Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12#define pr_fmt(fmt) "LSM: " fmt
13
14#include <linux/bpf.h>
15#include <linux/capability.h>
16#include <linux/dcache.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/lsm_hooks.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <linux/string.h>
28#include <linux/xattr.h>
29#include <linux/msg.h>
30#include <linux/overflow.h>
31#include <net/flow.h>
32
33/* How many LSMs were built into the kernel? */
34#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
35
36/*
37 * How many LSMs are built into the kernel as determined at
38 * build time. Used to determine fixed array sizes.
39 * The capability module is accounted for by CONFIG_SECURITY
40 */
41#define LSM_CONFIG_COUNT ( \
42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0))
55
56/*
57 * These are descriptions of the reasons that can be passed to the
58 * security_locked_down() LSM hook. Placing this array here allows
59 * all security modules to use the same descriptions for auditing
60 * purposes.
61 */
62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
63 [LOCKDOWN_NONE] = "none",
64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
67 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
68 [LOCKDOWN_HIBERNATION] = "hibernation",
69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
70 [LOCKDOWN_IOPORT] = "raw io port access",
71 [LOCKDOWN_MSR] = "raw MSR access",
72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
78 [LOCKDOWN_DEBUGFS] = "debugfs access",
79 [LOCKDOWN_XMON_WR] = "xmon write access",
80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
83 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
84 [LOCKDOWN_KCORE] = "/proc/kcore access",
85 [LOCKDOWN_KPROBES] = "use of kprobes",
86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
88 [LOCKDOWN_PERF] = "unsafe use of perf",
89 [LOCKDOWN_TRACEFS] = "use of tracefs",
90 [LOCKDOWN_XMON_RW] = "xmon read and write access",
91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
93};
94
95struct security_hook_heads security_hook_heads __ro_after_init;
96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
97
98static struct kmem_cache *lsm_file_cache;
99static struct kmem_cache *lsm_inode_cache;
100
101char *lsm_names;
102static struct lsm_blob_sizes blob_sizes __ro_after_init;
103
104/* Boot-time LSM user choice */
105static __initdata const char *chosen_lsm_order;
106static __initdata const char *chosen_major_lsm;
107
108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
109
110/* Ordered list of LSMs to initialize. */
111static __initdata struct lsm_info **ordered_lsms;
112static __initdata struct lsm_info *exclusive;
113
114static __initdata bool debug;
115#define init_debug(...) \
116 do { \
117 if (debug) \
118 pr_info(__VA_ARGS__); \
119 } while (0)
120
121static bool __init is_enabled(struct lsm_info *lsm)
122{
123 if (!lsm->enabled)
124 return false;
125
126 return *lsm->enabled;
127}
128
129/* Mark an LSM's enabled flag. */
130static int lsm_enabled_true __initdata = 1;
131static int lsm_enabled_false __initdata = 0;
132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
133{
134 /*
135 * When an LSM hasn't configured an enable variable, we can use
136 * a hard-coded location for storing the default enabled state.
137 */
138 if (!lsm->enabled) {
139 if (enabled)
140 lsm->enabled = &lsm_enabled_true;
141 else
142 lsm->enabled = &lsm_enabled_false;
143 } else if (lsm->enabled == &lsm_enabled_true) {
144 if (!enabled)
145 lsm->enabled = &lsm_enabled_false;
146 } else if (lsm->enabled == &lsm_enabled_false) {
147 if (enabled)
148 lsm->enabled = &lsm_enabled_true;
149 } else {
150 *lsm->enabled = enabled;
151 }
152}
153
154/* Is an LSM already listed in the ordered LSMs list? */
155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
156{
157 struct lsm_info **check;
158
159 for (check = ordered_lsms; *check; check++)
160 if (*check == lsm)
161 return true;
162
163 return false;
164}
165
166/* Append an LSM to the list of ordered LSMs to initialize. */
167static int last_lsm __initdata;
168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
169{
170 /* Ignore duplicate selections. */
171 if (exists_ordered_lsm(lsm))
172 return;
173
174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
175 return;
176
177 /* Enable this LSM, if it is not already set. */
178 if (!lsm->enabled)
179 lsm->enabled = &lsm_enabled_true;
180 ordered_lsms[last_lsm++] = lsm;
181
182 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
183 is_enabled(lsm) ? "enabled" : "disabled");
184}
185
186/* Is an LSM allowed to be initialized? */
187static bool __init lsm_allowed(struct lsm_info *lsm)
188{
189 /* Skip if the LSM is disabled. */
190 if (!is_enabled(lsm))
191 return false;
192
193 /* Not allowed if another exclusive LSM already initialized. */
194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
195 init_debug("exclusive disabled: %s\n", lsm->name);
196 return false;
197 }
198
199 return true;
200}
201
202static void __init lsm_set_blob_size(int *need, int *lbs)
203{
204 int offset;
205
206 if (*need <= 0)
207 return;
208
209 offset = ALIGN(*lbs, sizeof(void *));
210 *lbs = offset + *need;
211 *need = offset;
212}
213
214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
215{
216 if (!needed)
217 return;
218
219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
221 /*
222 * The inode blob gets an rcu_head in addition to
223 * what the modules might need.
224 */
225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
226 blob_sizes.lbs_inode = sizeof(struct rcu_head);
227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
232 lsm_set_blob_size(&needed->lbs_xattr_count,
233 &blob_sizes.lbs_xattr_count);
234}
235
236/* Prepare LSM for initialization. */
237static void __init prepare_lsm(struct lsm_info *lsm)
238{
239 int enabled = lsm_allowed(lsm);
240
241 /* Record enablement (to handle any following exclusive LSMs). */
242 set_enabled(lsm, enabled);
243
244 /* If enabled, do pre-initialization work. */
245 if (enabled) {
246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
247 exclusive = lsm;
248 init_debug("exclusive chosen: %s\n", lsm->name);
249 }
250
251 lsm_set_blob_sizes(lsm->blobs);
252 }
253}
254
255/* Initialize a given LSM, if it is enabled. */
256static void __init initialize_lsm(struct lsm_info *lsm)
257{
258 if (is_enabled(lsm)) {
259 int ret;
260
261 init_debug("initializing %s\n", lsm->name);
262 ret = lsm->init();
263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
264 }
265}
266
267/*
268 * Current index to use while initializing the lsm id list.
269 */
270u32 lsm_active_cnt __ro_after_init;
271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
272
273/* Populate ordered LSMs list from comma-separated LSM name list. */
274static void __init ordered_lsm_parse(const char *order, const char *origin)
275{
276 struct lsm_info *lsm;
277 char *sep, *name, *next;
278
279 /* LSM_ORDER_FIRST is always first. */
280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281 if (lsm->order == LSM_ORDER_FIRST)
282 append_ordered_lsm(lsm, " first");
283 }
284
285 /* Process "security=", if given. */
286 if (chosen_major_lsm) {
287 struct lsm_info *major;
288
289 /*
290 * To match the original "security=" behavior, this
291 * explicitly does NOT fallback to another Legacy Major
292 * if the selected one was separately disabled: disable
293 * all non-matching Legacy Major LSMs.
294 */
295 for (major = __start_lsm_info; major < __end_lsm_info;
296 major++) {
297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
298 strcmp(major->name, chosen_major_lsm) != 0) {
299 set_enabled(major, false);
300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
301 chosen_major_lsm, major->name);
302 }
303 }
304 }
305
306 sep = kstrdup(order, GFP_KERNEL);
307 next = sep;
308 /* Walk the list, looking for matching LSMs. */
309 while ((name = strsep(&next, ",")) != NULL) {
310 bool found = false;
311
312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
313 if (strcmp(lsm->name, name) == 0) {
314 if (lsm->order == LSM_ORDER_MUTABLE)
315 append_ordered_lsm(lsm, origin);
316 found = true;
317 }
318 }
319
320 if (!found)
321 init_debug("%s ignored: %s (not built into kernel)\n",
322 origin, name);
323 }
324
325 /* Process "security=", if given. */
326 if (chosen_major_lsm) {
327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
328 if (exists_ordered_lsm(lsm))
329 continue;
330 if (strcmp(lsm->name, chosen_major_lsm) == 0)
331 append_ordered_lsm(lsm, "security=");
332 }
333 }
334
335 /* LSM_ORDER_LAST is always last. */
336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
337 if (lsm->order == LSM_ORDER_LAST)
338 append_ordered_lsm(lsm, " last");
339 }
340
341 /* Disable all LSMs not in the ordered list. */
342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
343 if (exists_ordered_lsm(lsm))
344 continue;
345 set_enabled(lsm, false);
346 init_debug("%s skipped: %s (not in requested order)\n",
347 origin, lsm->name);
348 }
349
350 kfree(sep);
351}
352
353static void __init lsm_early_cred(struct cred *cred);
354static void __init lsm_early_task(struct task_struct *task);
355
356static int lsm_append(const char *new, char **result);
357
358static void __init report_lsm_order(void)
359{
360 struct lsm_info **lsm, *early;
361 int first = 0;
362
363 pr_info("initializing lsm=");
364
365 /* Report each enabled LSM name, comma separated. */
366 for (early = __start_early_lsm_info;
367 early < __end_early_lsm_info; early++)
368 if (is_enabled(early))
369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
370 for (lsm = ordered_lsms; *lsm; lsm++)
371 if (is_enabled(*lsm))
372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
373
374 pr_cont("\n");
375}
376
377static void __init ordered_lsm_init(void)
378{
379 struct lsm_info **lsm;
380
381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
382 GFP_KERNEL);
383
384 if (chosen_lsm_order) {
385 if (chosen_major_lsm) {
386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
387 chosen_major_lsm, chosen_lsm_order);
388 chosen_major_lsm = NULL;
389 }
390 ordered_lsm_parse(chosen_lsm_order, "cmdline");
391 } else
392 ordered_lsm_parse(builtin_lsm_order, "builtin");
393
394 for (lsm = ordered_lsms; *lsm; lsm++)
395 prepare_lsm(*lsm);
396
397 report_lsm_order();
398
399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
400 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
405 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
407
408 /*
409 * Create any kmem_caches needed for blobs
410 */
411 if (blob_sizes.lbs_file)
412 lsm_file_cache = kmem_cache_create("lsm_file_cache",
413 blob_sizes.lbs_file, 0,
414 SLAB_PANIC, NULL);
415 if (blob_sizes.lbs_inode)
416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
417 blob_sizes.lbs_inode, 0,
418 SLAB_PANIC, NULL);
419
420 lsm_early_cred((struct cred *) current->cred);
421 lsm_early_task(current);
422 for (lsm = ordered_lsms; *lsm; lsm++)
423 initialize_lsm(*lsm);
424
425 kfree(ordered_lsms);
426}
427
428int __init early_security_init(void)
429{
430 struct lsm_info *lsm;
431
432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
433 INIT_HLIST_HEAD(&security_hook_heads.NAME);
434#include "linux/lsm_hook_defs.h"
435#undef LSM_HOOK
436
437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
438 if (!lsm->enabled)
439 lsm->enabled = &lsm_enabled_true;
440 prepare_lsm(lsm);
441 initialize_lsm(lsm);
442 }
443
444 return 0;
445}
446
447/**
448 * security_init - initializes the security framework
449 *
450 * This should be called early in the kernel initialization sequence.
451 */
452int __init security_init(void)
453{
454 struct lsm_info *lsm;
455
456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
459
460 /*
461 * Append the names of the early LSM modules now that kmalloc() is
462 * available
463 */
464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
465 init_debug(" early started: %s (%s)\n", lsm->name,
466 is_enabled(lsm) ? "enabled" : "disabled");
467 if (lsm->enabled)
468 lsm_append(lsm->name, &lsm_names);
469 }
470
471 /* Load LSMs in specified order. */
472 ordered_lsm_init();
473
474 return 0;
475}
476
477/* Save user chosen LSM */
478static int __init choose_major_lsm(char *str)
479{
480 chosen_major_lsm = str;
481 return 1;
482}
483__setup("security=", choose_major_lsm);
484
485/* Explicitly choose LSM initialization order. */
486static int __init choose_lsm_order(char *str)
487{
488 chosen_lsm_order = str;
489 return 1;
490}
491__setup("lsm=", choose_lsm_order);
492
493/* Enable LSM order debugging. */
494static int __init enable_debug(char *str)
495{
496 debug = true;
497 return 1;
498}
499__setup("lsm.debug", enable_debug);
500
501static bool match_last_lsm(const char *list, const char *lsm)
502{
503 const char *last;
504
505 if (WARN_ON(!list || !lsm))
506 return false;
507 last = strrchr(list, ',');
508 if (last)
509 /* Pass the comma, strcmp() will check for '\0' */
510 last++;
511 else
512 last = list;
513 return !strcmp(last, lsm);
514}
515
516static int lsm_append(const char *new, char **result)
517{
518 char *cp;
519
520 if (*result == NULL) {
521 *result = kstrdup(new, GFP_KERNEL);
522 if (*result == NULL)
523 return -ENOMEM;
524 } else {
525 /* Check if it is the last registered name */
526 if (match_last_lsm(*result, new))
527 return 0;
528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
529 if (cp == NULL)
530 return -ENOMEM;
531 kfree(*result);
532 *result = cp;
533 }
534 return 0;
535}
536
537/**
538 * security_add_hooks - Add a modules hooks to the hook lists.
539 * @hooks: the hooks to add
540 * @count: the number of hooks to add
541 * @lsmid: the identification information for the security module
542 *
543 * Each LSM has to register its hooks with the infrastructure.
544 */
545void __init security_add_hooks(struct security_hook_list *hooks, int count,
546 const struct lsm_id *lsmid)
547{
548 int i;
549
550 /*
551 * A security module may call security_add_hooks() more
552 * than once during initialization, and LSM initialization
553 * is serialized. Landlock is one such case.
554 * Look at the previous entry, if there is one, for duplication.
555 */
556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
557 if (lsm_active_cnt >= LSM_CONFIG_COUNT)
558 panic("%s Too many LSMs registered.\n", __func__);
559 lsm_idlist[lsm_active_cnt++] = lsmid;
560 }
561
562 for (i = 0; i < count; i++) {
563 hooks[i].lsmid = lsmid;
564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
565 }
566
567 /*
568 * Don't try to append during early_security_init(), we'll come back
569 * and fix this up afterwards.
570 */
571 if (slab_is_available()) {
572 if (lsm_append(lsmid->name, &lsm_names) < 0)
573 panic("%s - Cannot get early memory.\n", __func__);
574 }
575}
576
577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
578{
579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
580 event, data);
581}
582EXPORT_SYMBOL(call_blocking_lsm_notifier);
583
584int register_blocking_lsm_notifier(struct notifier_block *nb)
585{
586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
587 nb);
588}
589EXPORT_SYMBOL(register_blocking_lsm_notifier);
590
591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
592{
593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
594 nb);
595}
596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
597
598/**
599 * lsm_cred_alloc - allocate a composite cred blob
600 * @cred: the cred that needs a blob
601 * @gfp: allocation type
602 *
603 * Allocate the cred blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
608{
609 if (blob_sizes.lbs_cred == 0) {
610 cred->security = NULL;
611 return 0;
612 }
613
614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
615 if (cred->security == NULL)
616 return -ENOMEM;
617 return 0;
618}
619
620/**
621 * lsm_early_cred - during initialization allocate a composite cred blob
622 * @cred: the cred that needs a blob
623 *
624 * Allocate the cred blob for all the modules
625 */
626static void __init lsm_early_cred(struct cred *cred)
627{
628 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
629
630 if (rc)
631 panic("%s: Early cred alloc failed.\n", __func__);
632}
633
634/**
635 * lsm_file_alloc - allocate a composite file blob
636 * @file: the file that needs a blob
637 *
638 * Allocate the file blob for all the modules
639 *
640 * Returns 0, or -ENOMEM if memory can't be allocated.
641 */
642static int lsm_file_alloc(struct file *file)
643{
644 if (!lsm_file_cache) {
645 file->f_security = NULL;
646 return 0;
647 }
648
649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
650 if (file->f_security == NULL)
651 return -ENOMEM;
652 return 0;
653}
654
655/**
656 * lsm_inode_alloc - allocate a composite inode blob
657 * @inode: the inode that needs a blob
658 *
659 * Allocate the inode blob for all the modules
660 *
661 * Returns 0, or -ENOMEM if memory can't be allocated.
662 */
663int lsm_inode_alloc(struct inode *inode)
664{
665 if (!lsm_inode_cache) {
666 inode->i_security = NULL;
667 return 0;
668 }
669
670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
671 if (inode->i_security == NULL)
672 return -ENOMEM;
673 return 0;
674}
675
676/**
677 * lsm_task_alloc - allocate a composite task blob
678 * @task: the task that needs a blob
679 *
680 * Allocate the task blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
684static int lsm_task_alloc(struct task_struct *task)
685{
686 if (blob_sizes.lbs_task == 0) {
687 task->security = NULL;
688 return 0;
689 }
690
691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
692 if (task->security == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/**
698 * lsm_ipc_alloc - allocate a composite ipc blob
699 * @kip: the ipc that needs a blob
700 *
701 * Allocate the ipc blob for all the modules
702 *
703 * Returns 0, or -ENOMEM if memory can't be allocated.
704 */
705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
706{
707 if (blob_sizes.lbs_ipc == 0) {
708 kip->security = NULL;
709 return 0;
710 }
711
712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
713 if (kip->security == NULL)
714 return -ENOMEM;
715 return 0;
716}
717
718/**
719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
720 * @mp: the msg_msg that needs a blob
721 *
722 * Allocate the ipc blob for all the modules
723 *
724 * Returns 0, or -ENOMEM if memory can't be allocated.
725 */
726static int lsm_msg_msg_alloc(struct msg_msg *mp)
727{
728 if (blob_sizes.lbs_msg_msg == 0) {
729 mp->security = NULL;
730 return 0;
731 }
732
733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
734 if (mp->security == NULL)
735 return -ENOMEM;
736 return 0;
737}
738
739/**
740 * lsm_early_task - during initialization allocate a composite task blob
741 * @task: the task that needs a blob
742 *
743 * Allocate the task blob for all the modules
744 */
745static void __init lsm_early_task(struct task_struct *task)
746{
747 int rc = lsm_task_alloc(task);
748
749 if (rc)
750 panic("%s: Early task alloc failed.\n", __func__);
751}
752
753/**
754 * lsm_superblock_alloc - allocate a composite superblock blob
755 * @sb: the superblock that needs a blob
756 *
757 * Allocate the superblock blob for all the modules
758 *
759 * Returns 0, or -ENOMEM if memory can't be allocated.
760 */
761static int lsm_superblock_alloc(struct super_block *sb)
762{
763 if (blob_sizes.lbs_superblock == 0) {
764 sb->s_security = NULL;
765 return 0;
766 }
767
768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
769 if (sb->s_security == NULL)
770 return -ENOMEM;
771 return 0;
772}
773
774/**
775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
776 * @uctx: a userspace LSM context to be filled
777 * @uctx_len: available uctx size (input), used uctx size (output)
778 * @val: the new LSM context value
779 * @val_len: the size of the new LSM context value
780 * @id: LSM id
781 * @flags: LSM defined flags
782 *
783 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
784 * simply calculate the required size to output via @utc_len and return
785 * success.
786 *
787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
789 */
790int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
791 void *val, size_t val_len,
792 u64 id, u64 flags)
793{
794 struct lsm_ctx *nctx = NULL;
795 size_t nctx_len;
796 int rc = 0;
797
798 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
799 if (nctx_len > *uctx_len) {
800 rc = -E2BIG;
801 goto out;
802 }
803
804 /* no buffer - return success/0 and set @uctx_len to the req size */
805 if (!uctx)
806 goto out;
807
808 nctx = kzalloc(nctx_len, GFP_KERNEL);
809 if (nctx == NULL) {
810 rc = -ENOMEM;
811 goto out;
812 }
813 nctx->id = id;
814 nctx->flags = flags;
815 nctx->len = nctx_len;
816 nctx->ctx_len = val_len;
817 memcpy(nctx->ctx, val, val_len);
818
819 if (copy_to_user(uctx, nctx, nctx_len))
820 rc = -EFAULT;
821
822out:
823 kfree(nctx);
824 *uctx_len = nctx_len;
825 return rc;
826}
827
828/*
829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
830 * can be accessed with:
831 *
832 * LSM_RET_DEFAULT(<hook_name>)
833 *
834 * The macros below define static constants for the default value of each
835 * LSM hook.
836 */
837#define LSM_RET_DEFAULT(NAME) (NAME##_default)
838#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
839#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
840 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
841#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
842 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
843
844#include <linux/lsm_hook_defs.h>
845#undef LSM_HOOK
846
847/*
848 * Hook list operation macros.
849 *
850 * call_void_hook:
851 * This is a hook that does not return a value.
852 *
853 * call_int_hook:
854 * This is a hook that returns a value.
855 */
856
857#define call_void_hook(FUNC, ...) \
858 do { \
859 struct security_hook_list *P; \
860 \
861 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
862 P->hook.FUNC(__VA_ARGS__); \
863 } while (0)
864
865#define call_int_hook(FUNC, ...) ({ \
866 int RC = LSM_RET_DEFAULT(FUNC); \
867 do { \
868 struct security_hook_list *P; \
869 \
870 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
871 RC = P->hook.FUNC(__VA_ARGS__); \
872 if (RC != LSM_RET_DEFAULT(FUNC)) \
873 break; \
874 } \
875 } while (0); \
876 RC; \
877})
878
879/* Security operations */
880
881/**
882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
883 * @mgr: task credentials of current binder process
884 *
885 * Check whether @mgr is allowed to be the binder context manager.
886 *
887 * Return: Return 0 if permission is granted.
888 */
889int security_binder_set_context_mgr(const struct cred *mgr)
890{
891 return call_int_hook(binder_set_context_mgr, mgr);
892}
893
894/**
895 * security_binder_transaction() - Check if a binder transaction is allowed
896 * @from: sending process
897 * @to: receiving process
898 *
899 * Check whether @from is allowed to invoke a binder transaction call to @to.
900 *
901 * Return: Returns 0 if permission is granted.
902 */
903int security_binder_transaction(const struct cred *from,
904 const struct cred *to)
905{
906 return call_int_hook(binder_transaction, from, to);
907}
908
909/**
910 * security_binder_transfer_binder() - Check if a binder transfer is allowed
911 * @from: sending process
912 * @to: receiving process
913 *
914 * Check whether @from is allowed to transfer a binder reference to @to.
915 *
916 * Return: Returns 0 if permission is granted.
917 */
918int security_binder_transfer_binder(const struct cred *from,
919 const struct cred *to)
920{
921 return call_int_hook(binder_transfer_binder, from, to);
922}
923
924/**
925 * security_binder_transfer_file() - Check if a binder file xfer is allowed
926 * @from: sending process
927 * @to: receiving process
928 * @file: file being transferred
929 *
930 * Check whether @from is allowed to transfer @file to @to.
931 *
932 * Return: Returns 0 if permission is granted.
933 */
934int security_binder_transfer_file(const struct cred *from,
935 const struct cred *to, const struct file *file)
936{
937 return call_int_hook(binder_transfer_file, from, to, file);
938}
939
940/**
941 * security_ptrace_access_check() - Check if tracing is allowed
942 * @child: target process
943 * @mode: PTRACE_MODE flags
944 *
945 * Check permission before allowing the current process to trace the @child
946 * process. Security modules may also want to perform a process tracing check
947 * during an execve in the set_security or apply_creds hooks of tracing check
948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
949 * process is being traced and its security attributes would be changed by the
950 * execve.
951 *
952 * Return: Returns 0 if permission is granted.
953 */
954int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
955{
956 return call_int_hook(ptrace_access_check, child, mode);
957}
958
959/**
960 * security_ptrace_traceme() - Check if tracing is allowed
961 * @parent: tracing process
962 *
963 * Check that the @parent process has sufficient permission to trace the
964 * current process before allowing the current process to present itself to the
965 * @parent process for tracing.
966 *
967 * Return: Returns 0 if permission is granted.
968 */
969int security_ptrace_traceme(struct task_struct *parent)
970{
971 return call_int_hook(ptrace_traceme, parent);
972}
973
974/**
975 * security_capget() - Get the capability sets for a process
976 * @target: target process
977 * @effective: effective capability set
978 * @inheritable: inheritable capability set
979 * @permitted: permitted capability set
980 *
981 * Get the @effective, @inheritable, and @permitted capability sets for the
982 * @target process. The hook may also perform permission checking to determine
983 * if the current process is allowed to see the capability sets of the @target
984 * process.
985 *
986 * Return: Returns 0 if the capability sets were successfully obtained.
987 */
988int security_capget(const struct task_struct *target,
989 kernel_cap_t *effective,
990 kernel_cap_t *inheritable,
991 kernel_cap_t *permitted)
992{
993 return call_int_hook(capget, target, effective, inheritable, permitted);
994}
995
996/**
997 * security_capset() - Set the capability sets for a process
998 * @new: new credentials for the target process
999 * @old: current credentials of the target process
1000 * @effective: effective capability set
1001 * @inheritable: inheritable capability set
1002 * @permitted: permitted capability set
1003 *
1004 * Set the @effective, @inheritable, and @permitted capability sets for the
1005 * current process.
1006 *
1007 * Return: Returns 0 and update @new if permission is granted.
1008 */
1009int security_capset(struct cred *new, const struct cred *old,
1010 const kernel_cap_t *effective,
1011 const kernel_cap_t *inheritable,
1012 const kernel_cap_t *permitted)
1013{
1014 return call_int_hook(capset, new, old, effective, inheritable,
1015 permitted);
1016}
1017
1018/**
1019 * security_capable() - Check if a process has the necessary capability
1020 * @cred: credentials to examine
1021 * @ns: user namespace
1022 * @cap: capability requested
1023 * @opts: capability check options
1024 *
1025 * Check whether the @tsk process has the @cap capability in the indicated
1026 * credentials. @cap contains the capability <include/linux/capability.h>.
1027 * @opts contains options for the capable check <include/linux/security.h>.
1028 *
1029 * Return: Returns 0 if the capability is granted.
1030 */
1031int security_capable(const struct cred *cred,
1032 struct user_namespace *ns,
1033 int cap,
1034 unsigned int opts)
1035{
1036 return call_int_hook(capable, cred, ns, cap, opts);
1037}
1038
1039/**
1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041 * @cmds: commands
1042 * @type: type
1043 * @id: id
1044 * @sb: filesystem
1045 *
1046 * Check whether the quotactl syscall is allowed for this @sb.
1047 *
1048 * Return: Returns 0 if permission is granted.
1049 */
1050int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051{
1052 return call_int_hook(quotactl, cmds, type, id, sb);
1053}
1054
1055/**
1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057 * @dentry: dentry
1058 *
1059 * Check whether QUOTAON is allowed for @dentry.
1060 *
1061 * Return: Returns 0 if permission is granted.
1062 */
1063int security_quota_on(struct dentry *dentry)
1064{
1065 return call_int_hook(quota_on, dentry);
1066}
1067
1068/**
1069 * security_syslog() - Check if accessing the kernel message ring is allowed
1070 * @type: SYSLOG_ACTION_* type
1071 *
1072 * Check permission before accessing the kernel message ring or changing
1073 * logging to the console. See the syslog(2) manual page for an explanation of
1074 * the @type values.
1075 *
1076 * Return: Return 0 if permission is granted.
1077 */
1078int security_syslog(int type)
1079{
1080 return call_int_hook(syslog, type);
1081}
1082
1083/**
1084 * security_settime64() - Check if changing the system time is allowed
1085 * @ts: new time
1086 * @tz: timezone
1087 *
1088 * Check permission to change the system time, struct timespec64 is defined in
1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090 *
1091 * Return: Returns 0 if permission is granted.
1092 */
1093int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094{
1095 return call_int_hook(settime, ts, tz);
1096}
1097
1098/**
1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100 * @mm: mm struct
1101 * @pages: number of pages
1102 *
1103 * Check permissions for allocating a new virtual mapping. If all LSMs return
1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106 * called with cap_sys_admin cleared.
1107 *
1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109 * caller.
1110 */
1111int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112{
1113 struct security_hook_list *hp;
1114 int cap_sys_admin = 1;
1115 int rc;
1116
1117 /*
1118 * The module will respond with a positive value if
1119 * it thinks the __vm_enough_memory() call should be
1120 * made with the cap_sys_admin set. If all of the modules
1121 * agree that it should be set it will. If any module
1122 * thinks it should not be set it won't.
1123 */
1124 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125 rc = hp->hook.vm_enough_memory(mm, pages);
1126 if (rc <= 0) {
1127 cap_sys_admin = 0;
1128 break;
1129 }
1130 }
1131 return __vm_enough_memory(mm, pages, cap_sys_admin);
1132}
1133
1134/**
1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136 * @bprm: binary program information
1137 *
1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139 * properly for executing @bprm->file, update the LSM's portion of
1140 * @bprm->cred->security to be what commit_creds needs to install for the new
1141 * program. This hook may also optionally check permissions (e.g. for
1142 * transitions between security domains). The hook must set @bprm->secureexec
1143 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1144 * contains the linux_binprm structure.
1145 *
1146 * Return: Returns 0 if the hook is successful and permission is granted.
1147 */
1148int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149{
1150 return call_int_hook(bprm_creds_for_exec, bprm);
1151}
1152
1153/**
1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155 * @bprm: binary program information
1156 * @file: associated file
1157 *
1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159 * exec, update @bprm->cred to reflect that change. This is called after
1160 * finding the binary that will be executed without an interpreter. This
1161 * ensures that the credentials will not be derived from a script that the
1162 * binary will need to reopen, which when reopend may end up being a completely
1163 * different file. This hook may also optionally check permissions (e.g. for
1164 * transitions between security domains). The hook must set @bprm->secureexec
1165 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1166 * hook must add to @bprm->per_clear any personality flags that should be
1167 * cleared from current->personality. @bprm contains the linux_binprm
1168 * structure.
1169 *
1170 * Return: Returns 0 if the hook is successful and permission is granted.
1171 */
1172int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173{
1174 return call_int_hook(bprm_creds_from_file, bprm, file);
1175}
1176
1177/**
1178 * security_bprm_check() - Mediate binary handler search
1179 * @bprm: binary program information
1180 *
1181 * This hook mediates the point when a search for a binary handler will begin.
1182 * It allows a check against the @bprm->cred->security value which was set in
1183 * the preceding creds_for_exec call. The argv list and envp list are reliably
1184 * available in @bprm. This hook may be called multiple times during a single
1185 * execve. @bprm contains the linux_binprm structure.
1186 *
1187 * Return: Returns 0 if the hook is successful and permission is granted.
1188 */
1189int security_bprm_check(struct linux_binprm *bprm)
1190{
1191 return call_int_hook(bprm_check_security, bprm);
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed. This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208 call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation. The new credentials have, by this
1217 * point, been set to @current->cred. @bprm points to the linux_binprm
1218 * structure. This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state. This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224 call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238 return call_int_hook(fs_context_submount, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security. This pointer is
1247 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254 return call_int_hook(fs_context_dup, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock. The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 * returned to the caller -ENOPARAM is returned, otherwise a negative
1267 * error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270 struct fs_parameter *param)
1271{
1272 struct security_hook_list *hp;
1273 int trc;
1274 int rc = -ENOPARAM;
1275
1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277 list) {
1278 trc = hp->hook.fs_context_parse_param(fc, param);
1279 if (trc == 0)
1280 rc = 0;
1281 else if (trc != -ENOPARAM)
1282 return trc;
1283 }
1284 return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field. The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299 int rc = lsm_superblock_alloc(sb);
1300
1301 if (unlikely(rc))
1302 return rc;
1303 rc = call_int_hook(sb_alloc_security, sb);
1304 if (unlikely(rc))
1305 security_sb_free(sb);
1306 return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318 call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330 call_void_hook(sb_free_security, sb);
1331 kfree(sb->s_security);
1332 sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343 if (!*mnt_opts)
1344 return;
1345 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346 *mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb. @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376 void *mnt_opts)
1377{
1378 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393 void *mnt_opts)
1394{
1395 return call_int_hook(sb_remount, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409 return call_int_hook(sb_kern_mount, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423 return call_int_hook(sb_show_options, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437 return call_int_hook(sb_statfs, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device. For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458 const char *type, unsigned long flags, void *data)
1459{
1460 return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474 return call_int_hook(sb_umount, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487 const struct path *new_path)
1488{
1489 return call_int_hook(sb_pivotroot, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504 void *mnt_opts,
1505 unsigned long kern_flags,
1506 unsigned long *set_kern_flags)
1507{
1508 struct security_hook_list *hp;
1509 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510
1511 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512 list) {
1513 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514 set_kern_flags);
1515 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516 break;
1517 }
1518 return rc;
1519}
1520EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521
1522/**
1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524 * @oldsb: source superblock
1525 * @newsb: destination superblock
1526 * @kern_flags: kernel flags (in)
1527 * @set_kern_flags: kernel flags (out)
1528 *
1529 * Copy all security options from a given superblock to another.
1530 *
1531 * Return: Returns 0 on success, error on failure.
1532 */
1533int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534 struct super_block *newsb,
1535 unsigned long kern_flags,
1536 unsigned long *set_kern_flags)
1537{
1538 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539 kern_flags, set_kern_flags);
1540}
1541EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542
1543/**
1544 * security_move_mount() - Check permissions for moving a mount
1545 * @from_path: source mount point
1546 * @to_path: destination mount point
1547 *
1548 * Check permission before a mount is moved.
1549 *
1550 * Return: Returns 0 if permission is granted.
1551 */
1552int security_move_mount(const struct path *from_path,
1553 const struct path *to_path)
1554{
1555 return call_int_hook(move_mount, from_path, to_path);
1556}
1557
1558/**
1559 * security_path_notify() - Check if setting a watch is allowed
1560 * @path: file path
1561 * @mask: event mask
1562 * @obj_type: file path type
1563 *
1564 * Check permissions before setting a watch on events as defined by @mask, on
1565 * an object at @path, whose type is defined by @obj_type.
1566 *
1567 * Return: Returns 0 if permission is granted.
1568 */
1569int security_path_notify(const struct path *path, u64 mask,
1570 unsigned int obj_type)
1571{
1572 return call_int_hook(path_notify, path, mask, obj_type);
1573}
1574
1575/**
1576 * security_inode_alloc() - Allocate an inode LSM blob
1577 * @inode: the inode
1578 *
1579 * Allocate and attach a security structure to @inode->i_security. The
1580 * i_security field is initialized to NULL when the inode structure is
1581 * allocated.
1582 *
1583 * Return: Return 0 if operation was successful.
1584 */
1585int security_inode_alloc(struct inode *inode)
1586{
1587 int rc = lsm_inode_alloc(inode);
1588
1589 if (unlikely(rc))
1590 return rc;
1591 rc = call_int_hook(inode_alloc_security, inode);
1592 if (unlikely(rc))
1593 security_inode_free(inode);
1594 return rc;
1595}
1596
1597static void inode_free_by_rcu(struct rcu_head *head)
1598{
1599 /*
1600 * The rcu head is at the start of the inode blob
1601 */
1602 kmem_cache_free(lsm_inode_cache, head);
1603}
1604
1605/**
1606 * security_inode_free() - Free an inode's LSM blob
1607 * @inode: the inode
1608 *
1609 * Deallocate the inode security structure and set @inode->i_security to NULL.
1610 */
1611void security_inode_free(struct inode *inode)
1612{
1613 call_void_hook(inode_free_security, inode);
1614 /*
1615 * The inode may still be referenced in a path walk and
1616 * a call to security_inode_permission() can be made
1617 * after inode_free_security() is called. Ideally, the VFS
1618 * wouldn't do this, but fixing that is a much harder
1619 * job. For now, simply free the i_security via RCU, and
1620 * leave the current inode->i_security pointer intact.
1621 * The inode will be freed after the RCU grace period too.
1622 */
1623 if (inode->i_security)
1624 call_rcu((struct rcu_head *)inode->i_security,
1625 inode_free_by_rcu);
1626}
1627
1628/**
1629 * security_dentry_init_security() - Perform dentry initialization
1630 * @dentry: the dentry to initialize
1631 * @mode: mode used to determine resource type
1632 * @name: name of the last path component
1633 * @xattr_name: name of the security/LSM xattr
1634 * @ctx: pointer to the resulting LSM context
1635 * @ctxlen: length of @ctx
1636 *
1637 * Compute a context for a dentry as the inode is not yet available since NFSv4
1638 * has no label backed by an EA anyway. It is important to note that
1639 * @xattr_name does not need to be free'd by the caller, it is a static string.
1640 *
1641 * Return: Returns 0 on success, negative values on failure.
1642 */
1643int security_dentry_init_security(struct dentry *dentry, int mode,
1644 const struct qstr *name,
1645 const char **xattr_name, void **ctx,
1646 u32 *ctxlen)
1647{
1648 return call_int_hook(dentry_init_security, dentry, mode, name,
1649 xattr_name, ctx, ctxlen);
1650}
1651EXPORT_SYMBOL(security_dentry_init_security);
1652
1653/**
1654 * security_dentry_create_files_as() - Perform dentry initialization
1655 * @dentry: the dentry to initialize
1656 * @mode: mode used to determine resource type
1657 * @name: name of the last path component
1658 * @old: creds to use for LSM context calculations
1659 * @new: creds to modify
1660 *
1661 * Compute a context for a dentry as the inode is not yet available and set
1662 * that context in passed in creds so that new files are created using that
1663 * context. Context is calculated using the passed in creds and not the creds
1664 * of the caller.
1665 *
1666 * Return: Returns 0 on success, error on failure.
1667 */
1668int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669 struct qstr *name,
1670 const struct cred *old, struct cred *new)
1671{
1672 return call_int_hook(dentry_create_files_as, dentry, mode,
1673 name, old, new);
1674}
1675EXPORT_SYMBOL(security_dentry_create_files_as);
1676
1677/**
1678 * security_inode_init_security() - Initialize an inode's LSM context
1679 * @inode: the inode
1680 * @dir: parent directory
1681 * @qstr: last component of the pathname
1682 * @initxattrs: callback function to write xattrs
1683 * @fs_data: filesystem specific data
1684 *
1685 * Obtain the security attribute name suffix and value to set on a newly
1686 * created inode and set up the incore security field for the new inode. This
1687 * hook is called by the fs code as part of the inode creation transaction and
1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689 * hooks called by the VFS.
1690 *
1691 * The hook function is expected to populate the xattrs array, by calling
1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1694 * slot, the hook function should set ->name to the attribute name suffix
1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696 * to the attribute value, to set ->value_len to the length of the value. If
1697 * the security module does not use security attributes or does not wish to put
1698 * a security attribute on this particular inode, then it should return
1699 * -EOPNOTSUPP to skip this processing.
1700 *
1701 * Return: Returns 0 if the LSM successfully initialized all of the inode
1702 * security attributes that are required, negative values otherwise.
1703 */
1704int security_inode_init_security(struct inode *inode, struct inode *dir,
1705 const struct qstr *qstr,
1706 const initxattrs initxattrs, void *fs_data)
1707{
1708 struct security_hook_list *hp;
1709 struct xattr *new_xattrs = NULL;
1710 int ret = -EOPNOTSUPP, xattr_count = 0;
1711
1712 if (unlikely(IS_PRIVATE(inode)))
1713 return 0;
1714
1715 if (!blob_sizes.lbs_xattr_count)
1716 return 0;
1717
1718 if (initxattrs) {
1719 /* Allocate +1 as terminator. */
1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721 sizeof(*new_xattrs), GFP_NOFS);
1722 if (!new_xattrs)
1723 return -ENOMEM;
1724 }
1725
1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727 list) {
1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729 &xattr_count);
1730 if (ret && ret != -EOPNOTSUPP)
1731 goto out;
1732 /*
1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734 * means that the LSM is not willing to provide an xattr, not
1735 * that it wants to signal an error. Thus, continue to invoke
1736 * the remaining LSMs.
1737 */
1738 }
1739
1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741 if (!xattr_count)
1742 goto out;
1743
1744 ret = initxattrs(inode, new_xattrs, fs_data);
1745out:
1746 for (; xattr_count > 0; xattr_count--)
1747 kfree(new_xattrs[xattr_count - 1].value);
1748 kfree(new_xattrs);
1749 return (ret == -EOPNOTSUPP) ? 0 : ret;
1750}
1751EXPORT_SYMBOL(security_inode_init_security);
1752
1753/**
1754 * security_inode_init_security_anon() - Initialize an anonymous inode
1755 * @inode: the inode
1756 * @name: the anonymous inode class
1757 * @context_inode: an optional related inode
1758 *
1759 * Set up the incore security field for the new anonymous inode and return
1760 * whether the inode creation is permitted by the security module or not.
1761 *
1762 * Return: Returns 0 on success, -EACCES if the security module denies the
1763 * creation of this inode, or another -errno upon other errors.
1764 */
1765int security_inode_init_security_anon(struct inode *inode,
1766 const struct qstr *name,
1767 const struct inode *context_inode)
1768{
1769 return call_int_hook(inode_init_security_anon, inode, name,
1770 context_inode);
1771}
1772
1773#ifdef CONFIG_SECURITY_PATH
1774/**
1775 * security_path_mknod() - Check if creating a special file is allowed
1776 * @dir: parent directory
1777 * @dentry: new file
1778 * @mode: new file mode
1779 * @dev: device number
1780 *
1781 * Check permissions when creating a file. Note that this hook is called even
1782 * if mknod operation is being done for a regular file.
1783 *
1784 * Return: Returns 0 if permission is granted.
1785 */
1786int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787 umode_t mode, unsigned int dev)
1788{
1789 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790 return 0;
1791 return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792}
1793EXPORT_SYMBOL(security_path_mknod);
1794
1795/**
1796 * security_path_post_mknod() - Update inode security after reg file creation
1797 * @idmap: idmap of the mount
1798 * @dentry: new file
1799 *
1800 * Update inode security field after a regular file has been created.
1801 */
1802void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803{
1804 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805 return;
1806 call_void_hook(path_post_mknod, idmap, dentry);
1807}
1808
1809/**
1810 * security_path_mkdir() - Check if creating a new directory is allowed
1811 * @dir: parent directory
1812 * @dentry: new directory
1813 * @mode: new directory mode
1814 *
1815 * Check permissions to create a new directory in the existing directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
1819int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820 umode_t mode)
1821{
1822 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823 return 0;
1824 return call_int_hook(path_mkdir, dir, dentry, mode);
1825}
1826EXPORT_SYMBOL(security_path_mkdir);
1827
1828/**
1829 * security_path_rmdir() - Check if removing a directory is allowed
1830 * @dir: parent directory
1831 * @dentry: directory to remove
1832 *
1833 * Check the permission to remove a directory.
1834 *
1835 * Return: Returns 0 if permission is granted.
1836 */
1837int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838{
1839 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840 return 0;
1841 return call_int_hook(path_rmdir, dir, dentry);
1842}
1843
1844/**
1845 * security_path_unlink() - Check if removing a hard link is allowed
1846 * @dir: parent directory
1847 * @dentry: file
1848 *
1849 * Check the permission to remove a hard link to a file.
1850 *
1851 * Return: Returns 0 if permission is granted.
1852 */
1853int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854{
1855 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856 return 0;
1857 return call_int_hook(path_unlink, dir, dentry);
1858}
1859EXPORT_SYMBOL(security_path_unlink);
1860
1861/**
1862 * security_path_symlink() - Check if creating a symbolic link is allowed
1863 * @dir: parent directory
1864 * @dentry: symbolic link
1865 * @old_name: file pathname
1866 *
1867 * Check the permission to create a symbolic link to a file.
1868 *
1869 * Return: Returns 0 if permission is granted.
1870 */
1871int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872 const char *old_name)
1873{
1874 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875 return 0;
1876 return call_int_hook(path_symlink, dir, dentry, old_name);
1877}
1878
1879/**
1880 * security_path_link - Check if creating a hard link is allowed
1881 * @old_dentry: existing file
1882 * @new_dir: new parent directory
1883 * @new_dentry: new link
1884 *
1885 * Check permission before creating a new hard link to a file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890 struct dentry *new_dentry)
1891{
1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893 return 0;
1894 return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895}
1896
1897/**
1898 * security_path_rename() - Check if renaming a file is allowed
1899 * @old_dir: parent directory of the old file
1900 * @old_dentry: the old file
1901 * @new_dir: parent directory of the new file
1902 * @new_dentry: the new file
1903 * @flags: flags
1904 *
1905 * Check for permission to rename a file or directory.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
1909int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910 const struct path *new_dir, struct dentry *new_dentry,
1911 unsigned int flags)
1912{
1913 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914 (d_is_positive(new_dentry) &&
1915 IS_PRIVATE(d_backing_inode(new_dentry)))))
1916 return 0;
1917
1918 return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919 new_dentry, flags);
1920}
1921EXPORT_SYMBOL(security_path_rename);
1922
1923/**
1924 * security_path_truncate() - Check if truncating a file is allowed
1925 * @path: file
1926 *
1927 * Check permission before truncating the file indicated by path. Note that
1928 * truncation permissions may also be checked based on already opened files,
1929 * using the security_file_truncate() hook.
1930 *
1931 * Return: Returns 0 if permission is granted.
1932 */
1933int security_path_truncate(const struct path *path)
1934{
1935 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936 return 0;
1937 return call_int_hook(path_truncate, path);
1938}
1939
1940/**
1941 * security_path_chmod() - Check if changing the file's mode is allowed
1942 * @path: file
1943 * @mode: new mode
1944 *
1945 * Check for permission to change a mode of the file @path. The new mode is
1946 * specified in @mode which is a bitmask of constants from
1947 * <include/uapi/linux/stat.h>.
1948 *
1949 * Return: Returns 0 if permission is granted.
1950 */
1951int security_path_chmod(const struct path *path, umode_t mode)
1952{
1953 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954 return 0;
1955 return call_int_hook(path_chmod, path, mode);
1956}
1957
1958/**
1959 * security_path_chown() - Check if changing the file's owner/group is allowed
1960 * @path: file
1961 * @uid: file owner
1962 * @gid: file group
1963 *
1964 * Check for permission to change owner/group of a file or directory.
1965 *
1966 * Return: Returns 0 if permission is granted.
1967 */
1968int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969{
1970 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971 return 0;
1972 return call_int_hook(path_chown, path, uid, gid);
1973}
1974
1975/**
1976 * security_path_chroot() - Check if changing the root directory is allowed
1977 * @path: directory
1978 *
1979 * Check for permission to change root directory.
1980 *
1981 * Return: Returns 0 if permission is granted.
1982 */
1983int security_path_chroot(const struct path *path)
1984{
1985 return call_int_hook(path_chroot, path);
1986}
1987#endif /* CONFIG_SECURITY_PATH */
1988
1989/**
1990 * security_inode_create() - Check if creating a file is allowed
1991 * @dir: the parent directory
1992 * @dentry: the file being created
1993 * @mode: requested file mode
1994 *
1995 * Check permission to create a regular file.
1996 *
1997 * Return: Returns 0 if permission is granted.
1998 */
1999int security_inode_create(struct inode *dir, struct dentry *dentry,
2000 umode_t mode)
2001{
2002 if (unlikely(IS_PRIVATE(dir)))
2003 return 0;
2004 return call_int_hook(inode_create, dir, dentry, mode);
2005}
2006EXPORT_SYMBOL_GPL(security_inode_create);
2007
2008/**
2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010 * @idmap: idmap of the mount
2011 * @inode: inode of the new tmpfile
2012 *
2013 * Update inode security data after a tmpfile has been created.
2014 */
2015void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016 struct inode *inode)
2017{
2018 if (unlikely(IS_PRIVATE(inode)))
2019 return;
2020 call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021}
2022
2023/**
2024 * security_inode_link() - Check if creating a hard link is allowed
2025 * @old_dentry: existing file
2026 * @dir: new parent directory
2027 * @new_dentry: new link
2028 *
2029 * Check permission before creating a new hard link to a file.
2030 *
2031 * Return: Returns 0 if permission is granted.
2032 */
2033int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034 struct dentry *new_dentry)
2035{
2036 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037 return 0;
2038 return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039}
2040
2041/**
2042 * security_inode_unlink() - Check if removing a hard link is allowed
2043 * @dir: parent directory
2044 * @dentry: file
2045 *
2046 * Check the permission to remove a hard link to a file.
2047 *
2048 * Return: Returns 0 if permission is granted.
2049 */
2050int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051{
2052 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053 return 0;
2054 return call_int_hook(inode_unlink, dir, dentry);
2055}
2056
2057/**
2058 * security_inode_symlink() - Check if creating a symbolic link is allowed
2059 * @dir: parent directory
2060 * @dentry: symbolic link
2061 * @old_name: existing filename
2062 *
2063 * Check the permission to create a symbolic link to a file.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
2067int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068 const char *old_name)
2069{
2070 if (unlikely(IS_PRIVATE(dir)))
2071 return 0;
2072 return call_int_hook(inode_symlink, dir, dentry, old_name);
2073}
2074
2075/**
2076 * security_inode_mkdir() - Check if creation a new director is allowed
2077 * @dir: parent directory
2078 * @dentry: new directory
2079 * @mode: new directory mode
2080 *
2081 * Check permissions to create a new directory in the existing directory
2082 * associated with inode structure @dir.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087{
2088 if (unlikely(IS_PRIVATE(dir)))
2089 return 0;
2090 return call_int_hook(inode_mkdir, dir, dentry, mode);
2091}
2092EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093
2094/**
2095 * security_inode_rmdir() - Check if removing a directory is allowed
2096 * @dir: parent directory
2097 * @dentry: directory to be removed
2098 *
2099 * Check the permission to remove a directory.
2100 *
2101 * Return: Returns 0 if permission is granted.
2102 */
2103int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104{
2105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106 return 0;
2107 return call_int_hook(inode_rmdir, dir, dentry);
2108}
2109
2110/**
2111 * security_inode_mknod() - Check if creating a special file is allowed
2112 * @dir: parent directory
2113 * @dentry: new file
2114 * @mode: new file mode
2115 * @dev: device number
2116 *
2117 * Check permissions when creating a special file (or a socket or a fifo file
2118 * created via the mknod system call). Note that if mknod operation is being
2119 * done for a regular file, then the create hook will be called and not this
2120 * hook.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125 umode_t mode, dev_t dev)
2126{
2127 if (unlikely(IS_PRIVATE(dir)))
2128 return 0;
2129 return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130}
2131
2132/**
2133 * security_inode_rename() - Check if renaming a file is allowed
2134 * @old_dir: parent directory of the old file
2135 * @old_dentry: the old file
2136 * @new_dir: parent directory of the new file
2137 * @new_dentry: the new file
2138 * @flags: flags
2139 *
2140 * Check for permission to rename a file or directory.
2141 *
2142 * Return: Returns 0 if permission is granted.
2143 */
2144int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145 struct inode *new_dir, struct dentry *new_dentry,
2146 unsigned int flags)
2147{
2148 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149 (d_is_positive(new_dentry) &&
2150 IS_PRIVATE(d_backing_inode(new_dentry)))))
2151 return 0;
2152
2153 if (flags & RENAME_EXCHANGE) {
2154 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155 old_dir, old_dentry);
2156 if (err)
2157 return err;
2158 }
2159
2160 return call_int_hook(inode_rename, old_dir, old_dentry,
2161 new_dir, new_dentry);
2162}
2163
2164/**
2165 * security_inode_readlink() - Check if reading a symbolic link is allowed
2166 * @dentry: link
2167 *
2168 * Check the permission to read the symbolic link.
2169 *
2170 * Return: Returns 0 if permission is granted.
2171 */
2172int security_inode_readlink(struct dentry *dentry)
2173{
2174 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175 return 0;
2176 return call_int_hook(inode_readlink, dentry);
2177}
2178
2179/**
2180 * security_inode_follow_link() - Check if following a symbolic link is allowed
2181 * @dentry: link dentry
2182 * @inode: link inode
2183 * @rcu: true if in RCU-walk mode
2184 *
2185 * Check permission to follow a symbolic link when looking up a pathname. If
2186 * @rcu is true, @inode is not stable.
2187 *
2188 * Return: Returns 0 if permission is granted.
2189 */
2190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191 bool rcu)
2192{
2193 if (unlikely(IS_PRIVATE(inode)))
2194 return 0;
2195 return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196}
2197
2198/**
2199 * security_inode_permission() - Check if accessing an inode is allowed
2200 * @inode: inode
2201 * @mask: access mask
2202 *
2203 * Check permission before accessing an inode. This hook is called by the
2204 * existing Linux permission function, so a security module can use it to
2205 * provide additional checking for existing Linux permission checks. Notice
2206 * that this hook is called when a file is opened (as well as many other
2207 * operations), whereas the file_security_ops permission hook is called when
2208 * the actual read/write operations are performed.
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_permission(struct inode *inode, int mask)
2213{
2214 if (unlikely(IS_PRIVATE(inode)))
2215 return 0;
2216 return call_int_hook(inode_permission, inode, mask);
2217}
2218
2219/**
2220 * security_inode_setattr() - Check if setting file attributes is allowed
2221 * @idmap: idmap of the mount
2222 * @dentry: file
2223 * @attr: new attributes
2224 *
2225 * Check permission before setting file attributes. Note that the kernel call
2226 * to notify_change is performed from several locations, whenever file
2227 * attributes change (such as when a file is truncated, chown/chmod operations,
2228 * transferring disk quotas, etc).
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
2232int security_inode_setattr(struct mnt_idmap *idmap,
2233 struct dentry *dentry, struct iattr *attr)
2234{
2235 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236 return 0;
2237 return call_int_hook(inode_setattr, idmap, dentry, attr);
2238}
2239EXPORT_SYMBOL_GPL(security_inode_setattr);
2240
2241/**
2242 * security_inode_post_setattr() - Update the inode after a setattr operation
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @ia_valid: file attributes set
2246 *
2247 * Update inode security field after successful setting file attributes.
2248 */
2249void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250 int ia_valid)
2251{
2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253 return;
2254 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255}
2256
2257/**
2258 * security_inode_getattr() - Check if getting file attributes is allowed
2259 * @path: file
2260 *
2261 * Check permission before obtaining file attributes.
2262 *
2263 * Return: Returns 0 if permission is granted.
2264 */
2265int security_inode_getattr(const struct path *path)
2266{
2267 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268 return 0;
2269 return call_int_hook(inode_getattr, path);
2270}
2271
2272/**
2273 * security_inode_setxattr() - Check if setting file xattrs is allowed
2274 * @idmap: idmap of the mount
2275 * @dentry: file
2276 * @name: xattr name
2277 * @value: xattr value
2278 * @size: size of xattr value
2279 * @flags: flags
2280 *
2281 * Check permission before setting the extended attributes.
2282 *
2283 * Return: Returns 0 if permission is granted.
2284 */
2285int security_inode_setxattr(struct mnt_idmap *idmap,
2286 struct dentry *dentry, const char *name,
2287 const void *value, size_t size, int flags)
2288{
2289 int ret;
2290
2291 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292 return 0;
2293 /*
2294 * SELinux and Smack integrate the cap call,
2295 * so assume that all LSMs supplying this call do so.
2296 */
2297 ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2298 flags);
2299
2300 if (ret == 1)
2301 ret = cap_inode_setxattr(dentry, name, value, size, flags);
2302 return ret;
2303}
2304
2305/**
2306 * security_inode_set_acl() - Check if setting posix acls is allowed
2307 * @idmap: idmap of the mount
2308 * @dentry: file
2309 * @acl_name: acl name
2310 * @kacl: acl struct
2311 *
2312 * Check permission before setting posix acls, the posix acls in @kacl are
2313 * identified by @acl_name.
2314 *
2315 * Return: Returns 0 if permission is granted.
2316 */
2317int security_inode_set_acl(struct mnt_idmap *idmap,
2318 struct dentry *dentry, const char *acl_name,
2319 struct posix_acl *kacl)
2320{
2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322 return 0;
2323 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2324}
2325
2326/**
2327 * security_inode_post_set_acl() - Update inode security from posix acls set
2328 * @dentry: file
2329 * @acl_name: acl name
2330 * @kacl: acl struct
2331 *
2332 * Update inode security data after successfully setting posix acls on @dentry.
2333 * The posix acls in @kacl are identified by @acl_name.
2334 */
2335void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2336 struct posix_acl *kacl)
2337{
2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339 return;
2340 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2341}
2342
2343/**
2344 * security_inode_get_acl() - Check if reading posix acls is allowed
2345 * @idmap: idmap of the mount
2346 * @dentry: file
2347 * @acl_name: acl name
2348 *
2349 * Check permission before getting osix acls, the posix acls are identified by
2350 * @acl_name.
2351 *
2352 * Return: Returns 0 if permission is granted.
2353 */
2354int security_inode_get_acl(struct mnt_idmap *idmap,
2355 struct dentry *dentry, const char *acl_name)
2356{
2357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2358 return 0;
2359 return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2360}
2361
2362/**
2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2364 * @idmap: idmap of the mount
2365 * @dentry: file
2366 * @acl_name: acl name
2367 *
2368 * Check permission before removing posix acls, the posix acls are identified
2369 * by @acl_name.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
2373int security_inode_remove_acl(struct mnt_idmap *idmap,
2374 struct dentry *dentry, const char *acl_name)
2375{
2376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2377 return 0;
2378 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2379}
2380
2381/**
2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2383 * @idmap: idmap of the mount
2384 * @dentry: file
2385 * @acl_name: acl name
2386 *
2387 * Update inode security data after successfully removing posix acls on
2388 * @dentry in @idmap. The posix acls are identified by @acl_name.
2389 */
2390void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2391 struct dentry *dentry, const char *acl_name)
2392{
2393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2394 return;
2395 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2396}
2397
2398/**
2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2400 * @dentry: file
2401 * @name: xattr name
2402 * @value: xattr value
2403 * @size: xattr value size
2404 * @flags: flags
2405 *
2406 * Update inode security field after successful setxattr operation.
2407 */
2408void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2409 const void *value, size_t size, int flags)
2410{
2411 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2412 return;
2413 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2414}
2415
2416/**
2417 * security_inode_getxattr() - Check if xattr access is allowed
2418 * @dentry: file
2419 * @name: xattr name
2420 *
2421 * Check permission before obtaining the extended attributes identified by
2422 * @name for @dentry.
2423 *
2424 * Return: Returns 0 if permission is granted.
2425 */
2426int security_inode_getxattr(struct dentry *dentry, const char *name)
2427{
2428 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429 return 0;
2430 return call_int_hook(inode_getxattr, dentry, name);
2431}
2432
2433/**
2434 * security_inode_listxattr() - Check if listing xattrs is allowed
2435 * @dentry: file
2436 *
2437 * Check permission before obtaining the list of extended attribute names for
2438 * @dentry.
2439 *
2440 * Return: Returns 0 if permission is granted.
2441 */
2442int security_inode_listxattr(struct dentry *dentry)
2443{
2444 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2445 return 0;
2446 return call_int_hook(inode_listxattr, dentry);
2447}
2448
2449/**
2450 * security_inode_removexattr() - Check if removing an xattr is allowed
2451 * @idmap: idmap of the mount
2452 * @dentry: file
2453 * @name: xattr name
2454 *
2455 * Check permission before removing the extended attribute identified by @name
2456 * for @dentry.
2457 *
2458 * Return: Returns 0 if permission is granted.
2459 */
2460int security_inode_removexattr(struct mnt_idmap *idmap,
2461 struct dentry *dentry, const char *name)
2462{
2463 int ret;
2464
2465 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466 return 0;
2467 /*
2468 * SELinux and Smack integrate the cap call,
2469 * so assume that all LSMs supplying this call do so.
2470 */
2471 ret = call_int_hook(inode_removexattr, idmap, dentry, name);
2472 if (ret == 1)
2473 ret = cap_inode_removexattr(idmap, dentry, name);
2474 return ret;
2475}
2476
2477/**
2478 * security_inode_post_removexattr() - Update the inode after a removexattr op
2479 * @dentry: file
2480 * @name: xattr name
2481 *
2482 * Update the inode after a successful removexattr operation.
2483 */
2484void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2485{
2486 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2487 return;
2488 call_void_hook(inode_post_removexattr, dentry, name);
2489}
2490
2491/**
2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2493 * @dentry: associated dentry
2494 *
2495 * Called when an inode has been changed to determine if
2496 * security_inode_killpriv() should be called.
2497 *
2498 * Return: Return <0 on error to abort the inode change operation, return 0 if
2499 * security_inode_killpriv() does not need to be called, return >0 if
2500 * security_inode_killpriv() does need to be called.
2501 */
2502int security_inode_need_killpriv(struct dentry *dentry)
2503{
2504 return call_int_hook(inode_need_killpriv, dentry);
2505}
2506
2507/**
2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2509 * @idmap: idmap of the mount
2510 * @dentry: associated dentry
2511 *
2512 * The @dentry's setuid bit is being removed. Remove similar security labels.
2513 * Called with the dentry->d_inode->i_mutex held.
2514 *
2515 * Return: Return 0 on success. If error is returned, then the operation
2516 * causing setuid bit removal is failed.
2517 */
2518int security_inode_killpriv(struct mnt_idmap *idmap,
2519 struct dentry *dentry)
2520{
2521 return call_int_hook(inode_killpriv, idmap, dentry);
2522}
2523
2524/**
2525 * security_inode_getsecurity() - Get the xattr security label of an inode
2526 * @idmap: idmap of the mount
2527 * @inode: inode
2528 * @name: xattr name
2529 * @buffer: security label buffer
2530 * @alloc: allocation flag
2531 *
2532 * Retrieve a copy of the extended attribute representation of the security
2533 * label associated with @name for @inode via @buffer. Note that @name is the
2534 * remainder of the attribute name after the security prefix has been removed.
2535 * @alloc is used to specify if the call should return a value via the buffer
2536 * or just the value length.
2537 *
2538 * Return: Returns size of buffer on success.
2539 */
2540int security_inode_getsecurity(struct mnt_idmap *idmap,
2541 struct inode *inode, const char *name,
2542 void **buffer, bool alloc)
2543{
2544 if (unlikely(IS_PRIVATE(inode)))
2545 return LSM_RET_DEFAULT(inode_getsecurity);
2546
2547 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2548 alloc);
2549}
2550
2551/**
2552 * security_inode_setsecurity() - Set the xattr security label of an inode
2553 * @inode: inode
2554 * @name: xattr name
2555 * @value: security label
2556 * @size: length of security label
2557 * @flags: flags
2558 *
2559 * Set the security label associated with @name for @inode from the extended
2560 * attribute value @value. @size indicates the size of the @value in bytes.
2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2562 * remainder of the attribute name after the security. prefix has been removed.
2563 *
2564 * Return: Returns 0 on success.
2565 */
2566int security_inode_setsecurity(struct inode *inode, const char *name,
2567 const void *value, size_t size, int flags)
2568{
2569 if (unlikely(IS_PRIVATE(inode)))
2570 return LSM_RET_DEFAULT(inode_setsecurity);
2571
2572 return call_int_hook(inode_setsecurity, inode, name, value, size,
2573 flags);
2574}
2575
2576/**
2577 * security_inode_listsecurity() - List the xattr security label names
2578 * @inode: inode
2579 * @buffer: buffer
2580 * @buffer_size: size of buffer
2581 *
2582 * Copy the extended attribute names for the security labels associated with
2583 * @inode into @buffer. The maximum size of @buffer is specified by
2584 * @buffer_size. @buffer may be NULL to request the size of the buffer
2585 * required.
2586 *
2587 * Return: Returns number of bytes used/required on success.
2588 */
2589int security_inode_listsecurity(struct inode *inode,
2590 char *buffer, size_t buffer_size)
2591{
2592 if (unlikely(IS_PRIVATE(inode)))
2593 return 0;
2594 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2595}
2596EXPORT_SYMBOL(security_inode_listsecurity);
2597
2598/**
2599 * security_inode_getsecid() - Get an inode's secid
2600 * @inode: inode
2601 * @secid: secid to return
2602 *
2603 * Get the secid associated with the node. In case of failure, @secid will be
2604 * set to zero.
2605 */
2606void security_inode_getsecid(struct inode *inode, u32 *secid)
2607{
2608 call_void_hook(inode_getsecid, inode, secid);
2609}
2610
2611/**
2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2613 * @src: union dentry of copy-up file
2614 * @new: newly created creds
2615 *
2616 * A file is about to be copied up from lower layer to upper layer of overlay
2617 * filesystem. Security module can prepare a set of new creds and modify as
2618 * need be and return new creds. Caller will switch to new creds temporarily to
2619 * create new file and release newly allocated creds.
2620 *
2621 * Return: Returns 0 on success or a negative error code on error.
2622 */
2623int security_inode_copy_up(struct dentry *src, struct cred **new)
2624{
2625 return call_int_hook(inode_copy_up, src, new);
2626}
2627EXPORT_SYMBOL(security_inode_copy_up);
2628
2629/**
2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2631 * @name: xattr name
2632 *
2633 * Filter the xattrs being copied up when a unioned file is copied up from a
2634 * lower layer to the union/overlay layer. The caller is responsible for
2635 * reading and writing the xattrs, this hook is merely a filter.
2636 *
2637 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2638 * if the security module does not know about attribute, or a negative
2639 * error code to abort the copy up.
2640 */
2641int security_inode_copy_up_xattr(const char *name)
2642{
2643 int rc;
2644
2645 /*
2646 * The implementation can return 0 (accept the xattr), 1 (discard the
2647 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2648 * any other error code in case of an error.
2649 */
2650 rc = call_int_hook(inode_copy_up_xattr, name);
2651 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2652 return rc;
2653
2654 return LSM_RET_DEFAULT(inode_copy_up_xattr);
2655}
2656EXPORT_SYMBOL(security_inode_copy_up_xattr);
2657
2658/**
2659 * security_kernfs_init_security() - Init LSM context for a kernfs node
2660 * @kn_dir: parent kernfs node
2661 * @kn: the kernfs node to initialize
2662 *
2663 * Initialize the security context of a newly created kernfs node based on its
2664 * own and its parent's attributes.
2665 *
2666 * Return: Returns 0 if permission is granted.
2667 */
2668int security_kernfs_init_security(struct kernfs_node *kn_dir,
2669 struct kernfs_node *kn)
2670{
2671 return call_int_hook(kernfs_init_security, kn_dir, kn);
2672}
2673
2674/**
2675 * security_file_permission() - Check file permissions
2676 * @file: file
2677 * @mask: requested permissions
2678 *
2679 * Check file permissions before accessing an open file. This hook is called
2680 * by various operations that read or write files. A security module can use
2681 * this hook to perform additional checking on these operations, e.g. to
2682 * revalidate permissions on use to support privilege bracketing or policy
2683 * changes. Notice that this hook is used when the actual read/write
2684 * operations are performed, whereas the inode_security_ops hook is called when
2685 * a file is opened (as well as many other operations). Although this hook can
2686 * be used to revalidate permissions for various system call operations that
2687 * read or write files, it does not address the revalidation of permissions for
2688 * memory-mapped files. Security modules must handle this separately if they
2689 * need such revalidation.
2690 *
2691 * Return: Returns 0 if permission is granted.
2692 */
2693int security_file_permission(struct file *file, int mask)
2694{
2695 return call_int_hook(file_permission, file, mask);
2696}
2697
2698/**
2699 * security_file_alloc() - Allocate and init a file's LSM blob
2700 * @file: the file
2701 *
2702 * Allocate and attach a security structure to the file->f_security field. The
2703 * security field is initialized to NULL when the structure is first created.
2704 *
2705 * Return: Return 0 if the hook is successful and permission is granted.
2706 */
2707int security_file_alloc(struct file *file)
2708{
2709 int rc = lsm_file_alloc(file);
2710
2711 if (rc)
2712 return rc;
2713 rc = call_int_hook(file_alloc_security, file);
2714 if (unlikely(rc))
2715 security_file_free(file);
2716 return rc;
2717}
2718
2719/**
2720 * security_file_release() - Perform actions before releasing the file ref
2721 * @file: the file
2722 *
2723 * Perform actions before releasing the last reference to a file.
2724 */
2725void security_file_release(struct file *file)
2726{
2727 call_void_hook(file_release, file);
2728}
2729
2730/**
2731 * security_file_free() - Free a file's LSM blob
2732 * @file: the file
2733 *
2734 * Deallocate and free any security structures stored in file->f_security.
2735 */
2736void security_file_free(struct file *file)
2737{
2738 void *blob;
2739
2740 call_void_hook(file_free_security, file);
2741
2742 blob = file->f_security;
2743 if (blob) {
2744 file->f_security = NULL;
2745 kmem_cache_free(lsm_file_cache, blob);
2746 }
2747}
2748
2749/**
2750 * security_file_ioctl() - Check if an ioctl is allowed
2751 * @file: associated file
2752 * @cmd: ioctl cmd
2753 * @arg: ioctl arguments
2754 *
2755 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2756 * represents a user space pointer; in other cases, it may be a simple integer
2757 * value. When @arg represents a user space pointer, it should never be used
2758 * by the security module.
2759 *
2760 * Return: Returns 0 if permission is granted.
2761 */
2762int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2763{
2764 return call_int_hook(file_ioctl, file, cmd, arg);
2765}
2766EXPORT_SYMBOL_GPL(security_file_ioctl);
2767
2768/**
2769 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2770 * @file: associated file
2771 * @cmd: ioctl cmd
2772 * @arg: ioctl arguments
2773 *
2774 * Compat version of security_file_ioctl() that correctly handles 32-bit
2775 * processes running on 64-bit kernels.
2776 *
2777 * Return: Returns 0 if permission is granted.
2778 */
2779int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2780 unsigned long arg)
2781{
2782 return call_int_hook(file_ioctl_compat, file, cmd, arg);
2783}
2784EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2785
2786static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2787{
2788 /*
2789 * Does we have PROT_READ and does the application expect
2790 * it to imply PROT_EXEC? If not, nothing to talk about...
2791 */
2792 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2793 return prot;
2794 if (!(current->personality & READ_IMPLIES_EXEC))
2795 return prot;
2796 /*
2797 * if that's an anonymous mapping, let it.
2798 */
2799 if (!file)
2800 return prot | PROT_EXEC;
2801 /*
2802 * ditto if it's not on noexec mount, except that on !MMU we need
2803 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2804 */
2805 if (!path_noexec(&file->f_path)) {
2806#ifndef CONFIG_MMU
2807 if (file->f_op->mmap_capabilities) {
2808 unsigned caps = file->f_op->mmap_capabilities(file);
2809 if (!(caps & NOMMU_MAP_EXEC))
2810 return prot;
2811 }
2812#endif
2813 return prot | PROT_EXEC;
2814 }
2815 /* anything on noexec mount won't get PROT_EXEC */
2816 return prot;
2817}
2818
2819/**
2820 * security_mmap_file() - Check if mmap'ing a file is allowed
2821 * @file: file
2822 * @prot: protection applied by the kernel
2823 * @flags: flags
2824 *
2825 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2826 * mapping anonymous memory.
2827 *
2828 * Return: Returns 0 if permission is granted.
2829 */
2830int security_mmap_file(struct file *file, unsigned long prot,
2831 unsigned long flags)
2832{
2833 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2834 flags);
2835}
2836
2837/**
2838 * security_mmap_addr() - Check if mmap'ing an address is allowed
2839 * @addr: address
2840 *
2841 * Check permissions for a mmap operation at @addr.
2842 *
2843 * Return: Returns 0 if permission is granted.
2844 */
2845int security_mmap_addr(unsigned long addr)
2846{
2847 return call_int_hook(mmap_addr, addr);
2848}
2849
2850/**
2851 * security_file_mprotect() - Check if changing memory protections is allowed
2852 * @vma: memory region
2853 * @reqprot: application requested protection
2854 * @prot: protection applied by the kernel
2855 *
2856 * Check permissions before changing memory access permissions.
2857 *
2858 * Return: Returns 0 if permission is granted.
2859 */
2860int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2861 unsigned long prot)
2862{
2863 return call_int_hook(file_mprotect, vma, reqprot, prot);
2864}
2865
2866/**
2867 * security_file_lock() - Check if a file lock is allowed
2868 * @file: file
2869 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2870 *
2871 * Check permission before performing file locking operations. Note the hook
2872 * mediates both flock and fcntl style locks.
2873 *
2874 * Return: Returns 0 if permission is granted.
2875 */
2876int security_file_lock(struct file *file, unsigned int cmd)
2877{
2878 return call_int_hook(file_lock, file, cmd);
2879}
2880
2881/**
2882 * security_file_fcntl() - Check if fcntl() op is allowed
2883 * @file: file
2884 * @cmd: fcntl command
2885 * @arg: command argument
2886 *
2887 * Check permission before allowing the file operation specified by @cmd from
2888 * being performed on the file @file. Note that @arg sometimes represents a
2889 * user space pointer; in other cases, it may be a simple integer value. When
2890 * @arg represents a user space pointer, it should never be used by the
2891 * security module.
2892 *
2893 * Return: Returns 0 if permission is granted.
2894 */
2895int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2896{
2897 return call_int_hook(file_fcntl, file, cmd, arg);
2898}
2899
2900/**
2901 * security_file_set_fowner() - Set the file owner info in the LSM blob
2902 * @file: the file
2903 *
2904 * Save owner security information (typically from current->security) in
2905 * file->f_security for later use by the send_sigiotask hook.
2906 *
2907 * Return: Returns 0 on success.
2908 */
2909void security_file_set_fowner(struct file *file)
2910{
2911 call_void_hook(file_set_fowner, file);
2912}
2913
2914/**
2915 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2916 * @tsk: target task
2917 * @fown: signal sender
2918 * @sig: signal to be sent, SIGIO is sent if 0
2919 *
2920 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2921 * process @tsk. Note that this hook is sometimes called from interrupt. Note
2922 * that the fown_struct, @fown, is never outside the context of a struct file,
2923 * so the file structure (and associated security information) can always be
2924 * obtained: container_of(fown, struct file, f_owner).
2925 *
2926 * Return: Returns 0 if permission is granted.
2927 */
2928int security_file_send_sigiotask(struct task_struct *tsk,
2929 struct fown_struct *fown, int sig)
2930{
2931 return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2932}
2933
2934/**
2935 * security_file_receive() - Check if receiving a file via IPC is allowed
2936 * @file: file being received
2937 *
2938 * This hook allows security modules to control the ability of a process to
2939 * receive an open file descriptor via socket IPC.
2940 *
2941 * Return: Returns 0 if permission is granted.
2942 */
2943int security_file_receive(struct file *file)
2944{
2945 return call_int_hook(file_receive, file);
2946}
2947
2948/**
2949 * security_file_open() - Save open() time state for late use by the LSM
2950 * @file:
2951 *
2952 * Save open-time permission checking state for later use upon file_permission,
2953 * and recheck access if anything has changed since inode_permission.
2954 *
2955 * Return: Returns 0 if permission is granted.
2956 */
2957int security_file_open(struct file *file)
2958{
2959 int ret;
2960
2961 ret = call_int_hook(file_open, file);
2962 if (ret)
2963 return ret;
2964
2965 return fsnotify_open_perm(file);
2966}
2967
2968/**
2969 * security_file_post_open() - Evaluate a file after it has been opened
2970 * @file: the file
2971 * @mask: access mask
2972 *
2973 * Evaluate an opened file and the access mask requested with open(). The hook
2974 * is useful for LSMs that require the file content to be available in order to
2975 * make decisions.
2976 *
2977 * Return: Returns 0 if permission is granted.
2978 */
2979int security_file_post_open(struct file *file, int mask)
2980{
2981 return call_int_hook(file_post_open, file, mask);
2982}
2983EXPORT_SYMBOL_GPL(security_file_post_open);
2984
2985/**
2986 * security_file_truncate() - Check if truncating a file is allowed
2987 * @file: file
2988 *
2989 * Check permission before truncating a file, i.e. using ftruncate. Note that
2990 * truncation permission may also be checked based on the path, using the
2991 * @path_truncate hook.
2992 *
2993 * Return: Returns 0 if permission is granted.
2994 */
2995int security_file_truncate(struct file *file)
2996{
2997 return call_int_hook(file_truncate, file);
2998}
2999
3000/**
3001 * security_task_alloc() - Allocate a task's LSM blob
3002 * @task: the task
3003 * @clone_flags: flags indicating what is being shared
3004 *
3005 * Handle allocation of task-related resources.
3006 *
3007 * Return: Returns a zero on success, negative values on failure.
3008 */
3009int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3010{
3011 int rc = lsm_task_alloc(task);
3012
3013 if (rc)
3014 return rc;
3015 rc = call_int_hook(task_alloc, task, clone_flags);
3016 if (unlikely(rc))
3017 security_task_free(task);
3018 return rc;
3019}
3020
3021/**
3022 * security_task_free() - Free a task's LSM blob and related resources
3023 * @task: task
3024 *
3025 * Handle release of task-related resources. Note that this can be called from
3026 * interrupt context.
3027 */
3028void security_task_free(struct task_struct *task)
3029{
3030 call_void_hook(task_free, task);
3031
3032 kfree(task->security);
3033 task->security = NULL;
3034}
3035
3036/**
3037 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3038 * @cred: credentials
3039 * @gfp: gfp flags
3040 *
3041 * Only allocate sufficient memory and attach to @cred such that
3042 * cred_transfer() will not get ENOMEM.
3043 *
3044 * Return: Returns 0 on success, negative values on failure.
3045 */
3046int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3047{
3048 int rc = lsm_cred_alloc(cred, gfp);
3049
3050 if (rc)
3051 return rc;
3052
3053 rc = call_int_hook(cred_alloc_blank, cred, gfp);
3054 if (unlikely(rc))
3055 security_cred_free(cred);
3056 return rc;
3057}
3058
3059/**
3060 * security_cred_free() - Free the cred's LSM blob and associated resources
3061 * @cred: credentials
3062 *
3063 * Deallocate and clear the cred->security field in a set of credentials.
3064 */
3065void security_cred_free(struct cred *cred)
3066{
3067 /*
3068 * There is a failure case in prepare_creds() that
3069 * may result in a call here with ->security being NULL.
3070 */
3071 if (unlikely(cred->security == NULL))
3072 return;
3073
3074 call_void_hook(cred_free, cred);
3075
3076 kfree(cred->security);
3077 cred->security = NULL;
3078}
3079
3080/**
3081 * security_prepare_creds() - Prepare a new set of credentials
3082 * @new: new credentials
3083 * @old: original credentials
3084 * @gfp: gfp flags
3085 *
3086 * Prepare a new set of credentials by copying the data from the old set.
3087 *
3088 * Return: Returns 0 on success, negative values on failure.
3089 */
3090int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3091{
3092 int rc = lsm_cred_alloc(new, gfp);
3093
3094 if (rc)
3095 return rc;
3096
3097 rc = call_int_hook(cred_prepare, new, old, gfp);
3098 if (unlikely(rc))
3099 security_cred_free(new);
3100 return rc;
3101}
3102
3103/**
3104 * security_transfer_creds() - Transfer creds
3105 * @new: target credentials
3106 * @old: original credentials
3107 *
3108 * Transfer data from original creds to new creds.
3109 */
3110void security_transfer_creds(struct cred *new, const struct cred *old)
3111{
3112 call_void_hook(cred_transfer, new, old);
3113}
3114
3115/**
3116 * security_cred_getsecid() - Get the secid from a set of credentials
3117 * @c: credentials
3118 * @secid: secid value
3119 *
3120 * Retrieve the security identifier of the cred structure @c. In case of
3121 * failure, @secid will be set to zero.
3122 */
3123void security_cred_getsecid(const struct cred *c, u32 *secid)
3124{
3125 *secid = 0;
3126 call_void_hook(cred_getsecid, c, secid);
3127}
3128EXPORT_SYMBOL(security_cred_getsecid);
3129
3130/**
3131 * security_kernel_act_as() - Set the kernel credentials to act as secid
3132 * @new: credentials
3133 * @secid: secid
3134 *
3135 * Set the credentials for a kernel service to act as (subjective context).
3136 * The current task must be the one that nominated @secid.
3137 *
3138 * Return: Returns 0 if successful.
3139 */
3140int security_kernel_act_as(struct cred *new, u32 secid)
3141{
3142 return call_int_hook(kernel_act_as, new, secid);
3143}
3144
3145/**
3146 * security_kernel_create_files_as() - Set file creation context using an inode
3147 * @new: target credentials
3148 * @inode: reference inode
3149 *
3150 * Set the file creation context in a set of credentials to be the same as the
3151 * objective context of the specified inode. The current task must be the one
3152 * that nominated @inode.
3153 *
3154 * Return: Returns 0 if successful.
3155 */
3156int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3157{
3158 return call_int_hook(kernel_create_files_as, new, inode);
3159}
3160
3161/**
3162 * security_kernel_module_request() - Check if loading a module is allowed
3163 * @kmod_name: module name
3164 *
3165 * Ability to trigger the kernel to automatically upcall to userspace for
3166 * userspace to load a kernel module with the given name.
3167 *
3168 * Return: Returns 0 if successful.
3169 */
3170int security_kernel_module_request(char *kmod_name)
3171{
3172 return call_int_hook(kernel_module_request, kmod_name);
3173}
3174
3175/**
3176 * security_kernel_read_file() - Read a file specified by userspace
3177 * @file: file
3178 * @id: file identifier
3179 * @contents: trust if security_kernel_post_read_file() will be called
3180 *
3181 * Read a file specified by userspace.
3182 *
3183 * Return: Returns 0 if permission is granted.
3184 */
3185int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3186 bool contents)
3187{
3188 return call_int_hook(kernel_read_file, file, id, contents);
3189}
3190EXPORT_SYMBOL_GPL(security_kernel_read_file);
3191
3192/**
3193 * security_kernel_post_read_file() - Read a file specified by userspace
3194 * @file: file
3195 * @buf: file contents
3196 * @size: size of file contents
3197 * @id: file identifier
3198 *
3199 * Read a file specified by userspace. This must be paired with a prior call
3200 * to security_kernel_read_file() call that indicated this hook would also be
3201 * called, see security_kernel_read_file() for more information.
3202 *
3203 * Return: Returns 0 if permission is granted.
3204 */
3205int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3206 enum kernel_read_file_id id)
3207{
3208 return call_int_hook(kernel_post_read_file, file, buf, size, id);
3209}
3210EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3211
3212/**
3213 * security_kernel_load_data() - Load data provided by userspace
3214 * @id: data identifier
3215 * @contents: true if security_kernel_post_load_data() will be called
3216 *
3217 * Load data provided by userspace.
3218 *
3219 * Return: Returns 0 if permission is granted.
3220 */
3221int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3222{
3223 return call_int_hook(kernel_load_data, id, contents);
3224}
3225EXPORT_SYMBOL_GPL(security_kernel_load_data);
3226
3227/**
3228 * security_kernel_post_load_data() - Load userspace data from a non-file source
3229 * @buf: data
3230 * @size: size of data
3231 * @id: data identifier
3232 * @description: text description of data, specific to the id value
3233 *
3234 * Load data provided by a non-file source (usually userspace buffer). This
3235 * must be paired with a prior security_kernel_load_data() call that indicated
3236 * this hook would also be called, see security_kernel_load_data() for more
3237 * information.
3238 *
3239 * Return: Returns 0 if permission is granted.
3240 */
3241int security_kernel_post_load_data(char *buf, loff_t size,
3242 enum kernel_load_data_id id,
3243 char *description)
3244{
3245 return call_int_hook(kernel_post_load_data, buf, size, id, description);
3246}
3247EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3248
3249/**
3250 * security_task_fix_setuid() - Update LSM with new user id attributes
3251 * @new: updated credentials
3252 * @old: credentials being replaced
3253 * @flags: LSM_SETID_* flag values
3254 *
3255 * Update the module's state after setting one or more of the user identity
3256 * attributes of the current process. The @flags parameter indicates which of
3257 * the set*uid system calls invoked this hook. If @new is the set of
3258 * credentials that will be installed. Modifications should be made to this
3259 * rather than to @current->cred.
3260 *
3261 * Return: Returns 0 on success.
3262 */
3263int security_task_fix_setuid(struct cred *new, const struct cred *old,
3264 int flags)
3265{
3266 return call_int_hook(task_fix_setuid, new, old, flags);
3267}
3268
3269/**
3270 * security_task_fix_setgid() - Update LSM with new group id attributes
3271 * @new: updated credentials
3272 * @old: credentials being replaced
3273 * @flags: LSM_SETID_* flag value
3274 *
3275 * Update the module's state after setting one or more of the group identity
3276 * attributes of the current process. The @flags parameter indicates which of
3277 * the set*gid system calls invoked this hook. @new is the set of credentials
3278 * that will be installed. Modifications should be made to this rather than to
3279 * @current->cred.
3280 *
3281 * Return: Returns 0 on success.
3282 */
3283int security_task_fix_setgid(struct cred *new, const struct cred *old,
3284 int flags)
3285{
3286 return call_int_hook(task_fix_setgid, new, old, flags);
3287}
3288
3289/**
3290 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3291 * @new: updated credentials
3292 * @old: credentials being replaced
3293 *
3294 * Update the module's state after setting the supplementary group identity
3295 * attributes of the current process. @new is the set of credentials that will
3296 * be installed. Modifications should be made to this rather than to
3297 * @current->cred.
3298 *
3299 * Return: Returns 0 on success.
3300 */
3301int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3302{
3303 return call_int_hook(task_fix_setgroups, new, old);
3304}
3305
3306/**
3307 * security_task_setpgid() - Check if setting the pgid is allowed
3308 * @p: task being modified
3309 * @pgid: new pgid
3310 *
3311 * Check permission before setting the process group identifier of the process
3312 * @p to @pgid.
3313 *
3314 * Return: Returns 0 if permission is granted.
3315 */
3316int security_task_setpgid(struct task_struct *p, pid_t pgid)
3317{
3318 return call_int_hook(task_setpgid, p, pgid);
3319}
3320
3321/**
3322 * security_task_getpgid() - Check if getting the pgid is allowed
3323 * @p: task
3324 *
3325 * Check permission before getting the process group identifier of the process
3326 * @p.
3327 *
3328 * Return: Returns 0 if permission is granted.
3329 */
3330int security_task_getpgid(struct task_struct *p)
3331{
3332 return call_int_hook(task_getpgid, p);
3333}
3334
3335/**
3336 * security_task_getsid() - Check if getting the session id is allowed
3337 * @p: task
3338 *
3339 * Check permission before getting the session identifier of the process @p.
3340 *
3341 * Return: Returns 0 if permission is granted.
3342 */
3343int security_task_getsid(struct task_struct *p)
3344{
3345 return call_int_hook(task_getsid, p);
3346}
3347
3348/**
3349 * security_current_getsecid_subj() - Get the current task's subjective secid
3350 * @secid: secid value
3351 *
3352 * Retrieve the subjective security identifier of the current task and return
3353 * it in @secid. In case of failure, @secid will be set to zero.
3354 */
3355void security_current_getsecid_subj(u32 *secid)
3356{
3357 *secid = 0;
3358 call_void_hook(current_getsecid_subj, secid);
3359}
3360EXPORT_SYMBOL(security_current_getsecid_subj);
3361
3362/**
3363 * security_task_getsecid_obj() - Get a task's objective secid
3364 * @p: target task
3365 * @secid: secid value
3366 *
3367 * Retrieve the objective security identifier of the task_struct in @p and
3368 * return it in @secid. In case of failure, @secid will be set to zero.
3369 */
3370void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3371{
3372 *secid = 0;
3373 call_void_hook(task_getsecid_obj, p, secid);
3374}
3375EXPORT_SYMBOL(security_task_getsecid_obj);
3376
3377/**
3378 * security_task_setnice() - Check if setting a task's nice value is allowed
3379 * @p: target task
3380 * @nice: nice value
3381 *
3382 * Check permission before setting the nice value of @p to @nice.
3383 *
3384 * Return: Returns 0 if permission is granted.
3385 */
3386int security_task_setnice(struct task_struct *p, int nice)
3387{
3388 return call_int_hook(task_setnice, p, nice);
3389}
3390
3391/**
3392 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3393 * @p: target task
3394 * @ioprio: ioprio value
3395 *
3396 * Check permission before setting the ioprio value of @p to @ioprio.
3397 *
3398 * Return: Returns 0 if permission is granted.
3399 */
3400int security_task_setioprio(struct task_struct *p, int ioprio)
3401{
3402 return call_int_hook(task_setioprio, p, ioprio);
3403}
3404
3405/**
3406 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3407 * @p: task
3408 *
3409 * Check permission before getting the ioprio value of @p.
3410 *
3411 * Return: Returns 0 if permission is granted.
3412 */
3413int security_task_getioprio(struct task_struct *p)
3414{
3415 return call_int_hook(task_getioprio, p);
3416}
3417
3418/**
3419 * security_task_prlimit() - Check if get/setting resources limits is allowed
3420 * @cred: current task credentials
3421 * @tcred: target task credentials
3422 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3423 *
3424 * Check permission before getting and/or setting the resource limits of
3425 * another task.
3426 *
3427 * Return: Returns 0 if permission is granted.
3428 */
3429int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3430 unsigned int flags)
3431{
3432 return call_int_hook(task_prlimit, cred, tcred, flags);
3433}
3434
3435/**
3436 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3437 * @p: target task's group leader
3438 * @resource: resource whose limit is being set
3439 * @new_rlim: new resource limit
3440 *
3441 * Check permission before setting the resource limits of process @p for
3442 * @resource to @new_rlim. The old resource limit values can be examined by
3443 * dereferencing (p->signal->rlim + resource).
3444 *
3445 * Return: Returns 0 if permission is granted.
3446 */
3447int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3448 struct rlimit *new_rlim)
3449{
3450 return call_int_hook(task_setrlimit, p, resource, new_rlim);
3451}
3452
3453/**
3454 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3455 * @p: target task
3456 *
3457 * Check permission before setting scheduling policy and/or parameters of
3458 * process @p.
3459 *
3460 * Return: Returns 0 if permission is granted.
3461 */
3462int security_task_setscheduler(struct task_struct *p)
3463{
3464 return call_int_hook(task_setscheduler, p);
3465}
3466
3467/**
3468 * security_task_getscheduler() - Check if getting scheduling info is allowed
3469 * @p: target task
3470 *
3471 * Check permission before obtaining scheduling information for process @p.
3472 *
3473 * Return: Returns 0 if permission is granted.
3474 */
3475int security_task_getscheduler(struct task_struct *p)
3476{
3477 return call_int_hook(task_getscheduler, p);
3478}
3479
3480/**
3481 * security_task_movememory() - Check if moving memory is allowed
3482 * @p: task
3483 *
3484 * Check permission before moving memory owned by process @p.
3485 *
3486 * Return: Returns 0 if permission is granted.
3487 */
3488int security_task_movememory(struct task_struct *p)
3489{
3490 return call_int_hook(task_movememory, p);
3491}
3492
3493/**
3494 * security_task_kill() - Check if sending a signal is allowed
3495 * @p: target process
3496 * @info: signal information
3497 * @sig: signal value
3498 * @cred: credentials of the signal sender, NULL if @current
3499 *
3500 * Check permission before sending signal @sig to @p. @info can be NULL, the
3501 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3502 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3503 * the kernel and should typically be permitted. SIGIO signals are handled
3504 * separately by the send_sigiotask hook in file_security_ops.
3505 *
3506 * Return: Returns 0 if permission is granted.
3507 */
3508int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3509 int sig, const struct cred *cred)
3510{
3511 return call_int_hook(task_kill, p, info, sig, cred);
3512}
3513
3514/**
3515 * security_task_prctl() - Check if a prctl op is allowed
3516 * @option: operation
3517 * @arg2: argument
3518 * @arg3: argument
3519 * @arg4: argument
3520 * @arg5: argument
3521 *
3522 * Check permission before performing a process control operation on the
3523 * current process.
3524 *
3525 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3526 * to cause prctl() to return immediately with that value.
3527 */
3528int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3529 unsigned long arg4, unsigned long arg5)
3530{
3531 int thisrc;
3532 int rc = LSM_RET_DEFAULT(task_prctl);
3533 struct security_hook_list *hp;
3534
3535 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3536 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3537 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3538 rc = thisrc;
3539 if (thisrc != 0)
3540 break;
3541 }
3542 }
3543 return rc;
3544}
3545
3546/**
3547 * security_task_to_inode() - Set the security attributes of a task's inode
3548 * @p: task
3549 * @inode: inode
3550 *
3551 * Set the security attributes for an inode based on an associated task's
3552 * security attributes, e.g. for /proc/pid inodes.
3553 */
3554void security_task_to_inode(struct task_struct *p, struct inode *inode)
3555{
3556 call_void_hook(task_to_inode, p, inode);
3557}
3558
3559/**
3560 * security_create_user_ns() - Check if creating a new userns is allowed
3561 * @cred: prepared creds
3562 *
3563 * Check permission prior to creating a new user namespace.
3564 *
3565 * Return: Returns 0 if successful, otherwise < 0 error code.
3566 */
3567int security_create_user_ns(const struct cred *cred)
3568{
3569 return call_int_hook(userns_create, cred);
3570}
3571
3572/**
3573 * security_ipc_permission() - Check if sysv ipc access is allowed
3574 * @ipcp: ipc permission structure
3575 * @flag: requested permissions
3576 *
3577 * Check permissions for access to IPC.
3578 *
3579 * Return: Returns 0 if permission is granted.
3580 */
3581int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3582{
3583 return call_int_hook(ipc_permission, ipcp, flag);
3584}
3585
3586/**
3587 * security_ipc_getsecid() - Get the sysv ipc object's secid
3588 * @ipcp: ipc permission structure
3589 * @secid: secid pointer
3590 *
3591 * Get the secid associated with the ipc object. In case of failure, @secid
3592 * will be set to zero.
3593 */
3594void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3595{
3596 *secid = 0;
3597 call_void_hook(ipc_getsecid, ipcp, secid);
3598}
3599
3600/**
3601 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3602 * @msg: message structure
3603 *
3604 * Allocate and attach a security structure to the msg->security field. The
3605 * security field is initialized to NULL when the structure is first created.
3606 *
3607 * Return: Return 0 if operation was successful and permission is granted.
3608 */
3609int security_msg_msg_alloc(struct msg_msg *msg)
3610{
3611 int rc = lsm_msg_msg_alloc(msg);
3612
3613 if (unlikely(rc))
3614 return rc;
3615 rc = call_int_hook(msg_msg_alloc_security, msg);
3616 if (unlikely(rc))
3617 security_msg_msg_free(msg);
3618 return rc;
3619}
3620
3621/**
3622 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3623 * @msg: message structure
3624 *
3625 * Deallocate the security structure for this message.
3626 */
3627void security_msg_msg_free(struct msg_msg *msg)
3628{
3629 call_void_hook(msg_msg_free_security, msg);
3630 kfree(msg->security);
3631 msg->security = NULL;
3632}
3633
3634/**
3635 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3636 * @msq: sysv ipc permission structure
3637 *
3638 * Allocate and attach a security structure to @msg. The security field is
3639 * initialized to NULL when the structure is first created.
3640 *
3641 * Return: Returns 0 if operation was successful and permission is granted.
3642 */
3643int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3644{
3645 int rc = lsm_ipc_alloc(msq);
3646
3647 if (unlikely(rc))
3648 return rc;
3649 rc = call_int_hook(msg_queue_alloc_security, msq);
3650 if (unlikely(rc))
3651 security_msg_queue_free(msq);
3652 return rc;
3653}
3654
3655/**
3656 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3657 * @msq: sysv ipc permission structure
3658 *
3659 * Deallocate security field @perm->security for the message queue.
3660 */
3661void security_msg_queue_free(struct kern_ipc_perm *msq)
3662{
3663 call_void_hook(msg_queue_free_security, msq);
3664 kfree(msq->security);
3665 msq->security = NULL;
3666}
3667
3668/**
3669 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3670 * @msq: sysv ipc permission structure
3671 * @msqflg: operation flags
3672 *
3673 * Check permission when a message queue is requested through the msgget system
3674 * call. This hook is only called when returning the message queue identifier
3675 * for an existing message queue, not when a new message queue is created.
3676 *
3677 * Return: Return 0 if permission is granted.
3678 */
3679int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3680{
3681 return call_int_hook(msg_queue_associate, msq, msqflg);
3682}
3683
3684/**
3685 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3686 * @msq: sysv ipc permission structure
3687 * @cmd: operation
3688 *
3689 * Check permission when a message control operation specified by @cmd is to be
3690 * performed on the message queue with permissions.
3691 *
3692 * Return: Returns 0 if permission is granted.
3693 */
3694int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3695{
3696 return call_int_hook(msg_queue_msgctl, msq, cmd);
3697}
3698
3699/**
3700 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3701 * @msq: sysv ipc permission structure
3702 * @msg: message
3703 * @msqflg: operation flags
3704 *
3705 * Check permission before a message, @msg, is enqueued on the message queue
3706 * with permissions specified in @msq.
3707 *
3708 * Return: Returns 0 if permission is granted.
3709 */
3710int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3711 struct msg_msg *msg, int msqflg)
3712{
3713 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3714}
3715
3716/**
3717 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3718 * @msq: sysv ipc permission structure
3719 * @msg: message
3720 * @target: target task
3721 * @type: type of message requested
3722 * @mode: operation flags
3723 *
3724 * Check permission before a message, @msg, is removed from the message queue.
3725 * The @target task structure contains a pointer to the process that will be
3726 * receiving the message (not equal to the current process when inline receives
3727 * are being performed).
3728 *
3729 * Return: Returns 0 if permission is granted.
3730 */
3731int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3732 struct task_struct *target, long type, int mode)
3733{
3734 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3735}
3736
3737/**
3738 * security_shm_alloc() - Allocate a sysv shm LSM blob
3739 * @shp: sysv ipc permission structure
3740 *
3741 * Allocate and attach a security structure to the @shp security field. The
3742 * security field is initialized to NULL when the structure is first created.
3743 *
3744 * Return: Returns 0 if operation was successful and permission is granted.
3745 */
3746int security_shm_alloc(struct kern_ipc_perm *shp)
3747{
3748 int rc = lsm_ipc_alloc(shp);
3749
3750 if (unlikely(rc))
3751 return rc;
3752 rc = call_int_hook(shm_alloc_security, shp);
3753 if (unlikely(rc))
3754 security_shm_free(shp);
3755 return rc;
3756}
3757
3758/**
3759 * security_shm_free() - Free a sysv shm LSM blob
3760 * @shp: sysv ipc permission structure
3761 *
3762 * Deallocate the security structure @perm->security for the memory segment.
3763 */
3764void security_shm_free(struct kern_ipc_perm *shp)
3765{
3766 call_void_hook(shm_free_security, shp);
3767 kfree(shp->security);
3768 shp->security = NULL;
3769}
3770
3771/**
3772 * security_shm_associate() - Check if a sysv shm operation is allowed
3773 * @shp: sysv ipc permission structure
3774 * @shmflg: operation flags
3775 *
3776 * Check permission when a shared memory region is requested through the shmget
3777 * system call. This hook is only called when returning the shared memory
3778 * region identifier for an existing region, not when a new shared memory
3779 * region is created.
3780 *
3781 * Return: Returns 0 if permission is granted.
3782 */
3783int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3784{
3785 return call_int_hook(shm_associate, shp, shmflg);
3786}
3787
3788/**
3789 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3790 * @shp: sysv ipc permission structure
3791 * @cmd: operation
3792 *
3793 * Check permission when a shared memory control operation specified by @cmd is
3794 * to be performed on the shared memory region with permissions in @shp.
3795 *
3796 * Return: Return 0 if permission is granted.
3797 */
3798int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3799{
3800 return call_int_hook(shm_shmctl, shp, cmd);
3801}
3802
3803/**
3804 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3805 * @shp: sysv ipc permission structure
3806 * @shmaddr: address of memory region to attach
3807 * @shmflg: operation flags
3808 *
3809 * Check permissions prior to allowing the shmat system call to attach the
3810 * shared memory segment with permissions @shp to the data segment of the
3811 * calling process. The attaching address is specified by @shmaddr.
3812 *
3813 * Return: Returns 0 if permission is granted.
3814 */
3815int security_shm_shmat(struct kern_ipc_perm *shp,
3816 char __user *shmaddr, int shmflg)
3817{
3818 return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3819}
3820
3821/**
3822 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3823 * @sma: sysv ipc permission structure
3824 *
3825 * Allocate and attach a security structure to the @sma security field. The
3826 * security field is initialized to NULL when the structure is first created.
3827 *
3828 * Return: Returns 0 if operation was successful and permission is granted.
3829 */
3830int security_sem_alloc(struct kern_ipc_perm *sma)
3831{
3832 int rc = lsm_ipc_alloc(sma);
3833
3834 if (unlikely(rc))
3835 return rc;
3836 rc = call_int_hook(sem_alloc_security, sma);
3837 if (unlikely(rc))
3838 security_sem_free(sma);
3839 return rc;
3840}
3841
3842/**
3843 * security_sem_free() - Free a sysv semaphore LSM blob
3844 * @sma: sysv ipc permission structure
3845 *
3846 * Deallocate security structure @sma->security for the semaphore.
3847 */
3848void security_sem_free(struct kern_ipc_perm *sma)
3849{
3850 call_void_hook(sem_free_security, sma);
3851 kfree(sma->security);
3852 sma->security = NULL;
3853}
3854
3855/**
3856 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3857 * @sma: sysv ipc permission structure
3858 * @semflg: operation flags
3859 *
3860 * Check permission when a semaphore is requested through the semget system
3861 * call. This hook is only called when returning the semaphore identifier for
3862 * an existing semaphore, not when a new one must be created.
3863 *
3864 * Return: Returns 0 if permission is granted.
3865 */
3866int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3867{
3868 return call_int_hook(sem_associate, sma, semflg);
3869}
3870
3871/**
3872 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3873 * @sma: sysv ipc permission structure
3874 * @cmd: operation
3875 *
3876 * Check permission when a semaphore operation specified by @cmd is to be
3877 * performed on the semaphore.
3878 *
3879 * Return: Returns 0 if permission is granted.
3880 */
3881int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3882{
3883 return call_int_hook(sem_semctl, sma, cmd);
3884}
3885
3886/**
3887 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3888 * @sma: sysv ipc permission structure
3889 * @sops: operations to perform
3890 * @nsops: number of operations
3891 * @alter: flag indicating changes will be made
3892 *
3893 * Check permissions before performing operations on members of the semaphore
3894 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3895 *
3896 * Return: Returns 0 if permission is granted.
3897 */
3898int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3899 unsigned nsops, int alter)
3900{
3901 return call_int_hook(sem_semop, sma, sops, nsops, alter);
3902}
3903
3904/**
3905 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3906 * @dentry: dentry
3907 * @inode: inode
3908 *
3909 * Fill in @inode security information for a @dentry if allowed.
3910 */
3911void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3912{
3913 if (unlikely(inode && IS_PRIVATE(inode)))
3914 return;
3915 call_void_hook(d_instantiate, dentry, inode);
3916}
3917EXPORT_SYMBOL(security_d_instantiate);
3918
3919/*
3920 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3921 */
3922
3923/**
3924 * security_getselfattr - Read an LSM attribute of the current process.
3925 * @attr: which attribute to return
3926 * @uctx: the user-space destination for the information, or NULL
3927 * @size: pointer to the size of space available to receive the data
3928 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3929 * attributes associated with the LSM identified in the passed @ctx be
3930 * reported.
3931 *
3932 * A NULL value for @uctx can be used to get both the number of attributes
3933 * and the size of the data.
3934 *
3935 * Returns the number of attributes found on success, negative value
3936 * on error. @size is reset to the total size of the data.
3937 * If @size is insufficient to contain the data -E2BIG is returned.
3938 */
3939int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3940 u32 __user *size, u32 flags)
3941{
3942 struct security_hook_list *hp;
3943 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3944 u8 __user *base = (u8 __user *)uctx;
3945 u32 entrysize;
3946 u32 total = 0;
3947 u32 left;
3948 bool toobig = false;
3949 bool single = false;
3950 int count = 0;
3951 int rc;
3952
3953 if (attr == LSM_ATTR_UNDEF)
3954 return -EINVAL;
3955 if (size == NULL)
3956 return -EINVAL;
3957 if (get_user(left, size))
3958 return -EFAULT;
3959
3960 if (flags) {
3961 /*
3962 * Only flag supported is LSM_FLAG_SINGLE
3963 */
3964 if (flags != LSM_FLAG_SINGLE || !uctx)
3965 return -EINVAL;
3966 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3967 return -EFAULT;
3968 /*
3969 * If the LSM ID isn't specified it is an error.
3970 */
3971 if (lctx.id == LSM_ID_UNDEF)
3972 return -EINVAL;
3973 single = true;
3974 }
3975
3976 /*
3977 * In the usual case gather all the data from the LSMs.
3978 * In the single case only get the data from the LSM specified.
3979 */
3980 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3981 if (single && lctx.id != hp->lsmid->id)
3982 continue;
3983 entrysize = left;
3984 if (base)
3985 uctx = (struct lsm_ctx __user *)(base + total);
3986 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3987 if (rc == -EOPNOTSUPP) {
3988 rc = 0;
3989 continue;
3990 }
3991 if (rc == -E2BIG) {
3992 rc = 0;
3993 left = 0;
3994 toobig = true;
3995 } else if (rc < 0)
3996 return rc;
3997 else
3998 left -= entrysize;
3999
4000 total += entrysize;
4001 count += rc;
4002 if (single)
4003 break;
4004 }
4005 if (put_user(total, size))
4006 return -EFAULT;
4007 if (toobig)
4008 return -E2BIG;
4009 if (count == 0)
4010 return LSM_RET_DEFAULT(getselfattr);
4011 return count;
4012}
4013
4014/*
4015 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4016 */
4017
4018/**
4019 * security_setselfattr - Set an LSM attribute on the current process.
4020 * @attr: which attribute to set
4021 * @uctx: the user-space source for the information
4022 * @size: the size of the data
4023 * @flags: reserved for future use, must be 0
4024 *
4025 * Set an LSM attribute for the current process. The LSM, attribute
4026 * and new value are included in @uctx.
4027 *
4028 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4029 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4030 * LSM specific failure.
4031 */
4032int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4033 u32 size, u32 flags)
4034{
4035 struct security_hook_list *hp;
4036 struct lsm_ctx *lctx;
4037 int rc = LSM_RET_DEFAULT(setselfattr);
4038 u64 required_len;
4039
4040 if (flags)
4041 return -EINVAL;
4042 if (size < sizeof(*lctx))
4043 return -EINVAL;
4044 if (size > PAGE_SIZE)
4045 return -E2BIG;
4046
4047 lctx = memdup_user(uctx, size);
4048 if (IS_ERR(lctx))
4049 return PTR_ERR(lctx);
4050
4051 if (size < lctx->len ||
4052 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4053 lctx->len < required_len) {
4054 rc = -EINVAL;
4055 goto free_out;
4056 }
4057
4058 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4059 if ((hp->lsmid->id) == lctx->id) {
4060 rc = hp->hook.setselfattr(attr, lctx, size, flags);
4061 break;
4062 }
4063
4064free_out:
4065 kfree(lctx);
4066 return rc;
4067}
4068
4069/**
4070 * security_getprocattr() - Read an attribute for a task
4071 * @p: the task
4072 * @lsmid: LSM identification
4073 * @name: attribute name
4074 * @value: attribute value
4075 *
4076 * Read attribute @name for task @p and store it into @value if allowed.
4077 *
4078 * Return: Returns the length of @value on success, a negative value otherwise.
4079 */
4080int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4081 char **value)
4082{
4083 struct security_hook_list *hp;
4084
4085 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4086 if (lsmid != 0 && lsmid != hp->lsmid->id)
4087 continue;
4088 return hp->hook.getprocattr(p, name, value);
4089 }
4090 return LSM_RET_DEFAULT(getprocattr);
4091}
4092
4093/**
4094 * security_setprocattr() - Set an attribute for a task
4095 * @lsmid: LSM identification
4096 * @name: attribute name
4097 * @value: attribute value
4098 * @size: attribute value size
4099 *
4100 * Write (set) the current task's attribute @name to @value, size @size if
4101 * allowed.
4102 *
4103 * Return: Returns bytes written on success, a negative value otherwise.
4104 */
4105int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4106{
4107 struct security_hook_list *hp;
4108
4109 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4110 if (lsmid != 0 && lsmid != hp->lsmid->id)
4111 continue;
4112 return hp->hook.setprocattr(name, value, size);
4113 }
4114 return LSM_RET_DEFAULT(setprocattr);
4115}
4116
4117/**
4118 * security_netlink_send() - Save info and check if netlink sending is allowed
4119 * @sk: sending socket
4120 * @skb: netlink message
4121 *
4122 * Save security information for a netlink message so that permission checking
4123 * can be performed when the message is processed. The security information
4124 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4125 * Also may be used to provide fine grained control over message transmission.
4126 *
4127 * Return: Returns 0 if the information was successfully saved and message is
4128 * allowed to be transmitted.
4129 */
4130int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4131{
4132 return call_int_hook(netlink_send, sk, skb);
4133}
4134
4135/**
4136 * security_ismaclabel() - Check if the named attribute is a MAC label
4137 * @name: full extended attribute name
4138 *
4139 * Check if the extended attribute specified by @name represents a MAC label.
4140 *
4141 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4142 */
4143int security_ismaclabel(const char *name)
4144{
4145 return call_int_hook(ismaclabel, name);
4146}
4147EXPORT_SYMBOL(security_ismaclabel);
4148
4149/**
4150 * security_secid_to_secctx() - Convert a secid to a secctx
4151 * @secid: secid
4152 * @secdata: secctx
4153 * @seclen: secctx length
4154 *
4155 * Convert secid to security context. If @secdata is NULL the length of the
4156 * result will be returned in @seclen, but no @secdata will be returned. This
4157 * does mean that the length could change between calls to check the length and
4158 * the next call which actually allocates and returns the @secdata.
4159 *
4160 * Return: Return 0 on success, error on failure.
4161 */
4162int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4163{
4164 return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4165}
4166EXPORT_SYMBOL(security_secid_to_secctx);
4167
4168/**
4169 * security_secctx_to_secid() - Convert a secctx to a secid
4170 * @secdata: secctx
4171 * @seclen: length of secctx
4172 * @secid: secid
4173 *
4174 * Convert security context to secid.
4175 *
4176 * Return: Returns 0 on success, error on failure.
4177 */
4178int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4179{
4180 *secid = 0;
4181 return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4182}
4183EXPORT_SYMBOL(security_secctx_to_secid);
4184
4185/**
4186 * security_release_secctx() - Free a secctx buffer
4187 * @secdata: secctx
4188 * @seclen: length of secctx
4189 *
4190 * Release the security context.
4191 */
4192void security_release_secctx(char *secdata, u32 seclen)
4193{
4194 call_void_hook(release_secctx, secdata, seclen);
4195}
4196EXPORT_SYMBOL(security_release_secctx);
4197
4198/**
4199 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4200 * @inode: inode
4201 *
4202 * Notify the security module that it must revalidate the security context of
4203 * an inode.
4204 */
4205void security_inode_invalidate_secctx(struct inode *inode)
4206{
4207 call_void_hook(inode_invalidate_secctx, inode);
4208}
4209EXPORT_SYMBOL(security_inode_invalidate_secctx);
4210
4211/**
4212 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4213 * @inode: inode
4214 * @ctx: secctx
4215 * @ctxlen: length of secctx
4216 *
4217 * Notify the security module of what the security context of an inode should
4218 * be. Initializes the incore security context managed by the security module
4219 * for this inode. Example usage: NFS client invokes this hook to initialize
4220 * the security context in its incore inode to the value provided by the server
4221 * for the file when the server returned the file's attributes to the client.
4222 * Must be called with inode->i_mutex locked.
4223 *
4224 * Return: Returns 0 on success, error on failure.
4225 */
4226int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4227{
4228 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4229}
4230EXPORT_SYMBOL(security_inode_notifysecctx);
4231
4232/**
4233 * security_inode_setsecctx() - Change the security label of an inode
4234 * @dentry: inode
4235 * @ctx: secctx
4236 * @ctxlen: length of secctx
4237 *
4238 * Change the security context of an inode. Updates the incore security
4239 * context managed by the security module and invokes the fs code as needed
4240 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4241 * context. Example usage: NFS server invokes this hook to change the security
4242 * context in its incore inode and on the backing filesystem to a value
4243 * provided by the client on a SETATTR operation. Must be called with
4244 * inode->i_mutex locked.
4245 *
4246 * Return: Returns 0 on success, error on failure.
4247 */
4248int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4249{
4250 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4251}
4252EXPORT_SYMBOL(security_inode_setsecctx);
4253
4254/**
4255 * security_inode_getsecctx() - Get the security label of an inode
4256 * @inode: inode
4257 * @ctx: secctx
4258 * @ctxlen: length of secctx
4259 *
4260 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4261 * context for the given @inode.
4262 *
4263 * Return: Returns 0 on success, error on failure.
4264 */
4265int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4266{
4267 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4268}
4269EXPORT_SYMBOL(security_inode_getsecctx);
4270
4271#ifdef CONFIG_WATCH_QUEUE
4272/**
4273 * security_post_notification() - Check if a watch notification can be posted
4274 * @w_cred: credentials of the task that set the watch
4275 * @cred: credentials of the task which triggered the watch
4276 * @n: the notification
4277 *
4278 * Check to see if a watch notification can be posted to a particular queue.
4279 *
4280 * Return: Returns 0 if permission is granted.
4281 */
4282int security_post_notification(const struct cred *w_cred,
4283 const struct cred *cred,
4284 struct watch_notification *n)
4285{
4286 return call_int_hook(post_notification, w_cred, cred, n);
4287}
4288#endif /* CONFIG_WATCH_QUEUE */
4289
4290#ifdef CONFIG_KEY_NOTIFICATIONS
4291/**
4292 * security_watch_key() - Check if a task is allowed to watch for key events
4293 * @key: the key to watch
4294 *
4295 * Check to see if a process is allowed to watch for event notifications from
4296 * a key or keyring.
4297 *
4298 * Return: Returns 0 if permission is granted.
4299 */
4300int security_watch_key(struct key *key)
4301{
4302 return call_int_hook(watch_key, key);
4303}
4304#endif /* CONFIG_KEY_NOTIFICATIONS */
4305
4306#ifdef CONFIG_SECURITY_NETWORK
4307/**
4308 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4309 * @sock: originating sock
4310 * @other: peer sock
4311 * @newsk: new sock
4312 *
4313 * Check permissions before establishing a Unix domain stream connection
4314 * between @sock and @other.
4315 *
4316 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4317 * Linux provides an alternative to the conventional file name space for Unix
4318 * domain sockets. Whereas binding and connecting to sockets in the file name
4319 * space is mediated by the typical file permissions (and caught by the mknod
4320 * and permission hooks in inode_security_ops), binding and connecting to
4321 * sockets in the abstract name space is completely unmediated. Sufficient
4322 * control of Unix domain sockets in the abstract name space isn't possible
4323 * using only the socket layer hooks, since we need to know the actual target
4324 * socket, which is not looked up until we are inside the af_unix code.
4325 *
4326 * Return: Returns 0 if permission is granted.
4327 */
4328int security_unix_stream_connect(struct sock *sock, struct sock *other,
4329 struct sock *newsk)
4330{
4331 return call_int_hook(unix_stream_connect, sock, other, newsk);
4332}
4333EXPORT_SYMBOL(security_unix_stream_connect);
4334
4335/**
4336 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4337 * @sock: originating sock
4338 * @other: peer sock
4339 *
4340 * Check permissions before connecting or sending datagrams from @sock to
4341 * @other.
4342 *
4343 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4344 * Linux provides an alternative to the conventional file name space for Unix
4345 * domain sockets. Whereas binding and connecting to sockets in the file name
4346 * space is mediated by the typical file permissions (and caught by the mknod
4347 * and permission hooks in inode_security_ops), binding and connecting to
4348 * sockets in the abstract name space is completely unmediated. Sufficient
4349 * control of Unix domain sockets in the abstract name space isn't possible
4350 * using only the socket layer hooks, since we need to know the actual target
4351 * socket, which is not looked up until we are inside the af_unix code.
4352 *
4353 * Return: Returns 0 if permission is granted.
4354 */
4355int security_unix_may_send(struct socket *sock, struct socket *other)
4356{
4357 return call_int_hook(unix_may_send, sock, other);
4358}
4359EXPORT_SYMBOL(security_unix_may_send);
4360
4361/**
4362 * security_socket_create() - Check if creating a new socket is allowed
4363 * @family: protocol family
4364 * @type: communications type
4365 * @protocol: requested protocol
4366 * @kern: set to 1 if a kernel socket is requested
4367 *
4368 * Check permissions prior to creating a new socket.
4369 *
4370 * Return: Returns 0 if permission is granted.
4371 */
4372int security_socket_create(int family, int type, int protocol, int kern)
4373{
4374 return call_int_hook(socket_create, family, type, protocol, kern);
4375}
4376
4377/**
4378 * security_socket_post_create() - Initialize a newly created socket
4379 * @sock: socket
4380 * @family: protocol family
4381 * @type: communications type
4382 * @protocol: requested protocol
4383 * @kern: set to 1 if a kernel socket is requested
4384 *
4385 * This hook allows a module to update or allocate a per-socket security
4386 * structure. Note that the security field was not added directly to the socket
4387 * structure, but rather, the socket security information is stored in the
4388 * associated inode. Typically, the inode alloc_security hook will allocate
4389 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4390 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4391 * information that wasn't available when the inode was allocated.
4392 *
4393 * Return: Returns 0 if permission is granted.
4394 */
4395int security_socket_post_create(struct socket *sock, int family,
4396 int type, int protocol, int kern)
4397{
4398 return call_int_hook(socket_post_create, sock, family, type,
4399 protocol, kern);
4400}
4401
4402/**
4403 * security_socket_socketpair() - Check if creating a socketpair is allowed
4404 * @socka: first socket
4405 * @sockb: second socket
4406 *
4407 * Check permissions before creating a fresh pair of sockets.
4408 *
4409 * Return: Returns 0 if permission is granted and the connection was
4410 * established.
4411 */
4412int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4413{
4414 return call_int_hook(socket_socketpair, socka, sockb);
4415}
4416EXPORT_SYMBOL(security_socket_socketpair);
4417
4418/**
4419 * security_socket_bind() - Check if a socket bind operation is allowed
4420 * @sock: socket
4421 * @address: requested bind address
4422 * @addrlen: length of address
4423 *
4424 * Check permission before socket protocol layer bind operation is performed
4425 * and the socket @sock is bound to the address specified in the @address
4426 * parameter.
4427 *
4428 * Return: Returns 0 if permission is granted.
4429 */
4430int security_socket_bind(struct socket *sock,
4431 struct sockaddr *address, int addrlen)
4432{
4433 return call_int_hook(socket_bind, sock, address, addrlen);
4434}
4435
4436/**
4437 * security_socket_connect() - Check if a socket connect operation is allowed
4438 * @sock: socket
4439 * @address: address of remote connection point
4440 * @addrlen: length of address
4441 *
4442 * Check permission before socket protocol layer connect operation attempts to
4443 * connect socket @sock to a remote address, @address.
4444 *
4445 * Return: Returns 0 if permission is granted.
4446 */
4447int security_socket_connect(struct socket *sock,
4448 struct sockaddr *address, int addrlen)
4449{
4450 return call_int_hook(socket_connect, sock, address, addrlen);
4451}
4452
4453/**
4454 * security_socket_listen() - Check if a socket is allowed to listen
4455 * @sock: socket
4456 * @backlog: connection queue size
4457 *
4458 * Check permission before socket protocol layer listen operation.
4459 *
4460 * Return: Returns 0 if permission is granted.
4461 */
4462int security_socket_listen(struct socket *sock, int backlog)
4463{
4464 return call_int_hook(socket_listen, sock, backlog);
4465}
4466
4467/**
4468 * security_socket_accept() - Check if a socket is allowed to accept connections
4469 * @sock: listening socket
4470 * @newsock: newly creation connection socket
4471 *
4472 * Check permission before accepting a new connection. Note that the new
4473 * socket, @newsock, has been created and some information copied to it, but
4474 * the accept operation has not actually been performed.
4475 *
4476 * Return: Returns 0 if permission is granted.
4477 */
4478int security_socket_accept(struct socket *sock, struct socket *newsock)
4479{
4480 return call_int_hook(socket_accept, sock, newsock);
4481}
4482
4483/**
4484 * security_socket_sendmsg() - Check if sending a message is allowed
4485 * @sock: sending socket
4486 * @msg: message to send
4487 * @size: size of message
4488 *
4489 * Check permission before transmitting a message to another socket.
4490 *
4491 * Return: Returns 0 if permission is granted.
4492 */
4493int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4494{
4495 return call_int_hook(socket_sendmsg, sock, msg, size);
4496}
4497
4498/**
4499 * security_socket_recvmsg() - Check if receiving a message is allowed
4500 * @sock: receiving socket
4501 * @msg: message to receive
4502 * @size: size of message
4503 * @flags: operational flags
4504 *
4505 * Check permission before receiving a message from a socket.
4506 *
4507 * Return: Returns 0 if permission is granted.
4508 */
4509int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4510 int size, int flags)
4511{
4512 return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4513}
4514
4515/**
4516 * security_socket_getsockname() - Check if reading the socket addr is allowed
4517 * @sock: socket
4518 *
4519 * Check permission before reading the local address (name) of the socket
4520 * object.
4521 *
4522 * Return: Returns 0 if permission is granted.
4523 */
4524int security_socket_getsockname(struct socket *sock)
4525{
4526 return call_int_hook(socket_getsockname, sock);
4527}
4528
4529/**
4530 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4531 * @sock: socket
4532 *
4533 * Check permission before the remote address (name) of a socket object.
4534 *
4535 * Return: Returns 0 if permission is granted.
4536 */
4537int security_socket_getpeername(struct socket *sock)
4538{
4539 return call_int_hook(socket_getpeername, sock);
4540}
4541
4542/**
4543 * security_socket_getsockopt() - Check if reading a socket option is allowed
4544 * @sock: socket
4545 * @level: option's protocol level
4546 * @optname: option name
4547 *
4548 * Check permissions before retrieving the options associated with socket
4549 * @sock.
4550 *
4551 * Return: Returns 0 if permission is granted.
4552 */
4553int security_socket_getsockopt(struct socket *sock, int level, int optname)
4554{
4555 return call_int_hook(socket_getsockopt, sock, level, optname);
4556}
4557
4558/**
4559 * security_socket_setsockopt() - Check if setting a socket option is allowed
4560 * @sock: socket
4561 * @level: option's protocol level
4562 * @optname: option name
4563 *
4564 * Check permissions before setting the options associated with socket @sock.
4565 *
4566 * Return: Returns 0 if permission is granted.
4567 */
4568int security_socket_setsockopt(struct socket *sock, int level, int optname)
4569{
4570 return call_int_hook(socket_setsockopt, sock, level, optname);
4571}
4572
4573/**
4574 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4575 * @sock: socket
4576 * @how: flag indicating how sends and receives are handled
4577 *
4578 * Checks permission before all or part of a connection on the socket @sock is
4579 * shut down.
4580 *
4581 * Return: Returns 0 if permission is granted.
4582 */
4583int security_socket_shutdown(struct socket *sock, int how)
4584{
4585 return call_int_hook(socket_shutdown, sock, how);
4586}
4587
4588/**
4589 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4590 * @sk: destination sock
4591 * @skb: incoming packet
4592 *
4593 * Check permissions on incoming network packets. This hook is distinct from
4594 * Netfilter's IP input hooks since it is the first time that the incoming
4595 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4596 * sleep inside this hook because some callers hold spinlocks.
4597 *
4598 * Return: Returns 0 if permission is granted.
4599 */
4600int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4601{
4602 return call_int_hook(socket_sock_rcv_skb, sk, skb);
4603}
4604EXPORT_SYMBOL(security_sock_rcv_skb);
4605
4606/**
4607 * security_socket_getpeersec_stream() - Get the remote peer label
4608 * @sock: socket
4609 * @optval: destination buffer
4610 * @optlen: size of peer label copied into the buffer
4611 * @len: maximum size of the destination buffer
4612 *
4613 * This hook allows the security module to provide peer socket security state
4614 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4615 * For tcp sockets this can be meaningful if the socket is associated with an
4616 * ipsec SA.
4617 *
4618 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4619 * values.
4620 */
4621int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4622 sockptr_t optlen, unsigned int len)
4623{
4624 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4625 len);
4626}
4627
4628/**
4629 * security_socket_getpeersec_dgram() - Get the remote peer label
4630 * @sock: socket
4631 * @skb: datagram packet
4632 * @secid: remote peer label secid
4633 *
4634 * This hook allows the security module to provide peer socket security state
4635 * for udp sockets on a per-packet basis to userspace via getsockopt
4636 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4637 * option via getsockopt. It can then retrieve the security state returned by
4638 * this hook for a packet via the SCM_SECURITY ancillary message type.
4639 *
4640 * Return: Returns 0 on success, error on failure.
4641 */
4642int security_socket_getpeersec_dgram(struct socket *sock,
4643 struct sk_buff *skb, u32 *secid)
4644{
4645 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4646}
4647EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4648
4649/**
4650 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4651 * @sk: sock
4652 * @family: protocol family
4653 * @priority: gfp flags
4654 *
4655 * Allocate and attach a security structure to the sk->sk_security field, which
4656 * is used to copy security attributes between local stream sockets.
4657 *
4658 * Return: Returns 0 on success, error on failure.
4659 */
4660int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4661{
4662 return call_int_hook(sk_alloc_security, sk, family, priority);
4663}
4664
4665/**
4666 * security_sk_free() - Free the sock's LSM blob
4667 * @sk: sock
4668 *
4669 * Deallocate security structure.
4670 */
4671void security_sk_free(struct sock *sk)
4672{
4673 call_void_hook(sk_free_security, sk);
4674}
4675
4676/**
4677 * security_sk_clone() - Clone a sock's LSM state
4678 * @sk: original sock
4679 * @newsk: target sock
4680 *
4681 * Clone/copy security structure.
4682 */
4683void security_sk_clone(const struct sock *sk, struct sock *newsk)
4684{
4685 call_void_hook(sk_clone_security, sk, newsk);
4686}
4687EXPORT_SYMBOL(security_sk_clone);
4688
4689/**
4690 * security_sk_classify_flow() - Set a flow's secid based on socket
4691 * @sk: original socket
4692 * @flic: target flow
4693 *
4694 * Set the target flow's secid to socket's secid.
4695 */
4696void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4697{
4698 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4699}
4700EXPORT_SYMBOL(security_sk_classify_flow);
4701
4702/**
4703 * security_req_classify_flow() - Set a flow's secid based on request_sock
4704 * @req: request_sock
4705 * @flic: target flow
4706 *
4707 * Sets @flic's secid to @req's secid.
4708 */
4709void security_req_classify_flow(const struct request_sock *req,
4710 struct flowi_common *flic)
4711{
4712 call_void_hook(req_classify_flow, req, flic);
4713}
4714EXPORT_SYMBOL(security_req_classify_flow);
4715
4716/**
4717 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4718 * @sk: sock being grafted
4719 * @parent: target parent socket
4720 *
4721 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4722 * LSM state from @parent.
4723 */
4724void security_sock_graft(struct sock *sk, struct socket *parent)
4725{
4726 call_void_hook(sock_graft, sk, parent);
4727}
4728EXPORT_SYMBOL(security_sock_graft);
4729
4730/**
4731 * security_inet_conn_request() - Set request_sock state using incoming connect
4732 * @sk: parent listening sock
4733 * @skb: incoming connection
4734 * @req: new request_sock
4735 *
4736 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4737 *
4738 * Return: Returns 0 if permission is granted.
4739 */
4740int security_inet_conn_request(const struct sock *sk,
4741 struct sk_buff *skb, struct request_sock *req)
4742{
4743 return call_int_hook(inet_conn_request, sk, skb, req);
4744}
4745EXPORT_SYMBOL(security_inet_conn_request);
4746
4747/**
4748 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4749 * @newsk: new sock
4750 * @req: connection request_sock
4751 *
4752 * Set that LSM state of @sock using the LSM state from @req.
4753 */
4754void security_inet_csk_clone(struct sock *newsk,
4755 const struct request_sock *req)
4756{
4757 call_void_hook(inet_csk_clone, newsk, req);
4758}
4759
4760/**
4761 * security_inet_conn_established() - Update sock's LSM state with connection
4762 * @sk: sock
4763 * @skb: connection packet
4764 *
4765 * Update @sock's LSM state to represent a new connection from @skb.
4766 */
4767void security_inet_conn_established(struct sock *sk,
4768 struct sk_buff *skb)
4769{
4770 call_void_hook(inet_conn_established, sk, skb);
4771}
4772EXPORT_SYMBOL(security_inet_conn_established);
4773
4774/**
4775 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4776 * @secid: new secmark value
4777 *
4778 * Check if the process should be allowed to relabel packets to @secid.
4779 *
4780 * Return: Returns 0 if permission is granted.
4781 */
4782int security_secmark_relabel_packet(u32 secid)
4783{
4784 return call_int_hook(secmark_relabel_packet, secid);
4785}
4786EXPORT_SYMBOL(security_secmark_relabel_packet);
4787
4788/**
4789 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4790 *
4791 * Tells the LSM to increment the number of secmark labeling rules loaded.
4792 */
4793void security_secmark_refcount_inc(void)
4794{
4795 call_void_hook(secmark_refcount_inc);
4796}
4797EXPORT_SYMBOL(security_secmark_refcount_inc);
4798
4799/**
4800 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4801 *
4802 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4803 */
4804void security_secmark_refcount_dec(void)
4805{
4806 call_void_hook(secmark_refcount_dec);
4807}
4808EXPORT_SYMBOL(security_secmark_refcount_dec);
4809
4810/**
4811 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4812 * @security: pointer to the LSM blob
4813 *
4814 * This hook allows a module to allocate a security structure for a TUN device,
4815 * returning the pointer in @security.
4816 *
4817 * Return: Returns a zero on success, negative values on failure.
4818 */
4819int security_tun_dev_alloc_security(void **security)
4820{
4821 return call_int_hook(tun_dev_alloc_security, security);
4822}
4823EXPORT_SYMBOL(security_tun_dev_alloc_security);
4824
4825/**
4826 * security_tun_dev_free_security() - Free a TUN device LSM blob
4827 * @security: LSM blob
4828 *
4829 * This hook allows a module to free the security structure for a TUN device.
4830 */
4831void security_tun_dev_free_security(void *security)
4832{
4833 call_void_hook(tun_dev_free_security, security);
4834}
4835EXPORT_SYMBOL(security_tun_dev_free_security);
4836
4837/**
4838 * security_tun_dev_create() - Check if creating a TUN device is allowed
4839 *
4840 * Check permissions prior to creating a new TUN device.
4841 *
4842 * Return: Returns 0 if permission is granted.
4843 */
4844int security_tun_dev_create(void)
4845{
4846 return call_int_hook(tun_dev_create);
4847}
4848EXPORT_SYMBOL(security_tun_dev_create);
4849
4850/**
4851 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4852 * @security: TUN device LSM blob
4853 *
4854 * Check permissions prior to attaching to a TUN device queue.
4855 *
4856 * Return: Returns 0 if permission is granted.
4857 */
4858int security_tun_dev_attach_queue(void *security)
4859{
4860 return call_int_hook(tun_dev_attach_queue, security);
4861}
4862EXPORT_SYMBOL(security_tun_dev_attach_queue);
4863
4864/**
4865 * security_tun_dev_attach() - Update TUN device LSM state on attach
4866 * @sk: associated sock
4867 * @security: TUN device LSM blob
4868 *
4869 * This hook can be used by the module to update any security state associated
4870 * with the TUN device's sock structure.
4871 *
4872 * Return: Returns 0 if permission is granted.
4873 */
4874int security_tun_dev_attach(struct sock *sk, void *security)
4875{
4876 return call_int_hook(tun_dev_attach, sk, security);
4877}
4878EXPORT_SYMBOL(security_tun_dev_attach);
4879
4880/**
4881 * security_tun_dev_open() - Update TUN device LSM state on open
4882 * @security: TUN device LSM blob
4883 *
4884 * This hook can be used by the module to update any security state associated
4885 * with the TUN device's security structure.
4886 *
4887 * Return: Returns 0 if permission is granted.
4888 */
4889int security_tun_dev_open(void *security)
4890{
4891 return call_int_hook(tun_dev_open, security);
4892}
4893EXPORT_SYMBOL(security_tun_dev_open);
4894
4895/**
4896 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4897 * @asoc: SCTP association
4898 * @skb: packet requesting the association
4899 *
4900 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4901 *
4902 * Return: Returns 0 on success, error on failure.
4903 */
4904int security_sctp_assoc_request(struct sctp_association *asoc,
4905 struct sk_buff *skb)
4906{
4907 return call_int_hook(sctp_assoc_request, asoc, skb);
4908}
4909EXPORT_SYMBOL(security_sctp_assoc_request);
4910
4911/**
4912 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4913 * @sk: socket
4914 * @optname: SCTP option to validate
4915 * @address: list of IP addresses to validate
4916 * @addrlen: length of the address list
4917 *
4918 * Validiate permissions required for each address associated with sock @sk.
4919 * Depending on @optname, the addresses will be treated as either a connect or
4920 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4921 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4922 *
4923 * Return: Returns 0 on success, error on failure.
4924 */
4925int security_sctp_bind_connect(struct sock *sk, int optname,
4926 struct sockaddr *address, int addrlen)
4927{
4928 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4929}
4930EXPORT_SYMBOL(security_sctp_bind_connect);
4931
4932/**
4933 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4934 * @asoc: SCTP association
4935 * @sk: original sock
4936 * @newsk: target sock
4937 *
4938 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4939 * socket) or when a socket is 'peeled off' e.g userspace calls
4940 * sctp_peeloff(3).
4941 */
4942void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4943 struct sock *newsk)
4944{
4945 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4946}
4947EXPORT_SYMBOL(security_sctp_sk_clone);
4948
4949/**
4950 * security_sctp_assoc_established() - Update LSM state when assoc established
4951 * @asoc: SCTP association
4952 * @skb: packet establishing the association
4953 *
4954 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4955 * security module.
4956 *
4957 * Return: Returns 0 if permission is granted.
4958 */
4959int security_sctp_assoc_established(struct sctp_association *asoc,
4960 struct sk_buff *skb)
4961{
4962 return call_int_hook(sctp_assoc_established, asoc, skb);
4963}
4964EXPORT_SYMBOL(security_sctp_assoc_established);
4965
4966/**
4967 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4968 * @sk: the owning MPTCP socket
4969 * @ssk: the new subflow
4970 *
4971 * Update the labeling for the given MPTCP subflow, to match the one of the
4972 * owning MPTCP socket. This hook has to be called after the socket creation and
4973 * initialization via the security_socket_create() and
4974 * security_socket_post_create() LSM hooks.
4975 *
4976 * Return: Returns 0 on success or a negative error code on failure.
4977 */
4978int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4979{
4980 return call_int_hook(mptcp_add_subflow, sk, ssk);
4981}
4982
4983#endif /* CONFIG_SECURITY_NETWORK */
4984
4985#ifdef CONFIG_SECURITY_INFINIBAND
4986/**
4987 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4988 * @sec: LSM blob
4989 * @subnet_prefix: subnet prefix of the port
4990 * @pkey: IB pkey
4991 *
4992 * Check permission to access a pkey when modifying a QP.
4993 *
4994 * Return: Returns 0 if permission is granted.
4995 */
4996int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4997{
4998 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
4999}
5000EXPORT_SYMBOL(security_ib_pkey_access);
5001
5002/**
5003 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5004 * @sec: LSM blob
5005 * @dev_name: IB device name
5006 * @port_num: port number
5007 *
5008 * Check permissions to send and receive SMPs on a end port.
5009 *
5010 * Return: Returns 0 if permission is granted.
5011 */
5012int security_ib_endport_manage_subnet(void *sec,
5013 const char *dev_name, u8 port_num)
5014{
5015 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5016}
5017EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5018
5019/**
5020 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5021 * @sec: LSM blob
5022 *
5023 * Allocate a security structure for Infiniband objects.
5024 *
5025 * Return: Returns 0 on success, non-zero on failure.
5026 */
5027int security_ib_alloc_security(void **sec)
5028{
5029 return call_int_hook(ib_alloc_security, sec);
5030}
5031EXPORT_SYMBOL(security_ib_alloc_security);
5032
5033/**
5034 * security_ib_free_security() - Free an Infiniband LSM blob
5035 * @sec: LSM blob
5036 *
5037 * Deallocate an Infiniband security structure.
5038 */
5039void security_ib_free_security(void *sec)
5040{
5041 call_void_hook(ib_free_security, sec);
5042}
5043EXPORT_SYMBOL(security_ib_free_security);
5044#endif /* CONFIG_SECURITY_INFINIBAND */
5045
5046#ifdef CONFIG_SECURITY_NETWORK_XFRM
5047/**
5048 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5049 * @ctxp: xfrm security context being added to the SPD
5050 * @sec_ctx: security label provided by userspace
5051 * @gfp: gfp flags
5052 *
5053 * Allocate a security structure to the xp->security field; the security field
5054 * is initialized to NULL when the xfrm_policy is allocated.
5055 *
5056 * Return: Return 0 if operation was successful.
5057 */
5058int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5059 struct xfrm_user_sec_ctx *sec_ctx,
5060 gfp_t gfp)
5061{
5062 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5063}
5064EXPORT_SYMBOL(security_xfrm_policy_alloc);
5065
5066/**
5067 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5068 * @old_ctx: xfrm security context
5069 * @new_ctxp: target xfrm security context
5070 *
5071 * Allocate a security structure in new_ctxp that contains the information from
5072 * the old_ctx structure.
5073 *
5074 * Return: Return 0 if operation was successful.
5075 */
5076int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5077 struct xfrm_sec_ctx **new_ctxp)
5078{
5079 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5080}
5081
5082/**
5083 * security_xfrm_policy_free() - Free a xfrm security context
5084 * @ctx: xfrm security context
5085 *
5086 * Free LSM resources associated with @ctx.
5087 */
5088void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5089{
5090 call_void_hook(xfrm_policy_free_security, ctx);
5091}
5092EXPORT_SYMBOL(security_xfrm_policy_free);
5093
5094/**
5095 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5096 * @ctx: xfrm security context
5097 *
5098 * Authorize deletion of a SPD entry.
5099 *
5100 * Return: Returns 0 if permission is granted.
5101 */
5102int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5103{
5104 return call_int_hook(xfrm_policy_delete_security, ctx);
5105}
5106
5107/**
5108 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5109 * @x: xfrm state being added to the SAD
5110 * @sec_ctx: security label provided by userspace
5111 *
5112 * Allocate a security structure to the @x->security field; the security field
5113 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5114 * correspond to @sec_ctx.
5115 *
5116 * Return: Return 0 if operation was successful.
5117 */
5118int security_xfrm_state_alloc(struct xfrm_state *x,
5119 struct xfrm_user_sec_ctx *sec_ctx)
5120{
5121 return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5122}
5123EXPORT_SYMBOL(security_xfrm_state_alloc);
5124
5125/**
5126 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5127 * @x: xfrm state being added to the SAD
5128 * @polsec: associated policy's security context
5129 * @secid: secid from the flow
5130 *
5131 * Allocate a security structure to the x->security field; the security field
5132 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5133 * correspond to secid.
5134 *
5135 * Return: Returns 0 if operation was successful.
5136 */
5137int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5138 struct xfrm_sec_ctx *polsec, u32 secid)
5139{
5140 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5141}
5142
5143/**
5144 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5145 * @x: xfrm state
5146 *
5147 * Authorize deletion of x->security.
5148 *
5149 * Return: Returns 0 if permission is granted.
5150 */
5151int security_xfrm_state_delete(struct xfrm_state *x)
5152{
5153 return call_int_hook(xfrm_state_delete_security, x);
5154}
5155EXPORT_SYMBOL(security_xfrm_state_delete);
5156
5157/**
5158 * security_xfrm_state_free() - Free a xfrm state
5159 * @x: xfrm state
5160 *
5161 * Deallocate x->security.
5162 */
5163void security_xfrm_state_free(struct xfrm_state *x)
5164{
5165 call_void_hook(xfrm_state_free_security, x);
5166}
5167
5168/**
5169 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5170 * @ctx: target xfrm security context
5171 * @fl_secid: flow secid used to authorize access
5172 *
5173 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5174 * packet. The hook is called when selecting either a per-socket policy or a
5175 * generic xfrm policy.
5176 *
5177 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5178 * other errors.
5179 */
5180int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5181{
5182 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5183}
5184
5185/**
5186 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5187 * @x: xfrm state to match
5188 * @xp: xfrm policy to check for a match
5189 * @flic: flow to check for a match.
5190 *
5191 * Check @xp and @flic for a match with @x.
5192 *
5193 * Return: Returns 1 if there is a match.
5194 */
5195int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5196 struct xfrm_policy *xp,
5197 const struct flowi_common *flic)
5198{
5199 struct security_hook_list *hp;
5200 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5201
5202 /*
5203 * Since this function is expected to return 0 or 1, the judgment
5204 * becomes difficult if multiple LSMs supply this call. Fortunately,
5205 * we can use the first LSM's judgment because currently only SELinux
5206 * supplies this call.
5207 *
5208 * For speed optimization, we explicitly break the loop rather than
5209 * using the macro
5210 */
5211 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5212 list) {
5213 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5214 break;
5215 }
5216 return rc;
5217}
5218
5219/**
5220 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5221 * @skb: xfrm packet
5222 * @secid: secid
5223 *
5224 * Decode the packet in @skb and return the security label in @secid.
5225 *
5226 * Return: Return 0 if all xfrms used have the same secid.
5227 */
5228int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5229{
5230 return call_int_hook(xfrm_decode_session, skb, secid, 1);
5231}
5232
5233void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5234{
5235 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5236 0);
5237
5238 BUG_ON(rc);
5239}
5240EXPORT_SYMBOL(security_skb_classify_flow);
5241#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5242
5243#ifdef CONFIG_KEYS
5244/**
5245 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5246 * @key: key
5247 * @cred: credentials
5248 * @flags: allocation flags
5249 *
5250 * Permit allocation of a key and assign security data. Note that key does not
5251 * have a serial number assigned at this point.
5252 *
5253 * Return: Return 0 if permission is granted, -ve error otherwise.
5254 */
5255int security_key_alloc(struct key *key, const struct cred *cred,
5256 unsigned long flags)
5257{
5258 return call_int_hook(key_alloc, key, cred, flags);
5259}
5260
5261/**
5262 * security_key_free() - Free a kernel key LSM blob
5263 * @key: key
5264 *
5265 * Notification of destruction; free security data.
5266 */
5267void security_key_free(struct key *key)
5268{
5269 call_void_hook(key_free, key);
5270}
5271
5272/**
5273 * security_key_permission() - Check if a kernel key operation is allowed
5274 * @key_ref: key reference
5275 * @cred: credentials of actor requesting access
5276 * @need_perm: requested permissions
5277 *
5278 * See whether a specific operational right is granted to a process on a key.
5279 *
5280 * Return: Return 0 if permission is granted, -ve error otherwise.
5281 */
5282int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5283 enum key_need_perm need_perm)
5284{
5285 return call_int_hook(key_permission, key_ref, cred, need_perm);
5286}
5287
5288/**
5289 * security_key_getsecurity() - Get the key's security label
5290 * @key: key
5291 * @buffer: security label buffer
5292 *
5293 * Get a textual representation of the security context attached to a key for
5294 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5295 * storage for the NUL-terminated string and the caller should free it.
5296 *
5297 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5298 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5299 * there is no security label assigned to the key.
5300 */
5301int security_key_getsecurity(struct key *key, char **buffer)
5302{
5303 *buffer = NULL;
5304 return call_int_hook(key_getsecurity, key, buffer);
5305}
5306
5307/**
5308 * security_key_post_create_or_update() - Notification of key create or update
5309 * @keyring: keyring to which the key is linked to
5310 * @key: created or updated key
5311 * @payload: data used to instantiate or update the key
5312 * @payload_len: length of payload
5313 * @flags: key flags
5314 * @create: flag indicating whether the key was created or updated
5315 *
5316 * Notify the caller of a key creation or update.
5317 */
5318void security_key_post_create_or_update(struct key *keyring, struct key *key,
5319 const void *payload, size_t payload_len,
5320 unsigned long flags, bool create)
5321{
5322 call_void_hook(key_post_create_or_update, keyring, key, payload,
5323 payload_len, flags, create);
5324}
5325#endif /* CONFIG_KEYS */
5326
5327#ifdef CONFIG_AUDIT
5328/**
5329 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5330 * @field: audit action
5331 * @op: rule operator
5332 * @rulestr: rule context
5333 * @lsmrule: receive buffer for audit rule struct
5334 *
5335 * Allocate and initialize an LSM audit rule structure.
5336 *
5337 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5338 * an invalid rule.
5339 */
5340int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
5341{
5342 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule);
5343}
5344
5345/**
5346 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5347 * @krule: audit rule
5348 *
5349 * Specifies whether given @krule contains any fields related to the current
5350 * LSM.
5351 *
5352 * Return: Returns 1 in case of relation found, 0 otherwise.
5353 */
5354int security_audit_rule_known(struct audit_krule *krule)
5355{
5356 return call_int_hook(audit_rule_known, krule);
5357}
5358
5359/**
5360 * security_audit_rule_free() - Free an LSM audit rule struct
5361 * @lsmrule: audit rule struct
5362 *
5363 * Deallocate the LSM audit rule structure previously allocated by
5364 * audit_rule_init().
5365 */
5366void security_audit_rule_free(void *lsmrule)
5367{
5368 call_void_hook(audit_rule_free, lsmrule);
5369}
5370
5371/**
5372 * security_audit_rule_match() - Check if a label matches an audit rule
5373 * @secid: security label
5374 * @field: LSM audit field
5375 * @op: matching operator
5376 * @lsmrule: audit rule
5377 *
5378 * Determine if given @secid matches a rule previously approved by
5379 * security_audit_rule_known().
5380 *
5381 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5382 * failure.
5383 */
5384int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5385{
5386 return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5387}
5388#endif /* CONFIG_AUDIT */
5389
5390#ifdef CONFIG_BPF_SYSCALL
5391/**
5392 * security_bpf() - Check if the bpf syscall operation is allowed
5393 * @cmd: command
5394 * @attr: bpf attribute
5395 * @size: size
5396 *
5397 * Do a initial check for all bpf syscalls after the attribute is copied into
5398 * the kernel. The actual security module can implement their own rules to
5399 * check the specific cmd they need.
5400 *
5401 * Return: Returns 0 if permission is granted.
5402 */
5403int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5404{
5405 return call_int_hook(bpf, cmd, attr, size);
5406}
5407
5408/**
5409 * security_bpf_map() - Check if access to a bpf map is allowed
5410 * @map: bpf map
5411 * @fmode: mode
5412 *
5413 * Do a check when the kernel generates and returns a file descriptor for eBPF
5414 * maps.
5415 *
5416 * Return: Returns 0 if permission is granted.
5417 */
5418int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5419{
5420 return call_int_hook(bpf_map, map, fmode);
5421}
5422
5423/**
5424 * security_bpf_prog() - Check if access to a bpf program is allowed
5425 * @prog: bpf program
5426 *
5427 * Do a check when the kernel generates and returns a file descriptor for eBPF
5428 * programs.
5429 *
5430 * Return: Returns 0 if permission is granted.
5431 */
5432int security_bpf_prog(struct bpf_prog *prog)
5433{
5434 return call_int_hook(bpf_prog, prog);
5435}
5436
5437/**
5438 * security_bpf_map_create() - Check if BPF map creation is allowed
5439 * @map: BPF map object
5440 * @attr: BPF syscall attributes used to create BPF map
5441 * @token: BPF token used to grant user access
5442 *
5443 * Do a check when the kernel creates a new BPF map. This is also the
5444 * point where LSM blob is allocated for LSMs that need them.
5445 *
5446 * Return: Returns 0 on success, error on failure.
5447 */
5448int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5449 struct bpf_token *token)
5450{
5451 return call_int_hook(bpf_map_create, map, attr, token);
5452}
5453
5454/**
5455 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5456 * @prog: BPF program object
5457 * @attr: BPF syscall attributes used to create BPF program
5458 * @token: BPF token used to grant user access to BPF subsystem
5459 *
5460 * Perform an access control check when the kernel loads a BPF program and
5461 * allocates associated BPF program object. This hook is also responsible for
5462 * allocating any required LSM state for the BPF program.
5463 *
5464 * Return: Returns 0 on success, error on failure.
5465 */
5466int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5467 struct bpf_token *token)
5468{
5469 return call_int_hook(bpf_prog_load, prog, attr, token);
5470}
5471
5472/**
5473 * security_bpf_token_create() - Check if creating of BPF token is allowed
5474 * @token: BPF token object
5475 * @attr: BPF syscall attributes used to create BPF token
5476 * @path: path pointing to BPF FS mount point from which BPF token is created
5477 *
5478 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5479 * instance. This is also the point where LSM blob can be allocated for LSMs.
5480 *
5481 * Return: Returns 0 on success, error on failure.
5482 */
5483int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5484 struct path *path)
5485{
5486 return call_int_hook(bpf_token_create, token, attr, path);
5487}
5488
5489/**
5490 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5491 * requested BPF syscall command
5492 * @token: BPF token object
5493 * @cmd: BPF syscall command requested to be delegated by BPF token
5494 *
5495 * Do a check when the kernel decides whether provided BPF token should allow
5496 * delegation of requested BPF syscall command.
5497 *
5498 * Return: Returns 0 on success, error on failure.
5499 */
5500int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5501{
5502 return call_int_hook(bpf_token_cmd, token, cmd);
5503}
5504
5505/**
5506 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5507 * requested BPF-related capability
5508 * @token: BPF token object
5509 * @cap: capabilities requested to be delegated by BPF token
5510 *
5511 * Do a check when the kernel decides whether provided BPF token should allow
5512 * delegation of requested BPF-related capabilities.
5513 *
5514 * Return: Returns 0 on success, error on failure.
5515 */
5516int security_bpf_token_capable(const struct bpf_token *token, int cap)
5517{
5518 return call_int_hook(bpf_token_capable, token, cap);
5519}
5520
5521/**
5522 * security_bpf_map_free() - Free a bpf map's LSM blob
5523 * @map: bpf map
5524 *
5525 * Clean up the security information stored inside bpf map.
5526 */
5527void security_bpf_map_free(struct bpf_map *map)
5528{
5529 call_void_hook(bpf_map_free, map);
5530}
5531
5532/**
5533 * security_bpf_prog_free() - Free a BPF program's LSM blob
5534 * @prog: BPF program struct
5535 *
5536 * Clean up the security information stored inside BPF program.
5537 */
5538void security_bpf_prog_free(struct bpf_prog *prog)
5539{
5540 call_void_hook(bpf_prog_free, prog);
5541}
5542
5543/**
5544 * security_bpf_token_free() - Free a BPF token's LSM blob
5545 * @token: BPF token struct
5546 *
5547 * Clean up the security information stored inside BPF token.
5548 */
5549void security_bpf_token_free(struct bpf_token *token)
5550{
5551 call_void_hook(bpf_token_free, token);
5552}
5553#endif /* CONFIG_BPF_SYSCALL */
5554
5555/**
5556 * security_locked_down() - Check if a kernel feature is allowed
5557 * @what: requested kernel feature
5558 *
5559 * Determine whether a kernel feature that potentially enables arbitrary code
5560 * execution in kernel space should be permitted.
5561 *
5562 * Return: Returns 0 if permission is granted.
5563 */
5564int security_locked_down(enum lockdown_reason what)
5565{
5566 return call_int_hook(locked_down, what);
5567}
5568EXPORT_SYMBOL(security_locked_down);
5569
5570#ifdef CONFIG_PERF_EVENTS
5571/**
5572 * security_perf_event_open() - Check if a perf event open is allowed
5573 * @attr: perf event attribute
5574 * @type: type of event
5575 *
5576 * Check whether the @type of perf_event_open syscall is allowed.
5577 *
5578 * Return: Returns 0 if permission is granted.
5579 */
5580int security_perf_event_open(struct perf_event_attr *attr, int type)
5581{
5582 return call_int_hook(perf_event_open, attr, type);
5583}
5584
5585/**
5586 * security_perf_event_alloc() - Allocate a perf event LSM blob
5587 * @event: perf event
5588 *
5589 * Allocate and save perf_event security info.
5590 *
5591 * Return: Returns 0 on success, error on failure.
5592 */
5593int security_perf_event_alloc(struct perf_event *event)
5594{
5595 return call_int_hook(perf_event_alloc, event);
5596}
5597
5598/**
5599 * security_perf_event_free() - Free a perf event LSM blob
5600 * @event: perf event
5601 *
5602 * Release (free) perf_event security info.
5603 */
5604void security_perf_event_free(struct perf_event *event)
5605{
5606 call_void_hook(perf_event_free, event);
5607}
5608
5609/**
5610 * security_perf_event_read() - Check if reading a perf event label is allowed
5611 * @event: perf event
5612 *
5613 * Read perf_event security info if allowed.
5614 *
5615 * Return: Returns 0 if permission is granted.
5616 */
5617int security_perf_event_read(struct perf_event *event)
5618{
5619 return call_int_hook(perf_event_read, event);
5620}
5621
5622/**
5623 * security_perf_event_write() - Check if writing a perf event label is allowed
5624 * @event: perf event
5625 *
5626 * Write perf_event security info if allowed.
5627 *
5628 * Return: Returns 0 if permission is granted.
5629 */
5630int security_perf_event_write(struct perf_event *event)
5631{
5632 return call_int_hook(perf_event_write, event);
5633}
5634#endif /* CONFIG_PERF_EVENTS */
5635
5636#ifdef CONFIG_IO_URING
5637/**
5638 * security_uring_override_creds() - Check if overriding creds is allowed
5639 * @new: new credentials
5640 *
5641 * Check if the current task, executing an io_uring operation, is allowed to
5642 * override it's credentials with @new.
5643 *
5644 * Return: Returns 0 if permission is granted.
5645 */
5646int security_uring_override_creds(const struct cred *new)
5647{
5648 return call_int_hook(uring_override_creds, new);
5649}
5650
5651/**
5652 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5653 *
5654 * Check whether the current task is allowed to spawn a io_uring polling thread
5655 * (IORING_SETUP_SQPOLL).
5656 *
5657 * Return: Returns 0 if permission is granted.
5658 */
5659int security_uring_sqpoll(void)
5660{
5661 return call_int_hook(uring_sqpoll);
5662}
5663
5664/**
5665 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5666 * @ioucmd: command
5667 *
5668 * Check whether the file_operations uring_cmd is allowed to run.
5669 *
5670 * Return: Returns 0 if permission is granted.
5671 */
5672int security_uring_cmd(struct io_uring_cmd *ioucmd)
5673{
5674 return call_int_hook(uring_cmd, ioucmd);
5675}
5676#endif /* CONFIG_IO_URING */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR 2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 [LOCKDOWN_KCORE] = "/proc/kcore access",
67 [LOCKDOWN_KPROBES] = "use of kprobes",
68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 [LOCKDOWN_PERF] = "unsafe use of perf",
71 [LOCKDOWN_TRACEFS] = "use of tracefs",
72 [LOCKDOWN_XMON_RW] = "xmon read and write access",
73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75};
76
77struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80static struct kmem_cache *lsm_file_cache;
81static struct kmem_cache *lsm_inode_cache;
82
83char *lsm_names;
84static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86/* Boot-time LSM user choice */
87static __initdata const char *chosen_lsm_order;
88static __initdata const char *chosen_major_lsm;
89
90static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92/* Ordered list of LSMs to initialize. */
93static __initdata struct lsm_info **ordered_lsms;
94static __initdata struct lsm_info *exclusive;
95
96static __initdata bool debug;
97#define init_debug(...) \
98 do { \
99 if (debug) \
100 pr_info(__VA_ARGS__); \
101 } while (0)
102
103static bool __init is_enabled(struct lsm_info *lsm)
104{
105 if (!lsm->enabled)
106 return false;
107
108 return *lsm->enabled;
109}
110
111/* Mark an LSM's enabled flag. */
112static int lsm_enabled_true __initdata = 1;
113static int lsm_enabled_false __initdata = 0;
114static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115{
116 /*
117 * When an LSM hasn't configured an enable variable, we can use
118 * a hard-coded location for storing the default enabled state.
119 */
120 if (!lsm->enabled) {
121 if (enabled)
122 lsm->enabled = &lsm_enabled_true;
123 else
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_true) {
126 if (!enabled)
127 lsm->enabled = &lsm_enabled_false;
128 } else if (lsm->enabled == &lsm_enabled_false) {
129 if (enabled)
130 lsm->enabled = &lsm_enabled_true;
131 } else {
132 *lsm->enabled = enabled;
133 }
134}
135
136/* Is an LSM already listed in the ordered LSMs list? */
137static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138{
139 struct lsm_info **check;
140
141 for (check = ordered_lsms; *check; check++)
142 if (*check == lsm)
143 return true;
144
145 return false;
146}
147
148/* Append an LSM to the list of ordered LSMs to initialize. */
149static int last_lsm __initdata;
150static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151{
152 /* Ignore duplicate selections. */
153 if (exists_ordered_lsm(lsm))
154 return;
155
156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 return;
158
159 /* Enable this LSM, if it is not already set. */
160 if (!lsm->enabled)
161 lsm->enabled = &lsm_enabled_true;
162 ordered_lsms[last_lsm++] = lsm;
163
164 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
165 is_enabled(lsm) ? "enabled" : "disabled");
166}
167
168/* Is an LSM allowed to be initialized? */
169static bool __init lsm_allowed(struct lsm_info *lsm)
170{
171 /* Skip if the LSM is disabled. */
172 if (!is_enabled(lsm))
173 return false;
174
175 /* Not allowed if another exclusive LSM already initialized. */
176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 init_debug("exclusive disabled: %s\n", lsm->name);
178 return false;
179 }
180
181 return true;
182}
183
184static void __init lsm_set_blob_size(int *need, int *lbs)
185{
186 int offset;
187
188 if (*need <= 0)
189 return;
190
191 offset = ALIGN(*lbs, sizeof(void *));
192 *lbs = offset + *need;
193 *need = offset;
194}
195
196static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
197{
198 if (!needed)
199 return;
200
201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
203 /*
204 * The inode blob gets an rcu_head in addition to
205 * what the modules might need.
206 */
207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
208 blob_sizes.lbs_inode = sizeof(struct rcu_head);
209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
214}
215
216/* Prepare LSM for initialization. */
217static void __init prepare_lsm(struct lsm_info *lsm)
218{
219 int enabled = lsm_allowed(lsm);
220
221 /* Record enablement (to handle any following exclusive LSMs). */
222 set_enabled(lsm, enabled);
223
224 /* If enabled, do pre-initialization work. */
225 if (enabled) {
226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
227 exclusive = lsm;
228 init_debug("exclusive chosen: %s\n", lsm->name);
229 }
230
231 lsm_set_blob_sizes(lsm->blobs);
232 }
233}
234
235/* Initialize a given LSM, if it is enabled. */
236static void __init initialize_lsm(struct lsm_info *lsm)
237{
238 if (is_enabled(lsm)) {
239 int ret;
240
241 init_debug("initializing %s\n", lsm->name);
242 ret = lsm->init();
243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
244 }
245}
246
247/* Populate ordered LSMs list from comma-separated LSM name list. */
248static void __init ordered_lsm_parse(const char *order, const char *origin)
249{
250 struct lsm_info *lsm;
251 char *sep, *name, *next;
252
253 /* LSM_ORDER_FIRST is always first. */
254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
255 if (lsm->order == LSM_ORDER_FIRST)
256 append_ordered_lsm(lsm, " first");
257 }
258
259 /* Process "security=", if given. */
260 if (chosen_major_lsm) {
261 struct lsm_info *major;
262
263 /*
264 * To match the original "security=" behavior, this
265 * explicitly does NOT fallback to another Legacy Major
266 * if the selected one was separately disabled: disable
267 * all non-matching Legacy Major LSMs.
268 */
269 for (major = __start_lsm_info; major < __end_lsm_info;
270 major++) {
271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
272 strcmp(major->name, chosen_major_lsm) != 0) {
273 set_enabled(major, false);
274 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
275 chosen_major_lsm, major->name);
276 }
277 }
278 }
279
280 sep = kstrdup(order, GFP_KERNEL);
281 next = sep;
282 /* Walk the list, looking for matching LSMs. */
283 while ((name = strsep(&next, ",")) != NULL) {
284 bool found = false;
285
286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
287 if (lsm->order == LSM_ORDER_MUTABLE &&
288 strcmp(lsm->name, name) == 0) {
289 append_ordered_lsm(lsm, origin);
290 found = true;
291 }
292 }
293
294 if (!found)
295 init_debug("%s ignored: %s (not built into kernel)\n",
296 origin, name);
297 }
298
299 /* Process "security=", if given. */
300 if (chosen_major_lsm) {
301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 if (exists_ordered_lsm(lsm))
303 continue;
304 if (strcmp(lsm->name, chosen_major_lsm) == 0)
305 append_ordered_lsm(lsm, "security=");
306 }
307 }
308
309 /* Disable all LSMs not in the ordered list. */
310 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
311 if (exists_ordered_lsm(lsm))
312 continue;
313 set_enabled(lsm, false);
314 init_debug("%s skipped: %s (not in requested order)\n",
315 origin, lsm->name);
316 }
317
318 kfree(sep);
319}
320
321static void __init lsm_early_cred(struct cred *cred);
322static void __init lsm_early_task(struct task_struct *task);
323
324static int lsm_append(const char *new, char **result);
325
326static void __init report_lsm_order(void)
327{
328 struct lsm_info **lsm, *early;
329 int first = 0;
330
331 pr_info("initializing lsm=");
332
333 /* Report each enabled LSM name, comma separated. */
334 for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++)
335 if (is_enabled(early))
336 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
337 for (lsm = ordered_lsms; *lsm; lsm++)
338 if (is_enabled(*lsm))
339 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
340
341 pr_cont("\n");
342}
343
344static void __init ordered_lsm_init(void)
345{
346 struct lsm_info **lsm;
347
348 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
349 GFP_KERNEL);
350
351 if (chosen_lsm_order) {
352 if (chosen_major_lsm) {
353 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
354 chosen_major_lsm, chosen_lsm_order);
355 chosen_major_lsm = NULL;
356 }
357 ordered_lsm_parse(chosen_lsm_order, "cmdline");
358 } else
359 ordered_lsm_parse(builtin_lsm_order, "builtin");
360
361 for (lsm = ordered_lsms; *lsm; lsm++)
362 prepare_lsm(*lsm);
363
364 report_lsm_order();
365
366 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
367 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
368 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
369 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
370 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
371 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
372 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
373
374 /*
375 * Create any kmem_caches needed for blobs
376 */
377 if (blob_sizes.lbs_file)
378 lsm_file_cache = kmem_cache_create("lsm_file_cache",
379 blob_sizes.lbs_file, 0,
380 SLAB_PANIC, NULL);
381 if (blob_sizes.lbs_inode)
382 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
383 blob_sizes.lbs_inode, 0,
384 SLAB_PANIC, NULL);
385
386 lsm_early_cred((struct cred *) current->cred);
387 lsm_early_task(current);
388 for (lsm = ordered_lsms; *lsm; lsm++)
389 initialize_lsm(*lsm);
390
391 kfree(ordered_lsms);
392}
393
394int __init early_security_init(void)
395{
396 struct lsm_info *lsm;
397
398#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
399 INIT_HLIST_HEAD(&security_hook_heads.NAME);
400#include "linux/lsm_hook_defs.h"
401#undef LSM_HOOK
402
403 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404 if (!lsm->enabled)
405 lsm->enabled = &lsm_enabled_true;
406 prepare_lsm(lsm);
407 initialize_lsm(lsm);
408 }
409
410 return 0;
411}
412
413/**
414 * security_init - initializes the security framework
415 *
416 * This should be called early in the kernel initialization sequence.
417 */
418int __init security_init(void)
419{
420 struct lsm_info *lsm;
421
422 init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*");
423 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
424 init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*");
425
426 /*
427 * Append the names of the early LSM modules now that kmalloc() is
428 * available
429 */
430 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
431 init_debug(" early started: %s (%s)\n", lsm->name,
432 is_enabled(lsm) ? "enabled" : "disabled");
433 if (lsm->enabled)
434 lsm_append(lsm->name, &lsm_names);
435 }
436
437 /* Load LSMs in specified order. */
438 ordered_lsm_init();
439
440 return 0;
441}
442
443/* Save user chosen LSM */
444static int __init choose_major_lsm(char *str)
445{
446 chosen_major_lsm = str;
447 return 1;
448}
449__setup("security=", choose_major_lsm);
450
451/* Explicitly choose LSM initialization order. */
452static int __init choose_lsm_order(char *str)
453{
454 chosen_lsm_order = str;
455 return 1;
456}
457__setup("lsm=", choose_lsm_order);
458
459/* Enable LSM order debugging. */
460static int __init enable_debug(char *str)
461{
462 debug = true;
463 return 1;
464}
465__setup("lsm.debug", enable_debug);
466
467static bool match_last_lsm(const char *list, const char *lsm)
468{
469 const char *last;
470
471 if (WARN_ON(!list || !lsm))
472 return false;
473 last = strrchr(list, ',');
474 if (last)
475 /* Pass the comma, strcmp() will check for '\0' */
476 last++;
477 else
478 last = list;
479 return !strcmp(last, lsm);
480}
481
482static int lsm_append(const char *new, char **result)
483{
484 char *cp;
485
486 if (*result == NULL) {
487 *result = kstrdup(new, GFP_KERNEL);
488 if (*result == NULL)
489 return -ENOMEM;
490 } else {
491 /* Check if it is the last registered name */
492 if (match_last_lsm(*result, new))
493 return 0;
494 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
495 if (cp == NULL)
496 return -ENOMEM;
497 kfree(*result);
498 *result = cp;
499 }
500 return 0;
501}
502
503/**
504 * security_add_hooks - Add a modules hooks to the hook lists.
505 * @hooks: the hooks to add
506 * @count: the number of hooks to add
507 * @lsm: the name of the security module
508 *
509 * Each LSM has to register its hooks with the infrastructure.
510 */
511void __init security_add_hooks(struct security_hook_list *hooks, int count,
512 const char *lsm)
513{
514 int i;
515
516 for (i = 0; i < count; i++) {
517 hooks[i].lsm = lsm;
518 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
519 }
520
521 /*
522 * Don't try to append during early_security_init(), we'll come back
523 * and fix this up afterwards.
524 */
525 if (slab_is_available()) {
526 if (lsm_append(lsm, &lsm_names) < 0)
527 panic("%s - Cannot get early memory.\n", __func__);
528 }
529}
530
531int call_blocking_lsm_notifier(enum lsm_event event, void *data)
532{
533 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
534 event, data);
535}
536EXPORT_SYMBOL(call_blocking_lsm_notifier);
537
538int register_blocking_lsm_notifier(struct notifier_block *nb)
539{
540 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
541 nb);
542}
543EXPORT_SYMBOL(register_blocking_lsm_notifier);
544
545int unregister_blocking_lsm_notifier(struct notifier_block *nb)
546{
547 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
548 nb);
549}
550EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
551
552/**
553 * lsm_cred_alloc - allocate a composite cred blob
554 * @cred: the cred that needs a blob
555 * @gfp: allocation type
556 *
557 * Allocate the cred blob for all the modules
558 *
559 * Returns 0, or -ENOMEM if memory can't be allocated.
560 */
561static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
562{
563 if (blob_sizes.lbs_cred == 0) {
564 cred->security = NULL;
565 return 0;
566 }
567
568 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
569 if (cred->security == NULL)
570 return -ENOMEM;
571 return 0;
572}
573
574/**
575 * lsm_early_cred - during initialization allocate a composite cred blob
576 * @cred: the cred that needs a blob
577 *
578 * Allocate the cred blob for all the modules
579 */
580static void __init lsm_early_cred(struct cred *cred)
581{
582 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
583
584 if (rc)
585 panic("%s: Early cred alloc failed.\n", __func__);
586}
587
588/**
589 * lsm_file_alloc - allocate a composite file blob
590 * @file: the file that needs a blob
591 *
592 * Allocate the file blob for all the modules
593 *
594 * Returns 0, or -ENOMEM if memory can't be allocated.
595 */
596static int lsm_file_alloc(struct file *file)
597{
598 if (!lsm_file_cache) {
599 file->f_security = NULL;
600 return 0;
601 }
602
603 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
604 if (file->f_security == NULL)
605 return -ENOMEM;
606 return 0;
607}
608
609/**
610 * lsm_inode_alloc - allocate a composite inode blob
611 * @inode: the inode that needs a blob
612 *
613 * Allocate the inode blob for all the modules
614 *
615 * Returns 0, or -ENOMEM if memory can't be allocated.
616 */
617int lsm_inode_alloc(struct inode *inode)
618{
619 if (!lsm_inode_cache) {
620 inode->i_security = NULL;
621 return 0;
622 }
623
624 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
625 if (inode->i_security == NULL)
626 return -ENOMEM;
627 return 0;
628}
629
630/**
631 * lsm_task_alloc - allocate a composite task blob
632 * @task: the task that needs a blob
633 *
634 * Allocate the task blob for all the modules
635 *
636 * Returns 0, or -ENOMEM if memory can't be allocated.
637 */
638static int lsm_task_alloc(struct task_struct *task)
639{
640 if (blob_sizes.lbs_task == 0) {
641 task->security = NULL;
642 return 0;
643 }
644
645 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
646 if (task->security == NULL)
647 return -ENOMEM;
648 return 0;
649}
650
651/**
652 * lsm_ipc_alloc - allocate a composite ipc blob
653 * @kip: the ipc that needs a blob
654 *
655 * Allocate the ipc blob for all the modules
656 *
657 * Returns 0, or -ENOMEM if memory can't be allocated.
658 */
659static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
660{
661 if (blob_sizes.lbs_ipc == 0) {
662 kip->security = NULL;
663 return 0;
664 }
665
666 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
667 if (kip->security == NULL)
668 return -ENOMEM;
669 return 0;
670}
671
672/**
673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
674 * @mp: the msg_msg that needs a blob
675 *
676 * Allocate the ipc blob for all the modules
677 *
678 * Returns 0, or -ENOMEM if memory can't be allocated.
679 */
680static int lsm_msg_msg_alloc(struct msg_msg *mp)
681{
682 if (blob_sizes.lbs_msg_msg == 0) {
683 mp->security = NULL;
684 return 0;
685 }
686
687 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
688 if (mp->security == NULL)
689 return -ENOMEM;
690 return 0;
691}
692
693/**
694 * lsm_early_task - during initialization allocate a composite task blob
695 * @task: the task that needs a blob
696 *
697 * Allocate the task blob for all the modules
698 */
699static void __init lsm_early_task(struct task_struct *task)
700{
701 int rc = lsm_task_alloc(task);
702
703 if (rc)
704 panic("%s: Early task alloc failed.\n", __func__);
705}
706
707/**
708 * lsm_superblock_alloc - allocate a composite superblock blob
709 * @sb: the superblock that needs a blob
710 *
711 * Allocate the superblock blob for all the modules
712 *
713 * Returns 0, or -ENOMEM if memory can't be allocated.
714 */
715static int lsm_superblock_alloc(struct super_block *sb)
716{
717 if (blob_sizes.lbs_superblock == 0) {
718 sb->s_security = NULL;
719 return 0;
720 }
721
722 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
723 if (sb->s_security == NULL)
724 return -ENOMEM;
725 return 0;
726}
727
728/*
729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
730 * can be accessed with:
731 *
732 * LSM_RET_DEFAULT(<hook_name>)
733 *
734 * The macros below define static constants for the default value of each
735 * LSM hook.
736 */
737#define LSM_RET_DEFAULT(NAME) (NAME##_default)
738#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
739#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
740 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
741#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
742 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
743
744#include <linux/lsm_hook_defs.h>
745#undef LSM_HOOK
746
747/*
748 * Hook list operation macros.
749 *
750 * call_void_hook:
751 * This is a hook that does not return a value.
752 *
753 * call_int_hook:
754 * This is a hook that returns a value.
755 */
756
757#define call_void_hook(FUNC, ...) \
758 do { \
759 struct security_hook_list *P; \
760 \
761 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
762 P->hook.FUNC(__VA_ARGS__); \
763 } while (0)
764
765#define call_int_hook(FUNC, IRC, ...) ({ \
766 int RC = IRC; \
767 do { \
768 struct security_hook_list *P; \
769 \
770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
771 RC = P->hook.FUNC(__VA_ARGS__); \
772 if (RC != 0) \
773 break; \
774 } \
775 } while (0); \
776 RC; \
777})
778
779/* Security operations */
780
781int security_binder_set_context_mgr(const struct cred *mgr)
782{
783 return call_int_hook(binder_set_context_mgr, 0, mgr);
784}
785
786int security_binder_transaction(const struct cred *from,
787 const struct cred *to)
788{
789 return call_int_hook(binder_transaction, 0, from, to);
790}
791
792int security_binder_transfer_binder(const struct cred *from,
793 const struct cred *to)
794{
795 return call_int_hook(binder_transfer_binder, 0, from, to);
796}
797
798int security_binder_transfer_file(const struct cred *from,
799 const struct cred *to, struct file *file)
800{
801 return call_int_hook(binder_transfer_file, 0, from, to, file);
802}
803
804int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
805{
806 return call_int_hook(ptrace_access_check, 0, child, mode);
807}
808
809int security_ptrace_traceme(struct task_struct *parent)
810{
811 return call_int_hook(ptrace_traceme, 0, parent);
812}
813
814int security_capget(struct task_struct *target,
815 kernel_cap_t *effective,
816 kernel_cap_t *inheritable,
817 kernel_cap_t *permitted)
818{
819 return call_int_hook(capget, 0, target,
820 effective, inheritable, permitted);
821}
822
823int security_capset(struct cred *new, const struct cred *old,
824 const kernel_cap_t *effective,
825 const kernel_cap_t *inheritable,
826 const kernel_cap_t *permitted)
827{
828 return call_int_hook(capset, 0, new, old,
829 effective, inheritable, permitted);
830}
831
832int security_capable(const struct cred *cred,
833 struct user_namespace *ns,
834 int cap,
835 unsigned int opts)
836{
837 return call_int_hook(capable, 0, cred, ns, cap, opts);
838}
839
840int security_quotactl(int cmds, int type, int id, struct super_block *sb)
841{
842 return call_int_hook(quotactl, 0, cmds, type, id, sb);
843}
844
845int security_quota_on(struct dentry *dentry)
846{
847 return call_int_hook(quota_on, 0, dentry);
848}
849
850int security_syslog(int type)
851{
852 return call_int_hook(syslog, 0, type);
853}
854
855int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
856{
857 return call_int_hook(settime, 0, ts, tz);
858}
859
860int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
861{
862 struct security_hook_list *hp;
863 int cap_sys_admin = 1;
864 int rc;
865
866 /*
867 * The module will respond with a positive value if
868 * it thinks the __vm_enough_memory() call should be
869 * made with the cap_sys_admin set. If all of the modules
870 * agree that it should be set it will. If any module
871 * thinks it should not be set it won't.
872 */
873 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
874 rc = hp->hook.vm_enough_memory(mm, pages);
875 if (rc <= 0) {
876 cap_sys_admin = 0;
877 break;
878 }
879 }
880 return __vm_enough_memory(mm, pages, cap_sys_admin);
881}
882
883int security_bprm_creds_for_exec(struct linux_binprm *bprm)
884{
885 return call_int_hook(bprm_creds_for_exec, 0, bprm);
886}
887
888int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
889{
890 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
891}
892
893int security_bprm_check(struct linux_binprm *bprm)
894{
895 int ret;
896
897 ret = call_int_hook(bprm_check_security, 0, bprm);
898 if (ret)
899 return ret;
900 return ima_bprm_check(bprm);
901}
902
903void security_bprm_committing_creds(struct linux_binprm *bprm)
904{
905 call_void_hook(bprm_committing_creds, bprm);
906}
907
908void security_bprm_committed_creds(struct linux_binprm *bprm)
909{
910 call_void_hook(bprm_committed_creds, bprm);
911}
912
913int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
914{
915 return call_int_hook(fs_context_dup, 0, fc, src_fc);
916}
917
918int security_fs_context_parse_param(struct fs_context *fc,
919 struct fs_parameter *param)
920{
921 struct security_hook_list *hp;
922 int trc;
923 int rc = -ENOPARAM;
924
925 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
926 list) {
927 trc = hp->hook.fs_context_parse_param(fc, param);
928 if (trc == 0)
929 rc = 0;
930 else if (trc != -ENOPARAM)
931 return trc;
932 }
933 return rc;
934}
935
936int security_sb_alloc(struct super_block *sb)
937{
938 int rc = lsm_superblock_alloc(sb);
939
940 if (unlikely(rc))
941 return rc;
942 rc = call_int_hook(sb_alloc_security, 0, sb);
943 if (unlikely(rc))
944 security_sb_free(sb);
945 return rc;
946}
947
948void security_sb_delete(struct super_block *sb)
949{
950 call_void_hook(sb_delete, sb);
951}
952
953void security_sb_free(struct super_block *sb)
954{
955 call_void_hook(sb_free_security, sb);
956 kfree(sb->s_security);
957 sb->s_security = NULL;
958}
959
960void security_free_mnt_opts(void **mnt_opts)
961{
962 if (!*mnt_opts)
963 return;
964 call_void_hook(sb_free_mnt_opts, *mnt_opts);
965 *mnt_opts = NULL;
966}
967EXPORT_SYMBOL(security_free_mnt_opts);
968
969int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
970{
971 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
972}
973EXPORT_SYMBOL(security_sb_eat_lsm_opts);
974
975int security_sb_mnt_opts_compat(struct super_block *sb,
976 void *mnt_opts)
977{
978 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
979}
980EXPORT_SYMBOL(security_sb_mnt_opts_compat);
981
982int security_sb_remount(struct super_block *sb,
983 void *mnt_opts)
984{
985 return call_int_hook(sb_remount, 0, sb, mnt_opts);
986}
987EXPORT_SYMBOL(security_sb_remount);
988
989int security_sb_kern_mount(struct super_block *sb)
990{
991 return call_int_hook(sb_kern_mount, 0, sb);
992}
993
994int security_sb_show_options(struct seq_file *m, struct super_block *sb)
995{
996 return call_int_hook(sb_show_options, 0, m, sb);
997}
998
999int security_sb_statfs(struct dentry *dentry)
1000{
1001 return call_int_hook(sb_statfs, 0, dentry);
1002}
1003
1004int security_sb_mount(const char *dev_name, const struct path *path,
1005 const char *type, unsigned long flags, void *data)
1006{
1007 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1008}
1009
1010int security_sb_umount(struct vfsmount *mnt, int flags)
1011{
1012 return call_int_hook(sb_umount, 0, mnt, flags);
1013}
1014
1015int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1016{
1017 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1018}
1019
1020int security_sb_set_mnt_opts(struct super_block *sb,
1021 void *mnt_opts,
1022 unsigned long kern_flags,
1023 unsigned long *set_kern_flags)
1024{
1025 return call_int_hook(sb_set_mnt_opts,
1026 mnt_opts ? -EOPNOTSUPP : 0, sb,
1027 mnt_opts, kern_flags, set_kern_flags);
1028}
1029EXPORT_SYMBOL(security_sb_set_mnt_opts);
1030
1031int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1032 struct super_block *newsb,
1033 unsigned long kern_flags,
1034 unsigned long *set_kern_flags)
1035{
1036 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1037 kern_flags, set_kern_flags);
1038}
1039EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1040
1041int security_move_mount(const struct path *from_path, const struct path *to_path)
1042{
1043 return call_int_hook(move_mount, 0, from_path, to_path);
1044}
1045
1046int security_path_notify(const struct path *path, u64 mask,
1047 unsigned int obj_type)
1048{
1049 return call_int_hook(path_notify, 0, path, mask, obj_type);
1050}
1051
1052int security_inode_alloc(struct inode *inode)
1053{
1054 int rc = lsm_inode_alloc(inode);
1055
1056 if (unlikely(rc))
1057 return rc;
1058 rc = call_int_hook(inode_alloc_security, 0, inode);
1059 if (unlikely(rc))
1060 security_inode_free(inode);
1061 return rc;
1062}
1063
1064static void inode_free_by_rcu(struct rcu_head *head)
1065{
1066 /*
1067 * The rcu head is at the start of the inode blob
1068 */
1069 kmem_cache_free(lsm_inode_cache, head);
1070}
1071
1072void security_inode_free(struct inode *inode)
1073{
1074 integrity_inode_free(inode);
1075 call_void_hook(inode_free_security, inode);
1076 /*
1077 * The inode may still be referenced in a path walk and
1078 * a call to security_inode_permission() can be made
1079 * after inode_free_security() is called. Ideally, the VFS
1080 * wouldn't do this, but fixing that is a much harder
1081 * job. For now, simply free the i_security via RCU, and
1082 * leave the current inode->i_security pointer intact.
1083 * The inode will be freed after the RCU grace period too.
1084 */
1085 if (inode->i_security)
1086 call_rcu((struct rcu_head *)inode->i_security,
1087 inode_free_by_rcu);
1088}
1089
1090int security_dentry_init_security(struct dentry *dentry, int mode,
1091 const struct qstr *name,
1092 const char **xattr_name, void **ctx,
1093 u32 *ctxlen)
1094{
1095 struct security_hook_list *hp;
1096 int rc;
1097
1098 /*
1099 * Only one module will provide a security context.
1100 */
1101 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1102 rc = hp->hook.dentry_init_security(dentry, mode, name,
1103 xattr_name, ctx, ctxlen);
1104 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1105 return rc;
1106 }
1107 return LSM_RET_DEFAULT(dentry_init_security);
1108}
1109EXPORT_SYMBOL(security_dentry_init_security);
1110
1111int security_dentry_create_files_as(struct dentry *dentry, int mode,
1112 struct qstr *name,
1113 const struct cred *old, struct cred *new)
1114{
1115 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1116 name, old, new);
1117}
1118EXPORT_SYMBOL(security_dentry_create_files_as);
1119
1120int security_inode_init_security(struct inode *inode, struct inode *dir,
1121 const struct qstr *qstr,
1122 const initxattrs initxattrs, void *fs_data)
1123{
1124 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1125 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1126 int ret;
1127
1128 if (unlikely(IS_PRIVATE(inode)))
1129 return 0;
1130
1131 if (!initxattrs)
1132 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1133 dir, qstr, NULL, NULL, NULL);
1134 memset(new_xattrs, 0, sizeof(new_xattrs));
1135 lsm_xattr = new_xattrs;
1136 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1137 &lsm_xattr->name,
1138 &lsm_xattr->value,
1139 &lsm_xattr->value_len);
1140 if (ret)
1141 goto out;
1142
1143 evm_xattr = lsm_xattr + 1;
1144 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1145 if (ret)
1146 goto out;
1147 ret = initxattrs(inode, new_xattrs, fs_data);
1148out:
1149 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1150 kfree(xattr->value);
1151 return (ret == -EOPNOTSUPP) ? 0 : ret;
1152}
1153EXPORT_SYMBOL(security_inode_init_security);
1154
1155int security_inode_init_security_anon(struct inode *inode,
1156 const struct qstr *name,
1157 const struct inode *context_inode)
1158{
1159 return call_int_hook(inode_init_security_anon, 0, inode, name,
1160 context_inode);
1161}
1162
1163int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1164 const struct qstr *qstr, const char **name,
1165 void **value, size_t *len)
1166{
1167 if (unlikely(IS_PRIVATE(inode)))
1168 return -EOPNOTSUPP;
1169 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1170 qstr, name, value, len);
1171}
1172EXPORT_SYMBOL(security_old_inode_init_security);
1173
1174#ifdef CONFIG_SECURITY_PATH
1175int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1176 unsigned int dev)
1177{
1178 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179 return 0;
1180 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1181}
1182EXPORT_SYMBOL(security_path_mknod);
1183
1184int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1185{
1186 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1187 return 0;
1188 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1189}
1190EXPORT_SYMBOL(security_path_mkdir);
1191
1192int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1193{
1194 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1195 return 0;
1196 return call_int_hook(path_rmdir, 0, dir, dentry);
1197}
1198
1199int security_path_unlink(const struct path *dir, struct dentry *dentry)
1200{
1201 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1202 return 0;
1203 return call_int_hook(path_unlink, 0, dir, dentry);
1204}
1205EXPORT_SYMBOL(security_path_unlink);
1206
1207int security_path_symlink(const struct path *dir, struct dentry *dentry,
1208 const char *old_name)
1209{
1210 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1211 return 0;
1212 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1213}
1214
1215int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1216 struct dentry *new_dentry)
1217{
1218 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1219 return 0;
1220 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1221}
1222
1223int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1224 const struct path *new_dir, struct dentry *new_dentry,
1225 unsigned int flags)
1226{
1227 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1228 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1229 return 0;
1230
1231 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1232 new_dentry, flags);
1233}
1234EXPORT_SYMBOL(security_path_rename);
1235
1236int security_path_truncate(const struct path *path)
1237{
1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239 return 0;
1240 return call_int_hook(path_truncate, 0, path);
1241}
1242
1243int security_path_chmod(const struct path *path, umode_t mode)
1244{
1245 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1246 return 0;
1247 return call_int_hook(path_chmod, 0, path, mode);
1248}
1249
1250int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1251{
1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253 return 0;
1254 return call_int_hook(path_chown, 0, path, uid, gid);
1255}
1256
1257int security_path_chroot(const struct path *path)
1258{
1259 return call_int_hook(path_chroot, 0, path);
1260}
1261#endif
1262
1263int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1264{
1265 if (unlikely(IS_PRIVATE(dir)))
1266 return 0;
1267 return call_int_hook(inode_create, 0, dir, dentry, mode);
1268}
1269EXPORT_SYMBOL_GPL(security_inode_create);
1270
1271int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1272 struct dentry *new_dentry)
1273{
1274 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1275 return 0;
1276 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1277}
1278
1279int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1280{
1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282 return 0;
1283 return call_int_hook(inode_unlink, 0, dir, dentry);
1284}
1285
1286int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1287 const char *old_name)
1288{
1289 if (unlikely(IS_PRIVATE(dir)))
1290 return 0;
1291 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1292}
1293
1294int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1295{
1296 if (unlikely(IS_PRIVATE(dir)))
1297 return 0;
1298 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1299}
1300EXPORT_SYMBOL_GPL(security_inode_mkdir);
1301
1302int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1303{
1304 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1305 return 0;
1306 return call_int_hook(inode_rmdir, 0, dir, dentry);
1307}
1308
1309int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1310{
1311 if (unlikely(IS_PRIVATE(dir)))
1312 return 0;
1313 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1314}
1315
1316int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1317 struct inode *new_dir, struct dentry *new_dentry,
1318 unsigned int flags)
1319{
1320 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1321 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1322 return 0;
1323
1324 if (flags & RENAME_EXCHANGE) {
1325 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1326 old_dir, old_dentry);
1327 if (err)
1328 return err;
1329 }
1330
1331 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1332 new_dir, new_dentry);
1333}
1334
1335int security_inode_readlink(struct dentry *dentry)
1336{
1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1338 return 0;
1339 return call_int_hook(inode_readlink, 0, dentry);
1340}
1341
1342int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1343 bool rcu)
1344{
1345 if (unlikely(IS_PRIVATE(inode)))
1346 return 0;
1347 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1348}
1349
1350int security_inode_permission(struct inode *inode, int mask)
1351{
1352 if (unlikely(IS_PRIVATE(inode)))
1353 return 0;
1354 return call_int_hook(inode_permission, 0, inode, mask);
1355}
1356
1357int security_inode_setattr(struct user_namespace *mnt_userns,
1358 struct dentry *dentry, struct iattr *attr)
1359{
1360 int ret;
1361
1362 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1363 return 0;
1364 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1365 if (ret)
1366 return ret;
1367 return evm_inode_setattr(mnt_userns, dentry, attr);
1368}
1369EXPORT_SYMBOL_GPL(security_inode_setattr);
1370
1371int security_inode_getattr(const struct path *path)
1372{
1373 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1374 return 0;
1375 return call_int_hook(inode_getattr, 0, path);
1376}
1377
1378int security_inode_setxattr(struct user_namespace *mnt_userns,
1379 struct dentry *dentry, const char *name,
1380 const void *value, size_t size, int flags)
1381{
1382 int ret;
1383
1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385 return 0;
1386 /*
1387 * SELinux and Smack integrate the cap call,
1388 * so assume that all LSMs supplying this call do so.
1389 */
1390 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1391 size, flags);
1392
1393 if (ret == 1)
1394 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1395 if (ret)
1396 return ret;
1397 ret = ima_inode_setxattr(dentry, name, value, size);
1398 if (ret)
1399 return ret;
1400 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1401}
1402
1403int security_inode_set_acl(struct user_namespace *mnt_userns,
1404 struct dentry *dentry, const char *acl_name,
1405 struct posix_acl *kacl)
1406{
1407 int ret;
1408
1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410 return 0;
1411 ret = call_int_hook(inode_set_acl, 0, mnt_userns, dentry, acl_name,
1412 kacl);
1413 if (ret)
1414 return ret;
1415 ret = ima_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1416 if (ret)
1417 return ret;
1418 return evm_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1419}
1420
1421int security_inode_get_acl(struct user_namespace *mnt_userns,
1422 struct dentry *dentry, const char *acl_name)
1423{
1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425 return 0;
1426 return call_int_hook(inode_get_acl, 0, mnt_userns, dentry, acl_name);
1427}
1428
1429int security_inode_remove_acl(struct user_namespace *mnt_userns,
1430 struct dentry *dentry, const char *acl_name)
1431{
1432 int ret;
1433
1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435 return 0;
1436 ret = call_int_hook(inode_remove_acl, 0, mnt_userns, dentry, acl_name);
1437 if (ret)
1438 return ret;
1439 ret = ima_inode_remove_acl(mnt_userns, dentry, acl_name);
1440 if (ret)
1441 return ret;
1442 return evm_inode_remove_acl(mnt_userns, dentry, acl_name);
1443}
1444
1445void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1446 const void *value, size_t size, int flags)
1447{
1448 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1449 return;
1450 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1451 evm_inode_post_setxattr(dentry, name, value, size);
1452}
1453
1454int security_inode_getxattr(struct dentry *dentry, const char *name)
1455{
1456 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1457 return 0;
1458 return call_int_hook(inode_getxattr, 0, dentry, name);
1459}
1460
1461int security_inode_listxattr(struct dentry *dentry)
1462{
1463 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1464 return 0;
1465 return call_int_hook(inode_listxattr, 0, dentry);
1466}
1467
1468int security_inode_removexattr(struct user_namespace *mnt_userns,
1469 struct dentry *dentry, const char *name)
1470{
1471 int ret;
1472
1473 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1474 return 0;
1475 /*
1476 * SELinux and Smack integrate the cap call,
1477 * so assume that all LSMs supplying this call do so.
1478 */
1479 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1480 if (ret == 1)
1481 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1482 if (ret)
1483 return ret;
1484 ret = ima_inode_removexattr(dentry, name);
1485 if (ret)
1486 return ret;
1487 return evm_inode_removexattr(mnt_userns, dentry, name);
1488}
1489
1490int security_inode_need_killpriv(struct dentry *dentry)
1491{
1492 return call_int_hook(inode_need_killpriv, 0, dentry);
1493}
1494
1495int security_inode_killpriv(struct user_namespace *mnt_userns,
1496 struct dentry *dentry)
1497{
1498 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1499}
1500
1501int security_inode_getsecurity(struct user_namespace *mnt_userns,
1502 struct inode *inode, const char *name,
1503 void **buffer, bool alloc)
1504{
1505 struct security_hook_list *hp;
1506 int rc;
1507
1508 if (unlikely(IS_PRIVATE(inode)))
1509 return LSM_RET_DEFAULT(inode_getsecurity);
1510 /*
1511 * Only one module will provide an attribute with a given name.
1512 */
1513 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1514 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1515 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1516 return rc;
1517 }
1518 return LSM_RET_DEFAULT(inode_getsecurity);
1519}
1520
1521int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1522{
1523 struct security_hook_list *hp;
1524 int rc;
1525
1526 if (unlikely(IS_PRIVATE(inode)))
1527 return LSM_RET_DEFAULT(inode_setsecurity);
1528 /*
1529 * Only one module will provide an attribute with a given name.
1530 */
1531 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1532 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1533 flags);
1534 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1535 return rc;
1536 }
1537 return LSM_RET_DEFAULT(inode_setsecurity);
1538}
1539
1540int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1541{
1542 if (unlikely(IS_PRIVATE(inode)))
1543 return 0;
1544 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1545}
1546EXPORT_SYMBOL(security_inode_listsecurity);
1547
1548void security_inode_getsecid(struct inode *inode, u32 *secid)
1549{
1550 call_void_hook(inode_getsecid, inode, secid);
1551}
1552
1553int security_inode_copy_up(struct dentry *src, struct cred **new)
1554{
1555 return call_int_hook(inode_copy_up, 0, src, new);
1556}
1557EXPORT_SYMBOL(security_inode_copy_up);
1558
1559int security_inode_copy_up_xattr(const char *name)
1560{
1561 struct security_hook_list *hp;
1562 int rc;
1563
1564 /*
1565 * The implementation can return 0 (accept the xattr), 1 (discard the
1566 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1567 * any other error code incase of an error.
1568 */
1569 hlist_for_each_entry(hp,
1570 &security_hook_heads.inode_copy_up_xattr, list) {
1571 rc = hp->hook.inode_copy_up_xattr(name);
1572 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1573 return rc;
1574 }
1575
1576 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1577}
1578EXPORT_SYMBOL(security_inode_copy_up_xattr);
1579
1580int security_kernfs_init_security(struct kernfs_node *kn_dir,
1581 struct kernfs_node *kn)
1582{
1583 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1584}
1585
1586int security_file_permission(struct file *file, int mask)
1587{
1588 int ret;
1589
1590 ret = call_int_hook(file_permission, 0, file, mask);
1591 if (ret)
1592 return ret;
1593
1594 return fsnotify_perm(file, mask);
1595}
1596
1597int security_file_alloc(struct file *file)
1598{
1599 int rc = lsm_file_alloc(file);
1600
1601 if (rc)
1602 return rc;
1603 rc = call_int_hook(file_alloc_security, 0, file);
1604 if (unlikely(rc))
1605 security_file_free(file);
1606 return rc;
1607}
1608
1609void security_file_free(struct file *file)
1610{
1611 void *blob;
1612
1613 call_void_hook(file_free_security, file);
1614
1615 blob = file->f_security;
1616 if (blob) {
1617 file->f_security = NULL;
1618 kmem_cache_free(lsm_file_cache, blob);
1619 }
1620}
1621
1622int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1623{
1624 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1625}
1626EXPORT_SYMBOL_GPL(security_file_ioctl);
1627
1628static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1629{
1630 /*
1631 * Does we have PROT_READ and does the application expect
1632 * it to imply PROT_EXEC? If not, nothing to talk about...
1633 */
1634 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1635 return prot;
1636 if (!(current->personality & READ_IMPLIES_EXEC))
1637 return prot;
1638 /*
1639 * if that's an anonymous mapping, let it.
1640 */
1641 if (!file)
1642 return prot | PROT_EXEC;
1643 /*
1644 * ditto if it's not on noexec mount, except that on !MMU we need
1645 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1646 */
1647 if (!path_noexec(&file->f_path)) {
1648#ifndef CONFIG_MMU
1649 if (file->f_op->mmap_capabilities) {
1650 unsigned caps = file->f_op->mmap_capabilities(file);
1651 if (!(caps & NOMMU_MAP_EXEC))
1652 return prot;
1653 }
1654#endif
1655 return prot | PROT_EXEC;
1656 }
1657 /* anything on noexec mount won't get PROT_EXEC */
1658 return prot;
1659}
1660
1661int security_mmap_file(struct file *file, unsigned long prot,
1662 unsigned long flags)
1663{
1664 int ret;
1665 ret = call_int_hook(mmap_file, 0, file, prot,
1666 mmap_prot(file, prot), flags);
1667 if (ret)
1668 return ret;
1669 return ima_file_mmap(file, prot);
1670}
1671
1672int security_mmap_addr(unsigned long addr)
1673{
1674 return call_int_hook(mmap_addr, 0, addr);
1675}
1676
1677int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1678 unsigned long prot)
1679{
1680 int ret;
1681
1682 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1683 if (ret)
1684 return ret;
1685 return ima_file_mprotect(vma, prot);
1686}
1687
1688int security_file_lock(struct file *file, unsigned int cmd)
1689{
1690 return call_int_hook(file_lock, 0, file, cmd);
1691}
1692
1693int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1694{
1695 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1696}
1697
1698void security_file_set_fowner(struct file *file)
1699{
1700 call_void_hook(file_set_fowner, file);
1701}
1702
1703int security_file_send_sigiotask(struct task_struct *tsk,
1704 struct fown_struct *fown, int sig)
1705{
1706 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1707}
1708
1709int security_file_receive(struct file *file)
1710{
1711 return call_int_hook(file_receive, 0, file);
1712}
1713
1714int security_file_open(struct file *file)
1715{
1716 int ret;
1717
1718 ret = call_int_hook(file_open, 0, file);
1719 if (ret)
1720 return ret;
1721
1722 return fsnotify_perm(file, MAY_OPEN);
1723}
1724
1725int security_file_truncate(struct file *file)
1726{
1727 return call_int_hook(file_truncate, 0, file);
1728}
1729
1730int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1731{
1732 int rc = lsm_task_alloc(task);
1733
1734 if (rc)
1735 return rc;
1736 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1737 if (unlikely(rc))
1738 security_task_free(task);
1739 return rc;
1740}
1741
1742void security_task_free(struct task_struct *task)
1743{
1744 call_void_hook(task_free, task);
1745
1746 kfree(task->security);
1747 task->security = NULL;
1748}
1749
1750int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1751{
1752 int rc = lsm_cred_alloc(cred, gfp);
1753
1754 if (rc)
1755 return rc;
1756
1757 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1758 if (unlikely(rc))
1759 security_cred_free(cred);
1760 return rc;
1761}
1762
1763void security_cred_free(struct cred *cred)
1764{
1765 /*
1766 * There is a failure case in prepare_creds() that
1767 * may result in a call here with ->security being NULL.
1768 */
1769 if (unlikely(cred->security == NULL))
1770 return;
1771
1772 call_void_hook(cred_free, cred);
1773
1774 kfree(cred->security);
1775 cred->security = NULL;
1776}
1777
1778int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1779{
1780 int rc = lsm_cred_alloc(new, gfp);
1781
1782 if (rc)
1783 return rc;
1784
1785 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1786 if (unlikely(rc))
1787 security_cred_free(new);
1788 return rc;
1789}
1790
1791void security_transfer_creds(struct cred *new, const struct cred *old)
1792{
1793 call_void_hook(cred_transfer, new, old);
1794}
1795
1796void security_cred_getsecid(const struct cred *c, u32 *secid)
1797{
1798 *secid = 0;
1799 call_void_hook(cred_getsecid, c, secid);
1800}
1801EXPORT_SYMBOL(security_cred_getsecid);
1802
1803int security_kernel_act_as(struct cred *new, u32 secid)
1804{
1805 return call_int_hook(kernel_act_as, 0, new, secid);
1806}
1807
1808int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1809{
1810 return call_int_hook(kernel_create_files_as, 0, new, inode);
1811}
1812
1813int security_kernel_module_request(char *kmod_name)
1814{
1815 int ret;
1816
1817 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1818 if (ret)
1819 return ret;
1820 return integrity_kernel_module_request(kmod_name);
1821}
1822
1823int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1824 bool contents)
1825{
1826 int ret;
1827
1828 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1829 if (ret)
1830 return ret;
1831 return ima_read_file(file, id, contents);
1832}
1833EXPORT_SYMBOL_GPL(security_kernel_read_file);
1834
1835int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1836 enum kernel_read_file_id id)
1837{
1838 int ret;
1839
1840 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1841 if (ret)
1842 return ret;
1843 return ima_post_read_file(file, buf, size, id);
1844}
1845EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1846
1847int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1848{
1849 int ret;
1850
1851 ret = call_int_hook(kernel_load_data, 0, id, contents);
1852 if (ret)
1853 return ret;
1854 return ima_load_data(id, contents);
1855}
1856EXPORT_SYMBOL_GPL(security_kernel_load_data);
1857
1858int security_kernel_post_load_data(char *buf, loff_t size,
1859 enum kernel_load_data_id id,
1860 char *description)
1861{
1862 int ret;
1863
1864 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1865 description);
1866 if (ret)
1867 return ret;
1868 return ima_post_load_data(buf, size, id, description);
1869}
1870EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1871
1872int security_task_fix_setuid(struct cred *new, const struct cred *old,
1873 int flags)
1874{
1875 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1876}
1877
1878int security_task_fix_setgid(struct cred *new, const struct cred *old,
1879 int flags)
1880{
1881 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1882}
1883
1884int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1885{
1886 return call_int_hook(task_fix_setgroups, 0, new, old);
1887}
1888
1889int security_task_setpgid(struct task_struct *p, pid_t pgid)
1890{
1891 return call_int_hook(task_setpgid, 0, p, pgid);
1892}
1893
1894int security_task_getpgid(struct task_struct *p)
1895{
1896 return call_int_hook(task_getpgid, 0, p);
1897}
1898
1899int security_task_getsid(struct task_struct *p)
1900{
1901 return call_int_hook(task_getsid, 0, p);
1902}
1903
1904void security_current_getsecid_subj(u32 *secid)
1905{
1906 *secid = 0;
1907 call_void_hook(current_getsecid_subj, secid);
1908}
1909EXPORT_SYMBOL(security_current_getsecid_subj);
1910
1911void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1912{
1913 *secid = 0;
1914 call_void_hook(task_getsecid_obj, p, secid);
1915}
1916EXPORT_SYMBOL(security_task_getsecid_obj);
1917
1918int security_task_setnice(struct task_struct *p, int nice)
1919{
1920 return call_int_hook(task_setnice, 0, p, nice);
1921}
1922
1923int security_task_setioprio(struct task_struct *p, int ioprio)
1924{
1925 return call_int_hook(task_setioprio, 0, p, ioprio);
1926}
1927
1928int security_task_getioprio(struct task_struct *p)
1929{
1930 return call_int_hook(task_getioprio, 0, p);
1931}
1932
1933int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1934 unsigned int flags)
1935{
1936 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1937}
1938
1939int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1940 struct rlimit *new_rlim)
1941{
1942 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1943}
1944
1945int security_task_setscheduler(struct task_struct *p)
1946{
1947 return call_int_hook(task_setscheduler, 0, p);
1948}
1949
1950int security_task_getscheduler(struct task_struct *p)
1951{
1952 return call_int_hook(task_getscheduler, 0, p);
1953}
1954
1955int security_task_movememory(struct task_struct *p)
1956{
1957 return call_int_hook(task_movememory, 0, p);
1958}
1959
1960int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1961 int sig, const struct cred *cred)
1962{
1963 return call_int_hook(task_kill, 0, p, info, sig, cred);
1964}
1965
1966int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1967 unsigned long arg4, unsigned long arg5)
1968{
1969 int thisrc;
1970 int rc = LSM_RET_DEFAULT(task_prctl);
1971 struct security_hook_list *hp;
1972
1973 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1974 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1975 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1976 rc = thisrc;
1977 if (thisrc != 0)
1978 break;
1979 }
1980 }
1981 return rc;
1982}
1983
1984void security_task_to_inode(struct task_struct *p, struct inode *inode)
1985{
1986 call_void_hook(task_to_inode, p, inode);
1987}
1988
1989int security_create_user_ns(const struct cred *cred)
1990{
1991 return call_int_hook(userns_create, 0, cred);
1992}
1993
1994int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1995{
1996 return call_int_hook(ipc_permission, 0, ipcp, flag);
1997}
1998
1999void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2000{
2001 *secid = 0;
2002 call_void_hook(ipc_getsecid, ipcp, secid);
2003}
2004
2005int security_msg_msg_alloc(struct msg_msg *msg)
2006{
2007 int rc = lsm_msg_msg_alloc(msg);
2008
2009 if (unlikely(rc))
2010 return rc;
2011 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
2012 if (unlikely(rc))
2013 security_msg_msg_free(msg);
2014 return rc;
2015}
2016
2017void security_msg_msg_free(struct msg_msg *msg)
2018{
2019 call_void_hook(msg_msg_free_security, msg);
2020 kfree(msg->security);
2021 msg->security = NULL;
2022}
2023
2024int security_msg_queue_alloc(struct kern_ipc_perm *msq)
2025{
2026 int rc = lsm_ipc_alloc(msq);
2027
2028 if (unlikely(rc))
2029 return rc;
2030 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
2031 if (unlikely(rc))
2032 security_msg_queue_free(msq);
2033 return rc;
2034}
2035
2036void security_msg_queue_free(struct kern_ipc_perm *msq)
2037{
2038 call_void_hook(msg_queue_free_security, msq);
2039 kfree(msq->security);
2040 msq->security = NULL;
2041}
2042
2043int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2044{
2045 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2046}
2047
2048int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2049{
2050 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2051}
2052
2053int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2054 struct msg_msg *msg, int msqflg)
2055{
2056 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2057}
2058
2059int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2060 struct task_struct *target, long type, int mode)
2061{
2062 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2063}
2064
2065int security_shm_alloc(struct kern_ipc_perm *shp)
2066{
2067 int rc = lsm_ipc_alloc(shp);
2068
2069 if (unlikely(rc))
2070 return rc;
2071 rc = call_int_hook(shm_alloc_security, 0, shp);
2072 if (unlikely(rc))
2073 security_shm_free(shp);
2074 return rc;
2075}
2076
2077void security_shm_free(struct kern_ipc_perm *shp)
2078{
2079 call_void_hook(shm_free_security, shp);
2080 kfree(shp->security);
2081 shp->security = NULL;
2082}
2083
2084int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2085{
2086 return call_int_hook(shm_associate, 0, shp, shmflg);
2087}
2088
2089int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2090{
2091 return call_int_hook(shm_shmctl, 0, shp, cmd);
2092}
2093
2094int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2095{
2096 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2097}
2098
2099int security_sem_alloc(struct kern_ipc_perm *sma)
2100{
2101 int rc = lsm_ipc_alloc(sma);
2102
2103 if (unlikely(rc))
2104 return rc;
2105 rc = call_int_hook(sem_alloc_security, 0, sma);
2106 if (unlikely(rc))
2107 security_sem_free(sma);
2108 return rc;
2109}
2110
2111void security_sem_free(struct kern_ipc_perm *sma)
2112{
2113 call_void_hook(sem_free_security, sma);
2114 kfree(sma->security);
2115 sma->security = NULL;
2116}
2117
2118int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2119{
2120 return call_int_hook(sem_associate, 0, sma, semflg);
2121}
2122
2123int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2124{
2125 return call_int_hook(sem_semctl, 0, sma, cmd);
2126}
2127
2128int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2129 unsigned nsops, int alter)
2130{
2131 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2132}
2133
2134void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2135{
2136 if (unlikely(inode && IS_PRIVATE(inode)))
2137 return;
2138 call_void_hook(d_instantiate, dentry, inode);
2139}
2140EXPORT_SYMBOL(security_d_instantiate);
2141
2142int security_getprocattr(struct task_struct *p, const char *lsm,
2143 const char *name, char **value)
2144{
2145 struct security_hook_list *hp;
2146
2147 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2148 if (lsm != NULL && strcmp(lsm, hp->lsm))
2149 continue;
2150 return hp->hook.getprocattr(p, name, value);
2151 }
2152 return LSM_RET_DEFAULT(getprocattr);
2153}
2154
2155int security_setprocattr(const char *lsm, const char *name, void *value,
2156 size_t size)
2157{
2158 struct security_hook_list *hp;
2159
2160 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2161 if (lsm != NULL && strcmp(lsm, hp->lsm))
2162 continue;
2163 return hp->hook.setprocattr(name, value, size);
2164 }
2165 return LSM_RET_DEFAULT(setprocattr);
2166}
2167
2168int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2169{
2170 return call_int_hook(netlink_send, 0, sk, skb);
2171}
2172
2173int security_ismaclabel(const char *name)
2174{
2175 return call_int_hook(ismaclabel, 0, name);
2176}
2177EXPORT_SYMBOL(security_ismaclabel);
2178
2179int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2180{
2181 struct security_hook_list *hp;
2182 int rc;
2183
2184 /*
2185 * Currently, only one LSM can implement secid_to_secctx (i.e this
2186 * LSM hook is not "stackable").
2187 */
2188 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2189 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2190 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2191 return rc;
2192 }
2193
2194 return LSM_RET_DEFAULT(secid_to_secctx);
2195}
2196EXPORT_SYMBOL(security_secid_to_secctx);
2197
2198int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2199{
2200 *secid = 0;
2201 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2202}
2203EXPORT_SYMBOL(security_secctx_to_secid);
2204
2205void security_release_secctx(char *secdata, u32 seclen)
2206{
2207 call_void_hook(release_secctx, secdata, seclen);
2208}
2209EXPORT_SYMBOL(security_release_secctx);
2210
2211void security_inode_invalidate_secctx(struct inode *inode)
2212{
2213 call_void_hook(inode_invalidate_secctx, inode);
2214}
2215EXPORT_SYMBOL(security_inode_invalidate_secctx);
2216
2217int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2218{
2219 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2220}
2221EXPORT_SYMBOL(security_inode_notifysecctx);
2222
2223int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2224{
2225 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2226}
2227EXPORT_SYMBOL(security_inode_setsecctx);
2228
2229int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2230{
2231 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2232}
2233EXPORT_SYMBOL(security_inode_getsecctx);
2234
2235#ifdef CONFIG_WATCH_QUEUE
2236int security_post_notification(const struct cred *w_cred,
2237 const struct cred *cred,
2238 struct watch_notification *n)
2239{
2240 return call_int_hook(post_notification, 0, w_cred, cred, n);
2241}
2242#endif /* CONFIG_WATCH_QUEUE */
2243
2244#ifdef CONFIG_KEY_NOTIFICATIONS
2245int security_watch_key(struct key *key)
2246{
2247 return call_int_hook(watch_key, 0, key);
2248}
2249#endif
2250
2251#ifdef CONFIG_SECURITY_NETWORK
2252
2253int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2254{
2255 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2256}
2257EXPORT_SYMBOL(security_unix_stream_connect);
2258
2259int security_unix_may_send(struct socket *sock, struct socket *other)
2260{
2261 return call_int_hook(unix_may_send, 0, sock, other);
2262}
2263EXPORT_SYMBOL(security_unix_may_send);
2264
2265int security_socket_create(int family, int type, int protocol, int kern)
2266{
2267 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2268}
2269
2270int security_socket_post_create(struct socket *sock, int family,
2271 int type, int protocol, int kern)
2272{
2273 return call_int_hook(socket_post_create, 0, sock, family, type,
2274 protocol, kern);
2275}
2276
2277int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2278{
2279 return call_int_hook(socket_socketpair, 0, socka, sockb);
2280}
2281EXPORT_SYMBOL(security_socket_socketpair);
2282
2283int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2284{
2285 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2286}
2287
2288int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2289{
2290 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2291}
2292
2293int security_socket_listen(struct socket *sock, int backlog)
2294{
2295 return call_int_hook(socket_listen, 0, sock, backlog);
2296}
2297
2298int security_socket_accept(struct socket *sock, struct socket *newsock)
2299{
2300 return call_int_hook(socket_accept, 0, sock, newsock);
2301}
2302
2303int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2304{
2305 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2306}
2307
2308int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2309 int size, int flags)
2310{
2311 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2312}
2313
2314int security_socket_getsockname(struct socket *sock)
2315{
2316 return call_int_hook(socket_getsockname, 0, sock);
2317}
2318
2319int security_socket_getpeername(struct socket *sock)
2320{
2321 return call_int_hook(socket_getpeername, 0, sock);
2322}
2323
2324int security_socket_getsockopt(struct socket *sock, int level, int optname)
2325{
2326 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2327}
2328
2329int security_socket_setsockopt(struct socket *sock, int level, int optname)
2330{
2331 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2332}
2333
2334int security_socket_shutdown(struct socket *sock, int how)
2335{
2336 return call_int_hook(socket_shutdown, 0, sock, how);
2337}
2338
2339int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2340{
2341 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2342}
2343EXPORT_SYMBOL(security_sock_rcv_skb);
2344
2345int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2346 sockptr_t optlen, unsigned int len)
2347{
2348 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2349 optval, optlen, len);
2350}
2351
2352int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2353{
2354 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2355 skb, secid);
2356}
2357EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2358
2359int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2360{
2361 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2362}
2363
2364void security_sk_free(struct sock *sk)
2365{
2366 call_void_hook(sk_free_security, sk);
2367}
2368
2369void security_sk_clone(const struct sock *sk, struct sock *newsk)
2370{
2371 call_void_hook(sk_clone_security, sk, newsk);
2372}
2373EXPORT_SYMBOL(security_sk_clone);
2374
2375void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2376{
2377 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2378}
2379EXPORT_SYMBOL(security_sk_classify_flow);
2380
2381void security_req_classify_flow(const struct request_sock *req,
2382 struct flowi_common *flic)
2383{
2384 call_void_hook(req_classify_flow, req, flic);
2385}
2386EXPORT_SYMBOL(security_req_classify_flow);
2387
2388void security_sock_graft(struct sock *sk, struct socket *parent)
2389{
2390 call_void_hook(sock_graft, sk, parent);
2391}
2392EXPORT_SYMBOL(security_sock_graft);
2393
2394int security_inet_conn_request(const struct sock *sk,
2395 struct sk_buff *skb, struct request_sock *req)
2396{
2397 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2398}
2399EXPORT_SYMBOL(security_inet_conn_request);
2400
2401void security_inet_csk_clone(struct sock *newsk,
2402 const struct request_sock *req)
2403{
2404 call_void_hook(inet_csk_clone, newsk, req);
2405}
2406
2407void security_inet_conn_established(struct sock *sk,
2408 struct sk_buff *skb)
2409{
2410 call_void_hook(inet_conn_established, sk, skb);
2411}
2412EXPORT_SYMBOL(security_inet_conn_established);
2413
2414int security_secmark_relabel_packet(u32 secid)
2415{
2416 return call_int_hook(secmark_relabel_packet, 0, secid);
2417}
2418EXPORT_SYMBOL(security_secmark_relabel_packet);
2419
2420void security_secmark_refcount_inc(void)
2421{
2422 call_void_hook(secmark_refcount_inc);
2423}
2424EXPORT_SYMBOL(security_secmark_refcount_inc);
2425
2426void security_secmark_refcount_dec(void)
2427{
2428 call_void_hook(secmark_refcount_dec);
2429}
2430EXPORT_SYMBOL(security_secmark_refcount_dec);
2431
2432int security_tun_dev_alloc_security(void **security)
2433{
2434 return call_int_hook(tun_dev_alloc_security, 0, security);
2435}
2436EXPORT_SYMBOL(security_tun_dev_alloc_security);
2437
2438void security_tun_dev_free_security(void *security)
2439{
2440 call_void_hook(tun_dev_free_security, security);
2441}
2442EXPORT_SYMBOL(security_tun_dev_free_security);
2443
2444int security_tun_dev_create(void)
2445{
2446 return call_int_hook(tun_dev_create, 0);
2447}
2448EXPORT_SYMBOL(security_tun_dev_create);
2449
2450int security_tun_dev_attach_queue(void *security)
2451{
2452 return call_int_hook(tun_dev_attach_queue, 0, security);
2453}
2454EXPORT_SYMBOL(security_tun_dev_attach_queue);
2455
2456int security_tun_dev_attach(struct sock *sk, void *security)
2457{
2458 return call_int_hook(tun_dev_attach, 0, sk, security);
2459}
2460EXPORT_SYMBOL(security_tun_dev_attach);
2461
2462int security_tun_dev_open(void *security)
2463{
2464 return call_int_hook(tun_dev_open, 0, security);
2465}
2466EXPORT_SYMBOL(security_tun_dev_open);
2467
2468int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2469{
2470 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2471}
2472EXPORT_SYMBOL(security_sctp_assoc_request);
2473
2474int security_sctp_bind_connect(struct sock *sk, int optname,
2475 struct sockaddr *address, int addrlen)
2476{
2477 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2478 address, addrlen);
2479}
2480EXPORT_SYMBOL(security_sctp_bind_connect);
2481
2482void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2483 struct sock *newsk)
2484{
2485 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2486}
2487EXPORT_SYMBOL(security_sctp_sk_clone);
2488
2489int security_sctp_assoc_established(struct sctp_association *asoc,
2490 struct sk_buff *skb)
2491{
2492 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2493}
2494EXPORT_SYMBOL(security_sctp_assoc_established);
2495
2496#endif /* CONFIG_SECURITY_NETWORK */
2497
2498#ifdef CONFIG_SECURITY_INFINIBAND
2499
2500int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2501{
2502 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2503}
2504EXPORT_SYMBOL(security_ib_pkey_access);
2505
2506int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2507{
2508 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2509}
2510EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2511
2512int security_ib_alloc_security(void **sec)
2513{
2514 return call_int_hook(ib_alloc_security, 0, sec);
2515}
2516EXPORT_SYMBOL(security_ib_alloc_security);
2517
2518void security_ib_free_security(void *sec)
2519{
2520 call_void_hook(ib_free_security, sec);
2521}
2522EXPORT_SYMBOL(security_ib_free_security);
2523#endif /* CONFIG_SECURITY_INFINIBAND */
2524
2525#ifdef CONFIG_SECURITY_NETWORK_XFRM
2526
2527int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2528 struct xfrm_user_sec_ctx *sec_ctx,
2529 gfp_t gfp)
2530{
2531 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2532}
2533EXPORT_SYMBOL(security_xfrm_policy_alloc);
2534
2535int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2536 struct xfrm_sec_ctx **new_ctxp)
2537{
2538 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2539}
2540
2541void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2542{
2543 call_void_hook(xfrm_policy_free_security, ctx);
2544}
2545EXPORT_SYMBOL(security_xfrm_policy_free);
2546
2547int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2548{
2549 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2550}
2551
2552int security_xfrm_state_alloc(struct xfrm_state *x,
2553 struct xfrm_user_sec_ctx *sec_ctx)
2554{
2555 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2556}
2557EXPORT_SYMBOL(security_xfrm_state_alloc);
2558
2559int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2560 struct xfrm_sec_ctx *polsec, u32 secid)
2561{
2562 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2563}
2564
2565int security_xfrm_state_delete(struct xfrm_state *x)
2566{
2567 return call_int_hook(xfrm_state_delete_security, 0, x);
2568}
2569EXPORT_SYMBOL(security_xfrm_state_delete);
2570
2571void security_xfrm_state_free(struct xfrm_state *x)
2572{
2573 call_void_hook(xfrm_state_free_security, x);
2574}
2575
2576int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2577{
2578 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2579}
2580
2581int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2582 struct xfrm_policy *xp,
2583 const struct flowi_common *flic)
2584{
2585 struct security_hook_list *hp;
2586 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2587
2588 /*
2589 * Since this function is expected to return 0 or 1, the judgment
2590 * becomes difficult if multiple LSMs supply this call. Fortunately,
2591 * we can use the first LSM's judgment because currently only SELinux
2592 * supplies this call.
2593 *
2594 * For speed optimization, we explicitly break the loop rather than
2595 * using the macro
2596 */
2597 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2598 list) {
2599 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2600 break;
2601 }
2602 return rc;
2603}
2604
2605int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2606{
2607 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2608}
2609
2610void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2611{
2612 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2613 0);
2614
2615 BUG_ON(rc);
2616}
2617EXPORT_SYMBOL(security_skb_classify_flow);
2618
2619#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2620
2621#ifdef CONFIG_KEYS
2622
2623int security_key_alloc(struct key *key, const struct cred *cred,
2624 unsigned long flags)
2625{
2626 return call_int_hook(key_alloc, 0, key, cred, flags);
2627}
2628
2629void security_key_free(struct key *key)
2630{
2631 call_void_hook(key_free, key);
2632}
2633
2634int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2635 enum key_need_perm need_perm)
2636{
2637 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2638}
2639
2640int security_key_getsecurity(struct key *key, char **_buffer)
2641{
2642 *_buffer = NULL;
2643 return call_int_hook(key_getsecurity, 0, key, _buffer);
2644}
2645
2646#endif /* CONFIG_KEYS */
2647
2648#ifdef CONFIG_AUDIT
2649
2650int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2651{
2652 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2653}
2654
2655int security_audit_rule_known(struct audit_krule *krule)
2656{
2657 return call_int_hook(audit_rule_known, 0, krule);
2658}
2659
2660void security_audit_rule_free(void *lsmrule)
2661{
2662 call_void_hook(audit_rule_free, lsmrule);
2663}
2664
2665int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2666{
2667 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2668}
2669#endif /* CONFIG_AUDIT */
2670
2671#ifdef CONFIG_BPF_SYSCALL
2672int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2673{
2674 return call_int_hook(bpf, 0, cmd, attr, size);
2675}
2676int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2677{
2678 return call_int_hook(bpf_map, 0, map, fmode);
2679}
2680int security_bpf_prog(struct bpf_prog *prog)
2681{
2682 return call_int_hook(bpf_prog, 0, prog);
2683}
2684int security_bpf_map_alloc(struct bpf_map *map)
2685{
2686 return call_int_hook(bpf_map_alloc_security, 0, map);
2687}
2688int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2689{
2690 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2691}
2692void security_bpf_map_free(struct bpf_map *map)
2693{
2694 call_void_hook(bpf_map_free_security, map);
2695}
2696void security_bpf_prog_free(struct bpf_prog_aux *aux)
2697{
2698 call_void_hook(bpf_prog_free_security, aux);
2699}
2700#endif /* CONFIG_BPF_SYSCALL */
2701
2702int security_locked_down(enum lockdown_reason what)
2703{
2704 return call_int_hook(locked_down, 0, what);
2705}
2706EXPORT_SYMBOL(security_locked_down);
2707
2708#ifdef CONFIG_PERF_EVENTS
2709int security_perf_event_open(struct perf_event_attr *attr, int type)
2710{
2711 return call_int_hook(perf_event_open, 0, attr, type);
2712}
2713
2714int security_perf_event_alloc(struct perf_event *event)
2715{
2716 return call_int_hook(perf_event_alloc, 0, event);
2717}
2718
2719void security_perf_event_free(struct perf_event *event)
2720{
2721 call_void_hook(perf_event_free, event);
2722}
2723
2724int security_perf_event_read(struct perf_event *event)
2725{
2726 return call_int_hook(perf_event_read, 0, event);
2727}
2728
2729int security_perf_event_write(struct perf_event *event)
2730{
2731 return call_int_hook(perf_event_write, 0, event);
2732}
2733#endif /* CONFIG_PERF_EVENTS */
2734
2735#ifdef CONFIG_IO_URING
2736int security_uring_override_creds(const struct cred *new)
2737{
2738 return call_int_hook(uring_override_creds, 0, new);
2739}
2740
2741int security_uring_sqpoll(void)
2742{
2743 return call_int_hook(uring_sqpoll, 0);
2744}
2745int security_uring_cmd(struct io_uring_cmd *ioucmd)
2746{
2747 return call_int_hook(uring_cmd, 0, ioucmd);
2748}
2749#endif /* CONFIG_IO_URING */