Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Sensirion SPS30 particulate matter sensor i2c driver
  4 *
  5 * Copyright (c) 2020 Tomasz Duszynski <tomasz.duszynski@octakon.com>
  6 *
  7 * I2C slave address: 0x69
  8 */
  9#include <asm/unaligned.h>
 10#include <linux/crc8.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/errno.h>
 14#include <linux/i2c.h>
 15#include <linux/mod_devicetable.h>
 16#include <linux/module.h>
 17#include <linux/types.h>
 18
 19#include "sps30.h"
 20
 21#define SPS30_I2C_CRC8_POLYNOMIAL 0x31
 22/* max number of bytes needed to store PM measurements or serial string */
 23#define SPS30_I2C_MAX_BUF_SIZE 48
 24
 25DECLARE_CRC8_TABLE(sps30_i2c_crc8_table);
 26
 27#define SPS30_I2C_START_MEAS 0x0010
 28#define SPS30_I2C_STOP_MEAS 0x0104
 29#define SPS30_I2C_READ_MEAS 0x0300
 30#define SPS30_I2C_MEAS_READY 0x0202
 31#define SPS30_I2C_RESET 0xd304
 32#define SPS30_I2C_CLEAN_FAN 0x5607
 33#define SPS30_I2C_PERIOD 0x8004
 34#define SPS30_I2C_READ_SERIAL 0xd033
 35#define SPS30_I2C_READ_VERSION 0xd100
 36
 37static int sps30_i2c_xfer(struct sps30_state *state, unsigned char *txbuf, size_t txsize,
 38			  unsigned char *rxbuf, size_t rxsize)
 39{
 40	struct i2c_client *client = to_i2c_client(state->dev);
 41	int ret;
 42
 43	/*
 44	 * Sensor does not support repeated start so instead of
 45	 * sending two i2c messages in a row we just send one by one.
 46	 */
 47	ret = i2c_master_send(client, txbuf, txsize);
 48	if (ret < 0)
 49		return ret;
 50	if (ret != txsize)
 51		return -EIO;
 52
 53	if (!rxsize)
 54		return 0;
 55
 56	ret = i2c_master_recv(client, rxbuf, rxsize);
 57	if (ret < 0)
 58		return ret;
 59	if (ret != rxsize)
 60		return -EIO;
 61
 62	return 0;
 63}
 64
 65static int sps30_i2c_command(struct sps30_state *state, u16 cmd, void *arg, size_t arg_size,
 66			     void *rsp, size_t rsp_size)
 67{
 68	/*
 69	 * Internally sensor stores measurements in a following manner:
 70	 *
 71	 * PM1:   upper two bytes, crc8, lower two bytes, crc8
 72	 * PM2P5: upper two bytes, crc8, lower two bytes, crc8
 73	 * PM4:   upper two bytes, crc8, lower two bytes, crc8
 74	 * PM10:  upper two bytes, crc8, lower two bytes, crc8
 75	 *
 76	 * What follows next are number concentration measurements and
 77	 * typical particle size measurement which we omit.
 78	 */
 79	unsigned char buf[SPS30_I2C_MAX_BUF_SIZE];
 80	unsigned char *tmp;
 81	unsigned char crc;
 82	size_t i;
 83	int ret;
 84
 85	put_unaligned_be16(cmd, buf);
 86	i = 2;
 87
 88	if (rsp) {
 89		/* each two bytes are followed by a crc8 */
 90		rsp_size += rsp_size / 2;
 91	} else {
 92		tmp = arg;
 93
 94		while (arg_size) {
 95			buf[i] = *tmp++;
 96			buf[i + 1] = *tmp++;
 97			buf[i + 2] = crc8(sps30_i2c_crc8_table, buf + i, 2, CRC8_INIT_VALUE);
 98			arg_size -= 2;
 99			i += 3;
100		}
101	}
102
103	ret = sps30_i2c_xfer(state, buf, i, buf, rsp_size);
104	if (ret)
105		return ret;
106
107	/* validate received data and strip off crc bytes */
108	tmp = rsp;
109	for (i = 0; i < rsp_size; i += 3) {
110		crc = crc8(sps30_i2c_crc8_table, buf + i, 2, CRC8_INIT_VALUE);
111		if (crc != buf[i + 2]) {
112			dev_err(state->dev, "data integrity check failed\n");
113			return -EIO;
114		}
115
116		*tmp++ = buf[i];
117		*tmp++ = buf[i + 1];
118	}
119
120	return 0;
121}
122
123static int sps30_i2c_start_meas(struct sps30_state *state)
124{
125	/* request BE IEEE754 formatted data */
126	unsigned char buf[] = { 0x03, 0x00 };
127
128	return sps30_i2c_command(state, SPS30_I2C_START_MEAS, buf, sizeof(buf), NULL, 0);
129}
130
131static int sps30_i2c_stop_meas(struct sps30_state *state)
132{
133	return sps30_i2c_command(state, SPS30_I2C_STOP_MEAS, NULL, 0, NULL, 0);
134}
135
136static int sps30_i2c_reset(struct sps30_state *state)
137{
138	int ret;
139
140	ret = sps30_i2c_command(state, SPS30_I2C_RESET, NULL, 0, NULL, 0);
141	msleep(500);
142	/*
143	 * Power-on-reset causes sensor to produce some glitch on i2c bus and
144	 * some controllers end up in error state. Recover simply by placing
145	 * some data on the bus, for example STOP_MEAS command, which
146	 * is NOP in this case.
147	 */
148	sps30_i2c_stop_meas(state);
149
150	return ret;
151}
152
153static bool sps30_i2c_meas_ready(struct sps30_state *state)
154{
155	unsigned char buf[2];
156	int ret;
157
158	ret = sps30_i2c_command(state, SPS30_I2C_MEAS_READY, NULL, 0, buf, sizeof(buf));
159	if (ret)
160		return false;
161
162	return buf[1];
163}
164
165static int sps30_i2c_read_meas(struct sps30_state *state, __be32 *meas, size_t num)
166{
167	/* measurements are ready within a second */
168	if (msleep_interruptible(1000))
169		return -EINTR;
170
171	if (!sps30_i2c_meas_ready(state))
172		return -ETIMEDOUT;
173
174	return sps30_i2c_command(state, SPS30_I2C_READ_MEAS, NULL, 0, meas, sizeof(num) * num);
175}
176
177static int sps30_i2c_clean_fan(struct sps30_state *state)
178{
179	return sps30_i2c_command(state, SPS30_I2C_CLEAN_FAN, NULL, 0, NULL, 0);
180}
181
182static int sps30_i2c_read_cleaning_period(struct sps30_state *state, __be32 *period)
183{
184	return sps30_i2c_command(state, SPS30_I2C_PERIOD, NULL, 0, period, sizeof(*period));
185}
186
187static int sps30_i2c_write_cleaning_period(struct sps30_state *state, __be32 period)
188{
189	return sps30_i2c_command(state, SPS30_I2C_PERIOD, &period, sizeof(period), NULL, 0);
190}
191
192static int sps30_i2c_show_info(struct sps30_state *state)
193{
194	/* extra nul just in case */
195	unsigned char buf[32 + 1] = { 0x00 };
196	int ret;
197
198	ret = sps30_i2c_command(state, SPS30_I2C_READ_SERIAL, NULL, 0, buf, sizeof(buf) - 1);
199	if (ret)
200		return ret;
201
202	dev_info(state->dev, "serial number: %s\n", buf);
203
204	ret = sps30_i2c_command(state, SPS30_I2C_READ_VERSION, NULL, 0, buf, 2);
205	if (ret)
206		return ret;
207
208	dev_info(state->dev, "fw version: %u.%u\n", buf[0], buf[1]);
209
210	return 0;
211}
212
213static const struct sps30_ops sps30_i2c_ops = {
214	.start_meas = sps30_i2c_start_meas,
215	.stop_meas = sps30_i2c_stop_meas,
216	.read_meas = sps30_i2c_read_meas,
217	.reset = sps30_i2c_reset,
218	.clean_fan = sps30_i2c_clean_fan,
219	.read_cleaning_period = sps30_i2c_read_cleaning_period,
220	.write_cleaning_period = sps30_i2c_write_cleaning_period,
221	.show_info = sps30_i2c_show_info,
222};
223
224static int sps30_i2c_probe(struct i2c_client *client)
225{
226	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
227		return -EOPNOTSUPP;
228
229	crc8_populate_msb(sps30_i2c_crc8_table, SPS30_I2C_CRC8_POLYNOMIAL);
230
231	return sps30_probe(&client->dev, client->name, NULL, &sps30_i2c_ops);
232}
233
234static const struct i2c_device_id sps30_i2c_id[] = {
235	{ "sps30" },
236	{ }
237};
238MODULE_DEVICE_TABLE(i2c, sps30_i2c_id);
239
240static const struct of_device_id sps30_i2c_of_match[] = {
241	{ .compatible = "sensirion,sps30" },
242	{ }
243};
244MODULE_DEVICE_TABLE(of, sps30_i2c_of_match);
245
246static struct i2c_driver sps30_i2c_driver = {
247	.driver = {
248		.name = KBUILD_MODNAME,
249		.of_match_table = sps30_i2c_of_match,
250	},
251	.id_table = sps30_i2c_id,
252	.probe = sps30_i2c_probe,
253};
254module_i2c_driver(sps30_i2c_driver);
255
256MODULE_AUTHOR("Tomasz Duszynski <tomasz.duszynski@octakon.com>");
257MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor i2c driver");
258MODULE_LICENSE("GPL v2");
259MODULE_IMPORT_NS(IIO_SPS30);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Sensirion SPS30 particulate matter sensor i2c driver
  4 *
  5 * Copyright (c) 2020 Tomasz Duszynski <tomasz.duszynski@octakon.com>
  6 *
  7 * I2C slave address: 0x69
  8 */
  9#include <asm/unaligned.h>
 10#include <linux/crc8.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/errno.h>
 14#include <linux/i2c.h>
 15#include <linux/mod_devicetable.h>
 16#include <linux/module.h>
 17#include <linux/types.h>
 18
 19#include "sps30.h"
 20
 21#define SPS30_I2C_CRC8_POLYNOMIAL 0x31
 22/* max number of bytes needed to store PM measurements or serial string */
 23#define SPS30_I2C_MAX_BUF_SIZE 48
 24
 25DECLARE_CRC8_TABLE(sps30_i2c_crc8_table);
 26
 27#define SPS30_I2C_START_MEAS 0x0010
 28#define SPS30_I2C_STOP_MEAS 0x0104
 29#define SPS30_I2C_READ_MEAS 0x0300
 30#define SPS30_I2C_MEAS_READY 0x0202
 31#define SPS30_I2C_RESET 0xd304
 32#define SPS30_I2C_CLEAN_FAN 0x5607
 33#define SPS30_I2C_PERIOD 0x8004
 34#define SPS30_I2C_READ_SERIAL 0xd033
 35#define SPS30_I2C_READ_VERSION 0xd100
 36
 37static int sps30_i2c_xfer(struct sps30_state *state, unsigned char *txbuf, size_t txsize,
 38			  unsigned char *rxbuf, size_t rxsize)
 39{
 40	struct i2c_client *client = to_i2c_client(state->dev);
 41	int ret;
 42
 43	/*
 44	 * Sensor does not support repeated start so instead of
 45	 * sending two i2c messages in a row we just send one by one.
 46	 */
 47	ret = i2c_master_send(client, txbuf, txsize);
 48	if (ret < 0)
 49		return ret;
 50	if (ret != txsize)
 51		return -EIO;
 52
 53	if (!rxsize)
 54		return 0;
 55
 56	ret = i2c_master_recv(client, rxbuf, rxsize);
 57	if (ret < 0)
 58		return ret;
 59	if (ret != rxsize)
 60		return -EIO;
 61
 62	return 0;
 63}
 64
 65static int sps30_i2c_command(struct sps30_state *state, u16 cmd, void *arg, size_t arg_size,
 66			     void *rsp, size_t rsp_size)
 67{
 68	/*
 69	 * Internally sensor stores measurements in a following manner:
 70	 *
 71	 * PM1:   upper two bytes, crc8, lower two bytes, crc8
 72	 * PM2P5: upper two bytes, crc8, lower two bytes, crc8
 73	 * PM4:   upper two bytes, crc8, lower two bytes, crc8
 74	 * PM10:  upper two bytes, crc8, lower two bytes, crc8
 75	 *
 76	 * What follows next are number concentration measurements and
 77	 * typical particle size measurement which we omit.
 78	 */
 79	unsigned char buf[SPS30_I2C_MAX_BUF_SIZE];
 80	unsigned char *tmp;
 81	unsigned char crc;
 82	size_t i;
 83	int ret;
 84
 85	put_unaligned_be16(cmd, buf);
 86	i = 2;
 87
 88	if (rsp) {
 89		/* each two bytes are followed by a crc8 */
 90		rsp_size += rsp_size / 2;
 91	} else {
 92		tmp = arg;
 93
 94		while (arg_size) {
 95			buf[i] = *tmp++;
 96			buf[i + 1] = *tmp++;
 97			buf[i + 2] = crc8(sps30_i2c_crc8_table, buf + i, 2, CRC8_INIT_VALUE);
 98			arg_size -= 2;
 99			i += 3;
100		}
101	}
102
103	ret = sps30_i2c_xfer(state, buf, i, buf, rsp_size);
104	if (ret)
105		return ret;
106
107	/* validate received data and strip off crc bytes */
108	tmp = rsp;
109	for (i = 0; i < rsp_size; i += 3) {
110		crc = crc8(sps30_i2c_crc8_table, buf + i, 2, CRC8_INIT_VALUE);
111		if (crc != buf[i + 2]) {
112			dev_err(state->dev, "data integrity check failed\n");
113			return -EIO;
114		}
115
116		*tmp++ = buf[i];
117		*tmp++ = buf[i + 1];
118	}
119
120	return 0;
121}
122
123static int sps30_i2c_start_meas(struct sps30_state *state)
124{
125	/* request BE IEEE754 formatted data */
126	unsigned char buf[] = { 0x03, 0x00 };
127
128	return sps30_i2c_command(state, SPS30_I2C_START_MEAS, buf, sizeof(buf), NULL, 0);
129}
130
131static int sps30_i2c_stop_meas(struct sps30_state *state)
132{
133	return sps30_i2c_command(state, SPS30_I2C_STOP_MEAS, NULL, 0, NULL, 0);
134}
135
136static int sps30_i2c_reset(struct sps30_state *state)
137{
138	int ret;
139
140	ret = sps30_i2c_command(state, SPS30_I2C_RESET, NULL, 0, NULL, 0);
141	msleep(500);
142	/*
143	 * Power-on-reset causes sensor to produce some glitch on i2c bus and
144	 * some controllers end up in error state. Recover simply by placing
145	 * some data on the bus, for example STOP_MEAS command, which
146	 * is NOP in this case.
147	 */
148	sps30_i2c_stop_meas(state);
149
150	return ret;
151}
152
153static bool sps30_i2c_meas_ready(struct sps30_state *state)
154{
155	unsigned char buf[2];
156	int ret;
157
158	ret = sps30_i2c_command(state, SPS30_I2C_MEAS_READY, NULL, 0, buf, sizeof(buf));
159	if (ret)
160		return false;
161
162	return buf[1];
163}
164
165static int sps30_i2c_read_meas(struct sps30_state *state, __be32 *meas, size_t num)
166{
167	/* measurements are ready within a second */
168	if (msleep_interruptible(1000))
169		return -EINTR;
170
171	if (!sps30_i2c_meas_ready(state))
172		return -ETIMEDOUT;
173
174	return sps30_i2c_command(state, SPS30_I2C_READ_MEAS, NULL, 0, meas, sizeof(num) * num);
175}
176
177static int sps30_i2c_clean_fan(struct sps30_state *state)
178{
179	return sps30_i2c_command(state, SPS30_I2C_CLEAN_FAN, NULL, 0, NULL, 0);
180}
181
182static int sps30_i2c_read_cleaning_period(struct sps30_state *state, __be32 *period)
183{
184	return sps30_i2c_command(state, SPS30_I2C_PERIOD, NULL, 0, period, sizeof(*period));
185}
186
187static int sps30_i2c_write_cleaning_period(struct sps30_state *state, __be32 period)
188{
189	return sps30_i2c_command(state, SPS30_I2C_PERIOD, &period, sizeof(period), NULL, 0);
190}
191
192static int sps30_i2c_show_info(struct sps30_state *state)
193{
194	/* extra nul just in case */
195	unsigned char buf[32 + 1] = { 0x00 };
196	int ret;
197
198	ret = sps30_i2c_command(state, SPS30_I2C_READ_SERIAL, NULL, 0, buf, sizeof(buf) - 1);
199	if (ret)
200		return ret;
201
202	dev_info(state->dev, "serial number: %s\n", buf);
203
204	ret = sps30_i2c_command(state, SPS30_I2C_READ_VERSION, NULL, 0, buf, 2);
205	if (ret)
206		return ret;
207
208	dev_info(state->dev, "fw version: %u.%u\n", buf[0], buf[1]);
209
210	return 0;
211}
212
213static const struct sps30_ops sps30_i2c_ops = {
214	.start_meas = sps30_i2c_start_meas,
215	.stop_meas = sps30_i2c_stop_meas,
216	.read_meas = sps30_i2c_read_meas,
217	.reset = sps30_i2c_reset,
218	.clean_fan = sps30_i2c_clean_fan,
219	.read_cleaning_period = sps30_i2c_read_cleaning_period,
220	.write_cleaning_period = sps30_i2c_write_cleaning_period,
221	.show_info = sps30_i2c_show_info,
222};
223
224static int sps30_i2c_probe(struct i2c_client *client)
225{
226	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
227		return -EOPNOTSUPP;
228
229	crc8_populate_msb(sps30_i2c_crc8_table, SPS30_I2C_CRC8_POLYNOMIAL);
230
231	return sps30_probe(&client->dev, client->name, NULL, &sps30_i2c_ops);
232}
233
234static const struct i2c_device_id sps30_i2c_id[] = {
235	{ "sps30" },
236	{ }
237};
238MODULE_DEVICE_TABLE(i2c, sps30_i2c_id);
239
240static const struct of_device_id sps30_i2c_of_match[] = {
241	{ .compatible = "sensirion,sps30" },
242	{ }
243};
244MODULE_DEVICE_TABLE(of, sps30_i2c_of_match);
245
246static struct i2c_driver sps30_i2c_driver = {
247	.driver = {
248		.name = KBUILD_MODNAME,
249		.of_match_table = sps30_i2c_of_match,
250	},
251	.id_table = sps30_i2c_id,
252	.probe = sps30_i2c_probe,
253};
254module_i2c_driver(sps30_i2c_driver);
255
256MODULE_AUTHOR("Tomasz Duszynski <tomasz.duszynski@octakon.com>");
257MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor i2c driver");
258MODULE_LICENSE("GPL v2");
259MODULE_IMPORT_NS(IIO_SPS30);