Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
   3
   4#include <linux/clk.h>
   5#include <linux/dmaengine.h>
   6#include <linux/dma-mapping.h>
   7#include <linux/dma/qcom-gpi-dma.h>
   8#include <linux/interrupt.h>
   9#include <linux/io.h>
  10#include <linux/log2.h>
  11#include <linux/module.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_opp.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/property.h>
  16#include <linux/soc/qcom/geni-se.h>
  17#include <linux/spi/spi.h>
  18#include <linux/spinlock.h>
  19
  20/* SPI SE specific registers and respective register fields */
  21#define SE_SPI_CPHA		0x224
  22#define CPHA			BIT(0)
  23
  24#define SE_SPI_LOOPBACK		0x22c
  25#define LOOPBACK_ENABLE		0x1
  26#define NORMAL_MODE		0x0
  27#define LOOPBACK_MSK		GENMASK(1, 0)
  28
  29#define SE_SPI_CPOL		0x230
  30#define CPOL			BIT(2)
  31
  32#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
  33#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
  34
  35#define SE_SPI_DEMUX_SEL	0x250
  36#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
  37
  38#define SE_SPI_TRANS_CFG	0x25c
  39#define CS_TOGGLE		BIT(1)
  40
  41#define SE_SPI_WORD_LEN		0x268
  42#define WORD_LEN_MSK		GENMASK(9, 0)
  43#define MIN_WORD_LEN		4
  44
  45#define SE_SPI_TX_TRANS_LEN	0x26c
  46#define SE_SPI_RX_TRANS_LEN	0x270
  47#define TRANS_LEN_MSK		GENMASK(23, 0)
  48
  49#define SE_SPI_PRE_POST_CMD_DLY	0x274
  50
  51#define SE_SPI_DELAY_COUNTERS	0x278
  52#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
  53#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
  54#define SPI_CS_CLK_DELAY_SHFT		10
  55
  56#define SE_SPI_SLAVE_EN				(0x2BC)
  57#define SPI_SLAVE_EN				BIT(0)
  58
  59/* M_CMD OP codes for SPI */
  60#define SPI_TX_ONLY		1
  61#define SPI_RX_ONLY		2
  62#define SPI_TX_RX		7
  63#define SPI_CS_ASSERT		8
  64#define SPI_CS_DEASSERT		9
  65#define SPI_SCK_ONLY		10
  66/* M_CMD params for SPI */
  67#define SPI_PRE_CMD_DELAY	BIT(0)
  68#define TIMESTAMP_BEFORE	BIT(1)
  69#define FRAGMENTATION		BIT(2)
  70#define TIMESTAMP_AFTER		BIT(3)
  71#define POST_CMD_DELAY		BIT(4)
  72
  73#define GSI_LOOPBACK_EN		BIT(0)
  74#define GSI_CS_TOGGLE		BIT(3)
  75#define GSI_CPHA		BIT(4)
  76#define GSI_CPOL		BIT(5)
  77
  78struct spi_geni_master {
  79	struct geni_se se;
  80	struct device *dev;
  81	u32 tx_fifo_depth;
  82	u32 fifo_width_bits;
  83	u32 tx_wm;
  84	u32 last_mode;
  85	unsigned long cur_speed_hz;
  86	unsigned long cur_sclk_hz;
  87	unsigned int cur_bits_per_word;
  88	unsigned int tx_rem_bytes;
  89	unsigned int rx_rem_bytes;
  90	const struct spi_transfer *cur_xfer;
  91	struct completion cs_done;
  92	struct completion cancel_done;
  93	struct completion abort_done;
  94	struct completion tx_reset_done;
  95	struct completion rx_reset_done;
  96	unsigned int oversampling;
  97	spinlock_t lock;
  98	int irq;
  99	bool cs_flag;
 100	bool abort_failed;
 101	struct dma_chan *tx;
 102	struct dma_chan *rx;
 103	int cur_xfer_mode;
 104};
 105
 106static void spi_slv_setup(struct spi_geni_master *mas)
 107{
 108	struct geni_se *se = &mas->se;
 109
 110	writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN);
 111	writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL);
 112	writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START);
 113	dev_dbg(mas->dev, "spi slave setup done\n");
 114}
 115
 116static int get_spi_clk_cfg(unsigned int speed_hz,
 117			struct spi_geni_master *mas,
 118			unsigned int *clk_idx,
 119			unsigned int *clk_div)
 120{
 121	unsigned long sclk_freq;
 122	unsigned int actual_hz;
 123	int ret;
 124
 125	ret = geni_se_clk_freq_match(&mas->se,
 126				speed_hz * mas->oversampling,
 127				clk_idx, &sclk_freq, false);
 128	if (ret) {
 129		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
 130							ret, speed_hz);
 131		return ret;
 132	}
 133
 134	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
 135	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
 136
 137	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
 138				actual_hz, sclk_freq, *clk_idx, *clk_div);
 139	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
 140	if (ret)
 141		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
 142	else
 143		mas->cur_sclk_hz = sclk_freq;
 144
 145	return ret;
 146}
 147
 148static void handle_se_timeout(struct spi_controller *spi,
 149			      struct spi_message *msg)
 150{
 151	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 152	unsigned long time_left;
 153	struct geni_se *se = &mas->se;
 154	const struct spi_transfer *xfer;
 155
 156	spin_lock_irq(&mas->lock);
 157	if (mas->cur_xfer_mode == GENI_SE_FIFO)
 158		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 159
 160	xfer = mas->cur_xfer;
 161	mas->cur_xfer = NULL;
 162
 163	if (spi->target) {
 164		/*
 165		 * skip CMD Cancel sequnece since spi target
 166		 * doesn`t support CMD Cancel sequnece
 167		 */
 168		spin_unlock_irq(&mas->lock);
 169		goto reset_if_dma;
 170	}
 171
 172	reinit_completion(&mas->cancel_done);
 173	geni_se_cancel_m_cmd(se);
 174	spin_unlock_irq(&mas->lock);
 175
 176	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
 177	if (time_left)
 178		goto reset_if_dma;
 179
 180	spin_lock_irq(&mas->lock);
 181	reinit_completion(&mas->abort_done);
 182	geni_se_abort_m_cmd(se);
 183	spin_unlock_irq(&mas->lock);
 184
 185	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
 186	if (!time_left) {
 187		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 188
 189		/*
 190		 * No need for a lock since SPI core has a lock and we never
 191		 * access this from an interrupt.
 192		 */
 193		mas->abort_failed = true;
 194	}
 195
 196reset_if_dma:
 197	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 198		if (xfer) {
 199			if (xfer->tx_buf) {
 200				spin_lock_irq(&mas->lock);
 201				reinit_completion(&mas->tx_reset_done);
 202				writel(1, se->base + SE_DMA_TX_FSM_RST);
 203				spin_unlock_irq(&mas->lock);
 204				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
 205				if (!time_left)
 206					dev_err(mas->dev, "DMA TX RESET failed\n");
 207			}
 208			if (xfer->rx_buf) {
 209				spin_lock_irq(&mas->lock);
 210				reinit_completion(&mas->rx_reset_done);
 211				writel(1, se->base + SE_DMA_RX_FSM_RST);
 212				spin_unlock_irq(&mas->lock);
 213				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
 214				if (!time_left)
 215					dev_err(mas->dev, "DMA RX RESET failed\n");
 216			}
 217		} else {
 218			/*
 219			 * This can happen if a timeout happened and we had to wait
 220			 * for lock in this function because isr was holding the lock
 221			 * and handling transfer completion at that time.
 222			 */
 223			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
 224		}
 225	}
 226}
 227
 228static void handle_gpi_timeout(struct spi_controller *spi, struct spi_message *msg)
 229{
 230	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 231
 232	dmaengine_terminate_sync(mas->tx);
 233	dmaengine_terminate_sync(mas->rx);
 234}
 235
 236static void spi_geni_handle_err(struct spi_controller *spi, struct spi_message *msg)
 237{
 238	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 239
 240	switch (mas->cur_xfer_mode) {
 241	case GENI_SE_FIFO:
 242	case GENI_SE_DMA:
 243		handle_se_timeout(spi, msg);
 244		break;
 245	case GENI_GPI_DMA:
 246		handle_gpi_timeout(spi, msg);
 247		break;
 248	default:
 249		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
 250	}
 251}
 252
 253static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
 254{
 255	struct geni_se *se = &mas->se;
 256	u32 m_irq, m_irq_en;
 257
 258	if (!mas->abort_failed)
 259		return false;
 260
 261	/*
 262	 * The only known case where a transfer times out and then a cancel
 263	 * times out then an abort times out is if something is blocking our
 264	 * interrupt handler from running.  Avoid starting any new transfers
 265	 * until that sorts itself out.
 266	 */
 267	spin_lock_irq(&mas->lock);
 268	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 269	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
 270	spin_unlock_irq(&mas->lock);
 271
 272	if (m_irq & m_irq_en) {
 273		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
 274			m_irq & m_irq_en);
 275		return true;
 276	}
 277
 278	/*
 279	 * If we're here the problem resolved itself so no need to check more
 280	 * on future transfers.
 281	 */
 282	mas->abort_failed = false;
 283
 284	return false;
 285}
 286
 287static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
 288{
 289	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
 290	struct spi_controller *spi = dev_get_drvdata(mas->dev);
 291	struct geni_se *se = &mas->se;
 292	unsigned long time_left;
 293
 294	if (!(slv->mode & SPI_CS_HIGH))
 295		set_flag = !set_flag;
 296
 297	if (set_flag == mas->cs_flag)
 298		return;
 299
 300	pm_runtime_get_sync(mas->dev);
 301
 302	if (spi_geni_is_abort_still_pending(mas)) {
 303		dev_err(mas->dev, "Can't set chip select\n");
 304		goto exit;
 305	}
 306
 307	spin_lock_irq(&mas->lock);
 308	if (mas->cur_xfer) {
 309		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
 310		spin_unlock_irq(&mas->lock);
 311		goto exit;
 312	}
 313
 314	mas->cs_flag = set_flag;
 315	/* set xfer_mode to FIFO to complete cs_done in isr */
 316	mas->cur_xfer_mode = GENI_SE_FIFO;
 317	geni_se_select_mode(se, mas->cur_xfer_mode);
 318
 319	reinit_completion(&mas->cs_done);
 320	if (set_flag)
 321		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
 322	else
 323		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 324	spin_unlock_irq(&mas->lock);
 325
 326	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
 327	if (!time_left) {
 328		dev_warn(mas->dev, "Timeout setting chip select\n");
 329		handle_se_timeout(spi, NULL);
 330	}
 331
 332exit:
 333	pm_runtime_put(mas->dev);
 334}
 335
 336static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
 337					unsigned int bits_per_word)
 338{
 339	unsigned int pack_words;
 340	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
 341	struct geni_se *se = &mas->se;
 342	u32 word_len;
 343
 344	/*
 345	 * If bits_per_word isn't a byte aligned value, set the packing to be
 346	 * 1 SPI word per FIFO word.
 347	 */
 348	if (!(mas->fifo_width_bits % bits_per_word))
 349		pack_words = mas->fifo_width_bits / bits_per_word;
 350	else
 351		pack_words = 1;
 352	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
 353								true, true);
 354	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
 355	writel(word_len, se->base + SE_SPI_WORD_LEN);
 356}
 357
 358static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
 359					unsigned long clk_hz)
 360{
 361	u32 clk_sel, m_clk_cfg, idx, div;
 362	struct geni_se *se = &mas->se;
 363	int ret;
 364
 365	if (clk_hz == mas->cur_speed_hz)
 366		return 0;
 367
 368	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
 369	if (ret) {
 370		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
 371		return ret;
 372	}
 373
 374	/*
 375	 * SPI core clock gets configured with the requested frequency
 376	 * or the frequency closer to the requested frequency.
 377	 * For that reason requested frequency is stored in the
 378	 * cur_speed_hz and referred in the consecutive transfer instead
 379	 * of calling clk_get_rate() API.
 380	 */
 381	mas->cur_speed_hz = clk_hz;
 382
 383	clk_sel = idx & CLK_SEL_MSK;
 384	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
 385	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
 386	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 387
 388	/* Set BW quota for CPU as driver supports FIFO mode only. */
 389	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
 390	ret = geni_icc_set_bw(se);
 391	if (ret)
 392		return ret;
 393
 394	return 0;
 395}
 396
 397static int setup_fifo_params(struct spi_device *spi_slv,
 398					struct spi_controller *spi)
 399{
 400	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 401	struct geni_se *se = &mas->se;
 402	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
 403	u32 demux_sel;
 404
 405	if (mas->last_mode != spi_slv->mode) {
 406		if (spi_slv->mode & SPI_LOOP)
 407			loopback_cfg = LOOPBACK_ENABLE;
 408
 409		if (spi_slv->mode & SPI_CPOL)
 410			cpol = CPOL;
 411
 412		if (spi_slv->mode & SPI_CPHA)
 413			cpha = CPHA;
 414
 415		if (spi_slv->mode & SPI_CS_HIGH)
 416			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
 417
 418		demux_sel = spi_get_chipselect(spi_slv, 0);
 419		mas->cur_bits_per_word = spi_slv->bits_per_word;
 420
 421		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
 422		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
 423		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
 424		writel(cpha, se->base + SE_SPI_CPHA);
 425		writel(cpol, se->base + SE_SPI_CPOL);
 426		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
 427
 428		mas->last_mode = spi_slv->mode;
 429	}
 430
 431	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
 432}
 433
 434static void
 435spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
 436{
 437	struct spi_controller *spi = cb;
 438
 439	spi->cur_msg->status = -EIO;
 440	if (result->result != DMA_TRANS_NOERROR) {
 441		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
 442		spi_finalize_current_transfer(spi);
 443		return;
 444	}
 445
 446	if (!result->residue) {
 447		spi->cur_msg->status = 0;
 448		dev_dbg(&spi->dev, "DMA txn completed\n");
 449	} else {
 450		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
 451	}
 452
 453	spi_finalize_current_transfer(spi);
 454}
 455
 456static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
 457			  struct spi_device *spi_slv, struct spi_controller *spi)
 458{
 459	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
 460	struct dma_slave_config config = {};
 461	struct gpi_spi_config peripheral = {};
 462	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
 463	int ret;
 464
 465	config.peripheral_config = &peripheral;
 466	config.peripheral_size = sizeof(peripheral);
 467	peripheral.set_config = true;
 468
 469	if (xfer->bits_per_word != mas->cur_bits_per_word ||
 470	    xfer->speed_hz != mas->cur_speed_hz) {
 471		mas->cur_bits_per_word = xfer->bits_per_word;
 472		mas->cur_speed_hz = xfer->speed_hz;
 473	}
 474
 475	if (xfer->tx_buf && xfer->rx_buf) {
 476		peripheral.cmd = SPI_DUPLEX;
 477	} else if (xfer->tx_buf) {
 478		peripheral.cmd = SPI_TX;
 479		peripheral.rx_len = 0;
 480	} else if (xfer->rx_buf) {
 481		peripheral.cmd = SPI_RX;
 482		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
 483			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
 484		} else {
 485			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
 486
 487			peripheral.rx_len = (xfer->len / bytes_per_word);
 488		}
 489	}
 490
 491	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
 492	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
 493	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
 494	peripheral.cs = spi_get_chipselect(spi_slv, 0);
 495	peripheral.pack_en = true;
 496	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
 497
 498	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
 499			      &peripheral.clk_src, &peripheral.clk_div);
 500	if (ret) {
 501		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
 502		return ret;
 503	}
 504
 505	if (!xfer->cs_change) {
 506		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
 507			peripheral.fragmentation = FRAGMENTATION;
 508	}
 509
 510	if (peripheral.cmd & SPI_RX) {
 511		dmaengine_slave_config(mas->rx, &config);
 512		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
 513						  DMA_DEV_TO_MEM, flags);
 514		if (!rx_desc) {
 515			dev_err(mas->dev, "Err setting up rx desc\n");
 516			return -EIO;
 517		}
 518	}
 519
 520	/*
 521	 * Prepare the TX always, even for RX or tx_buf being null, we would
 522	 * need TX to be prepared per GSI spec
 523	 */
 524	dmaengine_slave_config(mas->tx, &config);
 525	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
 526					  DMA_MEM_TO_DEV, flags);
 527	if (!tx_desc) {
 528		dev_err(mas->dev, "Err setting up tx desc\n");
 529		return -EIO;
 530	}
 531
 532	tx_desc->callback_result = spi_gsi_callback_result;
 533	tx_desc->callback_param = spi;
 534
 535	if (peripheral.cmd & SPI_RX)
 536		dmaengine_submit(rx_desc);
 537	dmaengine_submit(tx_desc);
 538
 539	if (peripheral.cmd & SPI_RX)
 540		dma_async_issue_pending(mas->rx);
 541
 542	dma_async_issue_pending(mas->tx);
 543	return 1;
 544}
 545
 546static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
 547				struct spi_geni_master *mas)
 548{
 549	u32 len;
 550
 551	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
 552		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
 553	else
 554		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
 555	len &= TRANS_LEN_MSK;
 556
 557	return len;
 558}
 559
 560static bool geni_can_dma(struct spi_controller *ctlr,
 561			 struct spi_device *slv, struct spi_transfer *xfer)
 562{
 563	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
 564	u32 len, fifo_size;
 565
 566	if (mas->cur_xfer_mode == GENI_GPI_DMA)
 567		return true;
 568
 569	/* Set SE DMA mode for SPI target. */
 570	if (ctlr->target)
 571		return true;
 572
 573	len = get_xfer_len_in_words(xfer, mas);
 574	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
 575
 576	if (len > fifo_size)
 577		return true;
 578	else
 579		return false;
 580}
 581
 582static int spi_geni_prepare_message(struct spi_controller *spi,
 583				    struct spi_message *spi_msg)
 584{
 585	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 586	int ret;
 587
 588	switch (mas->cur_xfer_mode) {
 589	case GENI_SE_FIFO:
 590	case GENI_SE_DMA:
 591		if (spi_geni_is_abort_still_pending(mas))
 592			return -EBUSY;
 593		ret = setup_fifo_params(spi_msg->spi, spi);
 594		if (ret)
 595			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 596		return ret;
 597
 598	case GENI_GPI_DMA:
 599		/* nothing to do for GPI DMA */
 600		return 0;
 601	}
 602
 603	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
 604	return -EINVAL;
 605}
 606
 607static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
 608{
 609	int ret;
 610
 611	mas->tx = dma_request_chan(mas->dev, "tx");
 612	if (IS_ERR(mas->tx)) {
 613		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
 614				    "Failed to get tx DMA ch\n");
 615		goto err_tx;
 616	}
 617
 618	mas->rx = dma_request_chan(mas->dev, "rx");
 619	if (IS_ERR(mas->rx)) {
 620		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
 621				    "Failed to get rx DMA ch\n");
 622		goto err_rx;
 623	}
 624
 625	return 0;
 626
 627err_rx:
 628	mas->rx = NULL;
 629	dma_release_channel(mas->tx);
 630err_tx:
 631	mas->tx = NULL;
 632	return ret;
 633}
 634
 635static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
 636{
 637	if (mas->rx) {
 638		dma_release_channel(mas->rx);
 639		mas->rx = NULL;
 640	}
 641
 642	if (mas->tx) {
 643		dma_release_channel(mas->tx);
 644		mas->tx = NULL;
 645	}
 646}
 647
 648static int spi_geni_init(struct spi_geni_master *mas)
 649{
 650	struct spi_controller *spi = dev_get_drvdata(mas->dev);
 651	struct geni_se *se = &mas->se;
 652	unsigned int proto, major, minor, ver;
 653	u32 spi_tx_cfg, fifo_disable;
 654	int ret = -ENXIO;
 655
 656	pm_runtime_get_sync(mas->dev);
 657
 658	proto = geni_se_read_proto(se);
 659
 660	if (spi->target) {
 661		if (proto != GENI_SE_SPI_SLAVE) {
 662			dev_err(mas->dev, "Invalid proto %d\n", proto);
 663			goto out_pm;
 664		}
 665		spi_slv_setup(mas);
 666	} else if (proto != GENI_SE_SPI) {
 667		dev_err(mas->dev, "Invalid proto %d\n", proto);
 668		goto out_pm;
 669	}
 670	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
 671
 672	/* Width of Tx and Rx FIFO is same */
 673	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
 674
 675	/*
 676	 * Hardware programming guide suggests to configure
 677	 * RX FIFO RFR level to fifo_depth-2.
 678	 */
 679	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
 680	/* Transmit an entire FIFO worth of data per IRQ */
 681	mas->tx_wm = 1;
 682	ver = geni_se_get_qup_hw_version(se);
 683	major = GENI_SE_VERSION_MAJOR(ver);
 684	minor = GENI_SE_VERSION_MINOR(ver);
 685
 686	if (major == 1 && minor == 0)
 687		mas->oversampling = 2;
 688	else
 689		mas->oversampling = 1;
 690
 691	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
 692	switch (fifo_disable) {
 693	case 1:
 694		ret = spi_geni_grab_gpi_chan(mas);
 695		if (!ret) { /* success case */
 696			mas->cur_xfer_mode = GENI_GPI_DMA;
 697			geni_se_select_mode(se, GENI_GPI_DMA);
 698			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
 699			break;
 700		} else if (ret == -EPROBE_DEFER) {
 701			goto out_pm;
 702		}
 703		/*
 704		 * in case of failure to get gpi dma channel, we can still do the
 705		 * FIFO mode, so fallthrough
 706		 */
 707		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
 708		fallthrough;
 709
 710	case 0:
 711		mas->cur_xfer_mode = GENI_SE_FIFO;
 712		geni_se_select_mode(se, GENI_SE_FIFO);
 713		ret = 0;
 714		break;
 715	}
 716
 717	/* We always control CS manually */
 718	if (!spi->target) {
 719		spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
 720		spi_tx_cfg &= ~CS_TOGGLE;
 721		writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
 722	}
 723
 724out_pm:
 725	pm_runtime_put(mas->dev);
 726	return ret;
 727}
 728
 729static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
 730{
 731	/*
 732	 * Calculate how many bytes we'll put in each FIFO word.  If the
 733	 * transfer words don't pack cleanly into a FIFO word we'll just put
 734	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
 735	 */
 736	if (mas->fifo_width_bits % mas->cur_bits_per_word)
 737		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
 738						       BITS_PER_BYTE));
 739
 740	return mas->fifo_width_bits / BITS_PER_BYTE;
 741}
 742
 743static bool geni_spi_handle_tx(struct spi_geni_master *mas)
 744{
 745	struct geni_se *se = &mas->se;
 746	unsigned int max_bytes;
 747	const u8 *tx_buf;
 748	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 749	unsigned int i = 0;
 750
 751	/* Stop the watermark IRQ if nothing to send */
 752	if (!mas->cur_xfer) {
 753		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 754		return false;
 755	}
 756
 757	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
 758	if (mas->tx_rem_bytes < max_bytes)
 759		max_bytes = mas->tx_rem_bytes;
 760
 761	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
 762	while (i < max_bytes) {
 763		unsigned int j;
 764		unsigned int bytes_to_write;
 765		u32 fifo_word = 0;
 766		u8 *fifo_byte = (u8 *)&fifo_word;
 767
 768		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
 769		for (j = 0; j < bytes_to_write; j++)
 770			fifo_byte[j] = tx_buf[i++];
 771		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
 772	}
 773	mas->tx_rem_bytes -= max_bytes;
 774	if (!mas->tx_rem_bytes) {
 775		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 776		return false;
 777	}
 778	return true;
 779}
 780
 781static void geni_spi_handle_rx(struct spi_geni_master *mas)
 782{
 783	struct geni_se *se = &mas->se;
 784	u32 rx_fifo_status;
 785	unsigned int rx_bytes;
 786	unsigned int rx_last_byte_valid;
 787	u8 *rx_buf;
 788	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 789	unsigned int i = 0;
 790
 791	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
 792	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
 793	if (rx_fifo_status & RX_LAST) {
 794		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
 795		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
 796		if (rx_last_byte_valid && rx_last_byte_valid < 4)
 797			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
 798	}
 799
 800	/* Clear out the FIFO and bail if nowhere to put it */
 801	if (!mas->cur_xfer) {
 802		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
 803			readl(se->base + SE_GENI_RX_FIFOn);
 804		return;
 805	}
 806
 807	if (mas->rx_rem_bytes < rx_bytes)
 808		rx_bytes = mas->rx_rem_bytes;
 809
 810	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
 811	while (i < rx_bytes) {
 812		u32 fifo_word = 0;
 813		u8 *fifo_byte = (u8 *)&fifo_word;
 814		unsigned int bytes_to_read;
 815		unsigned int j;
 816
 817		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
 818		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
 819		for (j = 0; j < bytes_to_read; j++)
 820			rx_buf[i++] = fifo_byte[j];
 821	}
 822	mas->rx_rem_bytes -= rx_bytes;
 823}
 824
 825static int setup_se_xfer(struct spi_transfer *xfer,
 826				struct spi_geni_master *mas,
 827				u16 mode, struct spi_controller *spi)
 828{
 829	u32 m_cmd = 0;
 830	u32 len;
 831	struct geni_se *se = &mas->se;
 832	int ret;
 833
 834	/*
 835	 * Ensure that our interrupt handler isn't still running from some
 836	 * prior command before we start messing with the hardware behind
 837	 * its back.  We don't need to _keep_ the lock here since we're only
 838	 * worried about racing with out interrupt handler.  The SPI core
 839	 * already handles making sure that we're not trying to do two
 840	 * transfers at once or setting a chip select and doing a transfer
 841	 * concurrently.
 842	 *
 843	 * NOTE: we actually _can't_ hold the lock here because possibly we
 844	 * might call clk_set_rate() which needs to be able to sleep.
 845	 */
 846	spin_lock_irq(&mas->lock);
 847	spin_unlock_irq(&mas->lock);
 848
 849	if (xfer->bits_per_word != mas->cur_bits_per_word) {
 850		spi_setup_word_len(mas, mode, xfer->bits_per_word);
 851		mas->cur_bits_per_word = xfer->bits_per_word;
 852	}
 853
 854	/* Speed and bits per word can be overridden per transfer */
 855	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
 856	if (ret)
 857		return ret;
 858
 859	mas->tx_rem_bytes = 0;
 860	mas->rx_rem_bytes = 0;
 861
 862	len = get_xfer_len_in_words(xfer, mas);
 863
 864	mas->cur_xfer = xfer;
 865	if (xfer->tx_buf) {
 866		m_cmd |= SPI_TX_ONLY;
 867		mas->tx_rem_bytes = xfer->len;
 868		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
 869	}
 870
 871	if (xfer->rx_buf) {
 872		m_cmd |= SPI_RX_ONLY;
 873		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
 874		mas->rx_rem_bytes = xfer->len;
 875	}
 876
 877	/*
 878	 * Select DMA mode if sgt are present; and with only 1 entry
 879	 * This is not a serious limitation because the xfer buffers are
 880	 * expected to fit into in 1 entry almost always, and if any
 881	 * doesn't for any reason we fall back to FIFO mode anyway
 882	 */
 883	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
 884		mas->cur_xfer_mode = GENI_SE_FIFO;
 885	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
 886		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
 887			xfer->tx_sg.nents, xfer->rx_sg.nents);
 888		mas->cur_xfer_mode = GENI_SE_FIFO;
 889	} else
 890		mas->cur_xfer_mode = GENI_SE_DMA;
 891	geni_se_select_mode(se, mas->cur_xfer_mode);
 892
 893	/*
 894	 * Lock around right before we start the transfer since our
 895	 * interrupt could come in at any time now.
 896	 */
 897	spin_lock_irq(&mas->lock);
 898	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
 899
 900	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 901		if (m_cmd & SPI_RX_ONLY)
 902			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
 903				sg_dma_len(xfer->rx_sg.sgl));
 904		if (m_cmd & SPI_TX_ONLY)
 905			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
 906				sg_dma_len(xfer->tx_sg.sgl));
 907	} else if (m_cmd & SPI_TX_ONLY) {
 908		if (geni_spi_handle_tx(mas))
 909			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
 910	}
 911
 912	spin_unlock_irq(&mas->lock);
 913	return ret;
 914}
 915
 916static int spi_geni_transfer_one(struct spi_controller *spi,
 917				 struct spi_device *slv,
 918				 struct spi_transfer *xfer)
 919{
 920	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 921	int ret;
 922
 923	if (spi_geni_is_abort_still_pending(mas))
 924		return -EBUSY;
 925
 926	/* Terminate and return success for 0 byte length transfer */
 927	if (!xfer->len)
 928		return 0;
 929
 930	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
 931		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
 932		/* SPI framework expects +ve ret code to wait for transfer complete */
 933		if (!ret)
 934			ret = 1;
 935		return ret;
 936	}
 937	return setup_gsi_xfer(xfer, mas, slv, spi);
 938}
 939
 940static irqreturn_t geni_spi_isr(int irq, void *data)
 941{
 942	struct spi_controller *spi = data;
 943	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 944	struct geni_se *se = &mas->se;
 945	u32 m_irq;
 946
 947	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 948	if (!m_irq)
 949		return IRQ_NONE;
 950
 951	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
 952		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
 953		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
 954		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
 955
 956	spin_lock(&mas->lock);
 957
 958	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
 959		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
 960			geni_spi_handle_rx(mas);
 961
 962		if (m_irq & M_TX_FIFO_WATERMARK_EN)
 963			geni_spi_handle_tx(mas);
 964
 965		if (m_irq & M_CMD_DONE_EN) {
 966			if (mas->cur_xfer) {
 967				spi_finalize_current_transfer(spi);
 968				mas->cur_xfer = NULL;
 969				/*
 970				 * If this happens, then a CMD_DONE came before all the
 971				 * Tx buffer bytes were sent out. This is unusual, log
 972				 * this condition and disable the WM interrupt to
 973				 * prevent the system from stalling due an interrupt
 974				 * storm.
 975				 *
 976				 * If this happens when all Rx bytes haven't been
 977				 * received, log the condition. The only known time
 978				 * this can happen is if bits_per_word != 8 and some
 979				 * registers that expect xfer lengths in num spi_words
 980				 * weren't written correctly.
 981				 */
 982				if (mas->tx_rem_bytes) {
 983					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 984					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
 985						mas->tx_rem_bytes, mas->cur_bits_per_word);
 986				}
 987				if (mas->rx_rem_bytes)
 988					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
 989						mas->rx_rem_bytes, mas->cur_bits_per_word);
 990			} else {
 991				complete(&mas->cs_done);
 992			}
 993		}
 994	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
 995		const struct spi_transfer *xfer = mas->cur_xfer;
 996		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
 997		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
 998
 999		if (dma_tx_status)
1000			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
1001		if (dma_rx_status)
1002			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
1003		if (dma_tx_status & TX_DMA_DONE)
1004			mas->tx_rem_bytes = 0;
1005		if (dma_rx_status & RX_DMA_DONE)
1006			mas->rx_rem_bytes = 0;
1007		if (dma_tx_status & TX_RESET_DONE)
1008			complete(&mas->tx_reset_done);
1009		if (dma_rx_status & RX_RESET_DONE)
1010			complete(&mas->rx_reset_done);
1011		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
1012			spi_finalize_current_transfer(spi);
1013			mas->cur_xfer = NULL;
1014		}
1015	}
1016
1017	if (m_irq & M_CMD_CANCEL_EN)
1018		complete(&mas->cancel_done);
1019	if (m_irq & M_CMD_ABORT_EN)
1020		complete(&mas->abort_done);
1021
1022	/*
1023	 * It's safe or a good idea to Ack all of our interrupts at the end
1024	 * of the function. Specifically:
1025	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1026	 *   clearing Acks. Clearing at the end relies on nobody else having
1027	 *   started a new transfer yet or else we could be clearing _their_
1028	 *   done bit, but everyone grabs the spinlock before starting a new
1029	 *   transfer.
1030	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1031	 *   to be "latched level" interrupts so it's important to clear them
1032	 *   _after_ you've handled the condition and always safe to do so
1033	 *   since they'll re-assert if they're still happening.
1034	 */
1035	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
1036
1037	spin_unlock(&mas->lock);
1038
1039	return IRQ_HANDLED;
1040}
1041
1042static int spi_geni_probe(struct platform_device *pdev)
1043{
1044	int ret, irq;
1045	struct spi_controller *spi;
1046	struct spi_geni_master *mas;
1047	void __iomem *base;
1048	struct clk *clk;
1049	struct device *dev = &pdev->dev;
1050
1051	irq = platform_get_irq(pdev, 0);
1052	if (irq < 0)
1053		return irq;
1054
1055	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1056	if (ret)
1057		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1058
1059	base = devm_platform_ioremap_resource(pdev, 0);
1060	if (IS_ERR(base))
1061		return PTR_ERR(base);
1062
1063	clk = devm_clk_get(dev, "se");
1064	if (IS_ERR(clk))
1065		return PTR_ERR(clk);
1066
1067	spi = devm_spi_alloc_host(dev, sizeof(*mas));
1068	if (!spi)
1069		return -ENOMEM;
1070
1071	platform_set_drvdata(pdev, spi);
1072	mas = spi_controller_get_devdata(spi);
1073	mas->irq = irq;
1074	mas->dev = dev;
1075	mas->se.dev = dev;
1076	mas->se.wrapper = dev_get_drvdata(dev->parent);
1077	mas->se.base = base;
1078	mas->se.clk = clk;
1079
1080	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1081	if (ret)
1082		return ret;
1083	/* OPP table is optional */
1084	ret = devm_pm_opp_of_add_table(&pdev->dev);
1085	if (ret && ret != -ENODEV) {
1086		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1087		return ret;
1088	}
1089
1090	spi->bus_num = -1;
1091	spi->dev.of_node = dev->of_node;
1092	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1093	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1094	spi->num_chipselect = 4;
1095	spi->max_speed_hz = 50000000;
1096	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1097	spi->prepare_message = spi_geni_prepare_message;
1098	spi->transfer_one = spi_geni_transfer_one;
1099	spi->can_dma = geni_can_dma;
1100	spi->dma_map_dev = dev->parent;
1101	spi->auto_runtime_pm = true;
1102	spi->handle_err = spi_geni_handle_err;
1103	spi->use_gpio_descriptors = true;
1104
1105	init_completion(&mas->cs_done);
1106	init_completion(&mas->cancel_done);
1107	init_completion(&mas->abort_done);
1108	init_completion(&mas->tx_reset_done);
1109	init_completion(&mas->rx_reset_done);
1110	spin_lock_init(&mas->lock);
1111	pm_runtime_use_autosuspend(&pdev->dev);
1112	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1113	pm_runtime_enable(dev);
1114
1115	if (device_property_read_bool(&pdev->dev, "spi-slave"))
1116		spi->target = true;
1117
1118	ret = geni_icc_get(&mas->se, NULL);
1119	if (ret)
1120		goto spi_geni_probe_runtime_disable;
1121	/* Set the bus quota to a reasonable value for register access */
1122	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1123	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1124
1125	ret = geni_icc_set_bw(&mas->se);
1126	if (ret)
1127		goto spi_geni_probe_runtime_disable;
1128
1129	ret = spi_geni_init(mas);
1130	if (ret)
1131		goto spi_geni_probe_runtime_disable;
1132
1133	/*
1134	 * check the mode supported and set_cs for fifo mode only
1135	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1136	 * TRE
1137	 */
1138	if (!spi->target && mas->cur_xfer_mode == GENI_SE_FIFO)
1139		spi->set_cs = spi_geni_set_cs;
1140
1141	/*
1142	 * TX is required per GSI spec, see setup_gsi_xfer().
1143	 */
1144	if (mas->cur_xfer_mode == GENI_GPI_DMA)
1145		spi->flags = SPI_CONTROLLER_MUST_TX;
1146
1147	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1148	if (ret)
1149		goto spi_geni_release_dma;
1150
1151	ret = spi_register_controller(spi);
1152	if (ret)
1153		goto spi_geni_probe_free_irq;
1154
1155	return 0;
1156spi_geni_probe_free_irq:
1157	free_irq(mas->irq, spi);
1158spi_geni_release_dma:
1159	spi_geni_release_dma_chan(mas);
1160spi_geni_probe_runtime_disable:
1161	pm_runtime_disable(dev);
1162	return ret;
1163}
1164
1165static void spi_geni_remove(struct platform_device *pdev)
1166{
1167	struct spi_controller *spi = platform_get_drvdata(pdev);
1168	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1169
1170	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1171	spi_unregister_controller(spi);
1172
1173	spi_geni_release_dma_chan(mas);
1174
1175	free_irq(mas->irq, spi);
1176	pm_runtime_disable(&pdev->dev);
1177}
1178
1179static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1180{
1181	struct spi_controller *spi = dev_get_drvdata(dev);
1182	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1183	int ret;
1184
1185	/* Drop the performance state vote */
1186	dev_pm_opp_set_rate(dev, 0);
1187
1188	ret = geni_se_resources_off(&mas->se);
1189	if (ret)
1190		return ret;
1191
1192	return geni_icc_disable(&mas->se);
1193}
1194
1195static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1196{
1197	struct spi_controller *spi = dev_get_drvdata(dev);
1198	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1199	int ret;
1200
1201	ret = geni_icc_enable(&mas->se);
1202	if (ret)
1203		return ret;
1204
1205	ret = geni_se_resources_on(&mas->se);
1206	if (ret)
1207		return ret;
1208
1209	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1210}
1211
1212static int __maybe_unused spi_geni_suspend(struct device *dev)
1213{
1214	struct spi_controller *spi = dev_get_drvdata(dev);
1215	int ret;
1216
1217	ret = spi_controller_suspend(spi);
1218	if (ret)
1219		return ret;
1220
1221	ret = pm_runtime_force_suspend(dev);
1222	if (ret)
1223		spi_controller_resume(spi);
1224
1225	return ret;
1226}
1227
1228static int __maybe_unused spi_geni_resume(struct device *dev)
1229{
1230	struct spi_controller *spi = dev_get_drvdata(dev);
1231	int ret;
1232
1233	ret = pm_runtime_force_resume(dev);
1234	if (ret)
1235		return ret;
1236
1237	ret = spi_controller_resume(spi);
1238	if (ret)
1239		pm_runtime_force_suspend(dev);
1240
1241	return ret;
1242}
1243
1244static const struct dev_pm_ops spi_geni_pm_ops = {
1245	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1246					spi_geni_runtime_resume, NULL)
1247	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1248};
1249
1250static const struct of_device_id spi_geni_dt_match[] = {
1251	{ .compatible = "qcom,geni-spi" },
1252	{}
1253};
1254MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1255
1256static struct platform_driver spi_geni_driver = {
1257	.probe  = spi_geni_probe,
1258	.remove_new = spi_geni_remove,
1259	.driver = {
1260		.name = "geni_spi",
1261		.pm = &spi_geni_pm_ops,
1262		.of_match_table = spi_geni_dt_match,
1263	},
1264};
1265module_platform_driver(spi_geni_driver);
1266
1267MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1268MODULE_LICENSE("GPL v2");
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
   3
   4#include <linux/clk.h>
   5#include <linux/dmaengine.h>
   6#include <linux/dma-mapping.h>
   7#include <linux/dma/qcom-gpi-dma.h>
   8#include <linux/interrupt.h>
   9#include <linux/io.h>
  10#include <linux/log2.h>
  11#include <linux/module.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_opp.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/property.h>
  16#include <linux/soc/qcom/geni-se.h>
  17#include <linux/spi/spi.h>
  18#include <linux/spinlock.h>
  19
  20/* SPI SE specific registers and respective register fields */
  21#define SE_SPI_CPHA		0x224
  22#define CPHA			BIT(0)
  23
  24#define SE_SPI_LOOPBACK		0x22c
  25#define LOOPBACK_ENABLE		0x1
  26#define NORMAL_MODE		0x0
  27#define LOOPBACK_MSK		GENMASK(1, 0)
  28
  29#define SE_SPI_CPOL		0x230
  30#define CPOL			BIT(2)
  31
  32#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
  33#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
  34
  35#define SE_SPI_DEMUX_SEL	0x250
  36#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
  37
  38#define SE_SPI_TRANS_CFG	0x25c
  39#define CS_TOGGLE		BIT(1)
  40
  41#define SE_SPI_WORD_LEN		0x268
  42#define WORD_LEN_MSK		GENMASK(9, 0)
  43#define MIN_WORD_LEN		4
  44
  45#define SE_SPI_TX_TRANS_LEN	0x26c
  46#define SE_SPI_RX_TRANS_LEN	0x270
  47#define TRANS_LEN_MSK		GENMASK(23, 0)
  48
  49#define SE_SPI_PRE_POST_CMD_DLY	0x274
  50
  51#define SE_SPI_DELAY_COUNTERS	0x278
  52#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
  53#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
  54#define SPI_CS_CLK_DELAY_SHFT		10
  55
  56#define SE_SPI_SLAVE_EN				(0x2BC)
  57#define SPI_SLAVE_EN				BIT(0)
  58
  59/* M_CMD OP codes for SPI */
  60#define SPI_TX_ONLY		1
  61#define SPI_RX_ONLY		2
  62#define SPI_TX_RX		7
  63#define SPI_CS_ASSERT		8
  64#define SPI_CS_DEASSERT		9
  65#define SPI_SCK_ONLY		10
  66/* M_CMD params for SPI */
  67#define SPI_PRE_CMD_DELAY	BIT(0)
  68#define TIMESTAMP_BEFORE	BIT(1)
  69#define FRAGMENTATION		BIT(2)
  70#define TIMESTAMP_AFTER		BIT(3)
  71#define POST_CMD_DELAY		BIT(4)
  72
  73#define GSI_LOOPBACK_EN		BIT(0)
  74#define GSI_CS_TOGGLE		BIT(3)
  75#define GSI_CPHA		BIT(4)
  76#define GSI_CPOL		BIT(5)
  77
  78struct spi_geni_master {
  79	struct geni_se se;
  80	struct device *dev;
  81	u32 tx_fifo_depth;
  82	u32 fifo_width_bits;
  83	u32 tx_wm;
  84	u32 last_mode;
  85	unsigned long cur_speed_hz;
  86	unsigned long cur_sclk_hz;
  87	unsigned int cur_bits_per_word;
  88	unsigned int tx_rem_bytes;
  89	unsigned int rx_rem_bytes;
  90	const struct spi_transfer *cur_xfer;
  91	struct completion cs_done;
  92	struct completion cancel_done;
  93	struct completion abort_done;
  94	struct completion tx_reset_done;
  95	struct completion rx_reset_done;
  96	unsigned int oversampling;
  97	spinlock_t lock;
  98	int irq;
  99	bool cs_flag;
 100	bool abort_failed;
 101	struct dma_chan *tx;
 102	struct dma_chan *rx;
 103	int cur_xfer_mode;
 104};
 105
 106static void spi_slv_setup(struct spi_geni_master *mas)
 107{
 108	struct geni_se *se = &mas->se;
 109
 110	writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN);
 111	writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL);
 112	writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START);
 113	dev_dbg(mas->dev, "spi slave setup done\n");
 114}
 115
 116static int get_spi_clk_cfg(unsigned int speed_hz,
 117			struct spi_geni_master *mas,
 118			unsigned int *clk_idx,
 119			unsigned int *clk_div)
 120{
 121	unsigned long sclk_freq;
 122	unsigned int actual_hz;
 123	int ret;
 124
 125	ret = geni_se_clk_freq_match(&mas->se,
 126				speed_hz * mas->oversampling,
 127				clk_idx, &sclk_freq, false);
 128	if (ret) {
 129		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
 130							ret, speed_hz);
 131		return ret;
 132	}
 133
 134	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
 135	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
 136
 137	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
 138				actual_hz, sclk_freq, *clk_idx, *clk_div);
 139	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
 140	if (ret)
 141		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
 142	else
 143		mas->cur_sclk_hz = sclk_freq;
 144
 145	return ret;
 146}
 147
 148static void handle_se_timeout(struct spi_controller *spi,
 149			      struct spi_message *msg)
 150{
 151	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 152	unsigned long time_left;
 153	struct geni_se *se = &mas->se;
 154	const struct spi_transfer *xfer;
 155
 156	spin_lock_irq(&mas->lock);
 157	if (mas->cur_xfer_mode == GENI_SE_FIFO)
 158		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 159
 160	xfer = mas->cur_xfer;
 161	mas->cur_xfer = NULL;
 162
 163	if (spi->target) {
 164		/*
 165		 * skip CMD Cancel sequnece since spi target
 166		 * doesn`t support CMD Cancel sequnece
 167		 */
 168		spin_unlock_irq(&mas->lock);
 169		goto reset_if_dma;
 170	}
 171
 172	reinit_completion(&mas->cancel_done);
 173	geni_se_cancel_m_cmd(se);
 174	spin_unlock_irq(&mas->lock);
 175
 176	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
 177	if (time_left)
 178		goto reset_if_dma;
 179
 180	spin_lock_irq(&mas->lock);
 181	reinit_completion(&mas->abort_done);
 182	geni_se_abort_m_cmd(se);
 183	spin_unlock_irq(&mas->lock);
 184
 185	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
 186	if (!time_left) {
 187		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 188
 189		/*
 190		 * No need for a lock since SPI core has a lock and we never
 191		 * access this from an interrupt.
 192		 */
 193		mas->abort_failed = true;
 194	}
 195
 196reset_if_dma:
 197	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 198		if (xfer) {
 199			if (xfer->tx_buf) {
 200				spin_lock_irq(&mas->lock);
 201				reinit_completion(&mas->tx_reset_done);
 202				writel(1, se->base + SE_DMA_TX_FSM_RST);
 203				spin_unlock_irq(&mas->lock);
 204				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
 205				if (!time_left)
 206					dev_err(mas->dev, "DMA TX RESET failed\n");
 207			}
 208			if (xfer->rx_buf) {
 209				spin_lock_irq(&mas->lock);
 210				reinit_completion(&mas->rx_reset_done);
 211				writel(1, se->base + SE_DMA_RX_FSM_RST);
 212				spin_unlock_irq(&mas->lock);
 213				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
 214				if (!time_left)
 215					dev_err(mas->dev, "DMA RX RESET failed\n");
 216			}
 217		} else {
 218			/*
 219			 * This can happen if a timeout happened and we had to wait
 220			 * for lock in this function because isr was holding the lock
 221			 * and handling transfer completion at that time.
 222			 */
 223			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
 224		}
 225	}
 226}
 227
 228static void handle_gpi_timeout(struct spi_controller *spi, struct spi_message *msg)
 229{
 230	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 231
 232	dmaengine_terminate_sync(mas->tx);
 233	dmaengine_terminate_sync(mas->rx);
 234}
 235
 236static void spi_geni_handle_err(struct spi_controller *spi, struct spi_message *msg)
 237{
 238	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 239
 240	switch (mas->cur_xfer_mode) {
 241	case GENI_SE_FIFO:
 242	case GENI_SE_DMA:
 243		handle_se_timeout(spi, msg);
 244		break;
 245	case GENI_GPI_DMA:
 246		handle_gpi_timeout(spi, msg);
 247		break;
 248	default:
 249		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
 250	}
 251}
 252
 253static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
 254{
 255	struct geni_se *se = &mas->se;
 256	u32 m_irq, m_irq_en;
 257
 258	if (!mas->abort_failed)
 259		return false;
 260
 261	/*
 262	 * The only known case where a transfer times out and then a cancel
 263	 * times out then an abort times out is if something is blocking our
 264	 * interrupt handler from running.  Avoid starting any new transfers
 265	 * until that sorts itself out.
 266	 */
 267	spin_lock_irq(&mas->lock);
 268	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 269	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
 270	spin_unlock_irq(&mas->lock);
 271
 272	if (m_irq & m_irq_en) {
 273		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
 274			m_irq & m_irq_en);
 275		return true;
 276	}
 277
 278	/*
 279	 * If we're here the problem resolved itself so no need to check more
 280	 * on future transfers.
 281	 */
 282	mas->abort_failed = false;
 283
 284	return false;
 285}
 286
 287static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
 288{
 289	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
 290	struct spi_controller *spi = dev_get_drvdata(mas->dev);
 291	struct geni_se *se = &mas->se;
 292	unsigned long time_left;
 293
 294	if (!(slv->mode & SPI_CS_HIGH))
 295		set_flag = !set_flag;
 296
 297	if (set_flag == mas->cs_flag)
 298		return;
 299
 300	pm_runtime_get_sync(mas->dev);
 301
 302	if (spi_geni_is_abort_still_pending(mas)) {
 303		dev_err(mas->dev, "Can't set chip select\n");
 304		goto exit;
 305	}
 306
 307	spin_lock_irq(&mas->lock);
 308	if (mas->cur_xfer) {
 309		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
 310		spin_unlock_irq(&mas->lock);
 311		goto exit;
 312	}
 313
 314	mas->cs_flag = set_flag;
 315	/* set xfer_mode to FIFO to complete cs_done in isr */
 316	mas->cur_xfer_mode = GENI_SE_FIFO;
 317	geni_se_select_mode(se, mas->cur_xfer_mode);
 318
 319	reinit_completion(&mas->cs_done);
 320	if (set_flag)
 321		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
 322	else
 323		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 324	spin_unlock_irq(&mas->lock);
 325
 326	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
 327	if (!time_left) {
 328		dev_warn(mas->dev, "Timeout setting chip select\n");
 329		handle_se_timeout(spi, NULL);
 330	}
 331
 332exit:
 333	pm_runtime_put(mas->dev);
 334}
 335
 336static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
 337					unsigned int bits_per_word)
 338{
 339	unsigned int pack_words;
 340	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
 341	struct geni_se *se = &mas->se;
 342	u32 word_len;
 343
 344	/*
 345	 * If bits_per_word isn't a byte aligned value, set the packing to be
 346	 * 1 SPI word per FIFO word.
 347	 */
 348	if (!(mas->fifo_width_bits % bits_per_word))
 349		pack_words = mas->fifo_width_bits / bits_per_word;
 350	else
 351		pack_words = 1;
 352	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
 353								true, true);
 354	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
 355	writel(word_len, se->base + SE_SPI_WORD_LEN);
 356}
 357
 358static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
 359					unsigned long clk_hz)
 360{
 361	u32 clk_sel, m_clk_cfg, idx, div;
 362	struct geni_se *se = &mas->se;
 363	int ret;
 364
 365	if (clk_hz == mas->cur_speed_hz)
 366		return 0;
 367
 368	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
 369	if (ret) {
 370		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
 371		return ret;
 372	}
 373
 374	/*
 375	 * SPI core clock gets configured with the requested frequency
 376	 * or the frequency closer to the requested frequency.
 377	 * For that reason requested frequency is stored in the
 378	 * cur_speed_hz and referred in the consecutive transfer instead
 379	 * of calling clk_get_rate() API.
 380	 */
 381	mas->cur_speed_hz = clk_hz;
 382
 383	clk_sel = idx & CLK_SEL_MSK;
 384	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
 385	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
 386	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 387
 388	/* Set BW quota for CPU as driver supports FIFO mode only. */
 389	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
 390	ret = geni_icc_set_bw(se);
 391	if (ret)
 392		return ret;
 393
 394	return 0;
 395}
 396
 397static int setup_fifo_params(struct spi_device *spi_slv,
 398					struct spi_controller *spi)
 399{
 400	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 401	struct geni_se *se = &mas->se;
 402	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
 403	u32 demux_sel;
 404
 405	if (mas->last_mode != spi_slv->mode) {
 406		if (spi_slv->mode & SPI_LOOP)
 407			loopback_cfg = LOOPBACK_ENABLE;
 408
 409		if (spi_slv->mode & SPI_CPOL)
 410			cpol = CPOL;
 411
 412		if (spi_slv->mode & SPI_CPHA)
 413			cpha = CPHA;
 414
 415		if (spi_slv->mode & SPI_CS_HIGH)
 416			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
 417
 418		demux_sel = spi_get_chipselect(spi_slv, 0);
 419		mas->cur_bits_per_word = spi_slv->bits_per_word;
 420
 421		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
 422		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
 423		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
 424		writel(cpha, se->base + SE_SPI_CPHA);
 425		writel(cpol, se->base + SE_SPI_CPOL);
 426		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
 427
 428		mas->last_mode = spi_slv->mode;
 429	}
 430
 431	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
 432}
 433
 434static void
 435spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
 436{
 437	struct spi_controller *spi = cb;
 438
 439	spi->cur_msg->status = -EIO;
 440	if (result->result != DMA_TRANS_NOERROR) {
 441		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
 442		spi_finalize_current_transfer(spi);
 443		return;
 444	}
 445
 446	if (!result->residue) {
 447		spi->cur_msg->status = 0;
 448		dev_dbg(&spi->dev, "DMA txn completed\n");
 449	} else {
 450		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
 451	}
 452
 453	spi_finalize_current_transfer(spi);
 454}
 455
 456static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
 457			  struct spi_device *spi_slv, struct spi_controller *spi)
 458{
 459	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
 460	struct dma_slave_config config = {};
 461	struct gpi_spi_config peripheral = {};
 462	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
 463	int ret;
 464
 465	config.peripheral_config = &peripheral;
 466	config.peripheral_size = sizeof(peripheral);
 467	peripheral.set_config = true;
 468
 469	if (xfer->bits_per_word != mas->cur_bits_per_word ||
 470	    xfer->speed_hz != mas->cur_speed_hz) {
 471		mas->cur_bits_per_word = xfer->bits_per_word;
 472		mas->cur_speed_hz = xfer->speed_hz;
 473	}
 474
 475	if (xfer->tx_buf && xfer->rx_buf) {
 476		peripheral.cmd = SPI_DUPLEX;
 477	} else if (xfer->tx_buf) {
 478		peripheral.cmd = SPI_TX;
 479		peripheral.rx_len = 0;
 480	} else if (xfer->rx_buf) {
 481		peripheral.cmd = SPI_RX;
 482		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
 483			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
 484		} else {
 485			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
 486
 487			peripheral.rx_len = (xfer->len / bytes_per_word);
 488		}
 489	}
 490
 491	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
 492	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
 493	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
 494	peripheral.cs = spi_get_chipselect(spi_slv, 0);
 495	peripheral.pack_en = true;
 496	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
 497
 498	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
 499			      &peripheral.clk_src, &peripheral.clk_div);
 500	if (ret) {
 501		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
 502		return ret;
 503	}
 504
 505	if (!xfer->cs_change) {
 506		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
 507			peripheral.fragmentation = FRAGMENTATION;
 508	}
 509
 510	if (peripheral.cmd & SPI_RX) {
 511		dmaengine_slave_config(mas->rx, &config);
 512		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
 513						  DMA_DEV_TO_MEM, flags);
 514		if (!rx_desc) {
 515			dev_err(mas->dev, "Err setting up rx desc\n");
 516			return -EIO;
 517		}
 518	}
 519
 520	/*
 521	 * Prepare the TX always, even for RX or tx_buf being null, we would
 522	 * need TX to be prepared per GSI spec
 523	 */
 524	dmaengine_slave_config(mas->tx, &config);
 525	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
 526					  DMA_MEM_TO_DEV, flags);
 527	if (!tx_desc) {
 528		dev_err(mas->dev, "Err setting up tx desc\n");
 529		return -EIO;
 530	}
 531
 532	tx_desc->callback_result = spi_gsi_callback_result;
 533	tx_desc->callback_param = spi;
 534
 535	if (peripheral.cmd & SPI_RX)
 536		dmaengine_submit(rx_desc);
 537	dmaengine_submit(tx_desc);
 538
 539	if (peripheral.cmd & SPI_RX)
 540		dma_async_issue_pending(mas->rx);
 541
 542	dma_async_issue_pending(mas->tx);
 543	return 1;
 544}
 545
 546static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
 547				struct spi_geni_master *mas)
 548{
 549	u32 len;
 550
 551	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
 552		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
 553	else
 554		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
 555	len &= TRANS_LEN_MSK;
 556
 557	return len;
 558}
 559
 560static bool geni_can_dma(struct spi_controller *ctlr,
 561			 struct spi_device *slv, struct spi_transfer *xfer)
 562{
 563	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
 564	u32 len, fifo_size;
 565
 566	if (mas->cur_xfer_mode == GENI_GPI_DMA)
 567		return true;
 568
 569	/* Set SE DMA mode for SPI target. */
 570	if (ctlr->target)
 571		return true;
 572
 573	len = get_xfer_len_in_words(xfer, mas);
 574	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
 575
 576	if (len > fifo_size)
 577		return true;
 578	else
 579		return false;
 580}
 581
 582static int spi_geni_prepare_message(struct spi_controller *spi,
 583				    struct spi_message *spi_msg)
 584{
 585	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 586	int ret;
 587
 588	switch (mas->cur_xfer_mode) {
 589	case GENI_SE_FIFO:
 590	case GENI_SE_DMA:
 591		if (spi_geni_is_abort_still_pending(mas))
 592			return -EBUSY;
 593		ret = setup_fifo_params(spi_msg->spi, spi);
 594		if (ret)
 595			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 596		return ret;
 597
 598	case GENI_GPI_DMA:
 599		/* nothing to do for GPI DMA */
 600		return 0;
 601	}
 602
 603	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
 604	return -EINVAL;
 605}
 606
 607static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
 608{
 609	int ret;
 610
 611	mas->tx = dma_request_chan(mas->dev, "tx");
 612	if (IS_ERR(mas->tx)) {
 613		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
 614				    "Failed to get tx DMA ch\n");
 615		goto err_tx;
 616	}
 617
 618	mas->rx = dma_request_chan(mas->dev, "rx");
 619	if (IS_ERR(mas->rx)) {
 620		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
 621				    "Failed to get rx DMA ch\n");
 622		goto err_rx;
 623	}
 624
 625	return 0;
 626
 627err_rx:
 628	mas->rx = NULL;
 629	dma_release_channel(mas->tx);
 630err_tx:
 631	mas->tx = NULL;
 632	return ret;
 633}
 634
 635static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
 636{
 637	if (mas->rx) {
 638		dma_release_channel(mas->rx);
 639		mas->rx = NULL;
 640	}
 641
 642	if (mas->tx) {
 643		dma_release_channel(mas->tx);
 644		mas->tx = NULL;
 645	}
 646}
 647
 648static int spi_geni_init(struct spi_geni_master *mas)
 649{
 650	struct spi_master *spi = dev_get_drvdata(mas->dev);
 651	struct geni_se *se = &mas->se;
 652	unsigned int proto, major, minor, ver;
 653	u32 spi_tx_cfg, fifo_disable;
 654	int ret = -ENXIO;
 655
 656	pm_runtime_get_sync(mas->dev);
 657
 658	proto = geni_se_read_proto(se);
 659
 660	if (spi->target) {
 661		if (proto != GENI_SE_SPI_SLAVE) {
 662			dev_err(mas->dev, "Invalid proto %d\n", proto);
 663			goto out_pm;
 664		}
 665		spi_slv_setup(mas);
 666	} else if (proto != GENI_SE_SPI) {
 667		dev_err(mas->dev, "Invalid proto %d\n", proto);
 668		goto out_pm;
 669	}
 670	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
 671
 672	/* Width of Tx and Rx FIFO is same */
 673	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
 674
 675	/*
 676	 * Hardware programming guide suggests to configure
 677	 * RX FIFO RFR level to fifo_depth-2.
 678	 */
 679	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
 680	/* Transmit an entire FIFO worth of data per IRQ */
 681	mas->tx_wm = 1;
 682	ver = geni_se_get_qup_hw_version(se);
 683	major = GENI_SE_VERSION_MAJOR(ver);
 684	minor = GENI_SE_VERSION_MINOR(ver);
 685
 686	if (major == 1 && minor == 0)
 687		mas->oversampling = 2;
 688	else
 689		mas->oversampling = 1;
 690
 691	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
 692	switch (fifo_disable) {
 693	case 1:
 694		ret = spi_geni_grab_gpi_chan(mas);
 695		if (!ret) { /* success case */
 696			mas->cur_xfer_mode = GENI_GPI_DMA;
 697			geni_se_select_mode(se, GENI_GPI_DMA);
 698			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
 699			break;
 700		} else if (ret == -EPROBE_DEFER) {
 701			goto out_pm;
 702		}
 703		/*
 704		 * in case of failure to get gpi dma channel, we can still do the
 705		 * FIFO mode, so fallthrough
 706		 */
 707		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
 708		fallthrough;
 709
 710	case 0:
 711		mas->cur_xfer_mode = GENI_SE_FIFO;
 712		geni_se_select_mode(se, GENI_SE_FIFO);
 713		ret = 0;
 714		break;
 715	}
 716
 717	/* We always control CS manually */
 718	if (!spi->target) {
 719		spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
 720		spi_tx_cfg &= ~CS_TOGGLE;
 721		writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
 722	}
 723
 724out_pm:
 725	pm_runtime_put(mas->dev);
 726	return ret;
 727}
 728
 729static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
 730{
 731	/*
 732	 * Calculate how many bytes we'll put in each FIFO word.  If the
 733	 * transfer words don't pack cleanly into a FIFO word we'll just put
 734	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
 735	 */
 736	if (mas->fifo_width_bits % mas->cur_bits_per_word)
 737		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
 738						       BITS_PER_BYTE));
 739
 740	return mas->fifo_width_bits / BITS_PER_BYTE;
 741}
 742
 743static bool geni_spi_handle_tx(struct spi_geni_master *mas)
 744{
 745	struct geni_se *se = &mas->se;
 746	unsigned int max_bytes;
 747	const u8 *tx_buf;
 748	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 749	unsigned int i = 0;
 750
 751	/* Stop the watermark IRQ if nothing to send */
 752	if (!mas->cur_xfer) {
 753		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 754		return false;
 755	}
 756
 757	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
 758	if (mas->tx_rem_bytes < max_bytes)
 759		max_bytes = mas->tx_rem_bytes;
 760
 761	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
 762	while (i < max_bytes) {
 763		unsigned int j;
 764		unsigned int bytes_to_write;
 765		u32 fifo_word = 0;
 766		u8 *fifo_byte = (u8 *)&fifo_word;
 767
 768		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
 769		for (j = 0; j < bytes_to_write; j++)
 770			fifo_byte[j] = tx_buf[i++];
 771		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
 772	}
 773	mas->tx_rem_bytes -= max_bytes;
 774	if (!mas->tx_rem_bytes) {
 775		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 776		return false;
 777	}
 778	return true;
 779}
 780
 781static void geni_spi_handle_rx(struct spi_geni_master *mas)
 782{
 783	struct geni_se *se = &mas->se;
 784	u32 rx_fifo_status;
 785	unsigned int rx_bytes;
 786	unsigned int rx_last_byte_valid;
 787	u8 *rx_buf;
 788	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 789	unsigned int i = 0;
 790
 791	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
 792	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
 793	if (rx_fifo_status & RX_LAST) {
 794		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
 795		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
 796		if (rx_last_byte_valid && rx_last_byte_valid < 4)
 797			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
 798	}
 799
 800	/* Clear out the FIFO and bail if nowhere to put it */
 801	if (!mas->cur_xfer) {
 802		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
 803			readl(se->base + SE_GENI_RX_FIFOn);
 804		return;
 805	}
 806
 807	if (mas->rx_rem_bytes < rx_bytes)
 808		rx_bytes = mas->rx_rem_bytes;
 809
 810	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
 811	while (i < rx_bytes) {
 812		u32 fifo_word = 0;
 813		u8 *fifo_byte = (u8 *)&fifo_word;
 814		unsigned int bytes_to_read;
 815		unsigned int j;
 816
 817		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
 818		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
 819		for (j = 0; j < bytes_to_read; j++)
 820			rx_buf[i++] = fifo_byte[j];
 821	}
 822	mas->rx_rem_bytes -= rx_bytes;
 823}
 824
 825static int setup_se_xfer(struct spi_transfer *xfer,
 826				struct spi_geni_master *mas,
 827				u16 mode, struct spi_controller *spi)
 828{
 829	u32 m_cmd = 0;
 830	u32 len;
 831	struct geni_se *se = &mas->se;
 832	int ret;
 833
 834	/*
 835	 * Ensure that our interrupt handler isn't still running from some
 836	 * prior command before we start messing with the hardware behind
 837	 * its back.  We don't need to _keep_ the lock here since we're only
 838	 * worried about racing with out interrupt handler.  The SPI core
 839	 * already handles making sure that we're not trying to do two
 840	 * transfers at once or setting a chip select and doing a transfer
 841	 * concurrently.
 842	 *
 843	 * NOTE: we actually _can't_ hold the lock here because possibly we
 844	 * might call clk_set_rate() which needs to be able to sleep.
 845	 */
 846	spin_lock_irq(&mas->lock);
 847	spin_unlock_irq(&mas->lock);
 848
 849	if (xfer->bits_per_word != mas->cur_bits_per_word) {
 850		spi_setup_word_len(mas, mode, xfer->bits_per_word);
 851		mas->cur_bits_per_word = xfer->bits_per_word;
 852	}
 853
 854	/* Speed and bits per word can be overridden per transfer */
 855	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
 856	if (ret)
 857		return ret;
 858
 859	mas->tx_rem_bytes = 0;
 860	mas->rx_rem_bytes = 0;
 861
 862	len = get_xfer_len_in_words(xfer, mas);
 863
 864	mas->cur_xfer = xfer;
 865	if (xfer->tx_buf) {
 866		m_cmd |= SPI_TX_ONLY;
 867		mas->tx_rem_bytes = xfer->len;
 868		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
 869	}
 870
 871	if (xfer->rx_buf) {
 872		m_cmd |= SPI_RX_ONLY;
 873		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
 874		mas->rx_rem_bytes = xfer->len;
 875	}
 876
 877	/*
 878	 * Select DMA mode if sgt are present; and with only 1 entry
 879	 * This is not a serious limitation because the xfer buffers are
 880	 * expected to fit into in 1 entry almost always, and if any
 881	 * doesn't for any reason we fall back to FIFO mode anyway
 882	 */
 883	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
 884		mas->cur_xfer_mode = GENI_SE_FIFO;
 885	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
 886		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
 887			xfer->tx_sg.nents, xfer->rx_sg.nents);
 888		mas->cur_xfer_mode = GENI_SE_FIFO;
 889	} else
 890		mas->cur_xfer_mode = GENI_SE_DMA;
 891	geni_se_select_mode(se, mas->cur_xfer_mode);
 892
 893	/*
 894	 * Lock around right before we start the transfer since our
 895	 * interrupt could come in at any time now.
 896	 */
 897	spin_lock_irq(&mas->lock);
 898	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
 899
 900	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 901		if (m_cmd & SPI_RX_ONLY)
 902			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
 903				sg_dma_len(xfer->rx_sg.sgl));
 904		if (m_cmd & SPI_TX_ONLY)
 905			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
 906				sg_dma_len(xfer->tx_sg.sgl));
 907	} else if (m_cmd & SPI_TX_ONLY) {
 908		if (geni_spi_handle_tx(mas))
 909			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
 910	}
 911
 912	spin_unlock_irq(&mas->lock);
 913	return ret;
 914}
 915
 916static int spi_geni_transfer_one(struct spi_controller *spi,
 917				 struct spi_device *slv,
 918				 struct spi_transfer *xfer)
 919{
 920	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 921	int ret;
 922
 923	if (spi_geni_is_abort_still_pending(mas))
 924		return -EBUSY;
 925
 926	/* Terminate and return success for 0 byte length transfer */
 927	if (!xfer->len)
 928		return 0;
 929
 930	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
 931		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
 932		/* SPI framework expects +ve ret code to wait for transfer complete */
 933		if (!ret)
 934			ret = 1;
 935		return ret;
 936	}
 937	return setup_gsi_xfer(xfer, mas, slv, spi);
 938}
 939
 940static irqreturn_t geni_spi_isr(int irq, void *data)
 941{
 942	struct spi_controller *spi = data;
 943	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
 944	struct geni_se *se = &mas->se;
 945	u32 m_irq;
 946
 947	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 948	if (!m_irq)
 949		return IRQ_NONE;
 950
 951	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
 952		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
 953		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
 954		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
 955
 956	spin_lock(&mas->lock);
 957
 958	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
 959		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
 960			geni_spi_handle_rx(mas);
 961
 962		if (m_irq & M_TX_FIFO_WATERMARK_EN)
 963			geni_spi_handle_tx(mas);
 964
 965		if (m_irq & M_CMD_DONE_EN) {
 966			if (mas->cur_xfer) {
 967				spi_finalize_current_transfer(spi);
 968				mas->cur_xfer = NULL;
 969				/*
 970				 * If this happens, then a CMD_DONE came before all the
 971				 * Tx buffer bytes were sent out. This is unusual, log
 972				 * this condition and disable the WM interrupt to
 973				 * prevent the system from stalling due an interrupt
 974				 * storm.
 975				 *
 976				 * If this happens when all Rx bytes haven't been
 977				 * received, log the condition. The only known time
 978				 * this can happen is if bits_per_word != 8 and some
 979				 * registers that expect xfer lengths in num spi_words
 980				 * weren't written correctly.
 981				 */
 982				if (mas->tx_rem_bytes) {
 983					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 984					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
 985						mas->tx_rem_bytes, mas->cur_bits_per_word);
 986				}
 987				if (mas->rx_rem_bytes)
 988					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
 989						mas->rx_rem_bytes, mas->cur_bits_per_word);
 990			} else {
 991				complete(&mas->cs_done);
 992			}
 993		}
 994	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
 995		const struct spi_transfer *xfer = mas->cur_xfer;
 996		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
 997		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
 998
 999		if (dma_tx_status)
1000			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
1001		if (dma_rx_status)
1002			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
1003		if (dma_tx_status & TX_DMA_DONE)
1004			mas->tx_rem_bytes = 0;
1005		if (dma_rx_status & RX_DMA_DONE)
1006			mas->rx_rem_bytes = 0;
1007		if (dma_tx_status & TX_RESET_DONE)
1008			complete(&mas->tx_reset_done);
1009		if (dma_rx_status & RX_RESET_DONE)
1010			complete(&mas->rx_reset_done);
1011		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
1012			spi_finalize_current_transfer(spi);
1013			mas->cur_xfer = NULL;
1014		}
1015	}
1016
1017	if (m_irq & M_CMD_CANCEL_EN)
1018		complete(&mas->cancel_done);
1019	if (m_irq & M_CMD_ABORT_EN)
1020		complete(&mas->abort_done);
1021
1022	/*
1023	 * It's safe or a good idea to Ack all of our interrupts at the end
1024	 * of the function. Specifically:
1025	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1026	 *   clearing Acks. Clearing at the end relies on nobody else having
1027	 *   started a new transfer yet or else we could be clearing _their_
1028	 *   done bit, but everyone grabs the spinlock before starting a new
1029	 *   transfer.
1030	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1031	 *   to be "latched level" interrupts so it's important to clear them
1032	 *   _after_ you've handled the condition and always safe to do so
1033	 *   since they'll re-assert if they're still happening.
1034	 */
1035	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
1036
1037	spin_unlock(&mas->lock);
1038
1039	return IRQ_HANDLED;
1040}
1041
1042static int spi_geni_probe(struct platform_device *pdev)
1043{
1044	int ret, irq;
1045	struct spi_controller *spi;
1046	struct spi_geni_master *mas;
1047	void __iomem *base;
1048	struct clk *clk;
1049	struct device *dev = &pdev->dev;
1050
1051	irq = platform_get_irq(pdev, 0);
1052	if (irq < 0)
1053		return irq;
1054
1055	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1056	if (ret)
1057		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1058
1059	base = devm_platform_ioremap_resource(pdev, 0);
1060	if (IS_ERR(base))
1061		return PTR_ERR(base);
1062
1063	clk = devm_clk_get(dev, "se");
1064	if (IS_ERR(clk))
1065		return PTR_ERR(clk);
1066
1067	spi = devm_spi_alloc_host(dev, sizeof(*mas));
1068	if (!spi)
1069		return -ENOMEM;
1070
1071	platform_set_drvdata(pdev, spi);
1072	mas = spi_controller_get_devdata(spi);
1073	mas->irq = irq;
1074	mas->dev = dev;
1075	mas->se.dev = dev;
1076	mas->se.wrapper = dev_get_drvdata(dev->parent);
1077	mas->se.base = base;
1078	mas->se.clk = clk;
1079
1080	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1081	if (ret)
1082		return ret;
1083	/* OPP table is optional */
1084	ret = devm_pm_opp_of_add_table(&pdev->dev);
1085	if (ret && ret != -ENODEV) {
1086		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1087		return ret;
1088	}
1089
1090	spi->bus_num = -1;
1091	spi->dev.of_node = dev->of_node;
1092	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1093	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1094	spi->num_chipselect = 4;
1095	spi->max_speed_hz = 50000000;
1096	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1097	spi->prepare_message = spi_geni_prepare_message;
1098	spi->transfer_one = spi_geni_transfer_one;
1099	spi->can_dma = geni_can_dma;
1100	spi->dma_map_dev = dev->parent;
1101	spi->auto_runtime_pm = true;
1102	spi->handle_err = spi_geni_handle_err;
1103	spi->use_gpio_descriptors = true;
1104
1105	init_completion(&mas->cs_done);
1106	init_completion(&mas->cancel_done);
1107	init_completion(&mas->abort_done);
1108	init_completion(&mas->tx_reset_done);
1109	init_completion(&mas->rx_reset_done);
1110	spin_lock_init(&mas->lock);
1111	pm_runtime_use_autosuspend(&pdev->dev);
1112	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1113	pm_runtime_enable(dev);
1114
1115	if (device_property_read_bool(&pdev->dev, "spi-slave"))
1116		spi->target = true;
1117
1118	ret = geni_icc_get(&mas->se, NULL);
1119	if (ret)
1120		goto spi_geni_probe_runtime_disable;
1121	/* Set the bus quota to a reasonable value for register access */
1122	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1123	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1124
1125	ret = geni_icc_set_bw(&mas->se);
1126	if (ret)
1127		goto spi_geni_probe_runtime_disable;
1128
1129	ret = spi_geni_init(mas);
1130	if (ret)
1131		goto spi_geni_probe_runtime_disable;
1132
1133	/*
1134	 * check the mode supported and set_cs for fifo mode only
1135	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1136	 * TRE
1137	 */
1138	if (!spi->target && mas->cur_xfer_mode == GENI_SE_FIFO)
1139		spi->set_cs = spi_geni_set_cs;
1140
1141	/*
1142	 * TX is required per GSI spec, see setup_gsi_xfer().
1143	 */
1144	if (mas->cur_xfer_mode == GENI_GPI_DMA)
1145		spi->flags = SPI_CONTROLLER_MUST_TX;
1146
1147	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1148	if (ret)
1149		goto spi_geni_release_dma;
1150
1151	ret = spi_register_controller(spi);
1152	if (ret)
1153		goto spi_geni_probe_free_irq;
1154
1155	return 0;
1156spi_geni_probe_free_irq:
1157	free_irq(mas->irq, spi);
1158spi_geni_release_dma:
1159	spi_geni_release_dma_chan(mas);
1160spi_geni_probe_runtime_disable:
1161	pm_runtime_disable(dev);
1162	return ret;
1163}
1164
1165static void spi_geni_remove(struct platform_device *pdev)
1166{
1167	struct spi_controller *spi = platform_get_drvdata(pdev);
1168	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1169
1170	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1171	spi_unregister_controller(spi);
1172
1173	spi_geni_release_dma_chan(mas);
1174
1175	free_irq(mas->irq, spi);
1176	pm_runtime_disable(&pdev->dev);
1177}
1178
1179static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1180{
1181	struct spi_controller *spi = dev_get_drvdata(dev);
1182	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1183	int ret;
1184
1185	/* Drop the performance state vote */
1186	dev_pm_opp_set_rate(dev, 0);
1187
1188	ret = geni_se_resources_off(&mas->se);
1189	if (ret)
1190		return ret;
1191
1192	return geni_icc_disable(&mas->se);
1193}
1194
1195static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1196{
1197	struct spi_controller *spi = dev_get_drvdata(dev);
1198	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1199	int ret;
1200
1201	ret = geni_icc_enable(&mas->se);
1202	if (ret)
1203		return ret;
1204
1205	ret = geni_se_resources_on(&mas->se);
1206	if (ret)
1207		return ret;
1208
1209	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1210}
1211
1212static int __maybe_unused spi_geni_suspend(struct device *dev)
1213{
1214	struct spi_controller *spi = dev_get_drvdata(dev);
1215	int ret;
1216
1217	ret = spi_controller_suspend(spi);
1218	if (ret)
1219		return ret;
1220
1221	ret = pm_runtime_force_suspend(dev);
1222	if (ret)
1223		spi_controller_resume(spi);
1224
1225	return ret;
1226}
1227
1228static int __maybe_unused spi_geni_resume(struct device *dev)
1229{
1230	struct spi_controller *spi = dev_get_drvdata(dev);
1231	int ret;
1232
1233	ret = pm_runtime_force_resume(dev);
1234	if (ret)
1235		return ret;
1236
1237	ret = spi_controller_resume(spi);
1238	if (ret)
1239		pm_runtime_force_suspend(dev);
1240
1241	return ret;
1242}
1243
1244static const struct dev_pm_ops spi_geni_pm_ops = {
1245	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1246					spi_geni_runtime_resume, NULL)
1247	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1248};
1249
1250static const struct of_device_id spi_geni_dt_match[] = {
1251	{ .compatible = "qcom,geni-spi" },
1252	{}
1253};
1254MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1255
1256static struct platform_driver spi_geni_driver = {
1257	.probe  = spi_geni_probe,
1258	.remove_new = spi_geni_remove,
1259	.driver = {
1260		.name = "geni_spi",
1261		.pm = &spi_geni_pm_ops,
1262		.of_match_table = spi_geni_dt_match,
1263	},
1264};
1265module_platform_driver(spi_geni_driver);
1266
1267MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1268MODULE_LICENSE("GPL v2");