Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2022, Intel Corporation. */
   3
   4#include "ice_virtchnl.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice.h"
   7#include "ice_base.h"
   8#include "ice_lib.h"
   9#include "ice_fltr.h"
  10#include "ice_virtchnl_allowlist.h"
  11#include "ice_vf_vsi_vlan_ops.h"
  12#include "ice_vlan.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_dcb_lib.h"
  15
  16#define FIELD_SELECTOR(proto_hdr_field) \
  17		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
  18
  19struct ice_vc_hdr_match_type {
  20	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
  21	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
  22};
  23
  24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
  25	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
  26	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
  27	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  28	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  29	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
  30					ICE_FLOW_SEG_HDR_IPV_OTHER},
  31	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
  32					ICE_FLOW_SEG_HDR_IPV_OTHER},
  33	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
  34	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
  35	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
  36	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
  37	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
  38	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
  39	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
  40					ICE_FLOW_SEG_HDR_GTPU_DWN},
  41	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
  42					ICE_FLOW_SEG_HDR_GTPU_UP},
  43	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
  44	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
  45	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
  46	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
  47};
  48
  49struct ice_vc_hash_field_match_type {
  50	u32 vc_hdr;		/* virtchnl headers
  51				 * (VIRTCHNL_PROTO_HDR_XXX)
  52				 */
  53	u32 vc_hash_field;	/* virtchnl hash fields selector
  54				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
  55				 */
  56	u64 ice_hash_field;	/* ice hash fields
  57				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
  58				 */
  59};
  60
  61static const struct
  62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
  63	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
  64		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
  65	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  66		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
  67	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
  68		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  69		ICE_FLOW_HASH_ETH},
  70	{VIRTCHNL_PROTO_HDR_ETH,
  71		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
  72		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
  73	{VIRTCHNL_PROTO_HDR_S_VLAN,
  74		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
  75		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
  76	{VIRTCHNL_PROTO_HDR_C_VLAN,
  77		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
  78		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
  79	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
  80		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
  81	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  82		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
  83	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  84		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  85		ICE_FLOW_HASH_IPV4},
  86	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  87		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  88		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
  89		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  90	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  91		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  92		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
  93		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  94	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  95		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  96		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  97		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  98	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  99		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
 100	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
 101		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
 102	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 103		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
 104	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 105		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 106		ICE_FLOW_HASH_IPV6},
 107	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 108		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 109		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
 110		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 111	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 112		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 113		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
 114		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 115	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 116		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 117		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 118		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 119	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 120		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 121	{VIRTCHNL_PROTO_HDR_TCP,
 122		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
 123		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
 124	{VIRTCHNL_PROTO_HDR_TCP,
 125		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 126		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
 127	{VIRTCHNL_PROTO_HDR_TCP,
 128		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
 129		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 130		ICE_FLOW_HASH_TCP_PORT},
 131	{VIRTCHNL_PROTO_HDR_UDP,
 132		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
 133		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
 134	{VIRTCHNL_PROTO_HDR_UDP,
 135		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 136		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
 137	{VIRTCHNL_PROTO_HDR_UDP,
 138		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
 139		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 140		ICE_FLOW_HASH_UDP_PORT},
 141	{VIRTCHNL_PROTO_HDR_SCTP,
 142		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
 143		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
 144	{VIRTCHNL_PROTO_HDR_SCTP,
 145		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 146		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
 147	{VIRTCHNL_PROTO_HDR_SCTP,
 148		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
 149		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 150		ICE_FLOW_HASH_SCTP_PORT},
 151	{VIRTCHNL_PROTO_HDR_PPPOE,
 152		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
 153		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
 154	{VIRTCHNL_PROTO_HDR_GTPU_IP,
 155		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
 156		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
 157	{VIRTCHNL_PROTO_HDR_L2TPV3,
 158		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
 159		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
 160	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
 161		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
 162	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
 163		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
 164	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
 165		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
 166};
 167
 168/**
 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 170 * @pf: pointer to the PF structure
 171 * @v_opcode: operation code
 172 * @v_retval: return value
 173 * @msg: pointer to the msg buffer
 174 * @msglen: msg length
 175 */
 176static void
 177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
 178		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 179{
 180	struct ice_hw *hw = &pf->hw;
 181	struct ice_vf *vf;
 182	unsigned int bkt;
 183
 184	mutex_lock(&pf->vfs.table_lock);
 185	ice_for_each_vf(pf, bkt, vf) {
 186		/* Not all vfs are enabled so skip the ones that are not */
 187		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
 188		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
 189			continue;
 190
 191		/* Ignore return value on purpose - a given VF may fail, but
 192		 * we need to keep going and send to all of them
 193		 */
 194		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
 195				      msglen, NULL);
 196	}
 197	mutex_unlock(&pf->vfs.table_lock);
 198}
 199
 200/**
 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 202 * @vf: pointer to the VF structure
 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 205 * @link_up: whether or not to set the link up/down
 206 */
 207static void
 208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
 209		 int ice_link_speed, bool link_up)
 210{
 211	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
 212		pfe->event_data.link_event_adv.link_status = link_up;
 213		/* Speed in Mbps */
 214		pfe->event_data.link_event_adv.link_speed =
 215			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
 216	} else {
 217		pfe->event_data.link_event.link_status = link_up;
 218		/* Legacy method for virtchnl link speeds */
 219		pfe->event_data.link_event.link_speed =
 220			(enum virtchnl_link_speed)
 221			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
 222	}
 223}
 224
 225/**
 226 * ice_vc_notify_vf_link_state - Inform a VF of link status
 227 * @vf: pointer to the VF structure
 228 *
 229 * send a link status message to a single VF
 230 */
 231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
 232{
 233	struct virtchnl_pf_event pfe = { 0 };
 234	struct ice_hw *hw = &vf->pf->hw;
 235
 236	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
 237	pfe.severity = PF_EVENT_SEVERITY_INFO;
 238
 239	if (ice_is_vf_link_up(vf))
 240		ice_set_pfe_link(vf, &pfe,
 241				 hw->port_info->phy.link_info.link_speed, true);
 242	else
 243		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
 244
 245	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
 246			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
 247			      sizeof(pfe), NULL);
 248}
 249
 250/**
 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 252 * @pf: pointer to the PF structure
 253 */
 254void ice_vc_notify_link_state(struct ice_pf *pf)
 255{
 256	struct ice_vf *vf;
 257	unsigned int bkt;
 258
 259	mutex_lock(&pf->vfs.table_lock);
 260	ice_for_each_vf(pf, bkt, vf)
 261		ice_vc_notify_vf_link_state(vf);
 262	mutex_unlock(&pf->vfs.table_lock);
 263}
 264
 265/**
 266 * ice_vc_notify_reset - Send pending reset message to all VFs
 267 * @pf: pointer to the PF structure
 268 *
 269 * indicate a pending reset to all VFs on a given PF
 270 */
 271void ice_vc_notify_reset(struct ice_pf *pf)
 272{
 273	struct virtchnl_pf_event pfe;
 274
 275	if (!ice_has_vfs(pf))
 276		return;
 277
 278	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
 279	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
 280	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
 281			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
 282}
 283
 284/**
 285 * ice_vc_send_msg_to_vf - Send message to VF
 286 * @vf: pointer to the VF info
 287 * @v_opcode: virtual channel opcode
 288 * @v_retval: virtual channel return value
 289 * @msg: pointer to the msg buffer
 290 * @msglen: msg length
 291 *
 292 * send msg to VF
 293 */
 294int
 295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
 296		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 297{
 298	struct device *dev;
 299	struct ice_pf *pf;
 300	int aq_ret;
 301
 302	pf = vf->pf;
 303	dev = ice_pf_to_dev(pf);
 304
 305	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
 306				       msg, msglen, NULL);
 307	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
 308		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
 309			 vf->vf_id, aq_ret,
 310			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
 311		return -EIO;
 312	}
 313
 314	return 0;
 315}
 316
 317/**
 318 * ice_vc_get_ver_msg
 319 * @vf: pointer to the VF info
 320 * @msg: pointer to the msg buffer
 321 *
 322 * called from the VF to request the API version used by the PF
 323 */
 324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
 325{
 326	struct virtchnl_version_info info = {
 327		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
 328	};
 329
 330	vf->vf_ver = *(struct virtchnl_version_info *)msg;
 331	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
 332	if (VF_IS_V10(&vf->vf_ver))
 333		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
 334
 335	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
 336				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
 337				     sizeof(struct virtchnl_version_info));
 338}
 339
 340/**
 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
 342 * @vf: VF used to determine max frame size
 343 *
 344 * Max frame size is determined based on the current port's max frame size and
 345 * whether a port VLAN is configured on this VF. The VF is not aware whether
 346 * it's in a port VLAN so the PF needs to account for this in max frame size
 347 * checks and sending the max frame size to the VF.
 348 */
 349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
 350{
 351	struct ice_port_info *pi = ice_vf_get_port_info(vf);
 352	u16 max_frame_size;
 353
 354	max_frame_size = pi->phy.link_info.max_frame_size;
 355
 356	if (ice_vf_is_port_vlan_ena(vf))
 357		max_frame_size -= VLAN_HLEN;
 358
 359	return max_frame_size;
 360}
 361
 362/**
 363 * ice_vc_get_vlan_caps
 364 * @hw: pointer to the hw
 365 * @vf: pointer to the VF info
 366 * @vsi: pointer to the VSI
 367 * @driver_caps: current driver caps
 368 *
 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
 370 */
 371static u32
 372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
 373		     u32 driver_caps)
 374{
 375	if (ice_is_eswitch_mode_switchdev(vf->pf))
 376		/* In switchdev setting VLAN from VF isn't supported */
 377		return 0;
 378
 379	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
 380		/* VLAN offloads based on current device configuration */
 381		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
 382	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
 383		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
 384		 * these two conditions, which amounts to guest VLAN filtering
 385		 * and offloads being based on the inner VLAN or the
 386		 * inner/single VLAN respectively and don't allow VF to
 387		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
 388		 */
 389		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
 390			return VIRTCHNL_VF_OFFLOAD_VLAN;
 391		} else if (!ice_is_dvm_ena(hw) &&
 392			   !ice_vf_is_port_vlan_ena(vf)) {
 393			/* configure backward compatible support for VFs that
 394			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
 395			 * configured in SVM, and no port VLAN is configured
 396			 */
 397			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
 398			return VIRTCHNL_VF_OFFLOAD_VLAN;
 399		} else if (ice_is_dvm_ena(hw)) {
 400			/* configure software offloaded VLAN support when DVM
 401			 * is enabled, but no port VLAN is enabled
 402			 */
 403			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
 404		}
 405	}
 406
 407	return 0;
 408}
 409
 410/**
 411 * ice_vc_get_vf_res_msg
 412 * @vf: pointer to the VF info
 413 * @msg: pointer to the msg buffer
 414 *
 415 * called from the VF to request its resources
 416 */
 417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
 418{
 419	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 420	struct virtchnl_vf_resource *vfres = NULL;
 421	struct ice_hw *hw = &vf->pf->hw;
 422	struct ice_vsi *vsi;
 423	int len = 0;
 424	int ret;
 425
 426	if (ice_check_vf_init(vf)) {
 427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 428		goto err;
 429	}
 430
 431	len = virtchnl_struct_size(vfres, vsi_res, 0);
 432
 433	vfres = kzalloc(len, GFP_KERNEL);
 434	if (!vfres) {
 435		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 436		len = 0;
 437		goto err;
 438	}
 439	if (VF_IS_V11(&vf->vf_ver))
 440		vf->driver_caps = *(u32 *)msg;
 441	else
 442		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
 443				  VIRTCHNL_VF_OFFLOAD_VLAN;
 444
 445	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
 446	vsi = ice_get_vf_vsi(vf);
 447	if (!vsi) {
 448		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 449		goto err;
 450	}
 451
 452	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
 453						    vf->driver_caps);
 454
 455	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
 456		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
 457
 458	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
 459		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
 460
 461	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
 462		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
 463
 464	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
 465		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
 466
 467	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
 468		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
 469
 470	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
 471		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
 472
 473	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
 474		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
 475
 476	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
 477		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
 478
 479	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
 480		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
 481
 482	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
 483		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
 484
 485	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
 486		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
 487
 488	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
 489		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
 490
 491	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
 492		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
 493
 494	vfres->num_vsis = 1;
 495	/* Tx and Rx queue are equal for VF */
 496	vfres->num_queue_pairs = vsi->num_txq;
 497	vfres->max_vectors = vf->num_msix;
 498	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
 499	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
 500	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
 501
 502	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
 503	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
 504	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
 505	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
 506			vf->hw_lan_addr);
 507
 508	/* match guest capabilities */
 509	vf->driver_caps = vfres->vf_cap_flags;
 510
 511	ice_vc_set_caps_allowlist(vf);
 512	ice_vc_set_working_allowlist(vf);
 513
 514	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 515
 516err:
 517	/* send the response back to the VF */
 518	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
 519				    (u8 *)vfres, len);
 520
 521	kfree(vfres);
 522	return ret;
 523}
 524
 525/**
 526 * ice_vc_reset_vf_msg
 527 * @vf: pointer to the VF info
 528 *
 529 * called from the VF to reset itself,
 530 * unlike other virtchnl messages, PF driver
 531 * doesn't send the response back to the VF
 532 */
 533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
 534{
 535	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
 536		ice_reset_vf(vf, 0);
 537}
 538
 539/**
 540 * ice_vc_isvalid_vsi_id
 541 * @vf: pointer to the VF info
 542 * @vsi_id: VF relative VSI ID
 543 *
 544 * check for the valid VSI ID
 545 */
 546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
 547{
 548	return vsi_id == ICE_VF_VSI_ID;
 
 
 
 
 
 549}
 550
 551/**
 552 * ice_vc_isvalid_q_id
 553 * @vsi: VSI to check queue ID against
 
 554 * @qid: VSI relative queue ID
 555 *
 556 * check for the valid queue ID
 557 */
 558static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
 559{
 
 560	/* allocated Tx and Rx queues should be always equal for VF VSI */
 561	return qid < vsi->alloc_txq;
 562}
 563
 564/**
 565 * ice_vc_isvalid_ring_len
 566 * @ring_len: length of ring
 567 *
 568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
 569 * or zero
 570 */
 571static bool ice_vc_isvalid_ring_len(u16 ring_len)
 572{
 573	return ring_len == 0 ||
 574	       (ring_len >= ICE_MIN_NUM_DESC &&
 575		ring_len <= ICE_MAX_NUM_DESC &&
 576		!(ring_len % ICE_REQ_DESC_MULTIPLE));
 577}
 578
 579/**
 580 * ice_vc_validate_pattern
 581 * @vf: pointer to the VF info
 582 * @proto: virtchnl protocol headers
 583 *
 584 * validate the pattern is supported or not.
 585 *
 586 * Return: true on success, false on error.
 587 */
 588bool
 589ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
 590{
 591	bool is_ipv4 = false;
 592	bool is_ipv6 = false;
 593	bool is_udp = false;
 594	u16 ptype = -1;
 595	int i = 0;
 596
 597	while (i < proto->count &&
 598	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
 599		switch (proto->proto_hdr[i].type) {
 600		case VIRTCHNL_PROTO_HDR_ETH:
 601			ptype = ICE_PTYPE_MAC_PAY;
 602			break;
 603		case VIRTCHNL_PROTO_HDR_IPV4:
 604			ptype = ICE_PTYPE_IPV4_PAY;
 605			is_ipv4 = true;
 606			break;
 607		case VIRTCHNL_PROTO_HDR_IPV6:
 608			ptype = ICE_PTYPE_IPV6_PAY;
 609			is_ipv6 = true;
 610			break;
 611		case VIRTCHNL_PROTO_HDR_UDP:
 612			if (is_ipv4)
 613				ptype = ICE_PTYPE_IPV4_UDP_PAY;
 614			else if (is_ipv6)
 615				ptype = ICE_PTYPE_IPV6_UDP_PAY;
 616			is_udp = true;
 617			break;
 618		case VIRTCHNL_PROTO_HDR_TCP:
 619			if (is_ipv4)
 620				ptype = ICE_PTYPE_IPV4_TCP_PAY;
 621			else if (is_ipv6)
 622				ptype = ICE_PTYPE_IPV6_TCP_PAY;
 623			break;
 624		case VIRTCHNL_PROTO_HDR_SCTP:
 625			if (is_ipv4)
 626				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
 627			else if (is_ipv6)
 628				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
 629			break;
 630		case VIRTCHNL_PROTO_HDR_GTPU_IP:
 631		case VIRTCHNL_PROTO_HDR_GTPU_EH:
 632			if (is_ipv4)
 633				ptype = ICE_MAC_IPV4_GTPU;
 634			else if (is_ipv6)
 635				ptype = ICE_MAC_IPV6_GTPU;
 636			goto out;
 637		case VIRTCHNL_PROTO_HDR_L2TPV3:
 638			if (is_ipv4)
 639				ptype = ICE_MAC_IPV4_L2TPV3;
 640			else if (is_ipv6)
 641				ptype = ICE_MAC_IPV6_L2TPV3;
 642			goto out;
 643		case VIRTCHNL_PROTO_HDR_ESP:
 644			if (is_ipv4)
 645				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
 646						ICE_MAC_IPV4_ESP;
 647			else if (is_ipv6)
 648				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
 649						ICE_MAC_IPV6_ESP;
 650			goto out;
 651		case VIRTCHNL_PROTO_HDR_AH:
 652			if (is_ipv4)
 653				ptype = ICE_MAC_IPV4_AH;
 654			else if (is_ipv6)
 655				ptype = ICE_MAC_IPV6_AH;
 656			goto out;
 657		case VIRTCHNL_PROTO_HDR_PFCP:
 658			if (is_ipv4)
 659				ptype = ICE_MAC_IPV4_PFCP_SESSION;
 660			else if (is_ipv6)
 661				ptype = ICE_MAC_IPV6_PFCP_SESSION;
 662			goto out;
 663		default:
 664			break;
 665		}
 666		i++;
 667	}
 668
 669out:
 670	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
 671}
 672
 673/**
 674 * ice_vc_parse_rss_cfg - parses hash fields and headers from
 675 * a specific virtchnl RSS cfg
 676 * @hw: pointer to the hardware
 677 * @rss_cfg: pointer to the virtchnl RSS cfg
 678 * @hash_cfg: pointer to the HW hash configuration
 679 *
 680 * Return true if all the protocol header and hash fields in the RSS cfg could
 681 * be parsed, else return false
 682 *
 683 * This function parses the virtchnl RSS cfg to be the intended
 684 * hash fields and the intended header for RSS configuration
 685 */
 686static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
 687				 struct virtchnl_rss_cfg *rss_cfg,
 688				 struct ice_rss_hash_cfg *hash_cfg)
 689{
 690	const struct ice_vc_hash_field_match_type *hf_list;
 691	const struct ice_vc_hdr_match_type *hdr_list;
 692	int i, hf_list_len, hdr_list_len;
 693	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
 694	u64 *hash_flds = &hash_cfg->hash_flds;
 695
 696	/* set outer layer RSS as default */
 697	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
 698
 699	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
 700		hash_cfg->symm = true;
 701	else
 702		hash_cfg->symm = false;
 703
 704	hf_list = ice_vc_hash_field_list;
 705	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
 706	hdr_list = ice_vc_hdr_list;
 707	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
 708
 709	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
 710		struct virtchnl_proto_hdr *proto_hdr =
 711					&rss_cfg->proto_hdrs.proto_hdr[i];
 712		bool hdr_found = false;
 713		int j;
 714
 715		/* Find matched ice headers according to virtchnl headers. */
 716		for (j = 0; j < hdr_list_len; j++) {
 717			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
 718
 719			if (proto_hdr->type == hdr_map.vc_hdr) {
 720				*addl_hdrs |= hdr_map.ice_hdr;
 721				hdr_found = true;
 722			}
 723		}
 724
 725		if (!hdr_found)
 726			return false;
 727
 728		/* Find matched ice hash fields according to
 729		 * virtchnl hash fields.
 730		 */
 731		for (j = 0; j < hf_list_len; j++) {
 732			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
 733
 734			if (proto_hdr->type == hf_map.vc_hdr &&
 735			    proto_hdr->field_selector == hf_map.vc_hash_field) {
 736				*hash_flds |= hf_map.ice_hash_field;
 737				break;
 738			}
 739		}
 740	}
 741
 742	return true;
 743}
 744
 745/**
 746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
 747 * RSS offloads
 748 * @caps: VF driver negotiated capabilities
 749 *
 750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
 751 * else return false
 752 */
 753static bool ice_vf_adv_rss_offload_ena(u32 caps)
 754{
 755	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
 756}
 757
 758/**
 759 * ice_vc_handle_rss_cfg
 760 * @vf: pointer to the VF info
 761 * @msg: pointer to the message buffer
 762 * @add: add a RSS config if true, otherwise delete a RSS config
 763 *
 764 * This function adds/deletes a RSS config
 765 */
 766static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
 767{
 768	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
 769	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
 770	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 771	struct device *dev = ice_pf_to_dev(vf->pf);
 772	struct ice_hw *hw = &vf->pf->hw;
 773	struct ice_vsi *vsi;
 774
 775	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 776		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
 777			vf->vf_id);
 778		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
 779		goto error_param;
 780	}
 781
 782	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
 783		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
 784			vf->vf_id);
 785		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 786		goto error_param;
 787	}
 788
 789	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 790		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 791		goto error_param;
 792	}
 793
 794	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
 795	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
 796	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
 797		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
 798			vf->vf_id);
 799		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 800		goto error_param;
 801	}
 802
 803	vsi = ice_get_vf_vsi(vf);
 804	if (!vsi) {
 805		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 806		goto error_param;
 807	}
 808
 809	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 810		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 811		goto error_param;
 812	}
 813
 814	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
 815		struct ice_vsi_ctx *ctx;
 816		u8 lut_type, hash_type;
 817		int status;
 818
 819		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 820		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
 821				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
 822
 823		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 824		if (!ctx) {
 825			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 826			goto error_param;
 827		}
 828
 829		ctx->info.q_opt_rss =
 830			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
 831			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
 832
 833		/* Preserve existing queueing option setting */
 834		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
 835					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
 836		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
 837		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
 838
 839		ctx->info.valid_sections =
 840				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
 841
 842		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
 843		if (status) {
 844			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
 845				status, ice_aq_str(hw->adminq.sq_last_status));
 846			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 847		} else {
 848			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
 849		}
 850
 851		kfree(ctx);
 852	} else {
 853		struct ice_rss_hash_cfg cfg;
 854
 855		/* Only check for none raw pattern case */
 856		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 857			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 858			goto error_param;
 859		}
 860		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
 861		cfg.hash_flds = ICE_HASH_INVALID;
 862		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
 863
 864		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
 865			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 866			goto error_param;
 867		}
 868
 869		if (add) {
 870			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
 871				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 872				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
 873					vsi->vsi_num, v_ret);
 874			}
 875		} else {
 876			int status;
 877
 878			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
 879			/* We just ignore -ENOENT, because if two configurations
 880			 * share the same profile remove one of them actually
 881			 * removes both, since the profile is deleted.
 882			 */
 883			if (status && status != -ENOENT) {
 884				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 885				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
 886					vf->vf_id, status);
 887			}
 888		}
 889	}
 890
 891error_param:
 892	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
 893}
 894
 895/**
 896 * ice_vc_config_rss_key
 897 * @vf: pointer to the VF info
 898 * @msg: pointer to the msg buffer
 899 *
 900 * Configure the VF's RSS key
 901 */
 902static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
 903{
 904	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 905	struct virtchnl_rss_key *vrk =
 906		(struct virtchnl_rss_key *)msg;
 907	struct ice_vsi *vsi;
 908
 909	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 910		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 911		goto error_param;
 912	}
 913
 914	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
 915		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 916		goto error_param;
 917	}
 918
 919	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
 920		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 921		goto error_param;
 922	}
 923
 924	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 925		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 926		goto error_param;
 927	}
 928
 929	vsi = ice_get_vf_vsi(vf);
 930	if (!vsi) {
 931		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 932		goto error_param;
 933	}
 934
 935	if (ice_set_rss_key(vsi, vrk->key))
 936		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 937error_param:
 938	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
 939				     NULL, 0);
 940}
 941
 942/**
 943 * ice_vc_config_rss_lut
 944 * @vf: pointer to the VF info
 945 * @msg: pointer to the msg buffer
 946 *
 947 * Configure the VF's RSS LUT
 948 */
 949static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
 950{
 951	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
 952	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 953	struct ice_vsi *vsi;
 954
 955	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 956		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 957		goto error_param;
 958	}
 959
 960	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
 961		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 962		goto error_param;
 963	}
 964
 965	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
 966		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 967		goto error_param;
 968	}
 969
 970	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 971		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 972		goto error_param;
 973	}
 974
 975	vsi = ice_get_vf_vsi(vf);
 976	if (!vsi) {
 977		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 978		goto error_param;
 979	}
 980
 981	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
 982		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 983error_param:
 984	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
 985				     NULL, 0);
 986}
 987
 988/**
 989 * ice_vc_config_rss_hfunc
 990 * @vf: pointer to the VF info
 991 * @msg: pointer to the msg buffer
 992 *
 993 * Configure the VF's RSS Hash function
 994 */
 995static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
 996{
 997	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
 998	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 999	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1000	struct ice_vsi *vsi;
1001
1002	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1003		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1004		goto error_param;
1005	}
1006
1007	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1008		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009		goto error_param;
1010	}
1011
1012	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1013		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014		goto error_param;
1015	}
1016
1017	vsi = ice_get_vf_vsi(vf);
1018	if (!vsi) {
1019		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1020		goto error_param;
1021	}
1022
1023	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1024		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1025
1026	if (ice_set_rss_hfunc(vsi, hfunc))
1027		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1028error_param:
1029	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1030				     NULL, 0);
1031}
1032
1033/**
1034 * ice_vc_cfg_promiscuous_mode_msg
1035 * @vf: pointer to the VF info
1036 * @msg: pointer to the msg buffer
1037 *
1038 * called from the VF to configure VF VSIs promiscuous mode
1039 */
1040static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1041{
1042	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1043	bool rm_promisc, alluni = false, allmulti = false;
1044	struct virtchnl_promisc_info *info =
1045	    (struct virtchnl_promisc_info *)msg;
1046	struct ice_vsi_vlan_ops *vlan_ops;
1047	int mcast_err = 0, ucast_err = 0;
1048	struct ice_pf *pf = vf->pf;
1049	struct ice_vsi *vsi;
1050	u8 mcast_m, ucast_m;
1051	struct device *dev;
1052	int ret = 0;
1053
1054	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1055		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1056		goto error_param;
1057	}
1058
1059	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1060		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1061		goto error_param;
1062	}
1063
1064	vsi = ice_get_vf_vsi(vf);
1065	if (!vsi) {
1066		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1067		goto error_param;
1068	}
1069
1070	dev = ice_pf_to_dev(pf);
1071	if (!ice_is_vf_trusted(vf)) {
1072		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1073			vf->vf_id);
1074		/* Leave v_ret alone, lie to the VF on purpose. */
1075		goto error_param;
1076	}
1077
1078	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1079		alluni = true;
1080
1081	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1082		allmulti = true;
1083
1084	rm_promisc = !allmulti && !alluni;
1085
1086	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1087	if (rm_promisc)
1088		ret = vlan_ops->ena_rx_filtering(vsi);
1089	else
1090		ret = vlan_ops->dis_rx_filtering(vsi);
1091	if (ret) {
1092		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1093		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094		goto error_param;
1095	}
1096
1097	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1098
1099	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1100		if (alluni) {
1101			/* in this case we're turning on promiscuous mode */
1102			ret = ice_set_dflt_vsi(vsi);
1103		} else {
1104			/* in this case we're turning off promiscuous mode */
1105			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1106				ret = ice_clear_dflt_vsi(vsi);
1107		}
1108
1109		/* in this case we're turning on/off only
1110		 * allmulticast
1111		 */
1112		if (allmulti)
1113			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1114		else
1115			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1116
1117		if (ret) {
1118			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1119				vf->vf_id, ret);
1120			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1121			goto error_param;
1122		}
1123	} else {
1124		if (alluni)
1125			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1126		else
1127			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1128
1129		if (allmulti)
1130			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1131		else
1132			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1133
1134		if (ucast_err || mcast_err)
1135			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136	}
1137
1138	if (!mcast_err) {
1139		if (allmulti &&
1140		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1141			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1142				 vf->vf_id);
1143		else if (!allmulti &&
1144			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1145					    vf->vf_states))
1146			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1147				 vf->vf_id);
1148	} else {
1149		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1150			vf->vf_id, mcast_err);
1151	}
1152
1153	if (!ucast_err) {
1154		if (alluni &&
1155		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1156			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1157				 vf->vf_id);
1158		else if (!alluni &&
1159			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1160					    vf->vf_states))
1161			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1162				 vf->vf_id);
1163	} else {
1164		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1165			vf->vf_id, ucast_err);
1166	}
1167
1168error_param:
1169	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1170				     v_ret, NULL, 0);
1171}
1172
1173/**
1174 * ice_vc_get_stats_msg
1175 * @vf: pointer to the VF info
1176 * @msg: pointer to the msg buffer
1177 *
1178 * called from the VF to get VSI stats
1179 */
1180static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1181{
1182	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1183	struct virtchnl_queue_select *vqs =
1184		(struct virtchnl_queue_select *)msg;
1185	struct ice_eth_stats stats = { 0 };
1186	struct ice_vsi *vsi;
1187
1188	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1189		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1190		goto error_param;
1191	}
1192
1193	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1194		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1195		goto error_param;
1196	}
1197
1198	vsi = ice_get_vf_vsi(vf);
1199	if (!vsi) {
1200		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1201		goto error_param;
1202	}
1203
1204	ice_update_eth_stats(vsi);
1205
1206	stats = vsi->eth_stats;
1207
1208error_param:
1209	/* send the response to the VF */
1210	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1211				     (u8 *)&stats, sizeof(stats));
1212}
1213
1214/**
1215 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1216 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1217 *
1218 * Return true on successful validation, else false
1219 */
1220static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1221{
1222	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1223	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1224	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1225		return false;
1226
1227	return true;
1228}
1229
1230/**
1231 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1232 * @vsi: VSI of the VF to configure
1233 * @q_idx: VF queue index used to determine the queue in the PF's space
1234 */
1235static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1236{
1237	struct ice_hw *hw = &vsi->back->hw;
1238	u32 pfq = vsi->txq_map[q_idx];
1239	u32 reg;
1240
1241	reg = rd32(hw, QINT_TQCTL(pfq));
1242
1243	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1244	 * this is most likely a poll mode VF driver, so don't enable an
1245	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1246	 */
1247	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1248		return;
1249
1250	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1251}
1252
1253/**
1254 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1255 * @vsi: VSI of the VF to configure
1256 * @q_idx: VF queue index used to determine the queue in the PF's space
1257 */
1258static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1259{
1260	struct ice_hw *hw = &vsi->back->hw;
1261	u32 pfq = vsi->rxq_map[q_idx];
1262	u32 reg;
1263
1264	reg = rd32(hw, QINT_RQCTL(pfq));
1265
1266	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1267	 * this is most likely a poll mode VF driver, so don't enable an
1268	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1269	 */
1270	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1271		return;
1272
1273	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1274}
1275
1276/**
1277 * ice_vc_ena_qs_msg
1278 * @vf: pointer to the VF info
1279 * @msg: pointer to the msg buffer
1280 *
1281 * called from the VF to enable all or specific queue(s)
1282 */
1283static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1284{
1285	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1286	struct virtchnl_queue_select *vqs =
1287	    (struct virtchnl_queue_select *)msg;
1288	struct ice_vsi *vsi;
1289	unsigned long q_map;
1290	u16 vf_q_id;
1291
1292	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1293		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1294		goto error_param;
1295	}
1296
1297	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1298		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1299		goto error_param;
1300	}
1301
1302	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1303		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304		goto error_param;
1305	}
1306
1307	vsi = ice_get_vf_vsi(vf);
1308	if (!vsi) {
1309		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1310		goto error_param;
1311	}
1312
1313	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1314	 * Tx queue group list was configured and the context bits were
1315	 * programmed using ice_vsi_cfg_txqs
1316	 */
1317	q_map = vqs->rx_queues;
1318	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1319		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1320			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321			goto error_param;
1322		}
1323
1324		/* Skip queue if enabled */
1325		if (test_bit(vf_q_id, vf->rxq_ena))
1326			continue;
1327
1328		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1329			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1330				vf_q_id, vsi->vsi_num);
1331			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332			goto error_param;
1333		}
1334
1335		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1336		set_bit(vf_q_id, vf->rxq_ena);
1337	}
1338
1339	q_map = vqs->tx_queues;
1340	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1341		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1342			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1343			goto error_param;
1344		}
1345
1346		/* Skip queue if enabled */
1347		if (test_bit(vf_q_id, vf->txq_ena))
1348			continue;
1349
1350		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1351		set_bit(vf_q_id, vf->txq_ena);
1352	}
1353
1354	/* Set flag to indicate that queues are enabled */
1355	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1356		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1357
1358error_param:
1359	/* send the response to the VF */
1360	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1361				     NULL, 0);
1362}
1363
1364/**
1365 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1366 * @vf: VF to disable queue for
1367 * @vsi: VSI for the VF
1368 * @q_id: VF relative (0-based) queue ID
1369 *
1370 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1371 * disabled then clear q_id bit in the enabled queues bitmap and return
1372 * success. Otherwise return error.
1373 */
1374static int
1375ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1376{
1377	struct ice_txq_meta txq_meta = { 0 };
1378	struct ice_tx_ring *ring;
1379	int err;
1380
1381	if (!test_bit(q_id, vf->txq_ena))
1382		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1383			q_id, vsi->vsi_num);
1384
1385	ring = vsi->tx_rings[q_id];
1386	if (!ring)
1387		return -EINVAL;
1388
1389	ice_fill_txq_meta(vsi, ring, &txq_meta);
1390
1391	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1392	if (err) {
1393		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1394			q_id, vsi->vsi_num);
1395		return err;
1396	}
1397
1398	/* Clear enabled queues flag */
1399	clear_bit(q_id, vf->txq_ena);
1400
1401	return 0;
1402}
1403
1404/**
1405 * ice_vc_dis_qs_msg
1406 * @vf: pointer to the VF info
1407 * @msg: pointer to the msg buffer
1408 *
1409 * called from the VF to disable all or specific queue(s)
1410 */
1411static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1412{
1413	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1414	struct virtchnl_queue_select *vqs =
1415	    (struct virtchnl_queue_select *)msg;
1416	struct ice_vsi *vsi;
1417	unsigned long q_map;
1418	u16 vf_q_id;
1419
1420	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1421	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1422		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1423		goto error_param;
1424	}
1425
1426	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428		goto error_param;
1429	}
1430
1431	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1432		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1433		goto error_param;
1434	}
1435
1436	vsi = ice_get_vf_vsi(vf);
1437	if (!vsi) {
1438		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1439		goto error_param;
1440	}
1441
1442	if (vqs->tx_queues) {
1443		q_map = vqs->tx_queues;
1444
1445		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1446			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1447				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1448				goto error_param;
1449			}
1450
1451			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1452				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453				goto error_param;
1454			}
1455		}
1456	}
1457
1458	q_map = vqs->rx_queues;
1459	/* speed up Rx queue disable by batching them if possible */
1460	if (q_map &&
1461	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1462		if (ice_vsi_stop_all_rx_rings(vsi)) {
1463			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1464				vsi->vsi_num);
1465			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1466			goto error_param;
1467		}
1468
1469		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1470	} else if (q_map) {
1471		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1472			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1473				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1474				goto error_param;
1475			}
1476
1477			/* Skip queue if not enabled */
1478			if (!test_bit(vf_q_id, vf->rxq_ena))
1479				continue;
1480
1481			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1482						     true)) {
1483				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1484					vf_q_id, vsi->vsi_num);
1485				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486				goto error_param;
1487			}
1488
1489			/* Clear enabled queues flag */
1490			clear_bit(vf_q_id, vf->rxq_ena);
1491		}
1492	}
1493
1494	/* Clear enabled queues flag */
1495	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1496		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1497
1498error_param:
1499	/* send the response to the VF */
1500	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1501				     NULL, 0);
1502}
1503
1504/**
1505 * ice_cfg_interrupt
1506 * @vf: pointer to the VF info
1507 * @vsi: the VSI being configured
1508 * @vector_id: vector ID
1509 * @map: vector map for mapping vectors to queues
1510 * @q_vector: structure for interrupt vector
1511 * configure the IRQ to queue map
1512 */
1513static int
1514ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1515		  struct virtchnl_vector_map *map,
1516		  struct ice_q_vector *q_vector)
1517{
1518	u16 vsi_q_id, vsi_q_id_idx;
1519	unsigned long qmap;
1520
1521	q_vector->num_ring_rx = 0;
1522	q_vector->num_ring_tx = 0;
1523
1524	qmap = map->rxq_map;
1525	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1526		vsi_q_id = vsi_q_id_idx;
1527
1528		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1529			return VIRTCHNL_STATUS_ERR_PARAM;
1530
1531		q_vector->num_ring_rx++;
1532		q_vector->rx.itr_idx = map->rxitr_idx;
1533		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1534		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1535				      q_vector->rx.itr_idx);
1536	}
1537
1538	qmap = map->txq_map;
1539	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540		vsi_q_id = vsi_q_id_idx;
1541
1542		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1543			return VIRTCHNL_STATUS_ERR_PARAM;
1544
1545		q_vector->num_ring_tx++;
1546		q_vector->tx.itr_idx = map->txitr_idx;
1547		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1548		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1549				      q_vector->tx.itr_idx);
1550	}
1551
1552	return VIRTCHNL_STATUS_SUCCESS;
1553}
1554
1555/**
1556 * ice_vc_cfg_irq_map_msg
1557 * @vf: pointer to the VF info
1558 * @msg: pointer to the msg buffer
1559 *
1560 * called from the VF to configure the IRQ to queue map
1561 */
1562static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1563{
1564	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1565	u16 num_q_vectors_mapped, vsi_id, vector_id;
1566	struct virtchnl_irq_map_info *irqmap_info;
1567	struct virtchnl_vector_map *map;
1568	struct ice_vsi *vsi;
1569	int i;
1570
1571	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1572	num_q_vectors_mapped = irqmap_info->num_vectors;
1573
1574	/* Check to make sure number of VF vectors mapped is not greater than
1575	 * number of VF vectors originally allocated, and check that
1576	 * there is actually at least a single VF queue vector mapped
1577	 */
1578	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1579	    vf->num_msix < num_q_vectors_mapped ||
1580	    !num_q_vectors_mapped) {
1581		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1582		goto error_param;
1583	}
1584
1585	vsi = ice_get_vf_vsi(vf);
1586	if (!vsi) {
1587		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1588		goto error_param;
1589	}
1590
1591	for (i = 0; i < num_q_vectors_mapped; i++) {
1592		struct ice_q_vector *q_vector;
1593
1594		map = &irqmap_info->vecmap[i];
1595
1596		vector_id = map->vector_id;
1597		vsi_id = map->vsi_id;
1598		/* vector_id is always 0-based for each VF, and can never be
1599		 * larger than or equal to the max allowed interrupts per VF
1600		 */
1601		if (!(vector_id < vf->num_msix) ||
1602		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1603		    (!vector_id && (map->rxq_map || map->txq_map))) {
1604			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605			goto error_param;
1606		}
1607
1608		/* No need to map VF miscellaneous or rogue vector */
1609		if (!vector_id)
1610			continue;
1611
1612		/* Subtract non queue vector from vector_id passed by VF
1613		 * to get actual number of VSI queue vector array index
1614		 */
1615		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1616		if (!q_vector) {
1617			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618			goto error_param;
1619		}
1620
1621		/* lookout for the invalid queue index */
1622		v_ret = (enum virtchnl_status_code)
1623			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1624		if (v_ret)
1625			goto error_param;
1626	}
1627
1628error_param:
1629	/* send the response to the VF */
1630	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1631				     NULL, 0);
1632}
1633
1634/**
1635 * ice_vc_cfg_qs_msg
1636 * @vf: pointer to the VF info
1637 * @msg: pointer to the msg buffer
1638 *
1639 * called from the VF to configure the Rx/Tx queues
1640 */
1641static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1642{
1643	struct virtchnl_vsi_queue_config_info *qci =
1644	    (struct virtchnl_vsi_queue_config_info *)msg;
1645	struct virtchnl_queue_pair_info *qpi;
1646	struct ice_pf *pf = vf->pf;
1647	struct ice_lag *lag;
1648	struct ice_vsi *vsi;
1649	u8 act_prt, pri_prt;
1650	int i = -1, q_idx;
1651
1652	lag = pf->lag;
1653	mutex_lock(&pf->lag_mutex);
1654	act_prt = ICE_LAG_INVALID_PORT;
1655	pri_prt = pf->hw.port_info->lport;
1656	if (lag && lag->bonded && lag->primary) {
1657		act_prt = lag->active_port;
1658		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1659		    lag->upper_netdev)
1660			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1661		else
1662			act_prt = ICE_LAG_INVALID_PORT;
1663	}
1664
1665	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1666		goto error_param;
1667
1668	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1669		goto error_param;
1670
1671	vsi = ice_get_vf_vsi(vf);
1672	if (!vsi)
1673		goto error_param;
1674
1675	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1676	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1677		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1678			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1679		goto error_param;
1680	}
1681
1682	for (i = 0; i < qci->num_queue_pairs; i++) {
1683		if (!qci->qpair[i].rxq.crc_disable)
1684			continue;
1685
1686		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1687		    vf->vlan_strip_ena)
1688			goto error_param;
1689	}
1690
1691	for (i = 0; i < qci->num_queue_pairs; i++) {
1692		qpi = &qci->qpair[i];
1693		if (qpi->txq.vsi_id != qci->vsi_id ||
1694		    qpi->rxq.vsi_id != qci->vsi_id ||
1695		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1696		    qpi->txq.headwb_enabled ||
1697		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1698		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1699		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1700			goto error_param;
1701		}
1702
1703		q_idx = qpi->rxq.queue_id;
1704
1705		/* make sure selected "q_idx" is in valid range of queues
1706		 * for selected "vsi"
1707		 */
1708		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1709			goto error_param;
1710		}
1711
1712		/* copy Tx queue info from VF into VSI */
1713		if (qpi->txq.ring_len > 0) {
1714			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1715			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1716
1717			/* Disable any existing queue first */
1718			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1719				goto error_param;
1720
1721			/* Configure a queue with the requested settings */
1722			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1723				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1724					 vf->vf_id, i);
1725				goto error_param;
1726			}
1727		}
1728
1729		/* copy Rx queue info from VF into VSI */
1730		if (qpi->rxq.ring_len > 0) {
1731			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1732			u32 rxdid;
1733
1734			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1735			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1736
1737			if (qpi->rxq.crc_disable)
1738				vsi->rx_rings[q_idx]->flags |=
1739					ICE_RX_FLAGS_CRC_STRIP_DIS;
1740			else
1741				vsi->rx_rings[q_idx]->flags &=
1742					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1743
1744			if (qpi->rxq.databuffer_size != 0 &&
1745			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1746			     qpi->rxq.databuffer_size < 1024))
1747				goto error_param;
1748			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1749			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1750			if (qpi->rxq.max_pkt_size > max_frame_size ||
1751			    qpi->rxq.max_pkt_size < 64)
1752				goto error_param;
1753
1754			vsi->max_frame = qpi->rxq.max_pkt_size;
1755			/* add space for the port VLAN since the VF driver is
1756			 * not expected to account for it in the MTU
1757			 * calculation
1758			 */
1759			if (ice_vf_is_port_vlan_ena(vf))
1760				vsi->max_frame += VLAN_HLEN;
1761
1762			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1763				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1764					 vf->vf_id, i);
1765				goto error_param;
1766			}
1767
1768			/* If Rx flex desc is supported, select RXDID for Rx
1769			 * queues. Otherwise, use legacy 32byte descriptor
1770			 * format. Legacy 16byte descriptor is not supported.
1771			 * If this RXDID is selected, return error.
1772			 */
1773			if (vf->driver_caps &
1774			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1775				rxdid = qpi->rxq.rxdid;
1776				if (!(BIT(rxdid) & pf->supported_rxdids))
1777					goto error_param;
1778			} else {
1779				rxdid = ICE_RXDID_LEGACY_1;
1780			}
1781
1782			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1783						vsi->rxq_map[q_idx],
1784						rxdid, 0x03, false);
1785		}
1786	}
1787
1788	if (lag && lag->bonded && lag->primary &&
1789	    act_prt != ICE_LAG_INVALID_PORT)
1790		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1791	mutex_unlock(&pf->lag_mutex);
1792
1793	/* send the response to the VF */
1794	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1795				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1796error_param:
1797	/* disable whatever we can */
1798	for (; i >= 0; i--) {
1799		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1800			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1801				vf->vf_id, i);
1802		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1803			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1804				vf->vf_id, i);
1805	}
1806
1807	if (lag && lag->bonded && lag->primary &&
1808	    act_prt != ICE_LAG_INVALID_PORT)
1809		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1810	mutex_unlock(&pf->lag_mutex);
1811
1812	ice_lag_move_new_vf_nodes(vf);
1813
1814	/* send the response to the VF */
1815	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1816				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1817}
1818
1819/**
1820 * ice_can_vf_change_mac
1821 * @vf: pointer to the VF info
1822 *
1823 * Return true if the VF is allowed to change its MAC filters, false otherwise
1824 */
1825static bool ice_can_vf_change_mac(struct ice_vf *vf)
1826{
1827	/* If the VF MAC address has been set administratively (via the
1828	 * ndo_set_vf_mac command), then deny permission to the VF to
1829	 * add/delete unicast MAC addresses, unless the VF is trusted
1830	 */
1831	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1832		return false;
1833
1834	return true;
1835}
1836
1837/**
1838 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1839 * @vc_ether_addr: used to extract the type
1840 */
1841static u8
1842ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1843{
1844	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1845}
1846
1847/**
1848 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1849 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1850 */
1851static bool
1852ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1853{
1854	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1855
1856	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1857}
1858
1859/**
1860 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1861 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1862 *
1863 * This function should only be called when the MAC address in
1864 * virtchnl_ether_addr is a valid unicast MAC
1865 */
1866static bool
1867ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1868{
1869	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870
1871	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1872}
1873
1874/**
1875 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1876 * @vf: VF to update
1877 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1878 */
1879static void
1880ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1881{
1882	u8 *mac_addr = vc_ether_addr->addr;
1883
1884	if (!is_valid_ether_addr(mac_addr))
1885		return;
1886
1887	/* only allow legacy VF drivers to set the device and hardware MAC if it
1888	 * is zero and allow new VF drivers to set the hardware MAC if the type
1889	 * was correctly specified over VIRTCHNL
1890	 */
1891	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1892	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1893	    ice_is_vc_addr_primary(vc_ether_addr)) {
1894		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1895		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1896	}
1897
1898	/* hardware and device MACs are already set, but its possible that the
1899	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1900	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1901	 * away for the legacy VF driver case as it will be updated in the
1902	 * delete flow for this case
1903	 */
1904	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1905		ether_addr_copy(vf->legacy_last_added_umac.addr,
1906				mac_addr);
1907		vf->legacy_last_added_umac.time_modified = jiffies;
1908	}
1909}
1910
1911/**
1912 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1913 * @vf: pointer to the VF info
1914 * @vsi: pointer to the VF's VSI
1915 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1916 */
1917static int
1918ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1919		    struct virtchnl_ether_addr *vc_ether_addr)
1920{
1921	struct device *dev = ice_pf_to_dev(vf->pf);
1922	u8 *mac_addr = vc_ether_addr->addr;
1923	int ret;
1924
1925	/* device MAC already added */
1926	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1927		return 0;
1928
1929	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1930		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1931		return -EPERM;
1932	}
1933
1934	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1935	if (ret == -EEXIST) {
1936		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1937			vf->vf_id);
1938		/* don't return since we might need to update
1939		 * the primary MAC in ice_vfhw_mac_add() below
1940		 */
1941	} else if (ret) {
1942		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1943			mac_addr, vf->vf_id, ret);
1944		return ret;
1945	} else {
1946		vf->num_mac++;
1947	}
1948
1949	ice_vfhw_mac_add(vf, vc_ether_addr);
1950
1951	return ret;
1952}
1953
1954/**
1955 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1956 * @last_added_umac: structure used to check expiration
1957 */
1958static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1959{
1960#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1961	return time_is_before_jiffies(last_added_umac->time_modified +
1962				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1963}
1964
1965/**
1966 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1967 * @vf: VF to update
1968 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1969 *
1970 * only update cached hardware MAC for legacy VF drivers on delete
1971 * because we cannot guarantee order/type of MAC from the VF driver
1972 */
1973static void
1974ice_update_legacy_cached_mac(struct ice_vf *vf,
1975			     struct virtchnl_ether_addr *vc_ether_addr)
1976{
1977	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1978	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1979		return;
1980
1981	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1982	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1983}
1984
1985/**
1986 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1987 * @vf: VF to update
1988 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1989 */
1990static void
1991ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1992{
1993	u8 *mac_addr = vc_ether_addr->addr;
1994
1995	if (!is_valid_ether_addr(mac_addr) ||
1996	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1997		return;
1998
1999	/* allow the device MAC to be repopulated in the add flow and don't
2000	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2001	 * to be persistent on VM reboot and across driver unload/load, which
2002	 * won't work if we clear the hardware MAC here
2003	 */
2004	eth_zero_addr(vf->dev_lan_addr);
2005
2006	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2007}
2008
2009/**
2010 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2011 * @vf: pointer to the VF info
2012 * @vsi: pointer to the VF's VSI
2013 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2014 */
2015static int
2016ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2017		    struct virtchnl_ether_addr *vc_ether_addr)
2018{
2019	struct device *dev = ice_pf_to_dev(vf->pf);
2020	u8 *mac_addr = vc_ether_addr->addr;
2021	int status;
2022
2023	if (!ice_can_vf_change_mac(vf) &&
2024	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2025		return 0;
2026
2027	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2028	if (status == -ENOENT) {
2029		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2030			vf->vf_id);
2031		return -ENOENT;
2032	} else if (status) {
2033		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2034			mac_addr, vf->vf_id, status);
2035		return -EIO;
2036	}
2037
2038	ice_vfhw_mac_del(vf, vc_ether_addr);
2039
2040	vf->num_mac--;
2041
2042	return 0;
2043}
2044
2045/**
2046 * ice_vc_handle_mac_addr_msg
2047 * @vf: pointer to the VF info
2048 * @msg: pointer to the msg buffer
2049 * @set: true if MAC filters are being set, false otherwise
2050 *
2051 * add guest MAC address filter
2052 */
2053static int
2054ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2055{
2056	int (*ice_vc_cfg_mac)
2057		(struct ice_vf *vf, struct ice_vsi *vsi,
2058		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2059	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2060	struct virtchnl_ether_addr_list *al =
2061	    (struct virtchnl_ether_addr_list *)msg;
2062	struct ice_pf *pf = vf->pf;
2063	enum virtchnl_ops vc_op;
2064	struct ice_vsi *vsi;
2065	int i;
2066
2067	if (set) {
2068		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2069		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2070	} else {
2071		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2072		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2073	}
2074
2075	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2076	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2077		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2078		goto handle_mac_exit;
2079	}
2080
2081	/* If this VF is not privileged, then we can't add more than a
2082	 * limited number of addresses. Check to make sure that the
2083	 * additions do not push us over the limit.
2084	 */
2085	if (set && !ice_is_vf_trusted(vf) &&
2086	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2087		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2088			vf->vf_id);
2089		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2090		goto handle_mac_exit;
2091	}
2092
2093	vsi = ice_get_vf_vsi(vf);
2094	if (!vsi) {
2095		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2096		goto handle_mac_exit;
2097	}
2098
2099	for (i = 0; i < al->num_elements; i++) {
2100		u8 *mac_addr = al->list[i].addr;
2101		int result;
2102
2103		if (is_broadcast_ether_addr(mac_addr) ||
2104		    is_zero_ether_addr(mac_addr))
2105			continue;
2106
2107		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2108		if (result == -EEXIST || result == -ENOENT) {
2109			continue;
2110		} else if (result) {
2111			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2112			goto handle_mac_exit;
2113		}
2114	}
2115
2116handle_mac_exit:
2117	/* send the response to the VF */
2118	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2119}
2120
2121/**
2122 * ice_vc_add_mac_addr_msg
2123 * @vf: pointer to the VF info
2124 * @msg: pointer to the msg buffer
2125 *
2126 * add guest MAC address filter
2127 */
2128static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2129{
2130	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2131}
2132
2133/**
2134 * ice_vc_del_mac_addr_msg
2135 * @vf: pointer to the VF info
2136 * @msg: pointer to the msg buffer
2137 *
2138 * remove guest MAC address filter
2139 */
2140static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2141{
2142	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2143}
2144
2145/**
2146 * ice_vc_request_qs_msg
2147 * @vf: pointer to the VF info
2148 * @msg: pointer to the msg buffer
2149 *
2150 * VFs get a default number of queues but can use this message to request a
2151 * different number. If the request is successful, PF will reset the VF and
2152 * return 0. If unsuccessful, PF will send message informing VF of number of
2153 * available queue pairs via virtchnl message response to VF.
2154 */
2155static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2156{
2157	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158	struct virtchnl_vf_res_request *vfres =
2159		(struct virtchnl_vf_res_request *)msg;
2160	u16 req_queues = vfres->num_queue_pairs;
2161	struct ice_pf *pf = vf->pf;
2162	u16 max_allowed_vf_queues;
2163	u16 tx_rx_queue_left;
2164	struct device *dev;
2165	u16 cur_queues;
2166
2167	dev = ice_pf_to_dev(pf);
2168	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170		goto error_param;
2171	}
2172
2173	cur_queues = vf->num_vf_qs;
2174	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2175				 ice_get_avail_rxq_count(pf));
2176	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2177	if (!req_queues) {
2178		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2179			vf->vf_id);
2180	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2181		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2182			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2183		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2184	} else if (req_queues > cur_queues &&
2185		   req_queues - cur_queues > tx_rx_queue_left) {
2186		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2187			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2188		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2189					       ICE_MAX_RSS_QS_PER_VF);
2190	} else {
2191		/* request is successful, then reset VF */
2192		vf->num_req_qs = req_queues;
2193		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2194		dev_info(dev, "VF %d granted request of %u queues.\n",
2195			 vf->vf_id, req_queues);
2196		return 0;
2197	}
2198
2199error_param:
2200	/* send the response to the VF */
2201	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2202				     v_ret, (u8 *)vfres, sizeof(*vfres));
2203}
2204
2205/**
2206 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2207 * @caps: VF driver negotiated capabilities
2208 *
2209 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2210 */
2211static bool ice_vf_vlan_offload_ena(u32 caps)
2212{
2213	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2214}
2215
2216/**
2217 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2218 * @vf: VF used to determine if VLAN promiscuous config is allowed
2219 */
2220static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2221{
2222	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2223	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2224	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2225		return true;
2226
2227	return false;
2228}
2229
2230/**
2231 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2232 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2233 * @vlan: VLAN used to enable VLAN promiscuous
2234 *
2235 * This function should only be called if VLAN promiscuous mode is allowed,
2236 * which can be determined via ice_is_vlan_promisc_allowed().
2237 */
2238static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2239{
2240	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2241	int status;
2242
2243	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2244					  vlan->vid);
2245	if (status && status != -EEXIST)
2246		return status;
2247
2248	return 0;
2249}
2250
2251/**
2252 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2253 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2254 * @vlan: VLAN used to disable VLAN promiscuous
2255 *
2256 * This function should only be called if VLAN promiscuous mode is allowed,
2257 * which can be determined via ice_is_vlan_promisc_allowed().
2258 */
2259static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2260{
2261	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2262	int status;
2263
2264	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2265					    vlan->vid);
2266	if (status && status != -ENOENT)
2267		return status;
2268
2269	return 0;
2270}
2271
2272/**
2273 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2274 * @vf: VF to check against
2275 * @vsi: VF's VSI
2276 *
2277 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2278 * wants to, so return false.
2279 *
2280 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2281 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2282 */
2283static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2284{
2285	if (ice_is_vf_trusted(vf))
2286		return false;
2287
2288#define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2289	return ((ice_vsi_num_non_zero_vlans(vsi) +
2290		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2291}
2292
2293/**
2294 * ice_vc_process_vlan_msg
2295 * @vf: pointer to the VF info
2296 * @msg: pointer to the msg buffer
2297 * @add_v: Add VLAN if true, otherwise delete VLAN
2298 *
2299 * Process virtchnl op to add or remove programmed guest VLAN ID
2300 */
2301static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2302{
2303	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2304	struct virtchnl_vlan_filter_list *vfl =
2305	    (struct virtchnl_vlan_filter_list *)msg;
2306	struct ice_pf *pf = vf->pf;
2307	bool vlan_promisc = false;
2308	struct ice_vsi *vsi;
2309	struct device *dev;
2310	int status = 0;
2311	int i;
2312
2313	dev = ice_pf_to_dev(pf);
2314	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2315		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316		goto error_param;
2317	}
2318
2319	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2320		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2321		goto error_param;
2322	}
2323
2324	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2325		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326		goto error_param;
2327	}
2328
2329	for (i = 0; i < vfl->num_elements; i++) {
2330		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2331			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332			dev_err(dev, "invalid VF VLAN id %d\n",
2333				vfl->vlan_id[i]);
2334			goto error_param;
2335		}
2336	}
2337
2338	vsi = ice_get_vf_vsi(vf);
2339	if (!vsi) {
2340		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2341		goto error_param;
2342	}
2343
2344	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2345		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2346			 vf->vf_id);
2347		/* There is no need to let VF know about being not trusted,
2348		 * so we can just return success message here
2349		 */
2350		goto error_param;
2351	}
2352
2353	/* in DVM a VF can add/delete inner VLAN filters when
2354	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2355	 */
2356	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2357		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358		goto error_param;
2359	}
2360
2361	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2362	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2363	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2364	 */
2365	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2366		!ice_is_dvm_ena(&pf->hw) &&
2367		!ice_vf_is_port_vlan_ena(vf);
2368
2369	if (add_v) {
2370		for (i = 0; i < vfl->num_elements; i++) {
2371			u16 vid = vfl->vlan_id[i];
2372			struct ice_vlan vlan;
2373
2374			if (ice_vf_has_max_vlans(vf, vsi)) {
2375				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2376					 vf->vf_id);
2377				/* There is no need to let VF know about being
2378				 * not trusted, so we can just return success
2379				 * message here as well.
2380				 */
2381				goto error_param;
2382			}
2383
2384			/* we add VLAN 0 by default for each VF so we can enable
2385			 * Tx VLAN anti-spoof without triggering MDD events so
2386			 * we don't need to add it again here
2387			 */
2388			if (!vid)
2389				continue;
2390
2391			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2392			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2393			if (status) {
2394				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395				goto error_param;
2396			}
2397
2398			/* Enable VLAN filtering on first non-zero VLAN */
2399			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2400				if (vf->spoofchk) {
2401					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2402					if (status) {
2403						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2404						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2405							vid, status);
2406						goto error_param;
2407					}
2408				}
2409				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2410					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2412						vid, status);
2413					goto error_param;
2414				}
2415			} else if (vlan_promisc) {
2416				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2417				if (status) {
2418					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2420						vid, status);
2421				}
2422			}
2423		}
2424	} else {
2425		/* In case of non_trusted VF, number of VLAN elements passed
2426		 * to PF for removal might be greater than number of VLANs
2427		 * filter programmed for that VF - So, use actual number of
2428		 * VLANS added earlier with add VLAN opcode. In order to avoid
2429		 * removing VLAN that doesn't exist, which result to sending
2430		 * erroneous failed message back to the VF
2431		 */
2432		int num_vf_vlan;
2433
2434		num_vf_vlan = vsi->num_vlan;
2435		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2436			u16 vid = vfl->vlan_id[i];
2437			struct ice_vlan vlan;
2438
2439			/* we add VLAN 0 by default for each VF so we can enable
2440			 * Tx VLAN anti-spoof without triggering MDD events so
2441			 * we don't want a VIRTCHNL request to remove it
2442			 */
2443			if (!vid)
2444				continue;
2445
2446			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2447			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2448			if (status) {
2449				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2450				goto error_param;
2451			}
2452
2453			/* Disable VLAN filtering when only VLAN 0 is left */
2454			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2455				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2456				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2457			}
2458
2459			if (vlan_promisc)
2460				ice_vf_dis_vlan_promisc(vsi, &vlan);
2461		}
2462	}
2463
2464error_param:
2465	/* send the response to the VF */
2466	if (add_v)
2467		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2468					     NULL, 0);
2469	else
2470		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2471					     NULL, 0);
2472}
2473
2474/**
2475 * ice_vc_add_vlan_msg
2476 * @vf: pointer to the VF info
2477 * @msg: pointer to the msg buffer
2478 *
2479 * Add and program guest VLAN ID
2480 */
2481static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2482{
2483	return ice_vc_process_vlan_msg(vf, msg, true);
2484}
2485
2486/**
2487 * ice_vc_remove_vlan_msg
2488 * @vf: pointer to the VF info
2489 * @msg: pointer to the msg buffer
2490 *
2491 * remove programmed guest VLAN ID
2492 */
2493static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2494{
2495	return ice_vc_process_vlan_msg(vf, msg, false);
2496}
2497
2498/**
2499 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2500 * @vsi: pointer to the VF VSI info
2501 */
2502static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2503{
2504	unsigned int i;
2505
2506	ice_for_each_alloc_rxq(vsi, i)
2507		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2508			return true;
2509
2510	return false;
2511}
2512
2513/**
2514 * ice_vc_ena_vlan_stripping
2515 * @vf: pointer to the VF info
2516 *
2517 * Enable VLAN header stripping for a given VF
2518 */
2519static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2520{
2521	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2522	struct ice_vsi *vsi;
2523
2524	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2525		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526		goto error_param;
2527	}
2528
2529	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2530		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2531		goto error_param;
2532	}
2533
2534	vsi = ice_get_vf_vsi(vf);
2535	if (!vsi) {
2536		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537		goto error_param;
2538	}
2539
2540	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2541		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2542	else
2543		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2544
2545error_param:
2546	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2547				     v_ret, NULL, 0);
2548}
2549
2550/**
2551 * ice_vc_dis_vlan_stripping
2552 * @vf: pointer to the VF info
2553 *
2554 * Disable VLAN header stripping for a given VF
2555 */
2556static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2557{
2558	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2559	struct ice_vsi *vsi;
2560
2561	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2562		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563		goto error_param;
2564	}
2565
2566	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2567		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568		goto error_param;
2569	}
2570
2571	vsi = ice_get_vf_vsi(vf);
2572	if (!vsi) {
2573		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574		goto error_param;
2575	}
2576
2577	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2578		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2579	else
2580		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2581
2582error_param:
2583	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2584				     v_ret, NULL, 0);
2585}
2586
2587/**
2588 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2589 * @vf: pointer to the VF info
2590 */
2591static int ice_vc_get_rss_hena(struct ice_vf *vf)
2592{
2593	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2594	struct virtchnl_rss_hena *vrh = NULL;
2595	int len = 0, ret;
2596
2597	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2598		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2599		goto err;
2600	}
2601
2602	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2603		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2604		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605		goto err;
2606	}
2607
2608	len = sizeof(struct virtchnl_rss_hena);
2609	vrh = kzalloc(len, GFP_KERNEL);
2610	if (!vrh) {
2611		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2612		len = 0;
2613		goto err;
2614	}
2615
2616	vrh->hena = ICE_DEFAULT_RSS_HENA;
2617err:
2618	/* send the response back to the VF */
2619	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2620				    (u8 *)vrh, len);
2621	kfree(vrh);
2622	return ret;
2623}
2624
2625/**
2626 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2627 * @vf: pointer to the VF info
2628 * @msg: pointer to the msg buffer
2629 */
2630static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2631{
2632	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2633	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2634	struct ice_pf *pf = vf->pf;
2635	struct ice_vsi *vsi;
2636	struct device *dev;
2637	int status;
2638
2639	dev = ice_pf_to_dev(pf);
2640
2641	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2642		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2643		goto err;
2644	}
2645
2646	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2647		dev_err(dev, "RSS not supported by PF\n");
2648		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2649		goto err;
2650	}
2651
2652	vsi = ice_get_vf_vsi(vf);
2653	if (!vsi) {
2654		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2655		goto err;
2656	}
2657
2658	/* clear all previously programmed RSS configuration to allow VF drivers
2659	 * the ability to customize the RSS configuration and/or completely
2660	 * disable RSS
2661	 */
2662	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2663	if (status && !vrh->hena) {
2664		/* only report failure to clear the current RSS configuration if
2665		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2666		 */
2667		v_ret = ice_err_to_virt_err(status);
2668		goto err;
2669	} else if (status) {
2670		/* allow the VF to update the RSS configuration even on failure
2671		 * to clear the current RSS confguration in an attempt to keep
2672		 * RSS in a working state
2673		 */
2674		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2675			 vf->vf_id);
2676	}
2677
2678	if (vrh->hena) {
2679		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2680		v_ret = ice_err_to_virt_err(status);
2681	}
2682
2683	/* send the response to the VF */
2684err:
2685	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2686				     NULL, 0);
2687}
2688
2689/**
2690 * ice_vc_query_rxdid - query RXDID supported by DDP package
2691 * @vf: pointer to VF info
2692 *
2693 * Called from VF to query a bitmap of supported flexible
2694 * descriptor RXDIDs of a DDP package.
2695 */
2696static int ice_vc_query_rxdid(struct ice_vf *vf)
2697{
2698	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2699	struct virtchnl_supported_rxdids *rxdid = NULL;
2700	struct ice_hw *hw = &vf->pf->hw;
2701	struct ice_pf *pf = vf->pf;
2702	int len = 0;
2703	int ret, i;
2704	u32 regval;
2705
2706	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2707		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2708		goto err;
2709	}
2710
2711	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2712		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713		goto err;
2714	}
2715
2716	len = sizeof(struct virtchnl_supported_rxdids);
2717	rxdid = kzalloc(len, GFP_KERNEL);
2718	if (!rxdid) {
2719		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2720		len = 0;
2721		goto err;
2722	}
2723
2724	/* RXDIDs supported by DDP package can be read from the register
2725	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2726	 * is not listed in DDP package, add it in the bitmap manually.
2727	 * Legacy 16byte descriptor is not supported.
2728	 */
2729	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2730
2731	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2732		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2733		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2734			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2735			rxdid->supported_rxdids |= BIT(i);
2736	}
2737
2738	pf->supported_rxdids = rxdid->supported_rxdids;
2739
2740err:
2741	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2742				    v_ret, (u8 *)rxdid, len);
2743	kfree(rxdid);
2744	return ret;
2745}
2746
2747/**
2748 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2749 * @vf: VF to enable/disable VLAN stripping for on initialization
2750 *
2751 * Set the default for VLAN stripping based on whether a port VLAN is configured
2752 * and the current VLAN mode of the device.
2753 */
2754static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2755{
2756	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2757
2758	vf->vlan_strip_ena = 0;
2759
2760	if (!vsi)
2761		return -EINVAL;
2762
2763	/* don't modify stripping if port VLAN is configured in SVM since the
2764	 * port VLAN is based on the inner/single VLAN in SVM
2765	 */
2766	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2767		return 0;
2768
2769	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2770		int err;
2771
2772		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2773		if (!err)
2774			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2775		return err;
2776	}
2777
2778	return vsi->inner_vlan_ops.dis_stripping(vsi);
2779}
2780
2781static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2782{
2783	if (vf->trusted)
2784		return VLAN_N_VID;
2785	else
2786		return ICE_MAX_VLAN_PER_VF;
2787}
2788
2789/**
2790 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2791 * @vf: VF that being checked for
2792 *
2793 * When the device is in double VLAN mode, check whether or not the outer VLAN
2794 * is allowed.
2795 */
2796static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2797{
2798	if (ice_vf_is_port_vlan_ena(vf))
2799		return true;
2800
2801	return false;
2802}
2803
2804/**
2805 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2806 * @vf: VF that capabilities are being set for
2807 * @caps: VLAN capabilities to populate
2808 *
2809 * Determine VLAN capabilities support based on whether a port VLAN is
2810 * configured. If a port VLAN is configured then the VF should use the inner
2811 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2812 * capabilies.
2813 */
2814static void
2815ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2816{
2817	struct virtchnl_vlan_supported_caps *supported_caps;
2818
2819	if (ice_vf_outer_vlan_not_allowed(vf)) {
2820		/* until support for inner VLAN filtering is added when a port
2821		 * VLAN is configured, only support software offloaded inner
2822		 * VLANs when a port VLAN is confgured in DVM
2823		 */
2824		supported_caps = &caps->filtering.filtering_support;
2825		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2826
2827		supported_caps = &caps->offloads.stripping_support;
2828		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829					VIRTCHNL_VLAN_TOGGLE |
2830					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2831		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2832
2833		supported_caps = &caps->offloads.insertion_support;
2834		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835					VIRTCHNL_VLAN_TOGGLE |
2836					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2840		caps->offloads.ethertype_match =
2841			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2842	} else {
2843		supported_caps = &caps->filtering.filtering_support;
2844		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2846					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2847					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2848					VIRTCHNL_VLAN_ETHERTYPE_AND;
2849		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2852
2853		supported_caps = &caps->offloads.stripping_support;
2854		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2855					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2856					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2857		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2858					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2859					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2860					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2861					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2862					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2863
2864		supported_caps = &caps->offloads.insertion_support;
2865		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2866					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2867					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2868		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2869					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2871					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2872					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2873					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2874
2875		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2876
2877		caps->offloads.ethertype_match =
2878			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2879	}
2880
2881	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2882}
2883
2884/**
2885 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2886 * @vf: VF that capabilities are being set for
2887 * @caps: VLAN capabilities to populate
2888 *
2889 * Determine VLAN capabilities support based on whether a port VLAN is
2890 * configured. If a port VLAN is configured then the VF does not have any VLAN
2891 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2892 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2893 * VLAN fitlering and offload capabilities.
2894 */
2895static void
2896ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2897{
2898	struct virtchnl_vlan_supported_caps *supported_caps;
2899
2900	if (ice_vf_is_port_vlan_ena(vf)) {
2901		supported_caps = &caps->filtering.filtering_support;
2902		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2903		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2904
2905		supported_caps = &caps->offloads.stripping_support;
2906		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909		supported_caps = &caps->offloads.insertion_support;
2910		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2914		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2915		caps->filtering.max_filters = 0;
2916	} else {
2917		supported_caps = &caps->filtering.filtering_support;
2918		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2919		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2920		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921
2922		supported_caps = &caps->offloads.stripping_support;
2923		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2924					VIRTCHNL_VLAN_TOGGLE |
2925					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2926		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927
2928		supported_caps = &caps->offloads.insertion_support;
2929		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2930					VIRTCHNL_VLAN_TOGGLE |
2931					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2932		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2933
2934		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935		caps->offloads.ethertype_match =
2936			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2937		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2938	}
2939}
2940
2941/**
2942 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2943 * @vf: VF to determine VLAN capabilities for
2944 *
2945 * This will only be called if the VF and PF successfully negotiated
2946 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2947 *
2948 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2949 * is configured or not.
2950 */
2951static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2952{
2953	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2954	struct virtchnl_vlan_caps *caps = NULL;
2955	int err, len = 0;
2956
2957	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2958		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2959		goto out;
2960	}
2961
2962	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2963	if (!caps) {
2964		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2965		goto out;
2966	}
2967	len = sizeof(*caps);
2968
2969	if (ice_is_dvm_ena(&vf->pf->hw))
2970		ice_vc_set_dvm_caps(vf, caps);
2971	else
2972		ice_vc_set_svm_caps(vf, caps);
2973
2974	/* store negotiated caps to prevent invalid VF messages */
2975	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2976
2977out:
2978	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2979				    v_ret, (u8 *)caps, len);
2980	kfree(caps);
2981	return err;
2982}
2983
2984/**
2985 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2986 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2987 * @tpid: VLAN TPID used for validation
2988 *
2989 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2990 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2991 */
2992static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2993{
2994	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2995
2996	switch (tpid) {
2997	case ETH_P_8021Q:
2998		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2999		break;
3000	case ETH_P_8021AD:
3001		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3002		break;
3003	case ETH_P_QINQ1:
3004		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3005		break;
3006	}
3007
3008	if (!(filtering_caps & vlan_ethertype))
3009		return false;
3010
3011	return true;
3012}
3013
3014/**
3015 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3016 * @vc_vlan: virtchnl_vlan to validate
3017 *
3018 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3019 * false. Otherwise return true.
3020 */
3021static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3022{
3023	if (!vc_vlan->tci || !vc_vlan->tpid)
3024		return false;
3025
3026	return true;
3027}
3028
3029/**
3030 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3031 * @vfc: negotiated/supported VLAN filtering capabilities
3032 * @vfl: VLAN filter list from VF to validate
3033 *
3034 * Validate all of the filters in the VLAN filter list from the VF. If any of
3035 * the checks fail then return false. Otherwise return true.
3036 */
3037static bool
3038ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3039				 struct virtchnl_vlan_filter_list_v2 *vfl)
3040{
3041	u16 i;
3042
3043	if (!vfl->num_elements)
3044		return false;
3045
3046	for (i = 0; i < vfl->num_elements; i++) {
3047		struct virtchnl_vlan_supported_caps *filtering_support =
3048			&vfc->filtering_support;
3049		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3050		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3051		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3052
3053		if ((ice_vc_is_valid_vlan(outer) &&
3054		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3055		    (ice_vc_is_valid_vlan(inner) &&
3056		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3057			return false;
3058
3059		if ((outer->tci_mask &&
3060		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3061		    (inner->tci_mask &&
3062		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3063			return false;
3064
3065		if (((outer->tci & VLAN_PRIO_MASK) &&
3066		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3067		    ((inner->tci & VLAN_PRIO_MASK) &&
3068		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3069			return false;
3070
3071		if ((ice_vc_is_valid_vlan(outer) &&
3072		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3073						outer->tpid)) ||
3074		    (ice_vc_is_valid_vlan(inner) &&
3075		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3076						inner->tpid)))
3077			return false;
3078	}
3079
3080	return true;
3081}
3082
3083/**
3084 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3085 * @vc_vlan: struct virtchnl_vlan to transform
3086 */
3087static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3088{
3089	struct ice_vlan vlan = { 0 };
3090
3091	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3092	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3093	vlan.tpid = vc_vlan->tpid;
3094
3095	return vlan;
3096}
3097
3098/**
3099 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3100 * @vsi: VF's VSI used to perform the action
3101 * @vlan_action: function to perform the action with (i.e. add/del)
3102 * @vlan: VLAN filter to perform the action with
3103 */
3104static int
3105ice_vc_vlan_action(struct ice_vsi *vsi,
3106		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3107		   struct ice_vlan *vlan)
3108{
3109	int err;
3110
3111	err = vlan_action(vsi, vlan);
3112	if (err)
3113		return err;
3114
3115	return 0;
3116}
3117
3118/**
3119 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3120 * @vf: VF used to delete the VLAN(s)
3121 * @vsi: VF's VSI used to delete the VLAN(s)
3122 * @vfl: virthchnl filter list used to delete the filters
3123 */
3124static int
3125ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3126		 struct virtchnl_vlan_filter_list_v2 *vfl)
3127{
3128	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3129	int err;
3130	u16 i;
3131
3132	for (i = 0; i < vfl->num_elements; i++) {
3133		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3134		struct virtchnl_vlan *vc_vlan;
3135
3136		vc_vlan = &vlan_fltr->outer;
3137		if (ice_vc_is_valid_vlan(vc_vlan)) {
3138			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3139
3140			err = ice_vc_vlan_action(vsi,
3141						 vsi->outer_vlan_ops.del_vlan,
3142						 &vlan);
3143			if (err)
3144				return err;
3145
3146			if (vlan_promisc)
3147				ice_vf_dis_vlan_promisc(vsi, &vlan);
3148
3149			/* Disable VLAN filtering when only VLAN 0 is left */
3150			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3151				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3152				if (err)
3153					return err;
3154			}
3155		}
3156
3157		vc_vlan = &vlan_fltr->inner;
3158		if (ice_vc_is_valid_vlan(vc_vlan)) {
3159			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3160
3161			err = ice_vc_vlan_action(vsi,
3162						 vsi->inner_vlan_ops.del_vlan,
3163						 &vlan);
3164			if (err)
3165				return err;
3166
3167			/* no support for VLAN promiscuous on inner VLAN unless
3168			 * we are in Single VLAN Mode (SVM)
3169			 */
3170			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3171				if (vlan_promisc)
3172					ice_vf_dis_vlan_promisc(vsi, &vlan);
3173
3174				/* Disable VLAN filtering when only VLAN 0 is left */
3175				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3176					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3177					if (err)
3178						return err;
3179				}
3180			}
3181		}
3182	}
3183
3184	return 0;
3185}
3186
3187/**
3188 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3189 * @vf: VF the message was received from
3190 * @msg: message received from the VF
3191 */
3192static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3193{
3194	struct virtchnl_vlan_filter_list_v2 *vfl =
3195		(struct virtchnl_vlan_filter_list_v2 *)msg;
3196	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3197	struct ice_vsi *vsi;
3198
3199	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3200					      vfl)) {
3201		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3202		goto out;
3203	}
3204
3205	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3206		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3207		goto out;
3208	}
3209
3210	vsi = ice_get_vf_vsi(vf);
3211	if (!vsi) {
3212		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213		goto out;
3214	}
3215
3216	if (ice_vc_del_vlans(vf, vsi, vfl))
3217		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218
3219out:
3220	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3221				     0);
3222}
3223
3224/**
3225 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3226 * @vf: VF used to add the VLAN(s)
3227 * @vsi: VF's VSI used to add the VLAN(s)
3228 * @vfl: virthchnl filter list used to add the filters
3229 */
3230static int
3231ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3232		 struct virtchnl_vlan_filter_list_v2 *vfl)
3233{
3234	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3235	int err;
3236	u16 i;
3237
3238	for (i = 0; i < vfl->num_elements; i++) {
3239		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3240		struct virtchnl_vlan *vc_vlan;
3241
3242		vc_vlan = &vlan_fltr->outer;
3243		if (ice_vc_is_valid_vlan(vc_vlan)) {
3244			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3245
3246			err = ice_vc_vlan_action(vsi,
3247						 vsi->outer_vlan_ops.add_vlan,
3248						 &vlan);
3249			if (err)
3250				return err;
3251
3252			if (vlan_promisc) {
3253				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3254				if (err)
3255					return err;
3256			}
3257
3258			/* Enable VLAN filtering on first non-zero VLAN */
3259			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3260				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3261				if (err)
3262					return err;
3263			}
3264		}
3265
3266		vc_vlan = &vlan_fltr->inner;
3267		if (ice_vc_is_valid_vlan(vc_vlan)) {
3268			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3269
3270			err = ice_vc_vlan_action(vsi,
3271						 vsi->inner_vlan_ops.add_vlan,
3272						 &vlan);
3273			if (err)
3274				return err;
3275
3276			/* no support for VLAN promiscuous on inner VLAN unless
3277			 * we are in Single VLAN Mode (SVM)
3278			 */
3279			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3280				if (vlan_promisc) {
3281					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3282					if (err)
3283						return err;
3284				}
3285
3286				/* Enable VLAN filtering on first non-zero VLAN */
3287				if (vf->spoofchk && vlan.vid) {
3288					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3289					if (err)
3290						return err;
3291				}
3292			}
3293		}
3294	}
3295
3296	return 0;
3297}
3298
3299/**
3300 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3301 * @vsi: VF VSI used to get number of existing VLAN filters
3302 * @vfc: negotiated/supported VLAN filtering capabilities
3303 * @vfl: VLAN filter list from VF to validate
3304 *
3305 * Validate all of the filters in the VLAN filter list from the VF during the
3306 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3307 * Otherwise return true.
3308 */
3309static bool
3310ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3311				     struct virtchnl_vlan_filtering_caps *vfc,
3312				     struct virtchnl_vlan_filter_list_v2 *vfl)
3313{
3314	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3315		vfl->num_elements;
3316
3317	if (num_requested_filters > vfc->max_filters)
3318		return false;
3319
3320	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3321}
3322
3323/**
3324 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3325 * @vf: VF the message was received from
3326 * @msg: message received from the VF
3327 */
3328static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3329{
3330	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3331	struct virtchnl_vlan_filter_list_v2 *vfl =
3332		(struct virtchnl_vlan_filter_list_v2 *)msg;
3333	struct ice_vsi *vsi;
3334
3335	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3336		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337		goto out;
3338	}
3339
3340	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3341		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3342		goto out;
3343	}
3344
3345	vsi = ice_get_vf_vsi(vf);
3346	if (!vsi) {
3347		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348		goto out;
3349	}
3350
3351	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3352						  &vf->vlan_v2_caps.filtering,
3353						  vfl)) {
3354		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355		goto out;
3356	}
3357
3358	if (ice_vc_add_vlans(vf, vsi, vfl))
3359		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360
3361out:
3362	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3363				     0);
3364}
3365
3366/**
3367 * ice_vc_valid_vlan_setting - validate VLAN setting
3368 * @negotiated_settings: negotiated VLAN settings during VF init
3369 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3370 */
3371static bool
3372ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3373{
3374	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3375		return false;
3376
3377	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3378	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3379	 */
3380	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3381	    hweight32(ethertype_setting) > 1)
3382		return false;
3383
3384	/* ability to modify the VLAN setting was not negotiated */
3385	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3386		return false;
3387
3388	return true;
3389}
3390
3391/**
3392 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3393 * @caps: negotiated VLAN settings during VF init
3394 * @msg: message to validate
3395 *
3396 * Used to validate any VLAN virtchnl message sent as a
3397 * virtchnl_vlan_setting structure. Validates the message against the
3398 * negotiated/supported caps during VF driver init.
3399 */
3400static bool
3401ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3402			      struct virtchnl_vlan_setting *msg)
3403{
3404	if ((!msg->outer_ethertype_setting &&
3405	     !msg->inner_ethertype_setting) ||
3406	    (!caps->outer && !caps->inner))
3407		return false;
3408
3409	if (msg->outer_ethertype_setting &&
3410	    !ice_vc_valid_vlan_setting(caps->outer,
3411				       msg->outer_ethertype_setting))
3412		return false;
3413
3414	if (msg->inner_ethertype_setting &&
3415	    !ice_vc_valid_vlan_setting(caps->inner,
3416				       msg->inner_ethertype_setting))
3417		return false;
3418
3419	return true;
3420}
3421
3422/**
3423 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3424 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3425 * @tpid: VLAN TPID to populate
3426 */
3427static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3428{
3429	switch (ethertype_setting) {
3430	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3431		*tpid = ETH_P_8021Q;
3432		break;
3433	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3434		*tpid = ETH_P_8021AD;
3435		break;
3436	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3437		*tpid = ETH_P_QINQ1;
3438		break;
3439	default:
3440		*tpid = 0;
3441		return -EINVAL;
3442	}
3443
3444	return 0;
3445}
3446
3447/**
3448 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3449 * @vsi: VF's VSI used to enable the VLAN offload
3450 * @ena_offload: function used to enable the VLAN offload
3451 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3452 */
3453static int
3454ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3455			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3456			u32 ethertype_setting)
3457{
3458	u16 tpid;
3459	int err;
3460
3461	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3462	if (err)
3463		return err;
3464
3465	err = ena_offload(vsi, tpid);
3466	if (err)
3467		return err;
3468
3469	return 0;
3470}
3471
3472#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3473#define ICE_L2TSEL_BIT_OFFSET		23
3474enum ice_l2tsel {
3475	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3476	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3477};
3478
3479/**
3480 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3481 * @vsi: VSI used to update l2tsel on
3482 * @l2tsel: l2tsel setting requested
3483 *
3484 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3485 * This will modify which descriptor field the first offloaded VLAN will be
3486 * stripped into.
3487 */
3488static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3489{
3490	struct ice_hw *hw = &vsi->back->hw;
3491	u32 l2tsel_bit;
3492	int i;
3493
3494	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3495		l2tsel_bit = 0;
3496	else
3497		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3498
3499	for (i = 0; i < vsi->alloc_rxq; i++) {
3500		u16 pfq = vsi->rxq_map[i];
3501		u32 qrx_context_offset;
3502		u32 regval;
3503
3504		qrx_context_offset =
3505			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3506
3507		regval = rd32(hw, qrx_context_offset);
3508		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3509		regval |= l2tsel_bit;
3510		wr32(hw, qrx_context_offset, regval);
3511	}
3512}
3513
3514/**
3515 * ice_vc_ena_vlan_stripping_v2_msg
3516 * @vf: VF the message was received from
3517 * @msg: message received from the VF
3518 *
3519 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3520 */
3521static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3522{
3523	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3524	struct virtchnl_vlan_supported_caps *stripping_support;
3525	struct virtchnl_vlan_setting *strip_msg =
3526		(struct virtchnl_vlan_setting *)msg;
3527	u32 ethertype_setting;
3528	struct ice_vsi *vsi;
3529
3530	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3531		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532		goto out;
3533	}
3534
3535	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3536		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537		goto out;
3538	}
3539
3540	vsi = ice_get_vf_vsi(vf);
3541	if (!vsi) {
3542		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543		goto out;
3544	}
3545
3546	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3547	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3548		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549		goto out;
3550	}
3551
3552	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3553		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3554		goto out;
3555	}
3556
3557	ethertype_setting = strip_msg->outer_ethertype_setting;
3558	if (ethertype_setting) {
3559		if (ice_vc_ena_vlan_offload(vsi,
3560					    vsi->outer_vlan_ops.ena_stripping,
3561					    ethertype_setting)) {
3562			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563			goto out;
3564		} else {
3565			enum ice_l2tsel l2tsel =
3566				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3567
3568			/* PF tells the VF that the outer VLAN tag is always
3569			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3570			 * inner is always extracted to
3571			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3572			 * support outer stripping so the first tag always ends
3573			 * up in L2TAG2_2ND and the second/inner tag, if
3574			 * enabled, is extracted in L2TAG1.
3575			 */
3576			ice_vsi_update_l2tsel(vsi, l2tsel);
3577
3578			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3579		}
3580	}
3581
3582	ethertype_setting = strip_msg->inner_ethertype_setting;
3583	if (ethertype_setting &&
3584	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3585				    ethertype_setting)) {
3586		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587		goto out;
3588	}
3589
3590	if (ethertype_setting)
3591		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3592
3593out:
3594	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3595				     v_ret, NULL, 0);
3596}
3597
3598/**
3599 * ice_vc_dis_vlan_stripping_v2_msg
3600 * @vf: VF the message was received from
3601 * @msg: message received from the VF
3602 *
3603 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3604 */
3605static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3606{
3607	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3608	struct virtchnl_vlan_supported_caps *stripping_support;
3609	struct virtchnl_vlan_setting *strip_msg =
3610		(struct virtchnl_vlan_setting *)msg;
3611	u32 ethertype_setting;
3612	struct ice_vsi *vsi;
3613
3614	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3615		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3616		goto out;
3617	}
3618
3619	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3620		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621		goto out;
3622	}
3623
3624	vsi = ice_get_vf_vsi(vf);
3625	if (!vsi) {
3626		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627		goto out;
3628	}
3629
3630	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3631	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3632		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633		goto out;
3634	}
3635
3636	ethertype_setting = strip_msg->outer_ethertype_setting;
3637	if (ethertype_setting) {
3638		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3639			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640			goto out;
3641		} else {
3642			enum ice_l2tsel l2tsel =
3643				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3644
3645			/* PF tells the VF that the outer VLAN tag is always
3646			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3647			 * inner is always extracted to
3648			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3649			 * support inner stripping while outer stripping is
3650			 * disabled so that the first and only tag is extracted
3651			 * in L2TAG1.
3652			 */
3653			ice_vsi_update_l2tsel(vsi, l2tsel);
3654
3655			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3656		}
3657	}
3658
3659	ethertype_setting = strip_msg->inner_ethertype_setting;
3660	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3661		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662		goto out;
3663	}
3664
3665	if (ethertype_setting)
3666		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3667
3668out:
3669	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3670				     v_ret, NULL, 0);
3671}
3672
3673/**
3674 * ice_vc_ena_vlan_insertion_v2_msg
3675 * @vf: VF the message was received from
3676 * @msg: message received from the VF
3677 *
3678 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3679 */
3680static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3681{
3682	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3683	struct virtchnl_vlan_supported_caps *insertion_support;
3684	struct virtchnl_vlan_setting *insertion_msg =
3685		(struct virtchnl_vlan_setting *)msg;
3686	u32 ethertype_setting;
3687	struct ice_vsi *vsi;
3688
3689	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3690		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691		goto out;
3692	}
3693
3694	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3695		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3696		goto out;
3697	}
3698
3699	vsi = ice_get_vf_vsi(vf);
3700	if (!vsi) {
3701		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3702		goto out;
3703	}
3704
3705	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3706	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3707		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708		goto out;
3709	}
3710
3711	ethertype_setting = insertion_msg->outer_ethertype_setting;
3712	if (ethertype_setting &&
3713	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3714				    ethertype_setting)) {
3715		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716		goto out;
3717	}
3718
3719	ethertype_setting = insertion_msg->inner_ethertype_setting;
3720	if (ethertype_setting &&
3721	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3722				    ethertype_setting)) {
3723		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724		goto out;
3725	}
3726
3727out:
3728	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3729				     v_ret, NULL, 0);
3730}
3731
3732/**
3733 * ice_vc_dis_vlan_insertion_v2_msg
3734 * @vf: VF the message was received from
3735 * @msg: message received from the VF
3736 *
3737 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3738 */
3739static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3740{
3741	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3742	struct virtchnl_vlan_supported_caps *insertion_support;
3743	struct virtchnl_vlan_setting *insertion_msg =
3744		(struct virtchnl_vlan_setting *)msg;
3745	u32 ethertype_setting;
3746	struct ice_vsi *vsi;
3747
3748	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3749		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750		goto out;
3751	}
3752
3753	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3754		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755		goto out;
3756	}
3757
3758	vsi = ice_get_vf_vsi(vf);
3759	if (!vsi) {
3760		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3761		goto out;
3762	}
3763
3764	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3765	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3766		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767		goto out;
3768	}
3769
3770	ethertype_setting = insertion_msg->outer_ethertype_setting;
3771	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3772		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773		goto out;
3774	}
3775
3776	ethertype_setting = insertion_msg->inner_ethertype_setting;
3777	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3778		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3779		goto out;
3780	}
3781
3782out:
3783	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3784				     v_ret, NULL, 0);
3785}
3786
3787static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3788	.get_ver_msg = ice_vc_get_ver_msg,
3789	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3790	.reset_vf = ice_vc_reset_vf_msg,
3791	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3792	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3793	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3794	.ena_qs_msg = ice_vc_ena_qs_msg,
3795	.dis_qs_msg = ice_vc_dis_qs_msg,
3796	.request_qs_msg = ice_vc_request_qs_msg,
3797	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798	.config_rss_key = ice_vc_config_rss_key,
3799	.config_rss_lut = ice_vc_config_rss_lut,
3800	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3801	.get_stats_msg = ice_vc_get_stats_msg,
3802	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3803	.add_vlan_msg = ice_vc_add_vlan_msg,
3804	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3805	.query_rxdid = ice_vc_query_rxdid,
3806	.get_rss_hena = ice_vc_get_rss_hena,
3807	.set_rss_hena_msg = ice_vc_set_rss_hena,
3808	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3809	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3810	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3811	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3812	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3813	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3814	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3815	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3816	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3817	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3818	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3819	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3820};
3821
3822/**
3823 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3824 * @vf: the VF to switch ops
3825 */
3826void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3827{
3828	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3829}
3830
3831/**
3832 * ice_vc_repr_add_mac
3833 * @vf: pointer to VF
3834 * @msg: virtchannel message
3835 *
3836 * When port representors are created, we do not add MAC rule
3837 * to firmware, we store it so that PF could report same
3838 * MAC as VF.
3839 */
3840static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3841{
3842	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3843	struct virtchnl_ether_addr_list *al =
3844	    (struct virtchnl_ether_addr_list *)msg;
3845	struct ice_vsi *vsi;
3846	struct ice_pf *pf;
3847	int i;
3848
3849	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3850	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3851		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3852		goto handle_mac_exit;
3853	}
3854
3855	pf = vf->pf;
3856
3857	vsi = ice_get_vf_vsi(vf);
3858	if (!vsi) {
3859		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860		goto handle_mac_exit;
3861	}
3862
3863	for (i = 0; i < al->num_elements; i++) {
3864		u8 *mac_addr = al->list[i].addr;
3865
3866		if (!is_unicast_ether_addr(mac_addr) ||
3867		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3868			continue;
3869
3870		if (vf->pf_set_mac) {
3871			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3872			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3873			goto handle_mac_exit;
3874		}
3875
3876		ice_vfhw_mac_add(vf, &al->list[i]);
3877		vf->num_mac++;
3878		break;
3879	}
3880
3881handle_mac_exit:
3882	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3883				     v_ret, NULL, 0);
3884}
3885
3886/**
3887 * ice_vc_repr_del_mac - response with success for deleting MAC
3888 * @vf: pointer to VF
3889 * @msg: virtchannel message
3890 *
3891 * Respond with success to not break normal VF flow.
3892 * For legacy VF driver try to update cached MAC address.
3893 */
3894static int
3895ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3896{
3897	struct virtchnl_ether_addr_list *al =
3898		(struct virtchnl_ether_addr_list *)msg;
3899
3900	ice_update_legacy_cached_mac(vf, &al->list[0]);
3901
3902	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3903				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3904}
3905
3906static int
3907ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3908{
3909	dev_dbg(ice_pf_to_dev(vf->pf),
3910		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3911		vf->vf_id);
3912	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3913				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3914				     NULL, 0);
3915}
3916
3917static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3918	.get_ver_msg = ice_vc_get_ver_msg,
3919	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3920	.reset_vf = ice_vc_reset_vf_msg,
3921	.add_mac_addr_msg = ice_vc_repr_add_mac,
3922	.del_mac_addr_msg = ice_vc_repr_del_mac,
3923	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3924	.ena_qs_msg = ice_vc_ena_qs_msg,
3925	.dis_qs_msg = ice_vc_dis_qs_msg,
3926	.request_qs_msg = ice_vc_request_qs_msg,
3927	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3928	.config_rss_key = ice_vc_config_rss_key,
3929	.config_rss_lut = ice_vc_config_rss_lut,
3930	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3931	.get_stats_msg = ice_vc_get_stats_msg,
3932	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3933	.add_vlan_msg = ice_vc_add_vlan_msg,
3934	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3935	.query_rxdid = ice_vc_query_rxdid,
3936	.get_rss_hena = ice_vc_get_rss_hena,
3937	.set_rss_hena_msg = ice_vc_set_rss_hena,
3938	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3939	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3940	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3941	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3942	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3943	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3944	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3945	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3946	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3947	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3948	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3949	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3950};
3951
3952/**
3953 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3954 * @vf: the VF to switch ops
3955 */
3956void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3957{
3958	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3959}
3960
3961/**
3962 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3963 * @vf: the VF to check
3964 * @mbxdata: data about the state of the mailbox
3965 *
3966 * Detect if a given VF might be malicious and attempting to overflow the PF
3967 * mailbox. If so, log a warning message and ignore this event.
3968 */
3969static bool
3970ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3971{
3972	bool report_malvf = false;
3973	struct device *dev;
3974	struct ice_pf *pf;
3975	int status;
3976
3977	pf = vf->pf;
3978	dev = ice_pf_to_dev(pf);
3979
3980	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3981		return vf->mbx_info.malicious;
3982
3983	/* check to see if we have a newly malicious VF */
3984	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3985					  &report_malvf);
3986	if (status)
3987		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3988				     vf->vf_id, vf->dev_lan_addr, status);
3989
3990	if (report_malvf) {
3991		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3992		u8 zero_addr[ETH_ALEN] = {};
3993
3994		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3995			 vf->dev_lan_addr,
3996			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3997	}
3998
3999	return vf->mbx_info.malicious;
4000}
4001
4002/**
4003 * ice_vc_process_vf_msg - Process request from VF
4004 * @pf: pointer to the PF structure
4005 * @event: pointer to the AQ event
4006 * @mbxdata: information used to detect VF attempting mailbox overflow
4007 *
4008 * called from the common asq/arq handler to
4009 * process request from VF
4010 */
4011void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4012			   struct ice_mbx_data *mbxdata)
4013{
4014	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4015	s16 vf_id = le16_to_cpu(event->desc.retval);
4016	const struct ice_virtchnl_ops *ops;
4017	u16 msglen = event->msg_len;
4018	u8 *msg = event->msg_buf;
4019	struct ice_vf *vf = NULL;
4020	struct device *dev;
4021	int err = 0;
4022
4023	dev = ice_pf_to_dev(pf);
4024
4025	vf = ice_get_vf_by_id(pf, vf_id);
4026	if (!vf) {
4027		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4028			vf_id, v_opcode, msglen);
4029		return;
4030	}
4031
4032	mutex_lock(&vf->cfg_lock);
4033
4034	/* Check if the VF is trying to overflow the mailbox */
4035	if (ice_is_malicious_vf(vf, mbxdata))
4036		goto finish;
4037
4038	/* Check if VF is disabled. */
4039	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4040		err = -EPERM;
4041		goto error_handler;
4042	}
4043
4044	ops = vf->virtchnl_ops;
4045
4046	/* Perform basic checks on the msg */
4047	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4048	if (err) {
4049		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4050			err = -EPERM;
4051		else
4052			err = -EINVAL;
4053	}
4054
4055error_handler:
4056	if (err) {
4057		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4058				      NULL, 0);
4059		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4060			vf_id, v_opcode, msglen, err);
4061		goto finish;
4062	}
4063
4064	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4065		ice_vc_send_msg_to_vf(vf, v_opcode,
4066				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4067				      0);
4068		goto finish;
4069	}
4070
4071	switch (v_opcode) {
4072	case VIRTCHNL_OP_VERSION:
4073		err = ops->get_ver_msg(vf, msg);
4074		break;
4075	case VIRTCHNL_OP_GET_VF_RESOURCES:
4076		err = ops->get_vf_res_msg(vf, msg);
4077		if (ice_vf_init_vlan_stripping(vf))
4078			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4079				vf->vf_id);
4080		ice_vc_notify_vf_link_state(vf);
4081		break;
4082	case VIRTCHNL_OP_RESET_VF:
4083		ops->reset_vf(vf);
4084		break;
4085	case VIRTCHNL_OP_ADD_ETH_ADDR:
4086		err = ops->add_mac_addr_msg(vf, msg);
4087		break;
4088	case VIRTCHNL_OP_DEL_ETH_ADDR:
4089		err = ops->del_mac_addr_msg(vf, msg);
4090		break;
4091	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4092		err = ops->cfg_qs_msg(vf, msg);
4093		break;
4094	case VIRTCHNL_OP_ENABLE_QUEUES:
4095		err = ops->ena_qs_msg(vf, msg);
4096		ice_vc_notify_vf_link_state(vf);
4097		break;
4098	case VIRTCHNL_OP_DISABLE_QUEUES:
4099		err = ops->dis_qs_msg(vf, msg);
4100		break;
4101	case VIRTCHNL_OP_REQUEST_QUEUES:
4102		err = ops->request_qs_msg(vf, msg);
4103		break;
4104	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4105		err = ops->cfg_irq_map_msg(vf, msg);
4106		break;
4107	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4108		err = ops->config_rss_key(vf, msg);
4109		break;
4110	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4111		err = ops->config_rss_lut(vf, msg);
4112		break;
4113	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4114		err = ops->config_rss_hfunc(vf, msg);
4115		break;
4116	case VIRTCHNL_OP_GET_STATS:
4117		err = ops->get_stats_msg(vf, msg);
4118		break;
4119	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4120		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4121		break;
4122	case VIRTCHNL_OP_ADD_VLAN:
4123		err = ops->add_vlan_msg(vf, msg);
4124		break;
4125	case VIRTCHNL_OP_DEL_VLAN:
4126		err = ops->remove_vlan_msg(vf, msg);
4127		break;
4128	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4129		err = ops->query_rxdid(vf);
4130		break;
4131	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4132		err = ops->get_rss_hena(vf);
4133		break;
4134	case VIRTCHNL_OP_SET_RSS_HENA:
4135		err = ops->set_rss_hena_msg(vf, msg);
4136		break;
4137	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4138		err = ops->ena_vlan_stripping(vf);
4139		break;
4140	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4141		err = ops->dis_vlan_stripping(vf);
4142		break;
4143	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4144		err = ops->add_fdir_fltr_msg(vf, msg);
4145		break;
4146	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4147		err = ops->del_fdir_fltr_msg(vf, msg);
4148		break;
4149	case VIRTCHNL_OP_ADD_RSS_CFG:
4150		err = ops->handle_rss_cfg_msg(vf, msg, true);
4151		break;
4152	case VIRTCHNL_OP_DEL_RSS_CFG:
4153		err = ops->handle_rss_cfg_msg(vf, msg, false);
4154		break;
4155	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4156		err = ops->get_offload_vlan_v2_caps(vf);
4157		break;
4158	case VIRTCHNL_OP_ADD_VLAN_V2:
4159		err = ops->add_vlan_v2_msg(vf, msg);
4160		break;
4161	case VIRTCHNL_OP_DEL_VLAN_V2:
4162		err = ops->remove_vlan_v2_msg(vf, msg);
4163		break;
4164	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4165		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4166		break;
4167	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4168		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4169		break;
4170	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4171		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4172		break;
4173	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4174		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4175		break;
4176	case VIRTCHNL_OP_UNKNOWN:
4177	default:
4178		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4179			vf_id);
4180		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4181					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4182					    NULL, 0);
4183		break;
4184	}
4185	if (err) {
4186		/* Helper function cares less about error return values here
4187		 * as it is busy with pending work.
4188		 */
4189		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4190			 vf_id, v_opcode, err);
4191	}
4192
4193finish:
4194	mutex_unlock(&vf->cfg_lock);
4195	ice_put_vf(vf);
4196}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2022, Intel Corporation. */
   3
   4#include "ice_virtchnl.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice.h"
   7#include "ice_base.h"
   8#include "ice_lib.h"
   9#include "ice_fltr.h"
  10#include "ice_virtchnl_allowlist.h"
  11#include "ice_vf_vsi_vlan_ops.h"
  12#include "ice_vlan.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_dcb_lib.h"
  15
  16#define FIELD_SELECTOR(proto_hdr_field) \
  17		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
  18
  19struct ice_vc_hdr_match_type {
  20	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
  21	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
  22};
  23
  24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
  25	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
  26	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
  27	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  28	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
  29	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
  30					ICE_FLOW_SEG_HDR_IPV_OTHER},
  31	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
  32					ICE_FLOW_SEG_HDR_IPV_OTHER},
  33	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
  34	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
  35	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
  36	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
  37	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
  38	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
  39	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
  40					ICE_FLOW_SEG_HDR_GTPU_DWN},
  41	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
  42					ICE_FLOW_SEG_HDR_GTPU_UP},
  43	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
  44	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
  45	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
  46	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
  47};
  48
  49struct ice_vc_hash_field_match_type {
  50	u32 vc_hdr;		/* virtchnl headers
  51				 * (VIRTCHNL_PROTO_HDR_XXX)
  52				 */
  53	u32 vc_hash_field;	/* virtchnl hash fields selector
  54				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
  55				 */
  56	u64 ice_hash_field;	/* ice hash fields
  57				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
  58				 */
  59};
  60
  61static const struct
  62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
  63	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
  64		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
  65	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  66		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
  67	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
  68		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
  69		ICE_FLOW_HASH_ETH},
  70	{VIRTCHNL_PROTO_HDR_ETH,
  71		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
  72		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
  73	{VIRTCHNL_PROTO_HDR_S_VLAN,
  74		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
  75		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
  76	{VIRTCHNL_PROTO_HDR_C_VLAN,
  77		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
  78		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
  79	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
  80		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
  81	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  82		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
  83	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  84		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
  85		ICE_FLOW_HASH_IPV4},
  86	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  87		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  88		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
  89		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  90	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  91		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  92		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
  93		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  94	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
  95		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
  96		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  97		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
  98	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
  99		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
 100	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
 101		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
 102	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 103		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
 104	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 105		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
 106		ICE_FLOW_HASH_IPV6},
 107	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 108		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 109		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
 110		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 111	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 112		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 113		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
 114		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 115	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
 116		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
 117		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 118		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 119	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
 120		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
 121	{VIRTCHNL_PROTO_HDR_TCP,
 122		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
 123		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
 124	{VIRTCHNL_PROTO_HDR_TCP,
 125		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 126		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
 127	{VIRTCHNL_PROTO_HDR_TCP,
 128		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
 129		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
 130		ICE_FLOW_HASH_TCP_PORT},
 131	{VIRTCHNL_PROTO_HDR_UDP,
 132		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
 133		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
 134	{VIRTCHNL_PROTO_HDR_UDP,
 135		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 136		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
 137	{VIRTCHNL_PROTO_HDR_UDP,
 138		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
 139		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
 140		ICE_FLOW_HASH_UDP_PORT},
 141	{VIRTCHNL_PROTO_HDR_SCTP,
 142		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
 143		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
 144	{VIRTCHNL_PROTO_HDR_SCTP,
 145		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 146		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
 147	{VIRTCHNL_PROTO_HDR_SCTP,
 148		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
 149		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
 150		ICE_FLOW_HASH_SCTP_PORT},
 151	{VIRTCHNL_PROTO_HDR_PPPOE,
 152		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
 153		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
 154	{VIRTCHNL_PROTO_HDR_GTPU_IP,
 155		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
 156		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
 157	{VIRTCHNL_PROTO_HDR_L2TPV3,
 158		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
 159		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
 160	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
 161		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
 162	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
 163		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
 164	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
 165		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
 166};
 167
 168/**
 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 170 * @pf: pointer to the PF structure
 171 * @v_opcode: operation code
 172 * @v_retval: return value
 173 * @msg: pointer to the msg buffer
 174 * @msglen: msg length
 175 */
 176static void
 177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
 178		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 179{
 180	struct ice_hw *hw = &pf->hw;
 181	struct ice_vf *vf;
 182	unsigned int bkt;
 183
 184	mutex_lock(&pf->vfs.table_lock);
 185	ice_for_each_vf(pf, bkt, vf) {
 186		/* Not all vfs are enabled so skip the ones that are not */
 187		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
 188		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
 189			continue;
 190
 191		/* Ignore return value on purpose - a given VF may fail, but
 192		 * we need to keep going and send to all of them
 193		 */
 194		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
 195				      msglen, NULL);
 196	}
 197	mutex_unlock(&pf->vfs.table_lock);
 198}
 199
 200/**
 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 202 * @vf: pointer to the VF structure
 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 205 * @link_up: whether or not to set the link up/down
 206 */
 207static void
 208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
 209		 int ice_link_speed, bool link_up)
 210{
 211	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
 212		pfe->event_data.link_event_adv.link_status = link_up;
 213		/* Speed in Mbps */
 214		pfe->event_data.link_event_adv.link_speed =
 215			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
 216	} else {
 217		pfe->event_data.link_event.link_status = link_up;
 218		/* Legacy method for virtchnl link speeds */
 219		pfe->event_data.link_event.link_speed =
 220			(enum virtchnl_link_speed)
 221			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
 222	}
 223}
 224
 225/**
 226 * ice_vc_notify_vf_link_state - Inform a VF of link status
 227 * @vf: pointer to the VF structure
 228 *
 229 * send a link status message to a single VF
 230 */
 231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
 232{
 233	struct virtchnl_pf_event pfe = { 0 };
 234	struct ice_hw *hw = &vf->pf->hw;
 235
 236	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
 237	pfe.severity = PF_EVENT_SEVERITY_INFO;
 238
 239	if (ice_is_vf_link_up(vf))
 240		ice_set_pfe_link(vf, &pfe,
 241				 hw->port_info->phy.link_info.link_speed, true);
 242	else
 243		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
 244
 245	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
 246			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
 247			      sizeof(pfe), NULL);
 248}
 249
 250/**
 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 252 * @pf: pointer to the PF structure
 253 */
 254void ice_vc_notify_link_state(struct ice_pf *pf)
 255{
 256	struct ice_vf *vf;
 257	unsigned int bkt;
 258
 259	mutex_lock(&pf->vfs.table_lock);
 260	ice_for_each_vf(pf, bkt, vf)
 261		ice_vc_notify_vf_link_state(vf);
 262	mutex_unlock(&pf->vfs.table_lock);
 263}
 264
 265/**
 266 * ice_vc_notify_reset - Send pending reset message to all VFs
 267 * @pf: pointer to the PF structure
 268 *
 269 * indicate a pending reset to all VFs on a given PF
 270 */
 271void ice_vc_notify_reset(struct ice_pf *pf)
 272{
 273	struct virtchnl_pf_event pfe;
 274
 275	if (!ice_has_vfs(pf))
 276		return;
 277
 278	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
 279	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
 280	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
 281			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
 282}
 283
 284/**
 285 * ice_vc_send_msg_to_vf - Send message to VF
 286 * @vf: pointer to the VF info
 287 * @v_opcode: virtual channel opcode
 288 * @v_retval: virtual channel return value
 289 * @msg: pointer to the msg buffer
 290 * @msglen: msg length
 291 *
 292 * send msg to VF
 293 */
 294int
 295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
 296		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 297{
 298	struct device *dev;
 299	struct ice_pf *pf;
 300	int aq_ret;
 301
 302	pf = vf->pf;
 303	dev = ice_pf_to_dev(pf);
 304
 305	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
 306				       msg, msglen, NULL);
 307	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
 308		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
 309			 vf->vf_id, aq_ret,
 310			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
 311		return -EIO;
 312	}
 313
 314	return 0;
 315}
 316
 317/**
 318 * ice_vc_get_ver_msg
 319 * @vf: pointer to the VF info
 320 * @msg: pointer to the msg buffer
 321 *
 322 * called from the VF to request the API version used by the PF
 323 */
 324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
 325{
 326	struct virtchnl_version_info info = {
 327		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
 328	};
 329
 330	vf->vf_ver = *(struct virtchnl_version_info *)msg;
 331	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
 332	if (VF_IS_V10(&vf->vf_ver))
 333		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
 334
 335	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
 336				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
 337				     sizeof(struct virtchnl_version_info));
 338}
 339
 340/**
 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
 342 * @vf: VF used to determine max frame size
 343 *
 344 * Max frame size is determined based on the current port's max frame size and
 345 * whether a port VLAN is configured on this VF. The VF is not aware whether
 346 * it's in a port VLAN so the PF needs to account for this in max frame size
 347 * checks and sending the max frame size to the VF.
 348 */
 349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
 350{
 351	struct ice_port_info *pi = ice_vf_get_port_info(vf);
 352	u16 max_frame_size;
 353
 354	max_frame_size = pi->phy.link_info.max_frame_size;
 355
 356	if (ice_vf_is_port_vlan_ena(vf))
 357		max_frame_size -= VLAN_HLEN;
 358
 359	return max_frame_size;
 360}
 361
 362/**
 363 * ice_vc_get_vlan_caps
 364 * @hw: pointer to the hw
 365 * @vf: pointer to the VF info
 366 * @vsi: pointer to the VSI
 367 * @driver_caps: current driver caps
 368 *
 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
 370 */
 371static u32
 372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
 373		     u32 driver_caps)
 374{
 375	if (ice_is_eswitch_mode_switchdev(vf->pf))
 376		/* In switchdev setting VLAN from VF isn't supported */
 377		return 0;
 378
 379	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
 380		/* VLAN offloads based on current device configuration */
 381		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
 382	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
 383		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
 384		 * these two conditions, which amounts to guest VLAN filtering
 385		 * and offloads being based on the inner VLAN or the
 386		 * inner/single VLAN respectively and don't allow VF to
 387		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
 388		 */
 389		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
 390			return VIRTCHNL_VF_OFFLOAD_VLAN;
 391		} else if (!ice_is_dvm_ena(hw) &&
 392			   !ice_vf_is_port_vlan_ena(vf)) {
 393			/* configure backward compatible support for VFs that
 394			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
 395			 * configured in SVM, and no port VLAN is configured
 396			 */
 397			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
 398			return VIRTCHNL_VF_OFFLOAD_VLAN;
 399		} else if (ice_is_dvm_ena(hw)) {
 400			/* configure software offloaded VLAN support when DVM
 401			 * is enabled, but no port VLAN is enabled
 402			 */
 403			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
 404		}
 405	}
 406
 407	return 0;
 408}
 409
 410/**
 411 * ice_vc_get_vf_res_msg
 412 * @vf: pointer to the VF info
 413 * @msg: pointer to the msg buffer
 414 *
 415 * called from the VF to request its resources
 416 */
 417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
 418{
 419	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 420	struct virtchnl_vf_resource *vfres = NULL;
 421	struct ice_hw *hw = &vf->pf->hw;
 422	struct ice_vsi *vsi;
 423	int len = 0;
 424	int ret;
 425
 426	if (ice_check_vf_init(vf)) {
 427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 428		goto err;
 429	}
 430
 431	len = virtchnl_struct_size(vfres, vsi_res, 0);
 432
 433	vfres = kzalloc(len, GFP_KERNEL);
 434	if (!vfres) {
 435		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 436		len = 0;
 437		goto err;
 438	}
 439	if (VF_IS_V11(&vf->vf_ver))
 440		vf->driver_caps = *(u32 *)msg;
 441	else
 442		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
 443				  VIRTCHNL_VF_OFFLOAD_VLAN;
 444
 445	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
 446	vsi = ice_get_vf_vsi(vf);
 447	if (!vsi) {
 448		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 449		goto err;
 450	}
 451
 452	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
 453						    vf->driver_caps);
 454
 455	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
 456		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
 457
 458	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
 459		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
 460
 461	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
 462		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
 463
 464	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
 465		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
 466
 467	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
 468		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
 469
 470	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
 471		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
 472
 473	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
 474		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
 475
 476	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
 477		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
 478
 479	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
 480		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
 481
 482	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
 483		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
 484
 485	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
 486		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
 487
 488	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
 489		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
 490
 491	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
 492		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
 493
 494	vfres->num_vsis = 1;
 495	/* Tx and Rx queue are equal for VF */
 496	vfres->num_queue_pairs = vsi->num_txq;
 497	vfres->max_vectors = vf->num_msix;
 498	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
 499	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
 500	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
 501
 502	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
 503	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
 504	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
 505	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
 506			vf->hw_lan_addr);
 507
 508	/* match guest capabilities */
 509	vf->driver_caps = vfres->vf_cap_flags;
 510
 511	ice_vc_set_caps_allowlist(vf);
 512	ice_vc_set_working_allowlist(vf);
 513
 514	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 515
 516err:
 517	/* send the response back to the VF */
 518	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
 519				    (u8 *)vfres, len);
 520
 521	kfree(vfres);
 522	return ret;
 523}
 524
 525/**
 526 * ice_vc_reset_vf_msg
 527 * @vf: pointer to the VF info
 528 *
 529 * called from the VF to reset itself,
 530 * unlike other virtchnl messages, PF driver
 531 * doesn't send the response back to the VF
 532 */
 533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
 534{
 535	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
 536		ice_reset_vf(vf, 0);
 537}
 538
 539/**
 540 * ice_vc_isvalid_vsi_id
 541 * @vf: pointer to the VF info
 542 * @vsi_id: VF relative VSI ID
 543 *
 544 * check for the valid VSI ID
 545 */
 546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
 547{
 548	struct ice_pf *pf = vf->pf;
 549	struct ice_vsi *vsi;
 550
 551	vsi = ice_find_vsi(pf, vsi_id);
 552
 553	return (vsi && (vsi->vf == vf));
 554}
 555
 556/**
 557 * ice_vc_isvalid_q_id
 558 * @vf: pointer to the VF info
 559 * @vsi_id: VSI ID
 560 * @qid: VSI relative queue ID
 561 *
 562 * check for the valid queue ID
 563 */
 564static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
 565{
 566	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
 567	/* allocated Tx and Rx queues should be always equal for VF VSI */
 568	return (vsi && (qid < vsi->alloc_txq));
 569}
 570
 571/**
 572 * ice_vc_isvalid_ring_len
 573 * @ring_len: length of ring
 574 *
 575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
 576 * or zero
 577 */
 578static bool ice_vc_isvalid_ring_len(u16 ring_len)
 579{
 580	return ring_len == 0 ||
 581	       (ring_len >= ICE_MIN_NUM_DESC &&
 582		ring_len <= ICE_MAX_NUM_DESC &&
 583		!(ring_len % ICE_REQ_DESC_MULTIPLE));
 584}
 585
 586/**
 587 * ice_vc_validate_pattern
 588 * @vf: pointer to the VF info
 589 * @proto: virtchnl protocol headers
 590 *
 591 * validate the pattern is supported or not.
 592 *
 593 * Return: true on success, false on error.
 594 */
 595bool
 596ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
 597{
 598	bool is_ipv4 = false;
 599	bool is_ipv6 = false;
 600	bool is_udp = false;
 601	u16 ptype = -1;
 602	int i = 0;
 603
 604	while (i < proto->count &&
 605	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
 606		switch (proto->proto_hdr[i].type) {
 607		case VIRTCHNL_PROTO_HDR_ETH:
 608			ptype = ICE_PTYPE_MAC_PAY;
 609			break;
 610		case VIRTCHNL_PROTO_HDR_IPV4:
 611			ptype = ICE_PTYPE_IPV4_PAY;
 612			is_ipv4 = true;
 613			break;
 614		case VIRTCHNL_PROTO_HDR_IPV6:
 615			ptype = ICE_PTYPE_IPV6_PAY;
 616			is_ipv6 = true;
 617			break;
 618		case VIRTCHNL_PROTO_HDR_UDP:
 619			if (is_ipv4)
 620				ptype = ICE_PTYPE_IPV4_UDP_PAY;
 621			else if (is_ipv6)
 622				ptype = ICE_PTYPE_IPV6_UDP_PAY;
 623			is_udp = true;
 624			break;
 625		case VIRTCHNL_PROTO_HDR_TCP:
 626			if (is_ipv4)
 627				ptype = ICE_PTYPE_IPV4_TCP_PAY;
 628			else if (is_ipv6)
 629				ptype = ICE_PTYPE_IPV6_TCP_PAY;
 630			break;
 631		case VIRTCHNL_PROTO_HDR_SCTP:
 632			if (is_ipv4)
 633				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
 634			else if (is_ipv6)
 635				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
 636			break;
 637		case VIRTCHNL_PROTO_HDR_GTPU_IP:
 638		case VIRTCHNL_PROTO_HDR_GTPU_EH:
 639			if (is_ipv4)
 640				ptype = ICE_MAC_IPV4_GTPU;
 641			else if (is_ipv6)
 642				ptype = ICE_MAC_IPV6_GTPU;
 643			goto out;
 644		case VIRTCHNL_PROTO_HDR_L2TPV3:
 645			if (is_ipv4)
 646				ptype = ICE_MAC_IPV4_L2TPV3;
 647			else if (is_ipv6)
 648				ptype = ICE_MAC_IPV6_L2TPV3;
 649			goto out;
 650		case VIRTCHNL_PROTO_HDR_ESP:
 651			if (is_ipv4)
 652				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
 653						ICE_MAC_IPV4_ESP;
 654			else if (is_ipv6)
 655				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
 656						ICE_MAC_IPV6_ESP;
 657			goto out;
 658		case VIRTCHNL_PROTO_HDR_AH:
 659			if (is_ipv4)
 660				ptype = ICE_MAC_IPV4_AH;
 661			else if (is_ipv6)
 662				ptype = ICE_MAC_IPV6_AH;
 663			goto out;
 664		case VIRTCHNL_PROTO_HDR_PFCP:
 665			if (is_ipv4)
 666				ptype = ICE_MAC_IPV4_PFCP_SESSION;
 667			else if (is_ipv6)
 668				ptype = ICE_MAC_IPV6_PFCP_SESSION;
 669			goto out;
 670		default:
 671			break;
 672		}
 673		i++;
 674	}
 675
 676out:
 677	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
 678}
 679
 680/**
 681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
 682 * a specific virtchnl RSS cfg
 683 * @hw: pointer to the hardware
 684 * @rss_cfg: pointer to the virtchnl RSS cfg
 685 * @hash_cfg: pointer to the HW hash configuration
 686 *
 687 * Return true if all the protocol header and hash fields in the RSS cfg could
 688 * be parsed, else return false
 689 *
 690 * This function parses the virtchnl RSS cfg to be the intended
 691 * hash fields and the intended header for RSS configuration
 692 */
 693static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
 694				 struct virtchnl_rss_cfg *rss_cfg,
 695				 struct ice_rss_hash_cfg *hash_cfg)
 696{
 697	const struct ice_vc_hash_field_match_type *hf_list;
 698	const struct ice_vc_hdr_match_type *hdr_list;
 699	int i, hf_list_len, hdr_list_len;
 700	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
 701	u64 *hash_flds = &hash_cfg->hash_flds;
 702
 703	/* set outer layer RSS as default */
 704	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
 705
 706	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
 707		hash_cfg->symm = true;
 708	else
 709		hash_cfg->symm = false;
 710
 711	hf_list = ice_vc_hash_field_list;
 712	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
 713	hdr_list = ice_vc_hdr_list;
 714	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
 715
 716	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
 717		struct virtchnl_proto_hdr *proto_hdr =
 718					&rss_cfg->proto_hdrs.proto_hdr[i];
 719		bool hdr_found = false;
 720		int j;
 721
 722		/* Find matched ice headers according to virtchnl headers. */
 723		for (j = 0; j < hdr_list_len; j++) {
 724			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
 725
 726			if (proto_hdr->type == hdr_map.vc_hdr) {
 727				*addl_hdrs |= hdr_map.ice_hdr;
 728				hdr_found = true;
 729			}
 730		}
 731
 732		if (!hdr_found)
 733			return false;
 734
 735		/* Find matched ice hash fields according to
 736		 * virtchnl hash fields.
 737		 */
 738		for (j = 0; j < hf_list_len; j++) {
 739			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
 740
 741			if (proto_hdr->type == hf_map.vc_hdr &&
 742			    proto_hdr->field_selector == hf_map.vc_hash_field) {
 743				*hash_flds |= hf_map.ice_hash_field;
 744				break;
 745			}
 746		}
 747	}
 748
 749	return true;
 750}
 751
 752/**
 753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
 754 * RSS offloads
 755 * @caps: VF driver negotiated capabilities
 756 *
 757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
 758 * else return false
 759 */
 760static bool ice_vf_adv_rss_offload_ena(u32 caps)
 761{
 762	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
 763}
 764
 765/**
 766 * ice_vc_handle_rss_cfg
 767 * @vf: pointer to the VF info
 768 * @msg: pointer to the message buffer
 769 * @add: add a RSS config if true, otherwise delete a RSS config
 770 *
 771 * This function adds/deletes a RSS config
 772 */
 773static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
 774{
 775	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
 776	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
 777	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 778	struct device *dev = ice_pf_to_dev(vf->pf);
 779	struct ice_hw *hw = &vf->pf->hw;
 780	struct ice_vsi *vsi;
 781
 782	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 783		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
 784			vf->vf_id);
 785		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
 786		goto error_param;
 787	}
 788
 789	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
 790		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
 791			vf->vf_id);
 792		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 793		goto error_param;
 794	}
 795
 796	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 797		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 798		goto error_param;
 799	}
 800
 801	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
 802	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
 803	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
 804		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
 805			vf->vf_id);
 806		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 807		goto error_param;
 808	}
 809
 810	vsi = ice_get_vf_vsi(vf);
 811	if (!vsi) {
 812		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 813		goto error_param;
 814	}
 815
 816	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 817		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 818		goto error_param;
 819	}
 820
 821	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
 822		struct ice_vsi_ctx *ctx;
 823		u8 lut_type, hash_type;
 824		int status;
 825
 826		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 827		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
 828				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
 829
 830		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 831		if (!ctx) {
 832			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 833			goto error_param;
 834		}
 835
 836		ctx->info.q_opt_rss =
 837			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
 838			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
 839
 840		/* Preserve existing queueing option setting */
 841		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
 842					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
 843		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
 844		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
 845
 846		ctx->info.valid_sections =
 847				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
 848
 849		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
 850		if (status) {
 851			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
 852				status, ice_aq_str(hw->adminq.sq_last_status));
 853			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 854		} else {
 855			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
 856		}
 857
 858		kfree(ctx);
 859	} else {
 860		struct ice_rss_hash_cfg cfg;
 861
 862		/* Only check for none raw pattern case */
 863		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
 864			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 865			goto error_param;
 866		}
 867		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
 868		cfg.hash_flds = ICE_HASH_INVALID;
 869		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
 870
 871		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
 872			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 873			goto error_param;
 874		}
 875
 876		if (add) {
 877			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
 878				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 879				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
 880					vsi->vsi_num, v_ret);
 881			}
 882		} else {
 883			int status;
 884
 885			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
 886			/* We just ignore -ENOENT, because if two configurations
 887			 * share the same profile remove one of them actually
 888			 * removes both, since the profile is deleted.
 889			 */
 890			if (status && status != -ENOENT) {
 891				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 892				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
 893					vf->vf_id, status);
 894			}
 895		}
 896	}
 897
 898error_param:
 899	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
 900}
 901
 902/**
 903 * ice_vc_config_rss_key
 904 * @vf: pointer to the VF info
 905 * @msg: pointer to the msg buffer
 906 *
 907 * Configure the VF's RSS key
 908 */
 909static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
 910{
 911	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 912	struct virtchnl_rss_key *vrk =
 913		(struct virtchnl_rss_key *)msg;
 914	struct ice_vsi *vsi;
 915
 916	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 917		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 918		goto error_param;
 919	}
 920
 921	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
 922		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 923		goto error_param;
 924	}
 925
 926	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
 927		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 928		goto error_param;
 929	}
 930
 931	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 932		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 933		goto error_param;
 934	}
 935
 936	vsi = ice_get_vf_vsi(vf);
 937	if (!vsi) {
 938		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 939		goto error_param;
 940	}
 941
 942	if (ice_set_rss_key(vsi, vrk->key))
 943		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 944error_param:
 945	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
 946				     NULL, 0);
 947}
 948
 949/**
 950 * ice_vc_config_rss_lut
 951 * @vf: pointer to the VF info
 952 * @msg: pointer to the msg buffer
 953 *
 954 * Configure the VF's RSS LUT
 955 */
 956static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
 957{
 958	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
 959	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 960	struct ice_vsi *vsi;
 961
 962	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 963		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 964		goto error_param;
 965	}
 966
 967	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
 968		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 969		goto error_param;
 970	}
 971
 972	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
 973		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 974		goto error_param;
 975	}
 976
 977	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 978		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 979		goto error_param;
 980	}
 981
 982	vsi = ice_get_vf_vsi(vf);
 983	if (!vsi) {
 984		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 985		goto error_param;
 986	}
 987
 988	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
 989		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 990error_param:
 991	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
 992				     NULL, 0);
 993}
 994
 995/**
 996 * ice_vc_config_rss_hfunc
 997 * @vf: pointer to the VF info
 998 * @msg: pointer to the msg buffer
 999 *
1000 * Configure the VF's RSS Hash function
1001 */
1002static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003{
1004	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007	struct ice_vsi *vsi;
1008
1009	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011		goto error_param;
1012	}
1013
1014	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016		goto error_param;
1017	}
1018
1019	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021		goto error_param;
1022	}
1023
1024	vsi = ice_get_vf_vsi(vf);
1025	if (!vsi) {
1026		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027		goto error_param;
1028	}
1029
1030	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033	if (ice_set_rss_hfunc(vsi, hfunc))
1034		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035error_param:
1036	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037				     NULL, 0);
1038}
1039
1040/**
1041 * ice_vc_cfg_promiscuous_mode_msg
1042 * @vf: pointer to the VF info
1043 * @msg: pointer to the msg buffer
1044 *
1045 * called from the VF to configure VF VSIs promiscuous mode
1046 */
1047static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1048{
1049	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1050	bool rm_promisc, alluni = false, allmulti = false;
1051	struct virtchnl_promisc_info *info =
1052	    (struct virtchnl_promisc_info *)msg;
1053	struct ice_vsi_vlan_ops *vlan_ops;
1054	int mcast_err = 0, ucast_err = 0;
1055	struct ice_pf *pf = vf->pf;
1056	struct ice_vsi *vsi;
1057	u8 mcast_m, ucast_m;
1058	struct device *dev;
1059	int ret = 0;
1060
1061	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1062		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1063		goto error_param;
1064	}
1065
1066	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1067		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1068		goto error_param;
1069	}
1070
1071	vsi = ice_get_vf_vsi(vf);
1072	if (!vsi) {
1073		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1074		goto error_param;
1075	}
1076
1077	dev = ice_pf_to_dev(pf);
1078	if (!ice_is_vf_trusted(vf)) {
1079		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1080			vf->vf_id);
1081		/* Leave v_ret alone, lie to the VF on purpose. */
1082		goto error_param;
1083	}
1084
1085	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1086		alluni = true;
1087
1088	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1089		allmulti = true;
1090
1091	rm_promisc = !allmulti && !alluni;
1092
1093	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1094	if (rm_promisc)
1095		ret = vlan_ops->ena_rx_filtering(vsi);
1096	else
1097		ret = vlan_ops->dis_rx_filtering(vsi);
1098	if (ret) {
1099		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1100		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1101		goto error_param;
1102	}
1103
1104	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1105
1106	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1107		if (alluni) {
1108			/* in this case we're turning on promiscuous mode */
1109			ret = ice_set_dflt_vsi(vsi);
1110		} else {
1111			/* in this case we're turning off promiscuous mode */
1112			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1113				ret = ice_clear_dflt_vsi(vsi);
1114		}
1115
1116		/* in this case we're turning on/off only
1117		 * allmulticast
1118		 */
1119		if (allmulti)
1120			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1121		else
1122			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1123
1124		if (ret) {
1125			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1126				vf->vf_id, ret);
1127			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1128			goto error_param;
1129		}
1130	} else {
1131		if (alluni)
1132			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1133		else
1134			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1135
1136		if (allmulti)
1137			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1138		else
1139			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1140
1141		if (ucast_err || mcast_err)
1142			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1143	}
1144
1145	if (!mcast_err) {
1146		if (allmulti &&
1147		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1148			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1149				 vf->vf_id);
1150		else if (!allmulti &&
1151			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1152					    vf->vf_states))
1153			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1154				 vf->vf_id);
1155	} else {
1156		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1157			vf->vf_id, mcast_err);
1158	}
1159
1160	if (!ucast_err) {
1161		if (alluni &&
1162		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1163			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1164				 vf->vf_id);
1165		else if (!alluni &&
1166			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1167					    vf->vf_states))
1168			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1169				 vf->vf_id);
1170	} else {
1171		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1172			vf->vf_id, ucast_err);
1173	}
1174
1175error_param:
1176	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1177				     v_ret, NULL, 0);
1178}
1179
1180/**
1181 * ice_vc_get_stats_msg
1182 * @vf: pointer to the VF info
1183 * @msg: pointer to the msg buffer
1184 *
1185 * called from the VF to get VSI stats
1186 */
1187static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1188{
1189	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1190	struct virtchnl_queue_select *vqs =
1191		(struct virtchnl_queue_select *)msg;
1192	struct ice_eth_stats stats = { 0 };
1193	struct ice_vsi *vsi;
1194
1195	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1196		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1197		goto error_param;
1198	}
1199
1200	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1201		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1202		goto error_param;
1203	}
1204
1205	vsi = ice_get_vf_vsi(vf);
1206	if (!vsi) {
1207		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1208		goto error_param;
1209	}
1210
1211	ice_update_eth_stats(vsi);
1212
1213	stats = vsi->eth_stats;
1214
1215error_param:
1216	/* send the response to the VF */
1217	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1218				     (u8 *)&stats, sizeof(stats));
1219}
1220
1221/**
1222 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1223 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1224 *
1225 * Return true on successful validation, else false
1226 */
1227static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1228{
1229	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1230	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1231	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1232		return false;
1233
1234	return true;
1235}
1236
1237/**
1238 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1239 * @vsi: VSI of the VF to configure
1240 * @q_idx: VF queue index used to determine the queue in the PF's space
1241 */
1242static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1243{
1244	struct ice_hw *hw = &vsi->back->hw;
1245	u32 pfq = vsi->txq_map[q_idx];
1246	u32 reg;
1247
1248	reg = rd32(hw, QINT_TQCTL(pfq));
1249
1250	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1251	 * this is most likely a poll mode VF driver, so don't enable an
1252	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1253	 */
1254	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1255		return;
1256
1257	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1258}
1259
1260/**
1261 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1262 * @vsi: VSI of the VF to configure
1263 * @q_idx: VF queue index used to determine the queue in the PF's space
1264 */
1265static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1266{
1267	struct ice_hw *hw = &vsi->back->hw;
1268	u32 pfq = vsi->rxq_map[q_idx];
1269	u32 reg;
1270
1271	reg = rd32(hw, QINT_RQCTL(pfq));
1272
1273	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1274	 * this is most likely a poll mode VF driver, so don't enable an
1275	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1276	 */
1277	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1278		return;
1279
1280	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1281}
1282
1283/**
1284 * ice_vc_ena_qs_msg
1285 * @vf: pointer to the VF info
1286 * @msg: pointer to the msg buffer
1287 *
1288 * called from the VF to enable all or specific queue(s)
1289 */
1290static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1291{
1292	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1293	struct virtchnl_queue_select *vqs =
1294	    (struct virtchnl_queue_select *)msg;
1295	struct ice_vsi *vsi;
1296	unsigned long q_map;
1297	u16 vf_q_id;
1298
1299	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1300		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301		goto error_param;
1302	}
1303
1304	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1305		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1306		goto error_param;
1307	}
1308
1309	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1310		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1311		goto error_param;
1312	}
1313
1314	vsi = ice_get_vf_vsi(vf);
1315	if (!vsi) {
1316		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1317		goto error_param;
1318	}
1319
1320	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1321	 * Tx queue group list was configured and the context bits were
1322	 * programmed using ice_vsi_cfg_txqs
1323	 */
1324	q_map = vqs->rx_queues;
1325	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1326		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1327			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328			goto error_param;
1329		}
1330
1331		/* Skip queue if enabled */
1332		if (test_bit(vf_q_id, vf->rxq_ena))
1333			continue;
1334
1335		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1336			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1337				vf_q_id, vsi->vsi_num);
1338			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1339			goto error_param;
1340		}
1341
1342		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1343		set_bit(vf_q_id, vf->rxq_ena);
1344	}
1345
1346	q_map = vqs->tx_queues;
1347	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1348		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1349			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1350			goto error_param;
1351		}
1352
1353		/* Skip queue if enabled */
1354		if (test_bit(vf_q_id, vf->txq_ena))
1355			continue;
1356
1357		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1358		set_bit(vf_q_id, vf->txq_ena);
1359	}
1360
1361	/* Set flag to indicate that queues are enabled */
1362	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1363		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1364
1365error_param:
1366	/* send the response to the VF */
1367	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1368				     NULL, 0);
1369}
1370
1371/**
1372 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1373 * @vf: VF to disable queue for
1374 * @vsi: VSI for the VF
1375 * @q_id: VF relative (0-based) queue ID
1376 *
1377 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1378 * disabled then clear q_id bit in the enabled queues bitmap and return
1379 * success. Otherwise return error.
1380 */
1381static int
1382ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1383{
1384	struct ice_txq_meta txq_meta = { 0 };
1385	struct ice_tx_ring *ring;
1386	int err;
1387
1388	if (!test_bit(q_id, vf->txq_ena))
1389		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1390			q_id, vsi->vsi_num);
1391
1392	ring = vsi->tx_rings[q_id];
1393	if (!ring)
1394		return -EINVAL;
1395
1396	ice_fill_txq_meta(vsi, ring, &txq_meta);
1397
1398	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1399	if (err) {
1400		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1401			q_id, vsi->vsi_num);
1402		return err;
1403	}
1404
1405	/* Clear enabled queues flag */
1406	clear_bit(q_id, vf->txq_ena);
1407
1408	return 0;
1409}
1410
1411/**
1412 * ice_vc_dis_qs_msg
1413 * @vf: pointer to the VF info
1414 * @msg: pointer to the msg buffer
1415 *
1416 * called from the VF to disable all or specific queue(s)
1417 */
1418static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1419{
1420	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1421	struct virtchnl_queue_select *vqs =
1422	    (struct virtchnl_queue_select *)msg;
1423	struct ice_vsi *vsi;
1424	unsigned long q_map;
1425	u16 vf_q_id;
1426
1427	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1428	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1429		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1430		goto error_param;
1431	}
1432
1433	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1434		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1435		goto error_param;
1436	}
1437
1438	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1439		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1440		goto error_param;
1441	}
1442
1443	vsi = ice_get_vf_vsi(vf);
1444	if (!vsi) {
1445		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1446		goto error_param;
1447	}
1448
1449	if (vqs->tx_queues) {
1450		q_map = vqs->tx_queues;
1451
1452		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1453			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1454				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1455				goto error_param;
1456			}
1457
1458			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1459				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1460				goto error_param;
1461			}
1462		}
1463	}
1464
1465	q_map = vqs->rx_queues;
1466	/* speed up Rx queue disable by batching them if possible */
1467	if (q_map &&
1468	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1469		if (ice_vsi_stop_all_rx_rings(vsi)) {
1470			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1471				vsi->vsi_num);
1472			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1473			goto error_param;
1474		}
1475
1476		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1477	} else if (q_map) {
1478		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1479			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1480				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1481				goto error_param;
1482			}
1483
1484			/* Skip queue if not enabled */
1485			if (!test_bit(vf_q_id, vf->rxq_ena))
1486				continue;
1487
1488			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1489						     true)) {
1490				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1491					vf_q_id, vsi->vsi_num);
1492				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1493				goto error_param;
1494			}
1495
1496			/* Clear enabled queues flag */
1497			clear_bit(vf_q_id, vf->rxq_ena);
1498		}
1499	}
1500
1501	/* Clear enabled queues flag */
1502	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1503		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1504
1505error_param:
1506	/* send the response to the VF */
1507	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1508				     NULL, 0);
1509}
1510
1511/**
1512 * ice_cfg_interrupt
1513 * @vf: pointer to the VF info
1514 * @vsi: the VSI being configured
1515 * @vector_id: vector ID
1516 * @map: vector map for mapping vectors to queues
1517 * @q_vector: structure for interrupt vector
1518 * configure the IRQ to queue map
1519 */
1520static int
1521ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1522		  struct virtchnl_vector_map *map,
1523		  struct ice_q_vector *q_vector)
1524{
1525	u16 vsi_q_id, vsi_q_id_idx;
1526	unsigned long qmap;
1527
1528	q_vector->num_ring_rx = 0;
1529	q_vector->num_ring_tx = 0;
1530
1531	qmap = map->rxq_map;
1532	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1533		vsi_q_id = vsi_q_id_idx;
1534
1535		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1536			return VIRTCHNL_STATUS_ERR_PARAM;
1537
1538		q_vector->num_ring_rx++;
1539		q_vector->rx.itr_idx = map->rxitr_idx;
1540		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1541		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1542				      q_vector->rx.itr_idx);
1543	}
1544
1545	qmap = map->txq_map;
1546	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1547		vsi_q_id = vsi_q_id_idx;
1548
1549		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1550			return VIRTCHNL_STATUS_ERR_PARAM;
1551
1552		q_vector->num_ring_tx++;
1553		q_vector->tx.itr_idx = map->txitr_idx;
1554		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1555		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1556				      q_vector->tx.itr_idx);
1557	}
1558
1559	return VIRTCHNL_STATUS_SUCCESS;
1560}
1561
1562/**
1563 * ice_vc_cfg_irq_map_msg
1564 * @vf: pointer to the VF info
1565 * @msg: pointer to the msg buffer
1566 *
1567 * called from the VF to configure the IRQ to queue map
1568 */
1569static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1570{
1571	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1572	u16 num_q_vectors_mapped, vsi_id, vector_id;
1573	struct virtchnl_irq_map_info *irqmap_info;
1574	struct virtchnl_vector_map *map;
1575	struct ice_vsi *vsi;
1576	int i;
1577
1578	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1579	num_q_vectors_mapped = irqmap_info->num_vectors;
1580
1581	/* Check to make sure number of VF vectors mapped is not greater than
1582	 * number of VF vectors originally allocated, and check that
1583	 * there is actually at least a single VF queue vector mapped
1584	 */
1585	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1586	    vf->num_msix < num_q_vectors_mapped ||
1587	    !num_q_vectors_mapped) {
1588		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1589		goto error_param;
1590	}
1591
1592	vsi = ice_get_vf_vsi(vf);
1593	if (!vsi) {
1594		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1595		goto error_param;
1596	}
1597
1598	for (i = 0; i < num_q_vectors_mapped; i++) {
1599		struct ice_q_vector *q_vector;
1600
1601		map = &irqmap_info->vecmap[i];
1602
1603		vector_id = map->vector_id;
1604		vsi_id = map->vsi_id;
1605		/* vector_id is always 0-based for each VF, and can never be
1606		 * larger than or equal to the max allowed interrupts per VF
1607		 */
1608		if (!(vector_id < vf->num_msix) ||
1609		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1610		    (!vector_id && (map->rxq_map || map->txq_map))) {
1611			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1612			goto error_param;
1613		}
1614
1615		/* No need to map VF miscellaneous or rogue vector */
1616		if (!vector_id)
1617			continue;
1618
1619		/* Subtract non queue vector from vector_id passed by VF
1620		 * to get actual number of VSI queue vector array index
1621		 */
1622		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1623		if (!q_vector) {
1624			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625			goto error_param;
1626		}
1627
1628		/* lookout for the invalid queue index */
1629		v_ret = (enum virtchnl_status_code)
1630			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1631		if (v_ret)
1632			goto error_param;
1633	}
1634
1635error_param:
1636	/* send the response to the VF */
1637	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1638				     NULL, 0);
1639}
1640
1641/**
1642 * ice_vc_cfg_qs_msg
1643 * @vf: pointer to the VF info
1644 * @msg: pointer to the msg buffer
1645 *
1646 * called from the VF to configure the Rx/Tx queues
1647 */
1648static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1649{
1650	struct virtchnl_vsi_queue_config_info *qci =
1651	    (struct virtchnl_vsi_queue_config_info *)msg;
1652	struct virtchnl_queue_pair_info *qpi;
1653	struct ice_pf *pf = vf->pf;
1654	struct ice_lag *lag;
1655	struct ice_vsi *vsi;
1656	u8 act_prt, pri_prt;
1657	int i = -1, q_idx;
1658
1659	lag = pf->lag;
1660	mutex_lock(&pf->lag_mutex);
1661	act_prt = ICE_LAG_INVALID_PORT;
1662	pri_prt = pf->hw.port_info->lport;
1663	if (lag && lag->bonded && lag->primary) {
1664		act_prt = lag->active_port;
1665		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1666		    lag->upper_netdev)
1667			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1668		else
1669			act_prt = ICE_LAG_INVALID_PORT;
1670	}
1671
1672	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1673		goto error_param;
1674
1675	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1676		goto error_param;
1677
1678	vsi = ice_get_vf_vsi(vf);
1679	if (!vsi)
1680		goto error_param;
1681
1682	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1683	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1684		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1685			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1686		goto error_param;
1687	}
1688
1689	for (i = 0; i < qci->num_queue_pairs; i++) {
1690		if (!qci->qpair[i].rxq.crc_disable)
1691			continue;
1692
1693		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1694		    vf->vlan_strip_ena)
1695			goto error_param;
1696	}
1697
1698	for (i = 0; i < qci->num_queue_pairs; i++) {
1699		qpi = &qci->qpair[i];
1700		if (qpi->txq.vsi_id != qci->vsi_id ||
1701		    qpi->rxq.vsi_id != qci->vsi_id ||
1702		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1703		    qpi->txq.headwb_enabled ||
1704		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1705		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1706		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1707			goto error_param;
1708		}
1709
1710		q_idx = qpi->rxq.queue_id;
1711
1712		/* make sure selected "q_idx" is in valid range of queues
1713		 * for selected "vsi"
1714		 */
1715		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1716			goto error_param;
1717		}
1718
1719		/* copy Tx queue info from VF into VSI */
1720		if (qpi->txq.ring_len > 0) {
1721			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1722			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1723
1724			/* Disable any existing queue first */
1725			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1726				goto error_param;
1727
1728			/* Configure a queue with the requested settings */
1729			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1730				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1731					 vf->vf_id, i);
1732				goto error_param;
1733			}
1734		}
1735
1736		/* copy Rx queue info from VF into VSI */
1737		if (qpi->rxq.ring_len > 0) {
1738			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1739			u32 rxdid;
1740
1741			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1742			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1743
1744			if (qpi->rxq.crc_disable)
1745				vsi->rx_rings[q_idx]->flags |=
1746					ICE_RX_FLAGS_CRC_STRIP_DIS;
1747			else
1748				vsi->rx_rings[q_idx]->flags &=
1749					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1750
1751			if (qpi->rxq.databuffer_size != 0 &&
1752			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1753			     qpi->rxq.databuffer_size < 1024))
1754				goto error_param;
1755			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1756			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1757			if (qpi->rxq.max_pkt_size > max_frame_size ||
1758			    qpi->rxq.max_pkt_size < 64)
1759				goto error_param;
1760
1761			vsi->max_frame = qpi->rxq.max_pkt_size;
1762			/* add space for the port VLAN since the VF driver is
1763			 * not expected to account for it in the MTU
1764			 * calculation
1765			 */
1766			if (ice_vf_is_port_vlan_ena(vf))
1767				vsi->max_frame += VLAN_HLEN;
1768
1769			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1770				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1771					 vf->vf_id, i);
1772				goto error_param;
1773			}
1774
1775			/* If Rx flex desc is supported, select RXDID for Rx
1776			 * queues. Otherwise, use legacy 32byte descriptor
1777			 * format. Legacy 16byte descriptor is not supported.
1778			 * If this RXDID is selected, return error.
1779			 */
1780			if (vf->driver_caps &
1781			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1782				rxdid = qpi->rxq.rxdid;
1783				if (!(BIT(rxdid) & pf->supported_rxdids))
1784					goto error_param;
1785			} else {
1786				rxdid = ICE_RXDID_LEGACY_1;
1787			}
1788
1789			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1790						vsi->rxq_map[q_idx],
1791						rxdid, 0x03, false);
1792		}
1793	}
1794
1795	if (lag && lag->bonded && lag->primary &&
1796	    act_prt != ICE_LAG_INVALID_PORT)
1797		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1798	mutex_unlock(&pf->lag_mutex);
1799
1800	/* send the response to the VF */
1801	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1802				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1803error_param:
1804	/* disable whatever we can */
1805	for (; i >= 0; i--) {
1806		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1807			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1808				vf->vf_id, i);
1809		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1810			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1811				vf->vf_id, i);
1812	}
1813
1814	if (lag && lag->bonded && lag->primary &&
1815	    act_prt != ICE_LAG_INVALID_PORT)
1816		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1817	mutex_unlock(&pf->lag_mutex);
1818
1819	ice_lag_move_new_vf_nodes(vf);
1820
1821	/* send the response to the VF */
1822	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1823				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1824}
1825
1826/**
1827 * ice_can_vf_change_mac
1828 * @vf: pointer to the VF info
1829 *
1830 * Return true if the VF is allowed to change its MAC filters, false otherwise
1831 */
1832static bool ice_can_vf_change_mac(struct ice_vf *vf)
1833{
1834	/* If the VF MAC address has been set administratively (via the
1835	 * ndo_set_vf_mac command), then deny permission to the VF to
1836	 * add/delete unicast MAC addresses, unless the VF is trusted
1837	 */
1838	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1839		return false;
1840
1841	return true;
1842}
1843
1844/**
1845 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1846 * @vc_ether_addr: used to extract the type
1847 */
1848static u8
1849ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1850{
1851	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1852}
1853
1854/**
1855 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1856 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1857 */
1858static bool
1859ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1860{
1861	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1862
1863	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1864}
1865
1866/**
1867 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1868 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1869 *
1870 * This function should only be called when the MAC address in
1871 * virtchnl_ether_addr is a valid unicast MAC
1872 */
1873static bool
1874ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1875{
1876	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1877
1878	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1879}
1880
1881/**
1882 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1883 * @vf: VF to update
1884 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1885 */
1886static void
1887ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1888{
1889	u8 *mac_addr = vc_ether_addr->addr;
1890
1891	if (!is_valid_ether_addr(mac_addr))
1892		return;
1893
1894	/* only allow legacy VF drivers to set the device and hardware MAC if it
1895	 * is zero and allow new VF drivers to set the hardware MAC if the type
1896	 * was correctly specified over VIRTCHNL
1897	 */
1898	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1899	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1900	    ice_is_vc_addr_primary(vc_ether_addr)) {
1901		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1902		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1903	}
1904
1905	/* hardware and device MACs are already set, but its possible that the
1906	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1907	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1908	 * away for the legacy VF driver case as it will be updated in the
1909	 * delete flow for this case
1910	 */
1911	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1912		ether_addr_copy(vf->legacy_last_added_umac.addr,
1913				mac_addr);
1914		vf->legacy_last_added_umac.time_modified = jiffies;
1915	}
1916}
1917
1918/**
1919 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1920 * @vf: pointer to the VF info
1921 * @vsi: pointer to the VF's VSI
1922 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1923 */
1924static int
1925ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1926		    struct virtchnl_ether_addr *vc_ether_addr)
1927{
1928	struct device *dev = ice_pf_to_dev(vf->pf);
1929	u8 *mac_addr = vc_ether_addr->addr;
1930	int ret;
1931
1932	/* device MAC already added */
1933	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1934		return 0;
1935
1936	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1937		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1938		return -EPERM;
1939	}
1940
1941	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1942	if (ret == -EEXIST) {
1943		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1944			vf->vf_id);
1945		/* don't return since we might need to update
1946		 * the primary MAC in ice_vfhw_mac_add() below
1947		 */
1948	} else if (ret) {
1949		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1950			mac_addr, vf->vf_id, ret);
1951		return ret;
1952	} else {
1953		vf->num_mac++;
1954	}
1955
1956	ice_vfhw_mac_add(vf, vc_ether_addr);
1957
1958	return ret;
1959}
1960
1961/**
1962 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1963 * @last_added_umac: structure used to check expiration
1964 */
1965static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1966{
1967#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1968	return time_is_before_jiffies(last_added_umac->time_modified +
1969				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1970}
1971
1972/**
1973 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1974 * @vf: VF to update
1975 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1976 *
1977 * only update cached hardware MAC for legacy VF drivers on delete
1978 * because we cannot guarantee order/type of MAC from the VF driver
1979 */
1980static void
1981ice_update_legacy_cached_mac(struct ice_vf *vf,
1982			     struct virtchnl_ether_addr *vc_ether_addr)
1983{
1984	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1985	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1986		return;
1987
1988	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1989	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1990}
1991
1992/**
1993 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1994 * @vf: VF to update
1995 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1996 */
1997static void
1998ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1999{
2000	u8 *mac_addr = vc_ether_addr->addr;
2001
2002	if (!is_valid_ether_addr(mac_addr) ||
2003	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2004		return;
2005
2006	/* allow the device MAC to be repopulated in the add flow and don't
2007	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2008	 * to be persistent on VM reboot and across driver unload/load, which
2009	 * won't work if we clear the hardware MAC here
2010	 */
2011	eth_zero_addr(vf->dev_lan_addr);
2012
2013	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2014}
2015
2016/**
2017 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2018 * @vf: pointer to the VF info
2019 * @vsi: pointer to the VF's VSI
2020 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2021 */
2022static int
2023ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2024		    struct virtchnl_ether_addr *vc_ether_addr)
2025{
2026	struct device *dev = ice_pf_to_dev(vf->pf);
2027	u8 *mac_addr = vc_ether_addr->addr;
2028	int status;
2029
2030	if (!ice_can_vf_change_mac(vf) &&
2031	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2032		return 0;
2033
2034	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2035	if (status == -ENOENT) {
2036		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2037			vf->vf_id);
2038		return -ENOENT;
2039	} else if (status) {
2040		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2041			mac_addr, vf->vf_id, status);
2042		return -EIO;
2043	}
2044
2045	ice_vfhw_mac_del(vf, vc_ether_addr);
2046
2047	vf->num_mac--;
2048
2049	return 0;
2050}
2051
2052/**
2053 * ice_vc_handle_mac_addr_msg
2054 * @vf: pointer to the VF info
2055 * @msg: pointer to the msg buffer
2056 * @set: true if MAC filters are being set, false otherwise
2057 *
2058 * add guest MAC address filter
2059 */
2060static int
2061ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2062{
2063	int (*ice_vc_cfg_mac)
2064		(struct ice_vf *vf, struct ice_vsi *vsi,
2065		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2066	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2067	struct virtchnl_ether_addr_list *al =
2068	    (struct virtchnl_ether_addr_list *)msg;
2069	struct ice_pf *pf = vf->pf;
2070	enum virtchnl_ops vc_op;
2071	struct ice_vsi *vsi;
2072	int i;
2073
2074	if (set) {
2075		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2076		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2077	} else {
2078		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2079		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2080	}
2081
2082	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2083	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2084		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2085		goto handle_mac_exit;
2086	}
2087
2088	/* If this VF is not privileged, then we can't add more than a
2089	 * limited number of addresses. Check to make sure that the
2090	 * additions do not push us over the limit.
2091	 */
2092	if (set && !ice_is_vf_trusted(vf) &&
2093	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2094		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2095			vf->vf_id);
2096		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2097		goto handle_mac_exit;
2098	}
2099
2100	vsi = ice_get_vf_vsi(vf);
2101	if (!vsi) {
2102		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2103		goto handle_mac_exit;
2104	}
2105
2106	for (i = 0; i < al->num_elements; i++) {
2107		u8 *mac_addr = al->list[i].addr;
2108		int result;
2109
2110		if (is_broadcast_ether_addr(mac_addr) ||
2111		    is_zero_ether_addr(mac_addr))
2112			continue;
2113
2114		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2115		if (result == -EEXIST || result == -ENOENT) {
2116			continue;
2117		} else if (result) {
2118			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2119			goto handle_mac_exit;
2120		}
2121	}
2122
2123handle_mac_exit:
2124	/* send the response to the VF */
2125	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2126}
2127
2128/**
2129 * ice_vc_add_mac_addr_msg
2130 * @vf: pointer to the VF info
2131 * @msg: pointer to the msg buffer
2132 *
2133 * add guest MAC address filter
2134 */
2135static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2136{
2137	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2138}
2139
2140/**
2141 * ice_vc_del_mac_addr_msg
2142 * @vf: pointer to the VF info
2143 * @msg: pointer to the msg buffer
2144 *
2145 * remove guest MAC address filter
2146 */
2147static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2148{
2149	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2150}
2151
2152/**
2153 * ice_vc_request_qs_msg
2154 * @vf: pointer to the VF info
2155 * @msg: pointer to the msg buffer
2156 *
2157 * VFs get a default number of queues but can use this message to request a
2158 * different number. If the request is successful, PF will reset the VF and
2159 * return 0. If unsuccessful, PF will send message informing VF of number of
2160 * available queue pairs via virtchnl message response to VF.
2161 */
2162static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2163{
2164	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2165	struct virtchnl_vf_res_request *vfres =
2166		(struct virtchnl_vf_res_request *)msg;
2167	u16 req_queues = vfres->num_queue_pairs;
2168	struct ice_pf *pf = vf->pf;
2169	u16 max_allowed_vf_queues;
2170	u16 tx_rx_queue_left;
2171	struct device *dev;
2172	u16 cur_queues;
2173
2174	dev = ice_pf_to_dev(pf);
2175	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2176		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2177		goto error_param;
2178	}
2179
2180	cur_queues = vf->num_vf_qs;
2181	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2182				 ice_get_avail_rxq_count(pf));
2183	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2184	if (!req_queues) {
2185		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2186			vf->vf_id);
2187	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2188		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2189			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2190		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2191	} else if (req_queues > cur_queues &&
2192		   req_queues - cur_queues > tx_rx_queue_left) {
2193		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2194			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2195		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2196					       ICE_MAX_RSS_QS_PER_VF);
2197	} else {
2198		/* request is successful, then reset VF */
2199		vf->num_req_qs = req_queues;
2200		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2201		dev_info(dev, "VF %d granted request of %u queues.\n",
2202			 vf->vf_id, req_queues);
2203		return 0;
2204	}
2205
2206error_param:
2207	/* send the response to the VF */
2208	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2209				     v_ret, (u8 *)vfres, sizeof(*vfres));
2210}
2211
2212/**
2213 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2214 * @caps: VF driver negotiated capabilities
2215 *
2216 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2217 */
2218static bool ice_vf_vlan_offload_ena(u32 caps)
2219{
2220	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2221}
2222
2223/**
2224 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2225 * @vf: VF used to determine if VLAN promiscuous config is allowed
2226 */
2227static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2228{
2229	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2230	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2231	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2232		return true;
2233
2234	return false;
2235}
2236
2237/**
2238 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2239 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2240 * @vlan: VLAN used to enable VLAN promiscuous
2241 *
2242 * This function should only be called if VLAN promiscuous mode is allowed,
2243 * which can be determined via ice_is_vlan_promisc_allowed().
2244 */
2245static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2246{
2247	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2248	int status;
2249
2250	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2251					  vlan->vid);
2252	if (status && status != -EEXIST)
2253		return status;
2254
2255	return 0;
2256}
2257
2258/**
2259 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2260 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2261 * @vlan: VLAN used to disable VLAN promiscuous
2262 *
2263 * This function should only be called if VLAN promiscuous mode is allowed,
2264 * which can be determined via ice_is_vlan_promisc_allowed().
2265 */
2266static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2267{
2268	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2269	int status;
2270
2271	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2272					    vlan->vid);
2273	if (status && status != -ENOENT)
2274		return status;
2275
2276	return 0;
2277}
2278
2279/**
2280 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2281 * @vf: VF to check against
2282 * @vsi: VF's VSI
2283 *
2284 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2285 * wants to, so return false.
2286 *
2287 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2288 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2289 */
2290static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2291{
2292	if (ice_is_vf_trusted(vf))
2293		return false;
2294
2295#define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2296	return ((ice_vsi_num_non_zero_vlans(vsi) +
2297		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2298}
2299
2300/**
2301 * ice_vc_process_vlan_msg
2302 * @vf: pointer to the VF info
2303 * @msg: pointer to the msg buffer
2304 * @add_v: Add VLAN if true, otherwise delete VLAN
2305 *
2306 * Process virtchnl op to add or remove programmed guest VLAN ID
2307 */
2308static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2309{
2310	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2311	struct virtchnl_vlan_filter_list *vfl =
2312	    (struct virtchnl_vlan_filter_list *)msg;
2313	struct ice_pf *pf = vf->pf;
2314	bool vlan_promisc = false;
2315	struct ice_vsi *vsi;
2316	struct device *dev;
2317	int status = 0;
2318	int i;
2319
2320	dev = ice_pf_to_dev(pf);
2321	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2322		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2323		goto error_param;
2324	}
2325
2326	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2327		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2328		goto error_param;
2329	}
2330
2331	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2332		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2333		goto error_param;
2334	}
2335
2336	for (i = 0; i < vfl->num_elements; i++) {
2337		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2338			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2339			dev_err(dev, "invalid VF VLAN id %d\n",
2340				vfl->vlan_id[i]);
2341			goto error_param;
2342		}
2343	}
2344
2345	vsi = ice_get_vf_vsi(vf);
2346	if (!vsi) {
2347		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2348		goto error_param;
2349	}
2350
2351	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2352		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2353			 vf->vf_id);
2354		/* There is no need to let VF know about being not trusted,
2355		 * so we can just return success message here
2356		 */
2357		goto error_param;
2358	}
2359
2360	/* in DVM a VF can add/delete inner VLAN filters when
2361	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2362	 */
2363	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2364		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365		goto error_param;
2366	}
2367
2368	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2369	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2370	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2371	 */
2372	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2373		!ice_is_dvm_ena(&pf->hw) &&
2374		!ice_vf_is_port_vlan_ena(vf);
2375
2376	if (add_v) {
2377		for (i = 0; i < vfl->num_elements; i++) {
2378			u16 vid = vfl->vlan_id[i];
2379			struct ice_vlan vlan;
2380
2381			if (ice_vf_has_max_vlans(vf, vsi)) {
2382				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2383					 vf->vf_id);
2384				/* There is no need to let VF know about being
2385				 * not trusted, so we can just return success
2386				 * message here as well.
2387				 */
2388				goto error_param;
2389			}
2390
2391			/* we add VLAN 0 by default for each VF so we can enable
2392			 * Tx VLAN anti-spoof without triggering MDD events so
2393			 * we don't need to add it again here
2394			 */
2395			if (!vid)
2396				continue;
2397
2398			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2399			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2400			if (status) {
2401				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2402				goto error_param;
2403			}
2404
2405			/* Enable VLAN filtering on first non-zero VLAN */
2406			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2407				if (vf->spoofchk) {
2408					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2409					if (status) {
2410						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2412							vid, status);
2413						goto error_param;
2414					}
2415				}
2416				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2417					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2419						vid, status);
2420					goto error_param;
2421				}
2422			} else if (vlan_promisc) {
2423				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2424				if (status) {
2425					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2426					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2427						vid, status);
2428				}
2429			}
2430		}
2431	} else {
2432		/* In case of non_trusted VF, number of VLAN elements passed
2433		 * to PF for removal might be greater than number of VLANs
2434		 * filter programmed for that VF - So, use actual number of
2435		 * VLANS added earlier with add VLAN opcode. In order to avoid
2436		 * removing VLAN that doesn't exist, which result to sending
2437		 * erroneous failed message back to the VF
2438		 */
2439		int num_vf_vlan;
2440
2441		num_vf_vlan = vsi->num_vlan;
2442		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2443			u16 vid = vfl->vlan_id[i];
2444			struct ice_vlan vlan;
2445
2446			/* we add VLAN 0 by default for each VF so we can enable
2447			 * Tx VLAN anti-spoof without triggering MDD events so
2448			 * we don't want a VIRTCHNL request to remove it
2449			 */
2450			if (!vid)
2451				continue;
2452
2453			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2454			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2455			if (status) {
2456				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2457				goto error_param;
2458			}
2459
2460			/* Disable VLAN filtering when only VLAN 0 is left */
2461			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2462				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2463				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2464			}
2465
2466			if (vlan_promisc)
2467				ice_vf_dis_vlan_promisc(vsi, &vlan);
2468		}
2469	}
2470
2471error_param:
2472	/* send the response to the VF */
2473	if (add_v)
2474		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2475					     NULL, 0);
2476	else
2477		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2478					     NULL, 0);
2479}
2480
2481/**
2482 * ice_vc_add_vlan_msg
2483 * @vf: pointer to the VF info
2484 * @msg: pointer to the msg buffer
2485 *
2486 * Add and program guest VLAN ID
2487 */
2488static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2489{
2490	return ice_vc_process_vlan_msg(vf, msg, true);
2491}
2492
2493/**
2494 * ice_vc_remove_vlan_msg
2495 * @vf: pointer to the VF info
2496 * @msg: pointer to the msg buffer
2497 *
2498 * remove programmed guest VLAN ID
2499 */
2500static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2501{
2502	return ice_vc_process_vlan_msg(vf, msg, false);
2503}
2504
2505/**
2506 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2507 * @vsi: pointer to the VF VSI info
2508 */
2509static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2510{
2511	unsigned int i;
2512
2513	ice_for_each_alloc_rxq(vsi, i)
2514		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2515			return true;
2516
2517	return false;
2518}
2519
2520/**
2521 * ice_vc_ena_vlan_stripping
2522 * @vf: pointer to the VF info
2523 *
2524 * Enable VLAN header stripping for a given VF
2525 */
2526static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2527{
2528	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2529	struct ice_vsi *vsi;
2530
2531	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2532		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533		goto error_param;
2534	}
2535
2536	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2537		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2538		goto error_param;
2539	}
2540
2541	vsi = ice_get_vf_vsi(vf);
2542	if (!vsi) {
2543		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2544		goto error_param;
2545	}
2546
2547	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2548		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2549	else
2550		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2551
2552error_param:
2553	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2554				     v_ret, NULL, 0);
2555}
2556
2557/**
2558 * ice_vc_dis_vlan_stripping
2559 * @vf: pointer to the VF info
2560 *
2561 * Disable VLAN header stripping for a given VF
2562 */
2563static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2564{
2565	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2566	struct ice_vsi *vsi;
2567
2568	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2569		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2570		goto error_param;
2571	}
2572
2573	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2574		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2575		goto error_param;
2576	}
2577
2578	vsi = ice_get_vf_vsi(vf);
2579	if (!vsi) {
2580		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2581		goto error_param;
2582	}
2583
2584	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2585		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2586	else
2587		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2588
2589error_param:
2590	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2591				     v_ret, NULL, 0);
2592}
2593
2594/**
2595 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2596 * @vf: pointer to the VF info
2597 */
2598static int ice_vc_get_rss_hena(struct ice_vf *vf)
2599{
2600	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2601	struct virtchnl_rss_hena *vrh = NULL;
2602	int len = 0, ret;
2603
2604	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2605		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2606		goto err;
2607	}
2608
2609	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2610		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2611		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2612		goto err;
2613	}
2614
2615	len = sizeof(struct virtchnl_rss_hena);
2616	vrh = kzalloc(len, GFP_KERNEL);
2617	if (!vrh) {
2618		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2619		len = 0;
2620		goto err;
2621	}
2622
2623	vrh->hena = ICE_DEFAULT_RSS_HENA;
2624err:
2625	/* send the response back to the VF */
2626	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2627				    (u8 *)vrh, len);
2628	kfree(vrh);
2629	return ret;
2630}
2631
2632/**
2633 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2634 * @vf: pointer to the VF info
2635 * @msg: pointer to the msg buffer
2636 */
2637static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2638{
2639	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2640	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2641	struct ice_pf *pf = vf->pf;
2642	struct ice_vsi *vsi;
2643	struct device *dev;
2644	int status;
2645
2646	dev = ice_pf_to_dev(pf);
2647
2648	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2649		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2650		goto err;
2651	}
2652
2653	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2654		dev_err(dev, "RSS not supported by PF\n");
2655		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656		goto err;
2657	}
2658
2659	vsi = ice_get_vf_vsi(vf);
2660	if (!vsi) {
2661		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2662		goto err;
2663	}
2664
2665	/* clear all previously programmed RSS configuration to allow VF drivers
2666	 * the ability to customize the RSS configuration and/or completely
2667	 * disable RSS
2668	 */
2669	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2670	if (status && !vrh->hena) {
2671		/* only report failure to clear the current RSS configuration if
2672		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2673		 */
2674		v_ret = ice_err_to_virt_err(status);
2675		goto err;
2676	} else if (status) {
2677		/* allow the VF to update the RSS configuration even on failure
2678		 * to clear the current RSS confguration in an attempt to keep
2679		 * RSS in a working state
2680		 */
2681		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2682			 vf->vf_id);
2683	}
2684
2685	if (vrh->hena) {
2686		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2687		v_ret = ice_err_to_virt_err(status);
2688	}
2689
2690	/* send the response to the VF */
2691err:
2692	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2693				     NULL, 0);
2694}
2695
2696/**
2697 * ice_vc_query_rxdid - query RXDID supported by DDP package
2698 * @vf: pointer to VF info
2699 *
2700 * Called from VF to query a bitmap of supported flexible
2701 * descriptor RXDIDs of a DDP package.
2702 */
2703static int ice_vc_query_rxdid(struct ice_vf *vf)
2704{
2705	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2706	struct virtchnl_supported_rxdids *rxdid = NULL;
2707	struct ice_hw *hw = &vf->pf->hw;
2708	struct ice_pf *pf = vf->pf;
2709	int len = 0;
2710	int ret, i;
2711	u32 regval;
2712
2713	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2714		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2715		goto err;
2716	}
2717
2718	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2719		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2720		goto err;
2721	}
2722
2723	len = sizeof(struct virtchnl_supported_rxdids);
2724	rxdid = kzalloc(len, GFP_KERNEL);
2725	if (!rxdid) {
2726		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2727		len = 0;
2728		goto err;
2729	}
2730
2731	/* RXDIDs supported by DDP package can be read from the register
2732	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2733	 * is not listed in DDP package, add it in the bitmap manually.
2734	 * Legacy 16byte descriptor is not supported.
2735	 */
2736	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2737
2738	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2739		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2740		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2741			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2742			rxdid->supported_rxdids |= BIT(i);
2743	}
2744
2745	pf->supported_rxdids = rxdid->supported_rxdids;
2746
2747err:
2748	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2749				    v_ret, (u8 *)rxdid, len);
2750	kfree(rxdid);
2751	return ret;
2752}
2753
2754/**
2755 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2756 * @vf: VF to enable/disable VLAN stripping for on initialization
2757 *
2758 * Set the default for VLAN stripping based on whether a port VLAN is configured
2759 * and the current VLAN mode of the device.
2760 */
2761static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2762{
2763	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2764
2765	vf->vlan_strip_ena = 0;
2766
2767	if (!vsi)
2768		return -EINVAL;
2769
2770	/* don't modify stripping if port VLAN is configured in SVM since the
2771	 * port VLAN is based on the inner/single VLAN in SVM
2772	 */
2773	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2774		return 0;
2775
2776	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2777		int err;
2778
2779		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2780		if (!err)
2781			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2782		return err;
2783	}
2784
2785	return vsi->inner_vlan_ops.dis_stripping(vsi);
2786}
2787
2788static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2789{
2790	if (vf->trusted)
2791		return VLAN_N_VID;
2792	else
2793		return ICE_MAX_VLAN_PER_VF;
2794}
2795
2796/**
2797 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2798 * @vf: VF that being checked for
2799 *
2800 * When the device is in double VLAN mode, check whether or not the outer VLAN
2801 * is allowed.
2802 */
2803static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2804{
2805	if (ice_vf_is_port_vlan_ena(vf))
2806		return true;
2807
2808	return false;
2809}
2810
2811/**
2812 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2813 * @vf: VF that capabilities are being set for
2814 * @caps: VLAN capabilities to populate
2815 *
2816 * Determine VLAN capabilities support based on whether a port VLAN is
2817 * configured. If a port VLAN is configured then the VF should use the inner
2818 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2819 * capabilies.
2820 */
2821static void
2822ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2823{
2824	struct virtchnl_vlan_supported_caps *supported_caps;
2825
2826	if (ice_vf_outer_vlan_not_allowed(vf)) {
2827		/* until support for inner VLAN filtering is added when a port
2828		 * VLAN is configured, only support software offloaded inner
2829		 * VLANs when a port VLAN is confgured in DVM
2830		 */
2831		supported_caps = &caps->filtering.filtering_support;
2832		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2833
2834		supported_caps = &caps->offloads.stripping_support;
2835		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2836					VIRTCHNL_VLAN_TOGGLE |
2837					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2838		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2839
2840		supported_caps = &caps->offloads.insertion_support;
2841		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2842					VIRTCHNL_VLAN_TOGGLE |
2843					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2844		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2845
2846		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2847		caps->offloads.ethertype_match =
2848			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2849	} else {
2850		supported_caps = &caps->filtering.filtering_support;
2851		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2852		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2853					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2854					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2855					VIRTCHNL_VLAN_ETHERTYPE_AND;
2856		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2857						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2858						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2859
2860		supported_caps = &caps->offloads.stripping_support;
2861		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2862					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2863					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2864		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2865					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2866					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2867					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2868					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2869					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2870
2871		supported_caps = &caps->offloads.insertion_support;
2872		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2873					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2874					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2875		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2876					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2877					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2878					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2879					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2880					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2881
2882		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2883
2884		caps->offloads.ethertype_match =
2885			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2886	}
2887
2888	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2889}
2890
2891/**
2892 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2893 * @vf: VF that capabilities are being set for
2894 * @caps: VLAN capabilities to populate
2895 *
2896 * Determine VLAN capabilities support based on whether a port VLAN is
2897 * configured. If a port VLAN is configured then the VF does not have any VLAN
2898 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2899 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2900 * VLAN fitlering and offload capabilities.
2901 */
2902static void
2903ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2904{
2905	struct virtchnl_vlan_supported_caps *supported_caps;
2906
2907	if (ice_vf_is_port_vlan_ena(vf)) {
2908		supported_caps = &caps->filtering.filtering_support;
2909		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2910		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2911
2912		supported_caps = &caps->offloads.stripping_support;
2913		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2914		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2915
2916		supported_caps = &caps->offloads.insertion_support;
2917		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2918		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2919
2920		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2921		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2922		caps->filtering.max_filters = 0;
2923	} else {
2924		supported_caps = &caps->filtering.filtering_support;
2925		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2926		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2928
2929		supported_caps = &caps->offloads.stripping_support;
2930		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2931					VIRTCHNL_VLAN_TOGGLE |
2932					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2933		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2934
2935		supported_caps = &caps->offloads.insertion_support;
2936		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2937					VIRTCHNL_VLAN_TOGGLE |
2938					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2939		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2940
2941		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2942		caps->offloads.ethertype_match =
2943			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2944		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2945	}
2946}
2947
2948/**
2949 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2950 * @vf: VF to determine VLAN capabilities for
2951 *
2952 * This will only be called if the VF and PF successfully negotiated
2953 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2954 *
2955 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2956 * is configured or not.
2957 */
2958static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2959{
2960	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2961	struct virtchnl_vlan_caps *caps = NULL;
2962	int err, len = 0;
2963
2964	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2965		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2966		goto out;
2967	}
2968
2969	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2970	if (!caps) {
2971		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2972		goto out;
2973	}
2974	len = sizeof(*caps);
2975
2976	if (ice_is_dvm_ena(&vf->pf->hw))
2977		ice_vc_set_dvm_caps(vf, caps);
2978	else
2979		ice_vc_set_svm_caps(vf, caps);
2980
2981	/* store negotiated caps to prevent invalid VF messages */
2982	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2983
2984out:
2985	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2986				    v_ret, (u8 *)caps, len);
2987	kfree(caps);
2988	return err;
2989}
2990
2991/**
2992 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2993 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2994 * @tpid: VLAN TPID used for validation
2995 *
2996 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2997 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2998 */
2999static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3000{
3001	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3002
3003	switch (tpid) {
3004	case ETH_P_8021Q:
3005		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3006		break;
3007	case ETH_P_8021AD:
3008		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3009		break;
3010	case ETH_P_QINQ1:
3011		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3012		break;
3013	}
3014
3015	if (!(filtering_caps & vlan_ethertype))
3016		return false;
3017
3018	return true;
3019}
3020
3021/**
3022 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3023 * @vc_vlan: virtchnl_vlan to validate
3024 *
3025 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3026 * false. Otherwise return true.
3027 */
3028static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3029{
3030	if (!vc_vlan->tci || !vc_vlan->tpid)
3031		return false;
3032
3033	return true;
3034}
3035
3036/**
3037 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3038 * @vfc: negotiated/supported VLAN filtering capabilities
3039 * @vfl: VLAN filter list from VF to validate
3040 *
3041 * Validate all of the filters in the VLAN filter list from the VF. If any of
3042 * the checks fail then return false. Otherwise return true.
3043 */
3044static bool
3045ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3046				 struct virtchnl_vlan_filter_list_v2 *vfl)
3047{
3048	u16 i;
3049
3050	if (!vfl->num_elements)
3051		return false;
3052
3053	for (i = 0; i < vfl->num_elements; i++) {
3054		struct virtchnl_vlan_supported_caps *filtering_support =
3055			&vfc->filtering_support;
3056		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3057		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3058		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3059
3060		if ((ice_vc_is_valid_vlan(outer) &&
3061		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3062		    (ice_vc_is_valid_vlan(inner) &&
3063		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3064			return false;
3065
3066		if ((outer->tci_mask &&
3067		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3068		    (inner->tci_mask &&
3069		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3070			return false;
3071
3072		if (((outer->tci & VLAN_PRIO_MASK) &&
3073		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3074		    ((inner->tci & VLAN_PRIO_MASK) &&
3075		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3076			return false;
3077
3078		if ((ice_vc_is_valid_vlan(outer) &&
3079		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3080						outer->tpid)) ||
3081		    (ice_vc_is_valid_vlan(inner) &&
3082		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3083						inner->tpid)))
3084			return false;
3085	}
3086
3087	return true;
3088}
3089
3090/**
3091 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3092 * @vc_vlan: struct virtchnl_vlan to transform
3093 */
3094static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3095{
3096	struct ice_vlan vlan = { 0 };
3097
3098	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3099	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3100	vlan.tpid = vc_vlan->tpid;
3101
3102	return vlan;
3103}
3104
3105/**
3106 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3107 * @vsi: VF's VSI used to perform the action
3108 * @vlan_action: function to perform the action with (i.e. add/del)
3109 * @vlan: VLAN filter to perform the action with
3110 */
3111static int
3112ice_vc_vlan_action(struct ice_vsi *vsi,
3113		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3114		   struct ice_vlan *vlan)
3115{
3116	int err;
3117
3118	err = vlan_action(vsi, vlan);
3119	if (err)
3120		return err;
3121
3122	return 0;
3123}
3124
3125/**
3126 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3127 * @vf: VF used to delete the VLAN(s)
3128 * @vsi: VF's VSI used to delete the VLAN(s)
3129 * @vfl: virthchnl filter list used to delete the filters
3130 */
3131static int
3132ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3133		 struct virtchnl_vlan_filter_list_v2 *vfl)
3134{
3135	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3136	int err;
3137	u16 i;
3138
3139	for (i = 0; i < vfl->num_elements; i++) {
3140		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3141		struct virtchnl_vlan *vc_vlan;
3142
3143		vc_vlan = &vlan_fltr->outer;
3144		if (ice_vc_is_valid_vlan(vc_vlan)) {
3145			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3146
3147			err = ice_vc_vlan_action(vsi,
3148						 vsi->outer_vlan_ops.del_vlan,
3149						 &vlan);
3150			if (err)
3151				return err;
3152
3153			if (vlan_promisc)
3154				ice_vf_dis_vlan_promisc(vsi, &vlan);
3155
3156			/* Disable VLAN filtering when only VLAN 0 is left */
3157			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3158				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3159				if (err)
3160					return err;
3161			}
3162		}
3163
3164		vc_vlan = &vlan_fltr->inner;
3165		if (ice_vc_is_valid_vlan(vc_vlan)) {
3166			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3167
3168			err = ice_vc_vlan_action(vsi,
3169						 vsi->inner_vlan_ops.del_vlan,
3170						 &vlan);
3171			if (err)
3172				return err;
3173
3174			/* no support for VLAN promiscuous on inner VLAN unless
3175			 * we are in Single VLAN Mode (SVM)
3176			 */
3177			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3178				if (vlan_promisc)
3179					ice_vf_dis_vlan_promisc(vsi, &vlan);
3180
3181				/* Disable VLAN filtering when only VLAN 0 is left */
3182				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3183					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3184					if (err)
3185						return err;
3186				}
3187			}
3188		}
3189	}
3190
3191	return 0;
3192}
3193
3194/**
3195 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3196 * @vf: VF the message was received from
3197 * @msg: message received from the VF
3198 */
3199static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3200{
3201	struct virtchnl_vlan_filter_list_v2 *vfl =
3202		(struct virtchnl_vlan_filter_list_v2 *)msg;
3203	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3204	struct ice_vsi *vsi;
3205
3206	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3207					      vfl)) {
3208		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3209		goto out;
3210	}
3211
3212	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3213		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3214		goto out;
3215	}
3216
3217	vsi = ice_get_vf_vsi(vf);
3218	if (!vsi) {
3219		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3220		goto out;
3221	}
3222
3223	if (ice_vc_del_vlans(vf, vsi, vfl))
3224		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3225
3226out:
3227	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3228				     0);
3229}
3230
3231/**
3232 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3233 * @vf: VF used to add the VLAN(s)
3234 * @vsi: VF's VSI used to add the VLAN(s)
3235 * @vfl: virthchnl filter list used to add the filters
3236 */
3237static int
3238ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3239		 struct virtchnl_vlan_filter_list_v2 *vfl)
3240{
3241	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3242	int err;
3243	u16 i;
3244
3245	for (i = 0; i < vfl->num_elements; i++) {
3246		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3247		struct virtchnl_vlan *vc_vlan;
3248
3249		vc_vlan = &vlan_fltr->outer;
3250		if (ice_vc_is_valid_vlan(vc_vlan)) {
3251			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3252
3253			err = ice_vc_vlan_action(vsi,
3254						 vsi->outer_vlan_ops.add_vlan,
3255						 &vlan);
3256			if (err)
3257				return err;
3258
3259			if (vlan_promisc) {
3260				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3261				if (err)
3262					return err;
3263			}
3264
3265			/* Enable VLAN filtering on first non-zero VLAN */
3266			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3267				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3268				if (err)
3269					return err;
3270			}
3271		}
3272
3273		vc_vlan = &vlan_fltr->inner;
3274		if (ice_vc_is_valid_vlan(vc_vlan)) {
3275			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3276
3277			err = ice_vc_vlan_action(vsi,
3278						 vsi->inner_vlan_ops.add_vlan,
3279						 &vlan);
3280			if (err)
3281				return err;
3282
3283			/* no support for VLAN promiscuous on inner VLAN unless
3284			 * we are in Single VLAN Mode (SVM)
3285			 */
3286			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3287				if (vlan_promisc) {
3288					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3289					if (err)
3290						return err;
3291				}
3292
3293				/* Enable VLAN filtering on first non-zero VLAN */
3294				if (vf->spoofchk && vlan.vid) {
3295					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3296					if (err)
3297						return err;
3298				}
3299			}
3300		}
3301	}
3302
3303	return 0;
3304}
3305
3306/**
3307 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3308 * @vsi: VF VSI used to get number of existing VLAN filters
3309 * @vfc: negotiated/supported VLAN filtering capabilities
3310 * @vfl: VLAN filter list from VF to validate
3311 *
3312 * Validate all of the filters in the VLAN filter list from the VF during the
3313 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3314 * Otherwise return true.
3315 */
3316static bool
3317ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3318				     struct virtchnl_vlan_filtering_caps *vfc,
3319				     struct virtchnl_vlan_filter_list_v2 *vfl)
3320{
3321	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3322		vfl->num_elements;
3323
3324	if (num_requested_filters > vfc->max_filters)
3325		return false;
3326
3327	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3328}
3329
3330/**
3331 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3332 * @vf: VF the message was received from
3333 * @msg: message received from the VF
3334 */
3335static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3336{
3337	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3338	struct virtchnl_vlan_filter_list_v2 *vfl =
3339		(struct virtchnl_vlan_filter_list_v2 *)msg;
3340	struct ice_vsi *vsi;
3341
3342	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3343		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3344		goto out;
3345	}
3346
3347	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3348		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3349		goto out;
3350	}
3351
3352	vsi = ice_get_vf_vsi(vf);
3353	if (!vsi) {
3354		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355		goto out;
3356	}
3357
3358	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3359						  &vf->vlan_v2_caps.filtering,
3360						  vfl)) {
3361		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3362		goto out;
3363	}
3364
3365	if (ice_vc_add_vlans(vf, vsi, vfl))
3366		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3367
3368out:
3369	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3370				     0);
3371}
3372
3373/**
3374 * ice_vc_valid_vlan_setting - validate VLAN setting
3375 * @negotiated_settings: negotiated VLAN settings during VF init
3376 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3377 */
3378static bool
3379ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3380{
3381	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3382		return false;
3383
3384	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3385	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3386	 */
3387	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3388	    hweight32(ethertype_setting) > 1)
3389		return false;
3390
3391	/* ability to modify the VLAN setting was not negotiated */
3392	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3393		return false;
3394
3395	return true;
3396}
3397
3398/**
3399 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3400 * @caps: negotiated VLAN settings during VF init
3401 * @msg: message to validate
3402 *
3403 * Used to validate any VLAN virtchnl message sent as a
3404 * virtchnl_vlan_setting structure. Validates the message against the
3405 * negotiated/supported caps during VF driver init.
3406 */
3407static bool
3408ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3409			      struct virtchnl_vlan_setting *msg)
3410{
3411	if ((!msg->outer_ethertype_setting &&
3412	     !msg->inner_ethertype_setting) ||
3413	    (!caps->outer && !caps->inner))
3414		return false;
3415
3416	if (msg->outer_ethertype_setting &&
3417	    !ice_vc_valid_vlan_setting(caps->outer,
3418				       msg->outer_ethertype_setting))
3419		return false;
3420
3421	if (msg->inner_ethertype_setting &&
3422	    !ice_vc_valid_vlan_setting(caps->inner,
3423				       msg->inner_ethertype_setting))
3424		return false;
3425
3426	return true;
3427}
3428
3429/**
3430 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3431 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3432 * @tpid: VLAN TPID to populate
3433 */
3434static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3435{
3436	switch (ethertype_setting) {
3437	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3438		*tpid = ETH_P_8021Q;
3439		break;
3440	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3441		*tpid = ETH_P_8021AD;
3442		break;
3443	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3444		*tpid = ETH_P_QINQ1;
3445		break;
3446	default:
3447		*tpid = 0;
3448		return -EINVAL;
3449	}
3450
3451	return 0;
3452}
3453
3454/**
3455 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3456 * @vsi: VF's VSI used to enable the VLAN offload
3457 * @ena_offload: function used to enable the VLAN offload
3458 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3459 */
3460static int
3461ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3462			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3463			u32 ethertype_setting)
3464{
3465	u16 tpid;
3466	int err;
3467
3468	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3469	if (err)
3470		return err;
3471
3472	err = ena_offload(vsi, tpid);
3473	if (err)
3474		return err;
3475
3476	return 0;
3477}
3478
3479#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3480#define ICE_L2TSEL_BIT_OFFSET		23
3481enum ice_l2tsel {
3482	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3483	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3484};
3485
3486/**
3487 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3488 * @vsi: VSI used to update l2tsel on
3489 * @l2tsel: l2tsel setting requested
3490 *
3491 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3492 * This will modify which descriptor field the first offloaded VLAN will be
3493 * stripped into.
3494 */
3495static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3496{
3497	struct ice_hw *hw = &vsi->back->hw;
3498	u32 l2tsel_bit;
3499	int i;
3500
3501	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3502		l2tsel_bit = 0;
3503	else
3504		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3505
3506	for (i = 0; i < vsi->alloc_rxq; i++) {
3507		u16 pfq = vsi->rxq_map[i];
3508		u32 qrx_context_offset;
3509		u32 regval;
3510
3511		qrx_context_offset =
3512			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3513
3514		regval = rd32(hw, qrx_context_offset);
3515		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3516		regval |= l2tsel_bit;
3517		wr32(hw, qrx_context_offset, regval);
3518	}
3519}
3520
3521/**
3522 * ice_vc_ena_vlan_stripping_v2_msg
3523 * @vf: VF the message was received from
3524 * @msg: message received from the VF
3525 *
3526 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3527 */
3528static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3529{
3530	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3531	struct virtchnl_vlan_supported_caps *stripping_support;
3532	struct virtchnl_vlan_setting *strip_msg =
3533		(struct virtchnl_vlan_setting *)msg;
3534	u32 ethertype_setting;
3535	struct ice_vsi *vsi;
3536
3537	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3538		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3539		goto out;
3540	}
3541
3542	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3543		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3544		goto out;
3545	}
3546
3547	vsi = ice_get_vf_vsi(vf);
3548	if (!vsi) {
3549		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3550		goto out;
3551	}
3552
3553	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3554	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3555		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3556		goto out;
3557	}
3558
3559	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3560		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3561		goto out;
3562	}
3563
3564	ethertype_setting = strip_msg->outer_ethertype_setting;
3565	if (ethertype_setting) {
3566		if (ice_vc_ena_vlan_offload(vsi,
3567					    vsi->outer_vlan_ops.ena_stripping,
3568					    ethertype_setting)) {
3569			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3570			goto out;
3571		} else {
3572			enum ice_l2tsel l2tsel =
3573				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3574
3575			/* PF tells the VF that the outer VLAN tag is always
3576			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3577			 * inner is always extracted to
3578			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3579			 * support outer stripping so the first tag always ends
3580			 * up in L2TAG2_2ND and the second/inner tag, if
3581			 * enabled, is extracted in L2TAG1.
3582			 */
3583			ice_vsi_update_l2tsel(vsi, l2tsel);
3584
3585			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3586		}
3587	}
3588
3589	ethertype_setting = strip_msg->inner_ethertype_setting;
3590	if (ethertype_setting &&
3591	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3592				    ethertype_setting)) {
3593		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3594		goto out;
3595	}
3596
3597	if (ethertype_setting)
3598		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3599
3600out:
3601	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3602				     v_ret, NULL, 0);
3603}
3604
3605/**
3606 * ice_vc_dis_vlan_stripping_v2_msg
3607 * @vf: VF the message was received from
3608 * @msg: message received from the VF
3609 *
3610 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3611 */
3612static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3613{
3614	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3615	struct virtchnl_vlan_supported_caps *stripping_support;
3616	struct virtchnl_vlan_setting *strip_msg =
3617		(struct virtchnl_vlan_setting *)msg;
3618	u32 ethertype_setting;
3619	struct ice_vsi *vsi;
3620
3621	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3622		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623		goto out;
3624	}
3625
3626	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3627		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3628		goto out;
3629	}
3630
3631	vsi = ice_get_vf_vsi(vf);
3632	if (!vsi) {
3633		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3634		goto out;
3635	}
3636
3637	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3638	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3639		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640		goto out;
3641	}
3642
3643	ethertype_setting = strip_msg->outer_ethertype_setting;
3644	if (ethertype_setting) {
3645		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3646			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3647			goto out;
3648		} else {
3649			enum ice_l2tsel l2tsel =
3650				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3651
3652			/* PF tells the VF that the outer VLAN tag is always
3653			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3654			 * inner is always extracted to
3655			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3656			 * support inner stripping while outer stripping is
3657			 * disabled so that the first and only tag is extracted
3658			 * in L2TAG1.
3659			 */
3660			ice_vsi_update_l2tsel(vsi, l2tsel);
3661
3662			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3663		}
3664	}
3665
3666	ethertype_setting = strip_msg->inner_ethertype_setting;
3667	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3668		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3669		goto out;
3670	}
3671
3672	if (ethertype_setting)
3673		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3674
3675out:
3676	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3677				     v_ret, NULL, 0);
3678}
3679
3680/**
3681 * ice_vc_ena_vlan_insertion_v2_msg
3682 * @vf: VF the message was received from
3683 * @msg: message received from the VF
3684 *
3685 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3686 */
3687static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3688{
3689	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3690	struct virtchnl_vlan_supported_caps *insertion_support;
3691	struct virtchnl_vlan_setting *insertion_msg =
3692		(struct virtchnl_vlan_setting *)msg;
3693	u32 ethertype_setting;
3694	struct ice_vsi *vsi;
3695
3696	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3697		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3698		goto out;
3699	}
3700
3701	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3702		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3703		goto out;
3704	}
3705
3706	vsi = ice_get_vf_vsi(vf);
3707	if (!vsi) {
3708		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3709		goto out;
3710	}
3711
3712	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3713	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3714		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3715		goto out;
3716	}
3717
3718	ethertype_setting = insertion_msg->outer_ethertype_setting;
3719	if (ethertype_setting &&
3720	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3721				    ethertype_setting)) {
3722		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3723		goto out;
3724	}
3725
3726	ethertype_setting = insertion_msg->inner_ethertype_setting;
3727	if (ethertype_setting &&
3728	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3729				    ethertype_setting)) {
3730		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3731		goto out;
3732	}
3733
3734out:
3735	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3736				     v_ret, NULL, 0);
3737}
3738
3739/**
3740 * ice_vc_dis_vlan_insertion_v2_msg
3741 * @vf: VF the message was received from
3742 * @msg: message received from the VF
3743 *
3744 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3745 */
3746static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3747{
3748	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3749	struct virtchnl_vlan_supported_caps *insertion_support;
3750	struct virtchnl_vlan_setting *insertion_msg =
3751		(struct virtchnl_vlan_setting *)msg;
3752	u32 ethertype_setting;
3753	struct ice_vsi *vsi;
3754
3755	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3756		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3757		goto out;
3758	}
3759
3760	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3761		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3762		goto out;
3763	}
3764
3765	vsi = ice_get_vf_vsi(vf);
3766	if (!vsi) {
3767		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3768		goto out;
3769	}
3770
3771	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3772	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3773		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3774		goto out;
3775	}
3776
3777	ethertype_setting = insertion_msg->outer_ethertype_setting;
3778	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3779		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3780		goto out;
3781	}
3782
3783	ethertype_setting = insertion_msg->inner_ethertype_setting;
3784	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3785		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3786		goto out;
3787	}
3788
3789out:
3790	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3791				     v_ret, NULL, 0);
3792}
3793
3794static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3795	.get_ver_msg = ice_vc_get_ver_msg,
3796	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3797	.reset_vf = ice_vc_reset_vf_msg,
3798	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3799	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3800	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3801	.ena_qs_msg = ice_vc_ena_qs_msg,
3802	.dis_qs_msg = ice_vc_dis_qs_msg,
3803	.request_qs_msg = ice_vc_request_qs_msg,
3804	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3805	.config_rss_key = ice_vc_config_rss_key,
3806	.config_rss_lut = ice_vc_config_rss_lut,
3807	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3808	.get_stats_msg = ice_vc_get_stats_msg,
3809	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3810	.add_vlan_msg = ice_vc_add_vlan_msg,
3811	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3812	.query_rxdid = ice_vc_query_rxdid,
3813	.get_rss_hena = ice_vc_get_rss_hena,
3814	.set_rss_hena_msg = ice_vc_set_rss_hena,
3815	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3816	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3817	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3818	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3819	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3820	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3821	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3822	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3823	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3824	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3825	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3826	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3827};
3828
3829/**
3830 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3831 * @vf: the VF to switch ops
3832 */
3833void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3834{
3835	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3836}
3837
3838/**
3839 * ice_vc_repr_add_mac
3840 * @vf: pointer to VF
3841 * @msg: virtchannel message
3842 *
3843 * When port representors are created, we do not add MAC rule
3844 * to firmware, we store it so that PF could report same
3845 * MAC as VF.
3846 */
3847static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3848{
3849	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3850	struct virtchnl_ether_addr_list *al =
3851	    (struct virtchnl_ether_addr_list *)msg;
3852	struct ice_vsi *vsi;
3853	struct ice_pf *pf;
3854	int i;
3855
3856	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3857	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3858		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3859		goto handle_mac_exit;
3860	}
3861
3862	pf = vf->pf;
3863
3864	vsi = ice_get_vf_vsi(vf);
3865	if (!vsi) {
3866		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3867		goto handle_mac_exit;
3868	}
3869
3870	for (i = 0; i < al->num_elements; i++) {
3871		u8 *mac_addr = al->list[i].addr;
3872
3873		if (!is_unicast_ether_addr(mac_addr) ||
3874		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3875			continue;
3876
3877		if (vf->pf_set_mac) {
3878			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3879			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3880			goto handle_mac_exit;
3881		}
3882
3883		ice_vfhw_mac_add(vf, &al->list[i]);
3884		vf->num_mac++;
3885		break;
3886	}
3887
3888handle_mac_exit:
3889	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3890				     v_ret, NULL, 0);
3891}
3892
3893/**
3894 * ice_vc_repr_del_mac - response with success for deleting MAC
3895 * @vf: pointer to VF
3896 * @msg: virtchannel message
3897 *
3898 * Respond with success to not break normal VF flow.
3899 * For legacy VF driver try to update cached MAC address.
3900 */
3901static int
3902ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3903{
3904	struct virtchnl_ether_addr_list *al =
3905		(struct virtchnl_ether_addr_list *)msg;
3906
3907	ice_update_legacy_cached_mac(vf, &al->list[0]);
3908
3909	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3910				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3911}
3912
3913static int
3914ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3915{
3916	dev_dbg(ice_pf_to_dev(vf->pf),
3917		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3918		vf->vf_id);
3919	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3920				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3921				     NULL, 0);
3922}
3923
3924static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3925	.get_ver_msg = ice_vc_get_ver_msg,
3926	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3927	.reset_vf = ice_vc_reset_vf_msg,
3928	.add_mac_addr_msg = ice_vc_repr_add_mac,
3929	.del_mac_addr_msg = ice_vc_repr_del_mac,
3930	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3931	.ena_qs_msg = ice_vc_ena_qs_msg,
3932	.dis_qs_msg = ice_vc_dis_qs_msg,
3933	.request_qs_msg = ice_vc_request_qs_msg,
3934	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3935	.config_rss_key = ice_vc_config_rss_key,
3936	.config_rss_lut = ice_vc_config_rss_lut,
3937	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3938	.get_stats_msg = ice_vc_get_stats_msg,
3939	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3940	.add_vlan_msg = ice_vc_add_vlan_msg,
3941	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3942	.query_rxdid = ice_vc_query_rxdid,
3943	.get_rss_hena = ice_vc_get_rss_hena,
3944	.set_rss_hena_msg = ice_vc_set_rss_hena,
3945	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3946	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3947	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3948	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3949	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3950	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3951	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3952	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3953	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3954	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3955	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3956	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3957};
3958
3959/**
3960 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3961 * @vf: the VF to switch ops
3962 */
3963void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3964{
3965	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3966}
3967
3968/**
3969 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3970 * @vf: the VF to check
3971 * @mbxdata: data about the state of the mailbox
3972 *
3973 * Detect if a given VF might be malicious and attempting to overflow the PF
3974 * mailbox. If so, log a warning message and ignore this event.
3975 */
3976static bool
3977ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3978{
3979	bool report_malvf = false;
3980	struct device *dev;
3981	struct ice_pf *pf;
3982	int status;
3983
3984	pf = vf->pf;
3985	dev = ice_pf_to_dev(pf);
3986
3987	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3988		return vf->mbx_info.malicious;
3989
3990	/* check to see if we have a newly malicious VF */
3991	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3992					  &report_malvf);
3993	if (status)
3994		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3995				     vf->vf_id, vf->dev_lan_addr, status);
3996
3997	if (report_malvf) {
3998		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3999		u8 zero_addr[ETH_ALEN] = {};
4000
4001		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4002			 vf->dev_lan_addr,
4003			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4004	}
4005
4006	return vf->mbx_info.malicious;
4007}
4008
4009/**
4010 * ice_vc_process_vf_msg - Process request from VF
4011 * @pf: pointer to the PF structure
4012 * @event: pointer to the AQ event
4013 * @mbxdata: information used to detect VF attempting mailbox overflow
4014 *
4015 * called from the common asq/arq handler to
4016 * process request from VF
4017 */
4018void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4019			   struct ice_mbx_data *mbxdata)
4020{
4021	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4022	s16 vf_id = le16_to_cpu(event->desc.retval);
4023	const struct ice_virtchnl_ops *ops;
4024	u16 msglen = event->msg_len;
4025	u8 *msg = event->msg_buf;
4026	struct ice_vf *vf = NULL;
4027	struct device *dev;
4028	int err = 0;
4029
4030	dev = ice_pf_to_dev(pf);
4031
4032	vf = ice_get_vf_by_id(pf, vf_id);
4033	if (!vf) {
4034		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4035			vf_id, v_opcode, msglen);
4036		return;
4037	}
4038
4039	mutex_lock(&vf->cfg_lock);
4040
4041	/* Check if the VF is trying to overflow the mailbox */
4042	if (ice_is_malicious_vf(vf, mbxdata))
4043		goto finish;
4044
4045	/* Check if VF is disabled. */
4046	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4047		err = -EPERM;
4048		goto error_handler;
4049	}
4050
4051	ops = vf->virtchnl_ops;
4052
4053	/* Perform basic checks on the msg */
4054	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4055	if (err) {
4056		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4057			err = -EPERM;
4058		else
4059			err = -EINVAL;
4060	}
4061
4062error_handler:
4063	if (err) {
4064		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4065				      NULL, 0);
4066		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4067			vf_id, v_opcode, msglen, err);
4068		goto finish;
4069	}
4070
4071	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4072		ice_vc_send_msg_to_vf(vf, v_opcode,
4073				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4074				      0);
4075		goto finish;
4076	}
4077
4078	switch (v_opcode) {
4079	case VIRTCHNL_OP_VERSION:
4080		err = ops->get_ver_msg(vf, msg);
4081		break;
4082	case VIRTCHNL_OP_GET_VF_RESOURCES:
4083		err = ops->get_vf_res_msg(vf, msg);
4084		if (ice_vf_init_vlan_stripping(vf))
4085			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4086				vf->vf_id);
4087		ice_vc_notify_vf_link_state(vf);
4088		break;
4089	case VIRTCHNL_OP_RESET_VF:
4090		ops->reset_vf(vf);
4091		break;
4092	case VIRTCHNL_OP_ADD_ETH_ADDR:
4093		err = ops->add_mac_addr_msg(vf, msg);
4094		break;
4095	case VIRTCHNL_OP_DEL_ETH_ADDR:
4096		err = ops->del_mac_addr_msg(vf, msg);
4097		break;
4098	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4099		err = ops->cfg_qs_msg(vf, msg);
4100		break;
4101	case VIRTCHNL_OP_ENABLE_QUEUES:
4102		err = ops->ena_qs_msg(vf, msg);
4103		ice_vc_notify_vf_link_state(vf);
4104		break;
4105	case VIRTCHNL_OP_DISABLE_QUEUES:
4106		err = ops->dis_qs_msg(vf, msg);
4107		break;
4108	case VIRTCHNL_OP_REQUEST_QUEUES:
4109		err = ops->request_qs_msg(vf, msg);
4110		break;
4111	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4112		err = ops->cfg_irq_map_msg(vf, msg);
4113		break;
4114	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4115		err = ops->config_rss_key(vf, msg);
4116		break;
4117	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4118		err = ops->config_rss_lut(vf, msg);
4119		break;
4120	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4121		err = ops->config_rss_hfunc(vf, msg);
4122		break;
4123	case VIRTCHNL_OP_GET_STATS:
4124		err = ops->get_stats_msg(vf, msg);
4125		break;
4126	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4127		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4128		break;
4129	case VIRTCHNL_OP_ADD_VLAN:
4130		err = ops->add_vlan_msg(vf, msg);
4131		break;
4132	case VIRTCHNL_OP_DEL_VLAN:
4133		err = ops->remove_vlan_msg(vf, msg);
4134		break;
4135	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4136		err = ops->query_rxdid(vf);
4137		break;
4138	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4139		err = ops->get_rss_hena(vf);
4140		break;
4141	case VIRTCHNL_OP_SET_RSS_HENA:
4142		err = ops->set_rss_hena_msg(vf, msg);
4143		break;
4144	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4145		err = ops->ena_vlan_stripping(vf);
4146		break;
4147	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4148		err = ops->dis_vlan_stripping(vf);
4149		break;
4150	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4151		err = ops->add_fdir_fltr_msg(vf, msg);
4152		break;
4153	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4154		err = ops->del_fdir_fltr_msg(vf, msg);
4155		break;
4156	case VIRTCHNL_OP_ADD_RSS_CFG:
4157		err = ops->handle_rss_cfg_msg(vf, msg, true);
4158		break;
4159	case VIRTCHNL_OP_DEL_RSS_CFG:
4160		err = ops->handle_rss_cfg_msg(vf, msg, false);
4161		break;
4162	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4163		err = ops->get_offload_vlan_v2_caps(vf);
4164		break;
4165	case VIRTCHNL_OP_ADD_VLAN_V2:
4166		err = ops->add_vlan_v2_msg(vf, msg);
4167		break;
4168	case VIRTCHNL_OP_DEL_VLAN_V2:
4169		err = ops->remove_vlan_v2_msg(vf, msg);
4170		break;
4171	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4172		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4173		break;
4174	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4175		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4176		break;
4177	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4178		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4179		break;
4180	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4181		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4182		break;
4183	case VIRTCHNL_OP_UNKNOWN:
4184	default:
4185		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4186			vf_id);
4187		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4188					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4189					    NULL, 0);
4190		break;
4191	}
4192	if (err) {
4193		/* Helper function cares less about error return values here
4194		 * as it is busy with pending work.
4195		 */
4196		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4197			 vf_id, v_opcode, err);
4198	}
4199
4200finish:
4201	mutex_unlock(&vf->cfg_lock);
4202	ice_put_vf(vf);
4203}