Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_trace.h"
   7
   8#define E810_OUT_PROP_DELAY_NS 1
   9
  10#define UNKNOWN_INCVAL_E82X 0x100000000ULL
  11
  12static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
  13	/* name    idx   func         chan */
  14	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
  15	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
  16	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
  17	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
  18	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
  19};
  20
  21/**
  22 * ice_get_sma_config_e810t
  23 * @hw: pointer to the hw struct
  24 * @ptp_pins: pointer to the ptp_pin_desc struture
  25 *
  26 * Read the configuration of the SMA control logic and put it into the
  27 * ptp_pin_desc structure
  28 */
  29static int
  30ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
  31{
  32	u8 data, i;
  33	int status;
  34
  35	/* Read initial pin state */
  36	status = ice_read_sma_ctrl_e810t(hw, &data);
  37	if (status)
  38		return status;
  39
  40	/* initialize with defaults */
  41	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
  42		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
  43			sizeof(ptp_pins[i].name));
  44		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
  45		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
  46		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
  47	}
  48
  49	/* Parse SMA1/UFL1 */
  50	switch (data & ICE_SMA1_MASK_E810T) {
  51	case ICE_SMA1_MASK_E810T:
  52	default:
  53		ptp_pins[SMA1].func = PTP_PF_NONE;
  54		ptp_pins[UFL1].func = PTP_PF_NONE;
  55		break;
  56	case ICE_SMA1_DIR_EN_E810T:
  57		ptp_pins[SMA1].func = PTP_PF_PEROUT;
  58		ptp_pins[UFL1].func = PTP_PF_NONE;
  59		break;
  60	case ICE_SMA1_TX_EN_E810T:
  61		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  62		ptp_pins[UFL1].func = PTP_PF_NONE;
  63		break;
  64	case 0:
  65		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  66		ptp_pins[UFL1].func = PTP_PF_PEROUT;
  67		break;
  68	}
  69
  70	/* Parse SMA2/UFL2 */
  71	switch (data & ICE_SMA2_MASK_E810T) {
  72	case ICE_SMA2_MASK_E810T:
  73	default:
  74		ptp_pins[SMA2].func = PTP_PF_NONE;
  75		ptp_pins[UFL2].func = PTP_PF_NONE;
  76		break;
  77	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  78		ptp_pins[SMA2].func = PTP_PF_EXTTS;
  79		ptp_pins[UFL2].func = PTP_PF_NONE;
  80		break;
  81	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  82		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  83		ptp_pins[UFL2].func = PTP_PF_NONE;
  84		break;
  85	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
  86		ptp_pins[SMA2].func = PTP_PF_NONE;
  87		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  88		break;
  89	case ICE_SMA2_DIR_EN_E810T:
  90		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  91		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  92		break;
  93	}
  94
  95	return 0;
  96}
  97
  98/**
  99 * ice_ptp_set_sma_config_e810t
 100 * @hw: pointer to the hw struct
 101 * @ptp_pins: pointer to the ptp_pin_desc struture
 102 *
 103 * Set the configuration of the SMA control logic based on the configuration in
 104 * num_pins parameter
 105 */
 106static int
 107ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
 108			     const struct ptp_pin_desc *ptp_pins)
 109{
 110	int status;
 111	u8 data;
 112
 113	/* SMA1 and UFL1 cannot be set to TX at the same time */
 114	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 115	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
 116		return -EINVAL;
 117
 118	/* SMA2 and UFL2 cannot be set to RX at the same time */
 119	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 120	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
 121		return -EINVAL;
 122
 123	/* Read initial pin state value */
 124	status = ice_read_sma_ctrl_e810t(hw, &data);
 125	if (status)
 126		return status;
 127
 128	/* Set the right sate based on the desired configuration */
 129	data &= ~ICE_SMA1_MASK_E810T;
 130	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 131	    ptp_pins[UFL1].func == PTP_PF_NONE) {
 132		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
 133		data |= ICE_SMA1_MASK_E810T;
 134	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 135		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 136		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
 137		data |= ICE_SMA1_TX_EN_E810T;
 138	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 139		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 140		/* U.FL 1 TX will always enable SMA 1 RX */
 141		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 142	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 143		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 144		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 145	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 146		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 147		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
 148		data |= ICE_SMA1_DIR_EN_E810T;
 149	}
 150
 151	data &= ~ICE_SMA2_MASK_E810T;
 152	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 153	    ptp_pins[UFL2].func == PTP_PF_NONE) {
 154		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
 155		data |= ICE_SMA2_MASK_E810T;
 156	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 157			ptp_pins[UFL2].func == PTP_PF_NONE) {
 158		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
 159		data |= (ICE_SMA2_TX_EN_E810T |
 160			 ICE_SMA2_UFL2_RX_DIS_E810T);
 161	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 162		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 163		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
 164		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
 165	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 166		   ptp_pins[UFL2].func == PTP_PF_NONE) {
 167		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
 168		data |= (ICE_SMA2_DIR_EN_E810T |
 169			 ICE_SMA2_UFL2_RX_DIS_E810T);
 170	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 171		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 172		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
 173		data |= ICE_SMA2_DIR_EN_E810T;
 174	}
 175
 176	return ice_write_sma_ctrl_e810t(hw, data);
 177}
 178
 179/**
 180 * ice_ptp_set_sma_e810t
 181 * @info: the driver's PTP info structure
 182 * @pin: pin index in kernel structure
 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
 184 *
 185 * Set the configuration of a single SMA pin
 186 */
 187static int
 188ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
 189		      enum ptp_pin_function func)
 190{
 191	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
 192	struct ice_pf *pf = ptp_info_to_pf(info);
 193	struct ice_hw *hw = &pf->hw;
 194	int err;
 195
 196	if (pin < SMA1 || func > PTP_PF_PEROUT)
 197		return -EOPNOTSUPP;
 198
 199	err = ice_get_sma_config_e810t(hw, ptp_pins);
 200	if (err)
 201		return err;
 202
 203	/* Disable the same function on the other pin sharing the channel */
 204	if (pin == SMA1 && ptp_pins[UFL1].func == func)
 205		ptp_pins[UFL1].func = PTP_PF_NONE;
 206	if (pin == UFL1 && ptp_pins[SMA1].func == func)
 207		ptp_pins[SMA1].func = PTP_PF_NONE;
 208
 209	if (pin == SMA2 && ptp_pins[UFL2].func == func)
 210		ptp_pins[UFL2].func = PTP_PF_NONE;
 211	if (pin == UFL2 && ptp_pins[SMA2].func == func)
 212		ptp_pins[SMA2].func = PTP_PF_NONE;
 213
 214	/* Set up new pin function in the temp table */
 215	ptp_pins[pin].func = func;
 216
 217	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
 218}
 219
 220/**
 221 * ice_verify_pin_e810t
 222 * @info: the driver's PTP info structure
 223 * @pin: Pin index
 224 * @func: Assigned function
 225 * @chan: Assigned channel
 226 *
 227 * Verify if pin supports requested pin function. If the Check pins consistency.
 228 * Reconfigure the SMA logic attached to the given pin to enable its
 229 * desired functionality
 230 */
 231static int
 232ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
 233		     enum ptp_pin_function func, unsigned int chan)
 234{
 235	/* Don't allow channel reassignment */
 236	if (chan != ice_pin_desc_e810t[pin].chan)
 237		return -EOPNOTSUPP;
 238
 239	/* Check if functions are properly assigned */
 240	switch (func) {
 241	case PTP_PF_NONE:
 242		break;
 243	case PTP_PF_EXTTS:
 244		if (pin == UFL1)
 245			return -EOPNOTSUPP;
 246		break;
 247	case PTP_PF_PEROUT:
 248		if (pin == UFL2 || pin == GNSS)
 249			return -EOPNOTSUPP;
 250		break;
 251	case PTP_PF_PHYSYNC:
 252		return -EOPNOTSUPP;
 253	}
 254
 255	return ice_ptp_set_sma_e810t(info, pin, func);
 256}
 257
 258/**
 259 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
 260 * @pf: Board private structure
 261 *
 262 * Program the device to respond appropriately to the Tx timestamp interrupt
 263 * cause.
 264 */
 265static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
 266{
 267	struct ice_hw *hw = &pf->hw;
 268	bool enable;
 269	u32 val;
 270
 271	switch (pf->ptp.tx_interrupt_mode) {
 272	case ICE_PTP_TX_INTERRUPT_ALL:
 273		/* React to interrupts across all quads. */
 274		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
 275		enable = true;
 276		break;
 277	case ICE_PTP_TX_INTERRUPT_NONE:
 278		/* Do not react to interrupts on any quad. */
 279		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
 280		enable = false;
 281		break;
 282	case ICE_PTP_TX_INTERRUPT_SELF:
 283	default:
 284		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
 285		break;
 286	}
 287
 288	/* Configure the Tx timestamp interrupt */
 289	val = rd32(hw, PFINT_OICR_ENA);
 290	if (enable)
 291		val |= PFINT_OICR_TSYN_TX_M;
 292	else
 293		val &= ~PFINT_OICR_TSYN_TX_M;
 294	wr32(hw, PFINT_OICR_ENA, val);
 295}
 296
 297/**
 298 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 299 * @pf: The PF pointer to search in
 300 * @on: bool value for whether timestamps are enabled or disabled
 301 */
 302static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
 303{
 304	struct ice_vsi *vsi;
 305	u16 i;
 306
 307	vsi = ice_get_main_vsi(pf);
 308	if (!vsi || !vsi->rx_rings)
 309		return;
 310
 311	/* Set the timestamp flag for all the Rx rings */
 312	ice_for_each_rxq(vsi, i) {
 313		if (!vsi->rx_rings[i])
 314			continue;
 315		vsi->rx_rings[i]->ptp_rx = on;
 316	}
 317}
 318
 319/**
 320 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
 321 * @pf: Board private structure
 322 *
 323 * Called during preparation for reset to temporarily disable timestamping on
 324 * the device. Called during remove to disable timestamping while cleaning up
 325 * driver resources.
 326 */
 327static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
 328{
 329	struct ice_hw *hw = &pf->hw;
 330	u32 val;
 331
 332	val = rd32(hw, PFINT_OICR_ENA);
 333	val &= ~PFINT_OICR_TSYN_TX_M;
 334	wr32(hw, PFINT_OICR_ENA, val);
 335
 336	ice_set_rx_tstamp(pf, false);
 337}
 338
 339/**
 340 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
 341 * @pf: Board private structure
 342 *
 343 * Called at the end of rebuild to restore timestamp configuration after
 344 * a device reset.
 345 */
 346void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
 347{
 348	struct ice_hw *hw = &pf->hw;
 349	bool enable_rx;
 350
 351	ice_ptp_cfg_tx_interrupt(pf);
 352
 353	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
 354	ice_set_rx_tstamp(pf, enable_rx);
 355
 356	/* Trigger an immediate software interrupt to ensure that timestamps
 357	 * which occurred during reset are handled now.
 358	 */
 359	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
 360	ice_flush(hw);
 361}
 362
 363/**
 364 * ice_ptp_read_src_clk_reg - Read the source clock register
 365 * @pf: Board private structure
 366 * @sts: Optional parameter for holding a pair of system timestamps from
 367 *       the system clock. Will be ignored if NULL is given.
 368 */
 369static u64
 370ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
 371{
 372	struct ice_hw *hw = &pf->hw;
 373	u32 hi, lo, lo2;
 374	u8 tmr_idx;
 375
 376	tmr_idx = ice_get_ptp_src_clock_index(hw);
 377	/* Read the system timestamp pre PHC read */
 378	ptp_read_system_prets(sts);
 379
 380	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 381
 382	/* Read the system timestamp post PHC read */
 383	ptp_read_system_postts(sts);
 384
 385	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 386	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 387
 388	if (lo2 < lo) {
 389		/* if TIME_L rolled over read TIME_L again and update
 390		 * system timestamps
 391		 */
 392		ptp_read_system_prets(sts);
 393		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 394		ptp_read_system_postts(sts);
 395		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 396	}
 397
 398	return ((u64)hi << 32) | lo;
 399}
 400
 401/**
 402 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 403 * @cached_phc_time: recently cached copy of PHC time
 404 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 405 *
 406 * Hardware captures timestamps which contain only 32 bits of nominal
 407 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 408 * Note that the captured timestamp values may be 40 bits, but the lower
 409 * 8 bits are sub-nanoseconds and generally discarded.
 410 *
 411 * Extend the 32bit nanosecond timestamp using the following algorithm and
 412 * assumptions:
 413 *
 414 * 1) have a recently cached copy of the PHC time
 415 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 416 *    seconds) before or after the PHC time was captured.
 417 * 3) calculate the delta between the cached time and the timestamp
 418 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 419 *    captured after the PHC time. In this case, the full timestamp is just
 420 *    the cached PHC time plus the delta.
 421 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 422 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 423 *    cache was updated after the timestamp was captured by hardware. In this
 424 *    case, the full timestamp is the cached time minus the inverse delta.
 425 *
 426 * This algorithm works even if the PHC time was updated after a Tx timestamp
 427 * was requested, but before the Tx timestamp event was reported from
 428 * hardware.
 429 *
 430 * This calculation primarily relies on keeping the cached PHC time up to
 431 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 432 * PHC time, it is possible that the lower 32bits of PHC time have
 433 * overflowed more than once, and we might generate an incorrect timestamp.
 434 *
 435 * This is prevented by (a) periodically updating the cached PHC time once
 436 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 437 * a timestamp for more than one second.
 438 */
 439static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
 440{
 441	u32 delta, phc_time_lo;
 442	u64 ns;
 443
 444	/* Extract the lower 32 bits of the PHC time */
 445	phc_time_lo = (u32)cached_phc_time;
 446
 447	/* Calculate the delta between the lower 32bits of the cached PHC
 448	 * time and the in_tstamp value
 449	 */
 450	delta = (in_tstamp - phc_time_lo);
 451
 452	/* Do not assume that the in_tstamp is always more recent than the
 453	 * cached PHC time. If the delta is large, it indicates that the
 454	 * in_tstamp was taken in the past, and should be converted
 455	 * forward.
 456	 */
 457	if (delta > (U32_MAX / 2)) {
 458		/* reverse the delta calculation here */
 459		delta = (phc_time_lo - in_tstamp);
 460		ns = cached_phc_time - delta;
 461	} else {
 462		ns = cached_phc_time + delta;
 463	}
 464
 465	return ns;
 466}
 467
 468/**
 469 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 470 * @pf: Board private structure
 471 * @in_tstamp: Ingress/egress 40b timestamp value
 472 *
 473 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 474 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 475 *
 476 *  *--------------------------------------------------------------*
 477 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 478 *  *--------------------------------------------------------------*
 479 *
 480 * The low bit is an indicator of whether the timestamp is valid. The next
 481 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 482 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 483 *
 484 * It is assumed that the caller verifies the timestamp is valid prior to
 485 * calling this function.
 486 *
 487 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 488 * time stored in the device private PTP structure as the basis for timestamp
 489 * extension.
 490 *
 491 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 492 * algorithm.
 493 */
 494static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
 495{
 496	const u64 mask = GENMASK_ULL(31, 0);
 497	unsigned long discard_time;
 498
 499	/* Discard the hardware timestamp if the cached PHC time is too old */
 500	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
 501	if (time_is_before_jiffies(discard_time)) {
 502		pf->ptp.tx_hwtstamp_discarded++;
 503		return 0;
 504	}
 505
 506	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
 507				     (in_tstamp >> 8) & mask);
 508}
 509
 510/**
 511 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
 512 * @tx: the PTP Tx timestamp tracker to check
 513 *
 514 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
 515 * to accept new timestamp requests.
 516 *
 517 * Assumes the tx->lock spinlock is already held.
 518 */
 519static bool
 520ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
 521{
 522	lockdep_assert_held(&tx->lock);
 523
 524	return tx->init && !tx->calibrating;
 525}
 526
 527/**
 528 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
 529 * @tx: the PTP Tx timestamp tracker
 530 * @idx: index of the timestamp to request
 531 */
 532void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
 533{
 534	struct ice_ptp_port *ptp_port;
 535	struct sk_buff *skb;
 536	struct ice_pf *pf;
 537
 538	if (!tx->init)
 539		return;
 540
 541	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 542	pf = ptp_port_to_pf(ptp_port);
 543
 544	/* Drop packets which have waited for more than 2 seconds */
 545	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 546		/* Count the number of Tx timestamps that timed out */
 547		pf->ptp.tx_hwtstamp_timeouts++;
 548
 549		skb = tx->tstamps[idx].skb;
 550		tx->tstamps[idx].skb = NULL;
 551		clear_bit(idx, tx->in_use);
 552
 553		dev_kfree_skb_any(skb);
 554		return;
 555	}
 556
 557	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 558
 559	/* Write TS index to read to the PF register so the FW can read it */
 560	wr32(&pf->hw, PF_SB_ATQBAL,
 561	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
 562	     TS_LL_READ_TS);
 563	tx->last_ll_ts_idx_read = idx;
 564}
 565
 566/**
 567 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
 568 * @tx: the PTP Tx timestamp tracker
 569 */
 570void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
 571{
 572	struct skb_shared_hwtstamps shhwtstamps = {};
 573	u8 idx = tx->last_ll_ts_idx_read;
 574	struct ice_ptp_port *ptp_port;
 575	u64 raw_tstamp, tstamp;
 576	bool drop_ts = false;
 577	struct sk_buff *skb;
 578	struct ice_pf *pf;
 579	u32 val;
 580
 581	if (!tx->init || tx->last_ll_ts_idx_read < 0)
 582		return;
 583
 584	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 585	pf = ptp_port_to_pf(ptp_port);
 586
 587	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 588
 589	val = rd32(&pf->hw, PF_SB_ATQBAL);
 590
 591	/* When the bit is cleared, the TS is ready in the register */
 592	if (val & TS_LL_READ_TS) {
 593		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
 594		return;
 595	}
 596
 597	/* High 8 bit value of the TS is on the bits 16:23 */
 598	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
 599	raw_tstamp <<= 32;
 600
 601	/* Read the low 32 bit value */
 602	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
 603
 604	/* Devices using this interface always verify the timestamp differs
 605	 * relative to the last cached timestamp value.
 
 
 606	 */
 607	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
 
 608		return;
 609
 610	tx->tstamps[idx].cached_tstamp = raw_tstamp;
 
 611	clear_bit(idx, tx->in_use);
 612	skb = tx->tstamps[idx].skb;
 613	tx->tstamps[idx].skb = NULL;
 614	if (test_and_clear_bit(idx, tx->stale))
 615		drop_ts = true;
 616
 617	if (!skb)
 618		return;
 619
 620	if (drop_ts) {
 621		dev_kfree_skb_any(skb);
 622		return;
 623	}
 624
 625	/* Extend the timestamp using cached PHC time */
 626	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 627	if (tstamp) {
 628		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 629		ice_trace(tx_tstamp_complete, skb, idx);
 630	}
 631
 632	skb_tstamp_tx(skb, &shhwtstamps);
 633	dev_kfree_skb_any(skb);
 634}
 635
 636/**
 637 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
 638 * @tx: the PTP Tx timestamp tracker
 639 *
 640 * Process timestamps captured by the PHY associated with this port. To do
 641 * this, loop over each index with a waiting skb.
 642 *
 643 * If a given index has a valid timestamp, perform the following steps:
 644 *
 645 * 1) check that the timestamp request is not stale
 646 * 2) check that a timestamp is ready and available in the PHY memory bank
 647 * 3) read and copy the timestamp out of the PHY register
 648 * 4) unlock the index by clearing the associated in_use bit
 649 * 5) check if the timestamp is stale, and discard if so
 650 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
 651 * 7) send this 64 bit timestamp to the stack
 652 *
 653 * Note that we do not hold the tracking lock while reading the Tx timestamp.
 654 * This is because reading the timestamp requires taking a mutex that might
 655 * sleep.
 656 *
 657 * The only place where we set in_use is when a new timestamp is initiated
 658 * with a slot index. This is only called in the hard xmit routine where an
 659 * SKB has a request flag set. The only places where we clear this bit is this
 660 * function, or during teardown when the Tx timestamp tracker is being
 661 * removed. A timestamp index will never be re-used until the in_use bit for
 662 * that index is cleared.
 663 *
 664 * If a Tx thread starts a new timestamp, we might not begin processing it
 665 * right away but we will notice it at the end when we re-queue the task.
 666 *
 667 * If a Tx thread starts a new timestamp just after this function exits, the
 668 * interrupt for that timestamp should re-trigger this function once
 669 * a timestamp is ready.
 670 *
 671 * In cases where the PTP hardware clock was directly adjusted, some
 672 * timestamps may not be able to safely use the timestamp extension math. In
 673 * this case, software will set the stale bit for any outstanding Tx
 674 * timestamps when the clock is adjusted. Then this function will discard
 675 * those captured timestamps instead of sending them to the stack.
 676 *
 677 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
 678 * to correctly extend the timestamp using the cached PHC time. It is
 679 * extremely unlikely that a packet will ever take this long to timestamp. If
 680 * we detect a Tx timestamp request that has waited for this long we assume
 681 * the packet will never be sent by hardware and discard it without reading
 682 * the timestamp register.
 683 */
 684static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
 685{
 686	struct ice_ptp_port *ptp_port;
 687	unsigned long flags;
 688	struct ice_pf *pf;
 689	struct ice_hw *hw;
 690	u64 tstamp_ready;
 691	bool link_up;
 692	int err;
 693	u8 idx;
 694
 695	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 696	pf = ptp_port_to_pf(ptp_port);
 697	hw = &pf->hw;
 698
 699	/* Read the Tx ready status first */
 700	if (tx->has_ready_bitmap) {
 701		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 702		if (err)
 703			return;
 704	}
 705
 706	/* Drop packets if the link went down */
 707	link_up = ptp_port->link_up;
 708
 709	for_each_set_bit(idx, tx->in_use, tx->len) {
 710		struct skb_shared_hwtstamps shhwtstamps = {};
 711		u8 phy_idx = idx + tx->offset;
 712		u64 raw_tstamp = 0, tstamp;
 713		bool drop_ts = !link_up;
 714		struct sk_buff *skb;
 715
 716		/* Drop packets which have waited for more than 2 seconds */
 717		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 718			drop_ts = true;
 719
 720			/* Count the number of Tx timestamps that timed out */
 721			pf->ptp.tx_hwtstamp_timeouts++;
 722		}
 723
 724		/* Only read a timestamp from the PHY if its marked as ready
 725		 * by the tstamp_ready register. This avoids unnecessary
 726		 * reading of timestamps which are not yet valid. This is
 727		 * important as we must read all timestamps which are valid
 728		 * and only timestamps which are valid during each interrupt.
 729		 * If we do not, the hardware logic for generating a new
 730		 * interrupt can get stuck on some devices.
 731		 */
 732		if (tx->has_ready_bitmap &&
 733		    !(tstamp_ready & BIT_ULL(phy_idx))) {
 734			if (drop_ts)
 735				goto skip_ts_read;
 736
 737			continue;
 738		}
 739
 740		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 741
 742		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
 743		if (err && !drop_ts)
 744			continue;
 745
 746		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 747
 748		/* For PHYs which don't implement a proper timestamp ready
 749		 * bitmap, verify that the timestamp value is different
 750		 * from the last cached timestamp. If it is not, skip this for
 751		 * now assuming it hasn't yet been captured by hardware.
 752		 */
 753		if (!drop_ts && !tx->has_ready_bitmap &&
 754		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
 755			continue;
 756
 757		/* Discard any timestamp value without the valid bit set */
 758		if (!(raw_tstamp & ICE_PTP_TS_VALID))
 759			drop_ts = true;
 760
 761skip_ts_read:
 762		spin_lock_irqsave(&tx->lock, flags);
 763		if (!tx->has_ready_bitmap && raw_tstamp)
 764			tx->tstamps[idx].cached_tstamp = raw_tstamp;
 765		clear_bit(idx, tx->in_use);
 766		skb = tx->tstamps[idx].skb;
 767		tx->tstamps[idx].skb = NULL;
 768		if (test_and_clear_bit(idx, tx->stale))
 769			drop_ts = true;
 770		spin_unlock_irqrestore(&tx->lock, flags);
 771
 772		/* It is unlikely but possible that the SKB will have been
 773		 * flushed at this point due to link change or teardown.
 774		 */
 775		if (!skb)
 776			continue;
 777
 778		if (drop_ts) {
 779			dev_kfree_skb_any(skb);
 780			continue;
 781		}
 782
 783		/* Extend the timestamp using cached PHC time */
 784		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 785		if (tstamp) {
 786			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 787			ice_trace(tx_tstamp_complete, skb, idx);
 788		}
 789
 790		skb_tstamp_tx(skb, &shhwtstamps);
 791		dev_kfree_skb_any(skb);
 792	}
 793}
 794
 795/**
 796 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
 797 * @pf: Board private structure
 798 */
 799static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
 800{
 801	struct ice_ptp_port *port;
 802	unsigned int i;
 803
 804	mutex_lock(&pf->ptp.ports_owner.lock);
 805	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
 806		struct ice_ptp_tx *tx = &port->tx;
 807
 808		if (!tx || !tx->init)
 809			continue;
 810
 811		ice_ptp_process_tx_tstamp(tx);
 812	}
 813	mutex_unlock(&pf->ptp.ports_owner.lock);
 814
 815	for (i = 0; i < ICE_MAX_QUAD; i++) {
 816		u64 tstamp_ready;
 817		int err;
 818
 819		/* Read the Tx ready status first */
 820		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
 821		if (err)
 822			break;
 823		else if (tstamp_ready)
 824			return ICE_TX_TSTAMP_WORK_PENDING;
 825	}
 826
 827	return ICE_TX_TSTAMP_WORK_DONE;
 828}
 829
 830/**
 831 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
 832 * @tx: Tx tracking structure to initialize
 833 *
 834 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
 835 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
 836 */
 837static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
 838{
 839	bool more_timestamps;
 840	unsigned long flags;
 841
 842	if (!tx->init)
 843		return ICE_TX_TSTAMP_WORK_DONE;
 844
 845	/* Process the Tx timestamp tracker */
 846	ice_ptp_process_tx_tstamp(tx);
 847
 848	/* Check if there are outstanding Tx timestamps */
 849	spin_lock_irqsave(&tx->lock, flags);
 850	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
 851	spin_unlock_irqrestore(&tx->lock, flags);
 852
 853	if (more_timestamps)
 854		return ICE_TX_TSTAMP_WORK_PENDING;
 855
 856	return ICE_TX_TSTAMP_WORK_DONE;
 857}
 858
 859/**
 860 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 861 * @tx: Tx tracking structure to initialize
 862 *
 863 * Assumes that the length has already been initialized. Do not call directly,
 864 * use the ice_ptp_init_tx_* instead.
 865 */
 866static int
 867ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
 868{
 869	unsigned long *in_use, *stale;
 870	struct ice_tx_tstamp *tstamps;
 871
 872	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
 873	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
 874	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
 875
 876	if (!tstamps || !in_use || !stale) {
 877		kfree(tstamps);
 878		bitmap_free(in_use);
 879		bitmap_free(stale);
 880
 881		return -ENOMEM;
 882	}
 883
 884	tx->tstamps = tstamps;
 885	tx->in_use = in_use;
 886	tx->stale = stale;
 887	tx->init = 1;
 888	tx->last_ll_ts_idx_read = -1;
 889
 890	spin_lock_init(&tx->lock);
 891
 892	return 0;
 893}
 894
 895/**
 896 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 897 * @pf: Board private structure
 898 * @tx: the tracker to flush
 899 *
 900 * Called during teardown when a Tx tracker is being removed.
 901 */
 902static void
 903ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 904{
 905	struct ice_hw *hw = &pf->hw;
 906	unsigned long flags;
 907	u64 tstamp_ready;
 908	int err;
 909	u8 idx;
 910
 911	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 912	if (err) {
 913		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
 914			tx->block, err);
 915
 916		/* If we fail to read the Tx timestamp ready bitmap just
 917		 * skip clearing the PHY timestamps.
 918		 */
 919		tstamp_ready = 0;
 920	}
 921
 922	for_each_set_bit(idx, tx->in_use, tx->len) {
 923		u8 phy_idx = idx + tx->offset;
 924		struct sk_buff *skb;
 925
 926		/* In case this timestamp is ready, we need to clear it. */
 927		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
 928			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
 929
 930		spin_lock_irqsave(&tx->lock, flags);
 931		skb = tx->tstamps[idx].skb;
 932		tx->tstamps[idx].skb = NULL;
 933		clear_bit(idx, tx->in_use);
 934		clear_bit(idx, tx->stale);
 935		spin_unlock_irqrestore(&tx->lock, flags);
 936
 937		/* Count the number of Tx timestamps flushed */
 938		pf->ptp.tx_hwtstamp_flushed++;
 939
 940		/* Free the SKB after we've cleared the bit */
 941		dev_kfree_skb_any(skb);
 942	}
 943}
 944
 945/**
 946 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
 947 * @tx: the tracker to mark
 948 *
 949 * Mark currently outstanding Tx timestamps as stale. This prevents sending
 950 * their timestamp value to the stack. This is required to prevent extending
 951 * the 40bit hardware timestamp incorrectly.
 952 *
 953 * This should be called when the PTP clock is modified such as after a set
 954 * time request.
 955 */
 956static void
 957ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
 958{
 959	unsigned long flags;
 960
 961	spin_lock_irqsave(&tx->lock, flags);
 962	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
 963	spin_unlock_irqrestore(&tx->lock, flags);
 964}
 965
 966/**
 967 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
 968 * @pf: Board private structure
 969 *
 970 * Called by the clock owner to flush all the Tx timestamp trackers associated
 971 * with the clock.
 972 */
 973static void
 974ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
 975{
 976	struct ice_ptp_port *port;
 977
 978	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member)
 979		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
 980}
 981
 982/**
 983 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 984 * @pf: Board private structure
 985 * @tx: Tx tracking structure to release
 986 *
 987 * Free memory associated with the Tx timestamp tracker.
 988 */
 989static void
 990ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 991{
 992	unsigned long flags;
 993
 994	spin_lock_irqsave(&tx->lock, flags);
 995	tx->init = 0;
 996	spin_unlock_irqrestore(&tx->lock, flags);
 997
 998	/* wait for potentially outstanding interrupt to complete */
 999	synchronize_irq(pf->oicr_irq.virq);
1000
1001	ice_ptp_flush_tx_tracker(pf, tx);
1002
1003	kfree(tx->tstamps);
1004	tx->tstamps = NULL;
1005
1006	bitmap_free(tx->in_use);
1007	tx->in_use = NULL;
1008
1009	bitmap_free(tx->stale);
1010	tx->stale = NULL;
1011
1012	tx->len = 0;
1013}
1014
1015/**
1016 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
1017 * @pf: Board private structure
1018 * @tx: the Tx tracking structure to initialize
1019 * @port: the port this structure tracks
1020 *
1021 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1022 * the timestamp block is shared for all ports in the same quad. To avoid
1023 * ports using the same timestamp index, logically break the block of
1024 * registers into chunks based on the port number.
1025 */
1026static int
1027ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1028{
1029	tx->block = port / ICE_PORTS_PER_QUAD;
1030	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1031	tx->len = INDEX_PER_PORT_E82X;
1032	tx->has_ready_bitmap = 1;
1033
1034	return ice_ptp_alloc_tx_tracker(tx);
1035}
1036
1037/**
1038 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1039 * @pf: Board private structure
1040 * @tx: the Tx tracking structure to initialize
1041 *
1042 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1043 * port has its own block of timestamps, independent of the other ports.
1044 */
1045static int
1046ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1047{
1048	tx->block = pf->hw.port_info->lport;
1049	tx->offset = 0;
1050	tx->len = INDEX_PER_PORT_E810;
1051	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1052	 * verify new timestamps against cached copy of the last read
1053	 * timestamp.
1054	 */
1055	tx->has_ready_bitmap = 0;
1056
1057	return ice_ptp_alloc_tx_tracker(tx);
1058}
1059
1060/**
1061 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1062 * @pf: Board specific private structure
1063 *
1064 * This function updates the system time values which are cached in the PF
1065 * structure and the Rx rings.
1066 *
1067 * This function must be called periodically to ensure that the cached value
1068 * is never more than 2 seconds old.
1069 *
1070 * Note that the cached copy in the PF PTP structure is always updated, even
1071 * if we can't update the copy in the Rx rings.
1072 *
1073 * Return:
1074 * * 0 - OK, successfully updated
1075 * * -EAGAIN - PF was busy, need to reschedule the update
1076 */
1077static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1078{
1079	struct device *dev = ice_pf_to_dev(pf);
1080	unsigned long update_before;
1081	u64 systime;
1082	int i;
1083
1084	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1085	if (pf->ptp.cached_phc_time &&
1086	    time_is_before_jiffies(update_before)) {
1087		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1088
1089		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1090			 jiffies_to_msecs(time_taken));
1091		pf->ptp.late_cached_phc_updates++;
1092	}
1093
1094	/* Read the current PHC time */
1095	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1096
1097	/* Update the cached PHC time stored in the PF structure */
1098	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1099	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1100
1101	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1102		return -EAGAIN;
1103
1104	ice_for_each_vsi(pf, i) {
1105		struct ice_vsi *vsi = pf->vsi[i];
1106		int j;
1107
1108		if (!vsi)
1109			continue;
1110
1111		if (vsi->type != ICE_VSI_PF)
1112			continue;
1113
1114		ice_for_each_rxq(vsi, j) {
1115			if (!vsi->rx_rings[j])
1116				continue;
1117			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1118		}
1119	}
1120	clear_bit(ICE_CFG_BUSY, pf->state);
1121
1122	return 0;
1123}
1124
1125/**
1126 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1127 * @pf: Board specific private structure
1128 *
1129 * This function must be called when the cached PHC time is no longer valid,
1130 * such as after a time adjustment. It marks any currently outstanding Tx
1131 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1132 * rings.
1133 *
1134 * If updating the PHC time cannot be done immediately, a warning message is
1135 * logged and the work item is scheduled immediately to minimize the window
1136 * with a wrong cached timestamp.
1137 */
1138static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1139{
1140	struct device *dev = ice_pf_to_dev(pf);
1141	int err;
1142
1143	/* Update the cached PHC time immediately if possible, otherwise
1144	 * schedule the work item to execute soon.
1145	 */
1146	err = ice_ptp_update_cached_phctime(pf);
1147	if (err) {
1148		/* If another thread is updating the Rx rings, we won't
1149		 * properly reset them here. This could lead to reporting of
1150		 * invalid timestamps, but there isn't much we can do.
1151		 */
1152		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1153			 __func__);
1154
1155		/* Queue the work item to update the Rx rings when possible */
1156		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1157					   msecs_to_jiffies(10));
1158	}
1159
1160	/* Mark any outstanding timestamps as stale, since they might have
1161	 * been captured in hardware before the time update. This could lead
1162	 * to us extending them with the wrong cached value resulting in
1163	 * incorrect timestamp values.
1164	 */
1165	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1166}
1167
1168/**
1169 * ice_ptp_read_time - Read the time from the device
1170 * @pf: Board private structure
1171 * @ts: timespec structure to hold the current time value
1172 * @sts: Optional parameter for holding a pair of system timestamps from
1173 *       the system clock. Will be ignored if NULL is given.
1174 *
1175 * This function reads the source clock registers and stores them in a timespec.
1176 * However, since the registers are 64 bits of nanoseconds, we must convert the
1177 * result to a timespec before we can return.
1178 */
1179static void
1180ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1181		  struct ptp_system_timestamp *sts)
1182{
1183	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1184
1185	*ts = ns_to_timespec64(time_ns);
1186}
1187
1188/**
1189 * ice_ptp_write_init - Set PHC time to provided value
1190 * @pf: Board private structure
1191 * @ts: timespec structure that holds the new time value
1192 *
1193 * Set the PHC time to the specified time provided in the timespec.
1194 */
1195static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1196{
1197	u64 ns = timespec64_to_ns(ts);
1198	struct ice_hw *hw = &pf->hw;
1199
1200	return ice_ptp_init_time(hw, ns);
1201}
1202
1203/**
1204 * ice_ptp_write_adj - Adjust PHC clock time atomically
1205 * @pf: Board private structure
1206 * @adj: Adjustment in nanoseconds
1207 *
1208 * Perform an atomic adjustment of the PHC time by the specified number of
1209 * nanoseconds.
1210 */
1211static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1212{
1213	struct ice_hw *hw = &pf->hw;
1214
1215	return ice_ptp_adj_clock(hw, adj);
1216}
1217
1218/**
1219 * ice_base_incval - Get base timer increment value
1220 * @pf: Board private structure
1221 *
1222 * Look up the base timer increment value for this device. The base increment
1223 * value is used to define the nominal clock tick rate. This increment value
1224 * is programmed during device initialization. It is also used as the basis
1225 * for calculating adjustments using scaled_ppm.
1226 */
1227static u64 ice_base_incval(struct ice_pf *pf)
1228{
1229	struct ice_hw *hw = &pf->hw;
1230	u64 incval;
1231
1232	if (ice_is_e810(hw))
1233		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1234	else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1235		incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw));
1236	else
1237		incval = UNKNOWN_INCVAL_E82X;
1238
1239	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1240		incval);
1241
1242	return incval;
1243}
1244
1245/**
1246 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1247 * @port: PTP port for which Tx FIFO is checked
1248 */
1249static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1250{
1251	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1252	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1253	struct ice_pf *pf;
1254	struct ice_hw *hw;
1255	u32 val, phy_sts;
1256	int err;
1257
1258	pf = ptp_port_to_pf(port);
1259	hw = &pf->hw;
1260
1261	if (port->tx_fifo_busy_cnt == FIFO_OK)
1262		return 0;
1263
1264	/* need to read FIFO state */
1265	if (offs == 0 || offs == 1)
1266		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1267					     &val);
1268	else
1269		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1270					     &val);
1271
1272	if (err) {
1273		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1274			port->port_num, err);
1275		return err;
1276	}
1277
1278	if (offs & 0x1)
1279		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1280	else
1281		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1282
1283	if (phy_sts & FIFO_EMPTY) {
1284		port->tx_fifo_busy_cnt = FIFO_OK;
1285		return 0;
1286	}
1287
1288	port->tx_fifo_busy_cnt++;
1289
1290	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1291		port->tx_fifo_busy_cnt, port->port_num);
1292
1293	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1294		dev_dbg(ice_pf_to_dev(pf),
1295			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1296			port->port_num, quad);
1297		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1298		port->tx_fifo_busy_cnt = FIFO_OK;
1299		return 0;
1300	}
1301
1302	return -EAGAIN;
1303}
1304
1305/**
1306 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1307 * @work: Pointer to the kthread_work structure for this task
1308 *
1309 * Check whether hardware has completed measuring the Tx and Rx offset values
1310 * used to configure and enable vernier timestamp calibration.
1311 *
1312 * Once the offset in either direction is measured, configure the associated
1313 * registers with the calibrated offset values and enable timestamping. The Tx
1314 * and Rx directions are configured independently as soon as their associated
1315 * offsets are known.
1316 *
1317 * This function reschedules itself until both Tx and Rx calibration have
1318 * completed.
1319 */
1320static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1321{
1322	struct ice_ptp_port *port;
1323	struct ice_pf *pf;
1324	struct ice_hw *hw;
1325	int tx_err;
1326	int rx_err;
1327
1328	port = container_of(work, struct ice_ptp_port, ov_work.work);
1329	pf = ptp_port_to_pf(port);
1330	hw = &pf->hw;
1331
1332	if (ice_is_reset_in_progress(pf->state)) {
1333		/* wait for device driver to complete reset */
1334		kthread_queue_delayed_work(pf->ptp.kworker,
1335					   &port->ov_work,
1336					   msecs_to_jiffies(100));
1337		return;
1338	}
1339
1340	tx_err = ice_ptp_check_tx_fifo(port);
1341	if (!tx_err)
1342		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1343	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1344	if (tx_err || rx_err) {
1345		/* Tx and/or Rx offset not yet configured, try again later */
1346		kthread_queue_delayed_work(pf->ptp.kworker,
1347					   &port->ov_work,
1348					   msecs_to_jiffies(100));
1349		return;
1350	}
1351}
1352
1353/**
1354 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1355 * @ptp_port: PTP port to stop
1356 */
1357static int
1358ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1359{
1360	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1361	u8 port = ptp_port->port_num;
1362	struct ice_hw *hw = &pf->hw;
1363	int err;
1364
1365	if (ice_is_e810(hw))
1366		return 0;
1367
1368	mutex_lock(&ptp_port->ps_lock);
1369
1370	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1371
1372	err = ice_stop_phy_timer_e82x(hw, port, true);
1373	if (err)
1374		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1375			port, err);
1376
1377	mutex_unlock(&ptp_port->ps_lock);
1378
1379	return err;
1380}
1381
1382/**
1383 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1384 * @ptp_port: PTP port for which the PHY start is set
1385 *
1386 * Start the PHY timestamping block, and initiate Vernier timestamping
1387 * calibration. If timestamping cannot be calibrated (such as if link is down)
1388 * then disable the timestamping block instead.
1389 */
1390static int
1391ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1392{
1393	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1394	u8 port = ptp_port->port_num;
1395	struct ice_hw *hw = &pf->hw;
1396	unsigned long flags;
1397	int err;
1398
1399	if (ice_is_e810(hw))
1400		return 0;
1401
1402	if (!ptp_port->link_up)
1403		return ice_ptp_port_phy_stop(ptp_port);
1404
1405	mutex_lock(&ptp_port->ps_lock);
1406
1407	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1408
1409	/* temporarily disable Tx timestamps while calibrating PHY offset */
1410	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1411	ptp_port->tx.calibrating = true;
1412	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1413	ptp_port->tx_fifo_busy_cnt = 0;
1414
1415	/* Start the PHY timer in Vernier mode */
1416	err = ice_start_phy_timer_e82x(hw, port);
1417	if (err)
1418		goto out_unlock;
1419
1420	/* Enable Tx timestamps right away */
1421	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1422	ptp_port->tx.calibrating = false;
1423	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1424
1425	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1426
1427out_unlock:
1428	if (err)
1429		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1430			port, err);
1431
1432	mutex_unlock(&ptp_port->ps_lock);
1433
1434	return err;
1435}
1436
1437/**
1438 * ice_ptp_link_change - Reconfigure PTP after link status change
1439 * @pf: Board private structure
1440 * @port: Port for which the PHY start is set
1441 * @linkup: Link is up or down
1442 */
1443void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1444{
1445	struct ice_ptp_port *ptp_port;
1446	struct ice_hw *hw = &pf->hw;
1447
1448	if (pf->ptp.state != ICE_PTP_READY)
1449		return;
1450
1451	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1452		return;
1453
1454	ptp_port = &pf->ptp.port;
1455	if (WARN_ON_ONCE(ptp_port->port_num != port))
1456		return;
1457
1458	/* Update cached link status for this port immediately */
1459	ptp_port->link_up = linkup;
1460
1461	switch (hw->phy_model) {
1462	case ICE_PHY_E810:
1463		/* Do not reconfigure E810 PHY */
1464		return;
1465	case ICE_PHY_E82X:
1466		ice_ptp_port_phy_restart(ptp_port);
1467		return;
1468	default:
1469		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1470	}
1471}
1472
1473/**
1474 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1475 * @pf: PF private structure
1476 * @ena: bool value to enable or disable interrupt
1477 * @threshold: Minimum number of packets at which intr is triggered
1478 *
1479 * Utility function to enable or disable Tx timestamp interrupt and threshold
1480 */
1481static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1482{
1483	struct ice_hw *hw = &pf->hw;
1484	int err = 0;
1485	int quad;
1486	u32 val;
1487
1488	ice_ptp_reset_ts_memory(hw);
1489
1490	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1491		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1492					     &val);
1493		if (err)
1494			break;
1495
1496		if (ena) {
1497			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1498			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1499			val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M,
1500					  threshold);
1501		} else {
1502			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1503		}
1504
1505		err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1506					      val);
1507		if (err)
1508			break;
1509	}
1510
1511	if (err)
1512		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1513			err);
1514	return err;
1515}
1516
1517/**
1518 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1519 * @pf: Board private structure
1520 */
1521static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1522{
1523	ice_ptp_port_phy_restart(&pf->ptp.port);
1524}
1525
1526/**
1527 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1528 * @pf: Board private structure
1529 */
1530static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1531{
1532	struct list_head *entry;
1533
1534	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1535		struct ice_ptp_port *port = list_entry(entry,
1536						       struct ice_ptp_port,
1537						       list_member);
1538
1539		if (port->link_up)
1540			ice_ptp_port_phy_restart(port);
1541	}
1542}
1543
1544/**
1545 * ice_ptp_adjfine - Adjust clock increment rate
1546 * @info: the driver's PTP info structure
1547 * @scaled_ppm: Parts per million with 16-bit fractional field
1548 *
1549 * Adjust the frequency of the clock by the indicated scaled ppm from the
1550 * base frequency.
1551 */
1552static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1553{
1554	struct ice_pf *pf = ptp_info_to_pf(info);
1555	struct ice_hw *hw = &pf->hw;
1556	u64 incval;
1557	int err;
1558
1559	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1560	err = ice_ptp_write_incval_locked(hw, incval);
1561	if (err) {
1562		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1563			err);
1564		return -EIO;
1565	}
1566
1567	return 0;
1568}
1569
1570/**
1571 * ice_ptp_extts_event - Process PTP external clock event
1572 * @pf: Board private structure
1573 */
1574void ice_ptp_extts_event(struct ice_pf *pf)
1575{
1576	struct ptp_clock_event event;
1577	struct ice_hw *hw = &pf->hw;
1578	u8 chan, tmr_idx;
1579	u32 hi, lo;
1580
1581	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1582	/* Event time is captured by one of the two matched registers
1583	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1584	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1585	 * Event is defined in GLTSYN_EVNT_0 register
1586	 */
1587	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1588		/* Check if channel is enabled */
1589		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1590			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1591			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1592			event.timestamp = (((u64)hi) << 32) | lo;
1593			event.type = PTP_CLOCK_EXTTS;
1594			event.index = chan;
1595
1596			/* Fire event */
1597			ptp_clock_event(pf->ptp.clock, &event);
1598			pf->ptp.ext_ts_irq &= ~(1 << chan);
1599		}
1600	}
1601}
1602
1603/**
1604 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1605 * @pf: Board private structure
1606 * @ena: true to enable; false to disable
1607 * @chan: GPIO channel (0-3)
1608 * @gpio_pin: GPIO pin
1609 * @extts_flags: request flags from the ptp_extts_request.flags
1610 */
1611static int
1612ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1613		  unsigned int extts_flags)
1614{
1615	u32 func, aux_reg, gpio_reg, irq_reg;
1616	struct ice_hw *hw = &pf->hw;
1617	u8 tmr_idx;
1618
1619	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1620		return -EINVAL;
1621
1622	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1623
1624	irq_reg = rd32(hw, PFINT_OICR_ENA);
1625
1626	if (ena) {
1627		/* Enable the interrupt */
1628		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1629		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1630
1631#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1632#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1633
1634		/* set event level to requested edge */
1635		if (extts_flags & PTP_FALLING_EDGE)
1636			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1637		if (extts_flags & PTP_RISING_EDGE)
1638			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1639
1640		/* Write GPIO CTL reg.
1641		 * 0x1 is input sampled by EVENT register(channel)
1642		 * + num_in_channels * tmr_idx
1643		 */
1644		func = 1 + chan + (tmr_idx * 3);
1645		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1646		pf->ptp.ext_ts_chan |= (1 << chan);
1647	} else {
1648		/* clear the values we set to reset defaults */
1649		aux_reg = 0;
1650		gpio_reg = 0;
1651		pf->ptp.ext_ts_chan &= ~(1 << chan);
1652		if (!pf->ptp.ext_ts_chan)
1653			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1654	}
1655
1656	wr32(hw, PFINT_OICR_ENA, irq_reg);
1657	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1658	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1659
1660	return 0;
1661}
1662
1663/**
1664 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1665 * @pf: Board private structure
1666 * @chan: GPIO channel (0-3)
1667 * @config: desired periodic clk configuration. NULL will disable channel
1668 * @store: If set to true the values will be stored
1669 *
1670 * Configure the internal clock generator modules to generate the clock wave of
1671 * specified period.
1672 */
1673static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1674			      struct ice_perout_channel *config, bool store)
1675{
1676	u64 current_time, period, start_time, phase;
1677	struct ice_hw *hw = &pf->hw;
1678	u32 func, val, gpio_pin;
1679	u8 tmr_idx;
1680
1681	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1682
1683	/* 0. Reset mode & out_en in AUX_OUT */
1684	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1685
1686	/* If we're disabling the output, clear out CLKO and TGT and keep
1687	 * output level low
1688	 */
1689	if (!config || !config->ena) {
1690		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1691		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1692		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1693
1694		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1695		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1696		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1697
1698		/* Store the value if requested */
1699		if (store)
1700			memset(&pf->ptp.perout_channels[chan], 0,
1701			       sizeof(struct ice_perout_channel));
1702
1703		return 0;
1704	}
1705	period = config->period;
1706	start_time = config->start_time;
1707	div64_u64_rem(start_time, period, &phase);
1708	gpio_pin = config->gpio_pin;
1709
1710	/* 1. Write clkout with half of required period value */
1711	if (period & 0x1) {
1712		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1713		goto err;
1714	}
1715
1716	period >>= 1;
1717
1718	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1719	 */
1720#define MIN_PULSE 3
1721	if (period <= MIN_PULSE || period > U32_MAX) {
1722		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1723			MIN_PULSE * 2);
1724		goto err;
1725	}
1726
1727	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1728
1729	/* Allow time for programming before start_time is hit */
1730	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1731
1732	/* if start time is in the past start the timer at the nearest second
1733	 * maintaining phase
1734	 */
1735	if (start_time < current_time)
1736		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1737				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1738
1739	if (ice_is_e810(hw))
1740		start_time -= E810_OUT_PROP_DELAY_NS;
1741	else
1742		start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));
1743
1744	/* 2. Write TARGET time */
1745	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1746	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1747
1748	/* 3. Write AUX_OUT register */
1749	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1750	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1751
1752	/* 4. write GPIO CTL reg */
1753	func = 8 + chan + (tmr_idx * 4);
1754	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1755	      FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1756	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1757
1758	/* Store the value if requested */
1759	if (store) {
1760		memcpy(&pf->ptp.perout_channels[chan], config,
1761		       sizeof(struct ice_perout_channel));
1762		pf->ptp.perout_channels[chan].start_time = phase;
1763	}
1764
1765	return 0;
1766err:
1767	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1768	return -EFAULT;
1769}
1770
1771/**
1772 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1773 * @pf: pointer to the PF structure
1774 *
1775 * Disable all currently configured clock outputs. This is necessary before
1776 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1777 * re-enable the clocks again.
1778 */
1779static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1780{
1781	uint i;
1782
1783	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1784		if (pf->ptp.perout_channels[i].ena)
1785			ice_ptp_cfg_clkout(pf, i, NULL, false);
1786}
1787
1788/**
1789 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1790 * @pf: pointer to the PF structure
1791 *
1792 * Enable all currently configured clock outputs. Use this after
1793 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1794 * their configuration.
1795 */
1796static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1797{
1798	uint i;
1799
1800	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1801		if (pf->ptp.perout_channels[i].ena)
1802			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1803					   false);
1804}
1805
1806/**
1807 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1808 * @info: the driver's PTP info structure
1809 * @rq: The requested feature to change
1810 * @on: Enable/disable flag
1811 */
1812static int
1813ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1814			 struct ptp_clock_request *rq, int on)
1815{
1816	struct ice_pf *pf = ptp_info_to_pf(info);
1817	struct ice_perout_channel clk_cfg = {0};
1818	bool sma_pres = false;
1819	unsigned int chan;
1820	u32 gpio_pin;
1821	int err;
1822
1823	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1824		sma_pres = true;
1825
1826	switch (rq->type) {
1827	case PTP_CLK_REQ_PEROUT:
1828		chan = rq->perout.index;
1829		if (sma_pres) {
1830			if (chan == ice_pin_desc_e810t[SMA1].chan)
1831				clk_cfg.gpio_pin = GPIO_20;
1832			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1833				clk_cfg.gpio_pin = GPIO_22;
1834			else
1835				return -1;
1836		} else if (ice_is_e810t(&pf->hw)) {
1837			if (chan == 0)
1838				clk_cfg.gpio_pin = GPIO_20;
1839			else
1840				clk_cfg.gpio_pin = GPIO_22;
1841		} else if (chan == PPS_CLK_GEN_CHAN) {
1842			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1843		} else {
1844			clk_cfg.gpio_pin = chan;
1845		}
1846
1847		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1848				   rq->perout.period.nsec);
1849		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1850				       rq->perout.start.nsec);
1851		clk_cfg.ena = !!on;
1852
1853		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1854		break;
1855	case PTP_CLK_REQ_EXTTS:
1856		chan = rq->extts.index;
1857		if (sma_pres) {
1858			if (chan < ice_pin_desc_e810t[SMA2].chan)
1859				gpio_pin = GPIO_21;
1860			else
1861				gpio_pin = GPIO_23;
1862		} else if (ice_is_e810t(&pf->hw)) {
1863			if (chan == 0)
1864				gpio_pin = GPIO_21;
1865			else
1866				gpio_pin = GPIO_23;
1867		} else {
1868			gpio_pin = chan;
1869		}
1870
1871		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1872					rq->extts.flags);
1873		break;
1874	default:
1875		return -EOPNOTSUPP;
1876	}
1877
1878	return err;
1879}
1880
1881/**
1882 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1883 * @info: the driver's PTP info structure
1884 * @rq: The requested feature to change
1885 * @on: Enable/disable flag
1886 */
1887static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1888				    struct ptp_clock_request *rq, int on)
1889{
1890	struct ice_pf *pf = ptp_info_to_pf(info);
1891	struct ice_perout_channel clk_cfg = {0};
1892	int err;
1893
1894	switch (rq->type) {
1895	case PTP_CLK_REQ_PPS:
1896		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1897		clk_cfg.period = NSEC_PER_SEC;
1898		clk_cfg.ena = !!on;
1899
1900		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1901		break;
1902	case PTP_CLK_REQ_EXTTS:
1903		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1904					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1905		break;
1906	default:
1907		return -EOPNOTSUPP;
1908	}
1909
1910	return err;
1911}
1912
1913/**
1914 * ice_ptp_gettimex64 - Get the time of the clock
1915 * @info: the driver's PTP info structure
1916 * @ts: timespec64 structure to hold the current time value
1917 * @sts: Optional parameter for holding a pair of system timestamps from
1918 *       the system clock. Will be ignored if NULL is given.
1919 *
1920 * Read the device clock and return the correct value on ns, after converting it
1921 * into a timespec struct.
1922 */
1923static int
1924ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1925		   struct ptp_system_timestamp *sts)
1926{
1927	struct ice_pf *pf = ptp_info_to_pf(info);
1928	struct ice_hw *hw = &pf->hw;
1929
1930	if (!ice_ptp_lock(hw)) {
1931		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1932		return -EBUSY;
1933	}
1934
1935	ice_ptp_read_time(pf, ts, sts);
1936	ice_ptp_unlock(hw);
1937
1938	return 0;
1939}
1940
1941/**
1942 * ice_ptp_settime64 - Set the time of the clock
1943 * @info: the driver's PTP info structure
1944 * @ts: timespec64 structure that holds the new time value
1945 *
1946 * Set the device clock to the user input value. The conversion from timespec
1947 * to ns happens in the write function.
1948 */
1949static int
1950ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1951{
1952	struct ice_pf *pf = ptp_info_to_pf(info);
1953	struct timespec64 ts64 = *ts;
1954	struct ice_hw *hw = &pf->hw;
1955	int err;
1956
1957	/* For Vernier mode, we need to recalibrate after new settime
1958	 * Start with disabling timestamp block
1959	 */
1960	if (pf->ptp.port.link_up)
1961		ice_ptp_port_phy_stop(&pf->ptp.port);
1962
1963	if (!ice_ptp_lock(hw)) {
1964		err = -EBUSY;
1965		goto exit;
1966	}
1967
1968	/* Disable periodic outputs */
1969	ice_ptp_disable_all_clkout(pf);
1970
1971	err = ice_ptp_write_init(pf, &ts64);
1972	ice_ptp_unlock(hw);
1973
1974	if (!err)
1975		ice_ptp_reset_cached_phctime(pf);
1976
1977	/* Reenable periodic outputs */
1978	ice_ptp_enable_all_clkout(pf);
1979
1980	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1981	if (hw->phy_model == ICE_PHY_E82X)
1982		ice_ptp_restart_all_phy(pf);
1983exit:
1984	if (err) {
1985		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1986		return err;
1987	}
1988
1989	return 0;
1990}
1991
1992/**
1993 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1994 * @info: the driver's PTP info structure
1995 * @delta: Offset in nanoseconds to adjust the time by
1996 */
1997static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1998{
1999	struct timespec64 now, then;
2000	int ret;
2001
2002	then = ns_to_timespec64(delta);
2003	ret = ice_ptp_gettimex64(info, &now, NULL);
2004	if (ret)
2005		return ret;
2006	now = timespec64_add(now, then);
2007
2008	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2009}
2010
2011/**
2012 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2013 * @info: the driver's PTP info structure
2014 * @delta: Offset in nanoseconds to adjust the time by
2015 */
2016static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2017{
2018	struct ice_pf *pf = ptp_info_to_pf(info);
2019	struct ice_hw *hw = &pf->hw;
2020	struct device *dev;
2021	int err;
2022
2023	dev = ice_pf_to_dev(pf);
2024
2025	/* Hardware only supports atomic adjustments using signed 32-bit
2026	 * integers. For any adjustment outside this range, perform
2027	 * a non-atomic get->adjust->set flow.
2028	 */
2029	if (delta > S32_MAX || delta < S32_MIN) {
2030		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2031		return ice_ptp_adjtime_nonatomic(info, delta);
2032	}
2033
2034	if (!ice_ptp_lock(hw)) {
2035		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2036		return -EBUSY;
2037	}
2038
2039	/* Disable periodic outputs */
2040	ice_ptp_disable_all_clkout(pf);
2041
2042	err = ice_ptp_write_adj(pf, delta);
2043
2044	/* Reenable periodic outputs */
2045	ice_ptp_enable_all_clkout(pf);
2046
2047	ice_ptp_unlock(hw);
2048
2049	if (err) {
2050		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2051		return err;
2052	}
2053
2054	ice_ptp_reset_cached_phctime(pf);
2055
2056	return 0;
2057}
2058
2059#ifdef CONFIG_ICE_HWTS
2060/**
2061 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2062 * @device: Current device time
2063 * @system: System counter value read synchronously with device time
2064 * @ctx: Context provided by timekeeping code
2065 *
2066 * Read device and system (ART) clock simultaneously and return the corrected
2067 * clock values in ns.
2068 */
2069static int
2070ice_ptp_get_syncdevicetime(ktime_t *device,
2071			   struct system_counterval_t *system,
2072			   void *ctx)
2073{
2074	struct ice_pf *pf = (struct ice_pf *)ctx;
2075	struct ice_hw *hw = &pf->hw;
2076	u32 hh_lock, hh_art_ctl;
2077	int i;
2078
2079#define MAX_HH_HW_LOCK_TRIES	5
2080#define MAX_HH_CTL_LOCK_TRIES	100
2081
2082	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2083		/* Get the HW lock */
2084		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2085		if (hh_lock & PFHH_SEM_BUSY_M) {
2086			usleep_range(10000, 15000);
2087			continue;
2088		}
2089		break;
2090	}
2091	if (hh_lock & PFHH_SEM_BUSY_M) {
2092		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2093		return -EBUSY;
2094	}
2095
2096	/* Program cmd to master timer */
2097	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2098
2099	/* Start the ART and device clock sync sequence */
2100	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2101	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2102	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2103
2104	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2105		/* Wait for sync to complete */
2106		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2107		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2108			udelay(1);
2109			continue;
2110		} else {
2111			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2112			u64 hh_ts;
2113
2114			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2115			/* Read ART time */
2116			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2117			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2118			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2119			*system = convert_art_ns_to_tsc(hh_ts);
2120			/* Read Device source clock time */
2121			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2122			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2123			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2124			*device = ns_to_ktime(hh_ts);
2125			break;
2126		}
2127	}
2128
2129	/* Clear the master timer */
2130	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2131
2132	/* Release HW lock */
2133	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2134	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2135	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2136
2137	if (i == MAX_HH_CTL_LOCK_TRIES)
2138		return -ETIMEDOUT;
2139
2140	return 0;
2141}
2142
2143/**
2144 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2145 * @info: the driver's PTP info structure
2146 * @cts: The memory to fill the cross timestamp info
2147 *
2148 * Capture a cross timestamp between the ART and the device PTP hardware
2149 * clock. Fill the cross timestamp information and report it back to the
2150 * caller.
2151 *
2152 * This is only valid for E822 and E823 devices which have support for
2153 * generating the cross timestamp via PCIe PTM.
2154 *
2155 * In order to correctly correlate the ART timestamp back to the TSC time, the
2156 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2157 */
2158static int
2159ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2160			    struct system_device_crosststamp *cts)
2161{
2162	struct ice_pf *pf = ptp_info_to_pf(info);
2163
2164	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2165					     pf, NULL, cts);
2166}
2167#endif /* CONFIG_ICE_HWTS */
2168
2169/**
2170 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2171 * @pf: Board private structure
2172 * @ifr: ioctl data
2173 *
2174 * Copy the timestamping config to user buffer
2175 */
2176int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2177{
2178	struct hwtstamp_config *config;
2179
2180	if (pf->ptp.state != ICE_PTP_READY)
2181		return -EIO;
2182
2183	config = &pf->ptp.tstamp_config;
2184
2185	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2186		-EFAULT : 0;
2187}
2188
2189/**
2190 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2191 * @pf: Board private structure
2192 * @config: hwtstamp settings requested or saved
2193 */
2194static int
2195ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2196{
2197	switch (config->tx_type) {
2198	case HWTSTAMP_TX_OFF:
2199		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2200		break;
2201	case HWTSTAMP_TX_ON:
2202		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2203		break;
2204	default:
2205		return -ERANGE;
2206	}
2207
2208	switch (config->rx_filter) {
2209	case HWTSTAMP_FILTER_NONE:
2210		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2211		break;
2212	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2213	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2214	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2215	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2216	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2217	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2218	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2219	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2220	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2221	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2222	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2223	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2224	case HWTSTAMP_FILTER_NTP_ALL:
2225	case HWTSTAMP_FILTER_ALL:
2226		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2227		break;
2228	default:
2229		return -ERANGE;
2230	}
2231
2232	/* Immediately update the device timestamping mode */
2233	ice_ptp_restore_timestamp_mode(pf);
2234
2235	return 0;
2236}
2237
2238/**
2239 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2240 * @pf: Board private structure
2241 * @ifr: ioctl data
2242 *
2243 * Get the user config and store it
2244 */
2245int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2246{
2247	struct hwtstamp_config config;
2248	int err;
2249
2250	if (pf->ptp.state != ICE_PTP_READY)
2251		return -EAGAIN;
2252
2253	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2254		return -EFAULT;
2255
2256	err = ice_ptp_set_timestamp_mode(pf, &config);
2257	if (err)
2258		return err;
2259
2260	/* Return the actual configuration set */
2261	config = pf->ptp.tstamp_config;
2262
2263	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2264		-EFAULT : 0;
2265}
2266
2267/**
2268 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2269 * @rx_desc: Receive descriptor
2270 * @pkt_ctx: Packet context to get the cached time
2271 *
2272 * The driver receives a notification in the receive descriptor with timestamp.
2273 */
2274u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2275			const struct ice_pkt_ctx *pkt_ctx)
2276{
2277	u64 ts_ns, cached_time;
2278	u32 ts_high;
2279
2280	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2281		return 0;
2282
2283	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2284
2285	/* Do not report a timestamp if we don't have a cached PHC time */
2286	if (!cached_time)
2287		return 0;
2288
2289	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2290	 * PHC value, rather than accessing the PF. This also allows us to
2291	 * simply pass the upper 32bits of nanoseconds directly. Calling
2292	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2293	 * bits itself.
2294	 */
2295	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2296	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2297
2298	return ts_ns;
2299}
2300
2301/**
2302 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2303 * @pf: pointer to the PF structure
2304 * @info: PTP clock info structure
2305 *
2306 * Disable the OS access to the SMA pins. Called to clear out the OS
2307 * indications of pin support when we fail to setup the E810-T SMA control
2308 * register.
2309 */
2310static void
2311ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2312{
2313	struct device *dev = ice_pf_to_dev(pf);
2314
2315	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2316
2317	info->enable = NULL;
2318	info->verify = NULL;
2319	info->n_pins = 0;
2320	info->n_ext_ts = 0;
2321	info->n_per_out = 0;
2322}
2323
2324/**
2325 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2326 * @pf: pointer to the PF structure
2327 * @info: PTP clock info structure
2328 *
2329 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2330 * according to the current status of the SMA. On failure, disable all of the
2331 * extended SMA pin support.
2332 */
2333static void
2334ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2335{
2336	struct device *dev = ice_pf_to_dev(pf);
2337	int err;
2338
2339	/* Allocate memory for kernel pins interface */
2340	info->pin_config = devm_kcalloc(dev, info->n_pins,
2341					sizeof(*info->pin_config), GFP_KERNEL);
2342	if (!info->pin_config) {
2343		ice_ptp_disable_sma_pins_e810t(pf, info);
2344		return;
2345	}
2346
2347	/* Read current SMA status */
2348	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2349	if (err)
2350		ice_ptp_disable_sma_pins_e810t(pf, info);
2351}
2352
2353/**
2354 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2355 * @pf: pointer to the PF instance
2356 * @info: PTP clock capabilities
2357 */
2358static void
2359ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2360{
2361	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2362		info->n_ext_ts = N_EXT_TS_E810;
2363		info->n_per_out = N_PER_OUT_E810T;
2364		info->n_pins = NUM_PTP_PINS_E810T;
2365		info->verify = ice_verify_pin_e810t;
2366
2367		/* Complete setup of the SMA pins */
2368		ice_ptp_setup_sma_pins_e810t(pf, info);
2369	} else if (ice_is_e810t(&pf->hw)) {
2370		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2371		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2372	} else {
2373		info->n_per_out = N_PER_OUT_E810;
2374		info->n_ext_ts = N_EXT_TS_E810;
2375	}
2376}
2377
2378/**
2379 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2380 * @pf: pointer to the PF instance
2381 * @info: PTP clock capabilities
2382 */
2383static void
2384ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2385{
2386	info->pps = 1;
2387	info->n_per_out = 0;
2388	info->n_ext_ts = 1;
2389}
2390
2391/**
2392 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2393 * @pf: Board private structure
2394 * @info: PTP info to fill
2395 *
2396 * Assign functions to the PTP capabiltiies structure for E82x devices.
2397 * Functions which operate across all device families should be set directly
2398 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2399 * devices.
2400 */
2401static void
2402ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2403{
2404#ifdef CONFIG_ICE_HWTS
2405	if (boot_cpu_has(X86_FEATURE_ART) &&
2406	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2407		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2408#endif /* CONFIG_ICE_HWTS */
2409}
2410
2411/**
2412 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2413 * @pf: Board private structure
2414 * @info: PTP info to fill
2415 *
2416 * Assign functions to the PTP capabiltiies structure for E810 devices.
2417 * Functions which operate across all device families should be set directly
2418 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2419 * devices.
2420 */
2421static void
2422ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2423{
2424	info->enable = ice_ptp_gpio_enable_e810;
2425	ice_ptp_setup_pins_e810(pf, info);
2426}
2427
2428/**
2429 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2430 * @pf: Board private structure
2431 * @info: PTP info to fill
2432 *
2433 * Assign functions to the PTP capabiltiies structure for E823 devices.
2434 * Functions which operate across all device families should be set directly
2435 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2436 * devices.
2437 */
2438static void
2439ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2440{
2441	ice_ptp_set_funcs_e82x(pf, info);
2442
2443	info->enable = ice_ptp_gpio_enable_e823;
2444	ice_ptp_setup_pins_e823(pf, info);
2445}
2446
2447/**
2448 * ice_ptp_set_caps - Set PTP capabilities
2449 * @pf: Board private structure
2450 */
2451static void ice_ptp_set_caps(struct ice_pf *pf)
2452{
2453	struct ptp_clock_info *info = &pf->ptp.info;
2454	struct device *dev = ice_pf_to_dev(pf);
2455
2456	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2457		 dev_driver_string(dev), dev_name(dev));
2458	info->owner = THIS_MODULE;
2459	info->max_adj = 100000000;
2460	info->adjtime = ice_ptp_adjtime;
2461	info->adjfine = ice_ptp_adjfine;
2462	info->gettimex64 = ice_ptp_gettimex64;
2463	info->settime64 = ice_ptp_settime64;
2464
2465	if (ice_is_e810(&pf->hw))
2466		ice_ptp_set_funcs_e810(pf, info);
2467	else if (ice_is_e823(&pf->hw))
2468		ice_ptp_set_funcs_e823(pf, info);
2469	else
2470		ice_ptp_set_funcs_e82x(pf, info);
2471}
2472
2473/**
2474 * ice_ptp_create_clock - Create PTP clock device for userspace
2475 * @pf: Board private structure
2476 *
2477 * This function creates a new PTP clock device. It only creates one if we
2478 * don't already have one. Will return error if it can't create one, but success
2479 * if we already have a device. Should be used by ice_ptp_init to create clock
2480 * initially, and prevent global resets from creating new clock devices.
2481 */
2482static long ice_ptp_create_clock(struct ice_pf *pf)
2483{
2484	struct ptp_clock_info *info;
2485	struct device *dev;
2486
2487	/* No need to create a clock device if we already have one */
2488	if (pf->ptp.clock)
2489		return 0;
2490
2491	ice_ptp_set_caps(pf);
2492
2493	info = &pf->ptp.info;
2494	dev = ice_pf_to_dev(pf);
2495
2496	/* Attempt to register the clock before enabling the hardware. */
2497	pf->ptp.clock = ptp_clock_register(info, dev);
2498	if (IS_ERR(pf->ptp.clock)) {
2499		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2500		return PTR_ERR(pf->ptp.clock);
2501	}
2502
2503	return 0;
2504}
2505
2506/**
2507 * ice_ptp_request_ts - Request an available Tx timestamp index
2508 * @tx: the PTP Tx timestamp tracker to request from
2509 * @skb: the SKB to associate with this timestamp request
2510 */
2511s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2512{
2513	unsigned long flags;
2514	u8 idx;
2515
2516	spin_lock_irqsave(&tx->lock, flags);
2517
2518	/* Check that this tracker is accepting new timestamp requests */
2519	if (!ice_ptp_is_tx_tracker_up(tx)) {
2520		spin_unlock_irqrestore(&tx->lock, flags);
2521		return -1;
2522	}
2523
2524	/* Find and set the first available index */
2525	idx = find_next_zero_bit(tx->in_use, tx->len,
2526				 tx->last_ll_ts_idx_read + 1);
2527	if (idx == tx->len)
2528		idx = find_first_zero_bit(tx->in_use, tx->len);
2529
2530	if (idx < tx->len) {
2531		/* We got a valid index that no other thread could have set. Store
2532		 * a reference to the skb and the start time to allow discarding old
2533		 * requests.
2534		 */
2535		set_bit(idx, tx->in_use);
2536		clear_bit(idx, tx->stale);
2537		tx->tstamps[idx].start = jiffies;
2538		tx->tstamps[idx].skb = skb_get(skb);
2539		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2540		ice_trace(tx_tstamp_request, skb, idx);
2541	}
2542
2543	spin_unlock_irqrestore(&tx->lock, flags);
2544
2545	/* return the appropriate PHY timestamp register index, -1 if no
2546	 * indexes were available.
2547	 */
2548	if (idx >= tx->len)
2549		return -1;
2550	else
2551		return idx + tx->offset;
2552}
2553
2554/**
2555 * ice_ptp_process_ts - Process the PTP Tx timestamps
2556 * @pf: Board private structure
2557 *
2558 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2559 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2560 */
2561enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2562{
2563	switch (pf->ptp.tx_interrupt_mode) {
2564	case ICE_PTP_TX_INTERRUPT_NONE:
2565		/* This device has the clock owner handle timestamps for it */
2566		return ICE_TX_TSTAMP_WORK_DONE;
2567	case ICE_PTP_TX_INTERRUPT_SELF:
2568		/* This device handles its own timestamps */
2569		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2570	case ICE_PTP_TX_INTERRUPT_ALL:
2571		/* This device handles timestamps for all ports */
2572		return ice_ptp_tx_tstamp_owner(pf);
2573	default:
2574		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2575			  pf->ptp.tx_interrupt_mode);
2576		return ICE_TX_TSTAMP_WORK_DONE;
2577	}
2578}
2579
2580/**
2581 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2582 * @pf: Board private structure
2583 *
2584 * The device PHY issues Tx timestamp interrupts to the driver for processing
2585 * timestamp data from the PHY. It will not interrupt again until all
2586 * current timestamp data is read. In rare circumstances, it is possible that
2587 * the driver fails to read all outstanding data.
2588 *
2589 * To avoid getting permanently stuck, periodically check if the PHY has
2590 * outstanding timestamp data. If so, trigger an interrupt from software to
2591 * process this data.
2592 */
2593static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2594{
2595	struct device *dev = ice_pf_to_dev(pf);
2596	struct ice_hw *hw = &pf->hw;
2597	bool trigger_oicr = false;
2598	unsigned int i;
2599
2600	if (ice_is_e810(hw))
2601		return;
2602
2603	if (!ice_pf_src_tmr_owned(pf))
2604		return;
2605
2606	for (i = 0; i < ICE_MAX_QUAD; i++) {
2607		u64 tstamp_ready;
2608		int err;
2609
2610		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2611		if (!err && tstamp_ready) {
2612			trigger_oicr = true;
2613			break;
2614		}
2615	}
2616
2617	if (trigger_oicr) {
2618		/* Trigger a software interrupt, to ensure this data
2619		 * gets processed.
2620		 */
2621		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2622
2623		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2624		ice_flush(hw);
2625	}
2626}
2627
2628static void ice_ptp_periodic_work(struct kthread_work *work)
2629{
2630	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2631	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2632	int err;
2633
2634	if (pf->ptp.state != ICE_PTP_READY)
2635		return;
2636
2637	err = ice_ptp_update_cached_phctime(pf);
2638
2639	ice_ptp_maybe_trigger_tx_interrupt(pf);
2640
2641	/* Run twice a second or reschedule if phc update failed */
2642	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2643				   msecs_to_jiffies(err ? 10 : 500));
2644}
2645
2646/**
2647 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2648 * @pf: Board private structure
2649 * @reset_type: the reset type being performed
2650 */
2651void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2652{
2653	struct ice_ptp *ptp = &pf->ptp;
2654	u8 src_tmr;
2655
2656	if (ptp->state != ICE_PTP_READY)
2657		return;
2658
2659	ptp->state = ICE_PTP_RESETTING;
2660
2661	/* Disable timestamping for both Tx and Rx */
2662	ice_ptp_disable_timestamp_mode(pf);
2663
2664	kthread_cancel_delayed_work_sync(&ptp->work);
2665
2666	if (reset_type == ICE_RESET_PFR)
2667		return;
2668
2669	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2670
2671	/* Disable periodic outputs */
2672	ice_ptp_disable_all_clkout(pf);
2673
2674	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2675
2676	/* Disable source clock */
2677	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2678
2679	/* Acquire PHC and system timer to restore after reset */
2680	ptp->reset_time = ktime_get_real_ns();
2681}
2682
2683/**
2684 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2685 * @pf: Board private structure
2686 *
2687 * Companion function for ice_ptp_rebuild() which handles tasks that only the
2688 * PTP clock owner instance should perform.
2689 */
2690static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2691{
2692	struct ice_ptp *ptp = &pf->ptp;
2693	struct ice_hw *hw = &pf->hw;
2694	struct timespec64 ts;
 
2695	u64 time_diff;
2696	int err;
 
 
 
2697
2698	err = ice_ptp_init_phc(hw);
2699	if (err)
2700		return err;
2701
2702	/* Acquire the global hardware lock */
2703	if (!ice_ptp_lock(hw)) {
2704		err = -EBUSY;
2705		return err;
2706	}
2707
2708	/* Write the increment time value to PHY and LAN */
2709	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2710	if (err) {
2711		ice_ptp_unlock(hw);
2712		return err;
2713	}
2714
2715	/* Write the initial Time value to PHY and LAN using the cached PHC
2716	 * time before the reset and time difference between stopping and
2717	 * starting the clock.
2718	 */
2719	if (ptp->cached_phc_time) {
2720		time_diff = ktime_get_real_ns() - ptp->reset_time;
2721		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2722	} else {
2723		ts = ktime_to_timespec64(ktime_get_real());
2724	}
2725	err = ice_ptp_write_init(pf, &ts);
2726	if (err) {
2727		ice_ptp_unlock(hw);
2728		return err;
2729	}
2730
2731	/* Release the global hardware lock */
2732	ice_ptp_unlock(hw);
2733
2734	/* Flush software tracking of any outstanding timestamps since we're
2735	 * about to flush the PHY timestamp block.
2736	 */
2737	ice_ptp_flush_all_tx_tracker(pf);
2738
2739	if (!ice_is_e810(hw)) {
2740		/* Enable quad interrupts */
2741		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2742		if (err)
2743			return err;
2744
2745		ice_ptp_restart_all_phy(pf);
2746	}
2747
2748	return 0;
2749}
2750
2751/**
2752 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2753 * @pf: Board private structure
2754 * @reset_type: the reset type being performed
2755 */
2756void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2757{
2758	struct ice_ptp *ptp = &pf->ptp;
2759	int err;
2760
2761	if (ptp->state == ICE_PTP_READY) {
2762		ice_ptp_prepare_for_reset(pf, reset_type);
2763	} else if (ptp->state != ICE_PTP_RESETTING) {
2764		err = -EINVAL;
2765		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2766		goto err;
2767	}
 
 
2768
2769	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2770		err = ice_ptp_rebuild_owner(pf);
2771		if (err)
2772			goto err;
2773	}
2774
2775	ptp->state = ICE_PTP_READY;
 
 
 
2776
2777	/* Start periodic work going */
2778	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2779
2780	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2781	return;
2782
2783err:
2784	ptp->state = ICE_PTP_ERROR;
2785	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2786}
2787
2788/**
2789 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2790 * @aux_dev: auxiliary device to get the auxiliary PF for
2791 */
2792static struct ice_pf *
2793ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2794{
2795	struct ice_ptp_port *aux_port;
2796	struct ice_ptp *aux_ptp;
2797
2798	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2799	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2800
2801	return container_of(aux_ptp, struct ice_pf, ptp);
2802}
2803
2804/**
2805 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2806 * @aux_dev: auxiliary device to get the PF for
2807 */
2808static struct ice_pf *
2809ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2810{
2811	struct ice_ptp_port_owner *ports_owner;
2812	struct auxiliary_driver *aux_drv;
2813	struct ice_ptp *owner_ptp;
2814
2815	if (!aux_dev->dev.driver)
2816		return NULL;
2817
2818	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2819	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2820				   aux_driver);
2821	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2822	return container_of(owner_ptp, struct ice_pf, ptp);
2823}
2824
2825/**
2826 * ice_ptp_auxbus_probe - Probe auxiliary devices
2827 * @aux_dev: PF's auxiliary device
2828 * @id: Auxiliary device ID
2829 */
2830static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2831				const struct auxiliary_device_id *id)
2832{
2833	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2834	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2835
2836	if (WARN_ON(!owner_pf))
2837		return -ENODEV;
2838
2839	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2840	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2841	list_add(&aux_pf->ptp.port.list_member,
2842		 &owner_pf->ptp.ports_owner.ports);
2843	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2844
2845	return 0;
2846}
2847
2848/**
2849 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2850 * @aux_dev: PF's auxiliary device
2851 */
2852static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2853{
2854	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2855	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2856
2857	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2858	list_del(&aux_pf->ptp.port.list_member);
2859	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2860}
2861
2862/**
2863 * ice_ptp_auxbus_shutdown
2864 * @aux_dev: PF's auxiliary device
2865 */
2866static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2867{
2868	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2869}
2870
2871/**
2872 * ice_ptp_auxbus_suspend
2873 * @aux_dev: PF's auxiliary device
2874 * @state: power management state indicator
2875 */
2876static int
2877ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2878{
2879	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2880	return 0;
2881}
2882
2883/**
2884 * ice_ptp_auxbus_resume
2885 * @aux_dev: PF's auxiliary device
2886 */
2887static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2888{
2889	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2890	return 0;
2891}
2892
2893/**
2894 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2895 * @pf: Board private structure
2896 * @name: auxiliary bus driver name
2897 */
2898static struct auxiliary_device_id *
2899ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2900{
2901	struct auxiliary_device_id *ids;
2902
2903	/* Second id left empty to terminate the array */
2904	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2905			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2906	if (!ids)
2907		return NULL;
2908
2909	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2910
2911	return ids;
2912}
2913
2914/**
2915 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2916 * @pf: Board private structure
2917 */
2918static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2919{
2920	struct auxiliary_driver *aux_driver;
2921	struct ice_ptp *ptp;
2922	struct device *dev;
2923	char *name;
2924	int err;
2925
2926	ptp = &pf->ptp;
2927	dev = ice_pf_to_dev(pf);
2928	aux_driver = &ptp->ports_owner.aux_driver;
2929	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2930	mutex_init(&ptp->ports_owner.lock);
2931	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2932			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2933			      ice_get_ptp_src_clock_index(&pf->hw));
2934	if (!name)
2935		return -ENOMEM;
2936
2937	aux_driver->name = name;
2938	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2939	aux_driver->suspend = ice_ptp_auxbus_suspend;
2940	aux_driver->remove = ice_ptp_auxbus_remove;
2941	aux_driver->resume = ice_ptp_auxbus_resume;
2942	aux_driver->probe = ice_ptp_auxbus_probe;
2943	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2944	if (!aux_driver->id_table)
2945		return -ENOMEM;
2946
2947	err = auxiliary_driver_register(aux_driver);
2948	if (err) {
2949		devm_kfree(dev, aux_driver->id_table);
2950		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2951			name);
2952	}
2953
2954	return err;
2955}
2956
2957/**
2958 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2959 * @pf: Board private structure
2960 */
2961static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2962{
2963	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2964
2965	auxiliary_driver_unregister(aux_driver);
2966	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2967
2968	mutex_destroy(&pf->ptp.ports_owner.lock);
2969}
2970
2971/**
2972 * ice_ptp_clock_index - Get the PTP clock index for this device
2973 * @pf: Board private structure
2974 *
2975 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2976 * is associated.
2977 */
2978int ice_ptp_clock_index(struct ice_pf *pf)
2979{
2980	struct auxiliary_device *aux_dev;
2981	struct ice_pf *owner_pf;
2982	struct ptp_clock *clock;
2983
2984	aux_dev = &pf->ptp.port.aux_dev;
2985	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2986	if (!owner_pf)
2987		return -1;
2988	clock = owner_pf->ptp.clock;
2989
2990	return clock ? ptp_clock_index(clock) : -1;
2991}
2992
2993/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2995 * @pf: Board private structure
2996 *
2997 * Setup and initialize a PTP clock device that represents the device hardware
2998 * clock. Save the clock index for other functions connected to the same
2999 * hardware resource.
3000 */
3001static int ice_ptp_init_owner(struct ice_pf *pf)
3002{
3003	struct ice_hw *hw = &pf->hw;
3004	struct timespec64 ts;
3005	int err;
3006
3007	err = ice_ptp_init_phc(hw);
3008	if (err) {
3009		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3010			err);
3011		return err;
3012	}
3013
3014	/* Acquire the global hardware lock */
3015	if (!ice_ptp_lock(hw)) {
3016		err = -EBUSY;
3017		goto err_exit;
3018	}
3019
3020	/* Write the increment time value to PHY and LAN */
3021	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3022	if (err) {
3023		ice_ptp_unlock(hw);
3024		goto err_exit;
3025	}
3026
3027	ts = ktime_to_timespec64(ktime_get_real());
3028	/* Write the initial Time value to PHY and LAN */
3029	err = ice_ptp_write_init(pf, &ts);
3030	if (err) {
3031		ice_ptp_unlock(hw);
3032		goto err_exit;
3033	}
3034
3035	/* Release the global hardware lock */
3036	ice_ptp_unlock(hw);
3037
3038	if (!ice_is_e810(hw)) {
3039		/* Enable quad interrupts */
3040		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3041		if (err)
3042			goto err_exit;
3043	}
3044
3045	/* Ensure we have a clock device */
3046	err = ice_ptp_create_clock(pf);
3047	if (err)
3048		goto err_clk;
3049
3050	err = ice_ptp_register_auxbus_driver(pf);
3051	if (err) {
3052		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
3053		goto err_aux;
3054	}
3055
3056	return 0;
3057err_aux:
3058	ptp_clock_unregister(pf->ptp.clock);
3059err_clk:
3060	pf->ptp.clock = NULL;
3061err_exit:
3062	return err;
3063}
3064
3065/**
3066 * ice_ptp_init_work - Initialize PTP work threads
3067 * @pf: Board private structure
3068 * @ptp: PF PTP structure
3069 */
3070static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3071{
3072	struct kthread_worker *kworker;
3073
3074	/* Initialize work functions */
3075	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3076
3077	/* Allocate a kworker for handling work required for the ports
3078	 * connected to the PTP hardware clock.
3079	 */
3080	kworker = kthread_create_worker(0, "ice-ptp-%s",
3081					dev_name(ice_pf_to_dev(pf)));
3082	if (IS_ERR(kworker))
3083		return PTR_ERR(kworker);
3084
3085	ptp->kworker = kworker;
3086
3087	/* Start periodic work going */
3088	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3089
3090	return 0;
3091}
3092
3093/**
3094 * ice_ptp_init_port - Initialize PTP port structure
3095 * @pf: Board private structure
3096 * @ptp_port: PTP port structure
3097 */
3098static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3099{
3100	struct ice_hw *hw = &pf->hw;
3101
3102	mutex_init(&ptp_port->ps_lock);
3103
3104	switch (hw->phy_model) {
3105	case ICE_PHY_E810:
3106		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3107	case ICE_PHY_E82X:
3108		kthread_init_delayed_work(&ptp_port->ov_work,
3109					  ice_ptp_wait_for_offsets);
3110
3111		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3112					    ptp_port->port_num);
3113	default:
3114		return -ENODEV;
3115	}
3116}
3117
3118/**
3119 * ice_ptp_release_auxbus_device
3120 * @dev: device that utilizes the auxbus
3121 */
3122static void ice_ptp_release_auxbus_device(struct device *dev)
3123{
3124	/* Doing nothing here, but handle to auxbux device must be satisfied */
3125}
3126
3127/**
3128 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
3129 * @pf: Board private structure
3130 */
3131static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
3132{
3133	struct auxiliary_device *aux_dev;
3134	struct ice_ptp *ptp;
3135	struct device *dev;
3136	char *name;
3137	int err;
3138	u32 id;
3139
3140	ptp = &pf->ptp;
3141	id = ptp->port.port_num;
3142	dev = ice_pf_to_dev(pf);
3143
3144	aux_dev = &ptp->port.aux_dev;
3145
3146	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
3147			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
3148			      ice_get_ptp_src_clock_index(&pf->hw));
3149	if (!name)
3150		return -ENOMEM;
3151
3152	aux_dev->name = name;
3153	aux_dev->id = id;
3154	aux_dev->dev.release = ice_ptp_release_auxbus_device;
3155	aux_dev->dev.parent = dev;
3156
3157	err = auxiliary_device_init(aux_dev);
3158	if (err)
3159		goto aux_err;
3160
3161	err = auxiliary_device_add(aux_dev);
3162	if (err) {
3163		auxiliary_device_uninit(aux_dev);
3164		goto aux_err;
3165	}
3166
3167	return 0;
3168aux_err:
3169	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
3170	devm_kfree(dev, name);
3171	return err;
3172}
3173
3174/**
3175 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
3176 * @pf: Board private structure
3177 */
3178static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
3179{
3180	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
3181
3182	auxiliary_device_delete(aux_dev);
3183	auxiliary_device_uninit(aux_dev);
3184
3185	memset(aux_dev, 0, sizeof(*aux_dev));
3186}
3187
3188/**
3189 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3190 * @pf: Board private structure
3191 *
3192 * Initialize the Tx timestamp interrupt mode for this device. For most device
3193 * types, each PF processes the interrupt and manages its own timestamps. For
3194 * E822-based devices, only the clock owner processes the timestamps. Other
3195 * PFs disable the interrupt and do not process their own timestamps.
3196 */
3197static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3198{
3199	switch (pf->hw.phy_model) {
3200	case ICE_PHY_E82X:
3201		/* E822 based PHY has the clock owner process the interrupt
3202		 * for all ports.
3203		 */
3204		if (ice_pf_src_tmr_owned(pf))
3205			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3206		else
3207			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3208		break;
3209	default:
3210		/* other PHY types handle their own Tx interrupt */
3211		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3212	}
3213}
3214
3215/**
3216 * ice_ptp_init - Initialize PTP hardware clock support
3217 * @pf: Board private structure
3218 *
3219 * Set up the device for interacting with the PTP hardware clock for all
3220 * functions, both the function that owns the clock hardware, and the
3221 * functions connected to the clock hardware.
3222 *
3223 * The clock owner will allocate and register a ptp_clock with the
3224 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3225 * items used for asynchronous work such as Tx timestamps and periodic work.
3226 */
3227void ice_ptp_init(struct ice_pf *pf)
3228{
3229	struct ice_ptp *ptp = &pf->ptp;
3230	struct ice_hw *hw = &pf->hw;
3231	int err;
3232
3233	ptp->state = ICE_PTP_INITIALIZING;
3234
3235	ice_ptp_init_phy_model(hw);
3236
3237	ice_ptp_init_tx_interrupt_mode(pf);
3238
3239	/* If this function owns the clock hardware, it must allocate and
3240	 * configure the PTP clock device to represent it.
3241	 */
3242	if (ice_pf_src_tmr_owned(pf)) {
3243		err = ice_ptp_init_owner(pf);
3244		if (err)
3245			goto err;
3246	}
3247
3248	ptp->port.port_num = hw->pf_id;
3249	err = ice_ptp_init_port(pf, &ptp->port);
3250	if (err)
3251		goto err;
3252
3253	/* Start the PHY timestamping block */
3254	ice_ptp_reset_phy_timestamping(pf);
3255
3256	/* Configure initial Tx interrupt settings */
3257	ice_ptp_cfg_tx_interrupt(pf);
3258
3259	err = ice_ptp_create_auxbus_device(pf);
 
3260	if (err)
3261		goto err;
3262
3263	ptp->state = ICE_PTP_READY;
3264
3265	err = ice_ptp_init_work(pf, ptp);
3266	if (err)
3267		goto err;
3268
3269	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3270	return;
3271
3272err:
3273	/* If we registered a PTP clock, release it */
3274	if (pf->ptp.clock) {
3275		ptp_clock_unregister(ptp->clock);
3276		pf->ptp.clock = NULL;
3277	}
3278	ptp->state = ICE_PTP_ERROR;
3279	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3280}
3281
3282/**
3283 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3284 * @pf: Board private structure
3285 *
3286 * This function handles the cleanup work required from the initialization by
3287 * clearing out the important information and unregistering the clock
3288 */
3289void ice_ptp_release(struct ice_pf *pf)
3290{
3291	if (pf->ptp.state != ICE_PTP_READY)
3292		return;
3293
3294	pf->ptp.state = ICE_PTP_UNINIT;
3295
3296	/* Disable timestamping for both Tx and Rx */
3297	ice_ptp_disable_timestamp_mode(pf);
3298
3299	ice_ptp_remove_auxbus_device(pf);
3300
3301	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3302
 
 
3303	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3304
3305	ice_ptp_port_phy_stop(&pf->ptp.port);
3306	mutex_destroy(&pf->ptp.port.ps_lock);
3307	if (pf->ptp.kworker) {
3308		kthread_destroy_worker(pf->ptp.kworker);
3309		pf->ptp.kworker = NULL;
3310	}
3311
3312	if (ice_pf_src_tmr_owned(pf))
3313		ice_ptp_unregister_auxbus_driver(pf);
3314
3315	if (!pf->ptp.clock)
3316		return;
3317
3318	/* Disable periodic outputs */
3319	ice_ptp_disable_all_clkout(pf);
3320
3321	ptp_clock_unregister(pf->ptp.clock);
3322	pf->ptp.clock = NULL;
 
 
3323
3324	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3325}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_trace.h"
   7
   8#define E810_OUT_PROP_DELAY_NS 1
   9
  10#define UNKNOWN_INCVAL_E82X 0x100000000ULL
  11
  12static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
  13	/* name    idx   func         chan */
  14	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
  15	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
  16	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
  17	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
  18	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
  19};
  20
  21/**
  22 * ice_get_sma_config_e810t
  23 * @hw: pointer to the hw struct
  24 * @ptp_pins: pointer to the ptp_pin_desc struture
  25 *
  26 * Read the configuration of the SMA control logic and put it into the
  27 * ptp_pin_desc structure
  28 */
  29static int
  30ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
  31{
  32	u8 data, i;
  33	int status;
  34
  35	/* Read initial pin state */
  36	status = ice_read_sma_ctrl_e810t(hw, &data);
  37	if (status)
  38		return status;
  39
  40	/* initialize with defaults */
  41	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
  42		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
  43			sizeof(ptp_pins[i].name));
  44		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
  45		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
  46		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
  47	}
  48
  49	/* Parse SMA1/UFL1 */
  50	switch (data & ICE_SMA1_MASK_E810T) {
  51	case ICE_SMA1_MASK_E810T:
  52	default:
  53		ptp_pins[SMA1].func = PTP_PF_NONE;
  54		ptp_pins[UFL1].func = PTP_PF_NONE;
  55		break;
  56	case ICE_SMA1_DIR_EN_E810T:
  57		ptp_pins[SMA1].func = PTP_PF_PEROUT;
  58		ptp_pins[UFL1].func = PTP_PF_NONE;
  59		break;
  60	case ICE_SMA1_TX_EN_E810T:
  61		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  62		ptp_pins[UFL1].func = PTP_PF_NONE;
  63		break;
  64	case 0:
  65		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  66		ptp_pins[UFL1].func = PTP_PF_PEROUT;
  67		break;
  68	}
  69
  70	/* Parse SMA2/UFL2 */
  71	switch (data & ICE_SMA2_MASK_E810T) {
  72	case ICE_SMA2_MASK_E810T:
  73	default:
  74		ptp_pins[SMA2].func = PTP_PF_NONE;
  75		ptp_pins[UFL2].func = PTP_PF_NONE;
  76		break;
  77	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  78		ptp_pins[SMA2].func = PTP_PF_EXTTS;
  79		ptp_pins[UFL2].func = PTP_PF_NONE;
  80		break;
  81	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  82		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  83		ptp_pins[UFL2].func = PTP_PF_NONE;
  84		break;
  85	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
  86		ptp_pins[SMA2].func = PTP_PF_NONE;
  87		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  88		break;
  89	case ICE_SMA2_DIR_EN_E810T:
  90		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  91		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  92		break;
  93	}
  94
  95	return 0;
  96}
  97
  98/**
  99 * ice_ptp_set_sma_config_e810t
 100 * @hw: pointer to the hw struct
 101 * @ptp_pins: pointer to the ptp_pin_desc struture
 102 *
 103 * Set the configuration of the SMA control logic based on the configuration in
 104 * num_pins parameter
 105 */
 106static int
 107ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
 108			     const struct ptp_pin_desc *ptp_pins)
 109{
 110	int status;
 111	u8 data;
 112
 113	/* SMA1 and UFL1 cannot be set to TX at the same time */
 114	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 115	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
 116		return -EINVAL;
 117
 118	/* SMA2 and UFL2 cannot be set to RX at the same time */
 119	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 120	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
 121		return -EINVAL;
 122
 123	/* Read initial pin state value */
 124	status = ice_read_sma_ctrl_e810t(hw, &data);
 125	if (status)
 126		return status;
 127
 128	/* Set the right sate based on the desired configuration */
 129	data &= ~ICE_SMA1_MASK_E810T;
 130	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 131	    ptp_pins[UFL1].func == PTP_PF_NONE) {
 132		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
 133		data |= ICE_SMA1_MASK_E810T;
 134	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 135		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 136		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
 137		data |= ICE_SMA1_TX_EN_E810T;
 138	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 139		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 140		/* U.FL 1 TX will always enable SMA 1 RX */
 141		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 142	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 143		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 144		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 145	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 146		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 147		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
 148		data |= ICE_SMA1_DIR_EN_E810T;
 149	}
 150
 151	data &= ~ICE_SMA2_MASK_E810T;
 152	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 153	    ptp_pins[UFL2].func == PTP_PF_NONE) {
 154		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
 155		data |= ICE_SMA2_MASK_E810T;
 156	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 157			ptp_pins[UFL2].func == PTP_PF_NONE) {
 158		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
 159		data |= (ICE_SMA2_TX_EN_E810T |
 160			 ICE_SMA2_UFL2_RX_DIS_E810T);
 161	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 162		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 163		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
 164		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
 165	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 166		   ptp_pins[UFL2].func == PTP_PF_NONE) {
 167		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
 168		data |= (ICE_SMA2_DIR_EN_E810T |
 169			 ICE_SMA2_UFL2_RX_DIS_E810T);
 170	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 171		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 172		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
 173		data |= ICE_SMA2_DIR_EN_E810T;
 174	}
 175
 176	return ice_write_sma_ctrl_e810t(hw, data);
 177}
 178
 179/**
 180 * ice_ptp_set_sma_e810t
 181 * @info: the driver's PTP info structure
 182 * @pin: pin index in kernel structure
 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
 184 *
 185 * Set the configuration of a single SMA pin
 186 */
 187static int
 188ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
 189		      enum ptp_pin_function func)
 190{
 191	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
 192	struct ice_pf *pf = ptp_info_to_pf(info);
 193	struct ice_hw *hw = &pf->hw;
 194	int err;
 195
 196	if (pin < SMA1 || func > PTP_PF_PEROUT)
 197		return -EOPNOTSUPP;
 198
 199	err = ice_get_sma_config_e810t(hw, ptp_pins);
 200	if (err)
 201		return err;
 202
 203	/* Disable the same function on the other pin sharing the channel */
 204	if (pin == SMA1 && ptp_pins[UFL1].func == func)
 205		ptp_pins[UFL1].func = PTP_PF_NONE;
 206	if (pin == UFL1 && ptp_pins[SMA1].func == func)
 207		ptp_pins[SMA1].func = PTP_PF_NONE;
 208
 209	if (pin == SMA2 && ptp_pins[UFL2].func == func)
 210		ptp_pins[UFL2].func = PTP_PF_NONE;
 211	if (pin == UFL2 && ptp_pins[SMA2].func == func)
 212		ptp_pins[SMA2].func = PTP_PF_NONE;
 213
 214	/* Set up new pin function in the temp table */
 215	ptp_pins[pin].func = func;
 216
 217	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
 218}
 219
 220/**
 221 * ice_verify_pin_e810t
 222 * @info: the driver's PTP info structure
 223 * @pin: Pin index
 224 * @func: Assigned function
 225 * @chan: Assigned channel
 226 *
 227 * Verify if pin supports requested pin function. If the Check pins consistency.
 228 * Reconfigure the SMA logic attached to the given pin to enable its
 229 * desired functionality
 230 */
 231static int
 232ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
 233		     enum ptp_pin_function func, unsigned int chan)
 234{
 235	/* Don't allow channel reassignment */
 236	if (chan != ice_pin_desc_e810t[pin].chan)
 237		return -EOPNOTSUPP;
 238
 239	/* Check if functions are properly assigned */
 240	switch (func) {
 241	case PTP_PF_NONE:
 242		break;
 243	case PTP_PF_EXTTS:
 244		if (pin == UFL1)
 245			return -EOPNOTSUPP;
 246		break;
 247	case PTP_PF_PEROUT:
 248		if (pin == UFL2 || pin == GNSS)
 249			return -EOPNOTSUPP;
 250		break;
 251	case PTP_PF_PHYSYNC:
 252		return -EOPNOTSUPP;
 253	}
 254
 255	return ice_ptp_set_sma_e810t(info, pin, func);
 256}
 257
 258/**
 259 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
 260 * @pf: Board private structure
 261 *
 262 * Program the device to respond appropriately to the Tx timestamp interrupt
 263 * cause.
 264 */
 265static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
 266{
 267	struct ice_hw *hw = &pf->hw;
 268	bool enable;
 269	u32 val;
 270
 271	switch (pf->ptp.tx_interrupt_mode) {
 272	case ICE_PTP_TX_INTERRUPT_ALL:
 273		/* React to interrupts across all quads. */
 274		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
 275		enable = true;
 276		break;
 277	case ICE_PTP_TX_INTERRUPT_NONE:
 278		/* Do not react to interrupts on any quad. */
 279		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
 280		enable = false;
 281		break;
 282	case ICE_PTP_TX_INTERRUPT_SELF:
 283	default:
 284		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
 285		break;
 286	}
 287
 288	/* Configure the Tx timestamp interrupt */
 289	val = rd32(hw, PFINT_OICR_ENA);
 290	if (enable)
 291		val |= PFINT_OICR_TSYN_TX_M;
 292	else
 293		val &= ~PFINT_OICR_TSYN_TX_M;
 294	wr32(hw, PFINT_OICR_ENA, val);
 295}
 296
 297/**
 298 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 299 * @pf: The PF pointer to search in
 300 * @on: bool value for whether timestamps are enabled or disabled
 301 */
 302static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
 303{
 304	struct ice_vsi *vsi;
 305	u16 i;
 306
 307	vsi = ice_get_main_vsi(pf);
 308	if (!vsi || !vsi->rx_rings)
 309		return;
 310
 311	/* Set the timestamp flag for all the Rx rings */
 312	ice_for_each_rxq(vsi, i) {
 313		if (!vsi->rx_rings[i])
 314			continue;
 315		vsi->rx_rings[i]->ptp_rx = on;
 316	}
 317}
 318
 319/**
 320 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
 321 * @pf: Board private structure
 322 *
 323 * Called during preparation for reset to temporarily disable timestamping on
 324 * the device. Called during remove to disable timestamping while cleaning up
 325 * driver resources.
 326 */
 327static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
 328{
 329	struct ice_hw *hw = &pf->hw;
 330	u32 val;
 331
 332	val = rd32(hw, PFINT_OICR_ENA);
 333	val &= ~PFINT_OICR_TSYN_TX_M;
 334	wr32(hw, PFINT_OICR_ENA, val);
 335
 336	ice_set_rx_tstamp(pf, false);
 337}
 338
 339/**
 340 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
 341 * @pf: Board private structure
 342 *
 343 * Called at the end of rebuild to restore timestamp configuration after
 344 * a device reset.
 345 */
 346void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
 347{
 348	struct ice_hw *hw = &pf->hw;
 349	bool enable_rx;
 350
 351	ice_ptp_cfg_tx_interrupt(pf);
 352
 353	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
 354	ice_set_rx_tstamp(pf, enable_rx);
 355
 356	/* Trigger an immediate software interrupt to ensure that timestamps
 357	 * which occurred during reset are handled now.
 358	 */
 359	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
 360	ice_flush(hw);
 361}
 362
 363/**
 364 * ice_ptp_read_src_clk_reg - Read the source clock register
 365 * @pf: Board private structure
 366 * @sts: Optional parameter for holding a pair of system timestamps from
 367 *       the system clock. Will be ignored if NULL is given.
 368 */
 369static u64
 370ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
 371{
 372	struct ice_hw *hw = &pf->hw;
 373	u32 hi, lo, lo2;
 374	u8 tmr_idx;
 375
 376	tmr_idx = ice_get_ptp_src_clock_index(hw);
 377	/* Read the system timestamp pre PHC read */
 378	ptp_read_system_prets(sts);
 379
 380	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 381
 382	/* Read the system timestamp post PHC read */
 383	ptp_read_system_postts(sts);
 384
 385	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 386	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 387
 388	if (lo2 < lo) {
 389		/* if TIME_L rolled over read TIME_L again and update
 390		 * system timestamps
 391		 */
 392		ptp_read_system_prets(sts);
 393		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 394		ptp_read_system_postts(sts);
 395		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 396	}
 397
 398	return ((u64)hi << 32) | lo;
 399}
 400
 401/**
 402 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 403 * @cached_phc_time: recently cached copy of PHC time
 404 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 405 *
 406 * Hardware captures timestamps which contain only 32 bits of nominal
 407 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 408 * Note that the captured timestamp values may be 40 bits, but the lower
 409 * 8 bits are sub-nanoseconds and generally discarded.
 410 *
 411 * Extend the 32bit nanosecond timestamp using the following algorithm and
 412 * assumptions:
 413 *
 414 * 1) have a recently cached copy of the PHC time
 415 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 416 *    seconds) before or after the PHC time was captured.
 417 * 3) calculate the delta between the cached time and the timestamp
 418 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 419 *    captured after the PHC time. In this case, the full timestamp is just
 420 *    the cached PHC time plus the delta.
 421 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 422 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 423 *    cache was updated after the timestamp was captured by hardware. In this
 424 *    case, the full timestamp is the cached time minus the inverse delta.
 425 *
 426 * This algorithm works even if the PHC time was updated after a Tx timestamp
 427 * was requested, but before the Tx timestamp event was reported from
 428 * hardware.
 429 *
 430 * This calculation primarily relies on keeping the cached PHC time up to
 431 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 432 * PHC time, it is possible that the lower 32bits of PHC time have
 433 * overflowed more than once, and we might generate an incorrect timestamp.
 434 *
 435 * This is prevented by (a) periodically updating the cached PHC time once
 436 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 437 * a timestamp for more than one second.
 438 */
 439static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
 440{
 441	u32 delta, phc_time_lo;
 442	u64 ns;
 443
 444	/* Extract the lower 32 bits of the PHC time */
 445	phc_time_lo = (u32)cached_phc_time;
 446
 447	/* Calculate the delta between the lower 32bits of the cached PHC
 448	 * time and the in_tstamp value
 449	 */
 450	delta = (in_tstamp - phc_time_lo);
 451
 452	/* Do not assume that the in_tstamp is always more recent than the
 453	 * cached PHC time. If the delta is large, it indicates that the
 454	 * in_tstamp was taken in the past, and should be converted
 455	 * forward.
 456	 */
 457	if (delta > (U32_MAX / 2)) {
 458		/* reverse the delta calculation here */
 459		delta = (phc_time_lo - in_tstamp);
 460		ns = cached_phc_time - delta;
 461	} else {
 462		ns = cached_phc_time + delta;
 463	}
 464
 465	return ns;
 466}
 467
 468/**
 469 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 470 * @pf: Board private structure
 471 * @in_tstamp: Ingress/egress 40b timestamp value
 472 *
 473 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 474 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 475 *
 476 *  *--------------------------------------------------------------*
 477 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 478 *  *--------------------------------------------------------------*
 479 *
 480 * The low bit is an indicator of whether the timestamp is valid. The next
 481 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 482 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 483 *
 484 * It is assumed that the caller verifies the timestamp is valid prior to
 485 * calling this function.
 486 *
 487 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 488 * time stored in the device private PTP structure as the basis for timestamp
 489 * extension.
 490 *
 491 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 492 * algorithm.
 493 */
 494static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
 495{
 496	const u64 mask = GENMASK_ULL(31, 0);
 497	unsigned long discard_time;
 498
 499	/* Discard the hardware timestamp if the cached PHC time is too old */
 500	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
 501	if (time_is_before_jiffies(discard_time)) {
 502		pf->ptp.tx_hwtstamp_discarded++;
 503		return 0;
 504	}
 505
 506	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
 507				     (in_tstamp >> 8) & mask);
 508}
 509
 510/**
 511 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
 512 * @tx: the PTP Tx timestamp tracker to check
 513 *
 514 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
 515 * to accept new timestamp requests.
 516 *
 517 * Assumes the tx->lock spinlock is already held.
 518 */
 519static bool
 520ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
 521{
 522	lockdep_assert_held(&tx->lock);
 523
 524	return tx->init && !tx->calibrating;
 525}
 526
 527/**
 528 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
 529 * @tx: the PTP Tx timestamp tracker
 530 * @idx: index of the timestamp to request
 531 */
 532void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
 533{
 534	struct ice_ptp_port *ptp_port;
 535	struct sk_buff *skb;
 536	struct ice_pf *pf;
 537
 538	if (!tx->init)
 539		return;
 540
 541	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 542	pf = ptp_port_to_pf(ptp_port);
 543
 544	/* Drop packets which have waited for more than 2 seconds */
 545	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 546		/* Count the number of Tx timestamps that timed out */
 547		pf->ptp.tx_hwtstamp_timeouts++;
 548
 549		skb = tx->tstamps[idx].skb;
 550		tx->tstamps[idx].skb = NULL;
 551		clear_bit(idx, tx->in_use);
 552
 553		dev_kfree_skb_any(skb);
 554		return;
 555	}
 556
 557	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 558
 559	/* Write TS index to read to the PF register so the FW can read it */
 560	wr32(&pf->hw, PF_SB_ATQBAL,
 561	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
 562	     TS_LL_READ_TS);
 563	tx->last_ll_ts_idx_read = idx;
 564}
 565
 566/**
 567 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
 568 * @tx: the PTP Tx timestamp tracker
 569 */
 570void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
 571{
 572	struct skb_shared_hwtstamps shhwtstamps = {};
 573	u8 idx = tx->last_ll_ts_idx_read;
 574	struct ice_ptp_port *ptp_port;
 575	u64 raw_tstamp, tstamp;
 576	bool drop_ts = false;
 577	struct sk_buff *skb;
 578	struct ice_pf *pf;
 579	u32 val;
 580
 581	if (!tx->init || tx->last_ll_ts_idx_read < 0)
 582		return;
 583
 584	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 585	pf = ptp_port_to_pf(ptp_port);
 586
 587	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 588
 589	val = rd32(&pf->hw, PF_SB_ATQBAL);
 590
 591	/* When the bit is cleared, the TS is ready in the register */
 592	if (val & TS_LL_READ_TS) {
 593		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
 594		return;
 595	}
 596
 597	/* High 8 bit value of the TS is on the bits 16:23 */
 598	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
 599	raw_tstamp <<= 32;
 600
 601	/* Read the low 32 bit value */
 602	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
 603
 604	/* For PHYs which don't implement a proper timestamp ready bitmap,
 605	 * verify that the timestamp value is different from the last cached
 606	 * timestamp. If it is not, skip this for now assuming it hasn't yet
 607	 * been captured by hardware.
 608	 */
 609	if (!drop_ts && tx->verify_cached &&
 610	    raw_tstamp == tx->tstamps[idx].cached_tstamp)
 611		return;
 612
 613	if (tx->verify_cached && raw_tstamp)
 614		tx->tstamps[idx].cached_tstamp = raw_tstamp;
 615	clear_bit(idx, tx->in_use);
 616	skb = tx->tstamps[idx].skb;
 617	tx->tstamps[idx].skb = NULL;
 618	if (test_and_clear_bit(idx, tx->stale))
 619		drop_ts = true;
 620
 621	if (!skb)
 622		return;
 623
 624	if (drop_ts) {
 625		dev_kfree_skb_any(skb);
 626		return;
 627	}
 628
 629	/* Extend the timestamp using cached PHC time */
 630	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 631	if (tstamp) {
 632		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 633		ice_trace(tx_tstamp_complete, skb, idx);
 634	}
 635
 636	skb_tstamp_tx(skb, &shhwtstamps);
 637	dev_kfree_skb_any(skb);
 638}
 639
 640/**
 641 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
 642 * @tx: the PTP Tx timestamp tracker
 643 *
 644 * Process timestamps captured by the PHY associated with this port. To do
 645 * this, loop over each index with a waiting skb.
 646 *
 647 * If a given index has a valid timestamp, perform the following steps:
 648 *
 649 * 1) check that the timestamp request is not stale
 650 * 2) check that a timestamp is ready and available in the PHY memory bank
 651 * 3) read and copy the timestamp out of the PHY register
 652 * 4) unlock the index by clearing the associated in_use bit
 653 * 5) check if the timestamp is stale, and discard if so
 654 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
 655 * 7) send this 64 bit timestamp to the stack
 656 *
 657 * Note that we do not hold the tracking lock while reading the Tx timestamp.
 658 * This is because reading the timestamp requires taking a mutex that might
 659 * sleep.
 660 *
 661 * The only place where we set in_use is when a new timestamp is initiated
 662 * with a slot index. This is only called in the hard xmit routine where an
 663 * SKB has a request flag set. The only places where we clear this bit is this
 664 * function, or during teardown when the Tx timestamp tracker is being
 665 * removed. A timestamp index will never be re-used until the in_use bit for
 666 * that index is cleared.
 667 *
 668 * If a Tx thread starts a new timestamp, we might not begin processing it
 669 * right away but we will notice it at the end when we re-queue the task.
 670 *
 671 * If a Tx thread starts a new timestamp just after this function exits, the
 672 * interrupt for that timestamp should re-trigger this function once
 673 * a timestamp is ready.
 674 *
 675 * In cases where the PTP hardware clock was directly adjusted, some
 676 * timestamps may not be able to safely use the timestamp extension math. In
 677 * this case, software will set the stale bit for any outstanding Tx
 678 * timestamps when the clock is adjusted. Then this function will discard
 679 * those captured timestamps instead of sending them to the stack.
 680 *
 681 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
 682 * to correctly extend the timestamp using the cached PHC time. It is
 683 * extremely unlikely that a packet will ever take this long to timestamp. If
 684 * we detect a Tx timestamp request that has waited for this long we assume
 685 * the packet will never be sent by hardware and discard it without reading
 686 * the timestamp register.
 687 */
 688static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
 689{
 690	struct ice_ptp_port *ptp_port;
 691	unsigned long flags;
 692	struct ice_pf *pf;
 693	struct ice_hw *hw;
 694	u64 tstamp_ready;
 695	bool link_up;
 696	int err;
 697	u8 idx;
 698
 699	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 700	pf = ptp_port_to_pf(ptp_port);
 701	hw = &pf->hw;
 702
 703	/* Read the Tx ready status first */
 704	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 705	if (err)
 706		return;
 
 
 707
 708	/* Drop packets if the link went down */
 709	link_up = ptp_port->link_up;
 710
 711	for_each_set_bit(idx, tx->in_use, tx->len) {
 712		struct skb_shared_hwtstamps shhwtstamps = {};
 713		u8 phy_idx = idx + tx->offset;
 714		u64 raw_tstamp = 0, tstamp;
 715		bool drop_ts = !link_up;
 716		struct sk_buff *skb;
 717
 718		/* Drop packets which have waited for more than 2 seconds */
 719		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 720			drop_ts = true;
 721
 722			/* Count the number of Tx timestamps that timed out */
 723			pf->ptp.tx_hwtstamp_timeouts++;
 724		}
 725
 726		/* Only read a timestamp from the PHY if its marked as ready
 727		 * by the tstamp_ready register. This avoids unnecessary
 728		 * reading of timestamps which are not yet valid. This is
 729		 * important as we must read all timestamps which are valid
 730		 * and only timestamps which are valid during each interrupt.
 731		 * If we do not, the hardware logic for generating a new
 732		 * interrupt can get stuck on some devices.
 733		 */
 734		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
 
 735			if (drop_ts)
 736				goto skip_ts_read;
 737
 738			continue;
 739		}
 740
 741		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 742
 743		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
 744		if (err && !drop_ts)
 745			continue;
 746
 747		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 748
 749		/* For PHYs which don't implement a proper timestamp ready
 750		 * bitmap, verify that the timestamp value is different
 751		 * from the last cached timestamp. If it is not, skip this for
 752		 * now assuming it hasn't yet been captured by hardware.
 753		 */
 754		if (!drop_ts && tx->verify_cached &&
 755		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
 756			continue;
 757
 758		/* Discard any timestamp value without the valid bit set */
 759		if (!(raw_tstamp & ICE_PTP_TS_VALID))
 760			drop_ts = true;
 761
 762skip_ts_read:
 763		spin_lock_irqsave(&tx->lock, flags);
 764		if (tx->verify_cached && raw_tstamp)
 765			tx->tstamps[idx].cached_tstamp = raw_tstamp;
 766		clear_bit(idx, tx->in_use);
 767		skb = tx->tstamps[idx].skb;
 768		tx->tstamps[idx].skb = NULL;
 769		if (test_and_clear_bit(idx, tx->stale))
 770			drop_ts = true;
 771		spin_unlock_irqrestore(&tx->lock, flags);
 772
 773		/* It is unlikely but possible that the SKB will have been
 774		 * flushed at this point due to link change or teardown.
 775		 */
 776		if (!skb)
 777			continue;
 778
 779		if (drop_ts) {
 780			dev_kfree_skb_any(skb);
 781			continue;
 782		}
 783
 784		/* Extend the timestamp using cached PHC time */
 785		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 786		if (tstamp) {
 787			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 788			ice_trace(tx_tstamp_complete, skb, idx);
 789		}
 790
 791		skb_tstamp_tx(skb, &shhwtstamps);
 792		dev_kfree_skb_any(skb);
 793	}
 794}
 795
 796/**
 797 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
 798 * @pf: Board private structure
 799 */
 800static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
 801{
 802	struct ice_ptp_port *port;
 803	unsigned int i;
 804
 805	mutex_lock(&pf->ptp.ports_owner.lock);
 806	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
 807		struct ice_ptp_tx *tx = &port->tx;
 808
 809		if (!tx || !tx->init)
 810			continue;
 811
 812		ice_ptp_process_tx_tstamp(tx);
 813	}
 814	mutex_unlock(&pf->ptp.ports_owner.lock);
 815
 816	for (i = 0; i < ICE_MAX_QUAD; i++) {
 817		u64 tstamp_ready;
 818		int err;
 819
 820		/* Read the Tx ready status first */
 821		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
 822		if (err)
 823			break;
 824		else if (tstamp_ready)
 825			return ICE_TX_TSTAMP_WORK_PENDING;
 826	}
 827
 828	return ICE_TX_TSTAMP_WORK_DONE;
 829}
 830
 831/**
 832 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
 833 * @tx: Tx tracking structure to initialize
 834 *
 835 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
 836 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
 837 */
 838static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
 839{
 840	bool more_timestamps;
 841	unsigned long flags;
 842
 843	if (!tx->init)
 844		return ICE_TX_TSTAMP_WORK_DONE;
 845
 846	/* Process the Tx timestamp tracker */
 847	ice_ptp_process_tx_tstamp(tx);
 848
 849	/* Check if there are outstanding Tx timestamps */
 850	spin_lock_irqsave(&tx->lock, flags);
 851	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
 852	spin_unlock_irqrestore(&tx->lock, flags);
 853
 854	if (more_timestamps)
 855		return ICE_TX_TSTAMP_WORK_PENDING;
 856
 857	return ICE_TX_TSTAMP_WORK_DONE;
 858}
 859
 860/**
 861 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 862 * @tx: Tx tracking structure to initialize
 863 *
 864 * Assumes that the length has already been initialized. Do not call directly,
 865 * use the ice_ptp_init_tx_* instead.
 866 */
 867static int
 868ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
 869{
 870	unsigned long *in_use, *stale;
 871	struct ice_tx_tstamp *tstamps;
 872
 873	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
 874	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
 875	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
 876
 877	if (!tstamps || !in_use || !stale) {
 878		kfree(tstamps);
 879		bitmap_free(in_use);
 880		bitmap_free(stale);
 881
 882		return -ENOMEM;
 883	}
 884
 885	tx->tstamps = tstamps;
 886	tx->in_use = in_use;
 887	tx->stale = stale;
 888	tx->init = 1;
 889	tx->last_ll_ts_idx_read = -1;
 890
 891	spin_lock_init(&tx->lock);
 892
 893	return 0;
 894}
 895
 896/**
 897 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 898 * @pf: Board private structure
 899 * @tx: the tracker to flush
 900 *
 901 * Called during teardown when a Tx tracker is being removed.
 902 */
 903static void
 904ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 905{
 906	struct ice_hw *hw = &pf->hw;
 907	unsigned long flags;
 908	u64 tstamp_ready;
 909	int err;
 910	u8 idx;
 911
 912	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 913	if (err) {
 914		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
 915			tx->block, err);
 916
 917		/* If we fail to read the Tx timestamp ready bitmap just
 918		 * skip clearing the PHY timestamps.
 919		 */
 920		tstamp_ready = 0;
 921	}
 922
 923	for_each_set_bit(idx, tx->in_use, tx->len) {
 924		u8 phy_idx = idx + tx->offset;
 925		struct sk_buff *skb;
 926
 927		/* In case this timestamp is ready, we need to clear it. */
 928		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
 929			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
 930
 931		spin_lock_irqsave(&tx->lock, flags);
 932		skb = tx->tstamps[idx].skb;
 933		tx->tstamps[idx].skb = NULL;
 934		clear_bit(idx, tx->in_use);
 935		clear_bit(idx, tx->stale);
 936		spin_unlock_irqrestore(&tx->lock, flags);
 937
 938		/* Count the number of Tx timestamps flushed */
 939		pf->ptp.tx_hwtstamp_flushed++;
 940
 941		/* Free the SKB after we've cleared the bit */
 942		dev_kfree_skb_any(skb);
 943	}
 944}
 945
 946/**
 947 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
 948 * @tx: the tracker to mark
 949 *
 950 * Mark currently outstanding Tx timestamps as stale. This prevents sending
 951 * their timestamp value to the stack. This is required to prevent extending
 952 * the 40bit hardware timestamp incorrectly.
 953 *
 954 * This should be called when the PTP clock is modified such as after a set
 955 * time request.
 956 */
 957static void
 958ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
 959{
 960	unsigned long flags;
 961
 962	spin_lock_irqsave(&tx->lock, flags);
 963	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
 964	spin_unlock_irqrestore(&tx->lock, flags);
 965}
 966
 967/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 969 * @pf: Board private structure
 970 * @tx: Tx tracking structure to release
 971 *
 972 * Free memory associated with the Tx timestamp tracker.
 973 */
 974static void
 975ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 976{
 977	unsigned long flags;
 978
 979	spin_lock_irqsave(&tx->lock, flags);
 980	tx->init = 0;
 981	spin_unlock_irqrestore(&tx->lock, flags);
 982
 983	/* wait for potentially outstanding interrupt to complete */
 984	synchronize_irq(pf->oicr_irq.virq);
 985
 986	ice_ptp_flush_tx_tracker(pf, tx);
 987
 988	kfree(tx->tstamps);
 989	tx->tstamps = NULL;
 990
 991	bitmap_free(tx->in_use);
 992	tx->in_use = NULL;
 993
 994	bitmap_free(tx->stale);
 995	tx->stale = NULL;
 996
 997	tx->len = 0;
 998}
 999
1000/**
1001 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
1002 * @pf: Board private structure
1003 * @tx: the Tx tracking structure to initialize
1004 * @port: the port this structure tracks
1005 *
1006 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1007 * the timestamp block is shared for all ports in the same quad. To avoid
1008 * ports using the same timestamp index, logically break the block of
1009 * registers into chunks based on the port number.
1010 */
1011static int
1012ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1013{
1014	tx->block = port / ICE_PORTS_PER_QUAD;
1015	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1016	tx->len = INDEX_PER_PORT_E82X;
1017	tx->verify_cached = 0;
1018
1019	return ice_ptp_alloc_tx_tracker(tx);
1020}
1021
1022/**
1023 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1024 * @pf: Board private structure
1025 * @tx: the Tx tracking structure to initialize
1026 *
1027 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1028 * port has its own block of timestamps, independent of the other ports.
1029 */
1030static int
1031ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1032{
1033	tx->block = pf->hw.port_info->lport;
1034	tx->offset = 0;
1035	tx->len = INDEX_PER_PORT_E810;
1036	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1037	 * verify new timestamps against cached copy of the last read
1038	 * timestamp.
1039	 */
1040	tx->verify_cached = 1;
1041
1042	return ice_ptp_alloc_tx_tracker(tx);
1043}
1044
1045/**
1046 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1047 * @pf: Board specific private structure
1048 *
1049 * This function updates the system time values which are cached in the PF
1050 * structure and the Rx rings.
1051 *
1052 * This function must be called periodically to ensure that the cached value
1053 * is never more than 2 seconds old.
1054 *
1055 * Note that the cached copy in the PF PTP structure is always updated, even
1056 * if we can't update the copy in the Rx rings.
1057 *
1058 * Return:
1059 * * 0 - OK, successfully updated
1060 * * -EAGAIN - PF was busy, need to reschedule the update
1061 */
1062static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1063{
1064	struct device *dev = ice_pf_to_dev(pf);
1065	unsigned long update_before;
1066	u64 systime;
1067	int i;
1068
1069	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1070	if (pf->ptp.cached_phc_time &&
1071	    time_is_before_jiffies(update_before)) {
1072		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1073
1074		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1075			 jiffies_to_msecs(time_taken));
1076		pf->ptp.late_cached_phc_updates++;
1077	}
1078
1079	/* Read the current PHC time */
1080	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1081
1082	/* Update the cached PHC time stored in the PF structure */
1083	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1084	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1085
1086	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1087		return -EAGAIN;
1088
1089	ice_for_each_vsi(pf, i) {
1090		struct ice_vsi *vsi = pf->vsi[i];
1091		int j;
1092
1093		if (!vsi)
1094			continue;
1095
1096		if (vsi->type != ICE_VSI_PF)
1097			continue;
1098
1099		ice_for_each_rxq(vsi, j) {
1100			if (!vsi->rx_rings[j])
1101				continue;
1102			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1103		}
1104	}
1105	clear_bit(ICE_CFG_BUSY, pf->state);
1106
1107	return 0;
1108}
1109
1110/**
1111 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1112 * @pf: Board specific private structure
1113 *
1114 * This function must be called when the cached PHC time is no longer valid,
1115 * such as after a time adjustment. It marks any currently outstanding Tx
1116 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1117 * rings.
1118 *
1119 * If updating the PHC time cannot be done immediately, a warning message is
1120 * logged and the work item is scheduled immediately to minimize the window
1121 * with a wrong cached timestamp.
1122 */
1123static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1124{
1125	struct device *dev = ice_pf_to_dev(pf);
1126	int err;
1127
1128	/* Update the cached PHC time immediately if possible, otherwise
1129	 * schedule the work item to execute soon.
1130	 */
1131	err = ice_ptp_update_cached_phctime(pf);
1132	if (err) {
1133		/* If another thread is updating the Rx rings, we won't
1134		 * properly reset them here. This could lead to reporting of
1135		 * invalid timestamps, but there isn't much we can do.
1136		 */
1137		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1138			 __func__);
1139
1140		/* Queue the work item to update the Rx rings when possible */
1141		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1142					   msecs_to_jiffies(10));
1143	}
1144
1145	/* Mark any outstanding timestamps as stale, since they might have
1146	 * been captured in hardware before the time update. This could lead
1147	 * to us extending them with the wrong cached value resulting in
1148	 * incorrect timestamp values.
1149	 */
1150	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1151}
1152
1153/**
1154 * ice_ptp_read_time - Read the time from the device
1155 * @pf: Board private structure
1156 * @ts: timespec structure to hold the current time value
1157 * @sts: Optional parameter for holding a pair of system timestamps from
1158 *       the system clock. Will be ignored if NULL is given.
1159 *
1160 * This function reads the source clock registers and stores them in a timespec.
1161 * However, since the registers are 64 bits of nanoseconds, we must convert the
1162 * result to a timespec before we can return.
1163 */
1164static void
1165ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1166		  struct ptp_system_timestamp *sts)
1167{
1168	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1169
1170	*ts = ns_to_timespec64(time_ns);
1171}
1172
1173/**
1174 * ice_ptp_write_init - Set PHC time to provided value
1175 * @pf: Board private structure
1176 * @ts: timespec structure that holds the new time value
1177 *
1178 * Set the PHC time to the specified time provided in the timespec.
1179 */
1180static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1181{
1182	u64 ns = timespec64_to_ns(ts);
1183	struct ice_hw *hw = &pf->hw;
1184
1185	return ice_ptp_init_time(hw, ns);
1186}
1187
1188/**
1189 * ice_ptp_write_adj - Adjust PHC clock time atomically
1190 * @pf: Board private structure
1191 * @adj: Adjustment in nanoseconds
1192 *
1193 * Perform an atomic adjustment of the PHC time by the specified number of
1194 * nanoseconds.
1195 */
1196static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1197{
1198	struct ice_hw *hw = &pf->hw;
1199
1200	return ice_ptp_adj_clock(hw, adj);
1201}
1202
1203/**
1204 * ice_base_incval - Get base timer increment value
1205 * @pf: Board private structure
1206 *
1207 * Look up the base timer increment value for this device. The base increment
1208 * value is used to define the nominal clock tick rate. This increment value
1209 * is programmed during device initialization. It is also used as the basis
1210 * for calculating adjustments using scaled_ppm.
1211 */
1212static u64 ice_base_incval(struct ice_pf *pf)
1213{
1214	struct ice_hw *hw = &pf->hw;
1215	u64 incval;
1216
1217	if (ice_is_e810(hw))
1218		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1219	else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1220		incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw));
1221	else
1222		incval = UNKNOWN_INCVAL_E82X;
1223
1224	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1225		incval);
1226
1227	return incval;
1228}
1229
1230/**
1231 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1232 * @port: PTP port for which Tx FIFO is checked
1233 */
1234static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1235{
1236	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1237	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1238	struct ice_pf *pf;
1239	struct ice_hw *hw;
1240	u32 val, phy_sts;
1241	int err;
1242
1243	pf = ptp_port_to_pf(port);
1244	hw = &pf->hw;
1245
1246	if (port->tx_fifo_busy_cnt == FIFO_OK)
1247		return 0;
1248
1249	/* need to read FIFO state */
1250	if (offs == 0 || offs == 1)
1251		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1252					     &val);
1253	else
1254		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1255					     &val);
1256
1257	if (err) {
1258		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1259			port->port_num, err);
1260		return err;
1261	}
1262
1263	if (offs & 0x1)
1264		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1265	else
1266		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1267
1268	if (phy_sts & FIFO_EMPTY) {
1269		port->tx_fifo_busy_cnt = FIFO_OK;
1270		return 0;
1271	}
1272
1273	port->tx_fifo_busy_cnt++;
1274
1275	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1276		port->tx_fifo_busy_cnt, port->port_num);
1277
1278	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1279		dev_dbg(ice_pf_to_dev(pf),
1280			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1281			port->port_num, quad);
1282		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1283		port->tx_fifo_busy_cnt = FIFO_OK;
1284		return 0;
1285	}
1286
1287	return -EAGAIN;
1288}
1289
1290/**
1291 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1292 * @work: Pointer to the kthread_work structure for this task
1293 *
1294 * Check whether hardware has completed measuring the Tx and Rx offset values
1295 * used to configure and enable vernier timestamp calibration.
1296 *
1297 * Once the offset in either direction is measured, configure the associated
1298 * registers with the calibrated offset values and enable timestamping. The Tx
1299 * and Rx directions are configured independently as soon as their associated
1300 * offsets are known.
1301 *
1302 * This function reschedules itself until both Tx and Rx calibration have
1303 * completed.
1304 */
1305static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1306{
1307	struct ice_ptp_port *port;
1308	struct ice_pf *pf;
1309	struct ice_hw *hw;
1310	int tx_err;
1311	int rx_err;
1312
1313	port = container_of(work, struct ice_ptp_port, ov_work.work);
1314	pf = ptp_port_to_pf(port);
1315	hw = &pf->hw;
1316
1317	if (ice_is_reset_in_progress(pf->state)) {
1318		/* wait for device driver to complete reset */
1319		kthread_queue_delayed_work(pf->ptp.kworker,
1320					   &port->ov_work,
1321					   msecs_to_jiffies(100));
1322		return;
1323	}
1324
1325	tx_err = ice_ptp_check_tx_fifo(port);
1326	if (!tx_err)
1327		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1328	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1329	if (tx_err || rx_err) {
1330		/* Tx and/or Rx offset not yet configured, try again later */
1331		kthread_queue_delayed_work(pf->ptp.kworker,
1332					   &port->ov_work,
1333					   msecs_to_jiffies(100));
1334		return;
1335	}
1336}
1337
1338/**
1339 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1340 * @ptp_port: PTP port to stop
1341 */
1342static int
1343ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1344{
1345	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1346	u8 port = ptp_port->port_num;
1347	struct ice_hw *hw = &pf->hw;
1348	int err;
1349
1350	if (ice_is_e810(hw))
1351		return 0;
1352
1353	mutex_lock(&ptp_port->ps_lock);
1354
1355	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1356
1357	err = ice_stop_phy_timer_e82x(hw, port, true);
1358	if (err)
1359		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1360			port, err);
1361
1362	mutex_unlock(&ptp_port->ps_lock);
1363
1364	return err;
1365}
1366
1367/**
1368 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1369 * @ptp_port: PTP port for which the PHY start is set
1370 *
1371 * Start the PHY timestamping block, and initiate Vernier timestamping
1372 * calibration. If timestamping cannot be calibrated (such as if link is down)
1373 * then disable the timestamping block instead.
1374 */
1375static int
1376ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1377{
1378	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1379	u8 port = ptp_port->port_num;
1380	struct ice_hw *hw = &pf->hw;
1381	unsigned long flags;
1382	int err;
1383
1384	if (ice_is_e810(hw))
1385		return 0;
1386
1387	if (!ptp_port->link_up)
1388		return ice_ptp_port_phy_stop(ptp_port);
1389
1390	mutex_lock(&ptp_port->ps_lock);
1391
1392	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1393
1394	/* temporarily disable Tx timestamps while calibrating PHY offset */
1395	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1396	ptp_port->tx.calibrating = true;
1397	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1398	ptp_port->tx_fifo_busy_cnt = 0;
1399
1400	/* Start the PHY timer in Vernier mode */
1401	err = ice_start_phy_timer_e82x(hw, port);
1402	if (err)
1403		goto out_unlock;
1404
1405	/* Enable Tx timestamps right away */
1406	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1407	ptp_port->tx.calibrating = false;
1408	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1409
1410	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1411
1412out_unlock:
1413	if (err)
1414		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1415			port, err);
1416
1417	mutex_unlock(&ptp_port->ps_lock);
1418
1419	return err;
1420}
1421
1422/**
1423 * ice_ptp_link_change - Reconfigure PTP after link status change
1424 * @pf: Board private structure
1425 * @port: Port for which the PHY start is set
1426 * @linkup: Link is up or down
1427 */
1428void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1429{
1430	struct ice_ptp_port *ptp_port;
1431	struct ice_hw *hw = &pf->hw;
1432
1433	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1434		return;
1435
1436	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1437		return;
1438
1439	ptp_port = &pf->ptp.port;
1440	if (WARN_ON_ONCE(ptp_port->port_num != port))
1441		return;
1442
1443	/* Update cached link status for this port immediately */
1444	ptp_port->link_up = linkup;
1445
1446	switch (hw->phy_model) {
1447	case ICE_PHY_E810:
1448		/* Do not reconfigure E810 PHY */
1449		return;
1450	case ICE_PHY_E82X:
1451		ice_ptp_port_phy_restart(ptp_port);
1452		return;
1453	default:
1454		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1455	}
1456}
1457
1458/**
1459 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1460 * @pf: PF private structure
1461 * @ena: bool value to enable or disable interrupt
1462 * @threshold: Minimum number of packets at which intr is triggered
1463 *
1464 * Utility function to enable or disable Tx timestamp interrupt and threshold
1465 */
1466static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1467{
1468	struct ice_hw *hw = &pf->hw;
1469	int err = 0;
1470	int quad;
1471	u32 val;
1472
1473	ice_ptp_reset_ts_memory(hw);
1474
1475	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1476		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1477					     &val);
1478		if (err)
1479			break;
1480
1481		if (ena) {
1482			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1483			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1484			val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M,
1485					  threshold);
1486		} else {
1487			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1488		}
1489
1490		err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1491					      val);
1492		if (err)
1493			break;
1494	}
1495
1496	if (err)
1497		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1498			err);
1499	return err;
1500}
1501
1502/**
1503 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1504 * @pf: Board private structure
1505 */
1506static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1507{
1508	ice_ptp_port_phy_restart(&pf->ptp.port);
1509}
1510
1511/**
1512 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1513 * @pf: Board private structure
1514 */
1515static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1516{
1517	struct list_head *entry;
1518
1519	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1520		struct ice_ptp_port *port = list_entry(entry,
1521						       struct ice_ptp_port,
1522						       list_member);
1523
1524		if (port->link_up)
1525			ice_ptp_port_phy_restart(port);
1526	}
1527}
1528
1529/**
1530 * ice_ptp_adjfine - Adjust clock increment rate
1531 * @info: the driver's PTP info structure
1532 * @scaled_ppm: Parts per million with 16-bit fractional field
1533 *
1534 * Adjust the frequency of the clock by the indicated scaled ppm from the
1535 * base frequency.
1536 */
1537static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1538{
1539	struct ice_pf *pf = ptp_info_to_pf(info);
1540	struct ice_hw *hw = &pf->hw;
1541	u64 incval;
1542	int err;
1543
1544	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1545	err = ice_ptp_write_incval_locked(hw, incval);
1546	if (err) {
1547		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1548			err);
1549		return -EIO;
1550	}
1551
1552	return 0;
1553}
1554
1555/**
1556 * ice_ptp_extts_event - Process PTP external clock event
1557 * @pf: Board private structure
1558 */
1559void ice_ptp_extts_event(struct ice_pf *pf)
1560{
1561	struct ptp_clock_event event;
1562	struct ice_hw *hw = &pf->hw;
1563	u8 chan, tmr_idx;
1564	u32 hi, lo;
1565
1566	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1567	/* Event time is captured by one of the two matched registers
1568	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1569	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1570	 * Event is defined in GLTSYN_EVNT_0 register
1571	 */
1572	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1573		/* Check if channel is enabled */
1574		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1575			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1576			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1577			event.timestamp = (((u64)hi) << 32) | lo;
1578			event.type = PTP_CLOCK_EXTTS;
1579			event.index = chan;
1580
1581			/* Fire event */
1582			ptp_clock_event(pf->ptp.clock, &event);
1583			pf->ptp.ext_ts_irq &= ~(1 << chan);
1584		}
1585	}
1586}
1587
1588/**
1589 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1590 * @pf: Board private structure
1591 * @ena: true to enable; false to disable
1592 * @chan: GPIO channel (0-3)
1593 * @gpio_pin: GPIO pin
1594 * @extts_flags: request flags from the ptp_extts_request.flags
1595 */
1596static int
1597ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1598		  unsigned int extts_flags)
1599{
1600	u32 func, aux_reg, gpio_reg, irq_reg;
1601	struct ice_hw *hw = &pf->hw;
1602	u8 tmr_idx;
1603
1604	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1605		return -EINVAL;
1606
1607	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1608
1609	irq_reg = rd32(hw, PFINT_OICR_ENA);
1610
1611	if (ena) {
1612		/* Enable the interrupt */
1613		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1614		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1615
1616#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1617#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1618
1619		/* set event level to requested edge */
1620		if (extts_flags & PTP_FALLING_EDGE)
1621			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1622		if (extts_flags & PTP_RISING_EDGE)
1623			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1624
1625		/* Write GPIO CTL reg.
1626		 * 0x1 is input sampled by EVENT register(channel)
1627		 * + num_in_channels * tmr_idx
1628		 */
1629		func = 1 + chan + (tmr_idx * 3);
1630		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1631		pf->ptp.ext_ts_chan |= (1 << chan);
1632	} else {
1633		/* clear the values we set to reset defaults */
1634		aux_reg = 0;
1635		gpio_reg = 0;
1636		pf->ptp.ext_ts_chan &= ~(1 << chan);
1637		if (!pf->ptp.ext_ts_chan)
1638			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1639	}
1640
1641	wr32(hw, PFINT_OICR_ENA, irq_reg);
1642	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1643	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1644
1645	return 0;
1646}
1647
1648/**
1649 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1650 * @pf: Board private structure
1651 * @chan: GPIO channel (0-3)
1652 * @config: desired periodic clk configuration. NULL will disable channel
1653 * @store: If set to true the values will be stored
1654 *
1655 * Configure the internal clock generator modules to generate the clock wave of
1656 * specified period.
1657 */
1658static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1659			      struct ice_perout_channel *config, bool store)
1660{
1661	u64 current_time, period, start_time, phase;
1662	struct ice_hw *hw = &pf->hw;
1663	u32 func, val, gpio_pin;
1664	u8 tmr_idx;
1665
1666	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1667
1668	/* 0. Reset mode & out_en in AUX_OUT */
1669	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1670
1671	/* If we're disabling the output, clear out CLKO and TGT and keep
1672	 * output level low
1673	 */
1674	if (!config || !config->ena) {
1675		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1676		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1677		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1678
1679		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1680		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1681		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1682
1683		/* Store the value if requested */
1684		if (store)
1685			memset(&pf->ptp.perout_channels[chan], 0,
1686			       sizeof(struct ice_perout_channel));
1687
1688		return 0;
1689	}
1690	period = config->period;
1691	start_time = config->start_time;
1692	div64_u64_rem(start_time, period, &phase);
1693	gpio_pin = config->gpio_pin;
1694
1695	/* 1. Write clkout with half of required period value */
1696	if (period & 0x1) {
1697		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1698		goto err;
1699	}
1700
1701	period >>= 1;
1702
1703	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1704	 */
1705#define MIN_PULSE 3
1706	if (period <= MIN_PULSE || period > U32_MAX) {
1707		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1708			MIN_PULSE * 2);
1709		goto err;
1710	}
1711
1712	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1713
1714	/* Allow time for programming before start_time is hit */
1715	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1716
1717	/* if start time is in the past start the timer at the nearest second
1718	 * maintaining phase
1719	 */
1720	if (start_time < current_time)
1721		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1722				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1723
1724	if (ice_is_e810(hw))
1725		start_time -= E810_OUT_PROP_DELAY_NS;
1726	else
1727		start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));
1728
1729	/* 2. Write TARGET time */
1730	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1731	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1732
1733	/* 3. Write AUX_OUT register */
1734	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1735	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1736
1737	/* 4. write GPIO CTL reg */
1738	func = 8 + chan + (tmr_idx * 4);
1739	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1740	      FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1741	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1742
1743	/* Store the value if requested */
1744	if (store) {
1745		memcpy(&pf->ptp.perout_channels[chan], config,
1746		       sizeof(struct ice_perout_channel));
1747		pf->ptp.perout_channels[chan].start_time = phase;
1748	}
1749
1750	return 0;
1751err:
1752	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1753	return -EFAULT;
1754}
1755
1756/**
1757 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1758 * @pf: pointer to the PF structure
1759 *
1760 * Disable all currently configured clock outputs. This is necessary before
1761 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1762 * re-enable the clocks again.
1763 */
1764static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1765{
1766	uint i;
1767
1768	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1769		if (pf->ptp.perout_channels[i].ena)
1770			ice_ptp_cfg_clkout(pf, i, NULL, false);
1771}
1772
1773/**
1774 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1775 * @pf: pointer to the PF structure
1776 *
1777 * Enable all currently configured clock outputs. Use this after
1778 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1779 * their configuration.
1780 */
1781static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1782{
1783	uint i;
1784
1785	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1786		if (pf->ptp.perout_channels[i].ena)
1787			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1788					   false);
1789}
1790
1791/**
1792 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1793 * @info: the driver's PTP info structure
1794 * @rq: The requested feature to change
1795 * @on: Enable/disable flag
1796 */
1797static int
1798ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1799			 struct ptp_clock_request *rq, int on)
1800{
1801	struct ice_pf *pf = ptp_info_to_pf(info);
1802	struct ice_perout_channel clk_cfg = {0};
1803	bool sma_pres = false;
1804	unsigned int chan;
1805	u32 gpio_pin;
1806	int err;
1807
1808	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1809		sma_pres = true;
1810
1811	switch (rq->type) {
1812	case PTP_CLK_REQ_PEROUT:
1813		chan = rq->perout.index;
1814		if (sma_pres) {
1815			if (chan == ice_pin_desc_e810t[SMA1].chan)
1816				clk_cfg.gpio_pin = GPIO_20;
1817			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1818				clk_cfg.gpio_pin = GPIO_22;
1819			else
1820				return -1;
1821		} else if (ice_is_e810t(&pf->hw)) {
1822			if (chan == 0)
1823				clk_cfg.gpio_pin = GPIO_20;
1824			else
1825				clk_cfg.gpio_pin = GPIO_22;
1826		} else if (chan == PPS_CLK_GEN_CHAN) {
1827			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1828		} else {
1829			clk_cfg.gpio_pin = chan;
1830		}
1831
1832		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1833				   rq->perout.period.nsec);
1834		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1835				       rq->perout.start.nsec);
1836		clk_cfg.ena = !!on;
1837
1838		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1839		break;
1840	case PTP_CLK_REQ_EXTTS:
1841		chan = rq->extts.index;
1842		if (sma_pres) {
1843			if (chan < ice_pin_desc_e810t[SMA2].chan)
1844				gpio_pin = GPIO_21;
1845			else
1846				gpio_pin = GPIO_23;
1847		} else if (ice_is_e810t(&pf->hw)) {
1848			if (chan == 0)
1849				gpio_pin = GPIO_21;
1850			else
1851				gpio_pin = GPIO_23;
1852		} else {
1853			gpio_pin = chan;
1854		}
1855
1856		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1857					rq->extts.flags);
1858		break;
1859	default:
1860		return -EOPNOTSUPP;
1861	}
1862
1863	return err;
1864}
1865
1866/**
1867 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1868 * @info: the driver's PTP info structure
1869 * @rq: The requested feature to change
1870 * @on: Enable/disable flag
1871 */
1872static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1873				    struct ptp_clock_request *rq, int on)
1874{
1875	struct ice_pf *pf = ptp_info_to_pf(info);
1876	struct ice_perout_channel clk_cfg = {0};
1877	int err;
1878
1879	switch (rq->type) {
1880	case PTP_CLK_REQ_PPS:
1881		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1882		clk_cfg.period = NSEC_PER_SEC;
1883		clk_cfg.ena = !!on;
1884
1885		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1886		break;
1887	case PTP_CLK_REQ_EXTTS:
1888		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1889					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1890		break;
1891	default:
1892		return -EOPNOTSUPP;
1893	}
1894
1895	return err;
1896}
1897
1898/**
1899 * ice_ptp_gettimex64 - Get the time of the clock
1900 * @info: the driver's PTP info structure
1901 * @ts: timespec64 structure to hold the current time value
1902 * @sts: Optional parameter for holding a pair of system timestamps from
1903 *       the system clock. Will be ignored if NULL is given.
1904 *
1905 * Read the device clock and return the correct value on ns, after converting it
1906 * into a timespec struct.
1907 */
1908static int
1909ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1910		   struct ptp_system_timestamp *sts)
1911{
1912	struct ice_pf *pf = ptp_info_to_pf(info);
1913	struct ice_hw *hw = &pf->hw;
1914
1915	if (!ice_ptp_lock(hw)) {
1916		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1917		return -EBUSY;
1918	}
1919
1920	ice_ptp_read_time(pf, ts, sts);
1921	ice_ptp_unlock(hw);
1922
1923	return 0;
1924}
1925
1926/**
1927 * ice_ptp_settime64 - Set the time of the clock
1928 * @info: the driver's PTP info structure
1929 * @ts: timespec64 structure that holds the new time value
1930 *
1931 * Set the device clock to the user input value. The conversion from timespec
1932 * to ns happens in the write function.
1933 */
1934static int
1935ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1936{
1937	struct ice_pf *pf = ptp_info_to_pf(info);
1938	struct timespec64 ts64 = *ts;
1939	struct ice_hw *hw = &pf->hw;
1940	int err;
1941
1942	/* For Vernier mode, we need to recalibrate after new settime
1943	 * Start with disabling timestamp block
1944	 */
1945	if (pf->ptp.port.link_up)
1946		ice_ptp_port_phy_stop(&pf->ptp.port);
1947
1948	if (!ice_ptp_lock(hw)) {
1949		err = -EBUSY;
1950		goto exit;
1951	}
1952
1953	/* Disable periodic outputs */
1954	ice_ptp_disable_all_clkout(pf);
1955
1956	err = ice_ptp_write_init(pf, &ts64);
1957	ice_ptp_unlock(hw);
1958
1959	if (!err)
1960		ice_ptp_reset_cached_phctime(pf);
1961
1962	/* Reenable periodic outputs */
1963	ice_ptp_enable_all_clkout(pf);
1964
1965	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1966	if (hw->phy_model == ICE_PHY_E82X)
1967		ice_ptp_restart_all_phy(pf);
1968exit:
1969	if (err) {
1970		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1971		return err;
1972	}
1973
1974	return 0;
1975}
1976
1977/**
1978 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1979 * @info: the driver's PTP info structure
1980 * @delta: Offset in nanoseconds to adjust the time by
1981 */
1982static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1983{
1984	struct timespec64 now, then;
1985	int ret;
1986
1987	then = ns_to_timespec64(delta);
1988	ret = ice_ptp_gettimex64(info, &now, NULL);
1989	if (ret)
1990		return ret;
1991	now = timespec64_add(now, then);
1992
1993	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1994}
1995
1996/**
1997 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1998 * @info: the driver's PTP info structure
1999 * @delta: Offset in nanoseconds to adjust the time by
2000 */
2001static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2002{
2003	struct ice_pf *pf = ptp_info_to_pf(info);
2004	struct ice_hw *hw = &pf->hw;
2005	struct device *dev;
2006	int err;
2007
2008	dev = ice_pf_to_dev(pf);
2009
2010	/* Hardware only supports atomic adjustments using signed 32-bit
2011	 * integers. For any adjustment outside this range, perform
2012	 * a non-atomic get->adjust->set flow.
2013	 */
2014	if (delta > S32_MAX || delta < S32_MIN) {
2015		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2016		return ice_ptp_adjtime_nonatomic(info, delta);
2017	}
2018
2019	if (!ice_ptp_lock(hw)) {
2020		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2021		return -EBUSY;
2022	}
2023
2024	/* Disable periodic outputs */
2025	ice_ptp_disable_all_clkout(pf);
2026
2027	err = ice_ptp_write_adj(pf, delta);
2028
2029	/* Reenable periodic outputs */
2030	ice_ptp_enable_all_clkout(pf);
2031
2032	ice_ptp_unlock(hw);
2033
2034	if (err) {
2035		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2036		return err;
2037	}
2038
2039	ice_ptp_reset_cached_phctime(pf);
2040
2041	return 0;
2042}
2043
2044#ifdef CONFIG_ICE_HWTS
2045/**
2046 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2047 * @device: Current device time
2048 * @system: System counter value read synchronously with device time
2049 * @ctx: Context provided by timekeeping code
2050 *
2051 * Read device and system (ART) clock simultaneously and return the corrected
2052 * clock values in ns.
2053 */
2054static int
2055ice_ptp_get_syncdevicetime(ktime_t *device,
2056			   struct system_counterval_t *system,
2057			   void *ctx)
2058{
2059	struct ice_pf *pf = (struct ice_pf *)ctx;
2060	struct ice_hw *hw = &pf->hw;
2061	u32 hh_lock, hh_art_ctl;
2062	int i;
2063
2064#define MAX_HH_HW_LOCK_TRIES	5
2065#define MAX_HH_CTL_LOCK_TRIES	100
2066
2067	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2068		/* Get the HW lock */
2069		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2070		if (hh_lock & PFHH_SEM_BUSY_M) {
2071			usleep_range(10000, 15000);
2072			continue;
2073		}
2074		break;
2075	}
2076	if (hh_lock & PFHH_SEM_BUSY_M) {
2077		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2078		return -EBUSY;
2079	}
2080
2081	/* Program cmd to master timer */
2082	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2083
2084	/* Start the ART and device clock sync sequence */
2085	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2086	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2087	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2088
2089	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2090		/* Wait for sync to complete */
2091		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2092		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2093			udelay(1);
2094			continue;
2095		} else {
2096			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2097			u64 hh_ts;
2098
2099			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2100			/* Read ART time */
2101			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2102			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2103			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2104			*system = convert_art_ns_to_tsc(hh_ts);
2105			/* Read Device source clock time */
2106			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2107			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2108			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2109			*device = ns_to_ktime(hh_ts);
2110			break;
2111		}
2112	}
2113
2114	/* Clear the master timer */
2115	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2116
2117	/* Release HW lock */
2118	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2119	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2120	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2121
2122	if (i == MAX_HH_CTL_LOCK_TRIES)
2123		return -ETIMEDOUT;
2124
2125	return 0;
2126}
2127
2128/**
2129 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2130 * @info: the driver's PTP info structure
2131 * @cts: The memory to fill the cross timestamp info
2132 *
2133 * Capture a cross timestamp between the ART and the device PTP hardware
2134 * clock. Fill the cross timestamp information and report it back to the
2135 * caller.
2136 *
2137 * This is only valid for E822 and E823 devices which have support for
2138 * generating the cross timestamp via PCIe PTM.
2139 *
2140 * In order to correctly correlate the ART timestamp back to the TSC time, the
2141 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2142 */
2143static int
2144ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2145			    struct system_device_crosststamp *cts)
2146{
2147	struct ice_pf *pf = ptp_info_to_pf(info);
2148
2149	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2150					     pf, NULL, cts);
2151}
2152#endif /* CONFIG_ICE_HWTS */
2153
2154/**
2155 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2156 * @pf: Board private structure
2157 * @ifr: ioctl data
2158 *
2159 * Copy the timestamping config to user buffer
2160 */
2161int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2162{
2163	struct hwtstamp_config *config;
2164
2165	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2166		return -EIO;
2167
2168	config = &pf->ptp.tstamp_config;
2169
2170	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2171		-EFAULT : 0;
2172}
2173
2174/**
2175 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2176 * @pf: Board private structure
2177 * @config: hwtstamp settings requested or saved
2178 */
2179static int
2180ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2181{
2182	switch (config->tx_type) {
2183	case HWTSTAMP_TX_OFF:
2184		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2185		break;
2186	case HWTSTAMP_TX_ON:
2187		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2188		break;
2189	default:
2190		return -ERANGE;
2191	}
2192
2193	switch (config->rx_filter) {
2194	case HWTSTAMP_FILTER_NONE:
2195		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2196		break;
2197	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2198	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2199	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2200	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2201	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2202	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2203	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2204	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2205	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2206	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2207	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2208	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2209	case HWTSTAMP_FILTER_NTP_ALL:
2210	case HWTSTAMP_FILTER_ALL:
2211		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2212		break;
2213	default:
2214		return -ERANGE;
2215	}
2216
2217	/* Immediately update the device timestamping mode */
2218	ice_ptp_restore_timestamp_mode(pf);
2219
2220	return 0;
2221}
2222
2223/**
2224 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2225 * @pf: Board private structure
2226 * @ifr: ioctl data
2227 *
2228 * Get the user config and store it
2229 */
2230int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2231{
2232	struct hwtstamp_config config;
2233	int err;
2234
2235	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2236		return -EAGAIN;
2237
2238	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2239		return -EFAULT;
2240
2241	err = ice_ptp_set_timestamp_mode(pf, &config);
2242	if (err)
2243		return err;
2244
2245	/* Return the actual configuration set */
2246	config = pf->ptp.tstamp_config;
2247
2248	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2249		-EFAULT : 0;
2250}
2251
2252/**
2253 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2254 * @rx_desc: Receive descriptor
2255 * @pkt_ctx: Packet context to get the cached time
2256 *
2257 * The driver receives a notification in the receive descriptor with timestamp.
2258 */
2259u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2260			const struct ice_pkt_ctx *pkt_ctx)
2261{
2262	u64 ts_ns, cached_time;
2263	u32 ts_high;
2264
2265	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2266		return 0;
2267
2268	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2269
2270	/* Do not report a timestamp if we don't have a cached PHC time */
2271	if (!cached_time)
2272		return 0;
2273
2274	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2275	 * PHC value, rather than accessing the PF. This also allows us to
2276	 * simply pass the upper 32bits of nanoseconds directly. Calling
2277	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2278	 * bits itself.
2279	 */
2280	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2281	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2282
2283	return ts_ns;
2284}
2285
2286/**
2287 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2288 * @pf: pointer to the PF structure
2289 * @info: PTP clock info structure
2290 *
2291 * Disable the OS access to the SMA pins. Called to clear out the OS
2292 * indications of pin support when we fail to setup the E810-T SMA control
2293 * register.
2294 */
2295static void
2296ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2297{
2298	struct device *dev = ice_pf_to_dev(pf);
2299
2300	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2301
2302	info->enable = NULL;
2303	info->verify = NULL;
2304	info->n_pins = 0;
2305	info->n_ext_ts = 0;
2306	info->n_per_out = 0;
2307}
2308
2309/**
2310 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2311 * @pf: pointer to the PF structure
2312 * @info: PTP clock info structure
2313 *
2314 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2315 * according to the current status of the SMA. On failure, disable all of the
2316 * extended SMA pin support.
2317 */
2318static void
2319ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2320{
2321	struct device *dev = ice_pf_to_dev(pf);
2322	int err;
2323
2324	/* Allocate memory for kernel pins interface */
2325	info->pin_config = devm_kcalloc(dev, info->n_pins,
2326					sizeof(*info->pin_config), GFP_KERNEL);
2327	if (!info->pin_config) {
2328		ice_ptp_disable_sma_pins_e810t(pf, info);
2329		return;
2330	}
2331
2332	/* Read current SMA status */
2333	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2334	if (err)
2335		ice_ptp_disable_sma_pins_e810t(pf, info);
2336}
2337
2338/**
2339 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2340 * @pf: pointer to the PF instance
2341 * @info: PTP clock capabilities
2342 */
2343static void
2344ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2345{
2346	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2347		info->n_ext_ts = N_EXT_TS_E810;
2348		info->n_per_out = N_PER_OUT_E810T;
2349		info->n_pins = NUM_PTP_PINS_E810T;
2350		info->verify = ice_verify_pin_e810t;
2351
2352		/* Complete setup of the SMA pins */
2353		ice_ptp_setup_sma_pins_e810t(pf, info);
2354	} else if (ice_is_e810t(&pf->hw)) {
2355		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2356		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2357	} else {
2358		info->n_per_out = N_PER_OUT_E810;
2359		info->n_ext_ts = N_EXT_TS_E810;
2360	}
2361}
2362
2363/**
2364 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2365 * @pf: pointer to the PF instance
2366 * @info: PTP clock capabilities
2367 */
2368static void
2369ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2370{
2371	info->pps = 1;
2372	info->n_per_out = 0;
2373	info->n_ext_ts = 1;
2374}
2375
2376/**
2377 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2378 * @pf: Board private structure
2379 * @info: PTP info to fill
2380 *
2381 * Assign functions to the PTP capabiltiies structure for E82x devices.
2382 * Functions which operate across all device families should be set directly
2383 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2384 * devices.
2385 */
2386static void
2387ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2388{
2389#ifdef CONFIG_ICE_HWTS
2390	if (boot_cpu_has(X86_FEATURE_ART) &&
2391	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2392		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2393#endif /* CONFIG_ICE_HWTS */
2394}
2395
2396/**
2397 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2398 * @pf: Board private structure
2399 * @info: PTP info to fill
2400 *
2401 * Assign functions to the PTP capabiltiies structure for E810 devices.
2402 * Functions which operate across all device families should be set directly
2403 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2404 * devices.
2405 */
2406static void
2407ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2408{
2409	info->enable = ice_ptp_gpio_enable_e810;
2410	ice_ptp_setup_pins_e810(pf, info);
2411}
2412
2413/**
2414 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2415 * @pf: Board private structure
2416 * @info: PTP info to fill
2417 *
2418 * Assign functions to the PTP capabiltiies structure for E823 devices.
2419 * Functions which operate across all device families should be set directly
2420 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2421 * devices.
2422 */
2423static void
2424ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2425{
2426	ice_ptp_set_funcs_e82x(pf, info);
2427
2428	info->enable = ice_ptp_gpio_enable_e823;
2429	ice_ptp_setup_pins_e823(pf, info);
2430}
2431
2432/**
2433 * ice_ptp_set_caps - Set PTP capabilities
2434 * @pf: Board private structure
2435 */
2436static void ice_ptp_set_caps(struct ice_pf *pf)
2437{
2438	struct ptp_clock_info *info = &pf->ptp.info;
2439	struct device *dev = ice_pf_to_dev(pf);
2440
2441	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2442		 dev_driver_string(dev), dev_name(dev));
2443	info->owner = THIS_MODULE;
2444	info->max_adj = 100000000;
2445	info->adjtime = ice_ptp_adjtime;
2446	info->adjfine = ice_ptp_adjfine;
2447	info->gettimex64 = ice_ptp_gettimex64;
2448	info->settime64 = ice_ptp_settime64;
2449
2450	if (ice_is_e810(&pf->hw))
2451		ice_ptp_set_funcs_e810(pf, info);
2452	else if (ice_is_e823(&pf->hw))
2453		ice_ptp_set_funcs_e823(pf, info);
2454	else
2455		ice_ptp_set_funcs_e82x(pf, info);
2456}
2457
2458/**
2459 * ice_ptp_create_clock - Create PTP clock device for userspace
2460 * @pf: Board private structure
2461 *
2462 * This function creates a new PTP clock device. It only creates one if we
2463 * don't already have one. Will return error if it can't create one, but success
2464 * if we already have a device. Should be used by ice_ptp_init to create clock
2465 * initially, and prevent global resets from creating new clock devices.
2466 */
2467static long ice_ptp_create_clock(struct ice_pf *pf)
2468{
2469	struct ptp_clock_info *info;
2470	struct device *dev;
2471
2472	/* No need to create a clock device if we already have one */
2473	if (pf->ptp.clock)
2474		return 0;
2475
2476	ice_ptp_set_caps(pf);
2477
2478	info = &pf->ptp.info;
2479	dev = ice_pf_to_dev(pf);
2480
2481	/* Attempt to register the clock before enabling the hardware. */
2482	pf->ptp.clock = ptp_clock_register(info, dev);
2483	if (IS_ERR(pf->ptp.clock)) {
2484		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2485		return PTR_ERR(pf->ptp.clock);
2486	}
2487
2488	return 0;
2489}
2490
2491/**
2492 * ice_ptp_request_ts - Request an available Tx timestamp index
2493 * @tx: the PTP Tx timestamp tracker to request from
2494 * @skb: the SKB to associate with this timestamp request
2495 */
2496s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2497{
2498	unsigned long flags;
2499	u8 idx;
2500
2501	spin_lock_irqsave(&tx->lock, flags);
2502
2503	/* Check that this tracker is accepting new timestamp requests */
2504	if (!ice_ptp_is_tx_tracker_up(tx)) {
2505		spin_unlock_irqrestore(&tx->lock, flags);
2506		return -1;
2507	}
2508
2509	/* Find and set the first available index */
2510	idx = find_next_zero_bit(tx->in_use, tx->len,
2511				 tx->last_ll_ts_idx_read + 1);
2512	if (idx == tx->len)
2513		idx = find_first_zero_bit(tx->in_use, tx->len);
2514
2515	if (idx < tx->len) {
2516		/* We got a valid index that no other thread could have set. Store
2517		 * a reference to the skb and the start time to allow discarding old
2518		 * requests.
2519		 */
2520		set_bit(idx, tx->in_use);
2521		clear_bit(idx, tx->stale);
2522		tx->tstamps[idx].start = jiffies;
2523		tx->tstamps[idx].skb = skb_get(skb);
2524		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2525		ice_trace(tx_tstamp_request, skb, idx);
2526	}
2527
2528	spin_unlock_irqrestore(&tx->lock, flags);
2529
2530	/* return the appropriate PHY timestamp register index, -1 if no
2531	 * indexes were available.
2532	 */
2533	if (idx >= tx->len)
2534		return -1;
2535	else
2536		return idx + tx->offset;
2537}
2538
2539/**
2540 * ice_ptp_process_ts - Process the PTP Tx timestamps
2541 * @pf: Board private structure
2542 *
2543 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2544 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2545 */
2546enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2547{
2548	switch (pf->ptp.tx_interrupt_mode) {
2549	case ICE_PTP_TX_INTERRUPT_NONE:
2550		/* This device has the clock owner handle timestamps for it */
2551		return ICE_TX_TSTAMP_WORK_DONE;
2552	case ICE_PTP_TX_INTERRUPT_SELF:
2553		/* This device handles its own timestamps */
2554		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2555	case ICE_PTP_TX_INTERRUPT_ALL:
2556		/* This device handles timestamps for all ports */
2557		return ice_ptp_tx_tstamp_owner(pf);
2558	default:
2559		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2560			  pf->ptp.tx_interrupt_mode);
2561		return ICE_TX_TSTAMP_WORK_DONE;
2562	}
2563}
2564
2565/**
2566 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2567 * @pf: Board private structure
2568 *
2569 * The device PHY issues Tx timestamp interrupts to the driver for processing
2570 * timestamp data from the PHY. It will not interrupt again until all
2571 * current timestamp data is read. In rare circumstances, it is possible that
2572 * the driver fails to read all outstanding data.
2573 *
2574 * To avoid getting permanently stuck, periodically check if the PHY has
2575 * outstanding timestamp data. If so, trigger an interrupt from software to
2576 * process this data.
2577 */
2578static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2579{
2580	struct device *dev = ice_pf_to_dev(pf);
2581	struct ice_hw *hw = &pf->hw;
2582	bool trigger_oicr = false;
2583	unsigned int i;
2584
2585	if (ice_is_e810(hw))
2586		return;
2587
2588	if (!ice_pf_src_tmr_owned(pf))
2589		return;
2590
2591	for (i = 0; i < ICE_MAX_QUAD; i++) {
2592		u64 tstamp_ready;
2593		int err;
2594
2595		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2596		if (!err && tstamp_ready) {
2597			trigger_oicr = true;
2598			break;
2599		}
2600	}
2601
2602	if (trigger_oicr) {
2603		/* Trigger a software interrupt, to ensure this data
2604		 * gets processed.
2605		 */
2606		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2607
2608		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2609		ice_flush(hw);
2610	}
2611}
2612
2613static void ice_ptp_periodic_work(struct kthread_work *work)
2614{
2615	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2616	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2617	int err;
2618
2619	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2620		return;
2621
2622	err = ice_ptp_update_cached_phctime(pf);
2623
2624	ice_ptp_maybe_trigger_tx_interrupt(pf);
2625
2626	/* Run twice a second or reschedule if phc update failed */
2627	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2628				   msecs_to_jiffies(err ? 10 : 500));
2629}
2630
2631/**
2632 * ice_ptp_reset - Initialize PTP hardware clock support after reset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633 * @pf: Board private structure
 
 
 
2634 */
2635void ice_ptp_reset(struct ice_pf *pf)
2636{
2637	struct ice_ptp *ptp = &pf->ptp;
2638	struct ice_hw *hw = &pf->hw;
2639	struct timespec64 ts;
2640	int err, itr = 1;
2641	u64 time_diff;
2642
2643	if (test_bit(ICE_PFR_REQ, pf->state) ||
2644	    !ice_pf_src_tmr_owned(pf))
2645		goto pfr;
2646
2647	err = ice_ptp_init_phc(hw);
2648	if (err)
2649		goto err;
2650
2651	/* Acquire the global hardware lock */
2652	if (!ice_ptp_lock(hw)) {
2653		err = -EBUSY;
2654		goto err;
2655	}
2656
2657	/* Write the increment time value to PHY and LAN */
2658	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2659	if (err) {
2660		ice_ptp_unlock(hw);
2661		goto err;
2662	}
2663
2664	/* Write the initial Time value to PHY and LAN using the cached PHC
2665	 * time before the reset and time difference between stopping and
2666	 * starting the clock.
2667	 */
2668	if (ptp->cached_phc_time) {
2669		time_diff = ktime_get_real_ns() - ptp->reset_time;
2670		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2671	} else {
2672		ts = ktime_to_timespec64(ktime_get_real());
2673	}
2674	err = ice_ptp_write_init(pf, &ts);
2675	if (err) {
2676		ice_ptp_unlock(hw);
2677		goto err;
2678	}
2679
2680	/* Release the global hardware lock */
2681	ice_ptp_unlock(hw);
2682
 
 
 
 
 
2683	if (!ice_is_e810(hw)) {
2684		/* Enable quad interrupts */
2685		err = ice_ptp_tx_ena_intr(pf, true, itr);
2686		if (err)
2687			goto err;
 
 
2688	}
2689
2690pfr:
2691	/* Init Tx structures */
2692	if (ice_is_e810(&pf->hw)) {
2693		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2694	} else {
2695		kthread_init_delayed_work(&ptp->port.ov_work,
2696					  ice_ptp_wait_for_offsets);
2697		err = ice_ptp_init_tx_e82x(pf, &ptp->port.tx,
2698					   ptp->port.port_num);
 
 
 
 
 
 
 
 
 
 
2699	}
2700	if (err)
2701		goto err;
2702
2703	set_bit(ICE_FLAG_PTP, pf->flags);
 
 
 
 
2704
2705	/* Restart the PHY timestamping block */
2706	if (!test_bit(ICE_PFR_REQ, pf->state) &&
2707	    ice_pf_src_tmr_owned(pf))
2708		ice_ptp_restart_all_phy(pf);
2709
2710	/* Start periodic work going */
2711	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2712
2713	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2714	return;
2715
2716err:
 
2717	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2718}
2719
2720/**
2721 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2722 * @aux_dev: auxiliary device to get the auxiliary PF for
2723 */
2724static struct ice_pf *
2725ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2726{
2727	struct ice_ptp_port *aux_port;
2728	struct ice_ptp *aux_ptp;
2729
2730	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2731	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2732
2733	return container_of(aux_ptp, struct ice_pf, ptp);
2734}
2735
2736/**
2737 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2738 * @aux_dev: auxiliary device to get the PF for
2739 */
2740static struct ice_pf *
2741ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2742{
2743	struct ice_ptp_port_owner *ports_owner;
2744	struct auxiliary_driver *aux_drv;
2745	struct ice_ptp *owner_ptp;
2746
2747	if (!aux_dev->dev.driver)
2748		return NULL;
2749
2750	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2751	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2752				   aux_driver);
2753	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2754	return container_of(owner_ptp, struct ice_pf, ptp);
2755}
2756
2757/**
2758 * ice_ptp_auxbus_probe - Probe auxiliary devices
2759 * @aux_dev: PF's auxiliary device
2760 * @id: Auxiliary device ID
2761 */
2762static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2763				const struct auxiliary_device_id *id)
2764{
2765	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2766	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2767
2768	if (WARN_ON(!owner_pf))
2769		return -ENODEV;
2770
2771	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2772	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2773	list_add(&aux_pf->ptp.port.list_member,
2774		 &owner_pf->ptp.ports_owner.ports);
2775	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2776
2777	return 0;
2778}
2779
2780/**
2781 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2782 * @aux_dev: PF's auxiliary device
2783 */
2784static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2785{
2786	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2787	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2788
2789	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2790	list_del(&aux_pf->ptp.port.list_member);
2791	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2792}
2793
2794/**
2795 * ice_ptp_auxbus_shutdown
2796 * @aux_dev: PF's auxiliary device
2797 */
2798static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2799{
2800	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2801}
2802
2803/**
2804 * ice_ptp_auxbus_suspend
2805 * @aux_dev: PF's auxiliary device
2806 * @state: power management state indicator
2807 */
2808static int
2809ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2810{
2811	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2812	return 0;
2813}
2814
2815/**
2816 * ice_ptp_auxbus_resume
2817 * @aux_dev: PF's auxiliary device
2818 */
2819static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2820{
2821	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2822	return 0;
2823}
2824
2825/**
2826 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2827 * @pf: Board private structure
2828 * @name: auxiliary bus driver name
2829 */
2830static struct auxiliary_device_id *
2831ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2832{
2833	struct auxiliary_device_id *ids;
2834
2835	/* Second id left empty to terminate the array */
2836	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2837			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2838	if (!ids)
2839		return NULL;
2840
2841	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2842
2843	return ids;
2844}
2845
2846/**
2847 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2848 * @pf: Board private structure
2849 */
2850static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2851{
2852	struct auxiliary_driver *aux_driver;
2853	struct ice_ptp *ptp;
2854	struct device *dev;
2855	char *name;
2856	int err;
2857
2858	ptp = &pf->ptp;
2859	dev = ice_pf_to_dev(pf);
2860	aux_driver = &ptp->ports_owner.aux_driver;
2861	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2862	mutex_init(&ptp->ports_owner.lock);
2863	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2864			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2865			      ice_get_ptp_src_clock_index(&pf->hw));
2866	if (!name)
2867		return -ENOMEM;
2868
2869	aux_driver->name = name;
2870	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2871	aux_driver->suspend = ice_ptp_auxbus_suspend;
2872	aux_driver->remove = ice_ptp_auxbus_remove;
2873	aux_driver->resume = ice_ptp_auxbus_resume;
2874	aux_driver->probe = ice_ptp_auxbus_probe;
2875	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2876	if (!aux_driver->id_table)
2877		return -ENOMEM;
2878
2879	err = auxiliary_driver_register(aux_driver);
2880	if (err) {
2881		devm_kfree(dev, aux_driver->id_table);
2882		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2883			name);
2884	}
2885
2886	return err;
2887}
2888
2889/**
2890 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2891 * @pf: Board private structure
2892 */
2893static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2894{
2895	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2896
2897	auxiliary_driver_unregister(aux_driver);
2898	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2899
2900	mutex_destroy(&pf->ptp.ports_owner.lock);
2901}
2902
2903/**
2904 * ice_ptp_clock_index - Get the PTP clock index for this device
2905 * @pf: Board private structure
2906 *
2907 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2908 * is associated.
2909 */
2910int ice_ptp_clock_index(struct ice_pf *pf)
2911{
2912	struct auxiliary_device *aux_dev;
2913	struct ice_pf *owner_pf;
2914	struct ptp_clock *clock;
2915
2916	aux_dev = &pf->ptp.port.aux_dev;
2917	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2918	if (!owner_pf)
2919		return -1;
2920	clock = owner_pf->ptp.clock;
2921
2922	return clock ? ptp_clock_index(clock) : -1;
2923}
2924
2925/**
2926 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2927 * @pf: Board private structure
2928 */
2929void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2930{
2931	struct ice_ptp *ptp = &pf->ptp;
2932	u8 src_tmr;
2933
2934	clear_bit(ICE_FLAG_PTP, pf->flags);
2935
2936	/* Disable timestamping for both Tx and Rx */
2937	ice_ptp_disable_timestamp_mode(pf);
2938
2939	kthread_cancel_delayed_work_sync(&ptp->work);
2940
2941	if (test_bit(ICE_PFR_REQ, pf->state))
2942		return;
2943
2944	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2945
2946	/* Disable periodic outputs */
2947	ice_ptp_disable_all_clkout(pf);
2948
2949	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2950
2951	/* Disable source clock */
2952	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2953
2954	/* Acquire PHC and system timer to restore after reset */
2955	ptp->reset_time = ktime_get_real_ns();
2956}
2957
2958/**
2959 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2960 * @pf: Board private structure
2961 *
2962 * Setup and initialize a PTP clock device that represents the device hardware
2963 * clock. Save the clock index for other functions connected to the same
2964 * hardware resource.
2965 */
2966static int ice_ptp_init_owner(struct ice_pf *pf)
2967{
2968	struct ice_hw *hw = &pf->hw;
2969	struct timespec64 ts;
2970	int err, itr = 1;
2971
2972	err = ice_ptp_init_phc(hw);
2973	if (err) {
2974		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2975			err);
2976		return err;
2977	}
2978
2979	/* Acquire the global hardware lock */
2980	if (!ice_ptp_lock(hw)) {
2981		err = -EBUSY;
2982		goto err_exit;
2983	}
2984
2985	/* Write the increment time value to PHY and LAN */
2986	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2987	if (err) {
2988		ice_ptp_unlock(hw);
2989		goto err_exit;
2990	}
2991
2992	ts = ktime_to_timespec64(ktime_get_real());
2993	/* Write the initial Time value to PHY and LAN */
2994	err = ice_ptp_write_init(pf, &ts);
2995	if (err) {
2996		ice_ptp_unlock(hw);
2997		goto err_exit;
2998	}
2999
3000	/* Release the global hardware lock */
3001	ice_ptp_unlock(hw);
3002
3003	if (!ice_is_e810(hw)) {
3004		/* Enable quad interrupts */
3005		err = ice_ptp_tx_ena_intr(pf, true, itr);
3006		if (err)
3007			goto err_exit;
3008	}
3009
3010	/* Ensure we have a clock device */
3011	err = ice_ptp_create_clock(pf);
3012	if (err)
3013		goto err_clk;
3014
3015	err = ice_ptp_register_auxbus_driver(pf);
3016	if (err) {
3017		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
3018		goto err_aux;
3019	}
3020
3021	return 0;
3022err_aux:
3023	ptp_clock_unregister(pf->ptp.clock);
3024err_clk:
3025	pf->ptp.clock = NULL;
3026err_exit:
3027	return err;
3028}
3029
3030/**
3031 * ice_ptp_init_work - Initialize PTP work threads
3032 * @pf: Board private structure
3033 * @ptp: PF PTP structure
3034 */
3035static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3036{
3037	struct kthread_worker *kworker;
3038
3039	/* Initialize work functions */
3040	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3041
3042	/* Allocate a kworker for handling work required for the ports
3043	 * connected to the PTP hardware clock.
3044	 */
3045	kworker = kthread_create_worker(0, "ice-ptp-%s",
3046					dev_name(ice_pf_to_dev(pf)));
3047	if (IS_ERR(kworker))
3048		return PTR_ERR(kworker);
3049
3050	ptp->kworker = kworker;
3051
3052	/* Start periodic work going */
3053	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3054
3055	return 0;
3056}
3057
3058/**
3059 * ice_ptp_init_port - Initialize PTP port structure
3060 * @pf: Board private structure
3061 * @ptp_port: PTP port structure
3062 */
3063static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3064{
3065	struct ice_hw *hw = &pf->hw;
3066
3067	mutex_init(&ptp_port->ps_lock);
3068
3069	switch (hw->phy_model) {
3070	case ICE_PHY_E810:
3071		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3072	case ICE_PHY_E82X:
3073		kthread_init_delayed_work(&ptp_port->ov_work,
3074					  ice_ptp_wait_for_offsets);
3075
3076		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3077					    ptp_port->port_num);
3078	default:
3079		return -ENODEV;
3080	}
3081}
3082
3083/**
3084 * ice_ptp_release_auxbus_device
3085 * @dev: device that utilizes the auxbus
3086 */
3087static void ice_ptp_release_auxbus_device(struct device *dev)
3088{
3089	/* Doing nothing here, but handle to auxbux device must be satisfied */
3090}
3091
3092/**
3093 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
3094 * @pf: Board private structure
3095 */
3096static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
3097{
3098	struct auxiliary_device *aux_dev;
3099	struct ice_ptp *ptp;
3100	struct device *dev;
3101	char *name;
3102	int err;
3103	u32 id;
3104
3105	ptp = &pf->ptp;
3106	id = ptp->port.port_num;
3107	dev = ice_pf_to_dev(pf);
3108
3109	aux_dev = &ptp->port.aux_dev;
3110
3111	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
3112			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
3113			      ice_get_ptp_src_clock_index(&pf->hw));
3114	if (!name)
3115		return -ENOMEM;
3116
3117	aux_dev->name = name;
3118	aux_dev->id = id;
3119	aux_dev->dev.release = ice_ptp_release_auxbus_device;
3120	aux_dev->dev.parent = dev;
3121
3122	err = auxiliary_device_init(aux_dev);
3123	if (err)
3124		goto aux_err;
3125
3126	err = auxiliary_device_add(aux_dev);
3127	if (err) {
3128		auxiliary_device_uninit(aux_dev);
3129		goto aux_err;
3130	}
3131
3132	return 0;
3133aux_err:
3134	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
3135	devm_kfree(dev, name);
3136	return err;
3137}
3138
3139/**
3140 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
3141 * @pf: Board private structure
3142 */
3143static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
3144{
3145	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
3146
3147	auxiliary_device_delete(aux_dev);
3148	auxiliary_device_uninit(aux_dev);
3149
3150	memset(aux_dev, 0, sizeof(*aux_dev));
3151}
3152
3153/**
3154 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3155 * @pf: Board private structure
3156 *
3157 * Initialize the Tx timestamp interrupt mode for this device. For most device
3158 * types, each PF processes the interrupt and manages its own timestamps. For
3159 * E822-based devices, only the clock owner processes the timestamps. Other
3160 * PFs disable the interrupt and do not process their own timestamps.
3161 */
3162static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3163{
3164	switch (pf->hw.phy_model) {
3165	case ICE_PHY_E82X:
3166		/* E822 based PHY has the clock owner process the interrupt
3167		 * for all ports.
3168		 */
3169		if (ice_pf_src_tmr_owned(pf))
3170			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3171		else
3172			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3173		break;
3174	default:
3175		/* other PHY types handle their own Tx interrupt */
3176		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3177	}
3178}
3179
3180/**
3181 * ice_ptp_init - Initialize PTP hardware clock support
3182 * @pf: Board private structure
3183 *
3184 * Set up the device for interacting with the PTP hardware clock for all
3185 * functions, both the function that owns the clock hardware, and the
3186 * functions connected to the clock hardware.
3187 *
3188 * The clock owner will allocate and register a ptp_clock with the
3189 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3190 * items used for asynchronous work such as Tx timestamps and periodic work.
3191 */
3192void ice_ptp_init(struct ice_pf *pf)
3193{
3194	struct ice_ptp *ptp = &pf->ptp;
3195	struct ice_hw *hw = &pf->hw;
3196	int err;
3197
 
 
3198	ice_ptp_init_phy_model(hw);
3199
3200	ice_ptp_init_tx_interrupt_mode(pf);
3201
3202	/* If this function owns the clock hardware, it must allocate and
3203	 * configure the PTP clock device to represent it.
3204	 */
3205	if (ice_pf_src_tmr_owned(pf)) {
3206		err = ice_ptp_init_owner(pf);
3207		if (err)
3208			goto err;
3209	}
3210
3211	ptp->port.port_num = hw->pf_id;
3212	err = ice_ptp_init_port(pf, &ptp->port);
3213	if (err)
3214		goto err;
3215
3216	/* Start the PHY timestamping block */
3217	ice_ptp_reset_phy_timestamping(pf);
3218
3219	/* Configure initial Tx interrupt settings */
3220	ice_ptp_cfg_tx_interrupt(pf);
3221
3222	set_bit(ICE_FLAG_PTP, pf->flags);
3223	err = ice_ptp_init_work(pf, ptp);
3224	if (err)
3225		goto err;
3226
3227	err = ice_ptp_create_auxbus_device(pf);
 
 
3228	if (err)
3229		goto err;
3230
3231	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3232	return;
3233
3234err:
3235	/* If we registered a PTP clock, release it */
3236	if (pf->ptp.clock) {
3237		ptp_clock_unregister(ptp->clock);
3238		pf->ptp.clock = NULL;
3239	}
3240	clear_bit(ICE_FLAG_PTP, pf->flags);
3241	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3242}
3243
3244/**
3245 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3246 * @pf: Board private structure
3247 *
3248 * This function handles the cleanup work required from the initialization by
3249 * clearing out the important information and unregistering the clock
3250 */
3251void ice_ptp_release(struct ice_pf *pf)
3252{
3253	if (!test_bit(ICE_FLAG_PTP, pf->flags))
3254		return;
3255
 
 
3256	/* Disable timestamping for both Tx and Rx */
3257	ice_ptp_disable_timestamp_mode(pf);
3258
3259	ice_ptp_remove_auxbus_device(pf);
3260
3261	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3262
3263	clear_bit(ICE_FLAG_PTP, pf->flags);
3264
3265	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3266
3267	ice_ptp_port_phy_stop(&pf->ptp.port);
3268	mutex_destroy(&pf->ptp.port.ps_lock);
3269	if (pf->ptp.kworker) {
3270		kthread_destroy_worker(pf->ptp.kworker);
3271		pf->ptp.kworker = NULL;
3272	}
3273
 
 
 
3274	if (!pf->ptp.clock)
3275		return;
3276
3277	/* Disable periodic outputs */
3278	ice_ptp_disable_all_clkout(pf);
3279
3280	ptp_clock_unregister(pf->ptp.clock);
3281	pf->ptp.clock = NULL;
3282
3283	ice_ptp_unregister_auxbus_driver(pf);
3284
3285	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3286}