Linux Audio

Check our new training course

Loading...
v6.9.4
  1/*
  2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
  3 */
  4#ifndef _ASM_POWERPC_PPC_ASM_H
  5#define _ASM_POWERPC_PPC_ASM_H
  6
  7#include <linux/stringify.h>
  8#include <asm/asm-compat.h>
  9#include <asm/processor.h>
 10#include <asm/ppc-opcode.h>
 11#include <asm/firmware.h>
 12#include <asm/feature-fixups.h>
 13#include <asm/extable.h>
 14
 15#ifdef __ASSEMBLY__
 16
 17#define SZL			(BITS_PER_LONG/8)
 18
 19/*
 20 * This expands to a sequence of operations with reg incrementing from
 21 * start to end inclusive, of this form:
 22 *
 23 *   op  reg, (offset + (width * reg))(base)
 24 *
 25 * Note that offset is not the offset of the first operation unless start
 26 * is zero (or width is zero).
 27 */
 28.macro OP_REGS op, width, start, end, base, offset
 29	.Lreg=\start
 30	.rept (\end - \start + 1)
 31	\op	.Lreg, \offset + \width * .Lreg(\base)
 32	.Lreg=.Lreg+1
 33	.endr
 34.endm
 35
 36/*
 37 * This expands to a sequence of register clears for regs start to end
 38 * inclusive, of the form:
 39 *
 40 *   li rN, 0
 41 */
 42.macro ZEROIZE_REGS start, end
 43	.Lreg=\start
 44	.rept (\end - \start + 1)
 45	li	.Lreg, 0
 46	.Lreg=.Lreg+1
 47	.endr
 48.endm
 49
 50/*
 51 * Macros for storing registers into and loading registers from
 52 * exception frames.
 53 */
 54#ifdef __powerpc64__
 55#define SAVE_GPRS(start, end, base)	OP_REGS std, 8, start, end, base, GPR0
 56#define REST_GPRS(start, end, base)	OP_REGS ld, 8, start, end, base, GPR0
 57#define SAVE_NVGPRS(base)		SAVE_GPRS(14, 31, base)
 58#define REST_NVGPRS(base)		REST_GPRS(14, 31, base)
 59#else
 60#define SAVE_GPRS(start, end, base)	OP_REGS stw, 4, start, end, base, GPR0
 61#define REST_GPRS(start, end, base)	OP_REGS lwz, 4, start, end, base, GPR0
 62#define SAVE_NVGPRS(base)		SAVE_GPRS(13, 31, base)
 63#define REST_NVGPRS(base)		REST_GPRS(13, 31, base)
 64#endif
 65
 66#define	ZEROIZE_GPRS(start, end)	ZEROIZE_REGS start, end
 67#ifdef __powerpc64__
 68#define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(14, 31)
 69#else
 70#define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(13, 31)
 71#endif
 72#define	ZEROIZE_GPR(n)			ZEROIZE_GPRS(n, n)
 73
 74#define SAVE_GPR(n, base)		SAVE_GPRS(n, n, base)
 75#define REST_GPR(n, base)		REST_GPRS(n, n, base)
 76
 77/* macros for handling user register sanitisation */
 78#ifdef CONFIG_INTERRUPT_SANITIZE_REGISTERS
 79#define SANITIZE_SYSCALL_GPRS()			ZEROIZE_GPR(0);		\
 80						ZEROIZE_GPRS(5, 12);	\
 81						ZEROIZE_NVGPRS()
 82#define SANITIZE_GPR(n)				ZEROIZE_GPR(n)
 83#define SANITIZE_GPRS(start, end)		ZEROIZE_GPRS(start, end)
 84#define SANITIZE_NVGPRS()			ZEROIZE_NVGPRS()
 85#define SANITIZE_RESTORE_NVGPRS()		REST_NVGPRS(r1)
 86#define HANDLER_RESTORE_NVGPRS()
 87#else
 88#define SANITIZE_SYSCALL_GPRS()
 89#define SANITIZE_GPR(n)
 90#define SANITIZE_GPRS(start, end)
 91#define SANITIZE_NVGPRS()
 92#define SANITIZE_RESTORE_NVGPRS()
 93#define HANDLER_RESTORE_NVGPRS()		REST_NVGPRS(r1)
 94#endif /* CONFIG_INTERRUPT_SANITIZE_REGISTERS */
 95
 96#define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
 97#define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
 98#define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
 99#define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100#define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101#define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102#define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
103#define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
104#define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105#define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106#define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107#define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108
109#define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
110#define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111#define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112#define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113#define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114#define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115#define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
116#define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
117#define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118#define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119#define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120#define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121
122#ifdef __BIG_ENDIAN__
123#define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
124#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
125#else
126#define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
127					STXVD2X(n,b,base);	\
128					XXSWAPD(n,n)
129
130#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
131					XXSWAPD(n,n)
132#endif
133/* Save the lower 32 VSRs in the thread VSR region */
134#define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
135#define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
136#define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
137#define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
138#define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
139#define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
140#define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
141#define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
142#define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
143#define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
144#define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
145#define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
146
147/*
148 * b = base register for addressing, o = base offset from register of 1st EVR
149 * n = first EVR, s = scratch
150 */
151#define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
152#define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
153#define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
154#define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
155#define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
156#define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
157#define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
158#define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
159#define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
160#define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
161#define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
162#define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
163
164/* Macros to adjust thread priority for hardware multithreading */
165#define HMT_VERY_LOW	or	31,31,31	# very low priority
166#define HMT_LOW		or	1,1,1
167#define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
168#define HMT_MEDIUM	or	2,2,2
169#define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
170#define HMT_HIGH	or	3,3,3
171#define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
172
173#ifdef CONFIG_PPC64
174#define ULONG_SIZE 	8
175#else
176#define ULONG_SIZE	4
177#endif
178#define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
179#define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
180
181#ifdef __KERNEL__
182
183/*
184 * Used to name C functions called from asm
185 */
186#ifdef CONFIG_PPC_KERNEL_PCREL
187#define CFUNC(name) name@notoc
188#else
189#define CFUNC(name) name
190#endif
191
192/*
193 * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
194 * version below in the else case of the ifdef.
195 */
196#ifdef __powerpc64__
197
198#define STACKFRAMESIZE 256
199#define __STK_REG(i)   (112 + ((i)-14)*8)
200#define STK_REG(i)     __STK_REG(__REG_##i)
201
202#ifdef CONFIG_PPC64_ELF_ABI_V2
203#define STK_GOT		24
204#define STK_PARAM_AREA	32
205#else
206#define STK_GOT		40
207#define STK_PARAM_AREA	48
208#endif
209
210#define __STK_PARAM(i)	(STK_PARAM_AREA + ((i)-3)*8)
211#define STK_PARAM(i)	__STK_PARAM(__REG_##i)
212
213#ifdef CONFIG_PPC64_ELF_ABI_V2
214
215#define _GLOBAL(name) \
216	.align 2 ; \
217	.type name,@function; \
218	.globl name; \
219name:
220
221#ifdef CONFIG_PPC_KERNEL_PCREL
222#define _GLOBAL_TOC _GLOBAL
223#else
224#define _GLOBAL_TOC(name) \
225	.align 2 ; \
226	.type name,@function; \
227	.globl name; \
228name: \
2290:	addis r2,r12,(.TOC.-0b)@ha; \
230	addi r2,r2,(.TOC.-0b)@l; \
231	.localentry name,.-name
232#endif
233
234#define DOTSYM(a)	a
235
236#else
237
238#define XGLUE(a,b) a##b
239#define GLUE(a,b) XGLUE(a,b)
240
241#define _GLOBAL(name) \
242	.align 2 ; \
243	.globl name; \
244	.globl GLUE(.,name); \
245	.pushsection ".opd","aw"; \
246name: \
247	.quad GLUE(.,name); \
248	.quad .TOC.@tocbase; \
249	.quad 0; \
250	.popsection; \
251	.type GLUE(.,name),@function; \
252GLUE(.,name):
253
254#define _GLOBAL_TOC(name) _GLOBAL(name)
255
256#define DOTSYM(a)	GLUE(.,a)
257
258#endif
259
260#else /* 32-bit */
261
262#define _GLOBAL(n)	\
263	.globl n;	\
264n:
265
266#define _GLOBAL_TOC(name) _GLOBAL(name)
267
268#define DOTSYM(a)	a
269
270#endif
271
272/*
273 * __kprobes (the C annotation) puts the symbol into the .kprobes.text
274 * section, which gets emitted at the end of regular text.
275 *
276 * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
277 * a blacklist. The former is for core kprobe functions/data, the
278 * latter is for those that incdentially must be excluded from probing
279 * and allows them to be linked at more optimal location within text.
280 */
281#ifdef CONFIG_KPROBES
282#define _ASM_NOKPROBE_SYMBOL(entry)			\
283	.pushsection "_kprobe_blacklist","aw";		\
284	PPC_LONG (entry) ;				\
285	.popsection
286#else
287#define _ASM_NOKPROBE_SYMBOL(entry)
288#endif
289
290#define FUNC_START(name)	_GLOBAL(name)
291#define FUNC_END(name)
292
293/* 
294 * LOAD_REG_IMMEDIATE(rn, expr)
295 *   Loads the value of the constant expression 'expr' into register 'rn'
296 *   using immediate instructions only.  Use this when it's important not
297 *   to reference other data (i.e. on ppc64 when the TOC pointer is not
298 *   valid) and when 'expr' is a constant or absolute address.
299 *
300 * LOAD_REG_ADDR(rn, name)
301 *   Loads the address of label 'name' into register 'rn'.  Use this when
302 *   you don't particularly need immediate instructions only, but you need
303 *   the whole address in one register (e.g. it's a structure address and
304 *   you want to access various offsets within it).  On ppc32 this is
305 *   identical to LOAD_REG_IMMEDIATE.
306 *
307 * LOAD_REG_ADDR_PIC(rn, name)
308 *   Loads the address of label 'name' into register 'run'. Use this when
309 *   the kernel doesn't run at the linked or relocated address. Please
310 *   note that this macro will clobber the lr register.
311 *
312 * LOAD_REG_ADDRBASE(rn, name)
313 * ADDROFF(name)
314 *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
315 *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
316 *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
317 *   in size, so is suitable for use directly as an offset in load and store
318 *   instructions.  Use this when loading/storing a single word or less as:
319 *      LOAD_REG_ADDRBASE(rX, name)
320 *      ld	rY,ADDROFF(name)(rX)
321 */
322
323/* Be careful, this will clobber the lr register. */
324#define LOAD_REG_ADDR_PIC(reg, name)		\
325	bcl	20,31,$+4;			\
3260:	mflr	reg;				\
327	addis	reg,reg,(name - 0b)@ha;		\
328	addi	reg,reg,(name - 0b)@l;
329
330#if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
331#define __AS_ATHIGH high
332#else
333#define __AS_ATHIGH h
334#endif
335
336.macro __LOAD_REG_IMMEDIATE_32 r, x
337	.if (\x) >= 0x8000 || (\x) < -0x8000
338		lis \r, (\x)@__AS_ATHIGH
339		.if (\x) & 0xffff != 0
340			ori \r, \r, (\x)@l
341		.endif
342	.else
343		li \r, (\x)@l
344	.endif
345.endm
346
347.macro __LOAD_REG_IMMEDIATE r, x
348	.if (\x) >= 0x80000000 || (\x) < -0x80000000
349		__LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
350		sldi	\r, \r, 32
351		.if (\x) & 0xffff0000 != 0
352			oris \r, \r, (\x)@__AS_ATHIGH
353		.endif
354		.if (\x) & 0xffff != 0
355			ori \r, \r, (\x)@l
356		.endif
357	.else
358		__LOAD_REG_IMMEDIATE_32 \r, \x
359	.endif
360.endm
361
362#ifdef __powerpc64__
363
364#ifdef CONFIG_PPC_KERNEL_PCREL
365#define __LOAD_PACA_TOC(reg)			\
366	li	reg,-1
367#else
368#define __LOAD_PACA_TOC(reg)			\
369	ld	reg,PACATOC(r13)
370#endif
371
372#define LOAD_PACA_TOC()				\
373	__LOAD_PACA_TOC(r2)
374
375#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
376
377#define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr)	\
378	lis	tmp, (expr)@highest;		\
379	lis	reg, (expr)@__AS_ATHIGH;	\
380	ori	tmp, tmp, (expr)@higher;	\
381	ori	reg, reg, (expr)@l;		\
382	rldimi	reg, tmp, 32, 0
383
384#ifdef CONFIG_PPC_KERNEL_PCREL
385#define LOAD_REG_ADDR(reg,name)			\
386	pla	reg,name@pcrel
387
388#else
389#define LOAD_REG_ADDR(reg,name)			\
390	addis	reg,r2,name@toc@ha;		\
391	addi	reg,reg,name@toc@l
392#endif
393
394#ifdef CONFIG_PPC_BOOK3E_64
395/*
396 * This is used in register-constrained interrupt handlers. Not to be used
397 * by BOOK3S. ld complains with "got/toc optimization is not supported" if r2
398 * is not used for the TOC offset, so use @got(tocreg). If the interrupt
399 * handlers saved r2 instead, LOAD_REG_ADDR could be used.
400 */
401#define LOAD_REG_ADDR_ALTTOC(reg,tocreg,name)	\
402	ld	reg,name@got(tocreg)
403#endif
404
405#define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
406#define ADDROFF(name)			0
407
408/* offsets for stack frame layout */
409#define LRSAVE	16
410
411/*
412 * GCC stack frames follow a different pattern on 32 vs 64. This can be used
413 * to make asm frames be consistent with C.
414 */
415#define PPC_CREATE_STACK_FRAME(size)			\
416	mflr		r0;				\
417	std		r0,16(r1);			\
418	stdu		r1,-(size)(r1)
419
420#else /* 32-bit */
421
422#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
423
424#define LOAD_REG_IMMEDIATE_SYM(reg,expr)		\
425	lis	reg,(expr)@ha;		\
426	addi	reg,reg,(expr)@l;
427
428#define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE_SYM(reg, name)
429
430#define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
431#define ADDROFF(name)			name@l
432
433/* offsets for stack frame layout */
434#define LRSAVE	4
435
436#define PPC_CREATE_STACK_FRAME(size)			\
437	stwu		r1,-(size)(r1);			\
438	mflr		r0;				\
439	stw		r0,(size+4)(r1)
440
441#endif
442
443/* various errata or part fixups */
444#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_E500)
445#define MFTB(dest)			\
44690:	mfspr dest, SPRN_TBRL;		\
447BEGIN_FTR_SECTION_NESTED(96);		\
448	cmpwi dest,0;			\
449	beq-  90b;			\
450END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
451#else
452#define MFTB(dest)			MFTBL(dest)
453#endif
454
455#ifdef CONFIG_PPC_8xx
456#define MFTBL(dest)			mftb dest
457#define MFTBU(dest)			mftbu dest
458#else
459#define MFTBL(dest)			mfspr dest, SPRN_TBRL
460#define MFTBU(dest)			mfspr dest, SPRN_TBRU
461#endif
462
463#ifndef CONFIG_SMP
464#define TLBSYNC
465#else
466#define TLBSYNC		tlbsync; sync
467#endif
468
469#ifdef CONFIG_PPC64
470#define MTOCRF(FXM, RS)			\
471	BEGIN_FTR_SECTION_NESTED(848);	\
472	mtcrf	(FXM), RS;		\
473	FTR_SECTION_ELSE_NESTED(848);	\
474	mtocrf (FXM), RS;		\
475	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
476#endif
477
478/*
479 * This instruction is not implemented on the PPC 603 or 601; however, on
480 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
481 * All of these instructions exist in the 8xx, they have magical powers,
482 * and they must be used.
483 */
484
485#if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
486#define tlbia					\
487	li	r4,1024;			\
488	mtctr	r4;				\
489	lis	r4,KERNELBASE@h;		\
490	.machine push;				\
491	.machine "power4";			\
4920:	tlbie	r4;				\
493	.machine pop;				\
494	addi	r4,r4,0x1000;			\
495	bdnz	0b
496#endif
497
498
499#ifdef CONFIG_IBM440EP_ERR42
500#define PPC440EP_ERR42 isync
501#else
502#define PPC440EP_ERR42
503#endif
504
505/* The following stops all load and store data streams associated with stream
506 * ID (ie. streams created explicitly).  The embedded and server mnemonics for
507 * dcbt are different so this must only be used for server.
508 */
509#define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch)	\
510       lis     scratch,0x60000000@h;			\
511       .machine push;					\
512       .machine power4;					\
513       dcbt    0,scratch,0b01010;			\
514       .machine pop;
515
516#define DCBT_SETUP_STREAMS(from, from_parms, to, to_parms, scratch)	\
517	lis	scratch,0x8000;	/* GO=1 */				\
518	clrldi	scratch,scratch,32;					\
519	.machine push;							\
520	.machine power4;						\
521	/* setup read stream 0 */					\
522	dcbt	0,from,0b01000;		/* addr from */			\
523	dcbt	0,from_parms,0b01010;	/* length and depth from */	\
524	/* setup write stream 1 */					\
525	dcbtst	0,to,0b01000;		/* addr to */			\
526	dcbtst	0,to_parms,0b01010;	/* length and depth to */	\
527	eieio;								\
528	dcbt	0,scratch,0b01010;	/* all streams GO */		\
529	.machine pop;
530
531/*
532 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
533 * keep the address intact to be compatible with code shared with
534 * 32-bit classic.
535 *
536 * On the other hand, I find it useful to have them behave as expected
537 * by their name (ie always do the addition) on 64-bit BookE
538 */
539#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
540#define toreal(rd)
541#define fromreal(rd)
542
543/*
544 * We use addis to ensure compatibility with the "classic" ppc versions of
545 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
546 * converting the address in r0, and so this version has to do that too
547 * (i.e. set register rd to 0 when rs == 0).
548 */
549#define tophys(rd,rs)				\
550	addis	rd,rs,0
551
552#define tovirt(rd,rs)				\
553	addis	rd,rs,0
554
555#elif defined(CONFIG_PPC64)
556#define toreal(rd)		/* we can access c000... in real mode */
557#define fromreal(rd)
558
559#define tophys(rd,rs)                           \
560	clrldi	rd,rs,2
561
562#define tovirt(rd,rs)                           \
563	rotldi	rd,rs,16;			\
564	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
565	rotldi	rd,rd,48
566#else
567#define toreal(rd)	tophys(rd,rd)
568#define fromreal(rd)	tovirt(rd,rd)
569
570#define tophys(rd, rs)	addis	rd, rs, -PAGE_OFFSET@h
571#define tovirt(rd, rs)	addis	rd, rs, PAGE_OFFSET@h
572#endif
573
574#ifdef CONFIG_PPC_BOOK3S_64
575#define MTMSRD(r)	mtmsrd	r
576#define MTMSR_EERI(reg)	mtmsrd	reg,1
577#else
578#define MTMSRD(r)	mtmsr	r
579#define MTMSR_EERI(reg)	mtmsr	reg
580#endif
581
582#endif /* __KERNEL__ */
583
584/* The boring bits... */
585
586/* Condition Register Bit Fields */
587
588#define	cr0	0
589#define	cr1	1
590#define	cr2	2
591#define	cr3	3
592#define	cr4	4
593#define	cr5	5
594#define	cr6	6
595#define	cr7	7
596
597
598/*
599 * General Purpose Registers (GPRs)
600 *
601 * The lower case r0-r31 should be used in preference to the upper
602 * case R0-R31 as they provide more error checking in the assembler.
603 * Use R0-31 only when really nessesary.
604 */
605
606#define	r0	%r0
607#define	r1	%r1
608#define	r2	%r2
609#define	r3	%r3
610#define	r4	%r4
611#define	r5	%r5
612#define	r6	%r6
613#define	r7	%r7
614#define	r8	%r8
615#define	r9	%r9
616#define	r10	%r10
617#define	r11	%r11
618#define	r12	%r12
619#define	r13	%r13
620#define	r14	%r14
621#define	r15	%r15
622#define	r16	%r16
623#define	r17	%r17
624#define	r18	%r18
625#define	r19	%r19
626#define	r20	%r20
627#define	r21	%r21
628#define	r22	%r22
629#define	r23	%r23
630#define	r24	%r24
631#define	r25	%r25
632#define	r26	%r26
633#define	r27	%r27
634#define	r28	%r28
635#define	r29	%r29
636#define	r30	%r30
637#define	r31	%r31
638
639
640/* Floating Point Registers (FPRs) */
641
642#define	fr0	0
643#define	fr1	1
644#define	fr2	2
645#define	fr3	3
646#define	fr4	4
647#define	fr5	5
648#define	fr6	6
649#define	fr7	7
650#define	fr8	8
651#define	fr9	9
652#define	fr10	10
653#define	fr11	11
654#define	fr12	12
655#define	fr13	13
656#define	fr14	14
657#define	fr15	15
658#define	fr16	16
659#define	fr17	17
660#define	fr18	18
661#define	fr19	19
662#define	fr20	20
663#define	fr21	21
664#define	fr22	22
665#define	fr23	23
666#define	fr24	24
667#define	fr25	25
668#define	fr26	26
669#define	fr27	27
670#define	fr28	28
671#define	fr29	29
672#define	fr30	30
673#define	fr31	31
674
675/* AltiVec Registers (VPRs) */
676
677#define	v0	0
678#define	v1	1
679#define	v2	2
680#define	v3	3
681#define	v4	4
682#define	v5	5
683#define	v6	6
684#define	v7	7
685#define	v8	8
686#define	v9	9
687#define	v10	10
688#define	v11	11
689#define	v12	12
690#define	v13	13
691#define	v14	14
692#define	v15	15
693#define	v16	16
694#define	v17	17
695#define	v18	18
696#define	v19	19
697#define	v20	20
698#define	v21	21
699#define	v22	22
700#define	v23	23
701#define	v24	24
702#define	v25	25
703#define	v26	26
704#define	v27	27
705#define	v28	28
706#define	v29	29
707#define	v30	30
708#define	v31	31
709
710/* VSX Registers (VSRs) */
711
712#define	vs0	0
713#define	vs1	1
714#define	vs2	2
715#define	vs3	3
716#define	vs4	4
717#define	vs5	5
718#define	vs6	6
719#define	vs7	7
720#define	vs8	8
721#define	vs9	9
722#define	vs10	10
723#define	vs11	11
724#define	vs12	12
725#define	vs13	13
726#define	vs14	14
727#define	vs15	15
728#define	vs16	16
729#define	vs17	17
730#define	vs18	18
731#define	vs19	19
732#define	vs20	20
733#define	vs21	21
734#define	vs22	22
735#define	vs23	23
736#define	vs24	24
737#define	vs25	25
738#define	vs26	26
739#define	vs27	27
740#define	vs28	28
741#define	vs29	29
742#define	vs30	30
743#define	vs31	31
744#define	vs32	32
745#define	vs33	33
746#define	vs34	34
747#define	vs35	35
748#define	vs36	36
749#define	vs37	37
750#define	vs38	38
751#define	vs39	39
752#define	vs40	40
753#define	vs41	41
754#define	vs42	42
755#define	vs43	43
756#define	vs44	44
757#define	vs45	45
758#define	vs46	46
759#define	vs47	47
760#define	vs48	48
761#define	vs49	49
762#define	vs50	50
763#define	vs51	51
764#define	vs52	52
765#define	vs53	53
766#define	vs54	54
767#define	vs55	55
768#define	vs56	56
769#define	vs57	57
770#define	vs58	58
771#define	vs59	59
772#define	vs60	60
773#define	vs61	61
774#define	vs62	62
775#define	vs63	63
776
777/* SPE Registers (EVPRs) */
778
779#define	evr0	0
780#define	evr1	1
781#define	evr2	2
782#define	evr3	3
783#define	evr4	4
784#define	evr5	5
785#define	evr6	6
786#define	evr7	7
787#define	evr8	8
788#define	evr9	9
789#define	evr10	10
790#define	evr11	11
791#define	evr12	12
792#define	evr13	13
793#define	evr14	14
794#define	evr15	15
795#define	evr16	16
796#define	evr17	17
797#define	evr18	18
798#define	evr19	19
799#define	evr20	20
800#define	evr21	21
801#define	evr22	22
802#define	evr23	23
803#define	evr24	24
804#define	evr25	25
805#define	evr26	26
806#define	evr27	27
807#define	evr28	28
808#define	evr29	29
809#define	evr30	30
810#define	evr31	31
811
812#define RFSCV	.long 0x4c0000a4
813
814/*
815 * Create an endian fixup trampoline
816 *
817 * This starts with a "tdi 0,0,0x48" instruction which is
818 * essentially a "trap never", and thus akin to a nop.
819 *
820 * The opcode for this instruction read with the wrong endian
821 * however results in a b . + 8
822 *
823 * So essentially we use that trick to execute the following
824 * trampoline in "reverse endian" if we are running with the
825 * MSR_LE bit set the "wrong" way for whatever endianness the
826 * kernel is built for.
827 */
828
829#ifdef CONFIG_PPC_BOOK3E_64
830#define FIXUP_ENDIAN
831#else
832/*
833 * This version may be used in HV or non-HV context.
834 * MSR[EE] must be disabled.
835 */
836#define FIXUP_ENDIAN						   \
837	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
838	b     191f;	  /* Skip trampoline if endian is good	*/ \
839	.long 0xa600607d; /* mfmsr r11				*/ \
840	.long 0x01006b69; /* xori r11,r11,1			*/ \
841	.long 0x00004039; /* li r10,0				*/ \
842	.long 0x6401417d; /* mtmsrd r10,1			*/ \
843	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
844	.long 0xa602487d; /* mflr r10				*/ \
845	.long 0x14004a39; /* addi r10,r10,20			*/ \
846	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
847	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
848	.long 0x2400004c; /* rfid				*/ \
849191:
850
851/*
852 * This version that may only be used with MSR[HV]=1
853 * - Does not clear MSR[RI], so more robust.
854 * - Slightly smaller and faster.
855 */
856#define FIXUP_ENDIAN_HV						   \
857	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
858	b     191f;	  /* Skip trampoline if endian is good	*/ \
859	.long 0xa600607d; /* mfmsr r11				*/ \
860	.long 0x01006b69; /* xori r11,r11,1			*/ \
861	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
862	.long 0xa602487d; /* mflr r10				*/ \
863	.long 0x14004a39; /* addi r10,r10,20			*/ \
864	.long 0xa64b5a7d; /* mthsrr0 r10			*/ \
865	.long 0xa64b7b7d; /* mthsrr1 r11			*/ \
866	.long 0x2402004c; /* hrfid				*/ \
867191:
868
869#endif /* !CONFIG_PPC_BOOK3E_64 */
870
871#endif /*  __ASSEMBLY__ */
872
873#define SOFT_MASK_TABLE(_start, _end)		\
874	stringify_in_c(.section __soft_mask_table,"a";)\
875	stringify_in_c(.balign 8;)		\
876	stringify_in_c(.llong (_start);)	\
877	stringify_in_c(.llong (_end);)		\
878	stringify_in_c(.previous)
879
880#define RESTART_TABLE(_start, _end, _target)	\
881	stringify_in_c(.section __restart_table,"a";)\
882	stringify_in_c(.balign 8;)		\
883	stringify_in_c(.llong (_start);)	\
884	stringify_in_c(.llong (_end);)		\
885	stringify_in_c(.llong (_target);)	\
886	stringify_in_c(.previous)
887
888#ifdef CONFIG_PPC_E500
889#define BTB_FLUSH(reg)			\
890	lis reg,BUCSR_INIT@h;		\
891	ori reg,reg,BUCSR_INIT@l;	\
892	mtspr SPRN_BUCSR,reg;		\
893	isync;
894#else
895#define BTB_FLUSH(reg)
896#endif /* CONFIG_PPC_E500 */
897
898#if defined(CONFIG_PPC64_ELF_ABI_V1)
899#define STACK_FRAME_PARAMS 48
900#elif defined(CONFIG_PPC64_ELF_ABI_V2)
901#define STACK_FRAME_PARAMS 32
902#elif defined(CONFIG_PPC32)
903#define STACK_FRAME_PARAMS 8
904#endif
905
906#endif /* _ASM_POWERPC_PPC_ASM_H */
v6.8
  1/*
  2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
  3 */
  4#ifndef _ASM_POWERPC_PPC_ASM_H
  5#define _ASM_POWERPC_PPC_ASM_H
  6
  7#include <linux/stringify.h>
  8#include <asm/asm-compat.h>
  9#include <asm/processor.h>
 10#include <asm/ppc-opcode.h>
 11#include <asm/firmware.h>
 12#include <asm/feature-fixups.h>
 13#include <asm/extable.h>
 14
 15#ifdef __ASSEMBLY__
 16
 17#define SZL			(BITS_PER_LONG/8)
 18
 19/*
 20 * This expands to a sequence of operations with reg incrementing from
 21 * start to end inclusive, of this form:
 22 *
 23 *   op  reg, (offset + (width * reg))(base)
 24 *
 25 * Note that offset is not the offset of the first operation unless start
 26 * is zero (or width is zero).
 27 */
 28.macro OP_REGS op, width, start, end, base, offset
 29	.Lreg=\start
 30	.rept (\end - \start + 1)
 31	\op	.Lreg, \offset + \width * .Lreg(\base)
 32	.Lreg=.Lreg+1
 33	.endr
 34.endm
 35
 36/*
 37 * This expands to a sequence of register clears for regs start to end
 38 * inclusive, of the form:
 39 *
 40 *   li rN, 0
 41 */
 42.macro ZEROIZE_REGS start, end
 43	.Lreg=\start
 44	.rept (\end - \start + 1)
 45	li	.Lreg, 0
 46	.Lreg=.Lreg+1
 47	.endr
 48.endm
 49
 50/*
 51 * Macros for storing registers into and loading registers from
 52 * exception frames.
 53 */
 54#ifdef __powerpc64__
 55#define SAVE_GPRS(start, end, base)	OP_REGS std, 8, start, end, base, GPR0
 56#define REST_GPRS(start, end, base)	OP_REGS ld, 8, start, end, base, GPR0
 57#define SAVE_NVGPRS(base)		SAVE_GPRS(14, 31, base)
 58#define REST_NVGPRS(base)		REST_GPRS(14, 31, base)
 59#else
 60#define SAVE_GPRS(start, end, base)	OP_REGS stw, 4, start, end, base, GPR0
 61#define REST_GPRS(start, end, base)	OP_REGS lwz, 4, start, end, base, GPR0
 62#define SAVE_NVGPRS(base)		SAVE_GPRS(13, 31, base)
 63#define REST_NVGPRS(base)		REST_GPRS(13, 31, base)
 64#endif
 65
 66#define	ZEROIZE_GPRS(start, end)	ZEROIZE_REGS start, end
 67#ifdef __powerpc64__
 68#define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(14, 31)
 69#else
 70#define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(13, 31)
 71#endif
 72#define	ZEROIZE_GPR(n)			ZEROIZE_GPRS(n, n)
 73
 74#define SAVE_GPR(n, base)		SAVE_GPRS(n, n, base)
 75#define REST_GPR(n, base)		REST_GPRS(n, n, base)
 76
 77/* macros for handling user register sanitisation */
 78#ifdef CONFIG_INTERRUPT_SANITIZE_REGISTERS
 79#define SANITIZE_SYSCALL_GPRS()			ZEROIZE_GPR(0);		\
 80						ZEROIZE_GPRS(5, 12);	\
 81						ZEROIZE_NVGPRS()
 82#define SANITIZE_GPR(n)				ZEROIZE_GPR(n)
 83#define SANITIZE_GPRS(start, end)		ZEROIZE_GPRS(start, end)
 84#define SANITIZE_NVGPRS()			ZEROIZE_NVGPRS()
 85#define SANITIZE_RESTORE_NVGPRS()		REST_NVGPRS(r1)
 86#define HANDLER_RESTORE_NVGPRS()
 87#else
 88#define SANITIZE_SYSCALL_GPRS()
 89#define SANITIZE_GPR(n)
 90#define SANITIZE_GPRS(start, end)
 91#define SANITIZE_NVGPRS()
 92#define SANITIZE_RESTORE_NVGPRS()
 93#define HANDLER_RESTORE_NVGPRS()		REST_NVGPRS(r1)
 94#endif /* CONFIG_INTERRUPT_SANITIZE_REGISTERS */
 95
 96#define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
 97#define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
 98#define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
 99#define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100#define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101#define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102#define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
103#define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
104#define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105#define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106#define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107#define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108
109#define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
110#define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111#define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112#define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113#define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114#define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115#define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
116#define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
117#define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118#define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119#define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120#define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121
122#ifdef __BIG_ENDIAN__
123#define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
124#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
125#else
126#define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
127					STXVD2X(n,b,base);	\
128					XXSWAPD(n,n)
129
130#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
131					XXSWAPD(n,n)
132#endif
133/* Save the lower 32 VSRs in the thread VSR region */
134#define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
135#define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
136#define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
137#define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
138#define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
139#define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
140#define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
141#define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
142#define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
143#define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
144#define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
145#define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
146
147/*
148 * b = base register for addressing, o = base offset from register of 1st EVR
149 * n = first EVR, s = scratch
150 */
151#define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
152#define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
153#define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
154#define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
155#define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
156#define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
157#define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
158#define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
159#define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
160#define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
161#define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
162#define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
163
164/* Macros to adjust thread priority for hardware multithreading */
165#define HMT_VERY_LOW	or	31,31,31	# very low priority
166#define HMT_LOW		or	1,1,1
167#define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
168#define HMT_MEDIUM	or	2,2,2
169#define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
170#define HMT_HIGH	or	3,3,3
171#define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
172
173#ifdef CONFIG_PPC64
174#define ULONG_SIZE 	8
175#else
176#define ULONG_SIZE	4
177#endif
178#define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
179#define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
180
181#ifdef __KERNEL__
182
183/*
184 * Used to name C functions called from asm
185 */
186#ifdef CONFIG_PPC_KERNEL_PCREL
187#define CFUNC(name) name@notoc
188#else
189#define CFUNC(name) name
190#endif
191
192/*
193 * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
194 * version below in the else case of the ifdef.
195 */
196#ifdef __powerpc64__
197
198#define STACKFRAMESIZE 256
199#define __STK_REG(i)   (112 + ((i)-14)*8)
200#define STK_REG(i)     __STK_REG(__REG_##i)
201
202#ifdef CONFIG_PPC64_ELF_ABI_V2
203#define STK_GOT		24
204#define __STK_PARAM(i)	(32 + ((i)-3)*8)
205#else
206#define STK_GOT		40
207#define __STK_PARAM(i)	(48 + ((i)-3)*8)
208#endif
 
 
209#define STK_PARAM(i)	__STK_PARAM(__REG_##i)
210
211#ifdef CONFIG_PPC64_ELF_ABI_V2
212
213#define _GLOBAL(name) \
214	.align 2 ; \
215	.type name,@function; \
216	.globl name; \
217name:
218
219#ifdef CONFIG_PPC_KERNEL_PCREL
220#define _GLOBAL_TOC _GLOBAL
221#else
222#define _GLOBAL_TOC(name) \
223	.align 2 ; \
224	.type name,@function; \
225	.globl name; \
226name: \
2270:	addis r2,r12,(.TOC.-0b)@ha; \
228	addi r2,r2,(.TOC.-0b)@l; \
229	.localentry name,.-name
230#endif
231
232#define DOTSYM(a)	a
233
234#else
235
236#define XGLUE(a,b) a##b
237#define GLUE(a,b) XGLUE(a,b)
238
239#define _GLOBAL(name) \
240	.align 2 ; \
241	.globl name; \
242	.globl GLUE(.,name); \
243	.pushsection ".opd","aw"; \
244name: \
245	.quad GLUE(.,name); \
246	.quad .TOC.@tocbase; \
247	.quad 0; \
248	.popsection; \
249	.type GLUE(.,name),@function; \
250GLUE(.,name):
251
252#define _GLOBAL_TOC(name) _GLOBAL(name)
253
254#define DOTSYM(a)	GLUE(.,a)
255
256#endif
257
258#else /* 32-bit */
259
260#define _GLOBAL(n)	\
261	.globl n;	\
262n:
263
264#define _GLOBAL_TOC(name) _GLOBAL(name)
265
266#define DOTSYM(a)	a
267
268#endif
269
270/*
271 * __kprobes (the C annotation) puts the symbol into the .kprobes.text
272 * section, which gets emitted at the end of regular text.
273 *
274 * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
275 * a blacklist. The former is for core kprobe functions/data, the
276 * latter is for those that incdentially must be excluded from probing
277 * and allows them to be linked at more optimal location within text.
278 */
279#ifdef CONFIG_KPROBES
280#define _ASM_NOKPROBE_SYMBOL(entry)			\
281	.pushsection "_kprobe_blacklist","aw";		\
282	PPC_LONG (entry) ;				\
283	.popsection
284#else
285#define _ASM_NOKPROBE_SYMBOL(entry)
286#endif
287
288#define FUNC_START(name)	_GLOBAL(name)
289#define FUNC_END(name)
290
291/* 
292 * LOAD_REG_IMMEDIATE(rn, expr)
293 *   Loads the value of the constant expression 'expr' into register 'rn'
294 *   using immediate instructions only.  Use this when it's important not
295 *   to reference other data (i.e. on ppc64 when the TOC pointer is not
296 *   valid) and when 'expr' is a constant or absolute address.
297 *
298 * LOAD_REG_ADDR(rn, name)
299 *   Loads the address of label 'name' into register 'rn'.  Use this when
300 *   you don't particularly need immediate instructions only, but you need
301 *   the whole address in one register (e.g. it's a structure address and
302 *   you want to access various offsets within it).  On ppc32 this is
303 *   identical to LOAD_REG_IMMEDIATE.
304 *
305 * LOAD_REG_ADDR_PIC(rn, name)
306 *   Loads the address of label 'name' into register 'run'. Use this when
307 *   the kernel doesn't run at the linked or relocated address. Please
308 *   note that this macro will clobber the lr register.
309 *
310 * LOAD_REG_ADDRBASE(rn, name)
311 * ADDROFF(name)
312 *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
313 *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
314 *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
315 *   in size, so is suitable for use directly as an offset in load and store
316 *   instructions.  Use this when loading/storing a single word or less as:
317 *      LOAD_REG_ADDRBASE(rX, name)
318 *      ld	rY,ADDROFF(name)(rX)
319 */
320
321/* Be careful, this will clobber the lr register. */
322#define LOAD_REG_ADDR_PIC(reg, name)		\
323	bcl	20,31,$+4;			\
3240:	mflr	reg;				\
325	addis	reg,reg,(name - 0b)@ha;		\
326	addi	reg,reg,(name - 0b)@l;
327
328#if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
329#define __AS_ATHIGH high
330#else
331#define __AS_ATHIGH h
332#endif
333
334.macro __LOAD_REG_IMMEDIATE_32 r, x
335	.if (\x) >= 0x8000 || (\x) < -0x8000
336		lis \r, (\x)@__AS_ATHIGH
337		.if (\x) & 0xffff != 0
338			ori \r, \r, (\x)@l
339		.endif
340	.else
341		li \r, (\x)@l
342	.endif
343.endm
344
345.macro __LOAD_REG_IMMEDIATE r, x
346	.if (\x) >= 0x80000000 || (\x) < -0x80000000
347		__LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
348		sldi	\r, \r, 32
349		.if (\x) & 0xffff0000 != 0
350			oris \r, \r, (\x)@__AS_ATHIGH
351		.endif
352		.if (\x) & 0xffff != 0
353			ori \r, \r, (\x)@l
354		.endif
355	.else
356		__LOAD_REG_IMMEDIATE_32 \r, \x
357	.endif
358.endm
359
360#ifdef __powerpc64__
361
362#ifdef CONFIG_PPC_KERNEL_PCREL
363#define __LOAD_PACA_TOC(reg)			\
364	li	reg,-1
365#else
366#define __LOAD_PACA_TOC(reg)			\
367	ld	reg,PACATOC(r13)
368#endif
369
370#define LOAD_PACA_TOC()				\
371	__LOAD_PACA_TOC(r2)
372
373#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
374
375#define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr)	\
376	lis	tmp, (expr)@highest;		\
377	lis	reg, (expr)@__AS_ATHIGH;	\
378	ori	tmp, tmp, (expr)@higher;	\
379	ori	reg, reg, (expr)@l;		\
380	rldimi	reg, tmp, 32, 0
381
382#ifdef CONFIG_PPC_KERNEL_PCREL
383#define LOAD_REG_ADDR(reg,name)			\
384	pla	reg,name@pcrel
385
386#else
387#define LOAD_REG_ADDR(reg,name)			\
388	addis	reg,r2,name@toc@ha;		\
389	addi	reg,reg,name@toc@l
390#endif
391
392#ifdef CONFIG_PPC_BOOK3E_64
393/*
394 * This is used in register-constrained interrupt handlers. Not to be used
395 * by BOOK3S. ld complains with "got/toc optimization is not supported" if r2
396 * is not used for the TOC offset, so use @got(tocreg). If the interrupt
397 * handlers saved r2 instead, LOAD_REG_ADDR could be used.
398 */
399#define LOAD_REG_ADDR_ALTTOC(reg,tocreg,name)	\
400	ld	reg,name@got(tocreg)
401#endif
402
403#define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
404#define ADDROFF(name)			0
405
406/* offsets for stack frame layout */
407#define LRSAVE	16
408
409/*
410 * GCC stack frames follow a different pattern on 32 vs 64. This can be used
411 * to make asm frames be consistent with C.
412 */
413#define PPC_CREATE_STACK_FRAME(size)			\
414	mflr		r0;				\
415	std		r0,16(r1);			\
416	stdu		r1,-(size)(r1)
417
418#else /* 32-bit */
419
420#define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
421
422#define LOAD_REG_IMMEDIATE_SYM(reg,expr)		\
423	lis	reg,(expr)@ha;		\
424	addi	reg,reg,(expr)@l;
425
426#define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE_SYM(reg, name)
427
428#define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
429#define ADDROFF(name)			name@l
430
431/* offsets for stack frame layout */
432#define LRSAVE	4
433
434#define PPC_CREATE_STACK_FRAME(size)			\
435	stwu		r1,-(size)(r1);			\
436	mflr		r0;				\
437	stw		r0,(size+4)(r1)
438
439#endif
440
441/* various errata or part fixups */
442#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_E500)
443#define MFTB(dest)			\
44490:	mfspr dest, SPRN_TBRL;		\
445BEGIN_FTR_SECTION_NESTED(96);		\
446	cmpwi dest,0;			\
447	beq-  90b;			\
448END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
449#else
450#define MFTB(dest)			MFTBL(dest)
451#endif
452
453#ifdef CONFIG_PPC_8xx
454#define MFTBL(dest)			mftb dest
455#define MFTBU(dest)			mftbu dest
456#else
457#define MFTBL(dest)			mfspr dest, SPRN_TBRL
458#define MFTBU(dest)			mfspr dest, SPRN_TBRU
459#endif
460
461#ifndef CONFIG_SMP
462#define TLBSYNC
463#else
464#define TLBSYNC		tlbsync; sync
465#endif
466
467#ifdef CONFIG_PPC64
468#define MTOCRF(FXM, RS)			\
469	BEGIN_FTR_SECTION_NESTED(848);	\
470	mtcrf	(FXM), RS;		\
471	FTR_SECTION_ELSE_NESTED(848);	\
472	mtocrf (FXM), RS;		\
473	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
474#endif
475
476/*
477 * This instruction is not implemented on the PPC 603 or 601; however, on
478 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
479 * All of these instructions exist in the 8xx, they have magical powers,
480 * and they must be used.
481 */
482
483#if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
484#define tlbia					\
485	li	r4,1024;			\
486	mtctr	r4;				\
487	lis	r4,KERNELBASE@h;		\
488	.machine push;				\
489	.machine "power4";			\
4900:	tlbie	r4;				\
491	.machine pop;				\
492	addi	r4,r4,0x1000;			\
493	bdnz	0b
494#endif
495
496
497#ifdef CONFIG_IBM440EP_ERR42
498#define PPC440EP_ERR42 isync
499#else
500#define PPC440EP_ERR42
501#endif
502
503/* The following stops all load and store data streams associated with stream
504 * ID (ie. streams created explicitly).  The embedded and server mnemonics for
505 * dcbt are different so this must only be used for server.
506 */
507#define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch)	\
508       lis     scratch,0x60000000@h;			\
509       dcbt    0,scratch,0b01010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510
511/*
512 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
513 * keep the address intact to be compatible with code shared with
514 * 32-bit classic.
515 *
516 * On the other hand, I find it useful to have them behave as expected
517 * by their name (ie always do the addition) on 64-bit BookE
518 */
519#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
520#define toreal(rd)
521#define fromreal(rd)
522
523/*
524 * We use addis to ensure compatibility with the "classic" ppc versions of
525 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
526 * converting the address in r0, and so this version has to do that too
527 * (i.e. set register rd to 0 when rs == 0).
528 */
529#define tophys(rd,rs)				\
530	addis	rd,rs,0
531
532#define tovirt(rd,rs)				\
533	addis	rd,rs,0
534
535#elif defined(CONFIG_PPC64)
536#define toreal(rd)		/* we can access c000... in real mode */
537#define fromreal(rd)
538
539#define tophys(rd,rs)                           \
540	clrldi	rd,rs,2
541
542#define tovirt(rd,rs)                           \
543	rotldi	rd,rs,16;			\
544	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
545	rotldi	rd,rd,48
546#else
547#define toreal(rd)	tophys(rd,rd)
548#define fromreal(rd)	tovirt(rd,rd)
549
550#define tophys(rd, rs)	addis	rd, rs, -PAGE_OFFSET@h
551#define tovirt(rd, rs)	addis	rd, rs, PAGE_OFFSET@h
552#endif
553
554#ifdef CONFIG_PPC_BOOK3S_64
555#define MTMSRD(r)	mtmsrd	r
556#define MTMSR_EERI(reg)	mtmsrd	reg,1
557#else
558#define MTMSRD(r)	mtmsr	r
559#define MTMSR_EERI(reg)	mtmsr	reg
560#endif
561
562#endif /* __KERNEL__ */
563
564/* The boring bits... */
565
566/* Condition Register Bit Fields */
567
568#define	cr0	0
569#define	cr1	1
570#define	cr2	2
571#define	cr3	3
572#define	cr4	4
573#define	cr5	5
574#define	cr6	6
575#define	cr7	7
576
577
578/*
579 * General Purpose Registers (GPRs)
580 *
581 * The lower case r0-r31 should be used in preference to the upper
582 * case R0-R31 as they provide more error checking in the assembler.
583 * Use R0-31 only when really nessesary.
584 */
585
586#define	r0	%r0
587#define	r1	%r1
588#define	r2	%r2
589#define	r3	%r3
590#define	r4	%r4
591#define	r5	%r5
592#define	r6	%r6
593#define	r7	%r7
594#define	r8	%r8
595#define	r9	%r9
596#define	r10	%r10
597#define	r11	%r11
598#define	r12	%r12
599#define	r13	%r13
600#define	r14	%r14
601#define	r15	%r15
602#define	r16	%r16
603#define	r17	%r17
604#define	r18	%r18
605#define	r19	%r19
606#define	r20	%r20
607#define	r21	%r21
608#define	r22	%r22
609#define	r23	%r23
610#define	r24	%r24
611#define	r25	%r25
612#define	r26	%r26
613#define	r27	%r27
614#define	r28	%r28
615#define	r29	%r29
616#define	r30	%r30
617#define	r31	%r31
618
619
620/* Floating Point Registers (FPRs) */
621
622#define	fr0	0
623#define	fr1	1
624#define	fr2	2
625#define	fr3	3
626#define	fr4	4
627#define	fr5	5
628#define	fr6	6
629#define	fr7	7
630#define	fr8	8
631#define	fr9	9
632#define	fr10	10
633#define	fr11	11
634#define	fr12	12
635#define	fr13	13
636#define	fr14	14
637#define	fr15	15
638#define	fr16	16
639#define	fr17	17
640#define	fr18	18
641#define	fr19	19
642#define	fr20	20
643#define	fr21	21
644#define	fr22	22
645#define	fr23	23
646#define	fr24	24
647#define	fr25	25
648#define	fr26	26
649#define	fr27	27
650#define	fr28	28
651#define	fr29	29
652#define	fr30	30
653#define	fr31	31
654
655/* AltiVec Registers (VPRs) */
656
657#define	v0	0
658#define	v1	1
659#define	v2	2
660#define	v3	3
661#define	v4	4
662#define	v5	5
663#define	v6	6
664#define	v7	7
665#define	v8	8
666#define	v9	9
667#define	v10	10
668#define	v11	11
669#define	v12	12
670#define	v13	13
671#define	v14	14
672#define	v15	15
673#define	v16	16
674#define	v17	17
675#define	v18	18
676#define	v19	19
677#define	v20	20
678#define	v21	21
679#define	v22	22
680#define	v23	23
681#define	v24	24
682#define	v25	25
683#define	v26	26
684#define	v27	27
685#define	v28	28
686#define	v29	29
687#define	v30	30
688#define	v31	31
689
690/* VSX Registers (VSRs) */
691
692#define	vs0	0
693#define	vs1	1
694#define	vs2	2
695#define	vs3	3
696#define	vs4	4
697#define	vs5	5
698#define	vs6	6
699#define	vs7	7
700#define	vs8	8
701#define	vs9	9
702#define	vs10	10
703#define	vs11	11
704#define	vs12	12
705#define	vs13	13
706#define	vs14	14
707#define	vs15	15
708#define	vs16	16
709#define	vs17	17
710#define	vs18	18
711#define	vs19	19
712#define	vs20	20
713#define	vs21	21
714#define	vs22	22
715#define	vs23	23
716#define	vs24	24
717#define	vs25	25
718#define	vs26	26
719#define	vs27	27
720#define	vs28	28
721#define	vs29	29
722#define	vs30	30
723#define	vs31	31
724#define	vs32	32
725#define	vs33	33
726#define	vs34	34
727#define	vs35	35
728#define	vs36	36
729#define	vs37	37
730#define	vs38	38
731#define	vs39	39
732#define	vs40	40
733#define	vs41	41
734#define	vs42	42
735#define	vs43	43
736#define	vs44	44
737#define	vs45	45
738#define	vs46	46
739#define	vs47	47
740#define	vs48	48
741#define	vs49	49
742#define	vs50	50
743#define	vs51	51
744#define	vs52	52
745#define	vs53	53
746#define	vs54	54
747#define	vs55	55
748#define	vs56	56
749#define	vs57	57
750#define	vs58	58
751#define	vs59	59
752#define	vs60	60
753#define	vs61	61
754#define	vs62	62
755#define	vs63	63
756
757/* SPE Registers (EVPRs) */
758
759#define	evr0	0
760#define	evr1	1
761#define	evr2	2
762#define	evr3	3
763#define	evr4	4
764#define	evr5	5
765#define	evr6	6
766#define	evr7	7
767#define	evr8	8
768#define	evr9	9
769#define	evr10	10
770#define	evr11	11
771#define	evr12	12
772#define	evr13	13
773#define	evr14	14
774#define	evr15	15
775#define	evr16	16
776#define	evr17	17
777#define	evr18	18
778#define	evr19	19
779#define	evr20	20
780#define	evr21	21
781#define	evr22	22
782#define	evr23	23
783#define	evr24	24
784#define	evr25	25
785#define	evr26	26
786#define	evr27	27
787#define	evr28	28
788#define	evr29	29
789#define	evr30	30
790#define	evr31	31
791
792#define RFSCV	.long 0x4c0000a4
793
794/*
795 * Create an endian fixup trampoline
796 *
797 * This starts with a "tdi 0,0,0x48" instruction which is
798 * essentially a "trap never", and thus akin to a nop.
799 *
800 * The opcode for this instruction read with the wrong endian
801 * however results in a b . + 8
802 *
803 * So essentially we use that trick to execute the following
804 * trampoline in "reverse endian" if we are running with the
805 * MSR_LE bit set the "wrong" way for whatever endianness the
806 * kernel is built for.
807 */
808
809#ifdef CONFIG_PPC_BOOK3E_64
810#define FIXUP_ENDIAN
811#else
812/*
813 * This version may be used in HV or non-HV context.
814 * MSR[EE] must be disabled.
815 */
816#define FIXUP_ENDIAN						   \
817	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
818	b     191f;	  /* Skip trampoline if endian is good	*/ \
819	.long 0xa600607d; /* mfmsr r11				*/ \
820	.long 0x01006b69; /* xori r11,r11,1			*/ \
821	.long 0x00004039; /* li r10,0				*/ \
822	.long 0x6401417d; /* mtmsrd r10,1			*/ \
823	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
824	.long 0xa602487d; /* mflr r10				*/ \
825	.long 0x14004a39; /* addi r10,r10,20			*/ \
826	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
827	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
828	.long 0x2400004c; /* rfid				*/ \
829191:
830
831/*
832 * This version that may only be used with MSR[HV]=1
833 * - Does not clear MSR[RI], so more robust.
834 * - Slightly smaller and faster.
835 */
836#define FIXUP_ENDIAN_HV						   \
837	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
838	b     191f;	  /* Skip trampoline if endian is good	*/ \
839	.long 0xa600607d; /* mfmsr r11				*/ \
840	.long 0x01006b69; /* xori r11,r11,1			*/ \
841	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
842	.long 0xa602487d; /* mflr r10				*/ \
843	.long 0x14004a39; /* addi r10,r10,20			*/ \
844	.long 0xa64b5a7d; /* mthsrr0 r10			*/ \
845	.long 0xa64b7b7d; /* mthsrr1 r11			*/ \
846	.long 0x2402004c; /* hrfid				*/ \
847191:
848
849#endif /* !CONFIG_PPC_BOOK3E_64 */
850
851#endif /*  __ASSEMBLY__ */
852
853#define SOFT_MASK_TABLE(_start, _end)		\
854	stringify_in_c(.section __soft_mask_table,"a";)\
855	stringify_in_c(.balign 8;)		\
856	stringify_in_c(.llong (_start);)	\
857	stringify_in_c(.llong (_end);)		\
858	stringify_in_c(.previous)
859
860#define RESTART_TABLE(_start, _end, _target)	\
861	stringify_in_c(.section __restart_table,"a";)\
862	stringify_in_c(.balign 8;)		\
863	stringify_in_c(.llong (_start);)	\
864	stringify_in_c(.llong (_end);)		\
865	stringify_in_c(.llong (_target);)	\
866	stringify_in_c(.previous)
867
868#ifdef CONFIG_PPC_E500
869#define BTB_FLUSH(reg)			\
870	lis reg,BUCSR_INIT@h;		\
871	ori reg,reg,BUCSR_INIT@l;	\
872	mtspr SPRN_BUCSR,reg;		\
873	isync;
874#else
875#define BTB_FLUSH(reg)
876#endif /* CONFIG_PPC_E500 */
877
878#if defined(CONFIG_PPC64_ELF_ABI_V1)
879#define STACK_FRAME_PARAMS 48
880#elif defined(CONFIG_PPC64_ELF_ABI_V2)
881#define STACK_FRAME_PARAMS 32
882#elif defined(CONFIG_PPC32)
883#define STACK_FRAME_PARAMS 8
884#endif
885
886#endif /* _ASM_POWERPC_PPC_ASM_H */