Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
  10 */
  11
  12#define pr_fmt(fmt) "LSM: " fmt
  13
  14#include <linux/bpf.h>
  15#include <linux/capability.h>
  16#include <linux/dcache.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/kernel_read_file.h>
  21#include <linux/lsm_hooks.h>
 
 
 
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
  27#include <linux/string.h>
  28#include <linux/xattr.h>
  29#include <linux/msg.h>
  30#include <linux/overflow.h>
  31#include <net/flow.h>
  32
 
 
  33/* How many LSMs were built into the kernel? */
  34#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  35
  36/*
  37 * How many LSMs are built into the kernel as determined at
  38 * build time. Used to determine fixed array sizes.
  39 * The capability module is accounted for by CONFIG_SECURITY
  40 */
  41#define LSM_CONFIG_COUNT ( \
  42	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
  43	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
  44	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
  45	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
  46	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
  47	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
  48	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
  49	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
  50	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
  51	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
  52	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
  53	(IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
  54	(IS_ENABLED(CONFIG_EVM) ? 1 : 0))
  55
  56/*
  57 * These are descriptions of the reasons that can be passed to the
  58 * security_locked_down() LSM hook. Placing this array here allows
  59 * all security modules to use the same descriptions for auditing
  60 * purposes.
  61 */
  62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
  63	[LOCKDOWN_NONE] = "none",
  64	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  65	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  66	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  67	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  68	[LOCKDOWN_HIBERNATION] = "hibernation",
  69	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  70	[LOCKDOWN_IOPORT] = "raw io port access",
  71	[LOCKDOWN_MSR] = "raw MSR access",
  72	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  73	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  74	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  75	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  76	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  77	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  78	[LOCKDOWN_DEBUGFS] = "debugfs access",
  79	[LOCKDOWN_XMON_WR] = "xmon write access",
  80	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  81	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  82	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  83	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  84	[LOCKDOWN_KCORE] = "/proc/kcore access",
  85	[LOCKDOWN_KPROBES] = "use of kprobes",
  86	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  87	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  88	[LOCKDOWN_PERF] = "unsafe use of perf",
  89	[LOCKDOWN_TRACEFS] = "use of tracefs",
  90	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  91	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  92	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  93};
  94
  95struct security_hook_heads security_hook_heads __ro_after_init;
  96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  97
  98static struct kmem_cache *lsm_file_cache;
  99static struct kmem_cache *lsm_inode_cache;
 100
 101char *lsm_names;
 102static struct lsm_blob_sizes blob_sizes __ro_after_init;
 103
 104/* Boot-time LSM user choice */
 105static __initdata const char *chosen_lsm_order;
 106static __initdata const char *chosen_major_lsm;
 107
 108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
 109
 110/* Ordered list of LSMs to initialize. */
 111static __initdata struct lsm_info **ordered_lsms;
 112static __initdata struct lsm_info *exclusive;
 113
 114static __initdata bool debug;
 115#define init_debug(...)						\
 116	do {							\
 117		if (debug)					\
 118			pr_info(__VA_ARGS__);			\
 119	} while (0)
 120
 121static bool __init is_enabled(struct lsm_info *lsm)
 122{
 123	if (!lsm->enabled)
 124		return false;
 125
 126	return *lsm->enabled;
 127}
 128
 129/* Mark an LSM's enabled flag. */
 130static int lsm_enabled_true __initdata = 1;
 131static int lsm_enabled_false __initdata = 0;
 132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 133{
 134	/*
 135	 * When an LSM hasn't configured an enable variable, we can use
 136	 * a hard-coded location for storing the default enabled state.
 137	 */
 138	if (!lsm->enabled) {
 139		if (enabled)
 140			lsm->enabled = &lsm_enabled_true;
 141		else
 142			lsm->enabled = &lsm_enabled_false;
 143	} else if (lsm->enabled == &lsm_enabled_true) {
 144		if (!enabled)
 145			lsm->enabled = &lsm_enabled_false;
 146	} else if (lsm->enabled == &lsm_enabled_false) {
 147		if (enabled)
 148			lsm->enabled = &lsm_enabled_true;
 149	} else {
 150		*lsm->enabled = enabled;
 151	}
 152}
 153
 154/* Is an LSM already listed in the ordered LSMs list? */
 155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 156{
 157	struct lsm_info **check;
 158
 159	for (check = ordered_lsms; *check; check++)
 160		if (*check == lsm)
 161			return true;
 162
 163	return false;
 164}
 165
 166/* Append an LSM to the list of ordered LSMs to initialize. */
 167static int last_lsm __initdata;
 168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 169{
 170	/* Ignore duplicate selections. */
 171	if (exists_ordered_lsm(lsm))
 172		return;
 173
 174	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 175		return;
 176
 177	/* Enable this LSM, if it is not already set. */
 178	if (!lsm->enabled)
 179		lsm->enabled = &lsm_enabled_true;
 180	ordered_lsms[last_lsm++] = lsm;
 181
 182	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 183		   is_enabled(lsm) ? "enabled" : "disabled");
 184}
 185
 186/* Is an LSM allowed to be initialized? */
 187static bool __init lsm_allowed(struct lsm_info *lsm)
 188{
 189	/* Skip if the LSM is disabled. */
 190	if (!is_enabled(lsm))
 191		return false;
 192
 193	/* Not allowed if another exclusive LSM already initialized. */
 194	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 195		init_debug("exclusive disabled: %s\n", lsm->name);
 196		return false;
 197	}
 198
 199	return true;
 200}
 201
 202static void __init lsm_set_blob_size(int *need, int *lbs)
 203{
 204	int offset;
 205
 206	if (*need <= 0)
 207		return;
 208
 209	offset = ALIGN(*lbs, sizeof(void *));
 210	*lbs = offset + *need;
 211	*need = offset;
 212}
 213
 214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 215{
 216	if (!needed)
 217		return;
 218
 219	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 220	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 221	/*
 222	 * The inode blob gets an rcu_head in addition to
 223	 * what the modules might need.
 224	 */
 225	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 226		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 227	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 228	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 229	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 230	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 231	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 232	lsm_set_blob_size(&needed->lbs_xattr_count,
 233			  &blob_sizes.lbs_xattr_count);
 234}
 235
 236/* Prepare LSM for initialization. */
 237static void __init prepare_lsm(struct lsm_info *lsm)
 238{
 239	int enabled = lsm_allowed(lsm);
 240
 241	/* Record enablement (to handle any following exclusive LSMs). */
 242	set_enabled(lsm, enabled);
 243
 244	/* If enabled, do pre-initialization work. */
 245	if (enabled) {
 246		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 247			exclusive = lsm;
 248			init_debug("exclusive chosen:   %s\n", lsm->name);
 249		}
 250
 251		lsm_set_blob_sizes(lsm->blobs);
 252	}
 253}
 254
 255/* Initialize a given LSM, if it is enabled. */
 256static void __init initialize_lsm(struct lsm_info *lsm)
 257{
 258	if (is_enabled(lsm)) {
 259		int ret;
 260
 261		init_debug("initializing %s\n", lsm->name);
 262		ret = lsm->init();
 263		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 264	}
 265}
 266
 267/*
 268 * Current index to use while initializing the lsm id list.
 269 */
 270u32 lsm_active_cnt __ro_after_init;
 271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
 272
 273/* Populate ordered LSMs list from comma-separated LSM name list. */
 274static void __init ordered_lsm_parse(const char *order, const char *origin)
 275{
 276	struct lsm_info *lsm;
 277	char *sep, *name, *next;
 278
 279	/* LSM_ORDER_FIRST is always first. */
 280	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 281		if (lsm->order == LSM_ORDER_FIRST)
 282			append_ordered_lsm(lsm, "  first");
 283	}
 284
 285	/* Process "security=", if given. */
 286	if (chosen_major_lsm) {
 287		struct lsm_info *major;
 288
 289		/*
 290		 * To match the original "security=" behavior, this
 291		 * explicitly does NOT fallback to another Legacy Major
 292		 * if the selected one was separately disabled: disable
 293		 * all non-matching Legacy Major LSMs.
 294		 */
 295		for (major = __start_lsm_info; major < __end_lsm_info;
 296		     major++) {
 297			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 298			    strcmp(major->name, chosen_major_lsm) != 0) {
 299				set_enabled(major, false);
 300				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 301					   chosen_major_lsm, major->name);
 302			}
 303		}
 304	}
 305
 306	sep = kstrdup(order, GFP_KERNEL);
 307	next = sep;
 308	/* Walk the list, looking for matching LSMs. */
 309	while ((name = strsep(&next, ",")) != NULL) {
 310		bool found = false;
 311
 312		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 313			if (strcmp(lsm->name, name) == 0) {
 314				if (lsm->order == LSM_ORDER_MUTABLE)
 315					append_ordered_lsm(lsm, origin);
 316				found = true;
 317			}
 318		}
 319
 320		if (!found)
 321			init_debug("%s ignored: %s (not built into kernel)\n",
 322				   origin, name);
 323	}
 324
 325	/* Process "security=", if given. */
 326	if (chosen_major_lsm) {
 327		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 328			if (exists_ordered_lsm(lsm))
 329				continue;
 330			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 331				append_ordered_lsm(lsm, "security=");
 332		}
 333	}
 334
 335	/* LSM_ORDER_LAST is always last. */
 336	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 337		if (lsm->order == LSM_ORDER_LAST)
 338			append_ordered_lsm(lsm, "   last");
 339	}
 340
 341	/* Disable all LSMs not in the ordered list. */
 342	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 343		if (exists_ordered_lsm(lsm))
 344			continue;
 345		set_enabled(lsm, false);
 346		init_debug("%s skipped: %s (not in requested order)\n",
 347			   origin, lsm->name);
 348	}
 349
 350	kfree(sep);
 351}
 352
 353static void __init lsm_early_cred(struct cred *cred);
 354static void __init lsm_early_task(struct task_struct *task);
 355
 356static int lsm_append(const char *new, char **result);
 357
 358static void __init report_lsm_order(void)
 359{
 360	struct lsm_info **lsm, *early;
 361	int first = 0;
 362
 363	pr_info("initializing lsm=");
 364
 365	/* Report each enabled LSM name, comma separated. */
 366	for (early = __start_early_lsm_info;
 367	     early < __end_early_lsm_info; early++)
 368		if (is_enabled(early))
 369			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 370	for (lsm = ordered_lsms; *lsm; lsm++)
 371		if (is_enabled(*lsm))
 372			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 373
 374	pr_cont("\n");
 375}
 376
 377static void __init ordered_lsm_init(void)
 378{
 379	struct lsm_info **lsm;
 380
 381	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 382			       GFP_KERNEL);
 383
 384	if (chosen_lsm_order) {
 385		if (chosen_major_lsm) {
 386			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 387				chosen_major_lsm, chosen_lsm_order);
 388			chosen_major_lsm = NULL;
 389		}
 390		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 391	} else
 392		ordered_lsm_parse(builtin_lsm_order, "builtin");
 393
 394	for (lsm = ordered_lsms; *lsm; lsm++)
 395		prepare_lsm(*lsm);
 396
 397	report_lsm_order();
 398
 399	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 400	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 401	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 402	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 403	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 404	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 405	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 406	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
 407
 408	/*
 409	 * Create any kmem_caches needed for blobs
 410	 */
 411	if (blob_sizes.lbs_file)
 412		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 413						   blob_sizes.lbs_file, 0,
 414						   SLAB_PANIC, NULL);
 415	if (blob_sizes.lbs_inode)
 416		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 417						    blob_sizes.lbs_inode, 0,
 418						    SLAB_PANIC, NULL);
 419
 420	lsm_early_cred((struct cred *) current->cred);
 421	lsm_early_task(current);
 422	for (lsm = ordered_lsms; *lsm; lsm++)
 423		initialize_lsm(*lsm);
 424
 425	kfree(ordered_lsms);
 426}
 427
 428int __init early_security_init(void)
 429{
 430	struct lsm_info *lsm;
 431
 432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 433	INIT_HLIST_HEAD(&security_hook_heads.NAME);
 434#include "linux/lsm_hook_defs.h"
 435#undef LSM_HOOK
 436
 437	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 438		if (!lsm->enabled)
 439			lsm->enabled = &lsm_enabled_true;
 440		prepare_lsm(lsm);
 441		initialize_lsm(lsm);
 442	}
 443
 444	return 0;
 445}
 446
 447/**
 448 * security_init - initializes the security framework
 449 *
 450 * This should be called early in the kernel initialization sequence.
 451 */
 452int __init security_init(void)
 453{
 454	struct lsm_info *lsm;
 455
 456	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
 457	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 458	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
 459
 460	/*
 461	 * Append the names of the early LSM modules now that kmalloc() is
 462	 * available
 463	 */
 464	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 465		init_debug("  early started: %s (%s)\n", lsm->name,
 466			   is_enabled(lsm) ? "enabled" : "disabled");
 467		if (lsm->enabled)
 468			lsm_append(lsm->name, &lsm_names);
 469	}
 470
 471	/* Load LSMs in specified order. */
 472	ordered_lsm_init();
 473
 474	return 0;
 475}
 476
 477/* Save user chosen LSM */
 478static int __init choose_major_lsm(char *str)
 479{
 480	chosen_major_lsm = str;
 481	return 1;
 482}
 483__setup("security=", choose_major_lsm);
 484
 485/* Explicitly choose LSM initialization order. */
 486static int __init choose_lsm_order(char *str)
 487{
 488	chosen_lsm_order = str;
 489	return 1;
 490}
 491__setup("lsm=", choose_lsm_order);
 492
 493/* Enable LSM order debugging. */
 494static int __init enable_debug(char *str)
 495{
 496	debug = true;
 497	return 1;
 498}
 499__setup("lsm.debug", enable_debug);
 500
 501static bool match_last_lsm(const char *list, const char *lsm)
 502{
 503	const char *last;
 504
 505	if (WARN_ON(!list || !lsm))
 506		return false;
 507	last = strrchr(list, ',');
 508	if (last)
 509		/* Pass the comma, strcmp() will check for '\0' */
 510		last++;
 511	else
 512		last = list;
 513	return !strcmp(last, lsm);
 514}
 515
 516static int lsm_append(const char *new, char **result)
 517{
 518	char *cp;
 519
 520	if (*result == NULL) {
 521		*result = kstrdup(new, GFP_KERNEL);
 522		if (*result == NULL)
 523			return -ENOMEM;
 524	} else {
 525		/* Check if it is the last registered name */
 526		if (match_last_lsm(*result, new))
 527			return 0;
 528		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 529		if (cp == NULL)
 530			return -ENOMEM;
 531		kfree(*result);
 532		*result = cp;
 533	}
 534	return 0;
 535}
 536
 537/**
 538 * security_add_hooks - Add a modules hooks to the hook lists.
 539 * @hooks: the hooks to add
 540 * @count: the number of hooks to add
 541 * @lsmid: the identification information for the security module
 542 *
 543 * Each LSM has to register its hooks with the infrastructure.
 544 */
 545void __init security_add_hooks(struct security_hook_list *hooks, int count,
 546			       const struct lsm_id *lsmid)
 547{
 548	int i;
 549
 550	/*
 551	 * A security module may call security_add_hooks() more
 552	 * than once during initialization, and LSM initialization
 553	 * is serialized. Landlock is one such case.
 554	 * Look at the previous entry, if there is one, for duplication.
 555	 */
 556	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
 557		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
 558			panic("%s Too many LSMs registered.\n", __func__);
 559		lsm_idlist[lsm_active_cnt++] = lsmid;
 560	}
 561
 562	for (i = 0; i < count; i++) {
 563		hooks[i].lsmid = lsmid;
 564		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 565	}
 566
 567	/*
 568	 * Don't try to append during early_security_init(), we'll come back
 569	 * and fix this up afterwards.
 570	 */
 571	if (slab_is_available()) {
 572		if (lsm_append(lsmid->name, &lsm_names) < 0)
 573			panic("%s - Cannot get early memory.\n", __func__);
 574	}
 575}
 576
 577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 578{
 579	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 580					    event, data);
 581}
 582EXPORT_SYMBOL(call_blocking_lsm_notifier);
 583
 584int register_blocking_lsm_notifier(struct notifier_block *nb)
 585{
 586	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 587						nb);
 588}
 589EXPORT_SYMBOL(register_blocking_lsm_notifier);
 590
 591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 592{
 593	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 594						  nb);
 595}
 596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 597
 598/**
 599 * lsm_cred_alloc - allocate a composite cred blob
 600 * @cred: the cred that needs a blob
 601 * @gfp: allocation type
 602 *
 603 * Allocate the cred blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 608{
 609	if (blob_sizes.lbs_cred == 0) {
 610		cred->security = NULL;
 611		return 0;
 612	}
 613
 614	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 615	if (cred->security == NULL)
 616		return -ENOMEM;
 617	return 0;
 618}
 619
 620/**
 621 * lsm_early_cred - during initialization allocate a composite cred blob
 622 * @cred: the cred that needs a blob
 623 *
 624 * Allocate the cred blob for all the modules
 625 */
 626static void __init lsm_early_cred(struct cred *cred)
 627{
 628	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 629
 630	if (rc)
 631		panic("%s: Early cred alloc failed.\n", __func__);
 632}
 633
 634/**
 635 * lsm_file_alloc - allocate a composite file blob
 636 * @file: the file that needs a blob
 637 *
 638 * Allocate the file blob for all the modules
 639 *
 640 * Returns 0, or -ENOMEM if memory can't be allocated.
 641 */
 642static int lsm_file_alloc(struct file *file)
 643{
 644	if (!lsm_file_cache) {
 645		file->f_security = NULL;
 646		return 0;
 647	}
 648
 649	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 650	if (file->f_security == NULL)
 651		return -ENOMEM;
 652	return 0;
 653}
 654
 655/**
 656 * lsm_inode_alloc - allocate a composite inode blob
 657 * @inode: the inode that needs a blob
 658 *
 659 * Allocate the inode blob for all the modules
 660 *
 661 * Returns 0, or -ENOMEM if memory can't be allocated.
 662 */
 663int lsm_inode_alloc(struct inode *inode)
 664{
 665	if (!lsm_inode_cache) {
 666		inode->i_security = NULL;
 667		return 0;
 668	}
 669
 670	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 671	if (inode->i_security == NULL)
 672		return -ENOMEM;
 673	return 0;
 674}
 675
 676/**
 677 * lsm_task_alloc - allocate a composite task blob
 678 * @task: the task that needs a blob
 679 *
 680 * Allocate the task blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_task_alloc(struct task_struct *task)
 685{
 686	if (blob_sizes.lbs_task == 0) {
 687		task->security = NULL;
 688		return 0;
 689	}
 690
 691	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 692	if (task->security == NULL)
 693		return -ENOMEM;
 694	return 0;
 695}
 696
 697/**
 698 * lsm_ipc_alloc - allocate a composite ipc blob
 699 * @kip: the ipc that needs a blob
 700 *
 701 * Allocate the ipc blob for all the modules
 702 *
 703 * Returns 0, or -ENOMEM if memory can't be allocated.
 704 */
 705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 706{
 707	if (blob_sizes.lbs_ipc == 0) {
 708		kip->security = NULL;
 709		return 0;
 710	}
 711
 712	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 713	if (kip->security == NULL)
 714		return -ENOMEM;
 715	return 0;
 716}
 717
 718/**
 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 720 * @mp: the msg_msg that needs a blob
 721 *
 722 * Allocate the ipc blob for all the modules
 723 *
 724 * Returns 0, or -ENOMEM if memory can't be allocated.
 725 */
 726static int lsm_msg_msg_alloc(struct msg_msg *mp)
 727{
 728	if (blob_sizes.lbs_msg_msg == 0) {
 729		mp->security = NULL;
 730		return 0;
 731	}
 732
 733	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 734	if (mp->security == NULL)
 735		return -ENOMEM;
 736	return 0;
 737}
 738
 739/**
 740 * lsm_early_task - during initialization allocate a composite task blob
 741 * @task: the task that needs a blob
 742 *
 743 * Allocate the task blob for all the modules
 744 */
 745static void __init lsm_early_task(struct task_struct *task)
 746{
 747	int rc = lsm_task_alloc(task);
 748
 749	if (rc)
 750		panic("%s: Early task alloc failed.\n", __func__);
 751}
 752
 753/**
 754 * lsm_superblock_alloc - allocate a composite superblock blob
 755 * @sb: the superblock that needs a blob
 756 *
 757 * Allocate the superblock blob for all the modules
 758 *
 759 * Returns 0, or -ENOMEM if memory can't be allocated.
 760 */
 761static int lsm_superblock_alloc(struct super_block *sb)
 762{
 763	if (blob_sizes.lbs_superblock == 0) {
 764		sb->s_security = NULL;
 765		return 0;
 766	}
 767
 768	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 769	if (sb->s_security == NULL)
 770		return -ENOMEM;
 771	return 0;
 772}
 773
 774/**
 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
 776 * @uctx: a userspace LSM context to be filled
 777 * @uctx_len: available uctx size (input), used uctx size (output)
 778 * @val: the new LSM context value
 779 * @val_len: the size of the new LSM context value
 780 * @id: LSM id
 781 * @flags: LSM defined flags
 782 *
 783 * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
 784 * simply calculate the required size to output via @utc_len and return
 785 * success.
 786 *
 787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
 788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
 789 */
 790int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
 791		      void *val, size_t val_len,
 792		      u64 id, u64 flags)
 793{
 794	struct lsm_ctx *nctx = NULL;
 795	size_t nctx_len;
 796	int rc = 0;
 797
 798	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
 799	if (nctx_len > *uctx_len) {
 800		rc = -E2BIG;
 801		goto out;
 802	}
 803
 804	/* no buffer - return success/0 and set @uctx_len to the req size */
 805	if (!uctx)
 806		goto out;
 807
 808	nctx = kzalloc(nctx_len, GFP_KERNEL);
 809	if (nctx == NULL) {
 810		rc = -ENOMEM;
 811		goto out;
 812	}
 813	nctx->id = id;
 814	nctx->flags = flags;
 815	nctx->len = nctx_len;
 816	nctx->ctx_len = val_len;
 817	memcpy(nctx->ctx, val, val_len);
 818
 819	if (copy_to_user(uctx, nctx, nctx_len))
 820		rc = -EFAULT;
 821
 822out:
 823	kfree(nctx);
 824	*uctx_len = nctx_len;
 825	return rc;
 826}
 827
 828/*
 829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 830 * can be accessed with:
 831 *
 832 *	LSM_RET_DEFAULT(<hook_name>)
 833 *
 834 * The macros below define static constants for the default value of each
 835 * LSM hook.
 836 */
 837#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 838#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 839#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 840	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 841#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 842	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 843
 844#include <linux/lsm_hook_defs.h>
 845#undef LSM_HOOK
 846
 847/*
 848 * Hook list operation macros.
 849 *
 850 * call_void_hook:
 851 *	This is a hook that does not return a value.
 852 *
 853 * call_int_hook:
 854 *	This is a hook that returns a value.
 855 */
 856
 857#define call_void_hook(FUNC, ...)				\
 858	do {							\
 859		struct security_hook_list *P;			\
 860								\
 861		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 862			P->hook.FUNC(__VA_ARGS__);		\
 863	} while (0)
 864
 865#define call_int_hook(FUNC, ...) ({				\
 866	int RC = LSM_RET_DEFAULT(FUNC);				\
 867	do {							\
 868		struct security_hook_list *P;			\
 869								\
 870		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 871			RC = P->hook.FUNC(__VA_ARGS__);		\
 872			if (RC != LSM_RET_DEFAULT(FUNC))	\
 873				break;				\
 874		}						\
 875	} while (0);						\
 876	RC;							\
 877})
 878
 879/* Security operations */
 880
 881/**
 882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
 883 * @mgr: task credentials of current binder process
 884 *
 885 * Check whether @mgr is allowed to be the binder context manager.
 886 *
 887 * Return: Return 0 if permission is granted.
 888 */
 889int security_binder_set_context_mgr(const struct cred *mgr)
 890{
 891	return call_int_hook(binder_set_context_mgr, mgr);
 892}
 893
 894/**
 895 * security_binder_transaction() - Check if a binder transaction is allowed
 896 * @from: sending process
 897 * @to: receiving process
 898 *
 899 * Check whether @from is allowed to invoke a binder transaction call to @to.
 900 *
 901 * Return: Returns 0 if permission is granted.
 902 */
 903int security_binder_transaction(const struct cred *from,
 904				const struct cred *to)
 905{
 906	return call_int_hook(binder_transaction, from, to);
 907}
 908
 909/**
 910 * security_binder_transfer_binder() - Check if a binder transfer is allowed
 911 * @from: sending process
 912 * @to: receiving process
 913 *
 914 * Check whether @from is allowed to transfer a binder reference to @to.
 915 *
 916 * Return: Returns 0 if permission is granted.
 917 */
 918int security_binder_transfer_binder(const struct cred *from,
 919				    const struct cred *to)
 920{
 921	return call_int_hook(binder_transfer_binder, from, to);
 922}
 923
 924/**
 925 * security_binder_transfer_file() - Check if a binder file xfer is allowed
 926 * @from: sending process
 927 * @to: receiving process
 928 * @file: file being transferred
 929 *
 930 * Check whether @from is allowed to transfer @file to @to.
 931 *
 932 * Return: Returns 0 if permission is granted.
 933 */
 934int security_binder_transfer_file(const struct cred *from,
 935				  const struct cred *to, const struct file *file)
 936{
 937	return call_int_hook(binder_transfer_file, from, to, file);
 938}
 939
 940/**
 941 * security_ptrace_access_check() - Check if tracing is allowed
 942 * @child: target process
 943 * @mode: PTRACE_MODE flags
 944 *
 945 * Check permission before allowing the current process to trace the @child
 946 * process.  Security modules may also want to perform a process tracing check
 947 * during an execve in the set_security or apply_creds hooks of tracing check
 948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
 949 * process is being traced and its security attributes would be changed by the
 950 * execve.
 951 *
 952 * Return: Returns 0 if permission is granted.
 953 */
 954int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 955{
 956	return call_int_hook(ptrace_access_check, child, mode);
 957}
 958
 959/**
 960 * security_ptrace_traceme() - Check if tracing is allowed
 961 * @parent: tracing process
 962 *
 963 * Check that the @parent process has sufficient permission to trace the
 964 * current process before allowing the current process to present itself to the
 965 * @parent process for tracing.
 966 *
 967 * Return: Returns 0 if permission is granted.
 968 */
 969int security_ptrace_traceme(struct task_struct *parent)
 970{
 971	return call_int_hook(ptrace_traceme, parent);
 972}
 973
 974/**
 975 * security_capget() - Get the capability sets for a process
 976 * @target: target process
 977 * @effective: effective capability set
 978 * @inheritable: inheritable capability set
 979 * @permitted: permitted capability set
 980 *
 981 * Get the @effective, @inheritable, and @permitted capability sets for the
 982 * @target process.  The hook may also perform permission checking to determine
 983 * if the current process is allowed to see the capability sets of the @target
 984 * process.
 985 *
 986 * Return: Returns 0 if the capability sets were successfully obtained.
 987 */
 988int security_capget(const struct task_struct *target,
 989		    kernel_cap_t *effective,
 990		    kernel_cap_t *inheritable,
 991		    kernel_cap_t *permitted)
 992{
 993	return call_int_hook(capget, target, effective, inheritable, permitted);
 
 994}
 995
 996/**
 997 * security_capset() - Set the capability sets for a process
 998 * @new: new credentials for the target process
 999 * @old: current credentials of the target process
1000 * @effective: effective capability set
1001 * @inheritable: inheritable capability set
1002 * @permitted: permitted capability set
1003 *
1004 * Set the @effective, @inheritable, and @permitted capability sets for the
1005 * current process.
1006 *
1007 * Return: Returns 0 and update @new if permission is granted.
1008 */
1009int security_capset(struct cred *new, const struct cred *old,
1010		    const kernel_cap_t *effective,
1011		    const kernel_cap_t *inheritable,
1012		    const kernel_cap_t *permitted)
1013{
1014	return call_int_hook(capset, new, old, effective, inheritable,
1015			     permitted);
1016}
1017
1018/**
1019 * security_capable() - Check if a process has the necessary capability
1020 * @cred: credentials to examine
1021 * @ns: user namespace
1022 * @cap: capability requested
1023 * @opts: capability check options
1024 *
1025 * Check whether the @tsk process has the @cap capability in the indicated
1026 * credentials.  @cap contains the capability <include/linux/capability.h>.
1027 * @opts contains options for the capable check <include/linux/security.h>.
1028 *
1029 * Return: Returns 0 if the capability is granted.
1030 */
1031int security_capable(const struct cred *cred,
1032		     struct user_namespace *ns,
1033		     int cap,
1034		     unsigned int opts)
1035{
1036	return call_int_hook(capable, cred, ns, cap, opts);
1037}
1038
1039/**
1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041 * @cmds: commands
1042 * @type: type
1043 * @id: id
1044 * @sb: filesystem
1045 *
1046 * Check whether the quotactl syscall is allowed for this @sb.
1047 *
1048 * Return: Returns 0 if permission is granted.
1049 */
1050int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051{
1052	return call_int_hook(quotactl, cmds, type, id, sb);
1053}
1054
1055/**
1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057 * @dentry: dentry
1058 *
1059 * Check whether QUOTAON is allowed for @dentry.
1060 *
1061 * Return: Returns 0 if permission is granted.
1062 */
1063int security_quota_on(struct dentry *dentry)
1064{
1065	return call_int_hook(quota_on, dentry);
1066}
1067
1068/**
1069 * security_syslog() - Check if accessing the kernel message ring is allowed
1070 * @type: SYSLOG_ACTION_* type
1071 *
1072 * Check permission before accessing the kernel message ring or changing
1073 * logging to the console.  See the syslog(2) manual page for an explanation of
1074 * the @type values.
1075 *
1076 * Return: Return 0 if permission is granted.
1077 */
1078int security_syslog(int type)
1079{
1080	return call_int_hook(syslog, type);
1081}
1082
1083/**
1084 * security_settime64() - Check if changing the system time is allowed
1085 * @ts: new time
1086 * @tz: timezone
1087 *
1088 * Check permission to change the system time, struct timespec64 is defined in
1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090 *
1091 * Return: Returns 0 if permission is granted.
1092 */
1093int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094{
1095	return call_int_hook(settime, ts, tz);
1096}
1097
1098/**
1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100 * @mm: mm struct
1101 * @pages: number of pages
1102 *
1103 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106 * called with cap_sys_admin cleared.
1107 *
1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109 *         caller.
1110 */
1111int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112{
1113	struct security_hook_list *hp;
1114	int cap_sys_admin = 1;
1115	int rc;
1116
1117	/*
1118	 * The module will respond with a positive value if
1119	 * it thinks the __vm_enough_memory() call should be
1120	 * made with the cap_sys_admin set. If all of the modules
1121	 * agree that it should be set it will. If any module
1122	 * thinks it should not be set it won't.
1123	 */
1124	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125		rc = hp->hook.vm_enough_memory(mm, pages);
1126		if (rc <= 0) {
1127			cap_sys_admin = 0;
1128			break;
1129		}
1130	}
1131	return __vm_enough_memory(mm, pages, cap_sys_admin);
1132}
1133
1134/**
1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136 * @bprm: binary program information
1137 *
1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139 * properly for executing @bprm->file, update the LSM's portion of
1140 * @bprm->cred->security to be what commit_creds needs to install for the new
1141 * program.  This hook may also optionally check permissions (e.g. for
1142 * transitions between security domains).  The hook must set @bprm->secureexec
1143 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1144 * contains the linux_binprm structure.
1145 *
1146 * Return: Returns 0 if the hook is successful and permission is granted.
1147 */
1148int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149{
1150	return call_int_hook(bprm_creds_for_exec, bprm);
1151}
1152
1153/**
1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155 * @bprm: binary program information
1156 * @file: associated file
1157 *
1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159 * exec, update @bprm->cred to reflect that change. This is called after
1160 * finding the binary that will be executed without an interpreter.  This
1161 * ensures that the credentials will not be derived from a script that the
1162 * binary will need to reopen, which when reopend may end up being a completely
1163 * different file.  This hook may also optionally check permissions (e.g. for
1164 * transitions between security domains).  The hook must set @bprm->secureexec
1165 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1166 * hook must add to @bprm->per_clear any personality flags that should be
1167 * cleared from current->personality.  @bprm contains the linux_binprm
1168 * structure.
1169 *
1170 * Return: Returns 0 if the hook is successful and permission is granted.
1171 */
1172int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173{
1174	return call_int_hook(bprm_creds_from_file, bprm, file);
1175}
1176
1177/**
1178 * security_bprm_check() - Mediate binary handler search
1179 * @bprm: binary program information
1180 *
1181 * This hook mediates the point when a search for a binary handler will begin.
1182 * It allows a check against the @bprm->cred->security value which was set in
1183 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1184 * available in @bprm.  This hook may be called multiple times during a single
1185 * execve.  @bprm contains the linux_binprm structure.
1186 *
1187 * Return: Returns 0 if the hook is successful and permission is granted.
1188 */
1189int security_bprm_check(struct linux_binprm *bprm)
1190{
1191	return call_int_hook(bprm_check_security, bprm);
 
 
 
 
 
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed.  This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208	call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation.  The new credentials have, by this
1217 * point, been set to @current->cred.  @bprm points to the linux_binprm
1218 * structure.  This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state.  This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224	call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238	return call_int_hook(fs_context_submount, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security.  This pointer is
1247 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254	return call_int_hook(fs_context_dup, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock.  The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1267 *         error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270				    struct fs_parameter *param)
1271{
1272	struct security_hook_list *hp;
1273	int trc;
1274	int rc = -ENOPARAM;
1275
1276	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277			     list) {
1278		trc = hp->hook.fs_context_parse_param(fc, param);
1279		if (trc == 0)
1280			rc = 0;
1281		else if (trc != -ENOPARAM)
1282			return trc;
1283	}
1284	return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field.  The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299	int rc = lsm_superblock_alloc(sb);
1300
1301	if (unlikely(rc))
1302		return rc;
1303	rc = call_int_hook(sb_alloc_security, sb);
1304	if (unlikely(rc))
1305		security_sb_free(sb);
1306	return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318	call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330	call_void_hook(sb_free_security, sb);
1331	kfree(sb->s_security);
1332	sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343	if (!*mnt_opts)
1344		return;
1345	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346	*mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb.  @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376				void *mnt_opts)
1377{
1378	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393			void *mnt_opts)
1394{
1395	return call_int_hook(sb_remount, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409	return call_int_hook(sb_kern_mount, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423	return call_int_hook(sb_show_options, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437	return call_int_hook(sb_statfs, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device.  For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458		      const char *type, unsigned long flags, void *data)
1459{
1460	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474	return call_int_hook(sb_umount, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487			  const struct path *new_path)
1488{
1489	return call_int_hook(sb_pivotroot, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504			     void *mnt_opts,
1505			     unsigned long kern_flags,
1506			     unsigned long *set_kern_flags)
1507{
1508	struct security_hook_list *hp;
1509	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510
1511	hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512			     list) {
1513		rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514					      set_kern_flags);
1515		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516			break;
1517	}
1518	return rc;
1519}
1520EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521
1522/**
1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524 * @oldsb: source superblock
1525 * @newsb: destination superblock
1526 * @kern_flags: kernel flags (in)
1527 * @set_kern_flags: kernel flags (out)
1528 *
1529 * Copy all security options from a given superblock to another.
1530 *
1531 * Return: Returns 0 on success, error on failure.
1532 */
1533int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534			       struct super_block *newsb,
1535			       unsigned long kern_flags,
1536			       unsigned long *set_kern_flags)
1537{
1538	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539			     kern_flags, set_kern_flags);
1540}
1541EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542
1543/**
1544 * security_move_mount() - Check permissions for moving a mount
1545 * @from_path: source mount point
1546 * @to_path: destination mount point
1547 *
1548 * Check permission before a mount is moved.
1549 *
1550 * Return: Returns 0 if permission is granted.
1551 */
1552int security_move_mount(const struct path *from_path,
1553			const struct path *to_path)
1554{
1555	return call_int_hook(move_mount, from_path, to_path);
1556}
1557
1558/**
1559 * security_path_notify() - Check if setting a watch is allowed
1560 * @path: file path
1561 * @mask: event mask
1562 * @obj_type: file path type
1563 *
1564 * Check permissions before setting a watch on events as defined by @mask, on
1565 * an object at @path, whose type is defined by @obj_type.
1566 *
1567 * Return: Returns 0 if permission is granted.
1568 */
1569int security_path_notify(const struct path *path, u64 mask,
1570			 unsigned int obj_type)
1571{
1572	return call_int_hook(path_notify, path, mask, obj_type);
1573}
1574
1575/**
1576 * security_inode_alloc() - Allocate an inode LSM blob
1577 * @inode: the inode
1578 *
1579 * Allocate and attach a security structure to @inode->i_security.  The
1580 * i_security field is initialized to NULL when the inode structure is
1581 * allocated.
1582 *
1583 * Return: Return 0 if operation was successful.
1584 */
1585int security_inode_alloc(struct inode *inode)
1586{
1587	int rc = lsm_inode_alloc(inode);
1588
1589	if (unlikely(rc))
1590		return rc;
1591	rc = call_int_hook(inode_alloc_security, inode);
1592	if (unlikely(rc))
1593		security_inode_free(inode);
1594	return rc;
1595}
1596
1597static void inode_free_by_rcu(struct rcu_head *head)
1598{
1599	/*
1600	 * The rcu head is at the start of the inode blob
1601	 */
1602	kmem_cache_free(lsm_inode_cache, head);
1603}
1604
1605/**
1606 * security_inode_free() - Free an inode's LSM blob
1607 * @inode: the inode
1608 *
1609 * Deallocate the inode security structure and set @inode->i_security to NULL.
1610 */
1611void security_inode_free(struct inode *inode)
1612{
 
1613	call_void_hook(inode_free_security, inode);
1614	/*
1615	 * The inode may still be referenced in a path walk and
1616	 * a call to security_inode_permission() can be made
1617	 * after inode_free_security() is called. Ideally, the VFS
1618	 * wouldn't do this, but fixing that is a much harder
1619	 * job. For now, simply free the i_security via RCU, and
1620	 * leave the current inode->i_security pointer intact.
1621	 * The inode will be freed after the RCU grace period too.
1622	 */
1623	if (inode->i_security)
1624		call_rcu((struct rcu_head *)inode->i_security,
1625			 inode_free_by_rcu);
1626}
1627
1628/**
1629 * security_dentry_init_security() - Perform dentry initialization
1630 * @dentry: the dentry to initialize
1631 * @mode: mode used to determine resource type
1632 * @name: name of the last path component
1633 * @xattr_name: name of the security/LSM xattr
1634 * @ctx: pointer to the resulting LSM context
1635 * @ctxlen: length of @ctx
1636 *
1637 * Compute a context for a dentry as the inode is not yet available since NFSv4
1638 * has no label backed by an EA anyway.  It is important to note that
1639 * @xattr_name does not need to be free'd by the caller, it is a static string.
1640 *
1641 * Return: Returns 0 on success, negative values on failure.
1642 */
1643int security_dentry_init_security(struct dentry *dentry, int mode,
1644				  const struct qstr *name,
1645				  const char **xattr_name, void **ctx,
1646				  u32 *ctxlen)
1647{
1648	return call_int_hook(dentry_init_security, dentry, mode, name,
1649			     xattr_name, ctx, ctxlen);
 
 
 
 
 
 
 
 
 
 
 
1650}
1651EXPORT_SYMBOL(security_dentry_init_security);
1652
1653/**
1654 * security_dentry_create_files_as() - Perform dentry initialization
1655 * @dentry: the dentry to initialize
1656 * @mode: mode used to determine resource type
1657 * @name: name of the last path component
1658 * @old: creds to use for LSM context calculations
1659 * @new: creds to modify
1660 *
1661 * Compute a context for a dentry as the inode is not yet available and set
1662 * that context in passed in creds so that new files are created using that
1663 * context. Context is calculated using the passed in creds and not the creds
1664 * of the caller.
1665 *
1666 * Return: Returns 0 on success, error on failure.
1667 */
1668int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669				    struct qstr *name,
1670				    const struct cred *old, struct cred *new)
1671{
1672	return call_int_hook(dentry_create_files_as, dentry, mode,
1673			     name, old, new);
1674}
1675EXPORT_SYMBOL(security_dentry_create_files_as);
1676
1677/**
1678 * security_inode_init_security() - Initialize an inode's LSM context
1679 * @inode: the inode
1680 * @dir: parent directory
1681 * @qstr: last component of the pathname
1682 * @initxattrs: callback function to write xattrs
1683 * @fs_data: filesystem specific data
1684 *
1685 * Obtain the security attribute name suffix and value to set on a newly
1686 * created inode and set up the incore security field for the new inode.  This
1687 * hook is called by the fs code as part of the inode creation transaction and
1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689 * hooks called by the VFS.
1690 *
1691 * The hook function is expected to populate the xattrs array, by calling
1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1694 * slot, the hook function should set ->name to the attribute name suffix
1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696 * to the attribute value, to set ->value_len to the length of the value.  If
1697 * the security module does not use security attributes or does not wish to put
1698 * a security attribute on this particular inode, then it should return
1699 * -EOPNOTSUPP to skip this processing.
1700 *
1701 * Return: Returns 0 if the LSM successfully initialized all of the inode
1702 *         security attributes that are required, negative values otherwise.
1703 */
1704int security_inode_init_security(struct inode *inode, struct inode *dir,
1705				 const struct qstr *qstr,
1706				 const initxattrs initxattrs, void *fs_data)
1707{
1708	struct security_hook_list *hp;
1709	struct xattr *new_xattrs = NULL;
1710	int ret = -EOPNOTSUPP, xattr_count = 0;
1711
1712	if (unlikely(IS_PRIVATE(inode)))
1713		return 0;
1714
1715	if (!blob_sizes.lbs_xattr_count)
1716		return 0;
1717
1718	if (initxattrs) {
1719		/* Allocate +1 as terminator. */
1720		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721				     sizeof(*new_xattrs), GFP_NOFS);
1722		if (!new_xattrs)
1723			return -ENOMEM;
1724	}
1725
1726	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727			     list) {
1728		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729						  &xattr_count);
1730		if (ret && ret != -EOPNOTSUPP)
1731			goto out;
1732		/*
1733		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734		 * means that the LSM is not willing to provide an xattr, not
1735		 * that it wants to signal an error. Thus, continue to invoke
1736		 * the remaining LSMs.
1737		 */
1738	}
1739
1740	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741	if (!xattr_count)
1742		goto out;
1743
 
 
 
 
1744	ret = initxattrs(inode, new_xattrs, fs_data);
1745out:
1746	for (; xattr_count > 0; xattr_count--)
1747		kfree(new_xattrs[xattr_count - 1].value);
1748	kfree(new_xattrs);
1749	return (ret == -EOPNOTSUPP) ? 0 : ret;
1750}
1751EXPORT_SYMBOL(security_inode_init_security);
1752
1753/**
1754 * security_inode_init_security_anon() - Initialize an anonymous inode
1755 * @inode: the inode
1756 * @name: the anonymous inode class
1757 * @context_inode: an optional related inode
1758 *
1759 * Set up the incore security field for the new anonymous inode and return
1760 * whether the inode creation is permitted by the security module or not.
1761 *
1762 * Return: Returns 0 on success, -EACCES if the security module denies the
1763 * creation of this inode, or another -errno upon other errors.
1764 */
1765int security_inode_init_security_anon(struct inode *inode,
1766				      const struct qstr *name,
1767				      const struct inode *context_inode)
1768{
1769	return call_int_hook(inode_init_security_anon, inode, name,
1770			     context_inode);
1771}
1772
 
 
 
 
 
 
 
 
 
 
 
1773#ifdef CONFIG_SECURITY_PATH
1774/**
1775 * security_path_mknod() - Check if creating a special file is allowed
1776 * @dir: parent directory
1777 * @dentry: new file
1778 * @mode: new file mode
1779 * @dev: device number
1780 *
1781 * Check permissions when creating a file. Note that this hook is called even
1782 * if mknod operation is being done for a regular file.
1783 *
1784 * Return: Returns 0 if permission is granted.
1785 */
1786int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787			umode_t mode, unsigned int dev)
1788{
1789	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790		return 0;
1791	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792}
1793EXPORT_SYMBOL(security_path_mknod);
1794
1795/**
1796 * security_path_post_mknod() - Update inode security after reg file creation
1797 * @idmap: idmap of the mount
1798 * @dentry: new file
1799 *
1800 * Update inode security field after a regular file has been created.
1801 */
1802void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803{
1804	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805		return;
1806	call_void_hook(path_post_mknod, idmap, dentry);
1807}
1808
1809/**
1810 * security_path_mkdir() - Check if creating a new directory is allowed
1811 * @dir: parent directory
1812 * @dentry: new directory
1813 * @mode: new directory mode
1814 *
1815 * Check permissions to create a new directory in the existing directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
1819int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820			umode_t mode)
1821{
1822	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823		return 0;
1824	return call_int_hook(path_mkdir, dir, dentry, mode);
1825}
1826EXPORT_SYMBOL(security_path_mkdir);
1827
1828/**
1829 * security_path_rmdir() - Check if removing a directory is allowed
1830 * @dir: parent directory
1831 * @dentry: directory to remove
1832 *
1833 * Check the permission to remove a directory.
1834 *
1835 * Return: Returns 0 if permission is granted.
1836 */
1837int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838{
1839	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840		return 0;
1841	return call_int_hook(path_rmdir, dir, dentry);
1842}
1843
1844/**
1845 * security_path_unlink() - Check if removing a hard link is allowed
1846 * @dir: parent directory
1847 * @dentry: file
1848 *
1849 * Check the permission to remove a hard link to a file.
1850 *
1851 * Return: Returns 0 if permission is granted.
1852 */
1853int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854{
1855	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856		return 0;
1857	return call_int_hook(path_unlink, dir, dentry);
1858}
1859EXPORT_SYMBOL(security_path_unlink);
1860
1861/**
1862 * security_path_symlink() - Check if creating a symbolic link is allowed
1863 * @dir: parent directory
1864 * @dentry: symbolic link
1865 * @old_name: file pathname
1866 *
1867 * Check the permission to create a symbolic link to a file.
1868 *
1869 * Return: Returns 0 if permission is granted.
1870 */
1871int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872			  const char *old_name)
1873{
1874	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875		return 0;
1876	return call_int_hook(path_symlink, dir, dentry, old_name);
1877}
1878
1879/**
1880 * security_path_link - Check if creating a hard link is allowed
1881 * @old_dentry: existing file
1882 * @new_dir: new parent directory
1883 * @new_dentry: new link
1884 *
1885 * Check permission before creating a new hard link to a file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890		       struct dentry *new_dentry)
1891{
1892	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893		return 0;
1894	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895}
1896
1897/**
1898 * security_path_rename() - Check if renaming a file is allowed
1899 * @old_dir: parent directory of the old file
1900 * @old_dentry: the old file
1901 * @new_dir: parent directory of the new file
1902 * @new_dentry: the new file
1903 * @flags: flags
1904 *
1905 * Check for permission to rename a file or directory.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
1909int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910			 const struct path *new_dir, struct dentry *new_dentry,
1911			 unsigned int flags)
1912{
1913	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914		     (d_is_positive(new_dentry) &&
1915		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1916		return 0;
1917
1918	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919			     new_dentry, flags);
1920}
1921EXPORT_SYMBOL(security_path_rename);
1922
1923/**
1924 * security_path_truncate() - Check if truncating a file is allowed
1925 * @path: file
1926 *
1927 * Check permission before truncating the file indicated by path.  Note that
1928 * truncation permissions may also be checked based on already opened files,
1929 * using the security_file_truncate() hook.
1930 *
1931 * Return: Returns 0 if permission is granted.
1932 */
1933int security_path_truncate(const struct path *path)
1934{
1935	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936		return 0;
1937	return call_int_hook(path_truncate, path);
1938}
1939
1940/**
1941 * security_path_chmod() - Check if changing the file's mode is allowed
1942 * @path: file
1943 * @mode: new mode
1944 *
1945 * Check for permission to change a mode of the file @path. The new mode is
1946 * specified in @mode which is a bitmask of constants from
1947 * <include/uapi/linux/stat.h>.
1948 *
1949 * Return: Returns 0 if permission is granted.
1950 */
1951int security_path_chmod(const struct path *path, umode_t mode)
1952{
1953	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954		return 0;
1955	return call_int_hook(path_chmod, path, mode);
1956}
1957
1958/**
1959 * security_path_chown() - Check if changing the file's owner/group is allowed
1960 * @path: file
1961 * @uid: file owner
1962 * @gid: file group
1963 *
1964 * Check for permission to change owner/group of a file or directory.
1965 *
1966 * Return: Returns 0 if permission is granted.
1967 */
1968int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969{
1970	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971		return 0;
1972	return call_int_hook(path_chown, path, uid, gid);
1973}
1974
1975/**
1976 * security_path_chroot() - Check if changing the root directory is allowed
1977 * @path: directory
1978 *
1979 * Check for permission to change root directory.
1980 *
1981 * Return: Returns 0 if permission is granted.
1982 */
1983int security_path_chroot(const struct path *path)
1984{
1985	return call_int_hook(path_chroot, path);
1986}
1987#endif /* CONFIG_SECURITY_PATH */
1988
1989/**
1990 * security_inode_create() - Check if creating a file is allowed
1991 * @dir: the parent directory
1992 * @dentry: the file being created
1993 * @mode: requested file mode
1994 *
1995 * Check permission to create a regular file.
1996 *
1997 * Return: Returns 0 if permission is granted.
1998 */
1999int security_inode_create(struct inode *dir, struct dentry *dentry,
2000			  umode_t mode)
2001{
2002	if (unlikely(IS_PRIVATE(dir)))
2003		return 0;
2004	return call_int_hook(inode_create, dir, dentry, mode);
2005}
2006EXPORT_SYMBOL_GPL(security_inode_create);
2007
2008/**
2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010 * @idmap: idmap of the mount
2011 * @inode: inode of the new tmpfile
2012 *
2013 * Update inode security data after a tmpfile has been created.
2014 */
2015void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016					struct inode *inode)
2017{
2018	if (unlikely(IS_PRIVATE(inode)))
2019		return;
2020	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021}
2022
2023/**
2024 * security_inode_link() - Check if creating a hard link is allowed
2025 * @old_dentry: existing file
2026 * @dir: new parent directory
2027 * @new_dentry: new link
2028 *
2029 * Check permission before creating a new hard link to a file.
2030 *
2031 * Return: Returns 0 if permission is granted.
2032 */
2033int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034			struct dentry *new_dentry)
2035{
2036	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037		return 0;
2038	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039}
2040
2041/**
2042 * security_inode_unlink() - Check if removing a hard link is allowed
2043 * @dir: parent directory
2044 * @dentry: file
2045 *
2046 * Check the permission to remove a hard link to a file.
2047 *
2048 * Return: Returns 0 if permission is granted.
2049 */
2050int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051{
2052	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053		return 0;
2054	return call_int_hook(inode_unlink, dir, dentry);
2055}
2056
2057/**
2058 * security_inode_symlink() - Check if creating a symbolic link is allowed
2059 * @dir: parent directory
2060 * @dentry: symbolic link
2061 * @old_name: existing filename
2062 *
2063 * Check the permission to create a symbolic link to a file.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
2067int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068			   const char *old_name)
2069{
2070	if (unlikely(IS_PRIVATE(dir)))
2071		return 0;
2072	return call_int_hook(inode_symlink, dir, dentry, old_name);
2073}
2074
2075/**
2076 * security_inode_mkdir() - Check if creation a new director is allowed
2077 * @dir: parent directory
2078 * @dentry: new directory
2079 * @mode: new directory mode
2080 *
2081 * Check permissions to create a new directory in the existing directory
2082 * associated with inode structure @dir.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087{
2088	if (unlikely(IS_PRIVATE(dir)))
2089		return 0;
2090	return call_int_hook(inode_mkdir, dir, dentry, mode);
2091}
2092EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093
2094/**
2095 * security_inode_rmdir() - Check if removing a directory is allowed
2096 * @dir: parent directory
2097 * @dentry: directory to be removed
2098 *
2099 * Check the permission to remove a directory.
2100 *
2101 * Return: Returns 0 if permission is granted.
2102 */
2103int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104{
2105	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106		return 0;
2107	return call_int_hook(inode_rmdir, dir, dentry);
2108}
2109
2110/**
2111 * security_inode_mknod() - Check if creating a special file is allowed
2112 * @dir: parent directory
2113 * @dentry: new file
2114 * @mode: new file mode
2115 * @dev: device number
2116 *
2117 * Check permissions when creating a special file (or a socket or a fifo file
2118 * created via the mknod system call).  Note that if mknod operation is being
2119 * done for a regular file, then the create hook will be called and not this
2120 * hook.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125			 umode_t mode, dev_t dev)
2126{
2127	if (unlikely(IS_PRIVATE(dir)))
2128		return 0;
2129	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130}
2131
2132/**
2133 * security_inode_rename() - Check if renaming a file is allowed
2134 * @old_dir: parent directory of the old file
2135 * @old_dentry: the old file
2136 * @new_dir: parent directory of the new file
2137 * @new_dentry: the new file
2138 * @flags: flags
2139 *
2140 * Check for permission to rename a file or directory.
2141 *
2142 * Return: Returns 0 if permission is granted.
2143 */
2144int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145			  struct inode *new_dir, struct dentry *new_dentry,
2146			  unsigned int flags)
2147{
2148	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149		     (d_is_positive(new_dentry) &&
2150		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2151		return 0;
2152
2153	if (flags & RENAME_EXCHANGE) {
2154		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155					old_dir, old_dentry);
2156		if (err)
2157			return err;
2158	}
2159
2160	return call_int_hook(inode_rename, old_dir, old_dentry,
2161			     new_dir, new_dentry);
2162}
2163
2164/**
2165 * security_inode_readlink() - Check if reading a symbolic link is allowed
2166 * @dentry: link
2167 *
2168 * Check the permission to read the symbolic link.
2169 *
2170 * Return: Returns 0 if permission is granted.
2171 */
2172int security_inode_readlink(struct dentry *dentry)
2173{
2174	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175		return 0;
2176	return call_int_hook(inode_readlink, dentry);
2177}
2178
2179/**
2180 * security_inode_follow_link() - Check if following a symbolic link is allowed
2181 * @dentry: link dentry
2182 * @inode: link inode
2183 * @rcu: true if in RCU-walk mode
2184 *
2185 * Check permission to follow a symbolic link when looking up a pathname.  If
2186 * @rcu is true, @inode is not stable.
2187 *
2188 * Return: Returns 0 if permission is granted.
2189 */
2190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191			       bool rcu)
2192{
2193	if (unlikely(IS_PRIVATE(inode)))
2194		return 0;
2195	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196}
2197
2198/**
2199 * security_inode_permission() - Check if accessing an inode is allowed
2200 * @inode: inode
2201 * @mask: access mask
2202 *
2203 * Check permission before accessing an inode.  This hook is called by the
2204 * existing Linux permission function, so a security module can use it to
2205 * provide additional checking for existing Linux permission checks.  Notice
2206 * that this hook is called when a file is opened (as well as many other
2207 * operations), whereas the file_security_ops permission hook is called when
2208 * the actual read/write operations are performed.
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_permission(struct inode *inode, int mask)
2213{
2214	if (unlikely(IS_PRIVATE(inode)))
2215		return 0;
2216	return call_int_hook(inode_permission, inode, mask);
2217}
2218
2219/**
2220 * security_inode_setattr() - Check if setting file attributes is allowed
2221 * @idmap: idmap of the mount
2222 * @dentry: file
2223 * @attr: new attributes
2224 *
2225 * Check permission before setting file attributes.  Note that the kernel call
2226 * to notify_change is performed from several locations, whenever file
2227 * attributes change (such as when a file is truncated, chown/chmod operations,
2228 * transferring disk quotas, etc).
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
2232int security_inode_setattr(struct mnt_idmap *idmap,
2233			   struct dentry *dentry, struct iattr *attr)
2234{
 
 
2235	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236		return 0;
2237	return call_int_hook(inode_setattr, idmap, dentry, attr);
 
 
 
2238}
2239EXPORT_SYMBOL_GPL(security_inode_setattr);
2240
2241/**
2242 * security_inode_post_setattr() - Update the inode after a setattr operation
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @ia_valid: file attributes set
2246 *
2247 * Update inode security field after successful setting file attributes.
2248 */
2249void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250				 int ia_valid)
2251{
2252	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253		return;
2254	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255}
2256
2257/**
2258 * security_inode_getattr() - Check if getting file attributes is allowed
2259 * @path: file
2260 *
2261 * Check permission before obtaining file attributes.
2262 *
2263 * Return: Returns 0 if permission is granted.
2264 */
2265int security_inode_getattr(const struct path *path)
2266{
2267	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268		return 0;
2269	return call_int_hook(inode_getattr, path);
2270}
2271
2272/**
2273 * security_inode_setxattr() - Check if setting file xattrs is allowed
2274 * @idmap: idmap of the mount
2275 * @dentry: file
2276 * @name: xattr name
2277 * @value: xattr value
2278 * @size: size of xattr value
2279 * @flags: flags
2280 *
2281 * Check permission before setting the extended attributes.
2282 *
2283 * Return: Returns 0 if permission is granted.
2284 */
2285int security_inode_setxattr(struct mnt_idmap *idmap,
2286			    struct dentry *dentry, const char *name,
2287			    const void *value, size_t size, int flags)
2288{
2289	int ret;
2290
2291	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292		return 0;
2293	/*
2294	 * SELinux and Smack integrate the cap call,
2295	 * so assume that all LSMs supplying this call do so.
2296	 */
2297	ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2298			    flags);
2299
2300	if (ret == 1)
2301		ret = cap_inode_setxattr(dentry, name, value, size, flags);
2302	return ret;
 
 
 
 
 
2303}
2304
2305/**
2306 * security_inode_set_acl() - Check if setting posix acls is allowed
2307 * @idmap: idmap of the mount
2308 * @dentry: file
2309 * @acl_name: acl name
2310 * @kacl: acl struct
2311 *
2312 * Check permission before setting posix acls, the posix acls in @kacl are
2313 * identified by @acl_name.
2314 *
2315 * Return: Returns 0 if permission is granted.
2316 */
2317int security_inode_set_acl(struct mnt_idmap *idmap,
2318			   struct dentry *dentry, const char *acl_name,
2319			   struct posix_acl *kacl)
2320{
2321	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322		return 0;
2323	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2324}
2325
2326/**
2327 * security_inode_post_set_acl() - Update inode security from posix acls set
2328 * @dentry: file
2329 * @acl_name: acl name
2330 * @kacl: acl struct
2331 *
2332 * Update inode security data after successfully setting posix acls on @dentry.
2333 * The posix acls in @kacl are identified by @acl_name.
2334 */
2335void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2336				 struct posix_acl *kacl)
2337{
2338	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339		return;
2340	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
 
 
 
 
 
 
 
2341}
2342
2343/**
2344 * security_inode_get_acl() - Check if reading posix acls is allowed
2345 * @idmap: idmap of the mount
2346 * @dentry: file
2347 * @acl_name: acl name
2348 *
2349 * Check permission before getting osix acls, the posix acls are identified by
2350 * @acl_name.
2351 *
2352 * Return: Returns 0 if permission is granted.
2353 */
2354int security_inode_get_acl(struct mnt_idmap *idmap,
2355			   struct dentry *dentry, const char *acl_name)
2356{
2357	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2358		return 0;
2359	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2360}
2361
2362/**
2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2364 * @idmap: idmap of the mount
2365 * @dentry: file
2366 * @acl_name: acl name
2367 *
2368 * Check permission before removing posix acls, the posix acls are identified
2369 * by @acl_name.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
2373int security_inode_remove_acl(struct mnt_idmap *idmap,
2374			      struct dentry *dentry, const char *acl_name)
2375{
2376	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2377		return 0;
2378	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2379}
2380
2381/**
2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2383 * @idmap: idmap of the mount
2384 * @dentry: file
2385 * @acl_name: acl name
2386 *
2387 * Update inode security data after successfully removing posix acls on
2388 * @dentry in @idmap. The posix acls are identified by @acl_name.
2389 */
2390void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2391				    struct dentry *dentry, const char *acl_name)
2392{
2393	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2394		return;
2395	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
 
 
 
 
 
 
2396}
2397
2398/**
2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2400 * @dentry: file
2401 * @name: xattr name
2402 * @value: xattr value
2403 * @size: xattr value size
2404 * @flags: flags
2405 *
2406 * Update inode security field after successful setxattr operation.
2407 */
2408void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2409				  const void *value, size_t size, int flags)
2410{
2411	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2412		return;
2413	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
 
2414}
2415
2416/**
2417 * security_inode_getxattr() - Check if xattr access is allowed
2418 * @dentry: file
2419 * @name: xattr name
2420 *
2421 * Check permission before obtaining the extended attributes identified by
2422 * @name for @dentry.
2423 *
2424 * Return: Returns 0 if permission is granted.
2425 */
2426int security_inode_getxattr(struct dentry *dentry, const char *name)
2427{
2428	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429		return 0;
2430	return call_int_hook(inode_getxattr, dentry, name);
2431}
2432
2433/**
2434 * security_inode_listxattr() - Check if listing xattrs is allowed
2435 * @dentry: file
2436 *
2437 * Check permission before obtaining the list of extended attribute names for
2438 * @dentry.
2439 *
2440 * Return: Returns 0 if permission is granted.
2441 */
2442int security_inode_listxattr(struct dentry *dentry)
2443{
2444	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2445		return 0;
2446	return call_int_hook(inode_listxattr, dentry);
2447}
2448
2449/**
2450 * security_inode_removexattr() - Check if removing an xattr is allowed
2451 * @idmap: idmap of the mount
2452 * @dentry: file
2453 * @name: xattr name
2454 *
2455 * Check permission before removing the extended attribute identified by @name
2456 * for @dentry.
2457 *
2458 * Return: Returns 0 if permission is granted.
2459 */
2460int security_inode_removexattr(struct mnt_idmap *idmap,
2461			       struct dentry *dentry, const char *name)
2462{
2463	int ret;
2464
2465	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466		return 0;
2467	/*
2468	 * SELinux and Smack integrate the cap call,
2469	 * so assume that all LSMs supplying this call do so.
2470	 */
2471	ret = call_int_hook(inode_removexattr, idmap, dentry, name);
2472	if (ret == 1)
2473		ret = cap_inode_removexattr(idmap, dentry, name);
2474	return ret;
2475}
2476
2477/**
2478 * security_inode_post_removexattr() - Update the inode after a removexattr op
2479 * @dentry: file
2480 * @name: xattr name
2481 *
2482 * Update the inode after a successful removexattr operation.
2483 */
2484void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2485{
2486	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2487		return;
2488	call_void_hook(inode_post_removexattr, dentry, name);
2489}
2490
2491/**
2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2493 * @dentry: associated dentry
2494 *
2495 * Called when an inode has been changed to determine if
2496 * security_inode_killpriv() should be called.
2497 *
2498 * Return: Return <0 on error to abort the inode change operation, return 0 if
2499 *         security_inode_killpriv() does not need to be called, return >0 if
2500 *         security_inode_killpriv() does need to be called.
2501 */
2502int security_inode_need_killpriv(struct dentry *dentry)
2503{
2504	return call_int_hook(inode_need_killpriv, dentry);
2505}
2506
2507/**
2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2509 * @idmap: idmap of the mount
2510 * @dentry: associated dentry
2511 *
2512 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2513 * Called with the dentry->d_inode->i_mutex held.
2514 *
2515 * Return: Return 0 on success.  If error is returned, then the operation
2516 *         causing setuid bit removal is failed.
2517 */
2518int security_inode_killpriv(struct mnt_idmap *idmap,
2519			    struct dentry *dentry)
2520{
2521	return call_int_hook(inode_killpriv, idmap, dentry);
2522}
2523
2524/**
2525 * security_inode_getsecurity() - Get the xattr security label of an inode
2526 * @idmap: idmap of the mount
2527 * @inode: inode
2528 * @name: xattr name
2529 * @buffer: security label buffer
2530 * @alloc: allocation flag
2531 *
2532 * Retrieve a copy of the extended attribute representation of the security
2533 * label associated with @name for @inode via @buffer.  Note that @name is the
2534 * remainder of the attribute name after the security prefix has been removed.
2535 * @alloc is used to specify if the call should return a value via the buffer
2536 * or just the value length.
2537 *
2538 * Return: Returns size of buffer on success.
2539 */
2540int security_inode_getsecurity(struct mnt_idmap *idmap,
2541			       struct inode *inode, const char *name,
2542			       void **buffer, bool alloc)
2543{
 
 
 
2544	if (unlikely(IS_PRIVATE(inode)))
2545		return LSM_RET_DEFAULT(inode_getsecurity);
2546
2547	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2548			     alloc);
 
 
 
 
 
 
2549}
2550
2551/**
2552 * security_inode_setsecurity() - Set the xattr security label of an inode
2553 * @inode: inode
2554 * @name: xattr name
2555 * @value: security label
2556 * @size: length of security label
2557 * @flags: flags
2558 *
2559 * Set the security label associated with @name for @inode from the extended
2560 * attribute value @value.  @size indicates the size of the @value in bytes.
2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2562 * remainder of the attribute name after the security. prefix has been removed.
2563 *
2564 * Return: Returns 0 on success.
2565 */
2566int security_inode_setsecurity(struct inode *inode, const char *name,
2567			       const void *value, size_t size, int flags)
2568{
 
 
 
2569	if (unlikely(IS_PRIVATE(inode)))
2570		return LSM_RET_DEFAULT(inode_setsecurity);
2571
2572	return call_int_hook(inode_setsecurity, inode, name, value, size,
2573			     flags);
 
 
 
 
 
 
 
2574}
2575
2576/**
2577 * security_inode_listsecurity() - List the xattr security label names
2578 * @inode: inode
2579 * @buffer: buffer
2580 * @buffer_size: size of buffer
2581 *
2582 * Copy the extended attribute names for the security labels associated with
2583 * @inode into @buffer.  The maximum size of @buffer is specified by
2584 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2585 * required.
2586 *
2587 * Return: Returns number of bytes used/required on success.
2588 */
2589int security_inode_listsecurity(struct inode *inode,
2590				char *buffer, size_t buffer_size)
2591{
2592	if (unlikely(IS_PRIVATE(inode)))
2593		return 0;
2594	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2595}
2596EXPORT_SYMBOL(security_inode_listsecurity);
2597
2598/**
2599 * security_inode_getsecid() - Get an inode's secid
2600 * @inode: inode
2601 * @secid: secid to return
2602 *
2603 * Get the secid associated with the node.  In case of failure, @secid will be
2604 * set to zero.
2605 */
2606void security_inode_getsecid(struct inode *inode, u32 *secid)
2607{
2608	call_void_hook(inode_getsecid, inode, secid);
2609}
2610
2611/**
2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2613 * @src: union dentry of copy-up file
2614 * @new: newly created creds
2615 *
2616 * A file is about to be copied up from lower layer to upper layer of overlay
2617 * filesystem. Security module can prepare a set of new creds and modify as
2618 * need be and return new creds. Caller will switch to new creds temporarily to
2619 * create new file and release newly allocated creds.
2620 *
2621 * Return: Returns 0 on success or a negative error code on error.
2622 */
2623int security_inode_copy_up(struct dentry *src, struct cred **new)
2624{
2625	return call_int_hook(inode_copy_up, src, new);
2626}
2627EXPORT_SYMBOL(security_inode_copy_up);
2628
2629/**
2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2631 * @name: xattr name
2632 *
2633 * Filter the xattrs being copied up when a unioned file is copied up from a
2634 * lower layer to the union/overlay layer.   The caller is responsible for
2635 * reading and writing the xattrs, this hook is merely a filter.
2636 *
2637 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2638 *         if the security module does not know about attribute, or a negative
2639 *         error code to abort the copy up.
2640 */
2641int security_inode_copy_up_xattr(const char *name)
2642{
 
2643	int rc;
2644
2645	/*
2646	 * The implementation can return 0 (accept the xattr), 1 (discard the
2647	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2648	 * any other error code in case of an error.
2649	 */
2650	rc = call_int_hook(inode_copy_up_xattr, name);
2651	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2652		return rc;
 
 
 
2653
2654	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2655}
2656EXPORT_SYMBOL(security_inode_copy_up_xattr);
2657
2658/**
2659 * security_kernfs_init_security() - Init LSM context for a kernfs node
2660 * @kn_dir: parent kernfs node
2661 * @kn: the kernfs node to initialize
2662 *
2663 * Initialize the security context of a newly created kernfs node based on its
2664 * own and its parent's attributes.
2665 *
2666 * Return: Returns 0 if permission is granted.
2667 */
2668int security_kernfs_init_security(struct kernfs_node *kn_dir,
2669				  struct kernfs_node *kn)
2670{
2671	return call_int_hook(kernfs_init_security, kn_dir, kn);
2672}
2673
2674/**
2675 * security_file_permission() - Check file permissions
2676 * @file: file
2677 * @mask: requested permissions
2678 *
2679 * Check file permissions before accessing an open file.  This hook is called
2680 * by various operations that read or write files.  A security module can use
2681 * this hook to perform additional checking on these operations, e.g. to
2682 * revalidate permissions on use to support privilege bracketing or policy
2683 * changes.  Notice that this hook is used when the actual read/write
2684 * operations are performed, whereas the inode_security_ops hook is called when
2685 * a file is opened (as well as many other operations).  Although this hook can
2686 * be used to revalidate permissions for various system call operations that
2687 * read or write files, it does not address the revalidation of permissions for
2688 * memory-mapped files.  Security modules must handle this separately if they
2689 * need such revalidation.
2690 *
2691 * Return: Returns 0 if permission is granted.
2692 */
2693int security_file_permission(struct file *file, int mask)
2694{
2695	return call_int_hook(file_permission, file, mask);
 
 
 
 
 
 
2696}
2697
2698/**
2699 * security_file_alloc() - Allocate and init a file's LSM blob
2700 * @file: the file
2701 *
2702 * Allocate and attach a security structure to the file->f_security field.  The
2703 * security field is initialized to NULL when the structure is first created.
2704 *
2705 * Return: Return 0 if the hook is successful and permission is granted.
2706 */
2707int security_file_alloc(struct file *file)
2708{
2709	int rc = lsm_file_alloc(file);
2710
2711	if (rc)
2712		return rc;
2713	rc = call_int_hook(file_alloc_security, file);
2714	if (unlikely(rc))
2715		security_file_free(file);
2716	return rc;
2717}
2718
2719/**
2720 * security_file_release() - Perform actions before releasing the file ref
2721 * @file: the file
2722 *
2723 * Perform actions before releasing the last reference to a file.
2724 */
2725void security_file_release(struct file *file)
2726{
2727	call_void_hook(file_release, file);
2728}
2729
2730/**
2731 * security_file_free() - Free a file's LSM blob
2732 * @file: the file
2733 *
2734 * Deallocate and free any security structures stored in file->f_security.
2735 */
2736void security_file_free(struct file *file)
2737{
2738	void *blob;
2739
2740	call_void_hook(file_free_security, file);
2741
2742	blob = file->f_security;
2743	if (blob) {
2744		file->f_security = NULL;
2745		kmem_cache_free(lsm_file_cache, blob);
2746	}
2747}
2748
2749/**
2750 * security_file_ioctl() - Check if an ioctl is allowed
2751 * @file: associated file
2752 * @cmd: ioctl cmd
2753 * @arg: ioctl arguments
2754 *
2755 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2756 * represents a user space pointer; in other cases, it may be a simple integer
2757 * value.  When @arg represents a user space pointer, it should never be used
2758 * by the security module.
2759 *
2760 * Return: Returns 0 if permission is granted.
2761 */
2762int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2763{
2764	return call_int_hook(file_ioctl, file, cmd, arg);
2765}
2766EXPORT_SYMBOL_GPL(security_file_ioctl);
2767
2768/**
2769 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2770 * @file: associated file
2771 * @cmd: ioctl cmd
2772 * @arg: ioctl arguments
2773 *
2774 * Compat version of security_file_ioctl() that correctly handles 32-bit
2775 * processes running on 64-bit kernels.
2776 *
2777 * Return: Returns 0 if permission is granted.
2778 */
2779int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2780			       unsigned long arg)
2781{
2782	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2783}
2784EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2785
2786static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2787{
2788	/*
2789	 * Does we have PROT_READ and does the application expect
2790	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2791	 */
2792	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2793		return prot;
2794	if (!(current->personality & READ_IMPLIES_EXEC))
2795		return prot;
2796	/*
2797	 * if that's an anonymous mapping, let it.
2798	 */
2799	if (!file)
2800		return prot | PROT_EXEC;
2801	/*
2802	 * ditto if it's not on noexec mount, except that on !MMU we need
2803	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2804	 */
2805	if (!path_noexec(&file->f_path)) {
2806#ifndef CONFIG_MMU
2807		if (file->f_op->mmap_capabilities) {
2808			unsigned caps = file->f_op->mmap_capabilities(file);
2809			if (!(caps & NOMMU_MAP_EXEC))
2810				return prot;
2811		}
2812#endif
2813		return prot | PROT_EXEC;
2814	}
2815	/* anything on noexec mount won't get PROT_EXEC */
2816	return prot;
2817}
2818
2819/**
2820 * security_mmap_file() - Check if mmap'ing a file is allowed
2821 * @file: file
2822 * @prot: protection applied by the kernel
2823 * @flags: flags
2824 *
2825 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2826 * mapping anonymous memory.
2827 *
2828 * Return: Returns 0 if permission is granted.
2829 */
2830int security_mmap_file(struct file *file, unsigned long prot,
2831		       unsigned long flags)
2832{
2833	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2834			     flags);
 
 
 
 
2835}
2836
2837/**
2838 * security_mmap_addr() - Check if mmap'ing an address is allowed
2839 * @addr: address
2840 *
2841 * Check permissions for a mmap operation at @addr.
2842 *
2843 * Return: Returns 0 if permission is granted.
2844 */
2845int security_mmap_addr(unsigned long addr)
2846{
2847	return call_int_hook(mmap_addr, addr);
2848}
2849
2850/**
2851 * security_file_mprotect() - Check if changing memory protections is allowed
2852 * @vma: memory region
2853 * @reqprot: application requested protection
2854 * @prot: protection applied by the kernel
2855 *
2856 * Check permissions before changing memory access permissions.
2857 *
2858 * Return: Returns 0 if permission is granted.
2859 */
2860int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2861			   unsigned long prot)
2862{
2863	return call_int_hook(file_mprotect, vma, reqprot, prot);
 
 
 
 
 
2864}
2865
2866/**
2867 * security_file_lock() - Check if a file lock is allowed
2868 * @file: file
2869 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2870 *
2871 * Check permission before performing file locking operations.  Note the hook
2872 * mediates both flock and fcntl style locks.
2873 *
2874 * Return: Returns 0 if permission is granted.
2875 */
2876int security_file_lock(struct file *file, unsigned int cmd)
2877{
2878	return call_int_hook(file_lock, file, cmd);
2879}
2880
2881/**
2882 * security_file_fcntl() - Check if fcntl() op is allowed
2883 * @file: file
2884 * @cmd: fcntl command
2885 * @arg: command argument
2886 *
2887 * Check permission before allowing the file operation specified by @cmd from
2888 * being performed on the file @file.  Note that @arg sometimes represents a
2889 * user space pointer; in other cases, it may be a simple integer value.  When
2890 * @arg represents a user space pointer, it should never be used by the
2891 * security module.
2892 *
2893 * Return: Returns 0 if permission is granted.
2894 */
2895int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2896{
2897	return call_int_hook(file_fcntl, file, cmd, arg);
2898}
2899
2900/**
2901 * security_file_set_fowner() - Set the file owner info in the LSM blob
2902 * @file: the file
2903 *
2904 * Save owner security information (typically from current->security) in
2905 * file->f_security for later use by the send_sigiotask hook.
2906 *
2907 * Return: Returns 0 on success.
2908 */
2909void security_file_set_fowner(struct file *file)
2910{
2911	call_void_hook(file_set_fowner, file);
2912}
2913
2914/**
2915 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2916 * @tsk: target task
2917 * @fown: signal sender
2918 * @sig: signal to be sent, SIGIO is sent if 0
2919 *
2920 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2921 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2922 * that the fown_struct, @fown, is never outside the context of a struct file,
2923 * so the file structure (and associated security information) can always be
2924 * obtained: container_of(fown, struct file, f_owner).
2925 *
2926 * Return: Returns 0 if permission is granted.
2927 */
2928int security_file_send_sigiotask(struct task_struct *tsk,
2929				 struct fown_struct *fown, int sig)
2930{
2931	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2932}
2933
2934/**
2935 * security_file_receive() - Check if receiving a file via IPC is allowed
2936 * @file: file being received
2937 *
2938 * This hook allows security modules to control the ability of a process to
2939 * receive an open file descriptor via socket IPC.
2940 *
2941 * Return: Returns 0 if permission is granted.
2942 */
2943int security_file_receive(struct file *file)
2944{
2945	return call_int_hook(file_receive, file);
2946}
2947
2948/**
2949 * security_file_open() - Save open() time state for late use by the LSM
2950 * @file:
2951 *
2952 * Save open-time permission checking state for later use upon file_permission,
2953 * and recheck access if anything has changed since inode_permission.
2954 *
2955 * Return: Returns 0 if permission is granted.
2956 */
2957int security_file_open(struct file *file)
2958{
2959	int ret;
2960
2961	ret = call_int_hook(file_open, file);
2962	if (ret)
2963		return ret;
2964
2965	return fsnotify_open_perm(file);
2966}
2967
2968/**
2969 * security_file_post_open() - Evaluate a file after it has been opened
2970 * @file: the file
2971 * @mask: access mask
2972 *
2973 * Evaluate an opened file and the access mask requested with open(). The hook
2974 * is useful for LSMs that require the file content to be available in order to
2975 * make decisions.
2976 *
2977 * Return: Returns 0 if permission is granted.
2978 */
2979int security_file_post_open(struct file *file, int mask)
2980{
2981	return call_int_hook(file_post_open, file, mask);
2982}
2983EXPORT_SYMBOL_GPL(security_file_post_open);
2984
2985/**
2986 * security_file_truncate() - Check if truncating a file is allowed
2987 * @file: file
2988 *
2989 * Check permission before truncating a file, i.e. using ftruncate.  Note that
2990 * truncation permission may also be checked based on the path, using the
2991 * @path_truncate hook.
2992 *
2993 * Return: Returns 0 if permission is granted.
2994 */
2995int security_file_truncate(struct file *file)
2996{
2997	return call_int_hook(file_truncate, file);
2998}
2999
3000/**
3001 * security_task_alloc() - Allocate a task's LSM blob
3002 * @task: the task
3003 * @clone_flags: flags indicating what is being shared
3004 *
3005 * Handle allocation of task-related resources.
3006 *
3007 * Return: Returns a zero on success, negative values on failure.
3008 */
3009int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3010{
3011	int rc = lsm_task_alloc(task);
3012
3013	if (rc)
3014		return rc;
3015	rc = call_int_hook(task_alloc, task, clone_flags);
3016	if (unlikely(rc))
3017		security_task_free(task);
3018	return rc;
3019}
3020
3021/**
3022 * security_task_free() - Free a task's LSM blob and related resources
3023 * @task: task
3024 *
3025 * Handle release of task-related resources.  Note that this can be called from
3026 * interrupt context.
3027 */
3028void security_task_free(struct task_struct *task)
3029{
3030	call_void_hook(task_free, task);
3031
3032	kfree(task->security);
3033	task->security = NULL;
3034}
3035
3036/**
3037 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3038 * @cred: credentials
3039 * @gfp: gfp flags
3040 *
3041 * Only allocate sufficient memory and attach to @cred such that
3042 * cred_transfer() will not get ENOMEM.
3043 *
3044 * Return: Returns 0 on success, negative values on failure.
3045 */
3046int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3047{
3048	int rc = lsm_cred_alloc(cred, gfp);
3049
3050	if (rc)
3051		return rc;
3052
3053	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3054	if (unlikely(rc))
3055		security_cred_free(cred);
3056	return rc;
3057}
3058
3059/**
3060 * security_cred_free() - Free the cred's LSM blob and associated resources
3061 * @cred: credentials
3062 *
3063 * Deallocate and clear the cred->security field in a set of credentials.
3064 */
3065void security_cred_free(struct cred *cred)
3066{
3067	/*
3068	 * There is a failure case in prepare_creds() that
3069	 * may result in a call here with ->security being NULL.
3070	 */
3071	if (unlikely(cred->security == NULL))
3072		return;
3073
3074	call_void_hook(cred_free, cred);
3075
3076	kfree(cred->security);
3077	cred->security = NULL;
3078}
3079
3080/**
3081 * security_prepare_creds() - Prepare a new set of credentials
3082 * @new: new credentials
3083 * @old: original credentials
3084 * @gfp: gfp flags
3085 *
3086 * Prepare a new set of credentials by copying the data from the old set.
3087 *
3088 * Return: Returns 0 on success, negative values on failure.
3089 */
3090int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3091{
3092	int rc = lsm_cred_alloc(new, gfp);
3093
3094	if (rc)
3095		return rc;
3096
3097	rc = call_int_hook(cred_prepare, new, old, gfp);
3098	if (unlikely(rc))
3099		security_cred_free(new);
3100	return rc;
3101}
3102
3103/**
3104 * security_transfer_creds() - Transfer creds
3105 * @new: target credentials
3106 * @old: original credentials
3107 *
3108 * Transfer data from original creds to new creds.
3109 */
3110void security_transfer_creds(struct cred *new, const struct cred *old)
3111{
3112	call_void_hook(cred_transfer, new, old);
3113}
3114
3115/**
3116 * security_cred_getsecid() - Get the secid from a set of credentials
3117 * @c: credentials
3118 * @secid: secid value
3119 *
3120 * Retrieve the security identifier of the cred structure @c.  In case of
3121 * failure, @secid will be set to zero.
3122 */
3123void security_cred_getsecid(const struct cred *c, u32 *secid)
3124{
3125	*secid = 0;
3126	call_void_hook(cred_getsecid, c, secid);
3127}
3128EXPORT_SYMBOL(security_cred_getsecid);
3129
3130/**
3131 * security_kernel_act_as() - Set the kernel credentials to act as secid
3132 * @new: credentials
3133 * @secid: secid
3134 *
3135 * Set the credentials for a kernel service to act as (subjective context).
3136 * The current task must be the one that nominated @secid.
3137 *
3138 * Return: Returns 0 if successful.
3139 */
3140int security_kernel_act_as(struct cred *new, u32 secid)
3141{
3142	return call_int_hook(kernel_act_as, new, secid);
3143}
3144
3145/**
3146 * security_kernel_create_files_as() - Set file creation context using an inode
3147 * @new: target credentials
3148 * @inode: reference inode
3149 *
3150 * Set the file creation context in a set of credentials to be the same as the
3151 * objective context of the specified inode.  The current task must be the one
3152 * that nominated @inode.
3153 *
3154 * Return: Returns 0 if successful.
3155 */
3156int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3157{
3158	return call_int_hook(kernel_create_files_as, new, inode);
3159}
3160
3161/**
3162 * security_kernel_module_request() - Check if loading a module is allowed
3163 * @kmod_name: module name
3164 *
3165 * Ability to trigger the kernel to automatically upcall to userspace for
3166 * userspace to load a kernel module with the given name.
3167 *
3168 * Return: Returns 0 if successful.
3169 */
3170int security_kernel_module_request(char *kmod_name)
3171{
3172	return call_int_hook(kernel_module_request, kmod_name);
 
 
 
 
 
3173}
3174
3175/**
3176 * security_kernel_read_file() - Read a file specified by userspace
3177 * @file: file
3178 * @id: file identifier
3179 * @contents: trust if security_kernel_post_read_file() will be called
3180 *
3181 * Read a file specified by userspace.
3182 *
3183 * Return: Returns 0 if permission is granted.
3184 */
3185int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3186			      bool contents)
3187{
3188	return call_int_hook(kernel_read_file, file, id, contents);
 
 
 
 
 
3189}
3190EXPORT_SYMBOL_GPL(security_kernel_read_file);
3191
3192/**
3193 * security_kernel_post_read_file() - Read a file specified by userspace
3194 * @file: file
3195 * @buf: file contents
3196 * @size: size of file contents
3197 * @id: file identifier
3198 *
3199 * Read a file specified by userspace.  This must be paired with a prior call
3200 * to security_kernel_read_file() call that indicated this hook would also be
3201 * called, see security_kernel_read_file() for more information.
3202 *
3203 * Return: Returns 0 if permission is granted.
3204 */
3205int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3206				   enum kernel_read_file_id id)
3207{
3208	return call_int_hook(kernel_post_read_file, file, buf, size, id);
 
 
 
 
 
3209}
3210EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3211
3212/**
3213 * security_kernel_load_data() - Load data provided by userspace
3214 * @id: data identifier
3215 * @contents: true if security_kernel_post_load_data() will be called
3216 *
3217 * Load data provided by userspace.
3218 *
3219 * Return: Returns 0 if permission is granted.
3220 */
3221int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3222{
3223	return call_int_hook(kernel_load_data, id, contents);
 
 
 
 
 
3224}
3225EXPORT_SYMBOL_GPL(security_kernel_load_data);
3226
3227/**
3228 * security_kernel_post_load_data() - Load userspace data from a non-file source
3229 * @buf: data
3230 * @size: size of data
3231 * @id: data identifier
3232 * @description: text description of data, specific to the id value
3233 *
3234 * Load data provided by a non-file source (usually userspace buffer).  This
3235 * must be paired with a prior security_kernel_load_data() call that indicated
3236 * this hook would also be called, see security_kernel_load_data() for more
3237 * information.
3238 *
3239 * Return: Returns 0 if permission is granted.
3240 */
3241int security_kernel_post_load_data(char *buf, loff_t size,
3242				   enum kernel_load_data_id id,
3243				   char *description)
3244{
3245	return call_int_hook(kernel_post_load_data, buf, size, id, description);
 
 
 
 
 
 
3246}
3247EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3248
3249/**
3250 * security_task_fix_setuid() - Update LSM with new user id attributes
3251 * @new: updated credentials
3252 * @old: credentials being replaced
3253 * @flags: LSM_SETID_* flag values
3254 *
3255 * Update the module's state after setting one or more of the user identity
3256 * attributes of the current process.  The @flags parameter indicates which of
3257 * the set*uid system calls invoked this hook.  If @new is the set of
3258 * credentials that will be installed.  Modifications should be made to this
3259 * rather than to @current->cred.
3260 *
3261 * Return: Returns 0 on success.
3262 */
3263int security_task_fix_setuid(struct cred *new, const struct cred *old,
3264			     int flags)
3265{
3266	return call_int_hook(task_fix_setuid, new, old, flags);
3267}
3268
3269/**
3270 * security_task_fix_setgid() - Update LSM with new group id attributes
3271 * @new: updated credentials
3272 * @old: credentials being replaced
3273 * @flags: LSM_SETID_* flag value
3274 *
3275 * Update the module's state after setting one or more of the group identity
3276 * attributes of the current process.  The @flags parameter indicates which of
3277 * the set*gid system calls invoked this hook.  @new is the set of credentials
3278 * that will be installed.  Modifications should be made to this rather than to
3279 * @current->cred.
3280 *
3281 * Return: Returns 0 on success.
3282 */
3283int security_task_fix_setgid(struct cred *new, const struct cred *old,
3284			     int flags)
3285{
3286	return call_int_hook(task_fix_setgid, new, old, flags);
3287}
3288
3289/**
3290 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3291 * @new: updated credentials
3292 * @old: credentials being replaced
3293 *
3294 * Update the module's state after setting the supplementary group identity
3295 * attributes of the current process.  @new is the set of credentials that will
3296 * be installed.  Modifications should be made to this rather than to
3297 * @current->cred.
3298 *
3299 * Return: Returns 0 on success.
3300 */
3301int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3302{
3303	return call_int_hook(task_fix_setgroups, new, old);
3304}
3305
3306/**
3307 * security_task_setpgid() - Check if setting the pgid is allowed
3308 * @p: task being modified
3309 * @pgid: new pgid
3310 *
3311 * Check permission before setting the process group identifier of the process
3312 * @p to @pgid.
3313 *
3314 * Return: Returns 0 if permission is granted.
3315 */
3316int security_task_setpgid(struct task_struct *p, pid_t pgid)
3317{
3318	return call_int_hook(task_setpgid, p, pgid);
3319}
3320
3321/**
3322 * security_task_getpgid() - Check if getting the pgid is allowed
3323 * @p: task
3324 *
3325 * Check permission before getting the process group identifier of the process
3326 * @p.
3327 *
3328 * Return: Returns 0 if permission is granted.
3329 */
3330int security_task_getpgid(struct task_struct *p)
3331{
3332	return call_int_hook(task_getpgid, p);
3333}
3334
3335/**
3336 * security_task_getsid() - Check if getting the session id is allowed
3337 * @p: task
3338 *
3339 * Check permission before getting the session identifier of the process @p.
3340 *
3341 * Return: Returns 0 if permission is granted.
3342 */
3343int security_task_getsid(struct task_struct *p)
3344{
3345	return call_int_hook(task_getsid, p);
3346}
3347
3348/**
3349 * security_current_getsecid_subj() - Get the current task's subjective secid
3350 * @secid: secid value
3351 *
3352 * Retrieve the subjective security identifier of the current task and return
3353 * it in @secid.  In case of failure, @secid will be set to zero.
3354 */
3355void security_current_getsecid_subj(u32 *secid)
3356{
3357	*secid = 0;
3358	call_void_hook(current_getsecid_subj, secid);
3359}
3360EXPORT_SYMBOL(security_current_getsecid_subj);
3361
3362/**
3363 * security_task_getsecid_obj() - Get a task's objective secid
3364 * @p: target task
3365 * @secid: secid value
3366 *
3367 * Retrieve the objective security identifier of the task_struct in @p and
3368 * return it in @secid. In case of failure, @secid will be set to zero.
3369 */
3370void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3371{
3372	*secid = 0;
3373	call_void_hook(task_getsecid_obj, p, secid);
3374}
3375EXPORT_SYMBOL(security_task_getsecid_obj);
3376
3377/**
3378 * security_task_setnice() - Check if setting a task's nice value is allowed
3379 * @p: target task
3380 * @nice: nice value
3381 *
3382 * Check permission before setting the nice value of @p to @nice.
3383 *
3384 * Return: Returns 0 if permission is granted.
3385 */
3386int security_task_setnice(struct task_struct *p, int nice)
3387{
3388	return call_int_hook(task_setnice, p, nice);
3389}
3390
3391/**
3392 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3393 * @p: target task
3394 * @ioprio: ioprio value
3395 *
3396 * Check permission before setting the ioprio value of @p to @ioprio.
3397 *
3398 * Return: Returns 0 if permission is granted.
3399 */
3400int security_task_setioprio(struct task_struct *p, int ioprio)
3401{
3402	return call_int_hook(task_setioprio, p, ioprio);
3403}
3404
3405/**
3406 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3407 * @p: task
3408 *
3409 * Check permission before getting the ioprio value of @p.
3410 *
3411 * Return: Returns 0 if permission is granted.
3412 */
3413int security_task_getioprio(struct task_struct *p)
3414{
3415	return call_int_hook(task_getioprio, p);
3416}
3417
3418/**
3419 * security_task_prlimit() - Check if get/setting resources limits is allowed
3420 * @cred: current task credentials
3421 * @tcred: target task credentials
3422 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3423 *
3424 * Check permission before getting and/or setting the resource limits of
3425 * another task.
3426 *
3427 * Return: Returns 0 if permission is granted.
3428 */
3429int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3430			  unsigned int flags)
3431{
3432	return call_int_hook(task_prlimit, cred, tcred, flags);
3433}
3434
3435/**
3436 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3437 * @p: target task's group leader
3438 * @resource: resource whose limit is being set
3439 * @new_rlim: new resource limit
3440 *
3441 * Check permission before setting the resource limits of process @p for
3442 * @resource to @new_rlim.  The old resource limit values can be examined by
3443 * dereferencing (p->signal->rlim + resource).
3444 *
3445 * Return: Returns 0 if permission is granted.
3446 */
3447int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3448			    struct rlimit *new_rlim)
3449{
3450	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3451}
3452
3453/**
3454 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3455 * @p: target task
3456 *
3457 * Check permission before setting scheduling policy and/or parameters of
3458 * process @p.
3459 *
3460 * Return: Returns 0 if permission is granted.
3461 */
3462int security_task_setscheduler(struct task_struct *p)
3463{
3464	return call_int_hook(task_setscheduler, p);
3465}
3466
3467/**
3468 * security_task_getscheduler() - Check if getting scheduling info is allowed
3469 * @p: target task
3470 *
3471 * Check permission before obtaining scheduling information for process @p.
3472 *
3473 * Return: Returns 0 if permission is granted.
3474 */
3475int security_task_getscheduler(struct task_struct *p)
3476{
3477	return call_int_hook(task_getscheduler, p);
3478}
3479
3480/**
3481 * security_task_movememory() - Check if moving memory is allowed
3482 * @p: task
3483 *
3484 * Check permission before moving memory owned by process @p.
3485 *
3486 * Return: Returns 0 if permission is granted.
3487 */
3488int security_task_movememory(struct task_struct *p)
3489{
3490	return call_int_hook(task_movememory, p);
3491}
3492
3493/**
3494 * security_task_kill() - Check if sending a signal is allowed
3495 * @p: target process
3496 * @info: signal information
3497 * @sig: signal value
3498 * @cred: credentials of the signal sender, NULL if @current
3499 *
3500 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3501 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3502 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3503 * the kernel and should typically be permitted.  SIGIO signals are handled
3504 * separately by the send_sigiotask hook in file_security_ops.
3505 *
3506 * Return: Returns 0 if permission is granted.
3507 */
3508int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3509		       int sig, const struct cred *cred)
3510{
3511	return call_int_hook(task_kill, p, info, sig, cred);
3512}
3513
3514/**
3515 * security_task_prctl() - Check if a prctl op is allowed
3516 * @option: operation
3517 * @arg2: argument
3518 * @arg3: argument
3519 * @arg4: argument
3520 * @arg5: argument
3521 *
3522 * Check permission before performing a process control operation on the
3523 * current process.
3524 *
3525 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3526 *         to cause prctl() to return immediately with that value.
3527 */
3528int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3529			unsigned long arg4, unsigned long arg5)
3530{
3531	int thisrc;
3532	int rc = LSM_RET_DEFAULT(task_prctl);
3533	struct security_hook_list *hp;
3534
3535	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3536		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3537		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3538			rc = thisrc;
3539			if (thisrc != 0)
3540				break;
3541		}
3542	}
3543	return rc;
3544}
3545
3546/**
3547 * security_task_to_inode() - Set the security attributes of a task's inode
3548 * @p: task
3549 * @inode: inode
3550 *
3551 * Set the security attributes for an inode based on an associated task's
3552 * security attributes, e.g. for /proc/pid inodes.
3553 */
3554void security_task_to_inode(struct task_struct *p, struct inode *inode)
3555{
3556	call_void_hook(task_to_inode, p, inode);
3557}
3558
3559/**
3560 * security_create_user_ns() - Check if creating a new userns is allowed
3561 * @cred: prepared creds
3562 *
3563 * Check permission prior to creating a new user namespace.
3564 *
3565 * Return: Returns 0 if successful, otherwise < 0 error code.
3566 */
3567int security_create_user_ns(const struct cred *cred)
3568{
3569	return call_int_hook(userns_create, cred);
3570}
3571
3572/**
3573 * security_ipc_permission() - Check if sysv ipc access is allowed
3574 * @ipcp: ipc permission structure
3575 * @flag: requested permissions
3576 *
3577 * Check permissions for access to IPC.
3578 *
3579 * Return: Returns 0 if permission is granted.
3580 */
3581int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3582{
3583	return call_int_hook(ipc_permission, ipcp, flag);
3584}
3585
3586/**
3587 * security_ipc_getsecid() - Get the sysv ipc object's secid
3588 * @ipcp: ipc permission structure
3589 * @secid: secid pointer
3590 *
3591 * Get the secid associated with the ipc object.  In case of failure, @secid
3592 * will be set to zero.
3593 */
3594void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3595{
3596	*secid = 0;
3597	call_void_hook(ipc_getsecid, ipcp, secid);
3598}
3599
3600/**
3601 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3602 * @msg: message structure
3603 *
3604 * Allocate and attach a security structure to the msg->security field.  The
3605 * security field is initialized to NULL when the structure is first created.
3606 *
3607 * Return: Return 0 if operation was successful and permission is granted.
3608 */
3609int security_msg_msg_alloc(struct msg_msg *msg)
3610{
3611	int rc = lsm_msg_msg_alloc(msg);
3612
3613	if (unlikely(rc))
3614		return rc;
3615	rc = call_int_hook(msg_msg_alloc_security, msg);
3616	if (unlikely(rc))
3617		security_msg_msg_free(msg);
3618	return rc;
3619}
3620
3621/**
3622 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3623 * @msg: message structure
3624 *
3625 * Deallocate the security structure for this message.
3626 */
3627void security_msg_msg_free(struct msg_msg *msg)
3628{
3629	call_void_hook(msg_msg_free_security, msg);
3630	kfree(msg->security);
3631	msg->security = NULL;
3632}
3633
3634/**
3635 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3636 * @msq: sysv ipc permission structure
3637 *
3638 * Allocate and attach a security structure to @msg. The security field is
3639 * initialized to NULL when the structure is first created.
3640 *
3641 * Return: Returns 0 if operation was successful and permission is granted.
3642 */
3643int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3644{
3645	int rc = lsm_ipc_alloc(msq);
3646
3647	if (unlikely(rc))
3648		return rc;
3649	rc = call_int_hook(msg_queue_alloc_security, msq);
3650	if (unlikely(rc))
3651		security_msg_queue_free(msq);
3652	return rc;
3653}
3654
3655/**
3656 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3657 * @msq: sysv ipc permission structure
3658 *
3659 * Deallocate security field @perm->security for the message queue.
3660 */
3661void security_msg_queue_free(struct kern_ipc_perm *msq)
3662{
3663	call_void_hook(msg_queue_free_security, msq);
3664	kfree(msq->security);
3665	msq->security = NULL;
3666}
3667
3668/**
3669 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3670 * @msq: sysv ipc permission structure
3671 * @msqflg: operation flags
3672 *
3673 * Check permission when a message queue is requested through the msgget system
3674 * call. This hook is only called when returning the message queue identifier
3675 * for an existing message queue, not when a new message queue is created.
3676 *
3677 * Return: Return 0 if permission is granted.
3678 */
3679int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3680{
3681	return call_int_hook(msg_queue_associate, msq, msqflg);
3682}
3683
3684/**
3685 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3686 * @msq: sysv ipc permission structure
3687 * @cmd: operation
3688 *
3689 * Check permission when a message control operation specified by @cmd is to be
3690 * performed on the message queue with permissions.
3691 *
3692 * Return: Returns 0 if permission is granted.
3693 */
3694int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3695{
3696	return call_int_hook(msg_queue_msgctl, msq, cmd);
3697}
3698
3699/**
3700 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3701 * @msq: sysv ipc permission structure
3702 * @msg: message
3703 * @msqflg: operation flags
3704 *
3705 * Check permission before a message, @msg, is enqueued on the message queue
3706 * with permissions specified in @msq.
3707 *
3708 * Return: Returns 0 if permission is granted.
3709 */
3710int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3711			      struct msg_msg *msg, int msqflg)
3712{
3713	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3714}
3715
3716/**
3717 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3718 * @msq: sysv ipc permission structure
3719 * @msg: message
3720 * @target: target task
3721 * @type: type of message requested
3722 * @mode: operation flags
3723 *
3724 * Check permission before a message, @msg, is removed from the message	queue.
3725 * The @target task structure contains a pointer to the process that will be
3726 * receiving the message (not equal to the current process when inline receives
3727 * are being performed).
3728 *
3729 * Return: Returns 0 if permission is granted.
3730 */
3731int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3732			      struct task_struct *target, long type, int mode)
3733{
3734	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3735}
3736
3737/**
3738 * security_shm_alloc() - Allocate a sysv shm LSM blob
3739 * @shp: sysv ipc permission structure
3740 *
3741 * Allocate and attach a security structure to the @shp security field.  The
3742 * security field is initialized to NULL when the structure is first created.
3743 *
3744 * Return: Returns 0 if operation was successful and permission is granted.
3745 */
3746int security_shm_alloc(struct kern_ipc_perm *shp)
3747{
3748	int rc = lsm_ipc_alloc(shp);
3749
3750	if (unlikely(rc))
3751		return rc;
3752	rc = call_int_hook(shm_alloc_security, shp);
3753	if (unlikely(rc))
3754		security_shm_free(shp);
3755	return rc;
3756}
3757
3758/**
3759 * security_shm_free() - Free a sysv shm LSM blob
3760 * @shp: sysv ipc permission structure
3761 *
3762 * Deallocate the security structure @perm->security for the memory segment.
3763 */
3764void security_shm_free(struct kern_ipc_perm *shp)
3765{
3766	call_void_hook(shm_free_security, shp);
3767	kfree(shp->security);
3768	shp->security = NULL;
3769}
3770
3771/**
3772 * security_shm_associate() - Check if a sysv shm operation is allowed
3773 * @shp: sysv ipc permission structure
3774 * @shmflg: operation flags
3775 *
3776 * Check permission when a shared memory region is requested through the shmget
3777 * system call. This hook is only called when returning the shared memory
3778 * region identifier for an existing region, not when a new shared memory
3779 * region is created.
3780 *
3781 * Return: Returns 0 if permission is granted.
3782 */
3783int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3784{
3785	return call_int_hook(shm_associate, shp, shmflg);
3786}
3787
3788/**
3789 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3790 * @shp: sysv ipc permission structure
3791 * @cmd: operation
3792 *
3793 * Check permission when a shared memory control operation specified by @cmd is
3794 * to be performed on the shared memory region with permissions in @shp.
3795 *
3796 * Return: Return 0 if permission is granted.
3797 */
3798int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3799{
3800	return call_int_hook(shm_shmctl, shp, cmd);
3801}
3802
3803/**
3804 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3805 * @shp: sysv ipc permission structure
3806 * @shmaddr: address of memory region to attach
3807 * @shmflg: operation flags
3808 *
3809 * Check permissions prior to allowing the shmat system call to attach the
3810 * shared memory segment with permissions @shp to the data segment of the
3811 * calling process. The attaching address is specified by @shmaddr.
3812 *
3813 * Return: Returns 0 if permission is granted.
3814 */
3815int security_shm_shmat(struct kern_ipc_perm *shp,
3816		       char __user *shmaddr, int shmflg)
3817{
3818	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3819}
3820
3821/**
3822 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3823 * @sma: sysv ipc permission structure
3824 *
3825 * Allocate and attach a security structure to the @sma security field. The
3826 * security field is initialized to NULL when the structure is first created.
3827 *
3828 * Return: Returns 0 if operation was successful and permission is granted.
3829 */
3830int security_sem_alloc(struct kern_ipc_perm *sma)
3831{
3832	int rc = lsm_ipc_alloc(sma);
3833
3834	if (unlikely(rc))
3835		return rc;
3836	rc = call_int_hook(sem_alloc_security, sma);
3837	if (unlikely(rc))
3838		security_sem_free(sma);
3839	return rc;
3840}
3841
3842/**
3843 * security_sem_free() - Free a sysv semaphore LSM blob
3844 * @sma: sysv ipc permission structure
3845 *
3846 * Deallocate security structure @sma->security for the semaphore.
3847 */
3848void security_sem_free(struct kern_ipc_perm *sma)
3849{
3850	call_void_hook(sem_free_security, sma);
3851	kfree(sma->security);
3852	sma->security = NULL;
3853}
3854
3855/**
3856 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3857 * @sma: sysv ipc permission structure
3858 * @semflg: operation flags
3859 *
3860 * Check permission when a semaphore is requested through the semget system
3861 * call. This hook is only called when returning the semaphore identifier for
3862 * an existing semaphore, not when a new one must be created.
3863 *
3864 * Return: Returns 0 if permission is granted.
3865 */
3866int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3867{
3868	return call_int_hook(sem_associate, sma, semflg);
3869}
3870
3871/**
3872 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3873 * @sma: sysv ipc permission structure
3874 * @cmd: operation
3875 *
3876 * Check permission when a semaphore operation specified by @cmd is to be
3877 * performed on the semaphore.
3878 *
3879 * Return: Returns 0 if permission is granted.
3880 */
3881int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3882{
3883	return call_int_hook(sem_semctl, sma, cmd);
3884}
3885
3886/**
3887 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3888 * @sma: sysv ipc permission structure
3889 * @sops: operations to perform
3890 * @nsops: number of operations
3891 * @alter: flag indicating changes will be made
3892 *
3893 * Check permissions before performing operations on members of the semaphore
3894 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3895 *
3896 * Return: Returns 0 if permission is granted.
3897 */
3898int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3899		       unsigned nsops, int alter)
3900{
3901	return call_int_hook(sem_semop, sma, sops, nsops, alter);
3902}
3903
3904/**
3905 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3906 * @dentry: dentry
3907 * @inode: inode
3908 *
3909 * Fill in @inode security information for a @dentry if allowed.
3910 */
3911void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3912{
3913	if (unlikely(inode && IS_PRIVATE(inode)))
3914		return;
3915	call_void_hook(d_instantiate, dentry, inode);
3916}
3917EXPORT_SYMBOL(security_d_instantiate);
3918
3919/*
3920 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3921 */
3922
3923/**
3924 * security_getselfattr - Read an LSM attribute of the current process.
3925 * @attr: which attribute to return
3926 * @uctx: the user-space destination for the information, or NULL
3927 * @size: pointer to the size of space available to receive the data
3928 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3929 * attributes associated with the LSM identified in the passed @ctx be
3930 * reported.
3931 *
3932 * A NULL value for @uctx can be used to get both the number of attributes
3933 * and the size of the data.
3934 *
3935 * Returns the number of attributes found on success, negative value
3936 * on error. @size is reset to the total size of the data.
3937 * If @size is insufficient to contain the data -E2BIG is returned.
3938 */
3939int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3940			 u32 __user *size, u32 flags)
3941{
3942	struct security_hook_list *hp;
3943	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3944	u8 __user *base = (u8 __user *)uctx;
3945	u32 entrysize;
3946	u32 total = 0;
3947	u32 left;
3948	bool toobig = false;
3949	bool single = false;
3950	int count = 0;
3951	int rc;
3952
3953	if (attr == LSM_ATTR_UNDEF)
3954		return -EINVAL;
3955	if (size == NULL)
3956		return -EINVAL;
3957	if (get_user(left, size))
3958		return -EFAULT;
3959
3960	if (flags) {
3961		/*
3962		 * Only flag supported is LSM_FLAG_SINGLE
3963		 */
3964		if (flags != LSM_FLAG_SINGLE || !uctx)
3965			return -EINVAL;
3966		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3967			return -EFAULT;
3968		/*
3969		 * If the LSM ID isn't specified it is an error.
3970		 */
3971		if (lctx.id == LSM_ID_UNDEF)
3972			return -EINVAL;
3973		single = true;
3974	}
3975
3976	/*
3977	 * In the usual case gather all the data from the LSMs.
3978	 * In the single case only get the data from the LSM specified.
3979	 */
3980	hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3981		if (single && lctx.id != hp->lsmid->id)
3982			continue;
3983		entrysize = left;
3984		if (base)
3985			uctx = (struct lsm_ctx __user *)(base + total);
3986		rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3987		if (rc == -EOPNOTSUPP) {
3988			rc = 0;
3989			continue;
3990		}
3991		if (rc == -E2BIG) {
3992			rc = 0;
3993			left = 0;
3994			toobig = true;
3995		} else if (rc < 0)
3996			return rc;
3997		else
3998			left -= entrysize;
3999
4000		total += entrysize;
4001		count += rc;
4002		if (single)
4003			break;
4004	}
4005	if (put_user(total, size))
4006		return -EFAULT;
4007	if (toobig)
4008		return -E2BIG;
4009	if (count == 0)
4010		return LSM_RET_DEFAULT(getselfattr);
4011	return count;
4012}
4013
4014/*
4015 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4016 */
4017
4018/**
4019 * security_setselfattr - Set an LSM attribute on the current process.
4020 * @attr: which attribute to set
4021 * @uctx: the user-space source for the information
4022 * @size: the size of the data
4023 * @flags: reserved for future use, must be 0
4024 *
4025 * Set an LSM attribute for the current process. The LSM, attribute
4026 * and new value are included in @uctx.
4027 *
4028 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4029 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4030 * LSM specific failure.
4031 */
4032int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4033			 u32 size, u32 flags)
4034{
4035	struct security_hook_list *hp;
4036	struct lsm_ctx *lctx;
4037	int rc = LSM_RET_DEFAULT(setselfattr);
4038	u64 required_len;
4039
4040	if (flags)
4041		return -EINVAL;
4042	if (size < sizeof(*lctx))
4043		return -EINVAL;
4044	if (size > PAGE_SIZE)
4045		return -E2BIG;
4046
4047	lctx = memdup_user(uctx, size);
4048	if (IS_ERR(lctx))
4049		return PTR_ERR(lctx);
4050
4051	if (size < lctx->len ||
4052	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4053	    lctx->len < required_len) {
4054		rc = -EINVAL;
4055		goto free_out;
4056	}
4057
4058	hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4059		if ((hp->lsmid->id) == lctx->id) {
4060			rc = hp->hook.setselfattr(attr, lctx, size, flags);
4061			break;
4062		}
4063
4064free_out:
4065	kfree(lctx);
4066	return rc;
4067}
4068
4069/**
4070 * security_getprocattr() - Read an attribute for a task
4071 * @p: the task
4072 * @lsmid: LSM identification
4073 * @name: attribute name
4074 * @value: attribute value
4075 *
4076 * Read attribute @name for task @p and store it into @value if allowed.
4077 *
4078 * Return: Returns the length of @value on success, a negative value otherwise.
4079 */
4080int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4081			 char **value)
4082{
4083	struct security_hook_list *hp;
4084
4085	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4086		if (lsmid != 0 && lsmid != hp->lsmid->id)
4087			continue;
4088		return hp->hook.getprocattr(p, name, value);
4089	}
4090	return LSM_RET_DEFAULT(getprocattr);
4091}
4092
4093/**
4094 * security_setprocattr() - Set an attribute for a task
4095 * @lsmid: LSM identification
4096 * @name: attribute name
4097 * @value: attribute value
4098 * @size: attribute value size
4099 *
4100 * Write (set) the current task's attribute @name to @value, size @size if
4101 * allowed.
4102 *
4103 * Return: Returns bytes written on success, a negative value otherwise.
4104 */
4105int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4106{
4107	struct security_hook_list *hp;
4108
4109	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4110		if (lsmid != 0 && lsmid != hp->lsmid->id)
4111			continue;
4112		return hp->hook.setprocattr(name, value, size);
4113	}
4114	return LSM_RET_DEFAULT(setprocattr);
4115}
4116
4117/**
4118 * security_netlink_send() - Save info and check if netlink sending is allowed
4119 * @sk: sending socket
4120 * @skb: netlink message
4121 *
4122 * Save security information for a netlink message so that permission checking
4123 * can be performed when the message is processed.  The security information
4124 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4125 * Also may be used to provide fine grained control over message transmission.
4126 *
4127 * Return: Returns 0 if the information was successfully saved and message is
4128 *         allowed to be transmitted.
4129 */
4130int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4131{
4132	return call_int_hook(netlink_send, sk, skb);
4133}
4134
4135/**
4136 * security_ismaclabel() - Check if the named attribute is a MAC label
4137 * @name: full extended attribute name
4138 *
4139 * Check if the extended attribute specified by @name represents a MAC label.
4140 *
4141 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4142 */
4143int security_ismaclabel(const char *name)
4144{
4145	return call_int_hook(ismaclabel, name);
4146}
4147EXPORT_SYMBOL(security_ismaclabel);
4148
4149/**
4150 * security_secid_to_secctx() - Convert a secid to a secctx
4151 * @secid: secid
4152 * @secdata: secctx
4153 * @seclen: secctx length
4154 *
4155 * Convert secid to security context.  If @secdata is NULL the length of the
4156 * result will be returned in @seclen, but no @secdata will be returned.  This
4157 * does mean that the length could change between calls to check the length and
4158 * the next call which actually allocates and returns the @secdata.
4159 *
4160 * Return: Return 0 on success, error on failure.
4161 */
4162int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4163{
4164	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
 
 
 
 
 
 
 
 
 
 
 
 
 
4165}
4166EXPORT_SYMBOL(security_secid_to_secctx);
4167
4168/**
4169 * security_secctx_to_secid() - Convert a secctx to a secid
4170 * @secdata: secctx
4171 * @seclen: length of secctx
4172 * @secid: secid
4173 *
4174 * Convert security context to secid.
4175 *
4176 * Return: Returns 0 on success, error on failure.
4177 */
4178int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4179{
4180	*secid = 0;
4181	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4182}
4183EXPORT_SYMBOL(security_secctx_to_secid);
4184
4185/**
4186 * security_release_secctx() - Free a secctx buffer
4187 * @secdata: secctx
4188 * @seclen: length of secctx
4189 *
4190 * Release the security context.
4191 */
4192void security_release_secctx(char *secdata, u32 seclen)
4193{
4194	call_void_hook(release_secctx, secdata, seclen);
4195}
4196EXPORT_SYMBOL(security_release_secctx);
4197
4198/**
4199 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4200 * @inode: inode
4201 *
4202 * Notify the security module that it must revalidate the security context of
4203 * an inode.
4204 */
4205void security_inode_invalidate_secctx(struct inode *inode)
4206{
4207	call_void_hook(inode_invalidate_secctx, inode);
4208}
4209EXPORT_SYMBOL(security_inode_invalidate_secctx);
4210
4211/**
4212 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4213 * @inode: inode
4214 * @ctx: secctx
4215 * @ctxlen: length of secctx
4216 *
4217 * Notify the security module of what the security context of an inode should
4218 * be.  Initializes the incore security context managed by the security module
4219 * for this inode.  Example usage: NFS client invokes this hook to initialize
4220 * the security context in its incore inode to the value provided by the server
4221 * for the file when the server returned the file's attributes to the client.
4222 * Must be called with inode->i_mutex locked.
4223 *
4224 * Return: Returns 0 on success, error on failure.
4225 */
4226int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4227{
4228	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4229}
4230EXPORT_SYMBOL(security_inode_notifysecctx);
4231
4232/**
4233 * security_inode_setsecctx() - Change the security label of an inode
4234 * @dentry: inode
4235 * @ctx: secctx
4236 * @ctxlen: length of secctx
4237 *
4238 * Change the security context of an inode.  Updates the incore security
4239 * context managed by the security module and invokes the fs code as needed
4240 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4241 * context.  Example usage: NFS server invokes this hook to change the security
4242 * context in its incore inode and on the backing filesystem to a value
4243 * provided by the client on a SETATTR operation.  Must be called with
4244 * inode->i_mutex locked.
4245 *
4246 * Return: Returns 0 on success, error on failure.
4247 */
4248int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4249{
4250	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4251}
4252EXPORT_SYMBOL(security_inode_setsecctx);
4253
4254/**
4255 * security_inode_getsecctx() - Get the security label of an inode
4256 * @inode: inode
4257 * @ctx: secctx
4258 * @ctxlen: length of secctx
4259 *
4260 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4261 * context for the given @inode.
4262 *
4263 * Return: Returns 0 on success, error on failure.
4264 */
4265int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4266{
4267	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4268}
4269EXPORT_SYMBOL(security_inode_getsecctx);
4270
4271#ifdef CONFIG_WATCH_QUEUE
4272/**
4273 * security_post_notification() - Check if a watch notification can be posted
4274 * @w_cred: credentials of the task that set the watch
4275 * @cred: credentials of the task which triggered the watch
4276 * @n: the notification
4277 *
4278 * Check to see if a watch notification can be posted to a particular queue.
4279 *
4280 * Return: Returns 0 if permission is granted.
4281 */
4282int security_post_notification(const struct cred *w_cred,
4283			       const struct cred *cred,
4284			       struct watch_notification *n)
4285{
4286	return call_int_hook(post_notification, w_cred, cred, n);
4287}
4288#endif /* CONFIG_WATCH_QUEUE */
4289
4290#ifdef CONFIG_KEY_NOTIFICATIONS
4291/**
4292 * security_watch_key() - Check if a task is allowed to watch for key events
4293 * @key: the key to watch
4294 *
4295 * Check to see if a process is allowed to watch for event notifications from
4296 * a key or keyring.
4297 *
4298 * Return: Returns 0 if permission is granted.
4299 */
4300int security_watch_key(struct key *key)
4301{
4302	return call_int_hook(watch_key, key);
4303}
4304#endif /* CONFIG_KEY_NOTIFICATIONS */
4305
4306#ifdef CONFIG_SECURITY_NETWORK
4307/**
4308 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4309 * @sock: originating sock
4310 * @other: peer sock
4311 * @newsk: new sock
4312 *
4313 * Check permissions before establishing a Unix domain stream connection
4314 * between @sock and @other.
4315 *
4316 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4317 * Linux provides an alternative to the conventional file name space for Unix
4318 * domain sockets.  Whereas binding and connecting to sockets in the file name
4319 * space is mediated by the typical file permissions (and caught by the mknod
4320 * and permission hooks in inode_security_ops), binding and connecting to
4321 * sockets in the abstract name space is completely unmediated.  Sufficient
4322 * control of Unix domain sockets in the abstract name space isn't possible
4323 * using only the socket layer hooks, since we need to know the actual target
4324 * socket, which is not looked up until we are inside the af_unix code.
4325 *
4326 * Return: Returns 0 if permission is granted.
4327 */
4328int security_unix_stream_connect(struct sock *sock, struct sock *other,
4329				 struct sock *newsk)
4330{
4331	return call_int_hook(unix_stream_connect, sock, other, newsk);
4332}
4333EXPORT_SYMBOL(security_unix_stream_connect);
4334
4335/**
4336 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4337 * @sock: originating sock
4338 * @other: peer sock
4339 *
4340 * Check permissions before connecting or sending datagrams from @sock to
4341 * @other.
4342 *
4343 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4344 * Linux provides an alternative to the conventional file name space for Unix
4345 * domain sockets.  Whereas binding and connecting to sockets in the file name
4346 * space is mediated by the typical file permissions (and caught by the mknod
4347 * and permission hooks in inode_security_ops), binding and connecting to
4348 * sockets in the abstract name space is completely unmediated.  Sufficient
4349 * control of Unix domain sockets in the abstract name space isn't possible
4350 * using only the socket layer hooks, since we need to know the actual target
4351 * socket, which is not looked up until we are inside the af_unix code.
4352 *
4353 * Return: Returns 0 if permission is granted.
4354 */
4355int security_unix_may_send(struct socket *sock,  struct socket *other)
4356{
4357	return call_int_hook(unix_may_send, sock, other);
4358}
4359EXPORT_SYMBOL(security_unix_may_send);
4360
4361/**
4362 * security_socket_create() - Check if creating a new socket is allowed
4363 * @family: protocol family
4364 * @type: communications type
4365 * @protocol: requested protocol
4366 * @kern: set to 1 if a kernel socket is requested
4367 *
4368 * Check permissions prior to creating a new socket.
4369 *
4370 * Return: Returns 0 if permission is granted.
4371 */
4372int security_socket_create(int family, int type, int protocol, int kern)
4373{
4374	return call_int_hook(socket_create, family, type, protocol, kern);
4375}
4376
4377/**
4378 * security_socket_post_create() - Initialize a newly created socket
4379 * @sock: socket
4380 * @family: protocol family
4381 * @type: communications type
4382 * @protocol: requested protocol
4383 * @kern: set to 1 if a kernel socket is requested
4384 *
4385 * This hook allows a module to update or allocate a per-socket security
4386 * structure. Note that the security field was not added directly to the socket
4387 * structure, but rather, the socket security information is stored in the
4388 * associated inode.  Typically, the inode alloc_security hook will allocate
4389 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4390 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4391 * information that wasn't available when the inode was allocated.
4392 *
4393 * Return: Returns 0 if permission is granted.
4394 */
4395int security_socket_post_create(struct socket *sock, int family,
4396				int type, int protocol, int kern)
4397{
4398	return call_int_hook(socket_post_create, sock, family, type,
4399			     protocol, kern);
4400}
4401
4402/**
4403 * security_socket_socketpair() - Check if creating a socketpair is allowed
4404 * @socka: first socket
4405 * @sockb: second socket
4406 *
4407 * Check permissions before creating a fresh pair of sockets.
4408 *
4409 * Return: Returns 0 if permission is granted and the connection was
4410 *         established.
4411 */
4412int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4413{
4414	return call_int_hook(socket_socketpair, socka, sockb);
4415}
4416EXPORT_SYMBOL(security_socket_socketpair);
4417
4418/**
4419 * security_socket_bind() - Check if a socket bind operation is allowed
4420 * @sock: socket
4421 * @address: requested bind address
4422 * @addrlen: length of address
4423 *
4424 * Check permission before socket protocol layer bind operation is performed
4425 * and the socket @sock is bound to the address specified in the @address
4426 * parameter.
4427 *
4428 * Return: Returns 0 if permission is granted.
4429 */
4430int security_socket_bind(struct socket *sock,
4431			 struct sockaddr *address, int addrlen)
4432{
4433	return call_int_hook(socket_bind, sock, address, addrlen);
4434}
4435
4436/**
4437 * security_socket_connect() - Check if a socket connect operation is allowed
4438 * @sock: socket
4439 * @address: address of remote connection point
4440 * @addrlen: length of address
4441 *
4442 * Check permission before socket protocol layer connect operation attempts to
4443 * connect socket @sock to a remote address, @address.
4444 *
4445 * Return: Returns 0 if permission is granted.
4446 */
4447int security_socket_connect(struct socket *sock,
4448			    struct sockaddr *address, int addrlen)
4449{
4450	return call_int_hook(socket_connect, sock, address, addrlen);
4451}
4452
4453/**
4454 * security_socket_listen() - Check if a socket is allowed to listen
4455 * @sock: socket
4456 * @backlog: connection queue size
4457 *
4458 * Check permission before socket protocol layer listen operation.
4459 *
4460 * Return: Returns 0 if permission is granted.
4461 */
4462int security_socket_listen(struct socket *sock, int backlog)
4463{
4464	return call_int_hook(socket_listen, sock, backlog);
4465}
4466
4467/**
4468 * security_socket_accept() - Check if a socket is allowed to accept connections
4469 * @sock: listening socket
4470 * @newsock: newly creation connection socket
4471 *
4472 * Check permission before accepting a new connection.  Note that the new
4473 * socket, @newsock, has been created and some information copied to it, but
4474 * the accept operation has not actually been performed.
4475 *
4476 * Return: Returns 0 if permission is granted.
4477 */
4478int security_socket_accept(struct socket *sock, struct socket *newsock)
4479{
4480	return call_int_hook(socket_accept, sock, newsock);
4481}
4482
4483/**
4484 * security_socket_sendmsg() - Check if sending a message is allowed
4485 * @sock: sending socket
4486 * @msg: message to send
4487 * @size: size of message
4488 *
4489 * Check permission before transmitting a message to another socket.
4490 *
4491 * Return: Returns 0 if permission is granted.
4492 */
4493int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4494{
4495	return call_int_hook(socket_sendmsg, sock, msg, size);
4496}
4497
4498/**
4499 * security_socket_recvmsg() - Check if receiving a message is allowed
4500 * @sock: receiving socket
4501 * @msg: message to receive
4502 * @size: size of message
4503 * @flags: operational flags
4504 *
4505 * Check permission before receiving a message from a socket.
4506 *
4507 * Return: Returns 0 if permission is granted.
4508 */
4509int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4510			    int size, int flags)
4511{
4512	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4513}
4514
4515/**
4516 * security_socket_getsockname() - Check if reading the socket addr is allowed
4517 * @sock: socket
4518 *
4519 * Check permission before reading the local address (name) of the socket
4520 * object.
4521 *
4522 * Return: Returns 0 if permission is granted.
4523 */
4524int security_socket_getsockname(struct socket *sock)
4525{
4526	return call_int_hook(socket_getsockname, sock);
4527}
4528
4529/**
4530 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4531 * @sock: socket
4532 *
4533 * Check permission before the remote address (name) of a socket object.
4534 *
4535 * Return: Returns 0 if permission is granted.
4536 */
4537int security_socket_getpeername(struct socket *sock)
4538{
4539	return call_int_hook(socket_getpeername, sock);
4540}
4541
4542/**
4543 * security_socket_getsockopt() - Check if reading a socket option is allowed
4544 * @sock: socket
4545 * @level: option's protocol level
4546 * @optname: option name
4547 *
4548 * Check permissions before retrieving the options associated with socket
4549 * @sock.
4550 *
4551 * Return: Returns 0 if permission is granted.
4552 */
4553int security_socket_getsockopt(struct socket *sock, int level, int optname)
4554{
4555	return call_int_hook(socket_getsockopt, sock, level, optname);
4556}
4557
4558/**
4559 * security_socket_setsockopt() - Check if setting a socket option is allowed
4560 * @sock: socket
4561 * @level: option's protocol level
4562 * @optname: option name
4563 *
4564 * Check permissions before setting the options associated with socket @sock.
4565 *
4566 * Return: Returns 0 if permission is granted.
4567 */
4568int security_socket_setsockopt(struct socket *sock, int level, int optname)
4569{
4570	return call_int_hook(socket_setsockopt, sock, level, optname);
4571}
4572
4573/**
4574 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4575 * @sock: socket
4576 * @how: flag indicating how sends and receives are handled
4577 *
4578 * Checks permission before all or part of a connection on the socket @sock is
4579 * shut down.
4580 *
4581 * Return: Returns 0 if permission is granted.
4582 */
4583int security_socket_shutdown(struct socket *sock, int how)
4584{
4585	return call_int_hook(socket_shutdown, sock, how);
4586}
4587
4588/**
4589 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4590 * @sk: destination sock
4591 * @skb: incoming packet
4592 *
4593 * Check permissions on incoming network packets.  This hook is distinct from
4594 * Netfilter's IP input hooks since it is the first time that the incoming
4595 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4596 * sleep inside this hook because some callers hold spinlocks.
4597 *
4598 * Return: Returns 0 if permission is granted.
4599 */
4600int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4601{
4602	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4603}
4604EXPORT_SYMBOL(security_sock_rcv_skb);
4605
4606/**
4607 * security_socket_getpeersec_stream() - Get the remote peer label
4608 * @sock: socket
4609 * @optval: destination buffer
4610 * @optlen: size of peer label copied into the buffer
4611 * @len: maximum size of the destination buffer
4612 *
4613 * This hook allows the security module to provide peer socket security state
4614 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4615 * For tcp sockets this can be meaningful if the socket is associated with an
4616 * ipsec SA.
4617 *
4618 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4619 *         values.
4620 */
4621int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4622				      sockptr_t optlen, unsigned int len)
4623{
4624	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4625			     len);
4626}
4627
4628/**
4629 * security_socket_getpeersec_dgram() - Get the remote peer label
4630 * @sock: socket
4631 * @skb: datagram packet
4632 * @secid: remote peer label secid
4633 *
4634 * This hook allows the security module to provide peer socket security state
4635 * for udp sockets on a per-packet basis to userspace via getsockopt
4636 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4637 * option via getsockopt. It can then retrieve the security state returned by
4638 * this hook for a packet via the SCM_SECURITY ancillary message type.
4639 *
4640 * Return: Returns 0 on success, error on failure.
4641 */
4642int security_socket_getpeersec_dgram(struct socket *sock,
4643				     struct sk_buff *skb, u32 *secid)
4644{
4645	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
 
4646}
4647EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4648
4649/**
4650 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4651 * @sk: sock
4652 * @family: protocol family
4653 * @priority: gfp flags
4654 *
4655 * Allocate and attach a security structure to the sk->sk_security field, which
4656 * is used to copy security attributes between local stream sockets.
4657 *
4658 * Return: Returns 0 on success, error on failure.
4659 */
4660int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4661{
4662	return call_int_hook(sk_alloc_security, sk, family, priority);
4663}
4664
4665/**
4666 * security_sk_free() - Free the sock's LSM blob
4667 * @sk: sock
4668 *
4669 * Deallocate security structure.
4670 */
4671void security_sk_free(struct sock *sk)
4672{
4673	call_void_hook(sk_free_security, sk);
4674}
4675
4676/**
4677 * security_sk_clone() - Clone a sock's LSM state
4678 * @sk: original sock
4679 * @newsk: target sock
4680 *
4681 * Clone/copy security structure.
4682 */
4683void security_sk_clone(const struct sock *sk, struct sock *newsk)
4684{
4685	call_void_hook(sk_clone_security, sk, newsk);
4686}
4687EXPORT_SYMBOL(security_sk_clone);
4688
4689/**
4690 * security_sk_classify_flow() - Set a flow's secid based on socket
4691 * @sk: original socket
4692 * @flic: target flow
4693 *
4694 * Set the target flow's secid to socket's secid.
4695 */
4696void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4697{
4698	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4699}
4700EXPORT_SYMBOL(security_sk_classify_flow);
4701
4702/**
4703 * security_req_classify_flow() - Set a flow's secid based on request_sock
4704 * @req: request_sock
4705 * @flic: target flow
4706 *
4707 * Sets @flic's secid to @req's secid.
4708 */
4709void security_req_classify_flow(const struct request_sock *req,
4710				struct flowi_common *flic)
4711{
4712	call_void_hook(req_classify_flow, req, flic);
4713}
4714EXPORT_SYMBOL(security_req_classify_flow);
4715
4716/**
4717 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4718 * @sk: sock being grafted
4719 * @parent: target parent socket
4720 *
4721 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4722 * LSM state from @parent.
4723 */
4724void security_sock_graft(struct sock *sk, struct socket *parent)
4725{
4726	call_void_hook(sock_graft, sk, parent);
4727}
4728EXPORT_SYMBOL(security_sock_graft);
4729
4730/**
4731 * security_inet_conn_request() - Set request_sock state using incoming connect
4732 * @sk: parent listening sock
4733 * @skb: incoming connection
4734 * @req: new request_sock
4735 *
4736 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4737 *
4738 * Return: Returns 0 if permission is granted.
4739 */
4740int security_inet_conn_request(const struct sock *sk,
4741			       struct sk_buff *skb, struct request_sock *req)
4742{
4743	return call_int_hook(inet_conn_request, sk, skb, req);
4744}
4745EXPORT_SYMBOL(security_inet_conn_request);
4746
4747/**
4748 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4749 * @newsk: new sock
4750 * @req: connection request_sock
4751 *
4752 * Set that LSM state of @sock using the LSM state from @req.
4753 */
4754void security_inet_csk_clone(struct sock *newsk,
4755			     const struct request_sock *req)
4756{
4757	call_void_hook(inet_csk_clone, newsk, req);
4758}
4759
4760/**
4761 * security_inet_conn_established() - Update sock's LSM state with connection
4762 * @sk: sock
4763 * @skb: connection packet
4764 *
4765 * Update @sock's LSM state to represent a new connection from @skb.
4766 */
4767void security_inet_conn_established(struct sock *sk,
4768				    struct sk_buff *skb)
4769{
4770	call_void_hook(inet_conn_established, sk, skb);
4771}
4772EXPORT_SYMBOL(security_inet_conn_established);
4773
4774/**
4775 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4776 * @secid: new secmark value
4777 *
4778 * Check if the process should be allowed to relabel packets to @secid.
4779 *
4780 * Return: Returns 0 if permission is granted.
4781 */
4782int security_secmark_relabel_packet(u32 secid)
4783{
4784	return call_int_hook(secmark_relabel_packet, secid);
4785}
4786EXPORT_SYMBOL(security_secmark_relabel_packet);
4787
4788/**
4789 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4790 *
4791 * Tells the LSM to increment the number of secmark labeling rules loaded.
4792 */
4793void security_secmark_refcount_inc(void)
4794{
4795	call_void_hook(secmark_refcount_inc);
4796}
4797EXPORT_SYMBOL(security_secmark_refcount_inc);
4798
4799/**
4800 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4801 *
4802 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4803 */
4804void security_secmark_refcount_dec(void)
4805{
4806	call_void_hook(secmark_refcount_dec);
4807}
4808EXPORT_SYMBOL(security_secmark_refcount_dec);
4809
4810/**
4811 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4812 * @security: pointer to the LSM blob
4813 *
4814 * This hook allows a module to allocate a security structure for a TUN	device,
4815 * returning the pointer in @security.
4816 *
4817 * Return: Returns a zero on success, negative values on failure.
4818 */
4819int security_tun_dev_alloc_security(void **security)
4820{
4821	return call_int_hook(tun_dev_alloc_security, security);
4822}
4823EXPORT_SYMBOL(security_tun_dev_alloc_security);
4824
4825/**
4826 * security_tun_dev_free_security() - Free a TUN device LSM blob
4827 * @security: LSM blob
4828 *
4829 * This hook allows a module to free the security structure for a TUN device.
4830 */
4831void security_tun_dev_free_security(void *security)
4832{
4833	call_void_hook(tun_dev_free_security, security);
4834}
4835EXPORT_SYMBOL(security_tun_dev_free_security);
4836
4837/**
4838 * security_tun_dev_create() - Check if creating a TUN device is allowed
4839 *
4840 * Check permissions prior to creating a new TUN device.
4841 *
4842 * Return: Returns 0 if permission is granted.
4843 */
4844int security_tun_dev_create(void)
4845{
4846	return call_int_hook(tun_dev_create);
4847}
4848EXPORT_SYMBOL(security_tun_dev_create);
4849
4850/**
4851 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4852 * @security: TUN device LSM blob
4853 *
4854 * Check permissions prior to attaching to a TUN device queue.
4855 *
4856 * Return: Returns 0 if permission is granted.
4857 */
4858int security_tun_dev_attach_queue(void *security)
4859{
4860	return call_int_hook(tun_dev_attach_queue, security);
4861}
4862EXPORT_SYMBOL(security_tun_dev_attach_queue);
4863
4864/**
4865 * security_tun_dev_attach() - Update TUN device LSM state on attach
4866 * @sk: associated sock
4867 * @security: TUN device LSM blob
4868 *
4869 * This hook can be used by the module to update any security state associated
4870 * with the TUN device's sock structure.
4871 *
4872 * Return: Returns 0 if permission is granted.
4873 */
4874int security_tun_dev_attach(struct sock *sk, void *security)
4875{
4876	return call_int_hook(tun_dev_attach, sk, security);
4877}
4878EXPORT_SYMBOL(security_tun_dev_attach);
4879
4880/**
4881 * security_tun_dev_open() - Update TUN device LSM state on open
4882 * @security: TUN device LSM blob
4883 *
4884 * This hook can be used by the module to update any security state associated
4885 * with the TUN device's security structure.
4886 *
4887 * Return: Returns 0 if permission is granted.
4888 */
4889int security_tun_dev_open(void *security)
4890{
4891	return call_int_hook(tun_dev_open, security);
4892}
4893EXPORT_SYMBOL(security_tun_dev_open);
4894
4895/**
4896 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4897 * @asoc: SCTP association
4898 * @skb: packet requesting the association
4899 *
4900 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4901 *
4902 * Return: Returns 0 on success, error on failure.
4903 */
4904int security_sctp_assoc_request(struct sctp_association *asoc,
4905				struct sk_buff *skb)
4906{
4907	return call_int_hook(sctp_assoc_request, asoc, skb);
4908}
4909EXPORT_SYMBOL(security_sctp_assoc_request);
4910
4911/**
4912 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4913 * @sk: socket
4914 * @optname: SCTP option to validate
4915 * @address: list of IP addresses to validate
4916 * @addrlen: length of the address list
4917 *
4918 * Validiate permissions required for each address associated with sock	@sk.
4919 * Depending on @optname, the addresses will be treated as either a connect or
4920 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4921 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4922 *
4923 * Return: Returns 0 on success, error on failure.
4924 */
4925int security_sctp_bind_connect(struct sock *sk, int optname,
4926			       struct sockaddr *address, int addrlen)
4927{
4928	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
 
4929}
4930EXPORT_SYMBOL(security_sctp_bind_connect);
4931
4932/**
4933 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4934 * @asoc: SCTP association
4935 * @sk: original sock
4936 * @newsk: target sock
4937 *
4938 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4939 * socket) or when a socket is 'peeled off' e.g userspace calls
4940 * sctp_peeloff(3).
4941 */
4942void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4943			    struct sock *newsk)
4944{
4945	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4946}
4947EXPORT_SYMBOL(security_sctp_sk_clone);
4948
4949/**
4950 * security_sctp_assoc_established() - Update LSM state when assoc established
4951 * @asoc: SCTP association
4952 * @skb: packet establishing the association
4953 *
4954 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4955 * security module.
4956 *
4957 * Return: Returns 0 if permission is granted.
4958 */
4959int security_sctp_assoc_established(struct sctp_association *asoc,
4960				    struct sk_buff *skb)
4961{
4962	return call_int_hook(sctp_assoc_established, asoc, skb);
4963}
4964EXPORT_SYMBOL(security_sctp_assoc_established);
4965
4966/**
4967 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4968 * @sk: the owning MPTCP socket
4969 * @ssk: the new subflow
4970 *
4971 * Update the labeling for the given MPTCP subflow, to match the one of the
4972 * owning MPTCP socket. This hook has to be called after the socket creation and
4973 * initialization via the security_socket_create() and
4974 * security_socket_post_create() LSM hooks.
4975 *
4976 * Return: Returns 0 on success or a negative error code on failure.
4977 */
4978int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4979{
4980	return call_int_hook(mptcp_add_subflow, sk, ssk);
4981}
4982
4983#endif	/* CONFIG_SECURITY_NETWORK */
4984
4985#ifdef CONFIG_SECURITY_INFINIBAND
4986/**
4987 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4988 * @sec: LSM blob
4989 * @subnet_prefix: subnet prefix of the port
4990 * @pkey: IB pkey
4991 *
4992 * Check permission to access a pkey when modifying a QP.
4993 *
4994 * Return: Returns 0 if permission is granted.
4995 */
4996int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4997{
4998	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
4999}
5000EXPORT_SYMBOL(security_ib_pkey_access);
5001
5002/**
5003 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5004 * @sec: LSM blob
5005 * @dev_name: IB device name
5006 * @port_num: port number
5007 *
5008 * Check permissions to send and receive SMPs on a end port.
5009 *
5010 * Return: Returns 0 if permission is granted.
5011 */
5012int security_ib_endport_manage_subnet(void *sec,
5013				      const char *dev_name, u8 port_num)
5014{
5015	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5016}
5017EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5018
5019/**
5020 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5021 * @sec: LSM blob
5022 *
5023 * Allocate a security structure for Infiniband objects.
5024 *
5025 * Return: Returns 0 on success, non-zero on failure.
5026 */
5027int security_ib_alloc_security(void **sec)
5028{
5029	return call_int_hook(ib_alloc_security, sec);
5030}
5031EXPORT_SYMBOL(security_ib_alloc_security);
5032
5033/**
5034 * security_ib_free_security() - Free an Infiniband LSM blob
5035 * @sec: LSM blob
5036 *
5037 * Deallocate an Infiniband security structure.
5038 */
5039void security_ib_free_security(void *sec)
5040{
5041	call_void_hook(ib_free_security, sec);
5042}
5043EXPORT_SYMBOL(security_ib_free_security);
5044#endif	/* CONFIG_SECURITY_INFINIBAND */
5045
5046#ifdef CONFIG_SECURITY_NETWORK_XFRM
5047/**
5048 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5049 * @ctxp: xfrm security context being added to the SPD
5050 * @sec_ctx: security label provided by userspace
5051 * @gfp: gfp flags
5052 *
5053 * Allocate a security structure to the xp->security field; the security field
5054 * is initialized to NULL when the xfrm_policy is allocated.
5055 *
5056 * Return:  Return 0 if operation was successful.
5057 */
5058int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5059			       struct xfrm_user_sec_ctx *sec_ctx,
5060			       gfp_t gfp)
5061{
5062	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5063}
5064EXPORT_SYMBOL(security_xfrm_policy_alloc);
5065
5066/**
5067 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5068 * @old_ctx: xfrm security context
5069 * @new_ctxp: target xfrm security context
5070 *
5071 * Allocate a security structure in new_ctxp that contains the information from
5072 * the old_ctx structure.
5073 *
5074 * Return: Return 0 if operation was successful.
5075 */
5076int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5077			       struct xfrm_sec_ctx **new_ctxp)
5078{
5079	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5080}
5081
5082/**
5083 * security_xfrm_policy_free() - Free a xfrm security context
5084 * @ctx: xfrm security context
5085 *
5086 * Free LSM resources associated with @ctx.
5087 */
5088void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5089{
5090	call_void_hook(xfrm_policy_free_security, ctx);
5091}
5092EXPORT_SYMBOL(security_xfrm_policy_free);
5093
5094/**
5095 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5096 * @ctx: xfrm security context
5097 *
5098 * Authorize deletion of a SPD entry.
5099 *
5100 * Return: Returns 0 if permission is granted.
5101 */
5102int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5103{
5104	return call_int_hook(xfrm_policy_delete_security, ctx);
5105}
5106
5107/**
5108 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5109 * @x: xfrm state being added to the SAD
5110 * @sec_ctx: security label provided by userspace
5111 *
5112 * Allocate a security structure to the @x->security field; the security field
5113 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5114 * correspond to @sec_ctx.
5115 *
5116 * Return: Return 0 if operation was successful.
5117 */
5118int security_xfrm_state_alloc(struct xfrm_state *x,
5119			      struct xfrm_user_sec_ctx *sec_ctx)
5120{
5121	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5122}
5123EXPORT_SYMBOL(security_xfrm_state_alloc);
5124
5125/**
5126 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5127 * @x: xfrm state being added to the SAD
5128 * @polsec: associated policy's security context
5129 * @secid: secid from the flow
5130 *
5131 * Allocate a security structure to the x->security field; the security field
5132 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5133 * correspond to secid.
5134 *
5135 * Return: Returns 0 if operation was successful.
5136 */
5137int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5138				      struct xfrm_sec_ctx *polsec, u32 secid)
5139{
5140	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5141}
5142
5143/**
5144 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5145 * @x: xfrm state
5146 *
5147 * Authorize deletion of x->security.
5148 *
5149 * Return: Returns 0 if permission is granted.
5150 */
5151int security_xfrm_state_delete(struct xfrm_state *x)
5152{
5153	return call_int_hook(xfrm_state_delete_security, x);
5154}
5155EXPORT_SYMBOL(security_xfrm_state_delete);
5156
5157/**
5158 * security_xfrm_state_free() - Free a xfrm state
5159 * @x: xfrm state
5160 *
5161 * Deallocate x->security.
5162 */
5163void security_xfrm_state_free(struct xfrm_state *x)
5164{
5165	call_void_hook(xfrm_state_free_security, x);
5166}
5167
5168/**
5169 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5170 * @ctx: target xfrm security context
5171 * @fl_secid: flow secid used to authorize access
5172 *
5173 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5174 * packet.  The hook is called when selecting either a per-socket policy or a
5175 * generic xfrm policy.
5176 *
5177 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5178 *         other errors.
5179 */
5180int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5181{
5182	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5183}
5184
5185/**
5186 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5187 * @x: xfrm state to match
5188 * @xp: xfrm policy to check for a match
5189 * @flic: flow to check for a match.
5190 *
5191 * Check @xp and @flic for a match with @x.
5192 *
5193 * Return: Returns 1 if there is a match.
5194 */
5195int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5196				       struct xfrm_policy *xp,
5197				       const struct flowi_common *flic)
5198{
5199	struct security_hook_list *hp;
5200	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5201
5202	/*
5203	 * Since this function is expected to return 0 or 1, the judgment
5204	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5205	 * we can use the first LSM's judgment because currently only SELinux
5206	 * supplies this call.
5207	 *
5208	 * For speed optimization, we explicitly break the loop rather than
5209	 * using the macro
5210	 */
5211	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5212			     list) {
5213		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5214		break;
5215	}
5216	return rc;
5217}
5218
5219/**
5220 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5221 * @skb: xfrm packet
5222 * @secid: secid
5223 *
5224 * Decode the packet in @skb and return the security label in @secid.
5225 *
5226 * Return: Return 0 if all xfrms used have the same secid.
5227 */
5228int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5229{
5230	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5231}
5232
5233void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5234{
5235	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5236			       0);
5237
5238	BUG_ON(rc);
5239}
5240EXPORT_SYMBOL(security_skb_classify_flow);
 
5241#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5242
5243#ifdef CONFIG_KEYS
5244/**
5245 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5246 * @key: key
5247 * @cred: credentials
5248 * @flags: allocation flags
5249 *
5250 * Permit allocation of a key and assign security data. Note that key does not
5251 * have a serial number assigned at this point.
5252 *
5253 * Return: Return 0 if permission is granted, -ve error otherwise.
5254 */
5255int security_key_alloc(struct key *key, const struct cred *cred,
5256		       unsigned long flags)
5257{
5258	return call_int_hook(key_alloc, key, cred, flags);
5259}
5260
5261/**
5262 * security_key_free() - Free a kernel key LSM blob
5263 * @key: key
5264 *
5265 * Notification of destruction; free security data.
5266 */
5267void security_key_free(struct key *key)
5268{
5269	call_void_hook(key_free, key);
5270}
5271
5272/**
5273 * security_key_permission() - Check if a kernel key operation is allowed
5274 * @key_ref: key reference
5275 * @cred: credentials of actor requesting access
5276 * @need_perm: requested permissions
5277 *
5278 * See whether a specific operational right is granted to a process on a key.
5279 *
5280 * Return: Return 0 if permission is granted, -ve error otherwise.
5281 */
5282int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5283			    enum key_need_perm need_perm)
5284{
5285	return call_int_hook(key_permission, key_ref, cred, need_perm);
5286}
5287
5288/**
5289 * security_key_getsecurity() - Get the key's security label
5290 * @key: key
5291 * @buffer: security label buffer
5292 *
5293 * Get a textual representation of the security context attached to a key for
5294 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5295 * storage for the NUL-terminated string and the caller should free it.
5296 *
5297 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5298 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5299 *         there is no security label assigned to the key.
5300 */
5301int security_key_getsecurity(struct key *key, char **buffer)
5302{
5303	*buffer = NULL;
5304	return call_int_hook(key_getsecurity, key, buffer);
5305}
5306
5307/**
5308 * security_key_post_create_or_update() - Notification of key create or update
5309 * @keyring: keyring to which the key is linked to
5310 * @key: created or updated key
5311 * @payload: data used to instantiate or update the key
5312 * @payload_len: length of payload
5313 * @flags: key flags
5314 * @create: flag indicating whether the key was created or updated
5315 *
5316 * Notify the caller of a key creation or update.
5317 */
5318void security_key_post_create_or_update(struct key *keyring, struct key *key,
5319					const void *payload, size_t payload_len,
5320					unsigned long flags, bool create)
5321{
5322	call_void_hook(key_post_create_or_update, keyring, key, payload,
5323		       payload_len, flags, create);
5324}
5325#endif	/* CONFIG_KEYS */
5326
5327#ifdef CONFIG_AUDIT
5328/**
5329 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5330 * @field: audit action
5331 * @op: rule operator
5332 * @rulestr: rule context
5333 * @lsmrule: receive buffer for audit rule struct
5334 *
5335 * Allocate and initialize an LSM audit rule structure.
5336 *
5337 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5338 *         an invalid rule.
5339 */
5340int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
5341{
5342	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule);
5343}
5344
5345/**
5346 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5347 * @krule: audit rule
5348 *
5349 * Specifies whether given @krule contains any fields related to the current
5350 * LSM.
5351 *
5352 * Return: Returns 1 in case of relation found, 0 otherwise.
5353 */
5354int security_audit_rule_known(struct audit_krule *krule)
5355{
5356	return call_int_hook(audit_rule_known, krule);
5357}
5358
5359/**
5360 * security_audit_rule_free() - Free an LSM audit rule struct
5361 * @lsmrule: audit rule struct
5362 *
5363 * Deallocate the LSM audit rule structure previously allocated by
5364 * audit_rule_init().
5365 */
5366void security_audit_rule_free(void *lsmrule)
5367{
5368	call_void_hook(audit_rule_free, lsmrule);
5369}
5370
5371/**
5372 * security_audit_rule_match() - Check if a label matches an audit rule
5373 * @secid: security label
5374 * @field: LSM audit field
5375 * @op: matching operator
5376 * @lsmrule: audit rule
5377 *
5378 * Determine if given @secid matches a rule previously approved by
5379 * security_audit_rule_known().
5380 *
5381 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5382 *         failure.
5383 */
5384int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5385{
5386	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5387}
5388#endif /* CONFIG_AUDIT */
5389
5390#ifdef CONFIG_BPF_SYSCALL
5391/**
5392 * security_bpf() - Check if the bpf syscall operation is allowed
5393 * @cmd: command
5394 * @attr: bpf attribute
5395 * @size: size
5396 *
5397 * Do a initial check for all bpf syscalls after the attribute is copied into
5398 * the kernel. The actual security module can implement their own rules to
5399 * check the specific cmd they need.
5400 *
5401 * Return: Returns 0 if permission is granted.
5402 */
5403int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5404{
5405	return call_int_hook(bpf, cmd, attr, size);
5406}
5407
5408/**
5409 * security_bpf_map() - Check if access to a bpf map is allowed
5410 * @map: bpf map
5411 * @fmode: mode
5412 *
5413 * Do a check when the kernel generates and returns a file descriptor for eBPF
5414 * maps.
5415 *
5416 * Return: Returns 0 if permission is granted.
5417 */
5418int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5419{
5420	return call_int_hook(bpf_map, map, fmode);
5421}
5422
5423/**
5424 * security_bpf_prog() - Check if access to a bpf program is allowed
5425 * @prog: bpf program
5426 *
5427 * Do a check when the kernel generates and returns a file descriptor for eBPF
5428 * programs.
5429 *
5430 * Return: Returns 0 if permission is granted.
5431 */
5432int security_bpf_prog(struct bpf_prog *prog)
5433{
5434	return call_int_hook(bpf_prog, prog);
5435}
5436
5437/**
5438 * security_bpf_map_create() - Check if BPF map creation is allowed
5439 * @map: BPF map object
5440 * @attr: BPF syscall attributes used to create BPF map
5441 * @token: BPF token used to grant user access
5442 *
5443 * Do a check when the kernel creates a new BPF map. This is also the
5444 * point where LSM blob is allocated for LSMs that need them.
5445 *
5446 * Return: Returns 0 on success, error on failure.
5447 */
5448int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5449			    struct bpf_token *token)
5450{
5451	return call_int_hook(bpf_map_create, map, attr, token);
5452}
5453
5454/**
5455 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5456 * @prog: BPF program object
5457 * @attr: BPF syscall attributes used to create BPF program
5458 * @token: BPF token used to grant user access to BPF subsystem
5459 *
5460 * Perform an access control check when the kernel loads a BPF program and
5461 * allocates associated BPF program object. This hook is also responsible for
5462 * allocating any required LSM state for the BPF program.
5463 *
5464 * Return: Returns 0 on success, error on failure.
5465 */
5466int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5467			   struct bpf_token *token)
5468{
5469	return call_int_hook(bpf_prog_load, prog, attr, token);
5470}
5471
5472/**
5473 * security_bpf_token_create() - Check if creating of BPF token is allowed
5474 * @token: BPF token object
5475 * @attr: BPF syscall attributes used to create BPF token
5476 * @path: path pointing to BPF FS mount point from which BPF token is created
5477 *
5478 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5479 * instance. This is also the point where LSM blob can be allocated for LSMs.
5480 *
5481 * Return: Returns 0 on success, error on failure.
5482 */
5483int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5484			      struct path *path)
5485{
5486	return call_int_hook(bpf_token_create, token, attr, path);
5487}
5488
5489/**
5490 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5491 * requested BPF syscall command
5492 * @token: BPF token object
5493 * @cmd: BPF syscall command requested to be delegated by BPF token
5494 *
5495 * Do a check when the kernel decides whether provided BPF token should allow
5496 * delegation of requested BPF syscall command.
5497 *
5498 * Return: Returns 0 on success, error on failure.
5499 */
5500int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5501{
5502	return call_int_hook(bpf_token_cmd, token, cmd);
5503}
5504
5505/**
5506 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5507 * requested BPF-related capability
5508 * @token: BPF token object
5509 * @cap: capabilities requested to be delegated by BPF token
5510 *
5511 * Do a check when the kernel decides whether provided BPF token should allow
5512 * delegation of requested BPF-related capabilities.
5513 *
5514 * Return: Returns 0 on success, error on failure.
5515 */
5516int security_bpf_token_capable(const struct bpf_token *token, int cap)
5517{
5518	return call_int_hook(bpf_token_capable, token, cap);
5519}
5520
5521/**
5522 * security_bpf_map_free() - Free a bpf map's LSM blob
5523 * @map: bpf map
5524 *
5525 * Clean up the security information stored inside bpf map.
5526 */
5527void security_bpf_map_free(struct bpf_map *map)
5528{
5529	call_void_hook(bpf_map_free, map);
5530}
5531
5532/**
5533 * security_bpf_prog_free() - Free a BPF program's LSM blob
5534 * @prog: BPF program struct
5535 *
5536 * Clean up the security information stored inside BPF program.
5537 */
5538void security_bpf_prog_free(struct bpf_prog *prog)
5539{
5540	call_void_hook(bpf_prog_free, prog);
5541}
5542
5543/**
5544 * security_bpf_token_free() - Free a BPF token's LSM blob
5545 * @token: BPF token struct
5546 *
5547 * Clean up the security information stored inside BPF token.
5548 */
5549void security_bpf_token_free(struct bpf_token *token)
5550{
5551	call_void_hook(bpf_token_free, token);
5552}
5553#endif /* CONFIG_BPF_SYSCALL */
5554
5555/**
5556 * security_locked_down() - Check if a kernel feature is allowed
5557 * @what: requested kernel feature
5558 *
5559 * Determine whether a kernel feature that potentially enables arbitrary code
5560 * execution in kernel space should be permitted.
5561 *
5562 * Return: Returns 0 if permission is granted.
5563 */
5564int security_locked_down(enum lockdown_reason what)
5565{
5566	return call_int_hook(locked_down, what);
5567}
5568EXPORT_SYMBOL(security_locked_down);
5569
5570#ifdef CONFIG_PERF_EVENTS
5571/**
5572 * security_perf_event_open() - Check if a perf event open is allowed
5573 * @attr: perf event attribute
5574 * @type: type of event
5575 *
5576 * Check whether the @type of perf_event_open syscall is allowed.
5577 *
5578 * Return: Returns 0 if permission is granted.
5579 */
5580int security_perf_event_open(struct perf_event_attr *attr, int type)
5581{
5582	return call_int_hook(perf_event_open, attr, type);
5583}
5584
5585/**
5586 * security_perf_event_alloc() - Allocate a perf event LSM blob
5587 * @event: perf event
5588 *
5589 * Allocate and save perf_event security info.
5590 *
5591 * Return: Returns 0 on success, error on failure.
5592 */
5593int security_perf_event_alloc(struct perf_event *event)
5594{
5595	return call_int_hook(perf_event_alloc, event);
5596}
5597
5598/**
5599 * security_perf_event_free() - Free a perf event LSM blob
5600 * @event: perf event
5601 *
5602 * Release (free) perf_event security info.
5603 */
5604void security_perf_event_free(struct perf_event *event)
5605{
5606	call_void_hook(perf_event_free, event);
5607}
5608
5609/**
5610 * security_perf_event_read() - Check if reading a perf event label is allowed
5611 * @event: perf event
5612 *
5613 * Read perf_event security info if allowed.
5614 *
5615 * Return: Returns 0 if permission is granted.
5616 */
5617int security_perf_event_read(struct perf_event *event)
5618{
5619	return call_int_hook(perf_event_read, event);
5620}
5621
5622/**
5623 * security_perf_event_write() - Check if writing a perf event label is allowed
5624 * @event: perf event
5625 *
5626 * Write perf_event security info if allowed.
5627 *
5628 * Return: Returns 0 if permission is granted.
5629 */
5630int security_perf_event_write(struct perf_event *event)
5631{
5632	return call_int_hook(perf_event_write, event);
5633}
5634#endif /* CONFIG_PERF_EVENTS */
5635
5636#ifdef CONFIG_IO_URING
5637/**
5638 * security_uring_override_creds() - Check if overriding creds is allowed
5639 * @new: new credentials
5640 *
5641 * Check if the current task, executing an io_uring operation, is allowed to
5642 * override it's credentials with @new.
5643 *
5644 * Return: Returns 0 if permission is granted.
5645 */
5646int security_uring_override_creds(const struct cred *new)
5647{
5648	return call_int_hook(uring_override_creds, new);
5649}
5650
5651/**
5652 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5653 *
5654 * Check whether the current task is allowed to spawn a io_uring polling thread
5655 * (IORING_SETUP_SQPOLL).
5656 *
5657 * Return: Returns 0 if permission is granted.
5658 */
5659int security_uring_sqpoll(void)
5660{
5661	return call_int_hook(uring_sqpoll);
5662}
5663
5664/**
5665 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5666 * @ioucmd: command
5667 *
5668 * Check whether the file_operations uring_cmd is allowed to run.
5669 *
5670 * Return: Returns 0 if permission is granted.
5671 */
5672int security_uring_cmd(struct io_uring_cmd *ioucmd)
5673{
5674	return call_int_hook(uring_cmd, ioucmd);
5675}
5676#endif /* CONFIG_IO_URING */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
 
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
 
  30#include <linux/msg.h>
 
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR	2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45	[LOCKDOWN_NONE] = "none",
  46	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50	[LOCKDOWN_HIBERNATION] = "hibernation",
  51	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52	[LOCKDOWN_IOPORT] = "raw io port access",
  53	[LOCKDOWN_MSR] = "raw MSR access",
  54	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  56	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  57	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  58	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  59	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  60	[LOCKDOWN_DEBUGFS] = "debugfs access",
  61	[LOCKDOWN_XMON_WR] = "xmon write access",
  62	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  63	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  64	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  65	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  66	[LOCKDOWN_KCORE] = "/proc/kcore access",
  67	[LOCKDOWN_KPROBES] = "use of kprobes",
  68	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  69	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  70	[LOCKDOWN_PERF] = "unsafe use of perf",
  71	[LOCKDOWN_TRACEFS] = "use of tracefs",
  72	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  73	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  74	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  75};
  76
  77struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  78static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  79
  80static struct kmem_cache *lsm_file_cache;
  81static struct kmem_cache *lsm_inode_cache;
  82
  83char *lsm_names;
  84static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  85
  86/* Boot-time LSM user choice */
  87static __initdata const char *chosen_lsm_order;
  88static __initdata const char *chosen_major_lsm;
  89
  90static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  91
  92/* Ordered list of LSMs to initialize. */
  93static __initdata struct lsm_info **ordered_lsms;
  94static __initdata struct lsm_info *exclusive;
  95
  96static __initdata bool debug;
  97#define init_debug(...)						\
  98	do {							\
  99		if (debug)					\
 100			pr_info(__VA_ARGS__);			\
 101	} while (0)
 102
 103static bool __init is_enabled(struct lsm_info *lsm)
 104{
 105	if (!lsm->enabled)
 106		return false;
 107
 108	return *lsm->enabled;
 109}
 110
 111/* Mark an LSM's enabled flag. */
 112static int lsm_enabled_true __initdata = 1;
 113static int lsm_enabled_false __initdata = 0;
 114static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 115{
 116	/*
 117	 * When an LSM hasn't configured an enable variable, we can use
 118	 * a hard-coded location for storing the default enabled state.
 119	 */
 120	if (!lsm->enabled) {
 121		if (enabled)
 122			lsm->enabled = &lsm_enabled_true;
 123		else
 124			lsm->enabled = &lsm_enabled_false;
 125	} else if (lsm->enabled == &lsm_enabled_true) {
 126		if (!enabled)
 127			lsm->enabled = &lsm_enabled_false;
 128	} else if (lsm->enabled == &lsm_enabled_false) {
 129		if (enabled)
 130			lsm->enabled = &lsm_enabled_true;
 131	} else {
 132		*lsm->enabled = enabled;
 133	}
 134}
 135
 136/* Is an LSM already listed in the ordered LSMs list? */
 137static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 138{
 139	struct lsm_info **check;
 140
 141	for (check = ordered_lsms; *check; check++)
 142		if (*check == lsm)
 143			return true;
 144
 145	return false;
 146}
 147
 148/* Append an LSM to the list of ordered LSMs to initialize. */
 149static int last_lsm __initdata;
 150static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 151{
 152	/* Ignore duplicate selections. */
 153	if (exists_ordered_lsm(lsm))
 154		return;
 155
 156	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 157		return;
 158
 159	/* Enable this LSM, if it is not already set. */
 160	if (!lsm->enabled)
 161		lsm->enabled = &lsm_enabled_true;
 162	ordered_lsms[last_lsm++] = lsm;
 163
 164	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 165		   is_enabled(lsm) ? "enabled" : "disabled");
 166}
 167
 168/* Is an LSM allowed to be initialized? */
 169static bool __init lsm_allowed(struct lsm_info *lsm)
 170{
 171	/* Skip if the LSM is disabled. */
 172	if (!is_enabled(lsm))
 173		return false;
 174
 175	/* Not allowed if another exclusive LSM already initialized. */
 176	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 177		init_debug("exclusive disabled: %s\n", lsm->name);
 178		return false;
 179	}
 180
 181	return true;
 182}
 183
 184static void __init lsm_set_blob_size(int *need, int *lbs)
 185{
 186	int offset;
 187
 188	if (*need <= 0)
 189		return;
 190
 191	offset = ALIGN(*lbs, sizeof(void *));
 192	*lbs = offset + *need;
 193	*need = offset;
 194}
 195
 196static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 197{
 198	if (!needed)
 199		return;
 200
 201	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 202	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 203	/*
 204	 * The inode blob gets an rcu_head in addition to
 205	 * what the modules might need.
 206	 */
 207	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 208		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 209	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 210	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 211	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 212	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 213	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 
 
 214}
 215
 216/* Prepare LSM for initialization. */
 217static void __init prepare_lsm(struct lsm_info *lsm)
 218{
 219	int enabled = lsm_allowed(lsm);
 220
 221	/* Record enablement (to handle any following exclusive LSMs). */
 222	set_enabled(lsm, enabled);
 223
 224	/* If enabled, do pre-initialization work. */
 225	if (enabled) {
 226		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 227			exclusive = lsm;
 228			init_debug("exclusive chosen:   %s\n", lsm->name);
 229		}
 230
 231		lsm_set_blob_sizes(lsm->blobs);
 232	}
 233}
 234
 235/* Initialize a given LSM, if it is enabled. */
 236static void __init initialize_lsm(struct lsm_info *lsm)
 237{
 238	if (is_enabled(lsm)) {
 239		int ret;
 240
 241		init_debug("initializing %s\n", lsm->name);
 242		ret = lsm->init();
 243		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 244	}
 245}
 246
 
 
 
 
 
 
 247/* Populate ordered LSMs list from comma-separated LSM name list. */
 248static void __init ordered_lsm_parse(const char *order, const char *origin)
 249{
 250	struct lsm_info *lsm;
 251	char *sep, *name, *next;
 252
 253	/* LSM_ORDER_FIRST is always first. */
 254	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 255		if (lsm->order == LSM_ORDER_FIRST)
 256			append_ordered_lsm(lsm, "  first");
 257	}
 258
 259	/* Process "security=", if given. */
 260	if (chosen_major_lsm) {
 261		struct lsm_info *major;
 262
 263		/*
 264		 * To match the original "security=" behavior, this
 265		 * explicitly does NOT fallback to another Legacy Major
 266		 * if the selected one was separately disabled: disable
 267		 * all non-matching Legacy Major LSMs.
 268		 */
 269		for (major = __start_lsm_info; major < __end_lsm_info;
 270		     major++) {
 271			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 272			    strcmp(major->name, chosen_major_lsm) != 0) {
 273				set_enabled(major, false);
 274				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 275					   chosen_major_lsm, major->name);
 276			}
 277		}
 278	}
 279
 280	sep = kstrdup(order, GFP_KERNEL);
 281	next = sep;
 282	/* Walk the list, looking for matching LSMs. */
 283	while ((name = strsep(&next, ",")) != NULL) {
 284		bool found = false;
 285
 286		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 287			if (lsm->order == LSM_ORDER_MUTABLE &&
 288			    strcmp(lsm->name, name) == 0) {
 289				append_ordered_lsm(lsm, origin);
 290				found = true;
 291			}
 292		}
 293
 294		if (!found)
 295			init_debug("%s ignored: %s (not built into kernel)\n",
 296				   origin, name);
 297	}
 298
 299	/* Process "security=", if given. */
 300	if (chosen_major_lsm) {
 301		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 302			if (exists_ordered_lsm(lsm))
 303				continue;
 304			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 305				append_ordered_lsm(lsm, "security=");
 306		}
 307	}
 308
 
 
 
 
 
 
 309	/* Disable all LSMs not in the ordered list. */
 310	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 311		if (exists_ordered_lsm(lsm))
 312			continue;
 313		set_enabled(lsm, false);
 314		init_debug("%s skipped: %s (not in requested order)\n",
 315			   origin, lsm->name);
 316	}
 317
 318	kfree(sep);
 319}
 320
 321static void __init lsm_early_cred(struct cred *cred);
 322static void __init lsm_early_task(struct task_struct *task);
 323
 324static int lsm_append(const char *new, char **result);
 325
 326static void __init report_lsm_order(void)
 327{
 328	struct lsm_info **lsm, *early;
 329	int first = 0;
 330
 331	pr_info("initializing lsm=");
 332
 333	/* Report each enabled LSM name, comma separated. */
 334	for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++)
 
 335		if (is_enabled(early))
 336			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 337	for (lsm = ordered_lsms; *lsm; lsm++)
 338		if (is_enabled(*lsm))
 339			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 340
 341	pr_cont("\n");
 342}
 343
 344static void __init ordered_lsm_init(void)
 345{
 346	struct lsm_info **lsm;
 347
 348	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 349				GFP_KERNEL);
 350
 351	if (chosen_lsm_order) {
 352		if (chosen_major_lsm) {
 353			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 354				chosen_major_lsm, chosen_lsm_order);
 355			chosen_major_lsm = NULL;
 356		}
 357		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 358	} else
 359		ordered_lsm_parse(builtin_lsm_order, "builtin");
 360
 361	for (lsm = ordered_lsms; *lsm; lsm++)
 362		prepare_lsm(*lsm);
 363
 364	report_lsm_order();
 365
 366	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 367	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 368	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 369	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 370	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 371	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 372	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 
 373
 374	/*
 375	 * Create any kmem_caches needed for blobs
 376	 */
 377	if (blob_sizes.lbs_file)
 378		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 379						   blob_sizes.lbs_file, 0,
 380						   SLAB_PANIC, NULL);
 381	if (blob_sizes.lbs_inode)
 382		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 383						    blob_sizes.lbs_inode, 0,
 384						    SLAB_PANIC, NULL);
 385
 386	lsm_early_cred((struct cred *) current->cred);
 387	lsm_early_task(current);
 388	for (lsm = ordered_lsms; *lsm; lsm++)
 389		initialize_lsm(*lsm);
 390
 391	kfree(ordered_lsms);
 392}
 393
 394int __init early_security_init(void)
 395{
 396	struct lsm_info *lsm;
 397
 398#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 399	INIT_HLIST_HEAD(&security_hook_heads.NAME);
 400#include "linux/lsm_hook_defs.h"
 401#undef LSM_HOOK
 402
 403	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 404		if (!lsm->enabled)
 405			lsm->enabled = &lsm_enabled_true;
 406		prepare_lsm(lsm);
 407		initialize_lsm(lsm);
 408	}
 409
 410	return 0;
 411}
 412
 413/**
 414 * security_init - initializes the security framework
 415 *
 416 * This should be called early in the kernel initialization sequence.
 417 */
 418int __init security_init(void)
 419{
 420	struct lsm_info *lsm;
 421
 422	init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*");
 423	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 424	init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*");
 425
 426	/*
 427	 * Append the names of the early LSM modules now that kmalloc() is
 428	 * available
 429	 */
 430	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 431		init_debug("  early started: %s (%s)\n", lsm->name,
 432			   is_enabled(lsm) ? "enabled" : "disabled");
 433		if (lsm->enabled)
 434			lsm_append(lsm->name, &lsm_names);
 435	}
 436
 437	/* Load LSMs in specified order. */
 438	ordered_lsm_init();
 439
 440	return 0;
 441}
 442
 443/* Save user chosen LSM */
 444static int __init choose_major_lsm(char *str)
 445{
 446	chosen_major_lsm = str;
 447	return 1;
 448}
 449__setup("security=", choose_major_lsm);
 450
 451/* Explicitly choose LSM initialization order. */
 452static int __init choose_lsm_order(char *str)
 453{
 454	chosen_lsm_order = str;
 455	return 1;
 456}
 457__setup("lsm=", choose_lsm_order);
 458
 459/* Enable LSM order debugging. */
 460static int __init enable_debug(char *str)
 461{
 462	debug = true;
 463	return 1;
 464}
 465__setup("lsm.debug", enable_debug);
 466
 467static bool match_last_lsm(const char *list, const char *lsm)
 468{
 469	const char *last;
 470
 471	if (WARN_ON(!list || !lsm))
 472		return false;
 473	last = strrchr(list, ',');
 474	if (last)
 475		/* Pass the comma, strcmp() will check for '\0' */
 476		last++;
 477	else
 478		last = list;
 479	return !strcmp(last, lsm);
 480}
 481
 482static int lsm_append(const char *new, char **result)
 483{
 484	char *cp;
 485
 486	if (*result == NULL) {
 487		*result = kstrdup(new, GFP_KERNEL);
 488		if (*result == NULL)
 489			return -ENOMEM;
 490	} else {
 491		/* Check if it is the last registered name */
 492		if (match_last_lsm(*result, new))
 493			return 0;
 494		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 495		if (cp == NULL)
 496			return -ENOMEM;
 497		kfree(*result);
 498		*result = cp;
 499	}
 500	return 0;
 501}
 502
 503/**
 504 * security_add_hooks - Add a modules hooks to the hook lists.
 505 * @hooks: the hooks to add
 506 * @count: the number of hooks to add
 507 * @lsm: the name of the security module
 508 *
 509 * Each LSM has to register its hooks with the infrastructure.
 510 */
 511void __init security_add_hooks(struct security_hook_list *hooks, int count,
 512				const char *lsm)
 513{
 514	int i;
 515
 
 
 
 
 
 
 
 
 
 
 
 
 516	for (i = 0; i < count; i++) {
 517		hooks[i].lsm = lsm;
 518		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 519	}
 520
 521	/*
 522	 * Don't try to append during early_security_init(), we'll come back
 523	 * and fix this up afterwards.
 524	 */
 525	if (slab_is_available()) {
 526		if (lsm_append(lsm, &lsm_names) < 0)
 527			panic("%s - Cannot get early memory.\n", __func__);
 528	}
 529}
 530
 531int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 532{
 533	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 534					    event, data);
 535}
 536EXPORT_SYMBOL(call_blocking_lsm_notifier);
 537
 538int register_blocking_lsm_notifier(struct notifier_block *nb)
 539{
 540	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 541						nb);
 542}
 543EXPORT_SYMBOL(register_blocking_lsm_notifier);
 544
 545int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 546{
 547	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 548						  nb);
 549}
 550EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 551
 552/**
 553 * lsm_cred_alloc - allocate a composite cred blob
 554 * @cred: the cred that needs a blob
 555 * @gfp: allocation type
 556 *
 557 * Allocate the cred blob for all the modules
 558 *
 559 * Returns 0, or -ENOMEM if memory can't be allocated.
 560 */
 561static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 562{
 563	if (blob_sizes.lbs_cred == 0) {
 564		cred->security = NULL;
 565		return 0;
 566	}
 567
 568	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 569	if (cred->security == NULL)
 570		return -ENOMEM;
 571	return 0;
 572}
 573
 574/**
 575 * lsm_early_cred - during initialization allocate a composite cred blob
 576 * @cred: the cred that needs a blob
 577 *
 578 * Allocate the cred blob for all the modules
 579 */
 580static void __init lsm_early_cred(struct cred *cred)
 581{
 582	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 583
 584	if (rc)
 585		panic("%s: Early cred alloc failed.\n", __func__);
 586}
 587
 588/**
 589 * lsm_file_alloc - allocate a composite file blob
 590 * @file: the file that needs a blob
 591 *
 592 * Allocate the file blob for all the modules
 593 *
 594 * Returns 0, or -ENOMEM if memory can't be allocated.
 595 */
 596static int lsm_file_alloc(struct file *file)
 597{
 598	if (!lsm_file_cache) {
 599		file->f_security = NULL;
 600		return 0;
 601	}
 602
 603	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 604	if (file->f_security == NULL)
 605		return -ENOMEM;
 606	return 0;
 607}
 608
 609/**
 610 * lsm_inode_alloc - allocate a composite inode blob
 611 * @inode: the inode that needs a blob
 612 *
 613 * Allocate the inode blob for all the modules
 614 *
 615 * Returns 0, or -ENOMEM if memory can't be allocated.
 616 */
 617int lsm_inode_alloc(struct inode *inode)
 618{
 619	if (!lsm_inode_cache) {
 620		inode->i_security = NULL;
 621		return 0;
 622	}
 623
 624	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 625	if (inode->i_security == NULL)
 626		return -ENOMEM;
 627	return 0;
 628}
 629
 630/**
 631 * lsm_task_alloc - allocate a composite task blob
 632 * @task: the task that needs a blob
 633 *
 634 * Allocate the task blob for all the modules
 635 *
 636 * Returns 0, or -ENOMEM if memory can't be allocated.
 637 */
 638static int lsm_task_alloc(struct task_struct *task)
 639{
 640	if (blob_sizes.lbs_task == 0) {
 641		task->security = NULL;
 642		return 0;
 643	}
 644
 645	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 646	if (task->security == NULL)
 647		return -ENOMEM;
 648	return 0;
 649}
 650
 651/**
 652 * lsm_ipc_alloc - allocate a composite ipc blob
 653 * @kip: the ipc that needs a blob
 654 *
 655 * Allocate the ipc blob for all the modules
 656 *
 657 * Returns 0, or -ENOMEM if memory can't be allocated.
 658 */
 659static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 660{
 661	if (blob_sizes.lbs_ipc == 0) {
 662		kip->security = NULL;
 663		return 0;
 664	}
 665
 666	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 667	if (kip->security == NULL)
 668		return -ENOMEM;
 669	return 0;
 670}
 671
 672/**
 673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 674 * @mp: the msg_msg that needs a blob
 675 *
 676 * Allocate the ipc blob for all the modules
 677 *
 678 * Returns 0, or -ENOMEM if memory can't be allocated.
 679 */
 680static int lsm_msg_msg_alloc(struct msg_msg *mp)
 681{
 682	if (blob_sizes.lbs_msg_msg == 0) {
 683		mp->security = NULL;
 684		return 0;
 685	}
 686
 687	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 688	if (mp->security == NULL)
 689		return -ENOMEM;
 690	return 0;
 691}
 692
 693/**
 694 * lsm_early_task - during initialization allocate a composite task blob
 695 * @task: the task that needs a blob
 696 *
 697 * Allocate the task blob for all the modules
 698 */
 699static void __init lsm_early_task(struct task_struct *task)
 700{
 701	int rc = lsm_task_alloc(task);
 702
 703	if (rc)
 704		panic("%s: Early task alloc failed.\n", __func__);
 705}
 706
 707/**
 708 * lsm_superblock_alloc - allocate a composite superblock blob
 709 * @sb: the superblock that needs a blob
 710 *
 711 * Allocate the superblock blob for all the modules
 712 *
 713 * Returns 0, or -ENOMEM if memory can't be allocated.
 714 */
 715static int lsm_superblock_alloc(struct super_block *sb)
 716{
 717	if (blob_sizes.lbs_superblock == 0) {
 718		sb->s_security = NULL;
 719		return 0;
 720	}
 721
 722	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 723	if (sb->s_security == NULL)
 724		return -ENOMEM;
 725	return 0;
 726}
 727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728/*
 729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 730 * can be accessed with:
 731 *
 732 *	LSM_RET_DEFAULT(<hook_name>)
 733 *
 734 * The macros below define static constants for the default value of each
 735 * LSM hook.
 736 */
 737#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 738#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 739#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 740	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 741#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 742	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 743
 744#include <linux/lsm_hook_defs.h>
 745#undef LSM_HOOK
 746
 747/*
 748 * Hook list operation macros.
 749 *
 750 * call_void_hook:
 751 *	This is a hook that does not return a value.
 752 *
 753 * call_int_hook:
 754 *	This is a hook that returns a value.
 755 */
 756
 757#define call_void_hook(FUNC, ...)				\
 758	do {							\
 759		struct security_hook_list *P;			\
 760								\
 761		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 762			P->hook.FUNC(__VA_ARGS__);		\
 763	} while (0)
 764
 765#define call_int_hook(FUNC, IRC, ...) ({			\
 766	int RC = IRC;						\
 767	do {							\
 768		struct security_hook_list *P;			\
 769								\
 770		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 771			RC = P->hook.FUNC(__VA_ARGS__);		\
 772			if (RC != 0)				\
 773				break;				\
 774		}						\
 775	} while (0);						\
 776	RC;							\
 777})
 778
 779/* Security operations */
 780
 
 
 
 
 
 
 
 
 781int security_binder_set_context_mgr(const struct cred *mgr)
 782{
 783	return call_int_hook(binder_set_context_mgr, 0, mgr);
 784}
 785
 
 
 
 
 
 
 
 
 
 786int security_binder_transaction(const struct cred *from,
 787				const struct cred *to)
 788{
 789	return call_int_hook(binder_transaction, 0, from, to);
 790}
 791
 
 
 
 
 
 
 
 
 
 792int security_binder_transfer_binder(const struct cred *from,
 793				    const struct cred *to)
 794{
 795	return call_int_hook(binder_transfer_binder, 0, from, to);
 796}
 797
 
 
 
 
 
 
 
 
 
 
 798int security_binder_transfer_file(const struct cred *from,
 799				  const struct cred *to, struct file *file)
 800{
 801	return call_int_hook(binder_transfer_file, 0, from, to, file);
 802}
 803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 805{
 806	return call_int_hook(ptrace_access_check, 0, child, mode);
 807}
 808
 
 
 
 
 
 
 
 
 
 
 809int security_ptrace_traceme(struct task_struct *parent)
 810{
 811	return call_int_hook(ptrace_traceme, 0, parent);
 812}
 813
 814int security_capget(struct task_struct *target,
 815		     kernel_cap_t *effective,
 816		     kernel_cap_t *inheritable,
 817		     kernel_cap_t *permitted)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818{
 819	return call_int_hook(capget, 0, target,
 820				effective, inheritable, permitted);
 821}
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 823int security_capset(struct cred *new, const struct cred *old,
 824		    const kernel_cap_t *effective,
 825		    const kernel_cap_t *inheritable,
 826		    const kernel_cap_t *permitted)
 827{
 828	return call_int_hook(capset, 0, new, old,
 829				effective, inheritable, permitted);
 830}
 831
 
 
 
 
 
 
 
 
 
 
 
 
 
 832int security_capable(const struct cred *cred,
 833		     struct user_namespace *ns,
 834		     int cap,
 835		     unsigned int opts)
 836{
 837	return call_int_hook(capable, 0, cred, ns, cap, opts);
 838}
 839
 840int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 841{
 842	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 843}
 844
 
 
 
 
 
 
 
 
 845int security_quota_on(struct dentry *dentry)
 846{
 847	return call_int_hook(quota_on, 0, dentry);
 848}
 849
 
 
 
 
 
 
 
 
 
 
 850int security_syslog(int type)
 851{
 852	return call_int_hook(syslog, 0, type);
 853}
 854
 
 
 
 
 
 
 
 
 
 
 855int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 856{
 857	return call_int_hook(settime, 0, ts, tz);
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 860int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 861{
 862	struct security_hook_list *hp;
 863	int cap_sys_admin = 1;
 864	int rc;
 865
 866	/*
 867	 * The module will respond with a positive value if
 868	 * it thinks the __vm_enough_memory() call should be
 869	 * made with the cap_sys_admin set. If all of the modules
 870	 * agree that it should be set it will. If any module
 871	 * thinks it should not be set it won't.
 872	 */
 873	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 874		rc = hp->hook.vm_enough_memory(mm, pages);
 875		if (rc <= 0) {
 876			cap_sys_admin = 0;
 877			break;
 878		}
 879	}
 880	return __vm_enough_memory(mm, pages, cap_sys_admin);
 881}
 882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 884{
 885	return call_int_hook(bprm_creds_for_exec, 0, bprm);
 886}
 887
 888int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889{
 890	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 891}
 892
 
 
 
 
 
 
 
 
 
 
 
 
 893int security_bprm_check(struct linux_binprm *bprm)
 894{
 895	int ret;
 896
 897	ret = call_int_hook(bprm_check_security, 0, bprm);
 898	if (ret)
 899		return ret;
 900	return ima_bprm_check(bprm);
 901}
 902
 903void security_bprm_committing_creds(struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 
 904{
 905	call_void_hook(bprm_committing_creds, bprm);
 906}
 907
 908void security_bprm_committed_creds(struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 909{
 910	call_void_hook(bprm_committed_creds, bprm);
 911}
 912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 914{
 915	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 916}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 918int security_fs_context_parse_param(struct fs_context *fc,
 919				    struct fs_parameter *param)
 920{
 921	struct security_hook_list *hp;
 922	int trc;
 923	int rc = -ENOPARAM;
 924
 925	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
 926			     list) {
 927		trc = hp->hook.fs_context_parse_param(fc, param);
 928		if (trc == 0)
 929			rc = 0;
 930		else if (trc != -ENOPARAM)
 931			return trc;
 932	}
 933	return rc;
 934}
 935
 
 
 
 
 
 
 
 
 
 
 936int security_sb_alloc(struct super_block *sb)
 937{
 938	int rc = lsm_superblock_alloc(sb);
 939
 940	if (unlikely(rc))
 941		return rc;
 942	rc = call_int_hook(sb_alloc_security, 0, sb);
 943	if (unlikely(rc))
 944		security_sb_free(sb);
 945	return rc;
 946}
 947
 
 
 
 
 
 
 
 948void security_sb_delete(struct super_block *sb)
 949{
 950	call_void_hook(sb_delete, sb);
 951}
 952
 
 
 
 
 
 
 
 953void security_sb_free(struct super_block *sb)
 954{
 955	call_void_hook(sb_free_security, sb);
 956	kfree(sb->s_security);
 957	sb->s_security = NULL;
 958}
 959
 
 
 
 
 
 
 960void security_free_mnt_opts(void **mnt_opts)
 961{
 962	if (!*mnt_opts)
 963		return;
 964	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 965	*mnt_opts = NULL;
 966}
 967EXPORT_SYMBOL(security_free_mnt_opts);
 968
 
 
 
 
 
 
 
 
 
 969int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 970{
 971	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 972}
 973EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 974
 
 
 
 
 
 
 
 
 
 
 975int security_sb_mnt_opts_compat(struct super_block *sb,
 976				void *mnt_opts)
 977{
 978	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
 979}
 980EXPORT_SYMBOL(security_sb_mnt_opts_compat);
 981
 
 
 
 
 
 
 
 
 
 
 982int security_sb_remount(struct super_block *sb,
 983			void *mnt_opts)
 984{
 985	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 986}
 987EXPORT_SYMBOL(security_sb_remount);
 988
 989int security_sb_kern_mount(struct super_block *sb)
 
 
 
 
 
 
 
 
 990{
 991	return call_int_hook(sb_kern_mount, 0, sb);
 992}
 993
 
 
 
 
 
 
 
 
 
 994int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 995{
 996	return call_int_hook(sb_show_options, 0, m, sb);
 997}
 998
 
 
 
 
 
 
 
 
 
 999int security_sb_statfs(struct dentry *dentry)
1000{
1001	return call_int_hook(sb_statfs, 0, dentry);
1002}
1003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004int security_sb_mount(const char *dev_name, const struct path *path,
1005                       const char *type, unsigned long flags, void *data)
1006{
1007	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1008}
1009
 
 
 
 
 
 
 
 
 
1010int security_sb_umount(struct vfsmount *mnt, int flags)
1011{
1012	return call_int_hook(sb_umount, 0, mnt, flags);
1013}
1014
1015int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 
 
 
 
 
 
 
 
 
 
1016{
1017	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1018}
1019
 
 
 
 
 
 
 
 
 
 
 
1020int security_sb_set_mnt_opts(struct super_block *sb,
1021				void *mnt_opts,
1022				unsigned long kern_flags,
1023				unsigned long *set_kern_flags)
1024{
1025	return call_int_hook(sb_set_mnt_opts,
1026				mnt_opts ? -EOPNOTSUPP : 0, sb,
1027				mnt_opts, kern_flags, set_kern_flags);
 
 
 
 
 
 
 
 
1028}
1029EXPORT_SYMBOL(security_sb_set_mnt_opts);
1030
 
 
 
 
 
 
 
 
 
 
 
1031int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1032				struct super_block *newsb,
1033				unsigned long kern_flags,
1034				unsigned long *set_kern_flags)
1035{
1036	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1037				kern_flags, set_kern_flags);
1038}
1039EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1040
1041int security_move_mount(const struct path *from_path, const struct path *to_path)
 
 
 
 
 
 
 
 
 
 
1042{
1043	return call_int_hook(move_mount, 0, from_path, to_path);
1044}
1045
 
 
 
 
 
 
 
 
 
 
 
1046int security_path_notify(const struct path *path, u64 mask,
1047				unsigned int obj_type)
1048{
1049	return call_int_hook(path_notify, 0, path, mask, obj_type);
1050}
1051
 
 
 
 
 
 
 
 
 
 
1052int security_inode_alloc(struct inode *inode)
1053{
1054	int rc = lsm_inode_alloc(inode);
1055
1056	if (unlikely(rc))
1057		return rc;
1058	rc = call_int_hook(inode_alloc_security, 0, inode);
1059	if (unlikely(rc))
1060		security_inode_free(inode);
1061	return rc;
1062}
1063
1064static void inode_free_by_rcu(struct rcu_head *head)
1065{
1066	/*
1067	 * The rcu head is at the start of the inode blob
1068	 */
1069	kmem_cache_free(lsm_inode_cache, head);
1070}
1071
 
 
 
 
 
 
1072void security_inode_free(struct inode *inode)
1073{
1074	integrity_inode_free(inode);
1075	call_void_hook(inode_free_security, inode);
1076	/*
1077	 * The inode may still be referenced in a path walk and
1078	 * a call to security_inode_permission() can be made
1079	 * after inode_free_security() is called. Ideally, the VFS
1080	 * wouldn't do this, but fixing that is a much harder
1081	 * job. For now, simply free the i_security via RCU, and
1082	 * leave the current inode->i_security pointer intact.
1083	 * The inode will be freed after the RCU grace period too.
1084	 */
1085	if (inode->i_security)
1086		call_rcu((struct rcu_head *)inode->i_security,
1087				inode_free_by_rcu);
1088}
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090int security_dentry_init_security(struct dentry *dentry, int mode,
1091				  const struct qstr *name,
1092				  const char **xattr_name, void **ctx,
1093				  u32 *ctxlen)
1094{
1095	struct security_hook_list *hp;
1096	int rc;
1097
1098	/*
1099	 * Only one module will provide a security context.
1100	 */
1101	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1102		rc = hp->hook.dentry_init_security(dentry, mode, name,
1103						   xattr_name, ctx, ctxlen);
1104		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1105			return rc;
1106	}
1107	return LSM_RET_DEFAULT(dentry_init_security);
1108}
1109EXPORT_SYMBOL(security_dentry_init_security);
1110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111int security_dentry_create_files_as(struct dentry *dentry, int mode,
1112				    struct qstr *name,
1113				    const struct cred *old, struct cred *new)
1114{
1115	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1116				name, old, new);
1117}
1118EXPORT_SYMBOL(security_dentry_create_files_as);
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120int security_inode_init_security(struct inode *inode, struct inode *dir,
1121				 const struct qstr *qstr,
1122				 const initxattrs initxattrs, void *fs_data)
1123{
1124	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1125	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1126	int ret;
1127
1128	if (unlikely(IS_PRIVATE(inode)))
1129		return 0;
1130
1131	if (!initxattrs)
1132		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1133				     dir, qstr, NULL, NULL, NULL);
1134	memset(new_xattrs, 0, sizeof(new_xattrs));
1135	lsm_xattr = new_xattrs;
1136	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1137						&lsm_xattr->name,
1138						&lsm_xattr->value,
1139						&lsm_xattr->value_len);
1140	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141		goto out;
1142
1143	evm_xattr = lsm_xattr + 1;
1144	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1145	if (ret)
1146		goto out;
1147	ret = initxattrs(inode, new_xattrs, fs_data);
1148out:
1149	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1150		kfree(xattr->value);
 
1151	return (ret == -EOPNOTSUPP) ? 0 : ret;
1152}
1153EXPORT_SYMBOL(security_inode_init_security);
1154
 
 
 
 
 
 
 
 
 
 
 
 
1155int security_inode_init_security_anon(struct inode *inode,
1156				      const struct qstr *name,
1157				      const struct inode *context_inode)
1158{
1159	return call_int_hook(inode_init_security_anon, 0, inode, name,
1160			     context_inode);
1161}
1162
1163int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1164				     const struct qstr *qstr, const char **name,
1165				     void **value, size_t *len)
1166{
1167	if (unlikely(IS_PRIVATE(inode)))
1168		return -EOPNOTSUPP;
1169	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1170			     qstr, name, value, len);
1171}
1172EXPORT_SYMBOL(security_old_inode_init_security);
1173
1174#ifdef CONFIG_SECURITY_PATH
1175int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1176			unsigned int dev)
 
 
 
 
 
 
 
 
 
 
 
 
1177{
1178	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179		return 0;
1180	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1181}
1182EXPORT_SYMBOL(security_path_mknod);
1183
1184int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185{
1186	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1187		return 0;
1188	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1189}
1190EXPORT_SYMBOL(security_path_mkdir);
1191
 
 
 
 
 
 
 
 
 
1192int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1193{
1194	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1195		return 0;
1196	return call_int_hook(path_rmdir, 0, dir, dentry);
1197}
1198
 
 
 
 
 
 
 
 
 
1199int security_path_unlink(const struct path *dir, struct dentry *dentry)
1200{
1201	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1202		return 0;
1203	return call_int_hook(path_unlink, 0, dir, dentry);
1204}
1205EXPORT_SYMBOL(security_path_unlink);
1206
 
 
 
 
 
 
 
 
 
 
1207int security_path_symlink(const struct path *dir, struct dentry *dentry,
1208			  const char *old_name)
1209{
1210	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1211		return 0;
1212	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1213}
1214
 
 
 
 
 
 
 
 
 
 
1215int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1216		       struct dentry *new_dentry)
1217{
1218	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1219		return 0;
1220	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1221}
1222
 
 
 
 
 
 
 
 
 
 
 
 
1223int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1224			 const struct path *new_dir, struct dentry *new_dentry,
1225			 unsigned int flags)
1226{
1227	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1228		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 
1229		return 0;
1230
1231	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1232				new_dentry, flags);
1233}
1234EXPORT_SYMBOL(security_path_rename);
1235
 
 
 
 
 
 
 
 
 
 
1236int security_path_truncate(const struct path *path)
1237{
1238	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239		return 0;
1240	return call_int_hook(path_truncate, 0, path);
1241}
1242
 
 
 
 
 
 
 
 
 
 
 
1243int security_path_chmod(const struct path *path, umode_t mode)
1244{
1245	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1246		return 0;
1247	return call_int_hook(path_chmod, 0, path, mode);
1248}
1249
 
 
 
 
 
 
 
 
 
 
1250int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1251{
1252	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253		return 0;
1254	return call_int_hook(path_chown, 0, path, uid, gid);
1255}
1256
 
 
 
 
 
 
 
 
1257int security_path_chroot(const struct path *path)
1258{
1259	return call_int_hook(path_chroot, 0, path);
1260}
1261#endif
1262
1263int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
1264{
1265	if (unlikely(IS_PRIVATE(dir)))
1266		return 0;
1267	return call_int_hook(inode_create, 0, dir, dentry, mode);
1268}
1269EXPORT_SYMBOL_GPL(security_inode_create);
1270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1272			 struct dentry *new_dentry)
1273{
1274	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1275		return 0;
1276	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1277}
1278
 
 
 
 
 
 
 
 
 
1279int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1280{
1281	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282		return 0;
1283	return call_int_hook(inode_unlink, 0, dir, dentry);
1284}
1285
 
 
 
 
 
 
 
 
 
 
1286int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1287			    const char *old_name)
1288{
1289	if (unlikely(IS_PRIVATE(dir)))
1290		return 0;
1291	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1292}
1293
 
 
 
 
 
 
 
 
 
 
 
1294int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1295{
1296	if (unlikely(IS_PRIVATE(dir)))
1297		return 0;
1298	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1299}
1300EXPORT_SYMBOL_GPL(security_inode_mkdir);
1301
 
 
 
 
 
 
 
 
 
1302int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1303{
1304	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1305		return 0;
1306	return call_int_hook(inode_rmdir, 0, dir, dentry);
1307}
1308
1309int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310{
1311	if (unlikely(IS_PRIVATE(dir)))
1312		return 0;
1313	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1314}
1315
 
 
 
 
 
 
 
 
 
 
 
 
1316int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1317			   struct inode *new_dir, struct dentry *new_dentry,
1318			   unsigned int flags)
1319{
1320        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1321            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 
1322		return 0;
1323
1324	if (flags & RENAME_EXCHANGE) {
1325		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1326						     old_dir, old_dentry);
1327		if (err)
1328			return err;
1329	}
1330
1331	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1332					   new_dir, new_dentry);
1333}
1334
 
 
 
 
 
 
 
 
1335int security_inode_readlink(struct dentry *dentry)
1336{
1337	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1338		return 0;
1339	return call_int_hook(inode_readlink, 0, dentry);
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
1342int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1343			       bool rcu)
1344{
1345	if (unlikely(IS_PRIVATE(inode)))
1346		return 0;
1347	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1348}
1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350int security_inode_permission(struct inode *inode, int mask)
1351{
1352	if (unlikely(IS_PRIVATE(inode)))
1353		return 0;
1354	return call_int_hook(inode_permission, 0, inode, mask);
1355}
1356
1357int security_inode_setattr(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
 
 
1358			   struct dentry *dentry, struct iattr *attr)
1359{
1360	int ret;
1361
1362	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1363		return 0;
1364	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1365	if (ret)
1366		return ret;
1367	return evm_inode_setattr(mnt_userns, dentry, attr);
1368}
1369EXPORT_SYMBOL_GPL(security_inode_setattr);
1370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371int security_inode_getattr(const struct path *path)
1372{
1373	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1374		return 0;
1375	return call_int_hook(inode_getattr, 0, path);
1376}
1377
1378int security_inode_setxattr(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
 
 
1379			    struct dentry *dentry, const char *name,
1380			    const void *value, size_t size, int flags)
1381{
1382	int ret;
1383
1384	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385		return 0;
1386	/*
1387	 * SELinux and Smack integrate the cap call,
1388	 * so assume that all LSMs supplying this call do so.
1389	 */
1390	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1391			    size, flags);
1392
1393	if (ret == 1)
1394		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1395	if (ret)
1396		return ret;
1397	ret = ima_inode_setxattr(dentry, name, value, size);
1398	if (ret)
1399		return ret;
1400	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1401}
1402
1403int security_inode_set_acl(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
 
1404			   struct dentry *dentry, const char *acl_name,
1405			   struct posix_acl *kacl)
1406{
1407	int ret;
 
 
 
1408
 
 
 
 
 
 
 
 
 
 
 
 
1409	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410		return 0;
1411	ret = call_int_hook(inode_set_acl, 0, mnt_userns, dentry, acl_name,
1412			    kacl);
1413	if (ret)
1414		return ret;
1415	ret = ima_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1416	if (ret)
1417		return ret;
1418	return evm_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1419}
1420
1421int security_inode_get_acl(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
1422			   struct dentry *dentry, const char *acl_name)
1423{
1424	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425		return 0;
1426	return call_int_hook(inode_get_acl, 0, mnt_userns, dentry, acl_name);
1427}
1428
1429int security_inode_remove_acl(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
1430			      struct dentry *dentry, const char *acl_name)
1431{
1432	int ret;
 
 
 
1433
 
 
 
 
 
 
 
 
 
 
 
 
1434	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435		return 0;
1436	ret = call_int_hook(inode_remove_acl, 0, mnt_userns, dentry, acl_name);
1437	if (ret)
1438		return ret;
1439	ret = ima_inode_remove_acl(mnt_userns, dentry, acl_name);
1440	if (ret)
1441		return ret;
1442	return evm_inode_remove_acl(mnt_userns, dentry, acl_name);
1443}
1444
 
 
 
 
 
 
 
 
 
 
1445void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1446				  const void *value, size_t size, int flags)
1447{
1448	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1449		return;
1450	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1451	evm_inode_post_setxattr(dentry, name, value, size);
1452}
1453
 
 
 
 
 
 
 
 
 
 
1454int security_inode_getxattr(struct dentry *dentry, const char *name)
1455{
1456	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1457		return 0;
1458	return call_int_hook(inode_getxattr, 0, dentry, name);
1459}
1460
 
 
 
 
 
 
 
 
 
1461int security_inode_listxattr(struct dentry *dentry)
1462{
1463	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1464		return 0;
1465	return call_int_hook(inode_listxattr, 0, dentry);
1466}
1467
1468int security_inode_removexattr(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
1469			       struct dentry *dentry, const char *name)
1470{
1471	int ret;
1472
1473	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1474		return 0;
1475	/*
1476	 * SELinux and Smack integrate the cap call,
1477	 * so assume that all LSMs supplying this call do so.
1478	 */
1479	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1480	if (ret == 1)
1481		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1482	if (ret)
1483		return ret;
1484	ret = ima_inode_removexattr(dentry, name);
1485	if (ret)
1486		return ret;
1487	return evm_inode_removexattr(mnt_userns, dentry, name);
 
 
 
 
 
 
 
 
 
1488}
1489
 
 
 
 
 
 
 
 
 
 
 
1490int security_inode_need_killpriv(struct dentry *dentry)
1491{
1492	return call_int_hook(inode_need_killpriv, 0, dentry);
1493}
1494
1495int security_inode_killpriv(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
1496			    struct dentry *dentry)
1497{
1498	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1499}
1500
1501int security_inode_getsecurity(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502			       struct inode *inode, const char *name,
1503			       void **buffer, bool alloc)
1504{
1505	struct security_hook_list *hp;
1506	int rc;
1507
1508	if (unlikely(IS_PRIVATE(inode)))
1509		return LSM_RET_DEFAULT(inode_getsecurity);
1510	/*
1511	 * Only one module will provide an attribute with a given name.
1512	 */
1513	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1514		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1515		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1516			return rc;
1517	}
1518	return LSM_RET_DEFAULT(inode_getsecurity);
1519}
1520
1521int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522{
1523	struct security_hook_list *hp;
1524	int rc;
1525
1526	if (unlikely(IS_PRIVATE(inode)))
1527		return LSM_RET_DEFAULT(inode_setsecurity);
1528	/*
1529	 * Only one module will provide an attribute with a given name.
1530	 */
1531	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1532		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1533								flags);
1534		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1535			return rc;
1536	}
1537	return LSM_RET_DEFAULT(inode_setsecurity);
1538}
1539
1540int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541{
1542	if (unlikely(IS_PRIVATE(inode)))
1543		return 0;
1544	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1545}
1546EXPORT_SYMBOL(security_inode_listsecurity);
1547
 
 
 
 
 
 
 
 
1548void security_inode_getsecid(struct inode *inode, u32 *secid)
1549{
1550	call_void_hook(inode_getsecid, inode, secid);
1551}
1552
 
 
 
 
 
 
 
 
 
 
 
 
1553int security_inode_copy_up(struct dentry *src, struct cred **new)
1554{
1555	return call_int_hook(inode_copy_up, 0, src, new);
1556}
1557EXPORT_SYMBOL(security_inode_copy_up);
1558
 
 
 
 
 
 
 
 
 
 
 
 
1559int security_inode_copy_up_xattr(const char *name)
1560{
1561	struct security_hook_list *hp;
1562	int rc;
1563
1564	/*
1565	 * The implementation can return 0 (accept the xattr), 1 (discard the
1566	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1567	 * any other error code incase of an error.
1568	 */
1569	hlist_for_each_entry(hp,
1570		&security_hook_heads.inode_copy_up_xattr, list) {
1571		rc = hp->hook.inode_copy_up_xattr(name);
1572		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1573			return rc;
1574	}
1575
1576	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1577}
1578EXPORT_SYMBOL(security_inode_copy_up_xattr);
1579
 
 
 
 
 
 
 
 
 
 
1580int security_kernfs_init_security(struct kernfs_node *kn_dir,
1581				  struct kernfs_node *kn)
1582{
1583	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1584}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586int security_file_permission(struct file *file, int mask)
1587{
1588	int ret;
1589
1590	ret = call_int_hook(file_permission, 0, file, mask);
1591	if (ret)
1592		return ret;
1593
1594	return fsnotify_perm(file, mask);
1595}
1596
 
 
 
 
 
 
 
 
 
1597int security_file_alloc(struct file *file)
1598{
1599	int rc = lsm_file_alloc(file);
1600
1601	if (rc)
1602		return rc;
1603	rc = call_int_hook(file_alloc_security, 0, file);
1604	if (unlikely(rc))
1605		security_file_free(file);
1606	return rc;
1607}
1608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609void security_file_free(struct file *file)
1610{
1611	void *blob;
1612
1613	call_void_hook(file_free_security, file);
1614
1615	blob = file->f_security;
1616	if (blob) {
1617		file->f_security = NULL;
1618		kmem_cache_free(lsm_file_cache, blob);
1619	}
1620}
1621
 
 
 
 
 
 
 
 
 
 
 
 
 
1622int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1623{
1624	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1625}
1626EXPORT_SYMBOL_GPL(security_file_ioctl);
1627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1629{
1630	/*
1631	 * Does we have PROT_READ and does the application expect
1632	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1633	 */
1634	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1635		return prot;
1636	if (!(current->personality & READ_IMPLIES_EXEC))
1637		return prot;
1638	/*
1639	 * if that's an anonymous mapping, let it.
1640	 */
1641	if (!file)
1642		return prot | PROT_EXEC;
1643	/*
1644	 * ditto if it's not on noexec mount, except that on !MMU we need
1645	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1646	 */
1647	if (!path_noexec(&file->f_path)) {
1648#ifndef CONFIG_MMU
1649		if (file->f_op->mmap_capabilities) {
1650			unsigned caps = file->f_op->mmap_capabilities(file);
1651			if (!(caps & NOMMU_MAP_EXEC))
1652				return prot;
1653		}
1654#endif
1655		return prot | PROT_EXEC;
1656	}
1657	/* anything on noexec mount won't get PROT_EXEC */
1658	return prot;
1659}
1660
 
 
 
 
 
 
 
 
 
 
 
1661int security_mmap_file(struct file *file, unsigned long prot,
1662			unsigned long flags)
1663{
1664	int ret;
1665	ret = call_int_hook(mmap_file, 0, file, prot,
1666					mmap_prot(file, prot), flags);
1667	if (ret)
1668		return ret;
1669	return ima_file_mmap(file, prot);
1670}
1671
 
 
 
 
 
 
 
 
1672int security_mmap_addr(unsigned long addr)
1673{
1674	return call_int_hook(mmap_addr, 0, addr);
1675}
1676
 
 
 
 
 
 
 
 
 
 
1677int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1678			    unsigned long prot)
1679{
1680	int ret;
1681
1682	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1683	if (ret)
1684		return ret;
1685	return ima_file_mprotect(vma, prot);
1686}
1687
 
 
 
 
 
 
 
 
 
 
1688int security_file_lock(struct file *file, unsigned int cmd)
1689{
1690	return call_int_hook(file_lock, 0, file, cmd);
1691}
1692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1694{
1695	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1696}
1697
 
 
 
 
 
 
 
 
 
1698void security_file_set_fowner(struct file *file)
1699{
1700	call_void_hook(file_set_fowner, file);
1701}
1702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703int security_file_send_sigiotask(struct task_struct *tsk,
1704				  struct fown_struct *fown, int sig)
1705{
1706	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1707}
1708
 
 
 
 
 
 
 
 
 
1709int security_file_receive(struct file *file)
1710{
1711	return call_int_hook(file_receive, 0, file);
1712}
1713
 
 
 
 
 
 
 
 
 
1714int security_file_open(struct file *file)
1715{
1716	int ret;
1717
1718	ret = call_int_hook(file_open, 0, file);
1719	if (ret)
1720		return ret;
1721
1722	return fsnotify_perm(file, MAY_OPEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
 
1724
 
 
 
 
 
 
 
 
 
 
1725int security_file_truncate(struct file *file)
1726{
1727	return call_int_hook(file_truncate, 0, file);
1728}
1729
 
 
 
 
 
 
 
 
 
1730int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1731{
1732	int rc = lsm_task_alloc(task);
1733
1734	if (rc)
1735		return rc;
1736	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1737	if (unlikely(rc))
1738		security_task_free(task);
1739	return rc;
1740}
1741
 
 
 
 
 
 
 
1742void security_task_free(struct task_struct *task)
1743{
1744	call_void_hook(task_free, task);
1745
1746	kfree(task->security);
1747	task->security = NULL;
1748}
1749
 
 
 
 
 
 
 
 
 
 
1750int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1751{
1752	int rc = lsm_cred_alloc(cred, gfp);
1753
1754	if (rc)
1755		return rc;
1756
1757	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1758	if (unlikely(rc))
1759		security_cred_free(cred);
1760	return rc;
1761}
1762
 
 
 
 
 
 
1763void security_cred_free(struct cred *cred)
1764{
1765	/*
1766	 * There is a failure case in prepare_creds() that
1767	 * may result in a call here with ->security being NULL.
1768	 */
1769	if (unlikely(cred->security == NULL))
1770		return;
1771
1772	call_void_hook(cred_free, cred);
1773
1774	kfree(cred->security);
1775	cred->security = NULL;
1776}
1777
 
 
 
 
 
 
 
 
 
 
1778int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1779{
1780	int rc = lsm_cred_alloc(new, gfp);
1781
1782	if (rc)
1783		return rc;
1784
1785	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1786	if (unlikely(rc))
1787		security_cred_free(new);
1788	return rc;
1789}
1790
 
 
 
 
 
 
 
1791void security_transfer_creds(struct cred *new, const struct cred *old)
1792{
1793	call_void_hook(cred_transfer, new, old);
1794}
1795
 
 
 
 
 
 
 
 
1796void security_cred_getsecid(const struct cred *c, u32 *secid)
1797{
1798	*secid = 0;
1799	call_void_hook(cred_getsecid, c, secid);
1800}
1801EXPORT_SYMBOL(security_cred_getsecid);
1802
 
 
 
 
 
 
 
 
 
 
1803int security_kernel_act_as(struct cred *new, u32 secid)
1804{
1805	return call_int_hook(kernel_act_as, 0, new, secid);
1806}
1807
 
 
 
 
 
 
 
 
 
 
 
1808int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1809{
1810	return call_int_hook(kernel_create_files_as, 0, new, inode);
1811}
1812
 
 
 
 
 
 
 
 
 
1813int security_kernel_module_request(char *kmod_name)
1814{
1815	int ret;
1816
1817	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1818	if (ret)
1819		return ret;
1820	return integrity_kernel_module_request(kmod_name);
1821}
1822
 
 
 
 
 
 
 
 
 
 
1823int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1824			      bool contents)
1825{
1826	int ret;
1827
1828	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1829	if (ret)
1830		return ret;
1831	return ima_read_file(file, id, contents);
1832}
1833EXPORT_SYMBOL_GPL(security_kernel_read_file);
1834
 
 
 
 
 
 
 
 
 
 
 
 
 
1835int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1836				   enum kernel_read_file_id id)
1837{
1838	int ret;
1839
1840	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1841	if (ret)
1842		return ret;
1843	return ima_post_read_file(file, buf, size, id);
1844}
1845EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1846
 
 
 
 
 
 
 
 
 
1847int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1848{
1849	int ret;
1850
1851	ret = call_int_hook(kernel_load_data, 0, id, contents);
1852	if (ret)
1853		return ret;
1854	return ima_load_data(id, contents);
1855}
1856EXPORT_SYMBOL_GPL(security_kernel_load_data);
1857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858int security_kernel_post_load_data(char *buf, loff_t size,
1859				   enum kernel_load_data_id id,
1860				   char *description)
1861{
1862	int ret;
1863
1864	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1865			    description);
1866	if (ret)
1867		return ret;
1868	return ima_post_load_data(buf, size, id, description);
1869}
1870EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872int security_task_fix_setuid(struct cred *new, const struct cred *old,
1873			     int flags)
1874{
1875	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1876}
1877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878int security_task_fix_setgid(struct cred *new, const struct cred *old,
1879				 int flags)
1880{
1881	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1882}
1883
 
 
 
 
 
 
 
 
 
 
 
 
1884int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1885{
1886	return call_int_hook(task_fix_setgroups, 0, new, old);
1887}
1888
 
 
 
 
 
 
 
 
 
 
1889int security_task_setpgid(struct task_struct *p, pid_t pgid)
1890{
1891	return call_int_hook(task_setpgid, 0, p, pgid);
1892}
1893
 
 
 
 
 
 
 
 
 
1894int security_task_getpgid(struct task_struct *p)
1895{
1896	return call_int_hook(task_getpgid, 0, p);
1897}
1898
 
 
 
 
 
 
 
 
1899int security_task_getsid(struct task_struct *p)
1900{
1901	return call_int_hook(task_getsid, 0, p);
1902}
1903
 
 
 
 
 
 
 
1904void security_current_getsecid_subj(u32 *secid)
1905{
1906	*secid = 0;
1907	call_void_hook(current_getsecid_subj, secid);
1908}
1909EXPORT_SYMBOL(security_current_getsecid_subj);
1910
 
 
 
 
 
 
 
 
1911void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1912{
1913	*secid = 0;
1914	call_void_hook(task_getsecid_obj, p, secid);
1915}
1916EXPORT_SYMBOL(security_task_getsecid_obj);
1917
 
 
 
 
 
 
 
 
 
1918int security_task_setnice(struct task_struct *p, int nice)
1919{
1920	return call_int_hook(task_setnice, 0, p, nice);
1921}
1922
 
 
 
 
 
 
 
 
 
1923int security_task_setioprio(struct task_struct *p, int ioprio)
1924{
1925	return call_int_hook(task_setioprio, 0, p, ioprio);
1926}
1927
 
 
 
 
 
 
 
 
1928int security_task_getioprio(struct task_struct *p)
1929{
1930	return call_int_hook(task_getioprio, 0, p);
1931}
1932
 
 
 
 
 
 
 
 
 
 
 
1933int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1934			  unsigned int flags)
1935{
1936	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1937}
1938
 
 
 
 
 
 
 
 
 
 
 
 
1939int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1940		struct rlimit *new_rlim)
1941{
1942	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1943}
1944
 
 
 
 
 
 
 
 
 
1945int security_task_setscheduler(struct task_struct *p)
1946{
1947	return call_int_hook(task_setscheduler, 0, p);
1948}
1949
 
 
 
 
 
 
 
 
1950int security_task_getscheduler(struct task_struct *p)
1951{
1952	return call_int_hook(task_getscheduler, 0, p);
1953}
1954
 
 
 
 
 
 
 
 
1955int security_task_movememory(struct task_struct *p)
1956{
1957	return call_int_hook(task_movememory, 0, p);
1958}
1959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1961			int sig, const struct cred *cred)
1962{
1963	return call_int_hook(task_kill, 0, p, info, sig, cred);
1964}
1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1967			 unsigned long arg4, unsigned long arg5)
1968{
1969	int thisrc;
1970	int rc = LSM_RET_DEFAULT(task_prctl);
1971	struct security_hook_list *hp;
1972
1973	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1974		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1975		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1976			rc = thisrc;
1977			if (thisrc != 0)
1978				break;
1979		}
1980	}
1981	return rc;
1982}
1983
 
 
 
 
 
 
 
 
1984void security_task_to_inode(struct task_struct *p, struct inode *inode)
1985{
1986	call_void_hook(task_to_inode, p, inode);
1987}
1988
 
 
 
 
 
 
 
 
1989int security_create_user_ns(const struct cred *cred)
1990{
1991	return call_int_hook(userns_create, 0, cred);
1992}
1993
 
 
 
 
 
 
 
 
 
1994int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1995{
1996	return call_int_hook(ipc_permission, 0, ipcp, flag);
1997}
1998
 
 
 
 
 
 
 
 
1999void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2000{
2001	*secid = 0;
2002	call_void_hook(ipc_getsecid, ipcp, secid);
2003}
2004
 
 
 
 
 
 
 
 
 
2005int security_msg_msg_alloc(struct msg_msg *msg)
2006{
2007	int rc = lsm_msg_msg_alloc(msg);
2008
2009	if (unlikely(rc))
2010		return rc;
2011	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
2012	if (unlikely(rc))
2013		security_msg_msg_free(msg);
2014	return rc;
2015}
2016
 
 
 
 
 
 
2017void security_msg_msg_free(struct msg_msg *msg)
2018{
2019	call_void_hook(msg_msg_free_security, msg);
2020	kfree(msg->security);
2021	msg->security = NULL;
2022}
2023
 
 
 
 
 
 
 
 
 
2024int security_msg_queue_alloc(struct kern_ipc_perm *msq)
2025{
2026	int rc = lsm_ipc_alloc(msq);
2027
2028	if (unlikely(rc))
2029		return rc;
2030	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
2031	if (unlikely(rc))
2032		security_msg_queue_free(msq);
2033	return rc;
2034}
2035
 
 
 
 
 
 
2036void security_msg_queue_free(struct kern_ipc_perm *msq)
2037{
2038	call_void_hook(msg_queue_free_security, msq);
2039	kfree(msq->security);
2040	msq->security = NULL;
2041}
2042
 
 
 
 
 
 
 
 
 
 
 
2043int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2044{
2045	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2046}
2047
 
 
 
 
 
 
 
 
 
 
2048int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2049{
2050	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2051}
2052
 
 
 
 
 
 
 
 
 
 
 
2053int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2054			       struct msg_msg *msg, int msqflg)
2055{
2056	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2060			       struct task_struct *target, long type, int mode)
2061{
2062	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2063}
2064
 
 
 
 
 
 
 
 
 
2065int security_shm_alloc(struct kern_ipc_perm *shp)
2066{
2067	int rc = lsm_ipc_alloc(shp);
2068
2069	if (unlikely(rc))
2070		return rc;
2071	rc = call_int_hook(shm_alloc_security, 0, shp);
2072	if (unlikely(rc))
2073		security_shm_free(shp);
2074	return rc;
2075}
2076
 
 
 
 
 
 
2077void security_shm_free(struct kern_ipc_perm *shp)
2078{
2079	call_void_hook(shm_free_security, shp);
2080	kfree(shp->security);
2081	shp->security = NULL;
2082}
2083
 
 
 
 
 
 
 
 
 
 
 
 
2084int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2085{
2086	return call_int_hook(shm_associate, 0, shp, shmflg);
2087}
2088
 
 
 
 
 
 
 
 
 
 
2089int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2090{
2091	return call_int_hook(shm_shmctl, 0, shp, cmd);
2092}
2093
2094int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
 
 
 
 
 
 
 
 
 
 
 
 
 
2095{
2096	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2097}
2098
 
 
 
 
 
 
 
 
 
2099int security_sem_alloc(struct kern_ipc_perm *sma)
2100{
2101	int rc = lsm_ipc_alloc(sma);
2102
2103	if (unlikely(rc))
2104		return rc;
2105	rc = call_int_hook(sem_alloc_security, 0, sma);
2106	if (unlikely(rc))
2107		security_sem_free(sma);
2108	return rc;
2109}
2110
 
 
 
 
 
 
2111void security_sem_free(struct kern_ipc_perm *sma)
2112{
2113	call_void_hook(sem_free_security, sma);
2114	kfree(sma->security);
2115	sma->security = NULL;
2116}
2117
 
 
 
 
 
 
 
 
 
 
 
2118int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2119{
2120	return call_int_hook(sem_associate, 0, sma, semflg);
2121}
2122
 
 
 
 
 
 
 
 
 
 
2123int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2124{
2125	return call_int_hook(sem_semctl, 0, sma, cmd);
2126}
2127
 
 
 
 
 
 
 
 
 
 
 
 
2128int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2129			unsigned nsops, int alter)
2130{
2131	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2132}
2133
 
 
 
 
 
 
 
2134void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2135{
2136	if (unlikely(inode && IS_PRIVATE(inode)))
2137		return;
2138	call_void_hook(d_instantiate, dentry, inode);
2139}
2140EXPORT_SYMBOL(security_d_instantiate);
2141
2142int security_getprocattr(struct task_struct *p, const char *lsm,
2143			 const char *name, char **value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2144{
2145	struct security_hook_list *hp;
2146
2147	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2148		if (lsm != NULL && strcmp(lsm, hp->lsm))
2149			continue;
2150		return hp->hook.getprocattr(p, name, value);
2151	}
2152	return LSM_RET_DEFAULT(getprocattr);
2153}
2154
2155int security_setprocattr(const char *lsm, const char *name, void *value,
2156			 size_t size)
 
 
 
 
 
 
 
 
 
 
 
2157{
2158	struct security_hook_list *hp;
2159
2160	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2161		if (lsm != NULL && strcmp(lsm, hp->lsm))
2162			continue;
2163		return hp->hook.setprocattr(name, value, size);
2164	}
2165	return LSM_RET_DEFAULT(setprocattr);
2166}
2167
 
 
 
 
 
 
 
 
 
 
 
 
 
2168int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2169{
2170	return call_int_hook(netlink_send, 0, sk, skb);
2171}
2172
 
 
 
 
 
 
 
 
2173int security_ismaclabel(const char *name)
2174{
2175	return call_int_hook(ismaclabel, 0, name);
2176}
2177EXPORT_SYMBOL(security_ismaclabel);
2178
 
 
 
 
 
 
 
 
 
 
 
 
 
2179int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2180{
2181	struct security_hook_list *hp;
2182	int rc;
2183
2184	/*
2185	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2186	 * LSM hook is not "stackable").
2187	 */
2188	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2189		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2190		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2191			return rc;
2192	}
2193
2194	return LSM_RET_DEFAULT(secid_to_secctx);
2195}
2196EXPORT_SYMBOL(security_secid_to_secctx);
2197
 
 
 
 
 
 
 
 
 
 
2198int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2199{
2200	*secid = 0;
2201	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2202}
2203EXPORT_SYMBOL(security_secctx_to_secid);
2204
 
 
 
 
 
 
 
2205void security_release_secctx(char *secdata, u32 seclen)
2206{
2207	call_void_hook(release_secctx, secdata, seclen);
2208}
2209EXPORT_SYMBOL(security_release_secctx);
2210
 
 
 
 
 
 
 
2211void security_inode_invalidate_secctx(struct inode *inode)
2212{
2213	call_void_hook(inode_invalidate_secctx, inode);
2214}
2215EXPORT_SYMBOL(security_inode_invalidate_secctx);
2216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2217int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2218{
2219	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2220}
2221EXPORT_SYMBOL(security_inode_notifysecctx);
2222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2224{
2225	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2226}
2227EXPORT_SYMBOL(security_inode_setsecctx);
2228
 
 
 
 
 
 
 
 
 
 
 
2229int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2230{
2231	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2232}
2233EXPORT_SYMBOL(security_inode_getsecctx);
2234
2235#ifdef CONFIG_WATCH_QUEUE
 
 
 
 
 
 
 
 
 
 
2236int security_post_notification(const struct cred *w_cred,
2237			       const struct cred *cred,
2238			       struct watch_notification *n)
2239{
2240	return call_int_hook(post_notification, 0, w_cred, cred, n);
2241}
2242#endif /* CONFIG_WATCH_QUEUE */
2243
2244#ifdef CONFIG_KEY_NOTIFICATIONS
 
 
 
 
 
 
 
 
 
2245int security_watch_key(struct key *key)
2246{
2247	return call_int_hook(watch_key, 0, key);
2248}
2249#endif
2250
2251#ifdef CONFIG_SECURITY_NETWORK
2252
2253int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254{
2255	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2256}
2257EXPORT_SYMBOL(security_unix_stream_connect);
2258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259int security_unix_may_send(struct socket *sock,  struct socket *other)
2260{
2261	return call_int_hook(unix_may_send, 0, sock, other);
2262}
2263EXPORT_SYMBOL(security_unix_may_send);
2264
 
 
 
 
 
 
 
 
 
 
 
2265int security_socket_create(int family, int type, int protocol, int kern)
2266{
2267	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2268}
2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2270int security_socket_post_create(struct socket *sock, int family,
2271				int type, int protocol, int kern)
2272{
2273	return call_int_hook(socket_post_create, 0, sock, family, type,
2274						protocol, kern);
2275}
2276
 
 
 
 
 
 
 
 
 
 
2277int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2278{
2279	return call_int_hook(socket_socketpair, 0, socka, sockb);
2280}
2281EXPORT_SYMBOL(security_socket_socketpair);
2282
2283int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
2284{
2285	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2286}
2287
2288int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
 
 
 
 
 
 
 
 
2289{
2290	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2291}
2292
 
 
 
 
 
 
 
 
 
2293int security_socket_listen(struct socket *sock, int backlog)
2294{
2295	return call_int_hook(socket_listen, 0, sock, backlog);
2296}
2297
 
 
 
 
 
 
 
 
 
 
 
2298int security_socket_accept(struct socket *sock, struct socket *newsock)
2299{
2300	return call_int_hook(socket_accept, 0, sock, newsock);
2301}
2302
 
 
 
 
 
 
 
 
 
 
2303int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2304{
2305	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2306}
2307
 
 
 
 
 
 
 
 
 
 
 
2308int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2309			    int size, int flags)
2310{
2311	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2312}
2313
 
 
 
 
 
 
 
 
 
2314int security_socket_getsockname(struct socket *sock)
2315{
2316	return call_int_hook(socket_getsockname, 0, sock);
2317}
2318
 
 
 
 
 
 
 
 
2319int security_socket_getpeername(struct socket *sock)
2320{
2321	return call_int_hook(socket_getpeername, 0, sock);
2322}
2323
 
 
 
 
 
 
 
 
 
 
 
2324int security_socket_getsockopt(struct socket *sock, int level, int optname)
2325{
2326	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2327}
2328
 
 
 
 
 
 
 
 
 
 
2329int security_socket_setsockopt(struct socket *sock, int level, int optname)
2330{
2331	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2332}
2333
 
 
 
 
 
 
 
 
 
 
2334int security_socket_shutdown(struct socket *sock, int how)
2335{
2336	return call_int_hook(socket_shutdown, 0, sock, how);
2337}
2338
 
 
 
 
 
 
 
 
 
 
 
 
2339int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2340{
2341	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2342}
2343EXPORT_SYMBOL(security_sock_rcv_skb);
2344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2346				      sockptr_t optlen, unsigned int len)
2347{
2348	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2349			     optval, optlen, len);
2350}
2351
2352int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353{
2354	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2355			     skb, secid);
2356}
2357EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2358
 
 
 
 
 
 
 
 
 
 
 
2359int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2360{
2361	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2362}
2363
 
 
 
 
 
 
2364void security_sk_free(struct sock *sk)
2365{
2366	call_void_hook(sk_free_security, sk);
2367}
2368
 
 
 
 
 
 
 
2369void security_sk_clone(const struct sock *sk, struct sock *newsk)
2370{
2371	call_void_hook(sk_clone_security, sk, newsk);
2372}
2373EXPORT_SYMBOL(security_sk_clone);
2374
2375void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
 
 
 
 
 
 
 
2376{
2377	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2378}
2379EXPORT_SYMBOL(security_sk_classify_flow);
2380
 
 
 
 
 
 
 
2381void security_req_classify_flow(const struct request_sock *req,
2382				struct flowi_common *flic)
2383{
2384	call_void_hook(req_classify_flow, req, flic);
2385}
2386EXPORT_SYMBOL(security_req_classify_flow);
2387
 
 
 
 
 
 
 
 
2388void security_sock_graft(struct sock *sk, struct socket *parent)
2389{
2390	call_void_hook(sock_graft, sk, parent);
2391}
2392EXPORT_SYMBOL(security_sock_graft);
2393
 
 
 
 
 
 
 
 
 
 
2394int security_inet_conn_request(const struct sock *sk,
2395			struct sk_buff *skb, struct request_sock *req)
2396{
2397	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2398}
2399EXPORT_SYMBOL(security_inet_conn_request);
2400
 
 
 
 
 
 
 
2401void security_inet_csk_clone(struct sock *newsk,
2402			const struct request_sock *req)
2403{
2404	call_void_hook(inet_csk_clone, newsk, req);
2405}
2406
 
 
 
 
 
 
 
2407void security_inet_conn_established(struct sock *sk,
2408			struct sk_buff *skb)
2409{
2410	call_void_hook(inet_conn_established, sk, skb);
2411}
2412EXPORT_SYMBOL(security_inet_conn_established);
2413
 
 
 
 
 
 
 
 
2414int security_secmark_relabel_packet(u32 secid)
2415{
2416	return call_int_hook(secmark_relabel_packet, 0, secid);
2417}
2418EXPORT_SYMBOL(security_secmark_relabel_packet);
2419
 
 
 
 
 
2420void security_secmark_refcount_inc(void)
2421{
2422	call_void_hook(secmark_refcount_inc);
2423}
2424EXPORT_SYMBOL(security_secmark_refcount_inc);
2425
 
 
 
 
 
2426void security_secmark_refcount_dec(void)
2427{
2428	call_void_hook(secmark_refcount_dec);
2429}
2430EXPORT_SYMBOL(security_secmark_refcount_dec);
2431
 
 
 
 
 
 
 
 
 
2432int security_tun_dev_alloc_security(void **security)
2433{
2434	return call_int_hook(tun_dev_alloc_security, 0, security);
2435}
2436EXPORT_SYMBOL(security_tun_dev_alloc_security);
2437
 
 
 
 
 
 
2438void security_tun_dev_free_security(void *security)
2439{
2440	call_void_hook(tun_dev_free_security, security);
2441}
2442EXPORT_SYMBOL(security_tun_dev_free_security);
2443
 
 
 
 
 
 
 
2444int security_tun_dev_create(void)
2445{
2446	return call_int_hook(tun_dev_create, 0);
2447}
2448EXPORT_SYMBOL(security_tun_dev_create);
2449
 
 
 
 
 
 
 
 
2450int security_tun_dev_attach_queue(void *security)
2451{
2452	return call_int_hook(tun_dev_attach_queue, 0, security);
2453}
2454EXPORT_SYMBOL(security_tun_dev_attach_queue);
2455
 
 
 
 
 
 
 
 
 
 
2456int security_tun_dev_attach(struct sock *sk, void *security)
2457{
2458	return call_int_hook(tun_dev_attach, 0, sk, security);
2459}
2460EXPORT_SYMBOL(security_tun_dev_attach);
2461
 
 
 
 
 
 
 
 
 
2462int security_tun_dev_open(void *security)
2463{
2464	return call_int_hook(tun_dev_open, 0, security);
2465}
2466EXPORT_SYMBOL(security_tun_dev_open);
2467
2468int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
2469{
2470	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2471}
2472EXPORT_SYMBOL(security_sctp_assoc_request);
2473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474int security_sctp_bind_connect(struct sock *sk, int optname,
2475			       struct sockaddr *address, int addrlen)
2476{
2477	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2478			     address, addrlen);
2479}
2480EXPORT_SYMBOL(security_sctp_bind_connect);
2481
 
 
 
 
 
 
 
 
 
 
2482void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2483			    struct sock *newsk)
2484{
2485	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2486}
2487EXPORT_SYMBOL(security_sctp_sk_clone);
2488
 
 
 
 
 
 
 
 
 
 
2489int security_sctp_assoc_established(struct sctp_association *asoc,
2490				    struct sk_buff *skb)
2491{
2492	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2493}
2494EXPORT_SYMBOL(security_sctp_assoc_established);
2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496#endif	/* CONFIG_SECURITY_NETWORK */
2497
2498#ifdef CONFIG_SECURITY_INFINIBAND
2499
 
 
 
 
 
 
 
 
 
2500int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2501{
2502	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2503}
2504EXPORT_SYMBOL(security_ib_pkey_access);
2505
2506int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
 
 
 
 
 
 
 
 
 
 
 
2507{
2508	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2509}
2510EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2511
 
 
 
 
 
 
 
 
2512int security_ib_alloc_security(void **sec)
2513{
2514	return call_int_hook(ib_alloc_security, 0, sec);
2515}
2516EXPORT_SYMBOL(security_ib_alloc_security);
2517
 
 
 
 
 
 
2518void security_ib_free_security(void *sec)
2519{
2520	call_void_hook(ib_free_security, sec);
2521}
2522EXPORT_SYMBOL(security_ib_free_security);
2523#endif	/* CONFIG_SECURITY_INFINIBAND */
2524
2525#ifdef CONFIG_SECURITY_NETWORK_XFRM
2526
 
 
 
 
 
 
 
 
 
 
2527int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2528			       struct xfrm_user_sec_ctx *sec_ctx,
2529			       gfp_t gfp)
2530{
2531	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2532}
2533EXPORT_SYMBOL(security_xfrm_policy_alloc);
2534
 
 
 
 
 
 
 
 
 
 
2535int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2536			      struct xfrm_sec_ctx **new_ctxp)
2537{
2538	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2539}
2540
 
 
 
 
 
 
2541void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2542{
2543	call_void_hook(xfrm_policy_free_security, ctx);
2544}
2545EXPORT_SYMBOL(security_xfrm_policy_free);
2546
 
 
 
 
 
 
 
 
2547int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2548{
2549	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2550}
2551
 
 
 
 
 
 
 
 
 
 
 
2552int security_xfrm_state_alloc(struct xfrm_state *x,
2553			      struct xfrm_user_sec_ctx *sec_ctx)
2554{
2555	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2556}
2557EXPORT_SYMBOL(security_xfrm_state_alloc);
2558
 
 
 
 
 
 
 
 
 
 
 
 
2559int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2560				      struct xfrm_sec_ctx *polsec, u32 secid)
2561{
2562	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2563}
2564
 
 
 
 
 
 
 
 
2565int security_xfrm_state_delete(struct xfrm_state *x)
2566{
2567	return call_int_hook(xfrm_state_delete_security, 0, x);
2568}
2569EXPORT_SYMBOL(security_xfrm_state_delete);
2570
 
 
 
 
 
 
2571void security_xfrm_state_free(struct xfrm_state *x)
2572{
2573	call_void_hook(xfrm_state_free_security, x);
2574}
2575
 
 
 
 
 
 
 
 
 
 
 
 
2576int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2577{
2578	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2579}
2580
 
 
 
 
 
 
 
 
 
 
2581int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2582				       struct xfrm_policy *xp,
2583				       const struct flowi_common *flic)
2584{
2585	struct security_hook_list *hp;
2586	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2587
2588	/*
2589	 * Since this function is expected to return 0 or 1, the judgment
2590	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2591	 * we can use the first LSM's judgment because currently only SELinux
2592	 * supplies this call.
2593	 *
2594	 * For speed optimization, we explicitly break the loop rather than
2595	 * using the macro
2596	 */
2597	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2598				list) {
2599		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2600		break;
2601	}
2602	return rc;
2603}
2604
 
 
 
 
 
 
 
 
 
2605int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2606{
2607	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2608}
2609
2610void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2611{
2612	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2613				0);
2614
2615	BUG_ON(rc);
2616}
2617EXPORT_SYMBOL(security_skb_classify_flow);
2618
2619#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2620
2621#ifdef CONFIG_KEYS
2622
 
 
 
 
 
 
 
 
 
 
2623int security_key_alloc(struct key *key, const struct cred *cred,
2624		       unsigned long flags)
2625{
2626	return call_int_hook(key_alloc, 0, key, cred, flags);
2627}
2628
 
 
 
 
 
 
2629void security_key_free(struct key *key)
2630{
2631	call_void_hook(key_free, key);
2632}
2633
 
 
 
 
 
 
 
 
 
 
2634int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2635			    enum key_need_perm need_perm)
2636{
2637	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2638}
2639
2640int security_key_getsecurity(struct key *key, char **_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
2641{
2642	*_buffer = NULL;
2643	return call_int_hook(key_getsecurity, 0, key, _buffer);
2644}
2645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646#endif	/* CONFIG_KEYS */
2647
2648#ifdef CONFIG_AUDIT
2649
 
 
 
 
 
 
 
 
 
 
 
2650int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2651{
2652	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2653}
2654
 
 
 
 
 
 
 
 
 
2655int security_audit_rule_known(struct audit_krule *krule)
2656{
2657	return call_int_hook(audit_rule_known, 0, krule);
2658}
2659
 
 
 
 
 
 
 
2660void security_audit_rule_free(void *lsmrule)
2661{
2662	call_void_hook(audit_rule_free, lsmrule);
2663}
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
2665int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2666{
2667	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2668}
2669#endif /* CONFIG_AUDIT */
2670
2671#ifdef CONFIG_BPF_SYSCALL
 
 
 
 
 
 
 
 
 
 
 
 
2672int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2673{
2674	return call_int_hook(bpf, 0, cmd, attr, size);
2675}
 
 
 
 
 
 
 
 
 
 
 
2676int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2677{
2678	return call_int_hook(bpf_map, 0, map, fmode);
2679}
 
 
 
 
 
 
 
 
 
 
2680int security_bpf_prog(struct bpf_prog *prog)
2681{
2682	return call_int_hook(bpf_prog, 0, prog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683}
2684int security_bpf_map_alloc(struct bpf_map *map)
 
 
 
 
 
 
 
 
 
 
 
 
2685{
2686	return call_int_hook(bpf_map_alloc_security, 0, map);
2687}
2688int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
 
 
 
 
 
 
 
 
 
 
 
 
2689{
2690	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2691}
 
 
 
 
 
 
 
2692void security_bpf_map_free(struct bpf_map *map)
2693{
2694	call_void_hook(bpf_map_free_security, map);
 
 
 
 
 
 
 
 
 
 
 
2695}
2696void security_bpf_prog_free(struct bpf_prog_aux *aux)
 
 
 
 
 
 
 
2697{
2698	call_void_hook(bpf_prog_free_security, aux);
2699}
2700#endif /* CONFIG_BPF_SYSCALL */
2701
 
 
 
 
 
 
 
 
 
2702int security_locked_down(enum lockdown_reason what)
2703{
2704	return call_int_hook(locked_down, 0, what);
2705}
2706EXPORT_SYMBOL(security_locked_down);
2707
2708#ifdef CONFIG_PERF_EVENTS
 
 
 
 
 
 
 
 
 
2709int security_perf_event_open(struct perf_event_attr *attr, int type)
2710{
2711	return call_int_hook(perf_event_open, 0, attr, type);
2712}
2713
 
 
 
 
 
 
 
 
2714int security_perf_event_alloc(struct perf_event *event)
2715{
2716	return call_int_hook(perf_event_alloc, 0, event);
2717}
2718
 
 
 
 
 
 
2719void security_perf_event_free(struct perf_event *event)
2720{
2721	call_void_hook(perf_event_free, event);
2722}
2723
 
 
 
 
 
 
 
 
2724int security_perf_event_read(struct perf_event *event)
2725{
2726	return call_int_hook(perf_event_read, 0, event);
2727}
2728
 
 
 
 
 
 
 
 
2729int security_perf_event_write(struct perf_event *event)
2730{
2731	return call_int_hook(perf_event_write, 0, event);
2732}
2733#endif /* CONFIG_PERF_EVENTS */
2734
2735#ifdef CONFIG_IO_URING
 
 
 
 
 
 
 
 
 
2736int security_uring_override_creds(const struct cred *new)
2737{
2738	return call_int_hook(uring_override_creds, 0, new);
2739}
2740
 
 
 
 
 
 
 
 
2741int security_uring_sqpoll(void)
2742{
2743	return call_int_hook(uring_sqpoll, 0);
2744}
 
 
 
 
 
 
 
 
 
2745int security_uring_cmd(struct io_uring_cmd *ioucmd)
2746{
2747	return call_int_hook(uring_cmd, 0, ioucmd);
2748}
2749#endif /* CONFIG_IO_URING */