Loading...
1/*
2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3 */
4#ifndef _ASM_POWERPC_PPC_ASM_H
5#define _ASM_POWERPC_PPC_ASM_H
6
7#include <linux/stringify.h>
8#include <asm/asm-compat.h>
9#include <asm/processor.h>
10#include <asm/ppc-opcode.h>
11#include <asm/firmware.h>
12#include <asm/feature-fixups.h>
13#include <asm/extable.h>
14
15#ifdef __ASSEMBLY__
16
17#define SZL (BITS_PER_LONG/8)
18
19/*
20 * This expands to a sequence of operations with reg incrementing from
21 * start to end inclusive, of this form:
22 *
23 * op reg, (offset + (width * reg))(base)
24 *
25 * Note that offset is not the offset of the first operation unless start
26 * is zero (or width is zero).
27 */
28.macro OP_REGS op, width, start, end, base, offset
29 .Lreg=\start
30 .rept (\end - \start + 1)
31 \op .Lreg, \offset + \width * .Lreg(\base)
32 .Lreg=.Lreg+1
33 .endr
34.endm
35
36/*
37 * This expands to a sequence of register clears for regs start to end
38 * inclusive, of the form:
39 *
40 * li rN, 0
41 */
42.macro ZEROIZE_REGS start, end
43 .Lreg=\start
44 .rept (\end - \start + 1)
45 li .Lreg, 0
46 .Lreg=.Lreg+1
47 .endr
48.endm
49
50/*
51 * Macros for storing registers into and loading registers from
52 * exception frames.
53 */
54#ifdef __powerpc64__
55#define SAVE_GPRS(start, end, base) OP_REGS std, 8, start, end, base, GPR0
56#define REST_GPRS(start, end, base) OP_REGS ld, 8, start, end, base, GPR0
57#define SAVE_NVGPRS(base) SAVE_GPRS(14, 31, base)
58#define REST_NVGPRS(base) REST_GPRS(14, 31, base)
59#else
60#define SAVE_GPRS(start, end, base) OP_REGS stw, 4, start, end, base, GPR0
61#define REST_GPRS(start, end, base) OP_REGS lwz, 4, start, end, base, GPR0
62#define SAVE_NVGPRS(base) SAVE_GPRS(13, 31, base)
63#define REST_NVGPRS(base) REST_GPRS(13, 31, base)
64#endif
65
66#define ZEROIZE_GPRS(start, end) ZEROIZE_REGS start, end
67#ifdef __powerpc64__
68#define ZEROIZE_NVGPRS() ZEROIZE_GPRS(14, 31)
69#else
70#define ZEROIZE_NVGPRS() ZEROIZE_GPRS(13, 31)
71#endif
72#define ZEROIZE_GPR(n) ZEROIZE_GPRS(n, n)
73
74#define SAVE_GPR(n, base) SAVE_GPRS(n, n, base)
75#define REST_GPR(n, base) REST_GPRS(n, n, base)
76
77/* macros for handling user register sanitisation */
78#ifdef CONFIG_INTERRUPT_SANITIZE_REGISTERS
79#define SANITIZE_SYSCALL_GPRS() ZEROIZE_GPR(0); \
80 ZEROIZE_GPRS(5, 12); \
81 ZEROIZE_NVGPRS()
82#define SANITIZE_GPR(n) ZEROIZE_GPR(n)
83#define SANITIZE_GPRS(start, end) ZEROIZE_GPRS(start, end)
84#define SANITIZE_NVGPRS() ZEROIZE_NVGPRS()
85#define SANITIZE_RESTORE_NVGPRS() REST_NVGPRS(r1)
86#define HANDLER_RESTORE_NVGPRS()
87#else
88#define SANITIZE_SYSCALL_GPRS()
89#define SANITIZE_GPR(n)
90#define SANITIZE_GPRS(start, end)
91#define SANITIZE_NVGPRS()
92#define SANITIZE_RESTORE_NVGPRS()
93#define HANDLER_RESTORE_NVGPRS() REST_NVGPRS(r1)
94#endif /* CONFIG_INTERRUPT_SANITIZE_REGISTERS */
95
96#define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base)
97#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
98#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
99#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102#define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base)
103#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
104#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108
109#define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b
110#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115#define REST_VR(n,b,base) li b,16*(n); lvx n,base,b
116#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
117#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121
122#ifdef __BIG_ENDIAN__
123#define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base)
124#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base)
125#else
126#define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \
127 STXVD2X(n,b,base); \
128 XXSWAPD(n,n)
129
130#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \
131 XXSWAPD(n,n)
132#endif
133/* Save the lower 32 VSRs in the thread VSR region */
134#define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b)
135#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
136#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
137#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
138#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
139#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
140#define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
141#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
142#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
143#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
144#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
145#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
146
147/*
148 * b = base register for addressing, o = base offset from register of 1st EVR
149 * n = first EVR, s = scratch
150 */
151#define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
152#define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
153#define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
154#define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
155#define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
156#define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
157#define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
158#define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
159#define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
160#define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
161#define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
162#define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
163
164/* Macros to adjust thread priority for hardware multithreading */
165#define HMT_VERY_LOW or 31,31,31 # very low priority
166#define HMT_LOW or 1,1,1
167#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
168#define HMT_MEDIUM or 2,2,2
169#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
170#define HMT_HIGH or 3,3,3
171#define HMT_EXTRA_HIGH or 7,7,7 # power7 only
172
173#ifdef CONFIG_PPC64
174#define ULONG_SIZE 8
175#else
176#define ULONG_SIZE 4
177#endif
178#define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
179#define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
180
181#ifdef __KERNEL__
182
183/*
184 * Used to name C functions called from asm
185 */
186#ifdef CONFIG_PPC_KERNEL_PCREL
187#define CFUNC(name) name@notoc
188#else
189#define CFUNC(name) name
190#endif
191
192/*
193 * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
194 * version below in the else case of the ifdef.
195 */
196#ifdef __powerpc64__
197
198#define STACKFRAMESIZE 256
199#define __STK_REG(i) (112 + ((i)-14)*8)
200#define STK_REG(i) __STK_REG(__REG_##i)
201
202#ifdef CONFIG_PPC64_ELF_ABI_V2
203#define STK_GOT 24
204#define STK_PARAM_AREA 32
205#else
206#define STK_GOT 40
207#define STK_PARAM_AREA 48
208#endif
209
210#define __STK_PARAM(i) (STK_PARAM_AREA + ((i)-3)*8)
211#define STK_PARAM(i) __STK_PARAM(__REG_##i)
212
213#ifdef CONFIG_PPC64_ELF_ABI_V2
214
215#define _GLOBAL(name) \
216 .align 2 ; \
217 .type name,@function; \
218 .globl name; \
219name:
220
221#ifdef CONFIG_PPC_KERNEL_PCREL
222#define _GLOBAL_TOC _GLOBAL
223#else
224#define _GLOBAL_TOC(name) \
225 .align 2 ; \
226 .type name,@function; \
227 .globl name; \
228name: \
2290: addis r2,r12,(.TOC.-0b)@ha; \
230 addi r2,r2,(.TOC.-0b)@l; \
231 .localentry name,.-name
232#endif
233
234#define DOTSYM(a) a
235
236#else
237
238#define XGLUE(a,b) a##b
239#define GLUE(a,b) XGLUE(a,b)
240
241#define _GLOBAL(name) \
242 .align 2 ; \
243 .globl name; \
244 .globl GLUE(.,name); \
245 .pushsection ".opd","aw"; \
246name: \
247 .quad GLUE(.,name); \
248 .quad .TOC.@tocbase; \
249 .quad 0; \
250 .popsection; \
251 .type GLUE(.,name),@function; \
252GLUE(.,name):
253
254#define _GLOBAL_TOC(name) _GLOBAL(name)
255
256#define DOTSYM(a) GLUE(.,a)
257
258#endif
259
260#else /* 32-bit */
261
262#define _GLOBAL(n) \
263 .globl n; \
264n:
265
266#define _GLOBAL_TOC(name) _GLOBAL(name)
267
268#define DOTSYM(a) a
269
270#endif
271
272/*
273 * __kprobes (the C annotation) puts the symbol into the .kprobes.text
274 * section, which gets emitted at the end of regular text.
275 *
276 * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
277 * a blacklist. The former is for core kprobe functions/data, the
278 * latter is for those that incdentially must be excluded from probing
279 * and allows them to be linked at more optimal location within text.
280 */
281#ifdef CONFIG_KPROBES
282#define _ASM_NOKPROBE_SYMBOL(entry) \
283 .pushsection "_kprobe_blacklist","aw"; \
284 PPC_LONG (entry) ; \
285 .popsection
286#else
287#define _ASM_NOKPROBE_SYMBOL(entry)
288#endif
289
290#define FUNC_START(name) _GLOBAL(name)
291#define FUNC_END(name)
292
293/*
294 * LOAD_REG_IMMEDIATE(rn, expr)
295 * Loads the value of the constant expression 'expr' into register 'rn'
296 * using immediate instructions only. Use this when it's important not
297 * to reference other data (i.e. on ppc64 when the TOC pointer is not
298 * valid) and when 'expr' is a constant or absolute address.
299 *
300 * LOAD_REG_ADDR(rn, name)
301 * Loads the address of label 'name' into register 'rn'. Use this when
302 * you don't particularly need immediate instructions only, but you need
303 * the whole address in one register (e.g. it's a structure address and
304 * you want to access various offsets within it). On ppc32 this is
305 * identical to LOAD_REG_IMMEDIATE.
306 *
307 * LOAD_REG_ADDR_PIC(rn, name)
308 * Loads the address of label 'name' into register 'run'. Use this when
309 * the kernel doesn't run at the linked or relocated address. Please
310 * note that this macro will clobber the lr register.
311 *
312 * LOAD_REG_ADDRBASE(rn, name)
313 * ADDROFF(name)
314 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
315 * register 'rn'. ADDROFF(name) returns the remainder of the address as
316 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
317 * in size, so is suitable for use directly as an offset in load and store
318 * instructions. Use this when loading/storing a single word or less as:
319 * LOAD_REG_ADDRBASE(rX, name)
320 * ld rY,ADDROFF(name)(rX)
321 */
322
323/* Be careful, this will clobber the lr register. */
324#define LOAD_REG_ADDR_PIC(reg, name) \
325 bcl 20,31,$+4; \
3260: mflr reg; \
327 addis reg,reg,(name - 0b)@ha; \
328 addi reg,reg,(name - 0b)@l;
329
330#if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
331#define __AS_ATHIGH high
332#else
333#define __AS_ATHIGH h
334#endif
335
336.macro __LOAD_REG_IMMEDIATE_32 r, x
337 .if (\x) >= 0x8000 || (\x) < -0x8000
338 lis \r, (\x)@__AS_ATHIGH
339 .if (\x) & 0xffff != 0
340 ori \r, \r, (\x)@l
341 .endif
342 .else
343 li \r, (\x)@l
344 .endif
345.endm
346
347.macro __LOAD_REG_IMMEDIATE r, x
348 .if (\x) >= 0x80000000 || (\x) < -0x80000000
349 __LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
350 sldi \r, \r, 32
351 .if (\x) & 0xffff0000 != 0
352 oris \r, \r, (\x)@__AS_ATHIGH
353 .endif
354 .if (\x) & 0xffff != 0
355 ori \r, \r, (\x)@l
356 .endif
357 .else
358 __LOAD_REG_IMMEDIATE_32 \r, \x
359 .endif
360.endm
361
362#ifdef __powerpc64__
363
364#ifdef CONFIG_PPC_KERNEL_PCREL
365#define __LOAD_PACA_TOC(reg) \
366 li reg,-1
367#else
368#define __LOAD_PACA_TOC(reg) \
369 ld reg,PACATOC(r13)
370#endif
371
372#define LOAD_PACA_TOC() \
373 __LOAD_PACA_TOC(r2)
374
375#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
376
377#define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr) \
378 lis tmp, (expr)@highest; \
379 lis reg, (expr)@__AS_ATHIGH; \
380 ori tmp, tmp, (expr)@higher; \
381 ori reg, reg, (expr)@l; \
382 rldimi reg, tmp, 32, 0
383
384#ifdef CONFIG_PPC_KERNEL_PCREL
385#define LOAD_REG_ADDR(reg,name) \
386 pla reg,name@pcrel
387
388#else
389#define LOAD_REG_ADDR(reg,name) \
390 addis reg,r2,name@toc@ha; \
391 addi reg,reg,name@toc@l
392#endif
393
394#ifdef CONFIG_PPC_BOOK3E_64
395/*
396 * This is used in register-constrained interrupt handlers. Not to be used
397 * by BOOK3S. ld complains with "got/toc optimization is not supported" if r2
398 * is not used for the TOC offset, so use @got(tocreg). If the interrupt
399 * handlers saved r2 instead, LOAD_REG_ADDR could be used.
400 */
401#define LOAD_REG_ADDR_ALTTOC(reg,tocreg,name) \
402 ld reg,name@got(tocreg)
403#endif
404
405#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
406#define ADDROFF(name) 0
407
408/* offsets for stack frame layout */
409#define LRSAVE 16
410
411/*
412 * GCC stack frames follow a different pattern on 32 vs 64. This can be used
413 * to make asm frames be consistent with C.
414 */
415#define PPC_CREATE_STACK_FRAME(size) \
416 mflr r0; \
417 std r0,16(r1); \
418 stdu r1,-(size)(r1)
419
420#else /* 32-bit */
421
422#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
423
424#define LOAD_REG_IMMEDIATE_SYM(reg,expr) \
425 lis reg,(expr)@ha; \
426 addi reg,reg,(expr)@l;
427
428#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE_SYM(reg, name)
429
430#define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
431#define ADDROFF(name) name@l
432
433/* offsets for stack frame layout */
434#define LRSAVE 4
435
436#define PPC_CREATE_STACK_FRAME(size) \
437 stwu r1,-(size)(r1); \
438 mflr r0; \
439 stw r0,(size+4)(r1)
440
441#endif
442
443/* various errata or part fixups */
444#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_E500)
445#define MFTB(dest) \
44690: mfspr dest, SPRN_TBRL; \
447BEGIN_FTR_SECTION_NESTED(96); \
448 cmpwi dest,0; \
449 beq- 90b; \
450END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
451#else
452#define MFTB(dest) MFTBL(dest)
453#endif
454
455#ifdef CONFIG_PPC_8xx
456#define MFTBL(dest) mftb dest
457#define MFTBU(dest) mftbu dest
458#else
459#define MFTBL(dest) mfspr dest, SPRN_TBRL
460#define MFTBU(dest) mfspr dest, SPRN_TBRU
461#endif
462
463#ifndef CONFIG_SMP
464#define TLBSYNC
465#else
466#define TLBSYNC tlbsync; sync
467#endif
468
469#ifdef CONFIG_PPC64
470#define MTOCRF(FXM, RS) \
471 BEGIN_FTR_SECTION_NESTED(848); \
472 mtcrf (FXM), RS; \
473 FTR_SECTION_ELSE_NESTED(848); \
474 mtocrf (FXM), RS; \
475 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
476#endif
477
478/*
479 * This instruction is not implemented on the PPC 603 or 601; however, on
480 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
481 * All of these instructions exist in the 8xx, they have magical powers,
482 * and they must be used.
483 */
484
485#if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
486#define tlbia \
487 li r4,1024; \
488 mtctr r4; \
489 lis r4,KERNELBASE@h; \
490 .machine push; \
491 .machine "power4"; \
4920: tlbie r4; \
493 .machine pop; \
494 addi r4,r4,0x1000; \
495 bdnz 0b
496#endif
497
498
499#ifdef CONFIG_IBM440EP_ERR42
500#define PPC440EP_ERR42 isync
501#else
502#define PPC440EP_ERR42
503#endif
504
505/* The following stops all load and store data streams associated with stream
506 * ID (ie. streams created explicitly). The embedded and server mnemonics for
507 * dcbt are different so this must only be used for server.
508 */
509#define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch) \
510 lis scratch,0x60000000@h; \
511 .machine push; \
512 .machine power4; \
513 dcbt 0,scratch,0b01010; \
514 .machine pop;
515
516#define DCBT_SETUP_STREAMS(from, from_parms, to, to_parms, scratch) \
517 lis scratch,0x8000; /* GO=1 */ \
518 clrldi scratch,scratch,32; \
519 .machine push; \
520 .machine power4; \
521 /* setup read stream 0 */ \
522 dcbt 0,from,0b01000; /* addr from */ \
523 dcbt 0,from_parms,0b01010; /* length and depth from */ \
524 /* setup write stream 1 */ \
525 dcbtst 0,to,0b01000; /* addr to */ \
526 dcbtst 0,to_parms,0b01010; /* length and depth to */ \
527 eieio; \
528 dcbt 0,scratch,0b01010; /* all streams GO */ \
529 .machine pop;
530
531/*
532 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
533 * keep the address intact to be compatible with code shared with
534 * 32-bit classic.
535 *
536 * On the other hand, I find it useful to have them behave as expected
537 * by their name (ie always do the addition) on 64-bit BookE
538 */
539#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
540#define toreal(rd)
541#define fromreal(rd)
542
543/*
544 * We use addis to ensure compatibility with the "classic" ppc versions of
545 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
546 * converting the address in r0, and so this version has to do that too
547 * (i.e. set register rd to 0 when rs == 0).
548 */
549#define tophys(rd,rs) \
550 addis rd,rs,0
551
552#define tovirt(rd,rs) \
553 addis rd,rs,0
554
555#elif defined(CONFIG_PPC64)
556#define toreal(rd) /* we can access c000... in real mode */
557#define fromreal(rd)
558
559#define tophys(rd,rs) \
560 clrldi rd,rs,2
561
562#define tovirt(rd,rs) \
563 rotldi rd,rs,16; \
564 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
565 rotldi rd,rd,48
566#else
567#define toreal(rd) tophys(rd,rd)
568#define fromreal(rd) tovirt(rd,rd)
569
570#define tophys(rd, rs) addis rd, rs, -PAGE_OFFSET@h
571#define tovirt(rd, rs) addis rd, rs, PAGE_OFFSET@h
572#endif
573
574#ifdef CONFIG_PPC_BOOK3S_64
575#define MTMSRD(r) mtmsrd r
576#define MTMSR_EERI(reg) mtmsrd reg,1
577#else
578#define MTMSRD(r) mtmsr r
579#define MTMSR_EERI(reg) mtmsr reg
580#endif
581
582#endif /* __KERNEL__ */
583
584/* The boring bits... */
585
586/* Condition Register Bit Fields */
587
588#define cr0 0
589#define cr1 1
590#define cr2 2
591#define cr3 3
592#define cr4 4
593#define cr5 5
594#define cr6 6
595#define cr7 7
596
597
598/*
599 * General Purpose Registers (GPRs)
600 *
601 * The lower case r0-r31 should be used in preference to the upper
602 * case R0-R31 as they provide more error checking in the assembler.
603 * Use R0-31 only when really nessesary.
604 */
605
606#define r0 %r0
607#define r1 %r1
608#define r2 %r2
609#define r3 %r3
610#define r4 %r4
611#define r5 %r5
612#define r6 %r6
613#define r7 %r7
614#define r8 %r8
615#define r9 %r9
616#define r10 %r10
617#define r11 %r11
618#define r12 %r12
619#define r13 %r13
620#define r14 %r14
621#define r15 %r15
622#define r16 %r16
623#define r17 %r17
624#define r18 %r18
625#define r19 %r19
626#define r20 %r20
627#define r21 %r21
628#define r22 %r22
629#define r23 %r23
630#define r24 %r24
631#define r25 %r25
632#define r26 %r26
633#define r27 %r27
634#define r28 %r28
635#define r29 %r29
636#define r30 %r30
637#define r31 %r31
638
639
640/* Floating Point Registers (FPRs) */
641
642#define fr0 0
643#define fr1 1
644#define fr2 2
645#define fr3 3
646#define fr4 4
647#define fr5 5
648#define fr6 6
649#define fr7 7
650#define fr8 8
651#define fr9 9
652#define fr10 10
653#define fr11 11
654#define fr12 12
655#define fr13 13
656#define fr14 14
657#define fr15 15
658#define fr16 16
659#define fr17 17
660#define fr18 18
661#define fr19 19
662#define fr20 20
663#define fr21 21
664#define fr22 22
665#define fr23 23
666#define fr24 24
667#define fr25 25
668#define fr26 26
669#define fr27 27
670#define fr28 28
671#define fr29 29
672#define fr30 30
673#define fr31 31
674
675/* AltiVec Registers (VPRs) */
676
677#define v0 0
678#define v1 1
679#define v2 2
680#define v3 3
681#define v4 4
682#define v5 5
683#define v6 6
684#define v7 7
685#define v8 8
686#define v9 9
687#define v10 10
688#define v11 11
689#define v12 12
690#define v13 13
691#define v14 14
692#define v15 15
693#define v16 16
694#define v17 17
695#define v18 18
696#define v19 19
697#define v20 20
698#define v21 21
699#define v22 22
700#define v23 23
701#define v24 24
702#define v25 25
703#define v26 26
704#define v27 27
705#define v28 28
706#define v29 29
707#define v30 30
708#define v31 31
709
710/* VSX Registers (VSRs) */
711
712#define vs0 0
713#define vs1 1
714#define vs2 2
715#define vs3 3
716#define vs4 4
717#define vs5 5
718#define vs6 6
719#define vs7 7
720#define vs8 8
721#define vs9 9
722#define vs10 10
723#define vs11 11
724#define vs12 12
725#define vs13 13
726#define vs14 14
727#define vs15 15
728#define vs16 16
729#define vs17 17
730#define vs18 18
731#define vs19 19
732#define vs20 20
733#define vs21 21
734#define vs22 22
735#define vs23 23
736#define vs24 24
737#define vs25 25
738#define vs26 26
739#define vs27 27
740#define vs28 28
741#define vs29 29
742#define vs30 30
743#define vs31 31
744#define vs32 32
745#define vs33 33
746#define vs34 34
747#define vs35 35
748#define vs36 36
749#define vs37 37
750#define vs38 38
751#define vs39 39
752#define vs40 40
753#define vs41 41
754#define vs42 42
755#define vs43 43
756#define vs44 44
757#define vs45 45
758#define vs46 46
759#define vs47 47
760#define vs48 48
761#define vs49 49
762#define vs50 50
763#define vs51 51
764#define vs52 52
765#define vs53 53
766#define vs54 54
767#define vs55 55
768#define vs56 56
769#define vs57 57
770#define vs58 58
771#define vs59 59
772#define vs60 60
773#define vs61 61
774#define vs62 62
775#define vs63 63
776
777/* SPE Registers (EVPRs) */
778
779#define evr0 0
780#define evr1 1
781#define evr2 2
782#define evr3 3
783#define evr4 4
784#define evr5 5
785#define evr6 6
786#define evr7 7
787#define evr8 8
788#define evr9 9
789#define evr10 10
790#define evr11 11
791#define evr12 12
792#define evr13 13
793#define evr14 14
794#define evr15 15
795#define evr16 16
796#define evr17 17
797#define evr18 18
798#define evr19 19
799#define evr20 20
800#define evr21 21
801#define evr22 22
802#define evr23 23
803#define evr24 24
804#define evr25 25
805#define evr26 26
806#define evr27 27
807#define evr28 28
808#define evr29 29
809#define evr30 30
810#define evr31 31
811
812#define RFSCV .long 0x4c0000a4
813
814/*
815 * Create an endian fixup trampoline
816 *
817 * This starts with a "tdi 0,0,0x48" instruction which is
818 * essentially a "trap never", and thus akin to a nop.
819 *
820 * The opcode for this instruction read with the wrong endian
821 * however results in a b . + 8
822 *
823 * So essentially we use that trick to execute the following
824 * trampoline in "reverse endian" if we are running with the
825 * MSR_LE bit set the "wrong" way for whatever endianness the
826 * kernel is built for.
827 */
828
829#ifdef CONFIG_PPC_BOOK3E_64
830#define FIXUP_ENDIAN
831#else
832/*
833 * This version may be used in HV or non-HV context.
834 * MSR[EE] must be disabled.
835 */
836#define FIXUP_ENDIAN \
837 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
838 b 191f; /* Skip trampoline if endian is good */ \
839 .long 0xa600607d; /* mfmsr r11 */ \
840 .long 0x01006b69; /* xori r11,r11,1 */ \
841 .long 0x00004039; /* li r10,0 */ \
842 .long 0x6401417d; /* mtmsrd r10,1 */ \
843 .long 0x05009f42; /* bcl 20,31,$+4 */ \
844 .long 0xa602487d; /* mflr r10 */ \
845 .long 0x14004a39; /* addi r10,r10,20 */ \
846 .long 0xa6035a7d; /* mtsrr0 r10 */ \
847 .long 0xa6037b7d; /* mtsrr1 r11 */ \
848 .long 0x2400004c; /* rfid */ \
849191:
850
851/*
852 * This version that may only be used with MSR[HV]=1
853 * - Does not clear MSR[RI], so more robust.
854 * - Slightly smaller and faster.
855 */
856#define FIXUP_ENDIAN_HV \
857 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
858 b 191f; /* Skip trampoline if endian is good */ \
859 .long 0xa600607d; /* mfmsr r11 */ \
860 .long 0x01006b69; /* xori r11,r11,1 */ \
861 .long 0x05009f42; /* bcl 20,31,$+4 */ \
862 .long 0xa602487d; /* mflr r10 */ \
863 .long 0x14004a39; /* addi r10,r10,20 */ \
864 .long 0xa64b5a7d; /* mthsrr0 r10 */ \
865 .long 0xa64b7b7d; /* mthsrr1 r11 */ \
866 .long 0x2402004c; /* hrfid */ \
867191:
868
869#endif /* !CONFIG_PPC_BOOK3E_64 */
870
871#endif /* __ASSEMBLY__ */
872
873#define SOFT_MASK_TABLE(_start, _end) \
874 stringify_in_c(.section __soft_mask_table,"a";)\
875 stringify_in_c(.balign 8;) \
876 stringify_in_c(.llong (_start);) \
877 stringify_in_c(.llong (_end);) \
878 stringify_in_c(.previous)
879
880#define RESTART_TABLE(_start, _end, _target) \
881 stringify_in_c(.section __restart_table,"a";)\
882 stringify_in_c(.balign 8;) \
883 stringify_in_c(.llong (_start);) \
884 stringify_in_c(.llong (_end);) \
885 stringify_in_c(.llong (_target);) \
886 stringify_in_c(.previous)
887
888#ifdef CONFIG_PPC_E500
889#define BTB_FLUSH(reg) \
890 lis reg,BUCSR_INIT@h; \
891 ori reg,reg,BUCSR_INIT@l; \
892 mtspr SPRN_BUCSR,reg; \
893 isync;
894#else
895#define BTB_FLUSH(reg)
896#endif /* CONFIG_PPC_E500 */
897
898#if defined(CONFIG_PPC64_ELF_ABI_V1)
899#define STACK_FRAME_PARAMS 48
900#elif defined(CONFIG_PPC64_ELF_ABI_V2)
901#define STACK_FRAME_PARAMS 32
902#elif defined(CONFIG_PPC32)
903#define STACK_FRAME_PARAMS 8
904#endif
905
906#endif /* _ASM_POWERPC_PPC_ASM_H */
1/*
2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3 */
4#ifndef _ASM_POWERPC_PPC_ASM_H
5#define _ASM_POWERPC_PPC_ASM_H
6
7#include <linux/stringify.h>
8#include <asm/asm-compat.h>
9#include <asm/processor.h>
10#include <asm/ppc-opcode.h>
11#include <asm/firmware.h>
12#include <asm/feature-fixups.h>
13#include <asm/extable.h>
14
15#ifdef __ASSEMBLY__
16
17#define SZL (BITS_PER_LONG/8)
18
19/*
20 * This expands to a sequence of operations with reg incrementing from
21 * start to end inclusive, of this form:
22 *
23 * op reg, (offset + (width * reg))(base)
24 *
25 * Note that offset is not the offset of the first operation unless start
26 * is zero (or width is zero).
27 */
28.macro OP_REGS op, width, start, end, base, offset
29 .Lreg=\start
30 .rept (\end - \start + 1)
31 \op .Lreg, \offset + \width * .Lreg(\base)
32 .Lreg=.Lreg+1
33 .endr
34.endm
35
36/*
37 * This expands to a sequence of register clears for regs start to end
38 * inclusive, of the form:
39 *
40 * li rN, 0
41 */
42.macro ZEROIZE_REGS start, end
43 .Lreg=\start
44 .rept (\end - \start + 1)
45 li .Lreg, 0
46 .Lreg=.Lreg+1
47 .endr
48.endm
49
50/*
51 * Macros for storing registers into and loading registers from
52 * exception frames.
53 */
54#ifdef __powerpc64__
55#define SAVE_GPRS(start, end, base) OP_REGS std, 8, start, end, base, GPR0
56#define REST_GPRS(start, end, base) OP_REGS ld, 8, start, end, base, GPR0
57#define SAVE_NVGPRS(base) SAVE_GPRS(14, 31, base)
58#define REST_NVGPRS(base) REST_GPRS(14, 31, base)
59#else
60#define SAVE_GPRS(start, end, base) OP_REGS stw, 4, start, end, base, GPR0
61#define REST_GPRS(start, end, base) OP_REGS lwz, 4, start, end, base, GPR0
62#define SAVE_NVGPRS(base) SAVE_GPRS(13, 31, base)
63#define REST_NVGPRS(base) REST_GPRS(13, 31, base)
64#endif
65
66#define ZEROIZE_GPRS(start, end) ZEROIZE_REGS start, end
67#ifdef __powerpc64__
68#define ZEROIZE_NVGPRS() ZEROIZE_GPRS(14, 31)
69#else
70#define ZEROIZE_NVGPRS() ZEROIZE_GPRS(13, 31)
71#endif
72#define ZEROIZE_GPR(n) ZEROIZE_GPRS(n, n)
73
74#define SAVE_GPR(n, base) SAVE_GPRS(n, n, base)
75#define REST_GPR(n, base) REST_GPRS(n, n, base)
76
77/* macros for handling user register sanitisation */
78#ifdef CONFIG_INTERRUPT_SANITIZE_REGISTERS
79#define SANITIZE_SYSCALL_GPRS() ZEROIZE_GPR(0); \
80 ZEROIZE_GPRS(5, 12); \
81 ZEROIZE_NVGPRS()
82#define SANITIZE_GPR(n) ZEROIZE_GPR(n)
83#define SANITIZE_GPRS(start, end) ZEROIZE_GPRS(start, end)
84#define SANITIZE_NVGPRS() ZEROIZE_NVGPRS()
85#define SANITIZE_RESTORE_NVGPRS() REST_NVGPRS(r1)
86#define HANDLER_RESTORE_NVGPRS()
87#else
88#define SANITIZE_SYSCALL_GPRS()
89#define SANITIZE_GPR(n)
90#define SANITIZE_GPRS(start, end)
91#define SANITIZE_NVGPRS()
92#define SANITIZE_RESTORE_NVGPRS()
93#define HANDLER_RESTORE_NVGPRS() REST_NVGPRS(r1)
94#endif /* CONFIG_INTERRUPT_SANITIZE_REGISTERS */
95
96#define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base)
97#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
98#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
99#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102#define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base)
103#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
104#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108
109#define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b
110#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115#define REST_VR(n,b,base) li b,16*(n); lvx n,base,b
116#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
117#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121
122#ifdef __BIG_ENDIAN__
123#define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base)
124#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base)
125#else
126#define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \
127 STXVD2X(n,b,base); \
128 XXSWAPD(n,n)
129
130#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \
131 XXSWAPD(n,n)
132#endif
133/* Save the lower 32 VSRs in the thread VSR region */
134#define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b)
135#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
136#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
137#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
138#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
139#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
140#define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
141#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
142#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
143#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
144#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
145#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
146
147/*
148 * b = base register for addressing, o = base offset from register of 1st EVR
149 * n = first EVR, s = scratch
150 */
151#define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
152#define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
153#define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
154#define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
155#define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
156#define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
157#define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
158#define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
159#define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
160#define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
161#define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
162#define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
163
164/* Macros to adjust thread priority for hardware multithreading */
165#define HMT_VERY_LOW or 31,31,31 # very low priority
166#define HMT_LOW or 1,1,1
167#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
168#define HMT_MEDIUM or 2,2,2
169#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
170#define HMT_HIGH or 3,3,3
171#define HMT_EXTRA_HIGH or 7,7,7 # power7 only
172
173#ifdef CONFIG_PPC64
174#define ULONG_SIZE 8
175#else
176#define ULONG_SIZE 4
177#endif
178#define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
179#define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
180
181#ifdef __KERNEL__
182
183/*
184 * Used to name C functions called from asm
185 */
186#ifdef CONFIG_PPC_KERNEL_PCREL
187#define CFUNC(name) name@notoc
188#else
189#define CFUNC(name) name
190#endif
191
192/*
193 * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
194 * version below in the else case of the ifdef.
195 */
196#ifdef __powerpc64__
197
198#define STACKFRAMESIZE 256
199#define __STK_REG(i) (112 + ((i)-14)*8)
200#define STK_REG(i) __STK_REG(__REG_##i)
201
202#ifdef CONFIG_PPC64_ELF_ABI_V2
203#define STK_GOT 24
204#define __STK_PARAM(i) (32 + ((i)-3)*8)
205#else
206#define STK_GOT 40
207#define __STK_PARAM(i) (48 + ((i)-3)*8)
208#endif
209#define STK_PARAM(i) __STK_PARAM(__REG_##i)
210
211#ifdef CONFIG_PPC64_ELF_ABI_V2
212
213#define _GLOBAL(name) \
214 .align 2 ; \
215 .type name,@function; \
216 .globl name; \
217name:
218
219#ifdef CONFIG_PPC_KERNEL_PCREL
220#define _GLOBAL_TOC _GLOBAL
221#else
222#define _GLOBAL_TOC(name) \
223 .align 2 ; \
224 .type name,@function; \
225 .globl name; \
226name: \
2270: addis r2,r12,(.TOC.-0b)@ha; \
228 addi r2,r2,(.TOC.-0b)@l; \
229 .localentry name,.-name
230#endif
231
232#define DOTSYM(a) a
233
234#else
235
236#define XGLUE(a,b) a##b
237#define GLUE(a,b) XGLUE(a,b)
238
239#define _GLOBAL(name) \
240 .align 2 ; \
241 .globl name; \
242 .globl GLUE(.,name); \
243 .pushsection ".opd","aw"; \
244name: \
245 .quad GLUE(.,name); \
246 .quad .TOC.@tocbase; \
247 .quad 0; \
248 .popsection; \
249 .type GLUE(.,name),@function; \
250GLUE(.,name):
251
252#define _GLOBAL_TOC(name) _GLOBAL(name)
253
254#define DOTSYM(a) GLUE(.,a)
255
256#endif
257
258#else /* 32-bit */
259
260#define _GLOBAL(n) \
261 .globl n; \
262n:
263
264#define _GLOBAL_TOC(name) _GLOBAL(name)
265
266#define DOTSYM(a) a
267
268#endif
269
270/*
271 * __kprobes (the C annotation) puts the symbol into the .kprobes.text
272 * section, which gets emitted at the end of regular text.
273 *
274 * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
275 * a blacklist. The former is for core kprobe functions/data, the
276 * latter is for those that incdentially must be excluded from probing
277 * and allows them to be linked at more optimal location within text.
278 */
279#ifdef CONFIG_KPROBES
280#define _ASM_NOKPROBE_SYMBOL(entry) \
281 .pushsection "_kprobe_blacklist","aw"; \
282 PPC_LONG (entry) ; \
283 .popsection
284#else
285#define _ASM_NOKPROBE_SYMBOL(entry)
286#endif
287
288#define FUNC_START(name) _GLOBAL(name)
289#define FUNC_END(name)
290
291/*
292 * LOAD_REG_IMMEDIATE(rn, expr)
293 * Loads the value of the constant expression 'expr' into register 'rn'
294 * using immediate instructions only. Use this when it's important not
295 * to reference other data (i.e. on ppc64 when the TOC pointer is not
296 * valid) and when 'expr' is a constant or absolute address.
297 *
298 * LOAD_REG_ADDR(rn, name)
299 * Loads the address of label 'name' into register 'rn'. Use this when
300 * you don't particularly need immediate instructions only, but you need
301 * the whole address in one register (e.g. it's a structure address and
302 * you want to access various offsets within it). On ppc32 this is
303 * identical to LOAD_REG_IMMEDIATE.
304 *
305 * LOAD_REG_ADDR_PIC(rn, name)
306 * Loads the address of label 'name' into register 'run'. Use this when
307 * the kernel doesn't run at the linked or relocated address. Please
308 * note that this macro will clobber the lr register.
309 *
310 * LOAD_REG_ADDRBASE(rn, name)
311 * ADDROFF(name)
312 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
313 * register 'rn'. ADDROFF(name) returns the remainder of the address as
314 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
315 * in size, so is suitable for use directly as an offset in load and store
316 * instructions. Use this when loading/storing a single word or less as:
317 * LOAD_REG_ADDRBASE(rX, name)
318 * ld rY,ADDROFF(name)(rX)
319 */
320
321/* Be careful, this will clobber the lr register. */
322#define LOAD_REG_ADDR_PIC(reg, name) \
323 bcl 20,31,$+4; \
3240: mflr reg; \
325 addis reg,reg,(name - 0b)@ha; \
326 addi reg,reg,(name - 0b)@l;
327
328#if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
329#define __AS_ATHIGH high
330#else
331#define __AS_ATHIGH h
332#endif
333
334.macro __LOAD_REG_IMMEDIATE_32 r, x
335 .if (\x) >= 0x8000 || (\x) < -0x8000
336 lis \r, (\x)@__AS_ATHIGH
337 .if (\x) & 0xffff != 0
338 ori \r, \r, (\x)@l
339 .endif
340 .else
341 li \r, (\x)@l
342 .endif
343.endm
344
345.macro __LOAD_REG_IMMEDIATE r, x
346 .if (\x) >= 0x80000000 || (\x) < -0x80000000
347 __LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
348 sldi \r, \r, 32
349 .if (\x) & 0xffff0000 != 0
350 oris \r, \r, (\x)@__AS_ATHIGH
351 .endif
352 .if (\x) & 0xffff != 0
353 ori \r, \r, (\x)@l
354 .endif
355 .else
356 __LOAD_REG_IMMEDIATE_32 \r, \x
357 .endif
358.endm
359
360#ifdef __powerpc64__
361
362#ifdef CONFIG_PPC_KERNEL_PCREL
363#define __LOAD_PACA_TOC(reg) \
364 li reg,-1
365#else
366#define __LOAD_PACA_TOC(reg) \
367 ld reg,PACATOC(r13)
368#endif
369
370#define LOAD_PACA_TOC() \
371 __LOAD_PACA_TOC(r2)
372
373#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
374
375#define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr) \
376 lis tmp, (expr)@highest; \
377 lis reg, (expr)@__AS_ATHIGH; \
378 ori tmp, tmp, (expr)@higher; \
379 ori reg, reg, (expr)@l; \
380 rldimi reg, tmp, 32, 0
381
382#ifdef CONFIG_PPC_KERNEL_PCREL
383#define LOAD_REG_ADDR(reg,name) \
384 pla reg,name@pcrel
385
386#else
387#define LOAD_REG_ADDR(reg,name) \
388 addis reg,r2,name@toc@ha; \
389 addi reg,reg,name@toc@l
390#endif
391
392#ifdef CONFIG_PPC_BOOK3E_64
393/*
394 * This is used in register-constrained interrupt handlers. Not to be used
395 * by BOOK3S. ld complains with "got/toc optimization is not supported" if r2
396 * is not used for the TOC offset, so use @got(tocreg). If the interrupt
397 * handlers saved r2 instead, LOAD_REG_ADDR could be used.
398 */
399#define LOAD_REG_ADDR_ALTTOC(reg,tocreg,name) \
400 ld reg,name@got(tocreg)
401#endif
402
403#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
404#define ADDROFF(name) 0
405
406/* offsets for stack frame layout */
407#define LRSAVE 16
408
409/*
410 * GCC stack frames follow a different pattern on 32 vs 64. This can be used
411 * to make asm frames be consistent with C.
412 */
413#define PPC_CREATE_STACK_FRAME(size) \
414 mflr r0; \
415 std r0,16(r1); \
416 stdu r1,-(size)(r1)
417
418#else /* 32-bit */
419
420#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
421
422#define LOAD_REG_IMMEDIATE_SYM(reg,expr) \
423 lis reg,(expr)@ha; \
424 addi reg,reg,(expr)@l;
425
426#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE_SYM(reg, name)
427
428#define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
429#define ADDROFF(name) name@l
430
431/* offsets for stack frame layout */
432#define LRSAVE 4
433
434#define PPC_CREATE_STACK_FRAME(size) \
435 stwu r1,-(size)(r1); \
436 mflr r0; \
437 stw r0,(size+4)(r1)
438
439#endif
440
441/* various errata or part fixups */
442#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_E500)
443#define MFTB(dest) \
44490: mfspr dest, SPRN_TBRL; \
445BEGIN_FTR_SECTION_NESTED(96); \
446 cmpwi dest,0; \
447 beq- 90b; \
448END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
449#else
450#define MFTB(dest) MFTBL(dest)
451#endif
452
453#ifdef CONFIG_PPC_8xx
454#define MFTBL(dest) mftb dest
455#define MFTBU(dest) mftbu dest
456#else
457#define MFTBL(dest) mfspr dest, SPRN_TBRL
458#define MFTBU(dest) mfspr dest, SPRN_TBRU
459#endif
460
461#ifndef CONFIG_SMP
462#define TLBSYNC
463#else
464#define TLBSYNC tlbsync; sync
465#endif
466
467#ifdef CONFIG_PPC64
468#define MTOCRF(FXM, RS) \
469 BEGIN_FTR_SECTION_NESTED(848); \
470 mtcrf (FXM), RS; \
471 FTR_SECTION_ELSE_NESTED(848); \
472 mtocrf (FXM), RS; \
473 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
474#endif
475
476/*
477 * This instruction is not implemented on the PPC 603 or 601; however, on
478 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
479 * All of these instructions exist in the 8xx, they have magical powers,
480 * and they must be used.
481 */
482
483#if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
484#define tlbia \
485 li r4,1024; \
486 mtctr r4; \
487 lis r4,KERNELBASE@h; \
488 .machine push; \
489 .machine "power4"; \
4900: tlbie r4; \
491 .machine pop; \
492 addi r4,r4,0x1000; \
493 bdnz 0b
494#endif
495
496
497#ifdef CONFIG_IBM440EP_ERR42
498#define PPC440EP_ERR42 isync
499#else
500#define PPC440EP_ERR42
501#endif
502
503/* The following stops all load and store data streams associated with stream
504 * ID (ie. streams created explicitly). The embedded and server mnemonics for
505 * dcbt are different so this must only be used for server.
506 */
507#define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch) \
508 lis scratch,0x60000000@h; \
509 dcbt 0,scratch,0b01010
510
511/*
512 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
513 * keep the address intact to be compatible with code shared with
514 * 32-bit classic.
515 *
516 * On the other hand, I find it useful to have them behave as expected
517 * by their name (ie always do the addition) on 64-bit BookE
518 */
519#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
520#define toreal(rd)
521#define fromreal(rd)
522
523/*
524 * We use addis to ensure compatibility with the "classic" ppc versions of
525 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
526 * converting the address in r0, and so this version has to do that too
527 * (i.e. set register rd to 0 when rs == 0).
528 */
529#define tophys(rd,rs) \
530 addis rd,rs,0
531
532#define tovirt(rd,rs) \
533 addis rd,rs,0
534
535#elif defined(CONFIG_PPC64)
536#define toreal(rd) /* we can access c000... in real mode */
537#define fromreal(rd)
538
539#define tophys(rd,rs) \
540 clrldi rd,rs,2
541
542#define tovirt(rd,rs) \
543 rotldi rd,rs,16; \
544 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
545 rotldi rd,rd,48
546#else
547#define toreal(rd) tophys(rd,rd)
548#define fromreal(rd) tovirt(rd,rd)
549
550#define tophys(rd, rs) addis rd, rs, -PAGE_OFFSET@h
551#define tovirt(rd, rs) addis rd, rs, PAGE_OFFSET@h
552#endif
553
554#ifdef CONFIG_PPC_BOOK3S_64
555#define MTMSRD(r) mtmsrd r
556#define MTMSR_EERI(reg) mtmsrd reg,1
557#else
558#define MTMSRD(r) mtmsr r
559#define MTMSR_EERI(reg) mtmsr reg
560#endif
561
562#endif /* __KERNEL__ */
563
564/* The boring bits... */
565
566/* Condition Register Bit Fields */
567
568#define cr0 0
569#define cr1 1
570#define cr2 2
571#define cr3 3
572#define cr4 4
573#define cr5 5
574#define cr6 6
575#define cr7 7
576
577
578/*
579 * General Purpose Registers (GPRs)
580 *
581 * The lower case r0-r31 should be used in preference to the upper
582 * case R0-R31 as they provide more error checking in the assembler.
583 * Use R0-31 only when really nessesary.
584 */
585
586#define r0 %r0
587#define r1 %r1
588#define r2 %r2
589#define r3 %r3
590#define r4 %r4
591#define r5 %r5
592#define r6 %r6
593#define r7 %r7
594#define r8 %r8
595#define r9 %r9
596#define r10 %r10
597#define r11 %r11
598#define r12 %r12
599#define r13 %r13
600#define r14 %r14
601#define r15 %r15
602#define r16 %r16
603#define r17 %r17
604#define r18 %r18
605#define r19 %r19
606#define r20 %r20
607#define r21 %r21
608#define r22 %r22
609#define r23 %r23
610#define r24 %r24
611#define r25 %r25
612#define r26 %r26
613#define r27 %r27
614#define r28 %r28
615#define r29 %r29
616#define r30 %r30
617#define r31 %r31
618
619
620/* Floating Point Registers (FPRs) */
621
622#define fr0 0
623#define fr1 1
624#define fr2 2
625#define fr3 3
626#define fr4 4
627#define fr5 5
628#define fr6 6
629#define fr7 7
630#define fr8 8
631#define fr9 9
632#define fr10 10
633#define fr11 11
634#define fr12 12
635#define fr13 13
636#define fr14 14
637#define fr15 15
638#define fr16 16
639#define fr17 17
640#define fr18 18
641#define fr19 19
642#define fr20 20
643#define fr21 21
644#define fr22 22
645#define fr23 23
646#define fr24 24
647#define fr25 25
648#define fr26 26
649#define fr27 27
650#define fr28 28
651#define fr29 29
652#define fr30 30
653#define fr31 31
654
655/* AltiVec Registers (VPRs) */
656
657#define v0 0
658#define v1 1
659#define v2 2
660#define v3 3
661#define v4 4
662#define v5 5
663#define v6 6
664#define v7 7
665#define v8 8
666#define v9 9
667#define v10 10
668#define v11 11
669#define v12 12
670#define v13 13
671#define v14 14
672#define v15 15
673#define v16 16
674#define v17 17
675#define v18 18
676#define v19 19
677#define v20 20
678#define v21 21
679#define v22 22
680#define v23 23
681#define v24 24
682#define v25 25
683#define v26 26
684#define v27 27
685#define v28 28
686#define v29 29
687#define v30 30
688#define v31 31
689
690/* VSX Registers (VSRs) */
691
692#define vs0 0
693#define vs1 1
694#define vs2 2
695#define vs3 3
696#define vs4 4
697#define vs5 5
698#define vs6 6
699#define vs7 7
700#define vs8 8
701#define vs9 9
702#define vs10 10
703#define vs11 11
704#define vs12 12
705#define vs13 13
706#define vs14 14
707#define vs15 15
708#define vs16 16
709#define vs17 17
710#define vs18 18
711#define vs19 19
712#define vs20 20
713#define vs21 21
714#define vs22 22
715#define vs23 23
716#define vs24 24
717#define vs25 25
718#define vs26 26
719#define vs27 27
720#define vs28 28
721#define vs29 29
722#define vs30 30
723#define vs31 31
724#define vs32 32
725#define vs33 33
726#define vs34 34
727#define vs35 35
728#define vs36 36
729#define vs37 37
730#define vs38 38
731#define vs39 39
732#define vs40 40
733#define vs41 41
734#define vs42 42
735#define vs43 43
736#define vs44 44
737#define vs45 45
738#define vs46 46
739#define vs47 47
740#define vs48 48
741#define vs49 49
742#define vs50 50
743#define vs51 51
744#define vs52 52
745#define vs53 53
746#define vs54 54
747#define vs55 55
748#define vs56 56
749#define vs57 57
750#define vs58 58
751#define vs59 59
752#define vs60 60
753#define vs61 61
754#define vs62 62
755#define vs63 63
756
757/* SPE Registers (EVPRs) */
758
759#define evr0 0
760#define evr1 1
761#define evr2 2
762#define evr3 3
763#define evr4 4
764#define evr5 5
765#define evr6 6
766#define evr7 7
767#define evr8 8
768#define evr9 9
769#define evr10 10
770#define evr11 11
771#define evr12 12
772#define evr13 13
773#define evr14 14
774#define evr15 15
775#define evr16 16
776#define evr17 17
777#define evr18 18
778#define evr19 19
779#define evr20 20
780#define evr21 21
781#define evr22 22
782#define evr23 23
783#define evr24 24
784#define evr25 25
785#define evr26 26
786#define evr27 27
787#define evr28 28
788#define evr29 29
789#define evr30 30
790#define evr31 31
791
792#define RFSCV .long 0x4c0000a4
793
794/*
795 * Create an endian fixup trampoline
796 *
797 * This starts with a "tdi 0,0,0x48" instruction which is
798 * essentially a "trap never", and thus akin to a nop.
799 *
800 * The opcode for this instruction read with the wrong endian
801 * however results in a b . + 8
802 *
803 * So essentially we use that trick to execute the following
804 * trampoline in "reverse endian" if we are running with the
805 * MSR_LE bit set the "wrong" way for whatever endianness the
806 * kernel is built for.
807 */
808
809#ifdef CONFIG_PPC_BOOK3E_64
810#define FIXUP_ENDIAN
811#else
812/*
813 * This version may be used in HV or non-HV context.
814 * MSR[EE] must be disabled.
815 */
816#define FIXUP_ENDIAN \
817 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
818 b 191f; /* Skip trampoline if endian is good */ \
819 .long 0xa600607d; /* mfmsr r11 */ \
820 .long 0x01006b69; /* xori r11,r11,1 */ \
821 .long 0x00004039; /* li r10,0 */ \
822 .long 0x6401417d; /* mtmsrd r10,1 */ \
823 .long 0x05009f42; /* bcl 20,31,$+4 */ \
824 .long 0xa602487d; /* mflr r10 */ \
825 .long 0x14004a39; /* addi r10,r10,20 */ \
826 .long 0xa6035a7d; /* mtsrr0 r10 */ \
827 .long 0xa6037b7d; /* mtsrr1 r11 */ \
828 .long 0x2400004c; /* rfid */ \
829191:
830
831/*
832 * This version that may only be used with MSR[HV]=1
833 * - Does not clear MSR[RI], so more robust.
834 * - Slightly smaller and faster.
835 */
836#define FIXUP_ENDIAN_HV \
837 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
838 b 191f; /* Skip trampoline if endian is good */ \
839 .long 0xa600607d; /* mfmsr r11 */ \
840 .long 0x01006b69; /* xori r11,r11,1 */ \
841 .long 0x05009f42; /* bcl 20,31,$+4 */ \
842 .long 0xa602487d; /* mflr r10 */ \
843 .long 0x14004a39; /* addi r10,r10,20 */ \
844 .long 0xa64b5a7d; /* mthsrr0 r10 */ \
845 .long 0xa64b7b7d; /* mthsrr1 r11 */ \
846 .long 0x2402004c; /* hrfid */ \
847191:
848
849#endif /* !CONFIG_PPC_BOOK3E_64 */
850
851#endif /* __ASSEMBLY__ */
852
853#define SOFT_MASK_TABLE(_start, _end) \
854 stringify_in_c(.section __soft_mask_table,"a";)\
855 stringify_in_c(.balign 8;) \
856 stringify_in_c(.llong (_start);) \
857 stringify_in_c(.llong (_end);) \
858 stringify_in_c(.previous)
859
860#define RESTART_TABLE(_start, _end, _target) \
861 stringify_in_c(.section __restart_table,"a";)\
862 stringify_in_c(.balign 8;) \
863 stringify_in_c(.llong (_start);) \
864 stringify_in_c(.llong (_end);) \
865 stringify_in_c(.llong (_target);) \
866 stringify_in_c(.previous)
867
868#ifdef CONFIG_PPC_E500
869#define BTB_FLUSH(reg) \
870 lis reg,BUCSR_INIT@h; \
871 ori reg,reg,BUCSR_INIT@l; \
872 mtspr SPRN_BUCSR,reg; \
873 isync;
874#else
875#define BTB_FLUSH(reg)
876#endif /* CONFIG_PPC_E500 */
877
878#if defined(CONFIG_PPC64_ELF_ABI_V1)
879#define STACK_FRAME_PARAMS 48
880#elif defined(CONFIG_PPC64_ELF_ABI_V2)
881#define STACK_FRAME_PARAMS 32
882#elif defined(CONFIG_PPC32)
883#define STACK_FRAME_PARAMS 8
884#endif
885
886#endif /* _ASM_POWERPC_PPC_ASM_H */