 struct device *dev;
4028 int err = 0;
4029
4030 dev = ice_pf_to_dev(pf);
4031
4032 vf = ice_get_vf_by_id(pf, vf_id);
4033 if (!vf) {
4034 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4035 vf_id, v_opcode, msglen);
4036 return;
4037 }
4038
4039 mutex_lock(&vf->cfg_lock);
4040
4041 /* Check if the VF is trying to overflow the mailbox */
4042 if (ice_is_malicious_vf(vf, mbxdata))
4043 goto finish;
4044
4045 /* Check if VF is disabled. */
4046 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4047 err = -EPERM;
4048 goto error_handler;
4049 }
4050
4051 ops = vf->virtchnl_ops;
4052
4053 /* Perform basic checks on the msg */
4054 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4055 if (err) {
4056 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4057 err = -EPERM;
4058 else
4059 err = -EINVAL;
4060 }
4061
4062error_handler:
4063 if (err) {
4064 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4065 NULL, 0);
4066 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4067 vf_id, v_opcode, msglen, err);
4068 goto finish;
4069 }
4070
4071 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4072 ice_vc_send_msg_to_vf(vf, v_opcode,
4073 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4074 0);
4075 goto finish;
4076 }
4077
4078 switch (v_opcode) {
4079 case VIRTCHNL_OP_VERSION:
4080 err = ops->get_ver_msg(vf, msg);
4081 break;
4082 case VIRTCHNL_OP_GET_VF_RESOURCES:
4083 err = ops->get_vf_res_msg(vf, msg);
4084 if (ice_vf_init_vlan_stripping(vf))
4085 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4086 vf->vf_id);
4087 ice_vc_notify_vf_link_state(vf);
4088 break;
4089 case VIRTCHNL_OP_RESET_VF:
4090 ops->reset_vf(vf);
4091 break;
4092 case VIRTCHNL_OP_ADD_ETH_ADDR:
4093 err = ops->add_mac_addr_msg(vf, msg);
4094 break;
4095 case VIRTCHNL_OP_DEL_ETH_ADDR:
4096 err = ops->del_mac_addr_msg(vf, msg);
4097 break;
4098 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4099 err = ops->cfg_qs_msg(vf, msg);
4100 break;
4101 case VIRTCHNL_OP_ENABLE_QUEUES:
4102 err = ops->ena_qs_msg(vf, msg);
4103 ice_vc_notify_vf_link_state(vf);
4104 break;
4105 case VIRTCHNL_OP_DISABLE_QUEUES:
4106 err = ops->dis_qs_msg(vf, msg);
4107 break;
4108 case VIRTCHNL_OP_REQUEST_QUEUES:
4109 err = ops->request_qs_msg(vf, msg);
4110 break;
4111 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4112 err = ops->cfg_irq_map_msg(vf, msg);
4113 break;
4114 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4115 err = ops->config_rss_key(vf, msg);
4116 break;
4117 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4118 err = ops->config_rss_lut(vf, msg);
4119 break;
4120 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4121 err = ops->config_rss_hfunc(vf, msg);
4122 break;
4123 case VIRTCHNL_OP_GET_STATS:
4124 err = ops->get_stats_msg(vf, msg);
4125 break;
4126 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4127 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4128 break;
4129 case VIRTCHNL_OP_ADD_VLAN:
4130 err = ops->add_vlan_msg(vf, msg);
4131 break;
4132 case VIRTCHNL_OP_DEL_VLAN:
4133 err = ops->remove_vlan_msg(vf, msg);
4134 break;
4135 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4136 err = ops->query_rxdid(vf);
4137 break;
4138 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4139 err = ops->get_rss_hena(vf);
4140 break;
4141 case VIRTCHNL_OP_SET_RSS_HENA:
4142 err = ops->set_rss_hena_msg(vf, msg);
4143 break;
4144 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4145 err = ops->ena_vlan_stripping(vf);
4146 break;
4147 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4148 err = ops->dis_vlan_stripping(vf);
4149 break;
4150 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4151 err = ops->add_fdir_fltr_msg(vf, msg);
4152 break;
4153 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4154 err = ops->del_fdir_fltr_msg(vf, msg);
4155 break;
4156 case VIRTCHNL_OP_ADD_RSS_CFG:
4157 err = ops->handle_rss_cfg_msg(vf, msg, true);
4158 break;
4159 case VIRTCHNL_OP_DEL_RSS_CFG:
4160 err = ops->handle_rss_cfg_msg(vf, msg, false);
4161 break;
4162 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4163 err = ops->get_offload_vlan_v2_caps(vf);
4164 break;
4165 case VIRTCHNL_OP_ADD_VLAN_V2:
4166 err = ops->add_vlan_v2_msg(vf, msg);
4167 break;
4168 case VIRTCHNL_OP_DEL_VLAN_V2:
4169 err = ops->remove_vlan_v2_msg(vf, msg);
4170 break;
4171 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4172 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4173 break;
4174 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4175 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4176 break;
4177 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4178 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4179 break;
4180 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4181 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4182 break;
4183 case VIRTCHNL_OP_UNKNOWN:
4184 default:
4185 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4186 vf_id);
4187 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4188 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4189 NULL, 0);
4190 break;
4191 }
4192 if (err) {
4193 /* Helper function cares less about error return values here
4194 * as it is busy with pending work.
4195 */
4196 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4197 vf_id, v_opcode, err);
4198 }
4199
4200finish:
4201 mutex_unlock(&vf->cfg_lock);
4202 ice_put_vf(vf);
4203}