Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/secretmem.h>
  14
  15#include <linux/sched/signal.h>
  16#include <linux/rwsem.h>
  17#include <linux/hugetlb.h>
  18#include <linux/migrate.h>
  19#include <linux/mm_inline.h>
  20#include <linux/sched/mm.h>
  21#include <linux/shmem_fs.h>
  22
  23#include <asm/mmu_context.h>
  24#include <asm/tlbflush.h>
  25
  26#include "internal.h"
  27
  28struct follow_page_context {
  29	struct dev_pagemap *pgmap;
  30	unsigned int page_mask;
  31};
  32
  33static inline void sanity_check_pinned_pages(struct page **pages,
  34					     unsigned long npages)
  35{
  36	if (!IS_ENABLED(CONFIG_DEBUG_VM))
  37		return;
  38
  39	/*
  40	 * We only pin anonymous pages if they are exclusive. Once pinned, we
  41	 * can no longer turn them possibly shared and PageAnonExclusive() will
  42	 * stick around until the page is freed.
  43	 *
  44	 * We'd like to verify that our pinned anonymous pages are still mapped
  45	 * exclusively. The issue with anon THP is that we don't know how
  46	 * they are/were mapped when pinning them. However, for anon
  47	 * THP we can assume that either the given page (PTE-mapped THP) or
  48	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
  49	 * neither is the case, there is certainly something wrong.
  50	 */
  51	for (; npages; npages--, pages++) {
  52		struct page *page = *pages;
  53		struct folio *folio = page_folio(page);
  54
  55		if (is_zero_page(page) ||
  56		    !folio_test_anon(folio))
  57			continue;
  58		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
  59			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
  60		else
  61			/* Either a PTE-mapped or a PMD-mapped THP. */
  62			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
  63				       !PageAnonExclusive(page), page);
  64	}
  65}
  66
  67/*
  68 * Return the folio with ref appropriately incremented,
  69 * or NULL if that failed.
  70 */
  71static inline struct folio *try_get_folio(struct page *page, int refs)
  72{
  73	struct folio *folio;
  74
  75retry:
  76	folio = page_folio(page);
  77	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
  78		return NULL;
  79	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
  80		return NULL;
  81
  82	/*
  83	 * At this point we have a stable reference to the folio; but it
  84	 * could be that between calling page_folio() and the refcount
  85	 * increment, the folio was split, in which case we'd end up
  86	 * holding a reference on a folio that has nothing to do with the page
  87	 * we were given anymore.
  88	 * So now that the folio is stable, recheck that the page still
  89	 * belongs to this folio.
  90	 */
  91	if (unlikely(page_folio(page) != folio)) {
  92		if (!put_devmap_managed_page_refs(&folio->page, refs))
  93			folio_put_refs(folio, refs);
  94		goto retry;
  95	}
  96
  97	return folio;
  98}
  99
 100/**
 101 * try_grab_folio() - Attempt to get or pin a folio.
 102 * @page:  pointer to page to be grabbed
 103 * @refs:  the value to (effectively) add to the folio's refcount
 104 * @flags: gup flags: these are the FOLL_* flag values.
 105 *
 106 * "grab" names in this file mean, "look at flags to decide whether to use
 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 108 *
 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 110 * same time. (That's true throughout the get_user_pages*() and
 111 * pin_user_pages*() APIs.) Cases:
 112 *
 113 *    FOLL_GET: folio's refcount will be incremented by @refs.
 114 *
 115 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 116 *    @refs, and its pincount will be incremented by @refs.
 117 *
 118 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
 119 *    @refs * GUP_PIN_COUNTING_BIAS.
 120 *
 121 * Return: The folio containing @page (with refcount appropriately
 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 124 * a likely bug in the caller, so a warning is also emitted.
 125 */
 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
 127{
 128	struct folio *folio;
 129
 130	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
 131		return NULL;
 132
 133	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 134		return NULL;
 135
 136	if (flags & FOLL_GET)
 137		return try_get_folio(page, refs);
 
 
 138
 139	/* FOLL_PIN is set */
 140
 141	/*
 142	 * Don't take a pin on the zero page - it's not going anywhere
 143	 * and it is used in a *lot* of places.
 144	 */
 145	if (is_zero_page(page))
 146		return page_folio(page);
 147
 148	folio = try_get_folio(page, refs);
 149	if (!folio)
 150		return NULL;
 
 
 
 
 151
 152	/*
 153	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
 154	 * right zone, so fail and let the caller fall back to the slow
 155	 * path.
 156	 */
 157	if (unlikely((flags & FOLL_LONGTERM) &&
 158		     !folio_is_longterm_pinnable(folio))) {
 159		if (!put_devmap_managed_page_refs(&folio->page, refs))
 160			folio_put_refs(folio, refs);
 161		return NULL;
 162	}
 
 
 
 
 
 
 
 
 163
 164	/*
 165	 * When pinning a large folio, use an exact count to track it.
 166	 *
 167	 * However, be sure to *also* increment the normal folio
 168	 * refcount field at least once, so that the folio really
 169	 * is pinned.  That's why the refcount from the earlier
 170	 * try_get_folio() is left intact.
 171	 */
 172	if (folio_test_large(folio))
 173		atomic_add(refs, &folio->_pincount);
 174	else
 175		folio_ref_add(folio,
 176				refs * (GUP_PIN_COUNTING_BIAS - 1));
 177	/*
 178	 * Adjust the pincount before re-checking the PTE for changes.
 179	 * This is essentially a smp_mb() and is paired with a memory
 180	 * barrier in folio_try_share_anon_rmap_*().
 181	 */
 182	smp_mb__after_atomic();
 183
 184	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 
 185
 186	return folio;
 
 187}
 188
 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
 190{
 191	if (flags & FOLL_PIN) {
 192		if (is_zero_folio(folio))
 193			return;
 194		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
 195		if (folio_test_large(folio))
 196			atomic_sub(refs, &folio->_pincount);
 197		else
 198			refs *= GUP_PIN_COUNTING_BIAS;
 199	}
 200
 201	if (!put_devmap_managed_page_refs(&folio->page, refs))
 202		folio_put_refs(folio, refs);
 203}
 204
 205/**
 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 207 * @page:    pointer to page to be grabbed
 208 * @flags:   gup flags: these are the FOLL_* flag values.
 209 *
 210 * This might not do anything at all, depending on the flags argument.
 211 *
 212 * "grab" names in this file mean, "look at flags to decide whether to use
 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 214 *
 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 216 * time. Cases: please see the try_grab_folio() documentation, with
 217 * "refs=1".
 218 *
 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
 221 *
 222 *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
 223 *			be grabbed.
 224 */
 225int __must_check try_grab_page(struct page *page, unsigned int flags)
 226{
 227	struct folio *folio = page_folio(page);
 228
 
 229	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
 230		return -ENOMEM;
 231
 232	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 233		return -EREMOTEIO;
 234
 235	if (flags & FOLL_GET)
 236		folio_ref_inc(folio);
 237	else if (flags & FOLL_PIN) {
 238		/*
 239		 * Don't take a pin on the zero page - it's not going anywhere
 240		 * and it is used in a *lot* of places.
 241		 */
 242		if (is_zero_page(page))
 243			return 0;
 244
 245		/*
 246		 * Similar to try_grab_folio(): be sure to *also*
 247		 * increment the normal page refcount field at least once,
 248		 * so that the page really is pinned.
 249		 */
 250		if (folio_test_large(folio)) {
 251			folio_ref_add(folio, 1);
 252			atomic_add(1, &folio->_pincount);
 253		} else {
 254			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 255		}
 256
 257		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
 258	}
 259
 260	return 0;
 261}
 262
 263/**
 264 * unpin_user_page() - release a dma-pinned page
 265 * @page:            pointer to page to be released
 266 *
 267 * Pages that were pinned via pin_user_pages*() must be released via either
 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 269 * that such pages can be separately tracked and uniquely handled. In
 270 * particular, interactions with RDMA and filesystems need special handling.
 271 */
 272void unpin_user_page(struct page *page)
 273{
 274	sanity_check_pinned_pages(&page, 1);
 275	gup_put_folio(page_folio(page), 1, FOLL_PIN);
 276}
 277EXPORT_SYMBOL(unpin_user_page);
 278
 279/**
 280 * folio_add_pin - Try to get an additional pin on a pinned folio
 281 * @folio: The folio to be pinned
 282 *
 283 * Get an additional pin on a folio we already have a pin on.  Makes no change
 284 * if the folio is a zero_page.
 285 */
 286void folio_add_pin(struct folio *folio)
 287{
 288	if (is_zero_folio(folio))
 289		return;
 290
 291	/*
 292	 * Similar to try_grab_folio(): be sure to *also* increment the normal
 293	 * page refcount field at least once, so that the page really is
 294	 * pinned.
 295	 */
 296	if (folio_test_large(folio)) {
 297		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
 298		folio_ref_inc(folio);
 299		atomic_inc(&folio->_pincount);
 300	} else {
 301		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
 302		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 303	}
 304}
 305
 306static inline struct folio *gup_folio_range_next(struct page *start,
 307		unsigned long npages, unsigned long i, unsigned int *ntails)
 308{
 309	struct page *next = nth_page(start, i);
 310	struct folio *folio = page_folio(next);
 311	unsigned int nr = 1;
 312
 313	if (folio_test_large(folio))
 314		nr = min_t(unsigned int, npages - i,
 315			   folio_nr_pages(folio) - folio_page_idx(folio, next));
 316
 317	*ntails = nr;
 318	return folio;
 319}
 320
 321static inline struct folio *gup_folio_next(struct page **list,
 322		unsigned long npages, unsigned long i, unsigned int *ntails)
 323{
 324	struct folio *folio = page_folio(list[i]);
 325	unsigned int nr;
 326
 327	for (nr = i + 1; nr < npages; nr++) {
 328		if (page_folio(list[nr]) != folio)
 329			break;
 330	}
 331
 332	*ntails = nr - i;
 333	return folio;
 334}
 335
 336/**
 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 338 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 339 * @npages: number of pages in the @pages array.
 340 * @make_dirty: whether to mark the pages dirty
 341 *
 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 343 * variants called on that page.
 344 *
 345 * For each page in the @pages array, make that page (or its head page, if a
 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
 347 * listed as clean. In any case, releases all pages using unpin_user_page(),
 348 * possibly via unpin_user_pages(), for the non-dirty case.
 349 *
 350 * Please see the unpin_user_page() documentation for details.
 351 *
 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 353 * required, then the caller should a) verify that this is really correct,
 354 * because _lock() is usually required, and b) hand code it:
 355 * set_page_dirty_lock(), unpin_user_page().
 356 *
 357 */
 358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 359				 bool make_dirty)
 360{
 361	unsigned long i;
 362	struct folio *folio;
 363	unsigned int nr;
 364
 365	if (!make_dirty) {
 366		unpin_user_pages(pages, npages);
 367		return;
 368	}
 369
 370	sanity_check_pinned_pages(pages, npages);
 371	for (i = 0; i < npages; i += nr) {
 372		folio = gup_folio_next(pages, npages, i, &nr);
 373		/*
 374		 * Checking PageDirty at this point may race with
 375		 * clear_page_dirty_for_io(), but that's OK. Two key
 376		 * cases:
 377		 *
 378		 * 1) This code sees the page as already dirty, so it
 379		 * skips the call to set_page_dirty(). That could happen
 380		 * because clear_page_dirty_for_io() called
 381		 * page_mkclean(), followed by set_page_dirty().
 382		 * However, now the page is going to get written back,
 383		 * which meets the original intention of setting it
 384		 * dirty, so all is well: clear_page_dirty_for_io() goes
 385		 * on to call TestClearPageDirty(), and write the page
 386		 * back.
 387		 *
 388		 * 2) This code sees the page as clean, so it calls
 389		 * set_page_dirty(). The page stays dirty, despite being
 390		 * written back, so it gets written back again in the
 391		 * next writeback cycle. This is harmless.
 392		 */
 393		if (!folio_test_dirty(folio)) {
 394			folio_lock(folio);
 395			folio_mark_dirty(folio);
 396			folio_unlock(folio);
 397		}
 398		gup_put_folio(folio, nr, FOLL_PIN);
 399	}
 400}
 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 402
 403/**
 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 405 * gup-pinned page range
 406 *
 407 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 408 * @npages: number of consecutive pages to release.
 409 * @make_dirty: whether to mark the pages dirty
 410 *
 411 * "gup-pinned page range" refers to a range of pages that has had one of the
 412 * pin_user_pages() variants called on that page.
 413 *
 414 * For the page ranges defined by [page .. page+npages], make that range (or
 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 416 * page range was previously listed as clean.
 417 *
 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 419 * required, then the caller should a) verify that this is really correct,
 420 * because _lock() is usually required, and b) hand code it:
 421 * set_page_dirty_lock(), unpin_user_page().
 422 *
 423 */
 424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 425				      bool make_dirty)
 426{
 427	unsigned long i;
 428	struct folio *folio;
 429	unsigned int nr;
 430
 431	for (i = 0; i < npages; i += nr) {
 432		folio = gup_folio_range_next(page, npages, i, &nr);
 433		if (make_dirty && !folio_test_dirty(folio)) {
 434			folio_lock(folio);
 435			folio_mark_dirty(folio);
 436			folio_unlock(folio);
 437		}
 438		gup_put_folio(folio, nr, FOLL_PIN);
 439	}
 440}
 441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
 442
 443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
 444{
 445	unsigned long i;
 446	struct folio *folio;
 447	unsigned int nr;
 448
 449	/*
 450	 * Don't perform any sanity checks because we might have raced with
 451	 * fork() and some anonymous pages might now actually be shared --
 452	 * which is why we're unpinning after all.
 453	 */
 454	for (i = 0; i < npages; i += nr) {
 455		folio = gup_folio_next(pages, npages, i, &nr);
 456		gup_put_folio(folio, nr, FOLL_PIN);
 457	}
 458}
 459
 460/**
 461 * unpin_user_pages() - release an array of gup-pinned pages.
 462 * @pages:  array of pages to be marked dirty and released.
 463 * @npages: number of pages in the @pages array.
 464 *
 465 * For each page in the @pages array, release the page using unpin_user_page().
 466 *
 467 * Please see the unpin_user_page() documentation for details.
 468 */
 469void unpin_user_pages(struct page **pages, unsigned long npages)
 470{
 471	unsigned long i;
 472	struct folio *folio;
 473	unsigned int nr;
 474
 475	/*
 476	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
 477	 * leaving them pinned), but probably not. More likely, gup/pup returned
 478	 * a hard -ERRNO error to the caller, who erroneously passed it here.
 479	 */
 480	if (WARN_ON(IS_ERR_VALUE(npages)))
 481		return;
 482
 483	sanity_check_pinned_pages(pages, npages);
 484	for (i = 0; i < npages; i += nr) {
 485		folio = gup_folio_next(pages, npages, i, &nr);
 486		gup_put_folio(folio, nr, FOLL_PIN);
 487	}
 488}
 489EXPORT_SYMBOL(unpin_user_pages);
 490
 491/*
 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 493 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 494 * cache bouncing on large SMP machines for concurrent pinned gups.
 495 */
 496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
 497{
 498	if (!test_bit(MMF_HAS_PINNED, mm_flags))
 499		set_bit(MMF_HAS_PINNED, mm_flags);
 500}
 501
 502#ifdef CONFIG_MMU
 503static struct page *no_page_table(struct vm_area_struct *vma,
 504		unsigned int flags)
 505{
 506	/*
 507	 * When core dumping an enormous anonymous area that nobody
 508	 * has touched so far, we don't want to allocate unnecessary pages or
 509	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 510	 * then get_dump_page() will return NULL to leave a hole in the dump.
 511	 * But we can only make this optimization where a hole would surely
 512	 * be zero-filled if handle_mm_fault() actually did handle it.
 513	 */
 514	if ((flags & FOLL_DUMP) &&
 515			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 516		return ERR_PTR(-EFAULT);
 517	return NULL;
 518}
 519
 520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 521		pte_t *pte, unsigned int flags)
 522{
 523	if (flags & FOLL_TOUCH) {
 524		pte_t orig_entry = ptep_get(pte);
 525		pte_t entry = orig_entry;
 526
 527		if (flags & FOLL_WRITE)
 528			entry = pte_mkdirty(entry);
 529		entry = pte_mkyoung(entry);
 530
 531		if (!pte_same(orig_entry, entry)) {
 532			set_pte_at(vma->vm_mm, address, pte, entry);
 533			update_mmu_cache(vma, address, pte);
 534		}
 535	}
 536
 537	/* Proper page table entry exists, but no corresponding struct page */
 538	return -EEXIST;
 539}
 540
 541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
 542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
 543					struct vm_area_struct *vma,
 544					unsigned int flags)
 545{
 546	/* If the pte is writable, we can write to the page. */
 547	if (pte_write(pte))
 548		return true;
 549
 550	/* Maybe FOLL_FORCE is set to override it? */
 551	if (!(flags & FOLL_FORCE))
 552		return false;
 553
 554	/* But FOLL_FORCE has no effect on shared mappings */
 555	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 556		return false;
 557
 558	/* ... or read-only private ones */
 559	if (!(vma->vm_flags & VM_MAYWRITE))
 560		return false;
 561
 562	/* ... or already writable ones that just need to take a write fault */
 563	if (vma->vm_flags & VM_WRITE)
 564		return false;
 565
 566	/*
 567	 * See can_change_pte_writable(): we broke COW and could map the page
 568	 * writable if we have an exclusive anonymous page ...
 569	 */
 570	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
 571		return false;
 572
 573	/* ... and a write-fault isn't required for other reasons. */
 574	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
 575		return false;
 576	return !userfaultfd_pte_wp(vma, pte);
 577}
 578
 579static struct page *follow_page_pte(struct vm_area_struct *vma,
 580		unsigned long address, pmd_t *pmd, unsigned int flags,
 581		struct dev_pagemap **pgmap)
 582{
 583	struct mm_struct *mm = vma->vm_mm;
 584	struct page *page;
 585	spinlock_t *ptl;
 586	pte_t *ptep, pte;
 587	int ret;
 588
 589	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 590	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 591			 (FOLL_PIN | FOLL_GET)))
 592		return ERR_PTR(-EINVAL);
 
 
 593
 594	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 595	if (!ptep)
 596		return no_page_table(vma, flags);
 597	pte = ptep_get(ptep);
 598	if (!pte_present(pte))
 599		goto no_page;
 600	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
 601		goto no_page;
 602
 603	page = vm_normal_page(vma, address, pte);
 604
 605	/*
 606	 * We only care about anon pages in can_follow_write_pte() and don't
 607	 * have to worry about pte_devmap() because they are never anon.
 608	 */
 609	if ((flags & FOLL_WRITE) &&
 610	    !can_follow_write_pte(pte, page, vma, flags)) {
 611		page = NULL;
 612		goto out;
 613	}
 614
 615	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 616		/*
 617		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 618		 * case since they are only valid while holding the pgmap
 619		 * reference.
 620		 */
 621		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 622		if (*pgmap)
 623			page = pte_page(pte);
 624		else
 625			goto no_page;
 626	} else if (unlikely(!page)) {
 627		if (flags & FOLL_DUMP) {
 628			/* Avoid special (like zero) pages in core dumps */
 629			page = ERR_PTR(-EFAULT);
 630			goto out;
 631		}
 632
 633		if (is_zero_pfn(pte_pfn(pte))) {
 634			page = pte_page(pte);
 635		} else {
 636			ret = follow_pfn_pte(vma, address, ptep, flags);
 637			page = ERR_PTR(ret);
 638			goto out;
 639		}
 640	}
 641
 642	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
 643		page = ERR_PTR(-EMLINK);
 644		goto out;
 645	}
 646
 647	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 648		       !PageAnonExclusive(page), page);
 649
 650	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 651	ret = try_grab_page(page, flags);
 652	if (unlikely(ret)) {
 653		page = ERR_PTR(ret);
 654		goto out;
 655	}
 656
 657	/*
 658	 * We need to make the page accessible if and only if we are going
 659	 * to access its content (the FOLL_PIN case).  Please see
 660	 * Documentation/core-api/pin_user_pages.rst for details.
 661	 */
 662	if (flags & FOLL_PIN) {
 663		ret = arch_make_page_accessible(page);
 664		if (ret) {
 665			unpin_user_page(page);
 666			page = ERR_PTR(ret);
 667			goto out;
 668		}
 669	}
 670	if (flags & FOLL_TOUCH) {
 671		if ((flags & FOLL_WRITE) &&
 672		    !pte_dirty(pte) && !PageDirty(page))
 673			set_page_dirty(page);
 674		/*
 675		 * pte_mkyoung() would be more correct here, but atomic care
 676		 * is needed to avoid losing the dirty bit: it is easier to use
 677		 * mark_page_accessed().
 678		 */
 679		mark_page_accessed(page);
 680	}
 681out:
 682	pte_unmap_unlock(ptep, ptl);
 683	return page;
 684no_page:
 685	pte_unmap_unlock(ptep, ptl);
 686	if (!pte_none(pte))
 687		return NULL;
 688	return no_page_table(vma, flags);
 689}
 690
 691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 692				    unsigned long address, pud_t *pudp,
 693				    unsigned int flags,
 694				    struct follow_page_context *ctx)
 695{
 696	pmd_t *pmd, pmdval;
 697	spinlock_t *ptl;
 698	struct page *page;
 699	struct mm_struct *mm = vma->vm_mm;
 700
 701	pmd = pmd_offset(pudp, address);
 702	pmdval = pmdp_get_lockless(pmd);
 
 
 
 
 703	if (pmd_none(pmdval))
 704		return no_page_table(vma, flags);
 705	if (!pmd_present(pmdval))
 706		return no_page_table(vma, flags);
 707	if (pmd_devmap(pmdval)) {
 708		ptl = pmd_lock(mm, pmd);
 709		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 710		spin_unlock(ptl);
 711		if (page)
 712			return page;
 713		return no_page_table(vma, flags);
 714	}
 715	if (likely(!pmd_trans_huge(pmdval)))
 716		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 717
 718	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
 719		return no_page_table(vma, flags);
 720
 721	ptl = pmd_lock(mm, pmd);
 722	if (unlikely(!pmd_present(*pmd))) {
 723		spin_unlock(ptl);
 724		return no_page_table(vma, flags);
 725	}
 726	if (unlikely(!pmd_trans_huge(*pmd))) {
 727		spin_unlock(ptl);
 728		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 729	}
 730	if (flags & FOLL_SPLIT_PMD) {
 731		spin_unlock(ptl);
 732		split_huge_pmd(vma, pmd, address);
 733		/* If pmd was left empty, stuff a page table in there quickly */
 734		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
 
 
 
 
 
 
 
 
 
 
 
 735			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 736	}
 737	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 738	spin_unlock(ptl);
 739	ctx->page_mask = HPAGE_PMD_NR - 1;
 740	return page;
 741}
 742
 743static struct page *follow_pud_mask(struct vm_area_struct *vma,
 744				    unsigned long address, p4d_t *p4dp,
 745				    unsigned int flags,
 746				    struct follow_page_context *ctx)
 747{
 748	pud_t *pud;
 749	spinlock_t *ptl;
 750	struct page *page;
 751	struct mm_struct *mm = vma->vm_mm;
 752
 753	pud = pud_offset(p4dp, address);
 754	if (pud_none(*pud))
 755		return no_page_table(vma, flags);
 756	if (pud_devmap(*pud)) {
 757		ptl = pud_lock(mm, pud);
 758		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 759		spin_unlock(ptl);
 760		if (page)
 761			return page;
 762		return no_page_table(vma, flags);
 763	}
 764	if (unlikely(pud_bad(*pud)))
 765		return no_page_table(vma, flags);
 766
 767	return follow_pmd_mask(vma, address, pud, flags, ctx);
 768}
 769
 770static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 771				    unsigned long address, pgd_t *pgdp,
 772				    unsigned int flags,
 773				    struct follow_page_context *ctx)
 774{
 775	p4d_t *p4d;
 776
 777	p4d = p4d_offset(pgdp, address);
 778	if (p4d_none(*p4d))
 779		return no_page_table(vma, flags);
 780	BUILD_BUG_ON(p4d_huge(*p4d));
 781	if (unlikely(p4d_bad(*p4d)))
 782		return no_page_table(vma, flags);
 783
 784	return follow_pud_mask(vma, address, p4d, flags, ctx);
 785}
 786
 787/**
 788 * follow_page_mask - look up a page descriptor from a user-virtual address
 789 * @vma: vm_area_struct mapping @address
 790 * @address: virtual address to look up
 791 * @flags: flags modifying lookup behaviour
 792 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 793 *       pointer to output page_mask
 794 *
 795 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 796 *
 797 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 798 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 799 *
 800 * When getting an anonymous page and the caller has to trigger unsharing
 801 * of a shared anonymous page first, -EMLINK is returned. The caller should
 802 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 803 * relevant with FOLL_PIN and !FOLL_WRITE.
 804 *
 805 * On output, the @ctx->page_mask is set according to the size of the page.
 806 *
 807 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 808 * an error pointer if there is a mapping to something not represented
 809 * by a page descriptor (see also vm_normal_page()).
 810 */
 811static struct page *follow_page_mask(struct vm_area_struct *vma,
 812			      unsigned long address, unsigned int flags,
 813			      struct follow_page_context *ctx)
 814{
 815	pgd_t *pgd;
 
 816	struct mm_struct *mm = vma->vm_mm;
 817
 818	ctx->page_mask = 0;
 819
 820	/*
 821	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
 822	 * special hugetlb page table walking code.  This eliminates the
 823	 * need to check for hugetlb entries in the general walking code.
 
 
 
 824	 */
 825	if (is_vm_hugetlb_page(vma))
 826		return hugetlb_follow_page_mask(vma, address, flags,
 827						&ctx->page_mask);
 
 
 
 828
 829	pgd = pgd_offset(mm, address);
 830
 831	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 832		return no_page_table(vma, flags);
 833
 834	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 835}
 836
 837struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 838			 unsigned int foll_flags)
 839{
 840	struct follow_page_context ctx = { NULL };
 841	struct page *page;
 842
 843	if (vma_is_secretmem(vma))
 844		return NULL;
 845
 846	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
 847		return NULL;
 848
 849	/*
 850	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
 851	 * to fail on PROT_NONE-mapped pages.
 852	 */
 853	page = follow_page_mask(vma, address, foll_flags, &ctx);
 854	if (ctx.pgmap)
 855		put_dev_pagemap(ctx.pgmap);
 856	return page;
 857}
 858
 859static int get_gate_page(struct mm_struct *mm, unsigned long address,
 860		unsigned int gup_flags, struct vm_area_struct **vma,
 861		struct page **page)
 862{
 863	pgd_t *pgd;
 864	p4d_t *p4d;
 865	pud_t *pud;
 866	pmd_t *pmd;
 867	pte_t *pte;
 868	pte_t entry;
 869	int ret = -EFAULT;
 870
 871	/* user gate pages are read-only */
 872	if (gup_flags & FOLL_WRITE)
 873		return -EFAULT;
 874	if (address > TASK_SIZE)
 875		pgd = pgd_offset_k(address);
 876	else
 877		pgd = pgd_offset_gate(mm, address);
 878	if (pgd_none(*pgd))
 879		return -EFAULT;
 880	p4d = p4d_offset(pgd, address);
 881	if (p4d_none(*p4d))
 882		return -EFAULT;
 883	pud = pud_offset(p4d, address);
 884	if (pud_none(*pud))
 885		return -EFAULT;
 886	pmd = pmd_offset(pud, address);
 887	if (!pmd_present(*pmd))
 888		return -EFAULT;
 
 889	pte = pte_offset_map(pmd, address);
 890	if (!pte)
 891		return -EFAULT;
 892	entry = ptep_get(pte);
 893	if (pte_none(entry))
 894		goto unmap;
 895	*vma = get_gate_vma(mm);
 896	if (!page)
 897		goto out;
 898	*page = vm_normal_page(*vma, address, entry);
 899	if (!*page) {
 900		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
 901			goto unmap;
 902		*page = pte_page(entry);
 903	}
 904	ret = try_grab_page(*page, gup_flags);
 905	if (unlikely(ret))
 906		goto unmap;
 907out:
 908	ret = 0;
 909unmap:
 910	pte_unmap(pte);
 911	return ret;
 912}
 913
 914/*
 915 * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
 916 * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
 917 * to 0 and -EBUSY returned.
 918 */
 919static int faultin_page(struct vm_area_struct *vma,
 920		unsigned long address, unsigned int *flags, bool unshare,
 921		int *locked)
 922{
 923	unsigned int fault_flags = 0;
 924	vm_fault_t ret;
 925
 926	if (*flags & FOLL_NOFAULT)
 927		return -EFAULT;
 928	if (*flags & FOLL_WRITE)
 929		fault_flags |= FAULT_FLAG_WRITE;
 930	if (*flags & FOLL_REMOTE)
 931		fault_flags |= FAULT_FLAG_REMOTE;
 932	if (*flags & FOLL_UNLOCKABLE) {
 933		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 934		/*
 935		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
 936		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
 937		 * That's because some callers may not be prepared to
 938		 * handle early exits caused by non-fatal signals.
 939		 */
 940		if (*flags & FOLL_INTERRUPTIBLE)
 941			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 942	}
 943	if (*flags & FOLL_NOWAIT)
 944		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 945	if (*flags & FOLL_TRIED) {
 946		/*
 947		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 948		 * can co-exist
 949		 */
 950		fault_flags |= FAULT_FLAG_TRIED;
 951	}
 952	if (unshare) {
 953		fault_flags |= FAULT_FLAG_UNSHARE;
 954		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
 955		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
 956	}
 957
 958	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 959
 960	if (ret & VM_FAULT_COMPLETED) {
 961		/*
 962		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
 963		 * mmap lock in the page fault handler. Sanity check this.
 964		 */
 965		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
 966		*locked = 0;
 967
 968		/*
 969		 * We should do the same as VM_FAULT_RETRY, but let's not
 970		 * return -EBUSY since that's not reflecting the reality of
 971		 * what has happened - we've just fully completed a page
 972		 * fault, with the mmap lock released.  Use -EAGAIN to show
 973		 * that we want to take the mmap lock _again_.
 974		 */
 975		return -EAGAIN;
 976	}
 977
 978	if (ret & VM_FAULT_ERROR) {
 979		int err = vm_fault_to_errno(ret, *flags);
 980
 981		if (err)
 982			return err;
 983		BUG();
 984	}
 985
 986	if (ret & VM_FAULT_RETRY) {
 987		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 988			*locked = 0;
 989		return -EBUSY;
 990	}
 991
 992	return 0;
 993}
 994
 995/*
 996 * Writing to file-backed mappings which require folio dirty tracking using GUP
 997 * is a fundamentally broken operation, as kernel write access to GUP mappings
 998 * do not adhere to the semantics expected by a file system.
 999 *
1000 * Consider the following scenario:-
1001 *
1002 * 1. A folio is written to via GUP which write-faults the memory, notifying
1003 *    the file system and dirtying the folio.
1004 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1005 *    the PTE being marked read-only.
1006 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1007 *    direct mapping.
1008 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1009 *    (though it does not have to).
1010 *
1011 * This results in both data being written to a folio without writenotify, and
1012 * the folio being dirtied unexpectedly (if the caller decides to do so).
1013 */
1014static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1015					  unsigned long gup_flags)
1016{
1017	/*
1018	 * If we aren't pinning then no problematic write can occur. A long term
1019	 * pin is the most egregious case so this is the case we disallow.
1020	 */
1021	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1022	    (FOLL_PIN | FOLL_LONGTERM))
1023		return true;
1024
1025	/*
1026	 * If the VMA does not require dirty tracking then no problematic write
1027	 * can occur either.
1028	 */
1029	return !vma_needs_dirty_tracking(vma);
1030}
1031
1032static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1033{
1034	vm_flags_t vm_flags = vma->vm_flags;
1035	int write = (gup_flags & FOLL_WRITE);
1036	int foreign = (gup_flags & FOLL_REMOTE);
1037	bool vma_anon = vma_is_anonymous(vma);
1038
1039	if (vm_flags & (VM_IO | VM_PFNMAP))
1040		return -EFAULT;
1041
1042	if ((gup_flags & FOLL_ANON) && !vma_anon)
1043		return -EFAULT;
1044
1045	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1046		return -EOPNOTSUPP;
1047
 
 
 
1048	if (vma_is_secretmem(vma))
1049		return -EFAULT;
1050
1051	if (write) {
1052		if (!vma_anon &&
1053		    !writable_file_mapping_allowed(vma, gup_flags))
1054			return -EFAULT;
1055
1056		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1057			if (!(gup_flags & FOLL_FORCE))
1058				return -EFAULT;
1059			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1060			if (is_vm_hugetlb_page(vma))
1061				return -EFAULT;
1062			/*
1063			 * We used to let the write,force case do COW in a
1064			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1065			 * set a breakpoint in a read-only mapping of an
1066			 * executable, without corrupting the file (yet only
1067			 * when that file had been opened for writing!).
1068			 * Anon pages in shared mappings are surprising: now
1069			 * just reject it.
1070			 */
1071			if (!is_cow_mapping(vm_flags))
1072				return -EFAULT;
1073		}
1074	} else if (!(vm_flags & VM_READ)) {
1075		if (!(gup_flags & FOLL_FORCE))
1076			return -EFAULT;
1077		/*
1078		 * Is there actually any vma we can reach here which does not
1079		 * have VM_MAYREAD set?
1080		 */
1081		if (!(vm_flags & VM_MAYREAD))
1082			return -EFAULT;
1083	}
1084	/*
1085	 * gups are always data accesses, not instruction
1086	 * fetches, so execute=false here
1087	 */
1088	if (!arch_vma_access_permitted(vma, write, false, foreign))
1089		return -EFAULT;
1090	return 0;
1091}
1092
1093/*
1094 * This is "vma_lookup()", but with a warning if we would have
1095 * historically expanded the stack in the GUP code.
1096 */
1097static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1098	 unsigned long addr)
1099{
1100#ifdef CONFIG_STACK_GROWSUP
1101	return vma_lookup(mm, addr);
1102#else
1103	static volatile unsigned long next_warn;
1104	struct vm_area_struct *vma;
1105	unsigned long now, next;
1106
1107	vma = find_vma(mm, addr);
1108	if (!vma || (addr >= vma->vm_start))
1109		return vma;
1110
1111	/* Only warn for half-way relevant accesses */
1112	if (!(vma->vm_flags & VM_GROWSDOWN))
1113		return NULL;
1114	if (vma->vm_start - addr > 65536)
1115		return NULL;
1116
1117	/* Let's not warn more than once an hour.. */
1118	now = jiffies; next = next_warn;
1119	if (next && time_before(now, next))
1120		return NULL;
1121	next_warn = now + 60*60*HZ;
1122
1123	/* Let people know things may have changed. */
1124	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1125		current->comm, task_pid_nr(current),
1126		vma->vm_start, vma->vm_end, addr);
1127	dump_stack();
1128	return NULL;
1129#endif
1130}
1131
1132/**
1133 * __get_user_pages() - pin user pages in memory
1134 * @mm:		mm_struct of target mm
1135 * @start:	starting user address
1136 * @nr_pages:	number of pages from start to pin
1137 * @gup_flags:	flags modifying pin behaviour
1138 * @pages:	array that receives pointers to the pages pinned.
1139 *		Should be at least nr_pages long. Or NULL, if caller
1140 *		only intends to ensure the pages are faulted in.
 
 
1141 * @locked:     whether we're still with the mmap_lock held
1142 *
1143 * Returns either number of pages pinned (which may be less than the
1144 * number requested), or an error. Details about the return value:
1145 *
1146 * -- If nr_pages is 0, returns 0.
1147 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1148 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1149 *    pages pinned. Again, this may be less than nr_pages.
1150 * -- 0 return value is possible when the fault would need to be retried.
1151 *
1152 * The caller is responsible for releasing returned @pages, via put_page().
1153 *
 
 
1154 * Must be called with mmap_lock held.  It may be released.  See below.
1155 *
1156 * __get_user_pages walks a process's page tables and takes a reference to
1157 * each struct page that each user address corresponds to at a given
1158 * instant. That is, it takes the page that would be accessed if a user
1159 * thread accesses the given user virtual address at that instant.
1160 *
1161 * This does not guarantee that the page exists in the user mappings when
1162 * __get_user_pages returns, and there may even be a completely different
1163 * page there in some cases (eg. if mmapped pagecache has been invalidated
1164 * and subsequently re-faulted). However it does guarantee that the page
1165 * won't be freed completely. And mostly callers simply care that the page
1166 * contains data that was valid *at some point in time*. Typically, an IO
1167 * or similar operation cannot guarantee anything stronger anyway because
1168 * locks can't be held over the syscall boundary.
1169 *
1170 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1171 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1172 * appropriate) must be called after the page is finished with, and
1173 * before put_page is called.
1174 *
1175 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1176 * be released. If this happens *@locked will be set to 0 on return.
1177 *
1178 * A caller using such a combination of @gup_flags must therefore hold the
1179 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1180 * it must be held for either reading or writing and will not be released.
 
 
1181 *
1182 * In most cases, get_user_pages or get_user_pages_fast should be used
1183 * instead of __get_user_pages. __get_user_pages should be used only if
1184 * you need some special @gup_flags.
1185 */
1186static long __get_user_pages(struct mm_struct *mm,
1187		unsigned long start, unsigned long nr_pages,
1188		unsigned int gup_flags, struct page **pages,
1189		int *locked)
1190{
1191	long ret = 0, i = 0;
1192	struct vm_area_struct *vma = NULL;
1193	struct follow_page_context ctx = { NULL };
1194
1195	if (!nr_pages)
1196		return 0;
1197
1198	start = untagged_addr_remote(mm, start);
1199
1200	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1201
1202	do {
1203		struct page *page;
1204		unsigned int foll_flags = gup_flags;
1205		unsigned int page_increm;
1206
1207		/* first iteration or cross vma bound */
1208		if (!vma || start >= vma->vm_end) {
1209			/*
1210			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1211			 * lookups+error reporting differently.
1212			 */
1213			if (gup_flags & FOLL_MADV_POPULATE) {
1214				vma = vma_lookup(mm, start);
1215				if (!vma) {
1216					ret = -ENOMEM;
1217					goto out;
1218				}
1219				if (check_vma_flags(vma, gup_flags)) {
1220					ret = -EINVAL;
1221					goto out;
1222				}
1223				goto retry;
1224			}
1225			vma = gup_vma_lookup(mm, start);
1226			if (!vma && in_gate_area(mm, start)) {
1227				ret = get_gate_page(mm, start & PAGE_MASK,
1228						gup_flags, &vma,
1229						pages ? &page : NULL);
1230				if (ret)
1231					goto out;
1232				ctx.page_mask = 0;
1233				goto next_page;
1234			}
1235
1236			if (!vma) {
1237				ret = -EFAULT;
1238				goto out;
1239			}
1240			ret = check_vma_flags(vma, gup_flags);
1241			if (ret)
1242				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		}
1244retry:
1245		/*
1246		 * If we have a pending SIGKILL, don't keep faulting pages and
1247		 * potentially allocating memory.
1248		 */
1249		if (fatal_signal_pending(current)) {
1250			ret = -EINTR;
1251			goto out;
1252		}
1253		cond_resched();
1254
1255		page = follow_page_mask(vma, start, foll_flags, &ctx);
1256		if (!page || PTR_ERR(page) == -EMLINK) {
1257			ret = faultin_page(vma, start, &foll_flags,
1258					   PTR_ERR(page) == -EMLINK, locked);
1259			switch (ret) {
1260			case 0:
1261				goto retry;
1262			case -EBUSY:
1263			case -EAGAIN:
1264				ret = 0;
1265				fallthrough;
1266			case -EFAULT:
1267			case -ENOMEM:
1268			case -EHWPOISON:
1269				goto out;
1270			}
1271			BUG();
1272		} else if (PTR_ERR(page) == -EEXIST) {
1273			/*
1274			 * Proper page table entry exists, but no corresponding
1275			 * struct page. If the caller expects **pages to be
1276			 * filled in, bail out now, because that can't be done
1277			 * for this page.
1278			 */
1279			if (pages) {
1280				ret = PTR_ERR(page);
1281				goto out;
1282			}
 
 
1283		} else if (IS_ERR(page)) {
1284			ret = PTR_ERR(page);
1285			goto out;
1286		}
 
 
 
 
 
 
1287next_page:
 
 
 
 
1288		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1289		if (page_increm > nr_pages)
1290			page_increm = nr_pages;
1291
1292		if (pages) {
1293			struct page *subpage;
1294			unsigned int j;
1295
1296			/*
1297			 * This must be a large folio (and doesn't need to
1298			 * be the whole folio; it can be part of it), do
1299			 * the refcount work for all the subpages too.
1300			 *
1301			 * NOTE: here the page may not be the head page
1302			 * e.g. when start addr is not thp-size aligned.
1303			 * try_grab_folio() should have taken care of tail
1304			 * pages.
1305			 */
1306			if (page_increm > 1) {
1307				struct folio *folio;
1308
1309				/*
1310				 * Since we already hold refcount on the
1311				 * large folio, this should never fail.
1312				 */
1313				folio = try_grab_folio(page, page_increm - 1,
1314						       foll_flags);
1315				if (WARN_ON_ONCE(!folio)) {
1316					/*
1317					 * Release the 1st page ref if the
1318					 * folio is problematic, fail hard.
1319					 */
1320					gup_put_folio(page_folio(page), 1,
1321						      foll_flags);
1322					ret = -EFAULT;
1323					goto out;
1324				}
1325			}
1326
1327			for (j = 0; j < page_increm; j++) {
1328				subpage = nth_page(page, j);
1329				pages[i + j] = subpage;
1330				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1331				flush_dcache_page(subpage);
1332			}
1333		}
1334
1335		i += page_increm;
1336		start += page_increm * PAGE_SIZE;
1337		nr_pages -= page_increm;
1338	} while (nr_pages);
1339out:
1340	if (ctx.pgmap)
1341		put_dev_pagemap(ctx.pgmap);
1342	return i ? i : ret;
1343}
1344
1345static bool vma_permits_fault(struct vm_area_struct *vma,
1346			      unsigned int fault_flags)
1347{
1348	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1349	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1350	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1351
1352	if (!(vm_flags & vma->vm_flags))
1353		return false;
1354
1355	/*
1356	 * The architecture might have a hardware protection
1357	 * mechanism other than read/write that can deny access.
1358	 *
1359	 * gup always represents data access, not instruction
1360	 * fetches, so execute=false here:
1361	 */
1362	if (!arch_vma_access_permitted(vma, write, false, foreign))
1363		return false;
1364
1365	return true;
1366}
1367
1368/**
1369 * fixup_user_fault() - manually resolve a user page fault
1370 * @mm:		mm_struct of target mm
1371 * @address:	user address
1372 * @fault_flags:flags to pass down to handle_mm_fault()
1373 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1374 *		does not allow retry. If NULL, the caller must guarantee
1375 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1376 *
1377 * This is meant to be called in the specific scenario where for locking reasons
1378 * we try to access user memory in atomic context (within a pagefault_disable()
1379 * section), this returns -EFAULT, and we want to resolve the user fault before
1380 * trying again.
1381 *
1382 * Typically this is meant to be used by the futex code.
1383 *
1384 * The main difference with get_user_pages() is that this function will
1385 * unconditionally call handle_mm_fault() which will in turn perform all the
1386 * necessary SW fixup of the dirty and young bits in the PTE, while
1387 * get_user_pages() only guarantees to update these in the struct page.
1388 *
1389 * This is important for some architectures where those bits also gate the
1390 * access permission to the page because they are maintained in software.  On
1391 * such architectures, gup() will not be enough to make a subsequent access
1392 * succeed.
1393 *
1394 * This function will not return with an unlocked mmap_lock. So it has not the
1395 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1396 */
1397int fixup_user_fault(struct mm_struct *mm,
1398		     unsigned long address, unsigned int fault_flags,
1399		     bool *unlocked)
1400{
1401	struct vm_area_struct *vma;
1402	vm_fault_t ret;
1403
1404	address = untagged_addr_remote(mm, address);
1405
1406	if (unlocked)
1407		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1408
1409retry:
1410	vma = gup_vma_lookup(mm, address);
1411	if (!vma)
1412		return -EFAULT;
1413
1414	if (!vma_permits_fault(vma, fault_flags))
1415		return -EFAULT;
1416
1417	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1418	    fatal_signal_pending(current))
1419		return -EINTR;
1420
1421	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1422
1423	if (ret & VM_FAULT_COMPLETED) {
1424		/*
1425		 * NOTE: it's a pity that we need to retake the lock here
1426		 * to pair with the unlock() in the callers. Ideally we
1427		 * could tell the callers so they do not need to unlock.
1428		 */
1429		mmap_read_lock(mm);
1430		*unlocked = true;
1431		return 0;
1432	}
1433
1434	if (ret & VM_FAULT_ERROR) {
1435		int err = vm_fault_to_errno(ret, 0);
1436
1437		if (err)
1438			return err;
1439		BUG();
1440	}
1441
1442	if (ret & VM_FAULT_RETRY) {
1443		mmap_read_lock(mm);
1444		*unlocked = true;
1445		fault_flags |= FAULT_FLAG_TRIED;
1446		goto retry;
1447	}
1448
1449	return 0;
1450}
1451EXPORT_SYMBOL_GPL(fixup_user_fault);
1452
1453/*
1454 * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1455 * specified, it'll also respond to generic signals.  The caller of GUP
1456 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1457 */
1458static bool gup_signal_pending(unsigned int flags)
1459{
1460	if (fatal_signal_pending(current))
1461		return true;
1462
1463	if (!(flags & FOLL_INTERRUPTIBLE))
1464		return false;
1465
1466	return signal_pending(current);
1467}
1468
1469/*
1470 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1471 * the caller. This function may drop the mmap_lock. If it does so, then it will
1472 * set (*locked = 0).
1473 *
1474 * (*locked == 0) means that the caller expects this function to acquire and
1475 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1476 * the function returns, even though it may have changed temporarily during
1477 * function execution.
1478 *
1479 * Please note that this function, unlike __get_user_pages(), will not return 0
1480 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1481 */
1482static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1483						unsigned long start,
1484						unsigned long nr_pages,
1485						struct page **pages,
 
1486						int *locked,
1487						unsigned int flags)
1488{
1489	long ret, pages_done;
1490	bool must_unlock = false;
1491
1492	if (!nr_pages)
1493		return 0;
1494
1495	/*
1496	 * The internal caller expects GUP to manage the lock internally and the
1497	 * lock must be released when this returns.
1498	 */
1499	if (!*locked) {
1500		if (mmap_read_lock_killable(mm))
1501			return -EAGAIN;
1502		must_unlock = true;
1503		*locked = 1;
1504	}
1505	else
1506		mmap_assert_locked(mm);
1507
1508	if (flags & FOLL_PIN)
1509		mm_set_has_pinned_flag(&mm->flags);
1510
1511	/*
1512	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1513	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1514	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1515	 * for FOLL_GET, not for the newer FOLL_PIN.
1516	 *
1517	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1518	 * that here, as any failures will be obvious enough.
1519	 */
1520	if (pages && !(flags & FOLL_PIN))
1521		flags |= FOLL_GET;
1522
1523	pages_done = 0;
 
1524	for (;;) {
1525		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1526				       locked);
1527		if (!(flags & FOLL_UNLOCKABLE)) {
1528			/* VM_FAULT_RETRY couldn't trigger, bypass */
1529			pages_done = ret;
1530			break;
1531		}
1532
1533		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1534		if (!*locked) {
1535			BUG_ON(ret < 0);
1536			BUG_ON(ret >= nr_pages);
1537		}
1538
1539		if (ret > 0) {
1540			nr_pages -= ret;
1541			pages_done += ret;
1542			if (!nr_pages)
1543				break;
1544		}
1545		if (*locked) {
1546			/*
1547			 * VM_FAULT_RETRY didn't trigger or it was a
1548			 * FOLL_NOWAIT.
1549			 */
1550			if (!pages_done)
1551				pages_done = ret;
1552			break;
1553		}
1554		/*
1555		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1556		 * For the prefault case (!pages) we only update counts.
1557		 */
1558		if (likely(pages))
1559			pages += ret;
1560		start += ret << PAGE_SHIFT;
1561
1562		/* The lock was temporarily dropped, so we must unlock later */
1563		must_unlock = true;
1564
1565retry:
1566		/*
1567		 * Repeat on the address that fired VM_FAULT_RETRY
1568		 * with both FAULT_FLAG_ALLOW_RETRY and
1569		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1570		 * by fatal signals of even common signals, depending on
1571		 * the caller's request. So we need to check it before we
1572		 * start trying again otherwise it can loop forever.
1573		 */
1574		if (gup_signal_pending(flags)) {
1575			if (!pages_done)
1576				pages_done = -EINTR;
1577			break;
1578		}
1579
1580		ret = mmap_read_lock_killable(mm);
1581		if (ret) {
1582			BUG_ON(ret > 0);
1583			if (!pages_done)
1584				pages_done = ret;
1585			break;
1586		}
1587
1588		*locked = 1;
1589		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1590				       pages, locked);
1591		if (!*locked) {
1592			/* Continue to retry until we succeeded */
1593			BUG_ON(ret != 0);
1594			goto retry;
1595		}
1596		if (ret != 1) {
1597			BUG_ON(ret > 1);
1598			if (!pages_done)
1599				pages_done = ret;
1600			break;
1601		}
1602		nr_pages--;
1603		pages_done++;
1604		if (!nr_pages)
1605			break;
1606		if (likely(pages))
1607			pages++;
1608		start += PAGE_SIZE;
1609	}
1610	if (must_unlock && *locked) {
1611		/*
1612		 * We either temporarily dropped the lock, or the caller
1613		 * requested that we both acquire and drop the lock. Either way,
1614		 * we must now unlock, and notify the caller of that state.
1615		 */
1616		mmap_read_unlock(mm);
1617		*locked = 0;
1618	}
1619
1620	/*
1621	 * Failing to pin anything implies something has gone wrong (except when
1622	 * FOLL_NOWAIT is specified).
1623	 */
1624	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1625		return -EFAULT;
1626
1627	return pages_done;
1628}
1629
1630/**
1631 * populate_vma_page_range() -  populate a range of pages in the vma.
1632 * @vma:   target vma
1633 * @start: start address
1634 * @end:   end address
1635 * @locked: whether the mmap_lock is still held
1636 *
1637 * This takes care of mlocking the pages too if VM_LOCKED is set.
1638 *
1639 * Return either number of pages pinned in the vma, or a negative error
1640 * code on error.
1641 *
1642 * vma->vm_mm->mmap_lock must be held.
1643 *
1644 * If @locked is NULL, it may be held for read or write and will
1645 * be unperturbed.
1646 *
1647 * If @locked is non-NULL, it must held for read only and may be
1648 * released.  If it's released, *@locked will be set to 0.
1649 */
1650long populate_vma_page_range(struct vm_area_struct *vma,
1651		unsigned long start, unsigned long end, int *locked)
1652{
1653	struct mm_struct *mm = vma->vm_mm;
1654	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1655	int local_locked = 1;
1656	int gup_flags;
1657	long ret;
1658
1659	VM_BUG_ON(!PAGE_ALIGNED(start));
1660	VM_BUG_ON(!PAGE_ALIGNED(end));
1661	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1662	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1663	mmap_assert_locked(mm);
1664
1665	/*
1666	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1667	 * faultin_page() to break COW, so it has no work to do here.
1668	 */
1669	if (vma->vm_flags & VM_LOCKONFAULT)
1670		return nr_pages;
1671
1672	/* ... similarly, we've never faulted in PROT_NONE pages */
1673	if (!vma_is_accessible(vma))
1674		return -EFAULT;
1675
1676	gup_flags = FOLL_TOUCH;
1677	/*
1678	 * We want to touch writable mappings with a write fault in order
1679	 * to break COW, except for shared mappings because these don't COW
1680	 * and we would not want to dirty them for nothing.
1681	 *
1682	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1683	 * readable (ie write-only or executable).
1684	 */
1685	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1686		gup_flags |= FOLL_WRITE;
1687	else
1688		gup_flags |= FOLL_FORCE;
1689
1690	if (locked)
1691		gup_flags |= FOLL_UNLOCKABLE;
 
 
 
 
1692
1693	/*
1694	 * We made sure addr is within a VMA, so the following will
1695	 * not result in a stack expansion that recurses back here.
1696	 */
1697	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1698			       NULL, locked ? locked : &local_locked);
1699	lru_add_drain();
1700	return ret;
1701}
1702
1703/*
1704 * faultin_page_range() - populate (prefault) page tables inside the
1705 *			  given range readable/writable
1706 *
1707 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1708 *
1709 * @mm: the mm to populate page tables in
1710 * @start: start address
1711 * @end: end address
1712 * @write: whether to prefault readable or writable
1713 * @locked: whether the mmap_lock is still held
1714 *
1715 * Returns either number of processed pages in the MM, or a negative error
1716 * code on error (see __get_user_pages()). Note that this function reports
1717 * errors related to VMAs, such as incompatible mappings, as expected by
1718 * MADV_POPULATE_(READ|WRITE).
1719 *
1720 * The range must be page-aligned.
 
1721 *
1722 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
 
 
 
1723 */
1724long faultin_page_range(struct mm_struct *mm, unsigned long start,
1725			unsigned long end, bool write, int *locked)
1726{
 
1727	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1728	int gup_flags;
1729	long ret;
1730
1731	VM_BUG_ON(!PAGE_ALIGNED(start));
1732	VM_BUG_ON(!PAGE_ALIGNED(end));
 
 
1733	mmap_assert_locked(mm);
1734
1735	/*
1736	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1737	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1738	 *	       difference with !FOLL_FORCE, because the page is writable
1739	 *	       in the page table.
1740	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1741	 *		  a poisoned page.
1742	 * !FOLL_FORCE: Require proper access permissions.
1743	 */
1744	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1745		    FOLL_MADV_POPULATE;
1746	if (write)
1747		gup_flags |= FOLL_WRITE;
1748
1749	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1750				      gup_flags);
 
 
 
 
 
 
 
1751	lru_add_drain();
1752	return ret;
1753}
1754
1755/*
1756 * __mm_populate - populate and/or mlock pages within a range of address space.
1757 *
1758 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1759 * flags. VMAs must be already marked with the desired vm_flags, and
1760 * mmap_lock must not be held.
1761 */
1762int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1763{
1764	struct mm_struct *mm = current->mm;
1765	unsigned long end, nstart, nend;
1766	struct vm_area_struct *vma = NULL;
1767	int locked = 0;
1768	long ret = 0;
1769
1770	end = start + len;
1771
1772	for (nstart = start; nstart < end; nstart = nend) {
1773		/*
1774		 * We want to fault in pages for [nstart; end) address range.
1775		 * Find first corresponding VMA.
1776		 */
1777		if (!locked) {
1778			locked = 1;
1779			mmap_read_lock(mm);
1780			vma = find_vma_intersection(mm, nstart, end);
1781		} else if (nstart >= vma->vm_end)
1782			vma = find_vma_intersection(mm, vma->vm_end, end);
1783
1784		if (!vma)
1785			break;
1786		/*
1787		 * Set [nstart; nend) to intersection of desired address
1788		 * range with the first VMA. Also, skip undesirable VMA types.
1789		 */
1790		nend = min(end, vma->vm_end);
1791		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1792			continue;
1793		if (nstart < vma->vm_start)
1794			nstart = vma->vm_start;
1795		/*
1796		 * Now fault in a range of pages. populate_vma_page_range()
1797		 * double checks the vma flags, so that it won't mlock pages
1798		 * if the vma was already munlocked.
1799		 */
1800		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1801		if (ret < 0) {
1802			if (ignore_errors) {
1803				ret = 0;
1804				continue;	/* continue at next VMA */
1805			}
1806			break;
1807		}
1808		nend = nstart + ret * PAGE_SIZE;
1809		ret = 0;
1810	}
1811	if (locked)
1812		mmap_read_unlock(mm);
1813	return ret;	/* 0 or negative error code */
1814}
1815#else /* CONFIG_MMU */
1816static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1817		unsigned long nr_pages, struct page **pages,
1818		int *locked, unsigned int foll_flags)
 
1819{
1820	struct vm_area_struct *vma;
1821	bool must_unlock = false;
1822	unsigned long vm_flags;
1823	long i;
1824
1825	if (!nr_pages)
1826		return 0;
1827
1828	/*
1829	 * The internal caller expects GUP to manage the lock internally and the
1830	 * lock must be released when this returns.
1831	 */
1832	if (!*locked) {
1833		if (mmap_read_lock_killable(mm))
1834			return -EAGAIN;
1835		must_unlock = true;
1836		*locked = 1;
1837	}
1838
1839	/* calculate required read or write permissions.
1840	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1841	 */
1842	vm_flags  = (foll_flags & FOLL_WRITE) ?
1843			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1844	vm_flags &= (foll_flags & FOLL_FORCE) ?
1845			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1846
1847	for (i = 0; i < nr_pages; i++) {
1848		vma = find_vma(mm, start);
1849		if (!vma)
1850			break;
1851
1852		/* protect what we can, including chardevs */
1853		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1854		    !(vm_flags & vma->vm_flags))
1855			break;
1856
1857		if (pages) {
1858			pages[i] = virt_to_page((void *)start);
1859			if (pages[i])
1860				get_page(pages[i]);
1861		}
1862
 
1863		start = (start + PAGE_SIZE) & PAGE_MASK;
1864	}
1865
1866	if (must_unlock && *locked) {
1867		mmap_read_unlock(mm);
1868		*locked = 0;
1869	}
1870
 
1871	return i ? : -EFAULT;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * fault_in_writeable - fault in userspace address range for writing
1877 * @uaddr: start of address range
1878 * @size: size of address range
1879 *
1880 * Returns the number of bytes not faulted in (like copy_to_user() and
1881 * copy_from_user()).
1882 */
1883size_t fault_in_writeable(char __user *uaddr, size_t size)
1884{
1885	char __user *start = uaddr, *end;
1886
1887	if (unlikely(size == 0))
1888		return 0;
1889	if (!user_write_access_begin(uaddr, size))
1890		return size;
1891	if (!PAGE_ALIGNED(uaddr)) {
1892		unsafe_put_user(0, uaddr, out);
1893		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1894	}
1895	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1896	if (unlikely(end < start))
1897		end = NULL;
1898	while (uaddr != end) {
1899		unsafe_put_user(0, uaddr, out);
1900		uaddr += PAGE_SIZE;
1901	}
1902
1903out:
1904	user_write_access_end();
1905	if (size > uaddr - start)
1906		return size - (uaddr - start);
1907	return 0;
1908}
1909EXPORT_SYMBOL(fault_in_writeable);
1910
1911/**
1912 * fault_in_subpage_writeable - fault in an address range for writing
1913 * @uaddr: start of address range
1914 * @size: size of address range
1915 *
1916 * Fault in a user address range for writing while checking for permissions at
1917 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1918 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1919 *
1920 * Returns the number of bytes not faulted in (like copy_to_user() and
1921 * copy_from_user()).
1922 */
1923size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1924{
1925	size_t faulted_in;
1926
1927	/*
1928	 * Attempt faulting in at page granularity first for page table
1929	 * permission checking. The arch-specific probe_subpage_writeable()
1930	 * functions may not check for this.
1931	 */
1932	faulted_in = size - fault_in_writeable(uaddr, size);
1933	if (faulted_in)
1934		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1935
1936	return size - faulted_in;
1937}
1938EXPORT_SYMBOL(fault_in_subpage_writeable);
1939
1940/*
1941 * fault_in_safe_writeable - fault in an address range for writing
1942 * @uaddr: start of address range
1943 * @size: length of address range
1944 *
1945 * Faults in an address range for writing.  This is primarily useful when we
1946 * already know that some or all of the pages in the address range aren't in
1947 * memory.
1948 *
1949 * Unlike fault_in_writeable(), this function is non-destructive.
1950 *
1951 * Note that we don't pin or otherwise hold the pages referenced that we fault
1952 * in.  There's no guarantee that they'll stay in memory for any duration of
1953 * time.
1954 *
1955 * Returns the number of bytes not faulted in, like copy_to_user() and
1956 * copy_from_user().
1957 */
1958size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1959{
1960	unsigned long start = (unsigned long)uaddr, end;
1961	struct mm_struct *mm = current->mm;
1962	bool unlocked = false;
1963
1964	if (unlikely(size == 0))
1965		return 0;
1966	end = PAGE_ALIGN(start + size);
1967	if (end < start)
1968		end = 0;
1969
1970	mmap_read_lock(mm);
1971	do {
1972		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1973			break;
1974		start = (start + PAGE_SIZE) & PAGE_MASK;
1975	} while (start != end);
1976	mmap_read_unlock(mm);
1977
1978	if (size > (unsigned long)uaddr - start)
1979		return size - ((unsigned long)uaddr - start);
1980	return 0;
1981}
1982EXPORT_SYMBOL(fault_in_safe_writeable);
1983
1984/**
1985 * fault_in_readable - fault in userspace address range for reading
1986 * @uaddr: start of user address range
1987 * @size: size of user address range
1988 *
1989 * Returns the number of bytes not faulted in (like copy_to_user() and
1990 * copy_from_user()).
1991 */
1992size_t fault_in_readable(const char __user *uaddr, size_t size)
1993{
1994	const char __user *start = uaddr, *end;
1995	volatile char c;
1996
1997	if (unlikely(size == 0))
1998		return 0;
1999	if (!user_read_access_begin(uaddr, size))
2000		return size;
2001	if (!PAGE_ALIGNED(uaddr)) {
2002		unsafe_get_user(c, uaddr, out);
2003		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2004	}
2005	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2006	if (unlikely(end < start))
2007		end = NULL;
2008	while (uaddr != end) {
2009		unsafe_get_user(c, uaddr, out);
2010		uaddr += PAGE_SIZE;
2011	}
2012
2013out:
2014	user_read_access_end();
2015	(void)c;
2016	if (size > uaddr - start)
2017		return size - (uaddr - start);
2018	return 0;
2019}
2020EXPORT_SYMBOL(fault_in_readable);
2021
2022/**
2023 * get_dump_page() - pin user page in memory while writing it to core dump
2024 * @addr: user address
2025 *
2026 * Returns struct page pointer of user page pinned for dump,
2027 * to be freed afterwards by put_page().
2028 *
2029 * Returns NULL on any kind of failure - a hole must then be inserted into
2030 * the corefile, to preserve alignment with its headers; and also returns
2031 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2032 * allowing a hole to be left in the corefile to save disk space.
2033 *
2034 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2035 */
2036#ifdef CONFIG_ELF_CORE
2037struct page *get_dump_page(unsigned long addr)
2038{
 
2039	struct page *page;
2040	int locked = 0;
2041	int ret;
2042
2043	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
 
 
2044				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
 
 
2045	return (ret == 1) ? page : NULL;
2046}
2047#endif /* CONFIG_ELF_CORE */
2048
2049#ifdef CONFIG_MIGRATION
2050/*
2051 * Returns the number of collected pages. Return value is always >= 0.
2052 */
2053static unsigned long collect_longterm_unpinnable_pages(
2054					struct list_head *movable_page_list,
2055					unsigned long nr_pages,
2056					struct page **pages)
2057{
2058	unsigned long i, collected = 0;
2059	struct folio *prev_folio = NULL;
2060	bool drain_allow = true;
2061
2062	for (i = 0; i < nr_pages; i++) {
2063		struct folio *folio = page_folio(pages[i]);
2064
2065		if (folio == prev_folio)
2066			continue;
2067		prev_folio = folio;
2068
2069		if (folio_is_longterm_pinnable(folio))
2070			continue;
2071
2072		collected++;
2073
2074		if (folio_is_device_coherent(folio))
2075			continue;
2076
2077		if (folio_test_hugetlb(folio)) {
2078			isolate_hugetlb(folio, movable_page_list);
2079			continue;
2080		}
2081
2082		if (!folio_test_lru(folio) && drain_allow) {
2083			lru_add_drain_all();
2084			drain_allow = false;
2085		}
2086
2087		if (!folio_isolate_lru(folio))
2088			continue;
2089
2090		list_add_tail(&folio->lru, movable_page_list);
2091		node_stat_mod_folio(folio,
2092				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2093				    folio_nr_pages(folio));
2094	}
2095
2096	return collected;
2097}
2098
2099/*
2100 * Unpins all pages and migrates device coherent pages and movable_page_list.
2101 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2102 * (or partial success).
2103 */
2104static int migrate_longterm_unpinnable_pages(
2105					struct list_head *movable_page_list,
2106					unsigned long nr_pages,
2107					struct page **pages)
2108{
2109	int ret;
2110	unsigned long i;
2111
2112	for (i = 0; i < nr_pages; i++) {
2113		struct folio *folio = page_folio(pages[i]);
2114
2115		if (folio_is_device_coherent(folio)) {
2116			/*
2117			 * Migration will fail if the page is pinned, so convert
2118			 * the pin on the source page to a normal reference.
2119			 */
2120			pages[i] = NULL;
2121			folio_get(folio);
2122			gup_put_folio(folio, 1, FOLL_PIN);
2123
2124			if (migrate_device_coherent_page(&folio->page)) {
2125				ret = -EBUSY;
2126				goto err;
2127			}
2128
2129			continue;
2130		}
2131
2132		/*
2133		 * We can't migrate pages with unexpected references, so drop
2134		 * the reference obtained by __get_user_pages_locked().
2135		 * Migrating pages have been added to movable_page_list after
2136		 * calling folio_isolate_lru() which takes a reference so the
2137		 * page won't be freed if it's migrating.
2138		 */
2139		unpin_user_page(pages[i]);
2140		pages[i] = NULL;
2141	}
2142
2143	if (!list_empty(movable_page_list)) {
2144		struct migration_target_control mtc = {
2145			.nid = NUMA_NO_NODE,
2146			.gfp_mask = GFP_USER | __GFP_NOWARN,
2147		};
2148
2149		if (migrate_pages(movable_page_list, alloc_migration_target,
2150				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2151				  MR_LONGTERM_PIN, NULL)) {
2152			ret = -ENOMEM;
2153			goto err;
2154		}
2155	}
2156
2157	putback_movable_pages(movable_page_list);
2158
2159	return -EAGAIN;
2160
2161err:
2162	for (i = 0; i < nr_pages; i++)
2163		if (pages[i])
2164			unpin_user_page(pages[i]);
2165	putback_movable_pages(movable_page_list);
2166
2167	return ret;
2168}
2169
2170/*
2171 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2172 * pages in the range are required to be pinned via FOLL_PIN, before calling
2173 * this routine.
2174 *
2175 * If any pages in the range are not allowed to be pinned, then this routine
2176 * will migrate those pages away, unpin all the pages in the range and return
2177 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2178 * call this routine again.
2179 *
2180 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2181 * The caller should give up, and propagate the error back up the call stack.
2182 *
2183 * If everything is OK and all pages in the range are allowed to be pinned, then
2184 * this routine leaves all pages pinned and returns zero for success.
2185 */
2186static long check_and_migrate_movable_pages(unsigned long nr_pages,
2187					    struct page **pages)
2188{
2189	unsigned long collected;
2190	LIST_HEAD(movable_page_list);
2191
2192	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2193						nr_pages, pages);
2194	if (!collected)
2195		return 0;
2196
2197	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2198						pages);
2199}
2200#else
2201static long check_and_migrate_movable_pages(unsigned long nr_pages,
2202					    struct page **pages)
2203{
2204	return 0;
2205}
2206#endif /* CONFIG_MIGRATION */
2207
2208/*
2209 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2210 * allows us to process the FOLL_LONGTERM flag.
2211 */
2212static long __gup_longterm_locked(struct mm_struct *mm,
2213				  unsigned long start,
2214				  unsigned long nr_pages,
2215				  struct page **pages,
 
2216				  int *locked,
2217				  unsigned int gup_flags)
2218{
 
2219	unsigned int flags;
2220	long rc, nr_pinned_pages;
2221
 
 
 
2222	if (!(gup_flags & FOLL_LONGTERM))
2223		return __get_user_pages_locked(mm, start, nr_pages, pages,
2224					       locked, gup_flags);
2225
 
 
 
 
 
 
 
 
 
 
2226	flags = memalloc_pin_save();
2227	do {
 
 
 
 
 
2228		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2229							  pages, locked,
2230							  gup_flags);
2231		if (nr_pinned_pages <= 0) {
2232			rc = nr_pinned_pages;
2233			break;
2234		}
2235
2236		/* FOLL_LONGTERM implies FOLL_PIN */
2237		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2238	} while (rc == -EAGAIN);
2239	memalloc_pin_restore(flags);
 
 
 
 
 
2240	return rc ? rc : nr_pinned_pages;
2241}
2242
2243/*
2244 * Check that the given flags are valid for the exported gup/pup interface, and
2245 * update them with the required flags that the caller must have set.
2246 */
2247static bool is_valid_gup_args(struct page **pages, int *locked,
2248			      unsigned int *gup_flags_p, unsigned int to_set)
2249{
2250	unsigned int gup_flags = *gup_flags_p;
2251
2252	/*
2253	 * These flags not allowed to be specified externally to the gup
2254	 * interfaces:
2255	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2256	 * - FOLL_REMOTE is internal only and used on follow_page()
2257	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2258	 */
2259	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2260		return false;
2261
2262	gup_flags |= to_set;
2263	if (locked) {
2264		/* At the external interface locked must be set */
2265		if (WARN_ON_ONCE(*locked != 1))
2266			return false;
2267
2268		gup_flags |= FOLL_UNLOCKABLE;
2269	}
2270
2271	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2272	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2273			 (FOLL_PIN | FOLL_GET)))
2274		return false;
2275
2276	/* LONGTERM can only be specified when pinning */
2277	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2278		return false;
2279
2280	/* Pages input must be given if using GET/PIN */
2281	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2282		return false;
2283
2284	/* We want to allow the pgmap to be hot-unplugged at all times */
2285	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2286			 (gup_flags & FOLL_PCI_P2PDMA)))
2287		return false;
2288
2289	*gup_flags_p = gup_flags;
2290	return true;
2291}
2292
2293#ifdef CONFIG_MMU
2294/**
2295 * get_user_pages_remote() - pin user pages in memory
2296 * @mm:		mm_struct of target mm
2297 * @start:	starting user address
2298 * @nr_pages:	number of pages from start to pin
2299 * @gup_flags:	flags modifying lookup behaviour
2300 * @pages:	array that receives pointers to the pages pinned.
2301 *		Should be at least nr_pages long. Or NULL, if caller
2302 *		only intends to ensure the pages are faulted in.
 
 
2303 * @locked:	pointer to lock flag indicating whether lock is held and
2304 *		subsequently whether VM_FAULT_RETRY functionality can be
2305 *		utilised. Lock must initially be held.
2306 *
2307 * Returns either number of pages pinned (which may be less than the
2308 * number requested), or an error. Details about the return value:
2309 *
2310 * -- If nr_pages is 0, returns 0.
2311 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2312 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2313 *    pages pinned. Again, this may be less than nr_pages.
2314 *
2315 * The caller is responsible for releasing returned @pages, via put_page().
2316 *
 
 
2317 * Must be called with mmap_lock held for read or write.
2318 *
2319 * get_user_pages_remote walks a process's page tables and takes a reference
2320 * to each struct page that each user address corresponds to at a given
2321 * instant. That is, it takes the page that would be accessed if a user
2322 * thread accesses the given user virtual address at that instant.
2323 *
2324 * This does not guarantee that the page exists in the user mappings when
2325 * get_user_pages_remote returns, and there may even be a completely different
2326 * page there in some cases (eg. if mmapped pagecache has been invalidated
2327 * and subsequently re-faulted). However it does guarantee that the page
2328 * won't be freed completely. And mostly callers simply care that the page
2329 * contains data that was valid *at some point in time*. Typically, an IO
2330 * or similar operation cannot guarantee anything stronger anyway because
2331 * locks can't be held over the syscall boundary.
2332 *
2333 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2334 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2335 * be called after the page is finished with, and before put_page is called.
2336 *
2337 * get_user_pages_remote is typically used for fewer-copy IO operations,
2338 * to get a handle on the memory by some means other than accesses
2339 * via the user virtual addresses. The pages may be submitted for
2340 * DMA to devices or accessed via their kernel linear mapping (via the
2341 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2342 *
2343 * See also get_user_pages_fast, for performance critical applications.
2344 *
2345 * get_user_pages_remote should be phased out in favor of
2346 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2347 * should use get_user_pages_remote because it cannot pass
2348 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2349 */
2350long get_user_pages_remote(struct mm_struct *mm,
2351		unsigned long start, unsigned long nr_pages,
2352		unsigned int gup_flags, struct page **pages,
2353		int *locked)
2354{
2355	int local_locked = 1;
2356
2357	if (!is_valid_gup_args(pages, locked, &gup_flags,
2358			       FOLL_TOUCH | FOLL_REMOTE))
2359		return -EINVAL;
2360
2361	return __get_user_pages_locked(mm, start, nr_pages, pages,
2362				       locked ? locked : &local_locked,
2363				       gup_flags);
2364}
2365EXPORT_SYMBOL(get_user_pages_remote);
2366
2367#else /* CONFIG_MMU */
2368long get_user_pages_remote(struct mm_struct *mm,
2369			   unsigned long start, unsigned long nr_pages,
2370			   unsigned int gup_flags, struct page **pages,
2371			   int *locked)
2372{
2373	return 0;
2374}
2375#endif /* !CONFIG_MMU */
2376
2377/**
2378 * get_user_pages() - pin user pages in memory
2379 * @start:      starting user address
2380 * @nr_pages:   number of pages from start to pin
2381 * @gup_flags:  flags modifying lookup behaviour
2382 * @pages:      array that receives pointers to the pages pinned.
2383 *              Should be at least nr_pages long. Or NULL, if caller
2384 *              only intends to ensure the pages are faulted in.
 
 
2385 *
2386 * This is the same as get_user_pages_remote(), just with a less-flexible
2387 * calling convention where we assume that the mm being operated on belongs to
2388 * the current task, and doesn't allow passing of a locked parameter.  We also
2389 * obviously don't pass FOLL_REMOTE in here.
2390 */
2391long get_user_pages(unsigned long start, unsigned long nr_pages,
2392		    unsigned int gup_flags, struct page **pages)
 
2393{
2394	int locked = 1;
2395
2396	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2397		return -EINVAL;
2398
2399	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2400				       &locked, gup_flags);
2401}
2402EXPORT_SYMBOL(get_user_pages);
2403
2404/*
2405 * get_user_pages_unlocked() is suitable to replace the form:
2406 *
2407 *      mmap_read_lock(mm);
2408 *      get_user_pages(mm, ..., pages, NULL);
2409 *      mmap_read_unlock(mm);
2410 *
2411 *  with:
2412 *
2413 *      get_user_pages_unlocked(mm, ..., pages);
2414 *
2415 * It is functionally equivalent to get_user_pages_fast so
2416 * get_user_pages_fast should be used instead if specific gup_flags
2417 * (e.g. FOLL_FORCE) are not required.
2418 */
2419long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2420			     struct page **pages, unsigned int gup_flags)
2421{
2422	int locked = 0;
2423
2424	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2425			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2426		return -EINVAL;
2427
2428	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2429				       &locked, gup_flags);
 
 
 
 
2430}
2431EXPORT_SYMBOL(get_user_pages_unlocked);
2432
2433/*
2434 * Fast GUP
2435 *
2436 * get_user_pages_fast attempts to pin user pages by walking the page
2437 * tables directly and avoids taking locks. Thus the walker needs to be
2438 * protected from page table pages being freed from under it, and should
2439 * block any THP splits.
2440 *
2441 * One way to achieve this is to have the walker disable interrupts, and
2442 * rely on IPIs from the TLB flushing code blocking before the page table
2443 * pages are freed. This is unsuitable for architectures that do not need
2444 * to broadcast an IPI when invalidating TLBs.
2445 *
2446 * Another way to achieve this is to batch up page table containing pages
2447 * belonging to more than one mm_user, then rcu_sched a callback to free those
2448 * pages. Disabling interrupts will allow the fast_gup walker to both block
2449 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2450 * (which is a relatively rare event). The code below adopts this strategy.
2451 *
2452 * Before activating this code, please be aware that the following assumptions
2453 * are currently made:
2454 *
2455 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2456 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2457 *
2458 *  *) ptes can be read atomically by the architecture.
2459 *
2460 *  *) access_ok is sufficient to validate userspace address ranges.
2461 *
2462 * The last two assumptions can be relaxed by the addition of helper functions.
2463 *
2464 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2465 */
2466#ifdef CONFIG_HAVE_FAST_GUP
2467
2468/*
2469 * Used in the GUP-fast path to determine whether a pin is permitted for a
2470 * specific folio.
2471 *
2472 * This call assumes the caller has pinned the folio, that the lowest page table
2473 * level still points to this folio, and that interrupts have been disabled.
2474 *
2475 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2476 * (see comment describing the writable_file_mapping_allowed() function). We
2477 * therefore try to avoid the most egregious case of a long-term mapping doing
2478 * so.
2479 *
2480 * This function cannot be as thorough as that one as the VMA is not available
2481 * in the fast path, so instead we whitelist known good cases and if in doubt,
2482 * fall back to the slow path.
2483 */
2484static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2485{
2486	struct address_space *mapping;
2487	unsigned long mapping_flags;
2488
2489	/*
2490	 * If we aren't pinning then no problematic write can occur. A long term
2491	 * pin is the most egregious case so this is the one we disallow.
2492	 */
2493	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2494	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2495		return true;
2496
2497	/* The folio is pinned, so we can safely access folio fields. */
2498
2499	if (WARN_ON_ONCE(folio_test_slab(folio)))
2500		return false;
2501
2502	/* hugetlb mappings do not require dirty-tracking. */
2503	if (folio_test_hugetlb(folio))
2504		return true;
2505
2506	/*
2507	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2508	 * cannot proceed, which means no actions performed under RCU can
2509	 * proceed either.
2510	 *
2511	 * inodes and thus their mappings are freed under RCU, which means the
2512	 * mapping cannot be freed beneath us and thus we can safely dereference
2513	 * it.
2514	 */
2515	lockdep_assert_irqs_disabled();
2516
2517	/*
2518	 * However, there may be operations which _alter_ the mapping, so ensure
2519	 * we read it once and only once.
2520	 */
2521	mapping = READ_ONCE(folio->mapping);
2522
2523	/*
2524	 * The mapping may have been truncated, in any case we cannot determine
2525	 * if this mapping is safe - fall back to slow path to determine how to
2526	 * proceed.
2527	 */
2528	if (!mapping)
2529		return false;
2530
2531	/* Anonymous folios pose no problem. */
2532	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2533	if (mapping_flags)
2534		return mapping_flags & PAGE_MAPPING_ANON;
2535
2536	/*
2537	 * At this point, we know the mapping is non-null and points to an
2538	 * address_space object. The only remaining whitelisted file system is
2539	 * shmem.
2540	 */
2541	return shmem_mapping(mapping);
2542}
2543
2544static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2545					    unsigned int flags,
2546					    struct page **pages)
2547{
2548	while ((*nr) - nr_start) {
2549		struct page *page = pages[--(*nr)];
2550
2551		ClearPageReferenced(page);
2552		if (flags & FOLL_PIN)
2553			unpin_user_page(page);
2554		else
2555			put_page(page);
2556	}
2557}
2558
2559#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2560/*
2561 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2562 * operations.
2563 *
2564 * To pin the page, fast-gup needs to do below in order:
2565 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2566 *
2567 * For the rest of pgtable operations where pgtable updates can be racy
2568 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2569 * is pinned.
2570 *
2571 * Above will work for all pte-level operations, including THP split.
2572 *
2573 * For THP collapse, it's a bit more complicated because fast-gup may be
2574 * walking a pgtable page that is being freed (pte is still valid but pmd
2575 * can be cleared already).  To avoid race in such condition, we need to
2576 * also check pmd here to make sure pmd doesn't change (corresponds to
2577 * pmdp_collapse_flush() in the THP collapse code path).
2578 */
2579static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2580			 unsigned long end, unsigned int flags,
2581			 struct page **pages, int *nr)
2582{
2583	struct dev_pagemap *pgmap = NULL;
2584	int nr_start = *nr, ret = 0;
2585	pte_t *ptep, *ptem;
2586
2587	ptem = ptep = pte_offset_map(&pmd, addr);
2588	if (!ptep)
2589		return 0;
2590	do {
2591		pte_t pte = ptep_get_lockless(ptep);
2592		struct page *page;
2593		struct folio *folio;
2594
2595		/*
2596		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2597		 * pte_access_permitted() better should reject these pages
2598		 * either way: otherwise, GUP-fast might succeed in
2599		 * cases where ordinary GUP would fail due to VMA access
2600		 * permissions.
2601		 */
2602		if (pte_protnone(pte))
2603			goto pte_unmap;
2604
2605		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2606			goto pte_unmap;
2607
2608		if (pte_devmap(pte)) {
2609			if (unlikely(flags & FOLL_LONGTERM))
2610				goto pte_unmap;
2611
2612			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2613			if (unlikely(!pgmap)) {
2614				undo_dev_pagemap(nr, nr_start, flags, pages);
2615				goto pte_unmap;
2616			}
2617		} else if (pte_special(pte))
2618			goto pte_unmap;
2619
2620		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2621		page = pte_page(pte);
2622
2623		folio = try_grab_folio(page, 1, flags);
2624		if (!folio)
2625			goto pte_unmap;
2626
2627		if (unlikely(folio_is_secretmem(folio))) {
2628			gup_put_folio(folio, 1, flags);
2629			goto pte_unmap;
2630		}
2631
2632		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2633		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2634			gup_put_folio(folio, 1, flags);
2635			goto pte_unmap;
2636		}
2637
2638		if (!folio_fast_pin_allowed(folio, flags)) {
2639			gup_put_folio(folio, 1, flags);
2640			goto pte_unmap;
2641		}
2642
2643		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2644			gup_put_folio(folio, 1, flags);
2645			goto pte_unmap;
2646		}
2647
2648		/*
2649		 * We need to make the page accessible if and only if we are
2650		 * going to access its content (the FOLL_PIN case).  Please
2651		 * see Documentation/core-api/pin_user_pages.rst for
2652		 * details.
2653		 */
2654		if (flags & FOLL_PIN) {
2655			ret = arch_make_page_accessible(page);
2656			if (ret) {
2657				gup_put_folio(folio, 1, flags);
2658				goto pte_unmap;
2659			}
2660		}
2661		folio_set_referenced(folio);
2662		pages[*nr] = page;
2663		(*nr)++;
2664	} while (ptep++, addr += PAGE_SIZE, addr != end);
2665
2666	ret = 1;
2667
2668pte_unmap:
2669	if (pgmap)
2670		put_dev_pagemap(pgmap);
2671	pte_unmap(ptem);
2672	return ret;
2673}
2674#else
2675
2676/*
2677 * If we can't determine whether or not a pte is special, then fail immediately
2678 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2679 * to be special.
2680 *
2681 * For a futex to be placed on a THP tail page, get_futex_key requires a
2682 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2683 * useful to have gup_huge_pmd even if we can't operate on ptes.
2684 */
2685static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2686			 unsigned long end, unsigned int flags,
2687			 struct page **pages, int *nr)
2688{
2689	return 0;
2690}
2691#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2692
2693#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2694static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2695			     unsigned long end, unsigned int flags,
2696			     struct page **pages, int *nr)
2697{
2698	int nr_start = *nr;
2699	struct dev_pagemap *pgmap = NULL;
2700
2701	do {
2702		struct page *page = pfn_to_page(pfn);
2703
2704		pgmap = get_dev_pagemap(pfn, pgmap);
2705		if (unlikely(!pgmap)) {
2706			undo_dev_pagemap(nr, nr_start, flags, pages);
2707			break;
2708		}
2709
2710		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2711			undo_dev_pagemap(nr, nr_start, flags, pages);
2712			break;
2713		}
2714
2715		SetPageReferenced(page);
2716		pages[*nr] = page;
2717		if (unlikely(try_grab_page(page, flags))) {
2718			undo_dev_pagemap(nr, nr_start, flags, pages);
2719			break;
2720		}
2721		(*nr)++;
2722		pfn++;
2723	} while (addr += PAGE_SIZE, addr != end);
2724
2725	put_dev_pagemap(pgmap);
2726	return addr == end;
2727}
2728
2729static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2730				 unsigned long end, unsigned int flags,
2731				 struct page **pages, int *nr)
2732{
2733	unsigned long fault_pfn;
2734	int nr_start = *nr;
2735
2736	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2737	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2738		return 0;
2739
2740	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2741		undo_dev_pagemap(nr, nr_start, flags, pages);
2742		return 0;
2743	}
2744	return 1;
2745}
2746
2747static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2748				 unsigned long end, unsigned int flags,
2749				 struct page **pages, int *nr)
2750{
2751	unsigned long fault_pfn;
2752	int nr_start = *nr;
2753
2754	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2755	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2756		return 0;
2757
2758	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2759		undo_dev_pagemap(nr, nr_start, flags, pages);
2760		return 0;
2761	}
2762	return 1;
2763}
2764#else
2765static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2766				 unsigned long end, unsigned int flags,
2767				 struct page **pages, int *nr)
2768{
2769	BUILD_BUG();
2770	return 0;
2771}
2772
2773static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2774				 unsigned long end, unsigned int flags,
2775				 struct page **pages, int *nr)
2776{
2777	BUILD_BUG();
2778	return 0;
2779}
2780#endif
2781
2782static int record_subpages(struct page *page, unsigned long addr,
2783			   unsigned long end, struct page **pages)
2784{
2785	int nr;
2786
2787	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2788		pages[nr] = nth_page(page, nr);
2789
2790	return nr;
2791}
2792
2793#ifdef CONFIG_ARCH_HAS_HUGEPD
2794static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2795				      unsigned long sz)
2796{
2797	unsigned long __boundary = (addr + sz) & ~(sz-1);
2798	return (__boundary - 1 < end - 1) ? __boundary : end;
2799}
2800
2801static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2802		       unsigned long end, unsigned int flags,
2803		       struct page **pages, int *nr)
2804{
2805	unsigned long pte_end;
2806	struct page *page;
2807	struct folio *folio;
2808	pte_t pte;
2809	int refs;
2810
2811	pte_end = (addr + sz) & ~(sz-1);
2812	if (pte_end < end)
2813		end = pte_end;
2814
2815	pte = huge_ptep_get(ptep);
2816
2817	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2818		return 0;
2819
2820	/* hugepages are never "special" */
2821	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2822
2823	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2824	refs = record_subpages(page, addr, end, pages + *nr);
2825
2826	folio = try_grab_folio(page, refs, flags);
2827	if (!folio)
2828		return 0;
2829
2830	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2831		gup_put_folio(folio, refs, flags);
2832		return 0;
2833	}
2834
2835	if (!folio_fast_pin_allowed(folio, flags)) {
2836		gup_put_folio(folio, refs, flags);
2837		return 0;
2838	}
2839
2840	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2841		gup_put_folio(folio, refs, flags);
2842		return 0;
2843	}
2844
2845	*nr += refs;
2846	folio_set_referenced(folio);
2847	return 1;
2848}
2849
2850static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2851		unsigned int pdshift, unsigned long end, unsigned int flags,
2852		struct page **pages, int *nr)
2853{
2854	pte_t *ptep;
2855	unsigned long sz = 1UL << hugepd_shift(hugepd);
2856	unsigned long next;
2857
2858	ptep = hugepte_offset(hugepd, addr, pdshift);
2859	do {
2860		next = hugepte_addr_end(addr, end, sz);
2861		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2862			return 0;
2863	} while (ptep++, addr = next, addr != end);
2864
2865	return 1;
2866}
2867#else
2868static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2869		unsigned int pdshift, unsigned long end, unsigned int flags,
2870		struct page **pages, int *nr)
2871{
2872	return 0;
2873}
2874#endif /* CONFIG_ARCH_HAS_HUGEPD */
2875
2876static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2877			unsigned long end, unsigned int flags,
2878			struct page **pages, int *nr)
2879{
2880	struct page *page;
2881	struct folio *folio;
2882	int refs;
2883
2884	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2885		return 0;
2886
2887	if (pmd_devmap(orig)) {
2888		if (unlikely(flags & FOLL_LONGTERM))
2889			return 0;
2890		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2891					     pages, nr);
2892	}
2893
2894	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2895	refs = record_subpages(page, addr, end, pages + *nr);
2896
2897	folio = try_grab_folio(page, refs, flags);
2898	if (!folio)
2899		return 0;
2900
2901	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2902		gup_put_folio(folio, refs, flags);
2903		return 0;
2904	}
2905
2906	if (!folio_fast_pin_allowed(folio, flags)) {
2907		gup_put_folio(folio, refs, flags);
2908		return 0;
2909	}
2910	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2911		gup_put_folio(folio, refs, flags);
2912		return 0;
2913	}
2914
2915	*nr += refs;
2916	folio_set_referenced(folio);
2917	return 1;
2918}
2919
2920static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2921			unsigned long end, unsigned int flags,
2922			struct page **pages, int *nr)
2923{
2924	struct page *page;
2925	struct folio *folio;
2926	int refs;
2927
2928	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2929		return 0;
2930
2931	if (pud_devmap(orig)) {
2932		if (unlikely(flags & FOLL_LONGTERM))
2933			return 0;
2934		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2935					     pages, nr);
2936	}
2937
2938	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2939	refs = record_subpages(page, addr, end, pages + *nr);
2940
2941	folio = try_grab_folio(page, refs, flags);
2942	if (!folio)
2943		return 0;
2944
2945	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2946		gup_put_folio(folio, refs, flags);
2947		return 0;
2948	}
2949
2950	if (!folio_fast_pin_allowed(folio, flags)) {
2951		gup_put_folio(folio, refs, flags);
2952		return 0;
2953	}
2954
2955	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2956		gup_put_folio(folio, refs, flags);
2957		return 0;
2958	}
2959
2960	*nr += refs;
2961	folio_set_referenced(folio);
2962	return 1;
2963}
2964
2965static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2966			unsigned long end, unsigned int flags,
2967			struct page **pages, int *nr)
2968{
2969	int refs;
2970	struct page *page;
2971	struct folio *folio;
2972
2973	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2974		return 0;
2975
2976	BUILD_BUG_ON(pgd_devmap(orig));
2977
2978	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2979	refs = record_subpages(page, addr, end, pages + *nr);
2980
2981	folio = try_grab_folio(page, refs, flags);
2982	if (!folio)
2983		return 0;
2984
2985	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2986		gup_put_folio(folio, refs, flags);
2987		return 0;
2988	}
2989
2990	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2991		gup_put_folio(folio, refs, flags);
2992		return 0;
2993	}
2994
2995	if (!folio_fast_pin_allowed(folio, flags)) {
2996		gup_put_folio(folio, refs, flags);
2997		return 0;
2998	}
2999
3000	*nr += refs;
3001	folio_set_referenced(folio);
3002	return 1;
3003}
3004
3005static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
3006		unsigned int flags, struct page **pages, int *nr)
3007{
3008	unsigned long next;
3009	pmd_t *pmdp;
3010
3011	pmdp = pmd_offset_lockless(pudp, pud, addr);
3012	do {
3013		pmd_t pmd = pmdp_get_lockless(pmdp);
3014
3015		next = pmd_addr_end(addr, end);
3016		if (!pmd_present(pmd))
3017			return 0;
3018
3019		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3020			     pmd_devmap(pmd))) {
3021			/* See gup_pte_range() */
3022			if (pmd_protnone(pmd))
3023				return 0;
3024
3025			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3026				pages, nr))
3027				return 0;
3028
3029		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3030			/*
3031			 * architecture have different format for hugetlbfs
3032			 * pmd format and THP pmd format
3033			 */
3034			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3035					 PMD_SHIFT, next, flags, pages, nr))
3036				return 0;
3037		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3038			return 0;
3039	} while (pmdp++, addr = next, addr != end);
3040
3041	return 1;
3042}
3043
3044static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3045			 unsigned int flags, struct page **pages, int *nr)
3046{
3047	unsigned long next;
3048	pud_t *pudp;
3049
3050	pudp = pud_offset_lockless(p4dp, p4d, addr);
3051	do {
3052		pud_t pud = READ_ONCE(*pudp);
3053
3054		next = pud_addr_end(addr, end);
3055		if (unlikely(!pud_present(pud)))
3056			return 0;
3057		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3058			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3059					  pages, nr))
3060				return 0;
3061		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3062			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3063					 PUD_SHIFT, next, flags, pages, nr))
3064				return 0;
3065		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3066			return 0;
3067	} while (pudp++, addr = next, addr != end);
3068
3069	return 1;
3070}
3071
3072static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3073			 unsigned int flags, struct page **pages, int *nr)
3074{
3075	unsigned long next;
3076	p4d_t *p4dp;
3077
3078	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3079	do {
3080		p4d_t p4d = READ_ONCE(*p4dp);
3081
3082		next = p4d_addr_end(addr, end);
3083		if (p4d_none(p4d))
3084			return 0;
3085		BUILD_BUG_ON(p4d_huge(p4d));
3086		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3087			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3088					 P4D_SHIFT, next, flags, pages, nr))
3089				return 0;
3090		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3091			return 0;
3092	} while (p4dp++, addr = next, addr != end);
3093
3094	return 1;
3095}
3096
3097static void gup_pgd_range(unsigned long addr, unsigned long end,
3098		unsigned int flags, struct page **pages, int *nr)
3099{
3100	unsigned long next;
3101	pgd_t *pgdp;
3102
3103	pgdp = pgd_offset(current->mm, addr);
3104	do {
3105		pgd_t pgd = READ_ONCE(*pgdp);
3106
3107		next = pgd_addr_end(addr, end);
3108		if (pgd_none(pgd))
3109			return;
3110		if (unlikely(pgd_huge(pgd))) {
3111			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3112					  pages, nr))
3113				return;
3114		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3115			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3116					 PGDIR_SHIFT, next, flags, pages, nr))
3117				return;
3118		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3119			return;
3120	} while (pgdp++, addr = next, addr != end);
3121}
3122#else
3123static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3124		unsigned int flags, struct page **pages, int *nr)
3125{
3126}
3127#endif /* CONFIG_HAVE_FAST_GUP */
3128
3129#ifndef gup_fast_permitted
3130/*
3131 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132 * we need to fall back to the slow version:
3133 */
3134static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135{
3136	return true;
3137}
3138#endif
3139
3140static unsigned long lockless_pages_from_mm(unsigned long start,
3141					    unsigned long end,
3142					    unsigned int gup_flags,
3143					    struct page **pages)
3144{
3145	unsigned long flags;
3146	int nr_pinned = 0;
3147	unsigned seq;
3148
3149	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3150	    !gup_fast_permitted(start, end))
3151		return 0;
3152
3153	if (gup_flags & FOLL_PIN) {
3154		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3155		if (seq & 1)
3156			return 0;
3157	}
3158
3159	/*
3160	 * Disable interrupts. The nested form is used, in order to allow full,
3161	 * general purpose use of this routine.
3162	 *
3163	 * With interrupts disabled, we block page table pages from being freed
3164	 * from under us. See struct mmu_table_batch comments in
3165	 * include/asm-generic/tlb.h for more details.
3166	 *
3167	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3168	 * that come from THPs splitting.
3169	 */
3170	local_irq_save(flags);
3171	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3172	local_irq_restore(flags);
3173
3174	/*
3175	 * When pinning pages for DMA there could be a concurrent write protect
3176	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3177	 */
3178	if (gup_flags & FOLL_PIN) {
3179		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3180			unpin_user_pages_lockless(pages, nr_pinned);
3181			return 0;
3182		} else {
3183			sanity_check_pinned_pages(pages, nr_pinned);
3184		}
3185	}
3186	return nr_pinned;
3187}
3188
3189static int internal_get_user_pages_fast(unsigned long start,
3190					unsigned long nr_pages,
3191					unsigned int gup_flags,
3192					struct page **pages)
3193{
3194	unsigned long len, end;
3195	unsigned long nr_pinned;
3196	int locked = 0;
3197	int ret;
3198
3199	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3200				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3201				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3202				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3203		return -EINVAL;
3204
3205	if (gup_flags & FOLL_PIN)
3206		mm_set_has_pinned_flag(&current->mm->flags);
3207
3208	if (!(gup_flags & FOLL_FAST_ONLY))
3209		might_lock_read(&current->mm->mmap_lock);
3210
3211	start = untagged_addr(start) & PAGE_MASK;
3212	len = nr_pages << PAGE_SHIFT;
3213	if (check_add_overflow(start, len, &end))
3214		return -EOVERFLOW;
3215	if (end > TASK_SIZE_MAX)
3216		return -EFAULT;
3217	if (unlikely(!access_ok((void __user *)start, len)))
3218		return -EFAULT;
3219
3220	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3221	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3222		return nr_pinned;
3223
3224	/* Slow path: try to get the remaining pages with get_user_pages */
3225	start += nr_pinned << PAGE_SHIFT;
3226	pages += nr_pinned;
3227	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3228				    pages, &locked,
3229				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3230	if (ret < 0) {
3231		/*
3232		 * The caller has to unpin the pages we already pinned so
3233		 * returning -errno is not an option
3234		 */
3235		if (nr_pinned)
3236			return nr_pinned;
3237		return ret;
3238	}
3239	return ret + nr_pinned;
3240}
3241
3242/**
3243 * get_user_pages_fast_only() - pin user pages in memory
3244 * @start:      starting user address
3245 * @nr_pages:   number of pages from start to pin
3246 * @gup_flags:  flags modifying pin behaviour
3247 * @pages:      array that receives pointers to the pages pinned.
3248 *              Should be at least nr_pages long.
3249 *
3250 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3251 * the regular GUP.
 
 
3252 *
3253 * If the architecture does not support this function, simply return with no
3254 * pages pinned.
3255 *
3256 * Careful, careful! COW breaking can go either way, so a non-write
3257 * access can get ambiguous page results. If you call this function without
3258 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3259 */
3260int get_user_pages_fast_only(unsigned long start, int nr_pages,
3261			     unsigned int gup_flags, struct page **pages)
3262{
 
3263	/*
3264	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3265	 * because gup fast is always a "pin with a +1 page refcount" request.
3266	 *
3267	 * FOLL_FAST_ONLY is required in order to match the API description of
3268	 * this routine: no fall back to regular ("slow") GUP.
3269	 */
3270	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3271			       FOLL_GET | FOLL_FAST_ONLY))
3272		return -EINVAL;
3273
3274	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
 
 
 
 
 
 
 
 
 
 
 
 
3275}
3276EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3277
3278/**
3279 * get_user_pages_fast() - pin user pages in memory
3280 * @start:      starting user address
3281 * @nr_pages:   number of pages from start to pin
3282 * @gup_flags:  flags modifying pin behaviour
3283 * @pages:      array that receives pointers to the pages pinned.
3284 *              Should be at least nr_pages long.
3285 *
3286 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3287 * If not successful, it will fall back to taking the lock and
3288 * calling get_user_pages().
3289 *
3290 * Returns number of pages pinned. This may be fewer than the number requested.
3291 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3292 * -errno.
3293 */
3294int get_user_pages_fast(unsigned long start, int nr_pages,
3295			unsigned int gup_flags, struct page **pages)
3296{
 
 
 
3297	/*
3298	 * The caller may or may not have explicitly set FOLL_GET; either way is
3299	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3300	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3301	 * request.
3302	 */
3303	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3304		return -EINVAL;
3305	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3306}
3307EXPORT_SYMBOL_GPL(get_user_pages_fast);
3308
3309/**
3310 * pin_user_pages_fast() - pin user pages in memory without taking locks
3311 *
3312 * @start:      starting user address
3313 * @nr_pages:   number of pages from start to pin
3314 * @gup_flags:  flags modifying pin behaviour
3315 * @pages:      array that receives pointers to the pages pinned.
3316 *              Should be at least nr_pages long.
3317 *
3318 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3319 * get_user_pages_fast() for documentation on the function arguments, because
3320 * the arguments here are identical.
3321 *
3322 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3323 * see Documentation/core-api/pin_user_pages.rst for further details.
3324 *
3325 * Note that if a zero_page is amongst the returned pages, it will not have
3326 * pins in it and unpin_user_page() will not remove pins from it.
3327 */
3328int pin_user_pages_fast(unsigned long start, int nr_pages,
3329			unsigned int gup_flags, struct page **pages)
3330{
3331	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
 
 
 
 
3332		return -EINVAL;
 
 
3333	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3334}
3335EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337/**
3338 * pin_user_pages_remote() - pin pages of a remote process
3339 *
3340 * @mm:		mm_struct of target mm
3341 * @start:	starting user address
3342 * @nr_pages:	number of pages from start to pin
3343 * @gup_flags:	flags modifying lookup behaviour
3344 * @pages:	array that receives pointers to the pages pinned.
3345 *		Should be at least nr_pages long.
 
 
3346 * @locked:	pointer to lock flag indicating whether lock is held and
3347 *		subsequently whether VM_FAULT_RETRY functionality can be
3348 *		utilised. Lock must initially be held.
3349 *
3350 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3351 * get_user_pages_remote() for documentation on the function arguments, because
3352 * the arguments here are identical.
3353 *
3354 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3355 * see Documentation/core-api/pin_user_pages.rst for details.
3356 *
3357 * Note that if a zero_page is amongst the returned pages, it will not have
3358 * pins in it and unpin_user_page*() will not remove pins from it.
3359 */
3360long pin_user_pages_remote(struct mm_struct *mm,
3361			   unsigned long start, unsigned long nr_pages,
3362			   unsigned int gup_flags, struct page **pages,
3363			   int *locked)
3364{
3365	int local_locked = 1;
 
 
3366
3367	if (!is_valid_gup_args(pages, locked, &gup_flags,
3368			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3369		return 0;
3370	return __gup_longterm_locked(mm, start, nr_pages, pages,
3371				     locked ? locked : &local_locked,
3372				     gup_flags);
3373}
3374EXPORT_SYMBOL(pin_user_pages_remote);
3375
3376/**
3377 * pin_user_pages() - pin user pages in memory for use by other devices
3378 *
3379 * @start:	starting user address
3380 * @nr_pages:	number of pages from start to pin
3381 * @gup_flags:	flags modifying lookup behaviour
3382 * @pages:	array that receives pointers to the pages pinned.
3383 *		Should be at least nr_pages long.
 
 
3384 *
3385 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3386 * FOLL_PIN is set.
3387 *
3388 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3389 * see Documentation/core-api/pin_user_pages.rst for details.
3390 *
3391 * Note that if a zero_page is amongst the returned pages, it will not have
3392 * pins in it and unpin_user_page*() will not remove pins from it.
3393 */
3394long pin_user_pages(unsigned long start, unsigned long nr_pages,
3395		    unsigned int gup_flags, struct page **pages)
 
3396{
3397	int locked = 1;
 
 
3398
3399	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3400		return 0;
 
 
3401	return __gup_longterm_locked(current->mm, start, nr_pages,
3402				     pages, &locked, gup_flags);
3403}
3404EXPORT_SYMBOL(pin_user_pages);
3405
3406/*
3407 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3408 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3409 * FOLL_PIN and rejects FOLL_GET.
3410 *
3411 * Note that if a zero_page is amongst the returned pages, it will not have
3412 * pins in it and unpin_user_page*() will not remove pins from it.
3413 */
3414long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3415			     struct page **pages, unsigned int gup_flags)
3416{
3417	int locked = 0;
 
 
3418
3419	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3420			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3421		return 0;
3422
3423	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3424				     &locked, gup_flags);
3425}
3426EXPORT_SYMBOL(pin_user_pages_unlocked);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/secretmem.h>
  14
  15#include <linux/sched/signal.h>
  16#include <linux/rwsem.h>
  17#include <linux/hugetlb.h>
  18#include <linux/migrate.h>
  19#include <linux/mm_inline.h>
  20#include <linux/sched/mm.h>
 
  21
  22#include <asm/mmu_context.h>
  23#include <asm/tlbflush.h>
  24
  25#include "internal.h"
  26
  27struct follow_page_context {
  28	struct dev_pagemap *pgmap;
  29	unsigned int page_mask;
  30};
  31
  32static inline void sanity_check_pinned_pages(struct page **pages,
  33					     unsigned long npages)
  34{
  35	if (!IS_ENABLED(CONFIG_DEBUG_VM))
  36		return;
  37
  38	/*
  39	 * We only pin anonymous pages if they are exclusive. Once pinned, we
  40	 * can no longer turn them possibly shared and PageAnonExclusive() will
  41	 * stick around until the page is freed.
  42	 *
  43	 * We'd like to verify that our pinned anonymous pages are still mapped
  44	 * exclusively. The issue with anon THP is that we don't know how
  45	 * they are/were mapped when pinning them. However, for anon
  46	 * THP we can assume that either the given page (PTE-mapped THP) or
  47	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
  48	 * neither is the case, there is certainly something wrong.
  49	 */
  50	for (; npages; npages--, pages++) {
  51		struct page *page = *pages;
  52		struct folio *folio = page_folio(page);
  53
  54		if (!folio_test_anon(folio))
 
  55			continue;
  56		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
  57			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
  58		else
  59			/* Either a PTE-mapped or a PMD-mapped THP. */
  60			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
  61				       !PageAnonExclusive(page), page);
  62	}
  63}
  64
  65/*
  66 * Return the folio with ref appropriately incremented,
  67 * or NULL if that failed.
  68 */
  69static inline struct folio *try_get_folio(struct page *page, int refs)
  70{
  71	struct folio *folio;
  72
  73retry:
  74	folio = page_folio(page);
  75	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
  76		return NULL;
  77	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
  78		return NULL;
  79
  80	/*
  81	 * At this point we have a stable reference to the folio; but it
  82	 * could be that between calling page_folio() and the refcount
  83	 * increment, the folio was split, in which case we'd end up
  84	 * holding a reference on a folio that has nothing to do with the page
  85	 * we were given anymore.
  86	 * So now that the folio is stable, recheck that the page still
  87	 * belongs to this folio.
  88	 */
  89	if (unlikely(page_folio(page) != folio)) {
  90		if (!put_devmap_managed_page_refs(&folio->page, refs))
  91			folio_put_refs(folio, refs);
  92		goto retry;
  93	}
  94
  95	return folio;
  96}
  97
  98/**
  99 * try_grab_folio() - Attempt to get or pin a folio.
 100 * @page:  pointer to page to be grabbed
 101 * @refs:  the value to (effectively) add to the folio's refcount
 102 * @flags: gup flags: these are the FOLL_* flag values.
 103 *
 104 * "grab" names in this file mean, "look at flags to decide whether to use
 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 106 *
 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 108 * same time. (That's true throughout the get_user_pages*() and
 109 * pin_user_pages*() APIs.) Cases:
 110 *
 111 *    FOLL_GET: folio's refcount will be incremented by @refs.
 112 *
 113 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 114 *    @refs, and its compound_pincount will be incremented by @refs.
 115 *
 116 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
 117 *    @refs * GUP_PIN_COUNTING_BIAS.
 118 *
 119 * Return: The folio containing @page (with refcount appropriately
 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 122 * a likely bug in the caller, so a warning is also emitted.
 123 */
 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
 125{
 
 
 
 
 
 126	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 127		return NULL;
 128
 129	if (flags & FOLL_GET)
 130		return try_get_folio(page, refs);
 131	else if (flags & FOLL_PIN) {
 132		struct folio *folio;
 133
 134		/*
 135		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
 136		 * right zone, so fail and let the caller fall back to the slow
 137		 * path.
 138		 */
 139		if (unlikely((flags & FOLL_LONGTERM) &&
 140			     !is_longterm_pinnable_page(page)))
 141			return NULL;
 142
 143		/*
 144		 * CAUTION: Don't use compound_head() on the page before this
 145		 * point, the result won't be stable.
 146		 */
 147		folio = try_get_folio(page, refs);
 148		if (!folio)
 149			return NULL;
 150
 151		/*
 152		 * When pinning a large folio, use an exact count to track it.
 153		 *
 154		 * However, be sure to *also* increment the normal folio
 155		 * refcount field at least once, so that the folio really
 156		 * is pinned.  That's why the refcount from the earlier
 157		 * try_get_folio() is left intact.
 158		 */
 159		if (folio_test_large(folio))
 160			atomic_add(refs, folio_pincount_ptr(folio));
 161		else
 162			folio_ref_add(folio,
 163					refs * (GUP_PIN_COUNTING_BIAS - 1));
 164		/*
 165		 * Adjust the pincount before re-checking the PTE for changes.
 166		 * This is essentially a smp_mb() and is paired with a memory
 167		 * barrier in page_try_share_anon_rmap().
 168		 */
 169		smp_mb__after_atomic();
 170
 171		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173		return folio;
 174	}
 175
 176	WARN_ON_ONCE(1);
 177	return NULL;
 178}
 179
 180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
 181{
 182	if (flags & FOLL_PIN) {
 
 
 183		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
 184		if (folio_test_large(folio))
 185			atomic_sub(refs, folio_pincount_ptr(folio));
 186		else
 187			refs *= GUP_PIN_COUNTING_BIAS;
 188	}
 189
 190	if (!put_devmap_managed_page_refs(&folio->page, refs))
 191		folio_put_refs(folio, refs);
 192}
 193
 194/**
 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 196 * @page:    pointer to page to be grabbed
 197 * @flags:   gup flags: these are the FOLL_* flag values.
 198 *
 199 * This might not do anything at all, depending on the flags argument.
 200 *
 201 * "grab" names in this file mean, "look at flags to decide whether to use
 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 203 *
 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 205 * time. Cases: please see the try_grab_folio() documentation, with
 206 * "refs=1".
 207 *
 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
 210 *
 211 *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
 212 *			be grabbed.
 213 */
 214int __must_check try_grab_page(struct page *page, unsigned int flags)
 215{
 216	struct folio *folio = page_folio(page);
 217
 218	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 219	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
 220		return -ENOMEM;
 221
 222	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 223		return -EREMOTEIO;
 224
 225	if (flags & FOLL_GET)
 226		folio_ref_inc(folio);
 227	else if (flags & FOLL_PIN) {
 228		/*
 
 
 
 
 
 
 
 229		 * Similar to try_grab_folio(): be sure to *also*
 230		 * increment the normal page refcount field at least once,
 231		 * so that the page really is pinned.
 232		 */
 233		if (folio_test_large(folio)) {
 234			folio_ref_add(folio, 1);
 235			atomic_add(1, folio_pincount_ptr(folio));
 236		} else {
 237			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 238		}
 239
 240		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
 241	}
 242
 243	return 0;
 244}
 245
 246/**
 247 * unpin_user_page() - release a dma-pinned page
 248 * @page:            pointer to page to be released
 249 *
 250 * Pages that were pinned via pin_user_pages*() must be released via either
 251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 252 * that such pages can be separately tracked and uniquely handled. In
 253 * particular, interactions with RDMA and filesystems need special handling.
 254 */
 255void unpin_user_page(struct page *page)
 256{
 257	sanity_check_pinned_pages(&page, 1);
 258	gup_put_folio(page_folio(page), 1, FOLL_PIN);
 259}
 260EXPORT_SYMBOL(unpin_user_page);
 261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262static inline struct folio *gup_folio_range_next(struct page *start,
 263		unsigned long npages, unsigned long i, unsigned int *ntails)
 264{
 265	struct page *next = nth_page(start, i);
 266	struct folio *folio = page_folio(next);
 267	unsigned int nr = 1;
 268
 269	if (folio_test_large(folio))
 270		nr = min_t(unsigned int, npages - i,
 271			   folio_nr_pages(folio) - folio_page_idx(folio, next));
 272
 273	*ntails = nr;
 274	return folio;
 275}
 276
 277static inline struct folio *gup_folio_next(struct page **list,
 278		unsigned long npages, unsigned long i, unsigned int *ntails)
 279{
 280	struct folio *folio = page_folio(list[i]);
 281	unsigned int nr;
 282
 283	for (nr = i + 1; nr < npages; nr++) {
 284		if (page_folio(list[nr]) != folio)
 285			break;
 286	}
 287
 288	*ntails = nr - i;
 289	return folio;
 290}
 291
 292/**
 293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 294 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 295 * @npages: number of pages in the @pages array.
 296 * @make_dirty: whether to mark the pages dirty
 297 *
 298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 299 * variants called on that page.
 300 *
 301 * For each page in the @pages array, make that page (or its head page, if a
 302 * compound page) dirty, if @make_dirty is true, and if the page was previously
 303 * listed as clean. In any case, releases all pages using unpin_user_page(),
 304 * possibly via unpin_user_pages(), for the non-dirty case.
 305 *
 306 * Please see the unpin_user_page() documentation for details.
 307 *
 308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 309 * required, then the caller should a) verify that this is really correct,
 310 * because _lock() is usually required, and b) hand code it:
 311 * set_page_dirty_lock(), unpin_user_page().
 312 *
 313 */
 314void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 315				 bool make_dirty)
 316{
 317	unsigned long i;
 318	struct folio *folio;
 319	unsigned int nr;
 320
 321	if (!make_dirty) {
 322		unpin_user_pages(pages, npages);
 323		return;
 324	}
 325
 326	sanity_check_pinned_pages(pages, npages);
 327	for (i = 0; i < npages; i += nr) {
 328		folio = gup_folio_next(pages, npages, i, &nr);
 329		/*
 330		 * Checking PageDirty at this point may race with
 331		 * clear_page_dirty_for_io(), but that's OK. Two key
 332		 * cases:
 333		 *
 334		 * 1) This code sees the page as already dirty, so it
 335		 * skips the call to set_page_dirty(). That could happen
 336		 * because clear_page_dirty_for_io() called
 337		 * page_mkclean(), followed by set_page_dirty().
 338		 * However, now the page is going to get written back,
 339		 * which meets the original intention of setting it
 340		 * dirty, so all is well: clear_page_dirty_for_io() goes
 341		 * on to call TestClearPageDirty(), and write the page
 342		 * back.
 343		 *
 344		 * 2) This code sees the page as clean, so it calls
 345		 * set_page_dirty(). The page stays dirty, despite being
 346		 * written back, so it gets written back again in the
 347		 * next writeback cycle. This is harmless.
 348		 */
 349		if (!folio_test_dirty(folio)) {
 350			folio_lock(folio);
 351			folio_mark_dirty(folio);
 352			folio_unlock(folio);
 353		}
 354		gup_put_folio(folio, nr, FOLL_PIN);
 355	}
 356}
 357EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 358
 359/**
 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 361 * gup-pinned page range
 362 *
 363 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 364 * @npages: number of consecutive pages to release.
 365 * @make_dirty: whether to mark the pages dirty
 366 *
 367 * "gup-pinned page range" refers to a range of pages that has had one of the
 368 * pin_user_pages() variants called on that page.
 369 *
 370 * For the page ranges defined by [page .. page+npages], make that range (or
 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 372 * page range was previously listed as clean.
 373 *
 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 375 * required, then the caller should a) verify that this is really correct,
 376 * because _lock() is usually required, and b) hand code it:
 377 * set_page_dirty_lock(), unpin_user_page().
 378 *
 379 */
 380void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 381				      bool make_dirty)
 382{
 383	unsigned long i;
 384	struct folio *folio;
 385	unsigned int nr;
 386
 387	for (i = 0; i < npages; i += nr) {
 388		folio = gup_folio_range_next(page, npages, i, &nr);
 389		if (make_dirty && !folio_test_dirty(folio)) {
 390			folio_lock(folio);
 391			folio_mark_dirty(folio);
 392			folio_unlock(folio);
 393		}
 394		gup_put_folio(folio, nr, FOLL_PIN);
 395	}
 396}
 397EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
 398
 399static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
 400{
 401	unsigned long i;
 402	struct folio *folio;
 403	unsigned int nr;
 404
 405	/*
 406	 * Don't perform any sanity checks because we might have raced with
 407	 * fork() and some anonymous pages might now actually be shared --
 408	 * which is why we're unpinning after all.
 409	 */
 410	for (i = 0; i < npages; i += nr) {
 411		folio = gup_folio_next(pages, npages, i, &nr);
 412		gup_put_folio(folio, nr, FOLL_PIN);
 413	}
 414}
 415
 416/**
 417 * unpin_user_pages() - release an array of gup-pinned pages.
 418 * @pages:  array of pages to be marked dirty and released.
 419 * @npages: number of pages in the @pages array.
 420 *
 421 * For each page in the @pages array, release the page using unpin_user_page().
 422 *
 423 * Please see the unpin_user_page() documentation for details.
 424 */
 425void unpin_user_pages(struct page **pages, unsigned long npages)
 426{
 427	unsigned long i;
 428	struct folio *folio;
 429	unsigned int nr;
 430
 431	/*
 432	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
 433	 * leaving them pinned), but probably not. More likely, gup/pup returned
 434	 * a hard -ERRNO error to the caller, who erroneously passed it here.
 435	 */
 436	if (WARN_ON(IS_ERR_VALUE(npages)))
 437		return;
 438
 439	sanity_check_pinned_pages(pages, npages);
 440	for (i = 0; i < npages; i += nr) {
 441		folio = gup_folio_next(pages, npages, i, &nr);
 442		gup_put_folio(folio, nr, FOLL_PIN);
 443	}
 444}
 445EXPORT_SYMBOL(unpin_user_pages);
 446
 447/*
 448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 449 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 450 * cache bouncing on large SMP machines for concurrent pinned gups.
 451 */
 452static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
 453{
 454	if (!test_bit(MMF_HAS_PINNED, mm_flags))
 455		set_bit(MMF_HAS_PINNED, mm_flags);
 456}
 457
 458#ifdef CONFIG_MMU
 459static struct page *no_page_table(struct vm_area_struct *vma,
 460		unsigned int flags)
 461{
 462	/*
 463	 * When core dumping an enormous anonymous area that nobody
 464	 * has touched so far, we don't want to allocate unnecessary pages or
 465	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 466	 * then get_dump_page() will return NULL to leave a hole in the dump.
 467	 * But we can only make this optimization where a hole would surely
 468	 * be zero-filled if handle_mm_fault() actually did handle it.
 469	 */
 470	if ((flags & FOLL_DUMP) &&
 471			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 472		return ERR_PTR(-EFAULT);
 473	return NULL;
 474}
 475
 476static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 477		pte_t *pte, unsigned int flags)
 478{
 479	if (flags & FOLL_TOUCH) {
 480		pte_t entry = *pte;
 
 481
 482		if (flags & FOLL_WRITE)
 483			entry = pte_mkdirty(entry);
 484		entry = pte_mkyoung(entry);
 485
 486		if (!pte_same(*pte, entry)) {
 487			set_pte_at(vma->vm_mm, address, pte, entry);
 488			update_mmu_cache(vma, address, pte);
 489		}
 490	}
 491
 492	/* Proper page table entry exists, but no corresponding struct page */
 493	return -EEXIST;
 494}
 495
 496/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
 497static inline bool can_follow_write_pte(pte_t pte, struct page *page,
 498					struct vm_area_struct *vma,
 499					unsigned int flags)
 500{
 501	/* If the pte is writable, we can write to the page. */
 502	if (pte_write(pte))
 503		return true;
 504
 505	/* Maybe FOLL_FORCE is set to override it? */
 506	if (!(flags & FOLL_FORCE))
 507		return false;
 508
 509	/* But FOLL_FORCE has no effect on shared mappings */
 510	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 511		return false;
 512
 513	/* ... or read-only private ones */
 514	if (!(vma->vm_flags & VM_MAYWRITE))
 515		return false;
 516
 517	/* ... or already writable ones that just need to take a write fault */
 518	if (vma->vm_flags & VM_WRITE)
 519		return false;
 520
 521	/*
 522	 * See can_change_pte_writable(): we broke COW and could map the page
 523	 * writable if we have an exclusive anonymous page ...
 524	 */
 525	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
 526		return false;
 527
 528	/* ... and a write-fault isn't required for other reasons. */
 529	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
 530		return false;
 531	return !userfaultfd_pte_wp(vma, pte);
 532}
 533
 534static struct page *follow_page_pte(struct vm_area_struct *vma,
 535		unsigned long address, pmd_t *pmd, unsigned int flags,
 536		struct dev_pagemap **pgmap)
 537{
 538	struct mm_struct *mm = vma->vm_mm;
 539	struct page *page;
 540	spinlock_t *ptl;
 541	pte_t *ptep, pte;
 542	int ret;
 543
 544	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 545	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 546			 (FOLL_PIN | FOLL_GET)))
 547		return ERR_PTR(-EINVAL);
 548	if (unlikely(pmd_bad(*pmd)))
 549		return no_page_table(vma, flags);
 550
 551	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 552	pte = *ptep;
 
 
 553	if (!pte_present(pte))
 554		goto no_page;
 555	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
 556		goto no_page;
 557
 558	page = vm_normal_page(vma, address, pte);
 559
 560	/*
 561	 * We only care about anon pages in can_follow_write_pte() and don't
 562	 * have to worry about pte_devmap() because they are never anon.
 563	 */
 564	if ((flags & FOLL_WRITE) &&
 565	    !can_follow_write_pte(pte, page, vma, flags)) {
 566		page = NULL;
 567		goto out;
 568	}
 569
 570	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 571		/*
 572		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 573		 * case since they are only valid while holding the pgmap
 574		 * reference.
 575		 */
 576		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 577		if (*pgmap)
 578			page = pte_page(pte);
 579		else
 580			goto no_page;
 581	} else if (unlikely(!page)) {
 582		if (flags & FOLL_DUMP) {
 583			/* Avoid special (like zero) pages in core dumps */
 584			page = ERR_PTR(-EFAULT);
 585			goto out;
 586		}
 587
 588		if (is_zero_pfn(pte_pfn(pte))) {
 589			page = pte_page(pte);
 590		} else {
 591			ret = follow_pfn_pte(vma, address, ptep, flags);
 592			page = ERR_PTR(ret);
 593			goto out;
 594		}
 595	}
 596
 597	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
 598		page = ERR_PTR(-EMLINK);
 599		goto out;
 600	}
 601
 602	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 603		       !PageAnonExclusive(page), page);
 604
 605	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 606	ret = try_grab_page(page, flags);
 607	if (unlikely(ret)) {
 608		page = ERR_PTR(ret);
 609		goto out;
 610	}
 611
 612	/*
 613	 * We need to make the page accessible if and only if we are going
 614	 * to access its content (the FOLL_PIN case).  Please see
 615	 * Documentation/core-api/pin_user_pages.rst for details.
 616	 */
 617	if (flags & FOLL_PIN) {
 618		ret = arch_make_page_accessible(page);
 619		if (ret) {
 620			unpin_user_page(page);
 621			page = ERR_PTR(ret);
 622			goto out;
 623		}
 624	}
 625	if (flags & FOLL_TOUCH) {
 626		if ((flags & FOLL_WRITE) &&
 627		    !pte_dirty(pte) && !PageDirty(page))
 628			set_page_dirty(page);
 629		/*
 630		 * pte_mkyoung() would be more correct here, but atomic care
 631		 * is needed to avoid losing the dirty bit: it is easier to use
 632		 * mark_page_accessed().
 633		 */
 634		mark_page_accessed(page);
 635	}
 636out:
 637	pte_unmap_unlock(ptep, ptl);
 638	return page;
 639no_page:
 640	pte_unmap_unlock(ptep, ptl);
 641	if (!pte_none(pte))
 642		return NULL;
 643	return no_page_table(vma, flags);
 644}
 645
 646static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 647				    unsigned long address, pud_t *pudp,
 648				    unsigned int flags,
 649				    struct follow_page_context *ctx)
 650{
 651	pmd_t *pmd, pmdval;
 652	spinlock_t *ptl;
 653	struct page *page;
 654	struct mm_struct *mm = vma->vm_mm;
 655
 656	pmd = pmd_offset(pudp, address);
 657	/*
 658	 * The READ_ONCE() will stabilize the pmdval in a register or
 659	 * on the stack so that it will stop changing under the code.
 660	 */
 661	pmdval = READ_ONCE(*pmd);
 662	if (pmd_none(pmdval))
 663		return no_page_table(vma, flags);
 664	if (!pmd_present(pmdval))
 665		return no_page_table(vma, flags);
 666	if (pmd_devmap(pmdval)) {
 667		ptl = pmd_lock(mm, pmd);
 668		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 669		spin_unlock(ptl);
 670		if (page)
 671			return page;
 
 672	}
 673	if (likely(!pmd_trans_huge(pmdval)))
 674		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 675
 676	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
 677		return no_page_table(vma, flags);
 678
 679	ptl = pmd_lock(mm, pmd);
 680	if (unlikely(!pmd_present(*pmd))) {
 681		spin_unlock(ptl);
 682		return no_page_table(vma, flags);
 683	}
 684	if (unlikely(!pmd_trans_huge(*pmd))) {
 685		spin_unlock(ptl);
 686		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 687	}
 688	if (flags & FOLL_SPLIT_PMD) {
 689		int ret;
 690		page = pmd_page(*pmd);
 691		if (is_huge_zero_page(page)) {
 692			spin_unlock(ptl);
 693			ret = 0;
 694			split_huge_pmd(vma, pmd, address);
 695			if (pmd_trans_unstable(pmd))
 696				ret = -EBUSY;
 697		} else {
 698			spin_unlock(ptl);
 699			split_huge_pmd(vma, pmd, address);
 700			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 701		}
 702
 703		return ret ? ERR_PTR(ret) :
 704			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 705	}
 706	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 707	spin_unlock(ptl);
 708	ctx->page_mask = HPAGE_PMD_NR - 1;
 709	return page;
 710}
 711
 712static struct page *follow_pud_mask(struct vm_area_struct *vma,
 713				    unsigned long address, p4d_t *p4dp,
 714				    unsigned int flags,
 715				    struct follow_page_context *ctx)
 716{
 717	pud_t *pud;
 718	spinlock_t *ptl;
 719	struct page *page;
 720	struct mm_struct *mm = vma->vm_mm;
 721
 722	pud = pud_offset(p4dp, address);
 723	if (pud_none(*pud))
 724		return no_page_table(vma, flags);
 725	if (pud_devmap(*pud)) {
 726		ptl = pud_lock(mm, pud);
 727		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 728		spin_unlock(ptl);
 729		if (page)
 730			return page;
 
 731	}
 732	if (unlikely(pud_bad(*pud)))
 733		return no_page_table(vma, flags);
 734
 735	return follow_pmd_mask(vma, address, pud, flags, ctx);
 736}
 737
 738static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 739				    unsigned long address, pgd_t *pgdp,
 740				    unsigned int flags,
 741				    struct follow_page_context *ctx)
 742{
 743	p4d_t *p4d;
 744
 745	p4d = p4d_offset(pgdp, address);
 746	if (p4d_none(*p4d))
 747		return no_page_table(vma, flags);
 748	BUILD_BUG_ON(p4d_huge(*p4d));
 749	if (unlikely(p4d_bad(*p4d)))
 750		return no_page_table(vma, flags);
 751
 752	return follow_pud_mask(vma, address, p4d, flags, ctx);
 753}
 754
 755/**
 756 * follow_page_mask - look up a page descriptor from a user-virtual address
 757 * @vma: vm_area_struct mapping @address
 758 * @address: virtual address to look up
 759 * @flags: flags modifying lookup behaviour
 760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 761 *       pointer to output page_mask
 762 *
 763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 764 *
 765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 767 *
 768 * When getting an anonymous page and the caller has to trigger unsharing
 769 * of a shared anonymous page first, -EMLINK is returned. The caller should
 770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 771 * relevant with FOLL_PIN and !FOLL_WRITE.
 772 *
 773 * On output, the @ctx->page_mask is set according to the size of the page.
 774 *
 775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 776 * an error pointer if there is a mapping to something not represented
 777 * by a page descriptor (see also vm_normal_page()).
 778 */
 779static struct page *follow_page_mask(struct vm_area_struct *vma,
 780			      unsigned long address, unsigned int flags,
 781			      struct follow_page_context *ctx)
 782{
 783	pgd_t *pgd;
 784	struct page *page;
 785	struct mm_struct *mm = vma->vm_mm;
 786
 787	ctx->page_mask = 0;
 788
 789	/*
 790	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
 791	 * special hugetlb page table walking code.  This eliminates the
 792	 * need to check for hugetlb entries in the general walking code.
 793	 *
 794	 * hugetlb_follow_page_mask is only for follow_page() handling here.
 795	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
 796	 */
 797	if (is_vm_hugetlb_page(vma)) {
 798		page = hugetlb_follow_page_mask(vma, address, flags);
 799		if (!page)
 800			page = no_page_table(vma, flags);
 801		return page;
 802	}
 803
 804	pgd = pgd_offset(mm, address);
 805
 806	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 807		return no_page_table(vma, flags);
 808
 809	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 810}
 811
 812struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 813			 unsigned int foll_flags)
 814{
 815	struct follow_page_context ctx = { NULL };
 816	struct page *page;
 817
 818	if (vma_is_secretmem(vma))
 819		return NULL;
 820
 821	if (foll_flags & FOLL_PIN)
 822		return NULL;
 823
 
 
 
 
 824	page = follow_page_mask(vma, address, foll_flags, &ctx);
 825	if (ctx.pgmap)
 826		put_dev_pagemap(ctx.pgmap);
 827	return page;
 828}
 829
 830static int get_gate_page(struct mm_struct *mm, unsigned long address,
 831		unsigned int gup_flags, struct vm_area_struct **vma,
 832		struct page **page)
 833{
 834	pgd_t *pgd;
 835	p4d_t *p4d;
 836	pud_t *pud;
 837	pmd_t *pmd;
 838	pte_t *pte;
 
 839	int ret = -EFAULT;
 840
 841	/* user gate pages are read-only */
 842	if (gup_flags & FOLL_WRITE)
 843		return -EFAULT;
 844	if (address > TASK_SIZE)
 845		pgd = pgd_offset_k(address);
 846	else
 847		pgd = pgd_offset_gate(mm, address);
 848	if (pgd_none(*pgd))
 849		return -EFAULT;
 850	p4d = p4d_offset(pgd, address);
 851	if (p4d_none(*p4d))
 852		return -EFAULT;
 853	pud = pud_offset(p4d, address);
 854	if (pud_none(*pud))
 855		return -EFAULT;
 856	pmd = pmd_offset(pud, address);
 857	if (!pmd_present(*pmd))
 858		return -EFAULT;
 859	VM_BUG_ON(pmd_trans_huge(*pmd));
 860	pte = pte_offset_map(pmd, address);
 861	if (pte_none(*pte))
 
 
 
 862		goto unmap;
 863	*vma = get_gate_vma(mm);
 864	if (!page)
 865		goto out;
 866	*page = vm_normal_page(*vma, address, *pte);
 867	if (!*page) {
 868		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 869			goto unmap;
 870		*page = pte_page(*pte);
 871	}
 872	ret = try_grab_page(*page, gup_flags);
 873	if (unlikely(ret))
 874		goto unmap;
 875out:
 876	ret = 0;
 877unmap:
 878	pte_unmap(pte);
 879	return ret;
 880}
 881
 882/*
 883 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 884 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 885 * is, *@locked will be set to 0 and -EBUSY returned.
 886 */
 887static int faultin_page(struct vm_area_struct *vma,
 888		unsigned long address, unsigned int *flags, bool unshare,
 889		int *locked)
 890{
 891	unsigned int fault_flags = 0;
 892	vm_fault_t ret;
 893
 894	if (*flags & FOLL_NOFAULT)
 895		return -EFAULT;
 896	if (*flags & FOLL_WRITE)
 897		fault_flags |= FAULT_FLAG_WRITE;
 898	if (*flags & FOLL_REMOTE)
 899		fault_flags |= FAULT_FLAG_REMOTE;
 900	if (locked) {
 901		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 902		/*
 903		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
 904		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
 905		 * That's because some callers may not be prepared to
 906		 * handle early exits caused by non-fatal signals.
 907		 */
 908		if (*flags & FOLL_INTERRUPTIBLE)
 909			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 910	}
 911	if (*flags & FOLL_NOWAIT)
 912		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 913	if (*flags & FOLL_TRIED) {
 914		/*
 915		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 916		 * can co-exist
 917		 */
 918		fault_flags |= FAULT_FLAG_TRIED;
 919	}
 920	if (unshare) {
 921		fault_flags |= FAULT_FLAG_UNSHARE;
 922		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
 923		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
 924	}
 925
 926	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 927
 928	if (ret & VM_FAULT_COMPLETED) {
 929		/*
 930		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
 931		 * mmap lock in the page fault handler. Sanity check this.
 932		 */
 933		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
 934		if (locked)
 935			*locked = 0;
 936		/*
 937		 * We should do the same as VM_FAULT_RETRY, but let's not
 938		 * return -EBUSY since that's not reflecting the reality of
 939		 * what has happened - we've just fully completed a page
 940		 * fault, with the mmap lock released.  Use -EAGAIN to show
 941		 * that we want to take the mmap lock _again_.
 942		 */
 943		return -EAGAIN;
 944	}
 945
 946	if (ret & VM_FAULT_ERROR) {
 947		int err = vm_fault_to_errno(ret, *flags);
 948
 949		if (err)
 950			return err;
 951		BUG();
 952	}
 953
 954	if (ret & VM_FAULT_RETRY) {
 955		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 956			*locked = 0;
 957		return -EBUSY;
 958	}
 959
 960	return 0;
 961}
 962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 964{
 965	vm_flags_t vm_flags = vma->vm_flags;
 966	int write = (gup_flags & FOLL_WRITE);
 967	int foreign = (gup_flags & FOLL_REMOTE);
 
 968
 969	if (vm_flags & (VM_IO | VM_PFNMAP))
 970		return -EFAULT;
 971
 972	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 973		return -EFAULT;
 974
 975	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
 976		return -EOPNOTSUPP;
 977
 978	if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
 979		return -EOPNOTSUPP;
 980
 981	if (vma_is_secretmem(vma))
 982		return -EFAULT;
 983
 984	if (write) {
 985		if (!(vm_flags & VM_WRITE)) {
 
 
 
 
 986			if (!(gup_flags & FOLL_FORCE))
 987				return -EFAULT;
 988			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
 989			if (is_vm_hugetlb_page(vma))
 990				return -EFAULT;
 991			/*
 992			 * We used to let the write,force case do COW in a
 993			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 994			 * set a breakpoint in a read-only mapping of an
 995			 * executable, without corrupting the file (yet only
 996			 * when that file had been opened for writing!).
 997			 * Anon pages in shared mappings are surprising: now
 998			 * just reject it.
 999			 */
1000			if (!is_cow_mapping(vm_flags))
1001				return -EFAULT;
1002		}
1003	} else if (!(vm_flags & VM_READ)) {
1004		if (!(gup_flags & FOLL_FORCE))
1005			return -EFAULT;
1006		/*
1007		 * Is there actually any vma we can reach here which does not
1008		 * have VM_MAYREAD set?
1009		 */
1010		if (!(vm_flags & VM_MAYREAD))
1011			return -EFAULT;
1012	}
1013	/*
1014	 * gups are always data accesses, not instruction
1015	 * fetches, so execute=false here
1016	 */
1017	if (!arch_vma_access_permitted(vma, write, false, foreign))
1018		return -EFAULT;
1019	return 0;
1020}
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022/**
1023 * __get_user_pages() - pin user pages in memory
1024 * @mm:		mm_struct of target mm
1025 * @start:	starting user address
1026 * @nr_pages:	number of pages from start to pin
1027 * @gup_flags:	flags modifying pin behaviour
1028 * @pages:	array that receives pointers to the pages pinned.
1029 *		Should be at least nr_pages long. Or NULL, if caller
1030 *		only intends to ensure the pages are faulted in.
1031 * @vmas:	array of pointers to vmas corresponding to each page.
1032 *		Or NULL if the caller does not require them.
1033 * @locked:     whether we're still with the mmap_lock held
1034 *
1035 * Returns either number of pages pinned (which may be less than the
1036 * number requested), or an error. Details about the return value:
1037 *
1038 * -- If nr_pages is 0, returns 0.
1039 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1040 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1041 *    pages pinned. Again, this may be less than nr_pages.
1042 * -- 0 return value is possible when the fault would need to be retried.
1043 *
1044 * The caller is responsible for releasing returned @pages, via put_page().
1045 *
1046 * @vmas are valid only as long as mmap_lock is held.
1047 *
1048 * Must be called with mmap_lock held.  It may be released.  See below.
1049 *
1050 * __get_user_pages walks a process's page tables and takes a reference to
1051 * each struct page that each user address corresponds to at a given
1052 * instant. That is, it takes the page that would be accessed if a user
1053 * thread accesses the given user virtual address at that instant.
1054 *
1055 * This does not guarantee that the page exists in the user mappings when
1056 * __get_user_pages returns, and there may even be a completely different
1057 * page there in some cases (eg. if mmapped pagecache has been invalidated
1058 * and subsequently re faulted). However it does guarantee that the page
1059 * won't be freed completely. And mostly callers simply care that the page
1060 * contains data that was valid *at some point in time*. Typically, an IO
1061 * or similar operation cannot guarantee anything stronger anyway because
1062 * locks can't be held over the syscall boundary.
1063 *
1064 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1065 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1066 * appropriate) must be called after the page is finished with, and
1067 * before put_page is called.
1068 *
1069 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1070 * released by an up_read().  That can happen if @gup_flags does not
1071 * have FOLL_NOWAIT.
1072 *
1073 * A caller using such a combination of @locked and @gup_flags
1074 * must therefore hold the mmap_lock for reading only, and recognize
1075 * when it's been released.  Otherwise, it must be held for either
1076 * reading or writing and will not be released.
1077 *
1078 * In most cases, get_user_pages or get_user_pages_fast should be used
1079 * instead of __get_user_pages. __get_user_pages should be used only if
1080 * you need some special @gup_flags.
1081 */
1082static long __get_user_pages(struct mm_struct *mm,
1083		unsigned long start, unsigned long nr_pages,
1084		unsigned int gup_flags, struct page **pages,
1085		struct vm_area_struct **vmas, int *locked)
1086{
1087	long ret = 0, i = 0;
1088	struct vm_area_struct *vma = NULL;
1089	struct follow_page_context ctx = { NULL };
1090
1091	if (!nr_pages)
1092		return 0;
1093
1094	start = untagged_addr(start);
1095
1096	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1097
1098	do {
1099		struct page *page;
1100		unsigned int foll_flags = gup_flags;
1101		unsigned int page_increm;
1102
1103		/* first iteration or cross vma bound */
1104		if (!vma || start >= vma->vm_end) {
1105			vma = find_extend_vma(mm, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106			if (!vma && in_gate_area(mm, start)) {
1107				ret = get_gate_page(mm, start & PAGE_MASK,
1108						gup_flags, &vma,
1109						pages ? &pages[i] : NULL);
1110				if (ret)
1111					goto out;
1112				ctx.page_mask = 0;
1113				goto next_page;
1114			}
1115
1116			if (!vma) {
1117				ret = -EFAULT;
1118				goto out;
1119			}
1120			ret = check_vma_flags(vma, gup_flags);
1121			if (ret)
1122				goto out;
1123
1124			if (is_vm_hugetlb_page(vma)) {
1125				i = follow_hugetlb_page(mm, vma, pages, vmas,
1126						&start, &nr_pages, i,
1127						gup_flags, locked);
1128				if (locked && *locked == 0) {
1129					/*
1130					 * We've got a VM_FAULT_RETRY
1131					 * and we've lost mmap_lock.
1132					 * We must stop here.
1133					 */
1134					BUG_ON(gup_flags & FOLL_NOWAIT);
1135					goto out;
1136				}
1137				continue;
1138			}
1139		}
1140retry:
1141		/*
1142		 * If we have a pending SIGKILL, don't keep faulting pages and
1143		 * potentially allocating memory.
1144		 */
1145		if (fatal_signal_pending(current)) {
1146			ret = -EINTR;
1147			goto out;
1148		}
1149		cond_resched();
1150
1151		page = follow_page_mask(vma, start, foll_flags, &ctx);
1152		if (!page || PTR_ERR(page) == -EMLINK) {
1153			ret = faultin_page(vma, start, &foll_flags,
1154					   PTR_ERR(page) == -EMLINK, locked);
1155			switch (ret) {
1156			case 0:
1157				goto retry;
1158			case -EBUSY:
1159			case -EAGAIN:
1160				ret = 0;
1161				fallthrough;
1162			case -EFAULT:
1163			case -ENOMEM:
1164			case -EHWPOISON:
1165				goto out;
1166			}
1167			BUG();
1168		} else if (PTR_ERR(page) == -EEXIST) {
1169			/*
1170			 * Proper page table entry exists, but no corresponding
1171			 * struct page. If the caller expects **pages to be
1172			 * filled in, bail out now, because that can't be done
1173			 * for this page.
1174			 */
1175			if (pages) {
1176				ret = PTR_ERR(page);
1177				goto out;
1178			}
1179
1180			goto next_page;
1181		} else if (IS_ERR(page)) {
1182			ret = PTR_ERR(page);
1183			goto out;
1184		}
1185		if (pages) {
1186			pages[i] = page;
1187			flush_anon_page(vma, page, start);
1188			flush_dcache_page(page);
1189			ctx.page_mask = 0;
1190		}
1191next_page:
1192		if (vmas) {
1193			vmas[i] = vma;
1194			ctx.page_mask = 0;
1195		}
1196		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197		if (page_increm > nr_pages)
1198			page_increm = nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199		i += page_increm;
1200		start += page_increm * PAGE_SIZE;
1201		nr_pages -= page_increm;
1202	} while (nr_pages);
1203out:
1204	if (ctx.pgmap)
1205		put_dev_pagemap(ctx.pgmap);
1206	return i ? i : ret;
1207}
1208
1209static bool vma_permits_fault(struct vm_area_struct *vma,
1210			      unsigned int fault_flags)
1211{
1212	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1213	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215
1216	if (!(vm_flags & vma->vm_flags))
1217		return false;
1218
1219	/*
1220	 * The architecture might have a hardware protection
1221	 * mechanism other than read/write that can deny access.
1222	 *
1223	 * gup always represents data access, not instruction
1224	 * fetches, so execute=false here:
1225	 */
1226	if (!arch_vma_access_permitted(vma, write, false, foreign))
1227		return false;
1228
1229	return true;
1230}
1231
1232/**
1233 * fixup_user_fault() - manually resolve a user page fault
1234 * @mm:		mm_struct of target mm
1235 * @address:	user address
1236 * @fault_flags:flags to pass down to handle_mm_fault()
1237 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1238 *		does not allow retry. If NULL, the caller must guarantee
1239 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240 *
1241 * This is meant to be called in the specific scenario where for locking reasons
1242 * we try to access user memory in atomic context (within a pagefault_disable()
1243 * section), this returns -EFAULT, and we want to resolve the user fault before
1244 * trying again.
1245 *
1246 * Typically this is meant to be used by the futex code.
1247 *
1248 * The main difference with get_user_pages() is that this function will
1249 * unconditionally call handle_mm_fault() which will in turn perform all the
1250 * necessary SW fixup of the dirty and young bits in the PTE, while
1251 * get_user_pages() only guarantees to update these in the struct page.
1252 *
1253 * This is important for some architectures where those bits also gate the
1254 * access permission to the page because they are maintained in software.  On
1255 * such architectures, gup() will not be enough to make a subsequent access
1256 * succeed.
1257 *
1258 * This function will not return with an unlocked mmap_lock. So it has not the
1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260 */
1261int fixup_user_fault(struct mm_struct *mm,
1262		     unsigned long address, unsigned int fault_flags,
1263		     bool *unlocked)
1264{
1265	struct vm_area_struct *vma;
1266	vm_fault_t ret;
1267
1268	address = untagged_addr(address);
1269
1270	if (unlocked)
1271		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272
1273retry:
1274	vma = find_extend_vma(mm, address);
1275	if (!vma || address < vma->vm_start)
1276		return -EFAULT;
1277
1278	if (!vma_permits_fault(vma, fault_flags))
1279		return -EFAULT;
1280
1281	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282	    fatal_signal_pending(current))
1283		return -EINTR;
1284
1285	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286
1287	if (ret & VM_FAULT_COMPLETED) {
1288		/*
1289		 * NOTE: it's a pity that we need to retake the lock here
1290		 * to pair with the unlock() in the callers. Ideally we
1291		 * could tell the callers so they do not need to unlock.
1292		 */
1293		mmap_read_lock(mm);
1294		*unlocked = true;
1295		return 0;
1296	}
1297
1298	if (ret & VM_FAULT_ERROR) {
1299		int err = vm_fault_to_errno(ret, 0);
1300
1301		if (err)
1302			return err;
1303		BUG();
1304	}
1305
1306	if (ret & VM_FAULT_RETRY) {
1307		mmap_read_lock(mm);
1308		*unlocked = true;
1309		fault_flags |= FAULT_FLAG_TRIED;
1310		goto retry;
1311	}
1312
1313	return 0;
1314}
1315EXPORT_SYMBOL_GPL(fixup_user_fault);
1316
1317/*
1318 * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1319 * specified, it'll also respond to generic signals.  The caller of GUP
1320 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1321 */
1322static bool gup_signal_pending(unsigned int flags)
1323{
1324	if (fatal_signal_pending(current))
1325		return true;
1326
1327	if (!(flags & FOLL_INTERRUPTIBLE))
1328		return false;
1329
1330	return signal_pending(current);
1331}
1332
1333/*
1334 * Please note that this function, unlike __get_user_pages will not
1335 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 
 
 
 
 
 
 
 
 
1336 */
1337static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1338						unsigned long start,
1339						unsigned long nr_pages,
1340						struct page **pages,
1341						struct vm_area_struct **vmas,
1342						int *locked,
1343						unsigned int flags)
1344{
1345	long ret, pages_done;
1346	bool lock_dropped;
1347
1348	if (locked) {
1349		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1350		BUG_ON(vmas);
1351		/* check caller initialized locked */
1352		BUG_ON(*locked != 1);
 
 
 
 
 
 
 
1353	}
 
 
1354
1355	if (flags & FOLL_PIN)
1356		mm_set_has_pinned_flag(&mm->flags);
1357
1358	/*
1359	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362	 * for FOLL_GET, not for the newer FOLL_PIN.
1363	 *
1364	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365	 * that here, as any failures will be obvious enough.
1366	 */
1367	if (pages && !(flags & FOLL_PIN))
1368		flags |= FOLL_GET;
1369
1370	pages_done = 0;
1371	lock_dropped = false;
1372	for (;;) {
1373		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1374				       vmas, locked);
1375		if (!locked)
1376			/* VM_FAULT_RETRY couldn't trigger, bypass */
1377			return ret;
 
 
1378
1379		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1380		if (!*locked) {
1381			BUG_ON(ret < 0);
1382			BUG_ON(ret >= nr_pages);
1383		}
1384
1385		if (ret > 0) {
1386			nr_pages -= ret;
1387			pages_done += ret;
1388			if (!nr_pages)
1389				break;
1390		}
1391		if (*locked) {
1392			/*
1393			 * VM_FAULT_RETRY didn't trigger or it was a
1394			 * FOLL_NOWAIT.
1395			 */
1396			if (!pages_done)
1397				pages_done = ret;
1398			break;
1399		}
1400		/*
1401		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1402		 * For the prefault case (!pages) we only update counts.
1403		 */
1404		if (likely(pages))
1405			pages += ret;
1406		start += ret << PAGE_SHIFT;
1407		lock_dropped = true;
 
 
1408
1409retry:
1410		/*
1411		 * Repeat on the address that fired VM_FAULT_RETRY
1412		 * with both FAULT_FLAG_ALLOW_RETRY and
1413		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1414		 * by fatal signals of even common signals, depending on
1415		 * the caller's request. So we need to check it before we
1416		 * start trying again otherwise it can loop forever.
1417		 */
1418		if (gup_signal_pending(flags)) {
1419			if (!pages_done)
1420				pages_done = -EINTR;
1421			break;
1422		}
1423
1424		ret = mmap_read_lock_killable(mm);
1425		if (ret) {
1426			BUG_ON(ret > 0);
1427			if (!pages_done)
1428				pages_done = ret;
1429			break;
1430		}
1431
1432		*locked = 1;
1433		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1434				       pages, NULL, locked);
1435		if (!*locked) {
1436			/* Continue to retry until we succeeded */
1437			BUG_ON(ret != 0);
1438			goto retry;
1439		}
1440		if (ret != 1) {
1441			BUG_ON(ret > 1);
1442			if (!pages_done)
1443				pages_done = ret;
1444			break;
1445		}
1446		nr_pages--;
1447		pages_done++;
1448		if (!nr_pages)
1449			break;
1450		if (likely(pages))
1451			pages++;
1452		start += PAGE_SIZE;
1453	}
1454	if (lock_dropped && *locked) {
1455		/*
1456		 * We must let the caller know we temporarily dropped the lock
1457		 * and so the critical section protected by it was lost.
 
1458		 */
1459		mmap_read_unlock(mm);
1460		*locked = 0;
1461	}
 
 
 
 
 
 
 
 
1462	return pages_done;
1463}
1464
1465/**
1466 * populate_vma_page_range() -  populate a range of pages in the vma.
1467 * @vma:   target vma
1468 * @start: start address
1469 * @end:   end address
1470 * @locked: whether the mmap_lock is still held
1471 *
1472 * This takes care of mlocking the pages too if VM_LOCKED is set.
1473 *
1474 * Return either number of pages pinned in the vma, or a negative error
1475 * code on error.
1476 *
1477 * vma->vm_mm->mmap_lock must be held.
1478 *
1479 * If @locked is NULL, it may be held for read or write and will
1480 * be unperturbed.
1481 *
1482 * If @locked is non-NULL, it must held for read only and may be
1483 * released.  If it's released, *@locked will be set to 0.
1484 */
1485long populate_vma_page_range(struct vm_area_struct *vma,
1486		unsigned long start, unsigned long end, int *locked)
1487{
1488	struct mm_struct *mm = vma->vm_mm;
1489	unsigned long nr_pages = (end - start) / PAGE_SIZE;
 
1490	int gup_flags;
1491	long ret;
1492
1493	VM_BUG_ON(!PAGE_ALIGNED(start));
1494	VM_BUG_ON(!PAGE_ALIGNED(end));
1495	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1496	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1497	mmap_assert_locked(mm);
1498
1499	/*
1500	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1501	 * faultin_page() to break COW, so it has no work to do here.
1502	 */
1503	if (vma->vm_flags & VM_LOCKONFAULT)
1504		return nr_pages;
1505
 
 
 
 
1506	gup_flags = FOLL_TOUCH;
1507	/*
1508	 * We want to touch writable mappings with a write fault in order
1509	 * to break COW, except for shared mappings because these don't COW
1510	 * and we would not want to dirty them for nothing.
 
 
 
1511	 */
1512	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1513		gup_flags |= FOLL_WRITE;
 
 
1514
1515	/*
1516	 * We want mlock to succeed for regions that have any permissions
1517	 * other than PROT_NONE.
1518	 */
1519	if (vma_is_accessible(vma))
1520		gup_flags |= FOLL_FORCE;
1521
1522	/*
1523	 * We made sure addr is within a VMA, so the following will
1524	 * not result in a stack expansion that recurses back here.
1525	 */
1526	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1527				NULL, NULL, locked);
1528	lru_add_drain();
1529	return ret;
1530}
1531
1532/*
1533 * faultin_vma_page_range() - populate (prefault) page tables inside the
1534 *			      given VMA range readable/writable
1535 *
1536 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1537 *
1538 * @vma: target vma
1539 * @start: start address
1540 * @end: end address
1541 * @write: whether to prefault readable or writable
1542 * @locked: whether the mmap_lock is still held
1543 *
1544 * Returns either number of processed pages in the vma, or a negative error
1545 * code on error (see __get_user_pages()).
 
 
1546 *
1547 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1548 * covered by the VMA.
1549 *
1550 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1551 *
1552 * If @locked is non-NULL, it must held for read only and may be released.  If
1553 * it's released, *@locked will be set to 0.
1554 */
1555long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1556			    unsigned long end, bool write, int *locked)
1557{
1558	struct mm_struct *mm = vma->vm_mm;
1559	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1560	int gup_flags;
1561	long ret;
1562
1563	VM_BUG_ON(!PAGE_ALIGNED(start));
1564	VM_BUG_ON(!PAGE_ALIGNED(end));
1565	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1566	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1567	mmap_assert_locked(mm);
1568
1569	/*
1570	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1571	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1572	 *	       difference with !FOLL_FORCE, because the page is writable
1573	 *	       in the page table.
1574	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1575	 *		  a poisoned page.
1576	 * !FOLL_FORCE: Require proper access permissions.
1577	 */
1578	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
 
1579	if (write)
1580		gup_flags |= FOLL_WRITE;
1581
1582	/*
1583	 * We want to report -EINVAL instead of -EFAULT for any permission
1584	 * problems or incompatible mappings.
1585	 */
1586	if (check_vma_flags(vma, gup_flags))
1587		return -EINVAL;
1588
1589	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1590				NULL, NULL, locked);
1591	lru_add_drain();
1592	return ret;
1593}
1594
1595/*
1596 * __mm_populate - populate and/or mlock pages within a range of address space.
1597 *
1598 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1599 * flags. VMAs must be already marked with the desired vm_flags, and
1600 * mmap_lock must not be held.
1601 */
1602int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1603{
1604	struct mm_struct *mm = current->mm;
1605	unsigned long end, nstart, nend;
1606	struct vm_area_struct *vma = NULL;
1607	int locked = 0;
1608	long ret = 0;
1609
1610	end = start + len;
1611
1612	for (nstart = start; nstart < end; nstart = nend) {
1613		/*
1614		 * We want to fault in pages for [nstart; end) address range.
1615		 * Find first corresponding VMA.
1616		 */
1617		if (!locked) {
1618			locked = 1;
1619			mmap_read_lock(mm);
1620			vma = find_vma_intersection(mm, nstart, end);
1621		} else if (nstart >= vma->vm_end)
1622			vma = find_vma_intersection(mm, vma->vm_end, end);
1623
1624		if (!vma)
1625			break;
1626		/*
1627		 * Set [nstart; nend) to intersection of desired address
1628		 * range with the first VMA. Also, skip undesirable VMA types.
1629		 */
1630		nend = min(end, vma->vm_end);
1631		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1632			continue;
1633		if (nstart < vma->vm_start)
1634			nstart = vma->vm_start;
1635		/*
1636		 * Now fault in a range of pages. populate_vma_page_range()
1637		 * double checks the vma flags, so that it won't mlock pages
1638		 * if the vma was already munlocked.
1639		 */
1640		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1641		if (ret < 0) {
1642			if (ignore_errors) {
1643				ret = 0;
1644				continue;	/* continue at next VMA */
1645			}
1646			break;
1647		}
1648		nend = nstart + ret * PAGE_SIZE;
1649		ret = 0;
1650	}
1651	if (locked)
1652		mmap_read_unlock(mm);
1653	return ret;	/* 0 or negative error code */
1654}
1655#else /* CONFIG_MMU */
1656static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1657		unsigned long nr_pages, struct page **pages,
1658		struct vm_area_struct **vmas, int *locked,
1659		unsigned int foll_flags)
1660{
1661	struct vm_area_struct *vma;
 
1662	unsigned long vm_flags;
1663	long i;
1664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665	/* calculate required read or write permissions.
1666	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1667	 */
1668	vm_flags  = (foll_flags & FOLL_WRITE) ?
1669			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670	vm_flags &= (foll_flags & FOLL_FORCE) ?
1671			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1672
1673	for (i = 0; i < nr_pages; i++) {
1674		vma = find_vma(mm, start);
1675		if (!vma)
1676			goto finish_or_fault;
1677
1678		/* protect what we can, including chardevs */
1679		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1680		    !(vm_flags & vma->vm_flags))
1681			goto finish_or_fault;
1682
1683		if (pages) {
1684			pages[i] = virt_to_page((void *)start);
1685			if (pages[i])
1686				get_page(pages[i]);
1687		}
1688		if (vmas)
1689			vmas[i] = vma;
1690		start = (start + PAGE_SIZE) & PAGE_MASK;
1691	}
1692
1693	return i;
 
 
 
1694
1695finish_or_fault:
1696	return i ? : -EFAULT;
1697}
1698#endif /* !CONFIG_MMU */
1699
1700/**
1701 * fault_in_writeable - fault in userspace address range for writing
1702 * @uaddr: start of address range
1703 * @size: size of address range
1704 *
1705 * Returns the number of bytes not faulted in (like copy_to_user() and
1706 * copy_from_user()).
1707 */
1708size_t fault_in_writeable(char __user *uaddr, size_t size)
1709{
1710	char __user *start = uaddr, *end;
1711
1712	if (unlikely(size == 0))
1713		return 0;
1714	if (!user_write_access_begin(uaddr, size))
1715		return size;
1716	if (!PAGE_ALIGNED(uaddr)) {
1717		unsafe_put_user(0, uaddr, out);
1718		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1719	}
1720	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1721	if (unlikely(end < start))
1722		end = NULL;
1723	while (uaddr != end) {
1724		unsafe_put_user(0, uaddr, out);
1725		uaddr += PAGE_SIZE;
1726	}
1727
1728out:
1729	user_write_access_end();
1730	if (size > uaddr - start)
1731		return size - (uaddr - start);
1732	return 0;
1733}
1734EXPORT_SYMBOL(fault_in_writeable);
1735
1736/**
1737 * fault_in_subpage_writeable - fault in an address range for writing
1738 * @uaddr: start of address range
1739 * @size: size of address range
1740 *
1741 * Fault in a user address range for writing while checking for permissions at
1742 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1743 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1744 *
1745 * Returns the number of bytes not faulted in (like copy_to_user() and
1746 * copy_from_user()).
1747 */
1748size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1749{
1750	size_t faulted_in;
1751
1752	/*
1753	 * Attempt faulting in at page granularity first for page table
1754	 * permission checking. The arch-specific probe_subpage_writeable()
1755	 * functions may not check for this.
1756	 */
1757	faulted_in = size - fault_in_writeable(uaddr, size);
1758	if (faulted_in)
1759		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1760
1761	return size - faulted_in;
1762}
1763EXPORT_SYMBOL(fault_in_subpage_writeable);
1764
1765/*
1766 * fault_in_safe_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: length of address range
1769 *
1770 * Faults in an address range for writing.  This is primarily useful when we
1771 * already know that some or all of the pages in the address range aren't in
1772 * memory.
1773 *
1774 * Unlike fault_in_writeable(), this function is non-destructive.
1775 *
1776 * Note that we don't pin or otherwise hold the pages referenced that we fault
1777 * in.  There's no guarantee that they'll stay in memory for any duration of
1778 * time.
1779 *
1780 * Returns the number of bytes not faulted in, like copy_to_user() and
1781 * copy_from_user().
1782 */
1783size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1784{
1785	unsigned long start = (unsigned long)uaddr, end;
1786	struct mm_struct *mm = current->mm;
1787	bool unlocked = false;
1788
1789	if (unlikely(size == 0))
1790		return 0;
1791	end = PAGE_ALIGN(start + size);
1792	if (end < start)
1793		end = 0;
1794
1795	mmap_read_lock(mm);
1796	do {
1797		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1798			break;
1799		start = (start + PAGE_SIZE) & PAGE_MASK;
1800	} while (start != end);
1801	mmap_read_unlock(mm);
1802
1803	if (size > (unsigned long)uaddr - start)
1804		return size - ((unsigned long)uaddr - start);
1805	return 0;
1806}
1807EXPORT_SYMBOL(fault_in_safe_writeable);
1808
1809/**
1810 * fault_in_readable - fault in userspace address range for reading
1811 * @uaddr: start of user address range
1812 * @size: size of user address range
1813 *
1814 * Returns the number of bytes not faulted in (like copy_to_user() and
1815 * copy_from_user()).
1816 */
1817size_t fault_in_readable(const char __user *uaddr, size_t size)
1818{
1819	const char __user *start = uaddr, *end;
1820	volatile char c;
1821
1822	if (unlikely(size == 0))
1823		return 0;
1824	if (!user_read_access_begin(uaddr, size))
1825		return size;
1826	if (!PAGE_ALIGNED(uaddr)) {
1827		unsafe_get_user(c, uaddr, out);
1828		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1829	}
1830	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1831	if (unlikely(end < start))
1832		end = NULL;
1833	while (uaddr != end) {
1834		unsafe_get_user(c, uaddr, out);
1835		uaddr += PAGE_SIZE;
1836	}
1837
1838out:
1839	user_read_access_end();
1840	(void)c;
1841	if (size > uaddr - start)
1842		return size - (uaddr - start);
1843	return 0;
1844}
1845EXPORT_SYMBOL(fault_in_readable);
1846
1847/**
1848 * get_dump_page() - pin user page in memory while writing it to core dump
1849 * @addr: user address
1850 *
1851 * Returns struct page pointer of user page pinned for dump,
1852 * to be freed afterwards by put_page().
1853 *
1854 * Returns NULL on any kind of failure - a hole must then be inserted into
1855 * the corefile, to preserve alignment with its headers; and also returns
1856 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1857 * allowing a hole to be left in the corefile to save disk space.
1858 *
1859 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1860 */
1861#ifdef CONFIG_ELF_CORE
1862struct page *get_dump_page(unsigned long addr)
1863{
1864	struct mm_struct *mm = current->mm;
1865	struct page *page;
1866	int locked = 1;
1867	int ret;
1868
1869	if (mmap_read_lock_killable(mm))
1870		return NULL;
1871	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1872				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1873	if (locked)
1874		mmap_read_unlock(mm);
1875	return (ret == 1) ? page : NULL;
1876}
1877#endif /* CONFIG_ELF_CORE */
1878
1879#ifdef CONFIG_MIGRATION
1880/*
1881 * Returns the number of collected pages. Return value is always >= 0.
1882 */
1883static unsigned long collect_longterm_unpinnable_pages(
1884					struct list_head *movable_page_list,
1885					unsigned long nr_pages,
1886					struct page **pages)
1887{
1888	unsigned long i, collected = 0;
1889	struct folio *prev_folio = NULL;
1890	bool drain_allow = true;
1891
1892	for (i = 0; i < nr_pages; i++) {
1893		struct folio *folio = page_folio(pages[i]);
1894
1895		if (folio == prev_folio)
1896			continue;
1897		prev_folio = folio;
1898
1899		if (folio_is_longterm_pinnable(folio))
1900			continue;
1901
1902		collected++;
1903
1904		if (folio_is_device_coherent(folio))
1905			continue;
1906
1907		if (folio_test_hugetlb(folio)) {
1908			isolate_hugetlb(&folio->page, movable_page_list);
1909			continue;
1910		}
1911
1912		if (!folio_test_lru(folio) && drain_allow) {
1913			lru_add_drain_all();
1914			drain_allow = false;
1915		}
1916
1917		if (folio_isolate_lru(folio))
1918			continue;
1919
1920		list_add_tail(&folio->lru, movable_page_list);
1921		node_stat_mod_folio(folio,
1922				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1923				    folio_nr_pages(folio));
1924	}
1925
1926	return collected;
1927}
1928
1929/*
1930 * Unpins all pages and migrates device coherent pages and movable_page_list.
1931 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1932 * (or partial success).
1933 */
1934static int migrate_longterm_unpinnable_pages(
1935					struct list_head *movable_page_list,
1936					unsigned long nr_pages,
1937					struct page **pages)
1938{
1939	int ret;
1940	unsigned long i;
1941
1942	for (i = 0; i < nr_pages; i++) {
1943		struct folio *folio = page_folio(pages[i]);
1944
1945		if (folio_is_device_coherent(folio)) {
1946			/*
1947			 * Migration will fail if the page is pinned, so convert
1948			 * the pin on the source page to a normal reference.
1949			 */
1950			pages[i] = NULL;
1951			folio_get(folio);
1952			gup_put_folio(folio, 1, FOLL_PIN);
1953
1954			if (migrate_device_coherent_page(&folio->page)) {
1955				ret = -EBUSY;
1956				goto err;
1957			}
1958
1959			continue;
1960		}
1961
1962		/*
1963		 * We can't migrate pages with unexpected references, so drop
1964		 * the reference obtained by __get_user_pages_locked().
1965		 * Migrating pages have been added to movable_page_list after
1966		 * calling folio_isolate_lru() which takes a reference so the
1967		 * page won't be freed if it's migrating.
1968		 */
1969		unpin_user_page(pages[i]);
1970		pages[i] = NULL;
1971	}
1972
1973	if (!list_empty(movable_page_list)) {
1974		struct migration_target_control mtc = {
1975			.nid = NUMA_NO_NODE,
1976			.gfp_mask = GFP_USER | __GFP_NOWARN,
1977		};
1978
1979		if (migrate_pages(movable_page_list, alloc_migration_target,
1980				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1981				  MR_LONGTERM_PIN, NULL)) {
1982			ret = -ENOMEM;
1983			goto err;
1984		}
1985	}
1986
1987	putback_movable_pages(movable_page_list);
1988
1989	return -EAGAIN;
1990
1991err:
1992	for (i = 0; i < nr_pages; i++)
1993		if (pages[i])
1994			unpin_user_page(pages[i]);
1995	putback_movable_pages(movable_page_list);
1996
1997	return ret;
1998}
1999
2000/*
2001 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2002 * pages in the range are required to be pinned via FOLL_PIN, before calling
2003 * this routine.
2004 *
2005 * If any pages in the range are not allowed to be pinned, then this routine
2006 * will migrate those pages away, unpin all the pages in the range and return
2007 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2008 * call this routine again.
2009 *
2010 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2011 * The caller should give up, and propagate the error back up the call stack.
2012 *
2013 * If everything is OK and all pages in the range are allowed to be pinned, then
2014 * this routine leaves all pages pinned and returns zero for success.
2015 */
2016static long check_and_migrate_movable_pages(unsigned long nr_pages,
2017					    struct page **pages)
2018{
2019	unsigned long collected;
2020	LIST_HEAD(movable_page_list);
2021
2022	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2023						nr_pages, pages);
2024	if (!collected)
2025		return 0;
2026
2027	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2028						pages);
2029}
2030#else
2031static long check_and_migrate_movable_pages(unsigned long nr_pages,
2032					    struct page **pages)
2033{
2034	return 0;
2035}
2036#endif /* CONFIG_MIGRATION */
2037
2038/*
2039 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2040 * allows us to process the FOLL_LONGTERM flag.
2041 */
2042static long __gup_longterm_locked(struct mm_struct *mm,
2043				  unsigned long start,
2044				  unsigned long nr_pages,
2045				  struct page **pages,
2046				  struct vm_area_struct **vmas,
2047				  int *locked,
2048				  unsigned int gup_flags)
2049{
2050	bool must_unlock = false;
2051	unsigned int flags;
2052	long rc, nr_pinned_pages;
2053
2054	if (locked && WARN_ON_ONCE(!*locked))
2055		return -EINVAL;
2056
2057	if (!(gup_flags & FOLL_LONGTERM))
2058		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2059					       locked, gup_flags);
2060
2061	/*
2062	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064	 * correct to unconditionally call check_and_migrate_movable_pages()
2065	 * which assumes pages have been pinned via FOLL_PIN.
2066	 *
2067	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2068	 */
2069	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2070		return -EINVAL;
2071	flags = memalloc_pin_save();
2072	do {
2073		if (locked && !*locked) {
2074			mmap_read_lock(mm);
2075			must_unlock = true;
2076			*locked = 1;
2077		}
2078		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2079							  pages, vmas, locked,
2080							  gup_flags);
2081		if (nr_pinned_pages <= 0) {
2082			rc = nr_pinned_pages;
2083			break;
2084		}
 
 
2085		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2086	} while (rc == -EAGAIN);
2087	memalloc_pin_restore(flags);
2088
2089	if (locked && *locked && must_unlock) {
2090		mmap_read_unlock(mm);
2091		*locked = 0;
2092	}
2093	return rc ? rc : nr_pinned_pages;
2094}
2095
2096static bool is_valid_gup_flags(unsigned int gup_flags)
 
 
 
 
 
2097{
 
 
2098	/*
2099	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2100	 * never directly by the caller, so enforce that with an assertion:
 
 
 
2101	 */
2102	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103		return false;
2104	/*
2105	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2106	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2107	 * FOLL_PIN.
2108	 */
2109	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
 
 
2110		return false;
2111
 
2112	return true;
2113}
2114
2115#ifdef CONFIG_MMU
2116/**
2117 * get_user_pages_remote() - pin user pages in memory
2118 * @mm:		mm_struct of target mm
2119 * @start:	starting user address
2120 * @nr_pages:	number of pages from start to pin
2121 * @gup_flags:	flags modifying lookup behaviour
2122 * @pages:	array that receives pointers to the pages pinned.
2123 *		Should be at least nr_pages long. Or NULL, if caller
2124 *		only intends to ensure the pages are faulted in.
2125 * @vmas:	array of pointers to vmas corresponding to each page.
2126 *		Or NULL if the caller does not require them.
2127 * @locked:	pointer to lock flag indicating whether lock is held and
2128 *		subsequently whether VM_FAULT_RETRY functionality can be
2129 *		utilised. Lock must initially be held.
2130 *
2131 * Returns either number of pages pinned (which may be less than the
2132 * number requested), or an error. Details about the return value:
2133 *
2134 * -- If nr_pages is 0, returns 0.
2135 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2136 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2137 *    pages pinned. Again, this may be less than nr_pages.
2138 *
2139 * The caller is responsible for releasing returned @pages, via put_page().
2140 *
2141 * @vmas are valid only as long as mmap_lock is held.
2142 *
2143 * Must be called with mmap_lock held for read or write.
2144 *
2145 * get_user_pages_remote walks a process's page tables and takes a reference
2146 * to each struct page that each user address corresponds to at a given
2147 * instant. That is, it takes the page that would be accessed if a user
2148 * thread accesses the given user virtual address at that instant.
2149 *
2150 * This does not guarantee that the page exists in the user mappings when
2151 * get_user_pages_remote returns, and there may even be a completely different
2152 * page there in some cases (eg. if mmapped pagecache has been invalidated
2153 * and subsequently re faulted). However it does guarantee that the page
2154 * won't be freed completely. And mostly callers simply care that the page
2155 * contains data that was valid *at some point in time*. Typically, an IO
2156 * or similar operation cannot guarantee anything stronger anyway because
2157 * locks can't be held over the syscall boundary.
2158 *
2159 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2160 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2161 * be called after the page is finished with, and before put_page is called.
2162 *
2163 * get_user_pages_remote is typically used for fewer-copy IO operations,
2164 * to get a handle on the memory by some means other than accesses
2165 * via the user virtual addresses. The pages may be submitted for
2166 * DMA to devices or accessed via their kernel linear mapping (via the
2167 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2168 *
2169 * See also get_user_pages_fast, for performance critical applications.
2170 *
2171 * get_user_pages_remote should be phased out in favor of
2172 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2173 * should use get_user_pages_remote because it cannot pass
2174 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2175 */
2176long get_user_pages_remote(struct mm_struct *mm,
2177		unsigned long start, unsigned long nr_pages,
2178		unsigned int gup_flags, struct page **pages,
2179		struct vm_area_struct **vmas, int *locked)
2180{
2181	if (!is_valid_gup_flags(gup_flags))
 
 
 
2182		return -EINVAL;
2183
2184	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2185				     gup_flags | FOLL_TOUCH | FOLL_REMOTE);
 
2186}
2187EXPORT_SYMBOL(get_user_pages_remote);
2188
2189#else /* CONFIG_MMU */
2190long get_user_pages_remote(struct mm_struct *mm,
2191			   unsigned long start, unsigned long nr_pages,
2192			   unsigned int gup_flags, struct page **pages,
2193			   struct vm_area_struct **vmas, int *locked)
2194{
2195	return 0;
2196}
2197#endif /* !CONFIG_MMU */
2198
2199/**
2200 * get_user_pages() - pin user pages in memory
2201 * @start:      starting user address
2202 * @nr_pages:   number of pages from start to pin
2203 * @gup_flags:  flags modifying lookup behaviour
2204 * @pages:      array that receives pointers to the pages pinned.
2205 *              Should be at least nr_pages long. Or NULL, if caller
2206 *              only intends to ensure the pages are faulted in.
2207 * @vmas:       array of pointers to vmas corresponding to each page.
2208 *              Or NULL if the caller does not require them.
2209 *
2210 * This is the same as get_user_pages_remote(), just with a less-flexible
2211 * calling convention where we assume that the mm being operated on belongs to
2212 * the current task, and doesn't allow passing of a locked parameter.  We also
2213 * obviously don't pass FOLL_REMOTE in here.
2214 */
2215long get_user_pages(unsigned long start, unsigned long nr_pages,
2216		unsigned int gup_flags, struct page **pages,
2217		struct vm_area_struct **vmas)
2218{
2219	if (!is_valid_gup_flags(gup_flags))
 
 
2220		return -EINVAL;
2221
2222	return __gup_longterm_locked(current->mm, start, nr_pages,
2223				     pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2224}
2225EXPORT_SYMBOL(get_user_pages);
2226
2227/*
2228 * get_user_pages_unlocked() is suitable to replace the form:
2229 *
2230 *      mmap_read_lock(mm);
2231 *      get_user_pages(mm, ..., pages, NULL);
2232 *      mmap_read_unlock(mm);
2233 *
2234 *  with:
2235 *
2236 *      get_user_pages_unlocked(mm, ..., pages);
2237 *
2238 * It is functionally equivalent to get_user_pages_fast so
2239 * get_user_pages_fast should be used instead if specific gup_flags
2240 * (e.g. FOLL_FORCE) are not required.
2241 */
2242long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243			     struct page **pages, unsigned int gup_flags)
2244{
2245	struct mm_struct *mm = current->mm;
2246	int locked = 1;
2247	long ret;
 
 
2248
2249	mmap_read_lock(mm);
2250	ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2251				    gup_flags | FOLL_TOUCH);
2252	if (locked)
2253		mmap_read_unlock(mm);
2254	return ret;
2255}
2256EXPORT_SYMBOL(get_user_pages_unlocked);
2257
2258/*
2259 * Fast GUP
2260 *
2261 * get_user_pages_fast attempts to pin user pages by walking the page
2262 * tables directly and avoids taking locks. Thus the walker needs to be
2263 * protected from page table pages being freed from under it, and should
2264 * block any THP splits.
2265 *
2266 * One way to achieve this is to have the walker disable interrupts, and
2267 * rely on IPIs from the TLB flushing code blocking before the page table
2268 * pages are freed. This is unsuitable for architectures that do not need
2269 * to broadcast an IPI when invalidating TLBs.
2270 *
2271 * Another way to achieve this is to batch up page table containing pages
2272 * belonging to more than one mm_user, then rcu_sched a callback to free those
2273 * pages. Disabling interrupts will allow the fast_gup walker to both block
2274 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2275 * (which is a relatively rare event). The code below adopts this strategy.
2276 *
2277 * Before activating this code, please be aware that the following assumptions
2278 * are currently made:
2279 *
2280 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2281 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2282 *
2283 *  *) ptes can be read atomically by the architecture.
2284 *
2285 *  *) access_ok is sufficient to validate userspace address ranges.
2286 *
2287 * The last two assumptions can be relaxed by the addition of helper functions.
2288 *
2289 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2290 */
2291#ifdef CONFIG_HAVE_FAST_GUP
2292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2293static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2294					    unsigned int flags,
2295					    struct page **pages)
2296{
2297	while ((*nr) - nr_start) {
2298		struct page *page = pages[--(*nr)];
2299
2300		ClearPageReferenced(page);
2301		if (flags & FOLL_PIN)
2302			unpin_user_page(page);
2303		else
2304			put_page(page);
2305	}
2306}
2307
2308#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2309/*
2310 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2311 * operations.
2312 *
2313 * To pin the page, fast-gup needs to do below in order:
2314 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2315 *
2316 * For the rest of pgtable operations where pgtable updates can be racy
2317 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2318 * is pinned.
2319 *
2320 * Above will work for all pte-level operations, including THP split.
2321 *
2322 * For THP collapse, it's a bit more complicated because fast-gup may be
2323 * walking a pgtable page that is being freed (pte is still valid but pmd
2324 * can be cleared already).  To avoid race in such condition, we need to
2325 * also check pmd here to make sure pmd doesn't change (corresponds to
2326 * pmdp_collapse_flush() in the THP collapse code path).
2327 */
2328static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2329			 unsigned long end, unsigned int flags,
2330			 struct page **pages, int *nr)
2331{
2332	struct dev_pagemap *pgmap = NULL;
2333	int nr_start = *nr, ret = 0;
2334	pte_t *ptep, *ptem;
2335
2336	ptem = ptep = pte_offset_map(&pmd, addr);
 
 
2337	do {
2338		pte_t pte = ptep_get_lockless(ptep);
2339		struct page *page;
2340		struct folio *folio;
2341
2342		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
 
 
 
 
 
 
 
2343			goto pte_unmap;
2344
2345		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2346			goto pte_unmap;
2347
2348		if (pte_devmap(pte)) {
2349			if (unlikely(flags & FOLL_LONGTERM))
2350				goto pte_unmap;
2351
2352			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2353			if (unlikely(!pgmap)) {
2354				undo_dev_pagemap(nr, nr_start, flags, pages);
2355				goto pte_unmap;
2356			}
2357		} else if (pte_special(pte))
2358			goto pte_unmap;
2359
2360		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361		page = pte_page(pte);
2362
2363		folio = try_grab_folio(page, 1, flags);
2364		if (!folio)
2365			goto pte_unmap;
2366
2367		if (unlikely(page_is_secretmem(page))) {
2368			gup_put_folio(folio, 1, flags);
2369			goto pte_unmap;
2370		}
2371
2372		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2373		    unlikely(pte_val(pte) != pte_val(*ptep))) {
 
 
 
 
 
2374			gup_put_folio(folio, 1, flags);
2375			goto pte_unmap;
2376		}
2377
2378		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2379			gup_put_folio(folio, 1, flags);
2380			goto pte_unmap;
2381		}
2382
2383		/*
2384		 * We need to make the page accessible if and only if we are
2385		 * going to access its content (the FOLL_PIN case).  Please
2386		 * see Documentation/core-api/pin_user_pages.rst for
2387		 * details.
2388		 */
2389		if (flags & FOLL_PIN) {
2390			ret = arch_make_page_accessible(page);
2391			if (ret) {
2392				gup_put_folio(folio, 1, flags);
2393				goto pte_unmap;
2394			}
2395		}
2396		folio_set_referenced(folio);
2397		pages[*nr] = page;
2398		(*nr)++;
2399	} while (ptep++, addr += PAGE_SIZE, addr != end);
2400
2401	ret = 1;
2402
2403pte_unmap:
2404	if (pgmap)
2405		put_dev_pagemap(pgmap);
2406	pte_unmap(ptem);
2407	return ret;
2408}
2409#else
2410
2411/*
2412 * If we can't determine whether or not a pte is special, then fail immediately
2413 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2414 * to be special.
2415 *
2416 * For a futex to be placed on a THP tail page, get_futex_key requires a
2417 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2418 * useful to have gup_huge_pmd even if we can't operate on ptes.
2419 */
2420static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2421			 unsigned long end, unsigned int flags,
2422			 struct page **pages, int *nr)
2423{
2424	return 0;
2425}
2426#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2427
2428#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2429static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2430			     unsigned long end, unsigned int flags,
2431			     struct page **pages, int *nr)
2432{
2433	int nr_start = *nr;
2434	struct dev_pagemap *pgmap = NULL;
2435
2436	do {
2437		struct page *page = pfn_to_page(pfn);
2438
2439		pgmap = get_dev_pagemap(pfn, pgmap);
2440		if (unlikely(!pgmap)) {
2441			undo_dev_pagemap(nr, nr_start, flags, pages);
2442			break;
2443		}
2444
2445		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2446			undo_dev_pagemap(nr, nr_start, flags, pages);
2447			break;
2448		}
2449
2450		SetPageReferenced(page);
2451		pages[*nr] = page;
2452		if (unlikely(try_grab_page(page, flags))) {
2453			undo_dev_pagemap(nr, nr_start, flags, pages);
2454			break;
2455		}
2456		(*nr)++;
2457		pfn++;
2458	} while (addr += PAGE_SIZE, addr != end);
2459
2460	put_dev_pagemap(pgmap);
2461	return addr == end;
2462}
2463
2464static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2465				 unsigned long end, unsigned int flags,
2466				 struct page **pages, int *nr)
2467{
2468	unsigned long fault_pfn;
2469	int nr_start = *nr;
2470
2471	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2472	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2473		return 0;
2474
2475	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2476		undo_dev_pagemap(nr, nr_start, flags, pages);
2477		return 0;
2478	}
2479	return 1;
2480}
2481
2482static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483				 unsigned long end, unsigned int flags,
2484				 struct page **pages, int *nr)
2485{
2486	unsigned long fault_pfn;
2487	int nr_start = *nr;
2488
2489	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2490	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2491		return 0;
2492
2493	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2494		undo_dev_pagemap(nr, nr_start, flags, pages);
2495		return 0;
2496	}
2497	return 1;
2498}
2499#else
2500static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2501				 unsigned long end, unsigned int flags,
2502				 struct page **pages, int *nr)
2503{
2504	BUILD_BUG();
2505	return 0;
2506}
2507
2508static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2509				 unsigned long end, unsigned int flags,
2510				 struct page **pages, int *nr)
2511{
2512	BUILD_BUG();
2513	return 0;
2514}
2515#endif
2516
2517static int record_subpages(struct page *page, unsigned long addr,
2518			   unsigned long end, struct page **pages)
2519{
2520	int nr;
2521
2522	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2523		pages[nr] = nth_page(page, nr);
2524
2525	return nr;
2526}
2527
2528#ifdef CONFIG_ARCH_HAS_HUGEPD
2529static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2530				      unsigned long sz)
2531{
2532	unsigned long __boundary = (addr + sz) & ~(sz-1);
2533	return (__boundary - 1 < end - 1) ? __boundary : end;
2534}
2535
2536static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2537		       unsigned long end, unsigned int flags,
2538		       struct page **pages, int *nr)
2539{
2540	unsigned long pte_end;
2541	struct page *page;
2542	struct folio *folio;
2543	pte_t pte;
2544	int refs;
2545
2546	pte_end = (addr + sz) & ~(sz-1);
2547	if (pte_end < end)
2548		end = pte_end;
2549
2550	pte = huge_ptep_get(ptep);
2551
2552	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2553		return 0;
2554
2555	/* hugepages are never "special" */
2556	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2557
2558	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2559	refs = record_subpages(page, addr, end, pages + *nr);
2560
2561	folio = try_grab_folio(page, refs, flags);
2562	if (!folio)
2563		return 0;
2564
2565	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
 
 
 
 
 
2566		gup_put_folio(folio, refs, flags);
2567		return 0;
2568	}
2569
2570	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2571		gup_put_folio(folio, refs, flags);
2572		return 0;
2573	}
2574
2575	*nr += refs;
2576	folio_set_referenced(folio);
2577	return 1;
2578}
2579
2580static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2581		unsigned int pdshift, unsigned long end, unsigned int flags,
2582		struct page **pages, int *nr)
2583{
2584	pte_t *ptep;
2585	unsigned long sz = 1UL << hugepd_shift(hugepd);
2586	unsigned long next;
2587
2588	ptep = hugepte_offset(hugepd, addr, pdshift);
2589	do {
2590		next = hugepte_addr_end(addr, end, sz);
2591		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2592			return 0;
2593	} while (ptep++, addr = next, addr != end);
2594
2595	return 1;
2596}
2597#else
2598static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2599		unsigned int pdshift, unsigned long end, unsigned int flags,
2600		struct page **pages, int *nr)
2601{
2602	return 0;
2603}
2604#endif /* CONFIG_ARCH_HAS_HUGEPD */
2605
2606static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2607			unsigned long end, unsigned int flags,
2608			struct page **pages, int *nr)
2609{
2610	struct page *page;
2611	struct folio *folio;
2612	int refs;
2613
2614	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2615		return 0;
2616
2617	if (pmd_devmap(orig)) {
2618		if (unlikely(flags & FOLL_LONGTERM))
2619			return 0;
2620		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2621					     pages, nr);
2622	}
2623
2624	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2625	refs = record_subpages(page, addr, end, pages + *nr);
2626
2627	folio = try_grab_folio(page, refs, flags);
2628	if (!folio)
2629		return 0;
2630
2631	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2632		gup_put_folio(folio, refs, flags);
2633		return 0;
2634	}
2635
 
 
 
 
2636	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2637		gup_put_folio(folio, refs, flags);
2638		return 0;
2639	}
2640
2641	*nr += refs;
2642	folio_set_referenced(folio);
2643	return 1;
2644}
2645
2646static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2647			unsigned long end, unsigned int flags,
2648			struct page **pages, int *nr)
2649{
2650	struct page *page;
2651	struct folio *folio;
2652	int refs;
2653
2654	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2655		return 0;
2656
2657	if (pud_devmap(orig)) {
2658		if (unlikely(flags & FOLL_LONGTERM))
2659			return 0;
2660		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2661					     pages, nr);
2662	}
2663
2664	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2665	refs = record_subpages(page, addr, end, pages + *nr);
2666
2667	folio = try_grab_folio(page, refs, flags);
2668	if (!folio)
2669		return 0;
2670
2671	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672		gup_put_folio(folio, refs, flags);
2673		return 0;
2674	}
2675
 
 
 
 
 
2676	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2677		gup_put_folio(folio, refs, flags);
2678		return 0;
2679	}
2680
2681	*nr += refs;
2682	folio_set_referenced(folio);
2683	return 1;
2684}
2685
2686static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2687			unsigned long end, unsigned int flags,
2688			struct page **pages, int *nr)
2689{
2690	int refs;
2691	struct page *page;
2692	struct folio *folio;
2693
2694	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2695		return 0;
2696
2697	BUILD_BUG_ON(pgd_devmap(orig));
2698
2699	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2700	refs = record_subpages(page, addr, end, pages + *nr);
2701
2702	folio = try_grab_folio(page, refs, flags);
2703	if (!folio)
2704		return 0;
2705
2706	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2707		gup_put_folio(folio, refs, flags);
2708		return 0;
2709	}
2710
 
 
 
 
 
 
 
 
 
 
2711	*nr += refs;
2712	folio_set_referenced(folio);
2713	return 1;
2714}
2715
2716static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2717		unsigned int flags, struct page **pages, int *nr)
2718{
2719	unsigned long next;
2720	pmd_t *pmdp;
2721
2722	pmdp = pmd_offset_lockless(pudp, pud, addr);
2723	do {
2724		pmd_t pmd = pmdp_get_lockless(pmdp);
2725
2726		next = pmd_addr_end(addr, end);
2727		if (!pmd_present(pmd))
2728			return 0;
2729
2730		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2731			     pmd_devmap(pmd))) {
2732			if (pmd_protnone(pmd) &&
2733			    !gup_can_follow_protnone(flags))
2734				return 0;
2735
2736			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2737				pages, nr))
2738				return 0;
2739
2740		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2741			/*
2742			 * architecture have different format for hugetlbfs
2743			 * pmd format and THP pmd format
2744			 */
2745			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2746					 PMD_SHIFT, next, flags, pages, nr))
2747				return 0;
2748		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2749			return 0;
2750	} while (pmdp++, addr = next, addr != end);
2751
2752	return 1;
2753}
2754
2755static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2756			 unsigned int flags, struct page **pages, int *nr)
2757{
2758	unsigned long next;
2759	pud_t *pudp;
2760
2761	pudp = pud_offset_lockless(p4dp, p4d, addr);
2762	do {
2763		pud_t pud = READ_ONCE(*pudp);
2764
2765		next = pud_addr_end(addr, end);
2766		if (unlikely(!pud_present(pud)))
2767			return 0;
2768		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2769			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2770					  pages, nr))
2771				return 0;
2772		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2773			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2774					 PUD_SHIFT, next, flags, pages, nr))
2775				return 0;
2776		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2777			return 0;
2778	} while (pudp++, addr = next, addr != end);
2779
2780	return 1;
2781}
2782
2783static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2784			 unsigned int flags, struct page **pages, int *nr)
2785{
2786	unsigned long next;
2787	p4d_t *p4dp;
2788
2789	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2790	do {
2791		p4d_t p4d = READ_ONCE(*p4dp);
2792
2793		next = p4d_addr_end(addr, end);
2794		if (p4d_none(p4d))
2795			return 0;
2796		BUILD_BUG_ON(p4d_huge(p4d));
2797		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2798			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2799					 P4D_SHIFT, next, flags, pages, nr))
2800				return 0;
2801		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2802			return 0;
2803	} while (p4dp++, addr = next, addr != end);
2804
2805	return 1;
2806}
2807
2808static void gup_pgd_range(unsigned long addr, unsigned long end,
2809		unsigned int flags, struct page **pages, int *nr)
2810{
2811	unsigned long next;
2812	pgd_t *pgdp;
2813
2814	pgdp = pgd_offset(current->mm, addr);
2815	do {
2816		pgd_t pgd = READ_ONCE(*pgdp);
2817
2818		next = pgd_addr_end(addr, end);
2819		if (pgd_none(pgd))
2820			return;
2821		if (unlikely(pgd_huge(pgd))) {
2822			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2823					  pages, nr))
2824				return;
2825		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2826			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2827					 PGDIR_SHIFT, next, flags, pages, nr))
2828				return;
2829		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2830			return;
2831	} while (pgdp++, addr = next, addr != end);
2832}
2833#else
2834static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2835		unsigned int flags, struct page **pages, int *nr)
2836{
2837}
2838#endif /* CONFIG_HAVE_FAST_GUP */
2839
2840#ifndef gup_fast_permitted
2841/*
2842 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2843 * we need to fall back to the slow version:
2844 */
2845static bool gup_fast_permitted(unsigned long start, unsigned long end)
2846{
2847	return true;
2848}
2849#endif
2850
2851static unsigned long lockless_pages_from_mm(unsigned long start,
2852					    unsigned long end,
2853					    unsigned int gup_flags,
2854					    struct page **pages)
2855{
2856	unsigned long flags;
2857	int nr_pinned = 0;
2858	unsigned seq;
2859
2860	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2861	    !gup_fast_permitted(start, end))
2862		return 0;
2863
2864	if (gup_flags & FOLL_PIN) {
2865		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2866		if (seq & 1)
2867			return 0;
2868	}
2869
2870	/*
2871	 * Disable interrupts. The nested form is used, in order to allow full,
2872	 * general purpose use of this routine.
2873	 *
2874	 * With interrupts disabled, we block page table pages from being freed
2875	 * from under us. See struct mmu_table_batch comments in
2876	 * include/asm-generic/tlb.h for more details.
2877	 *
2878	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2879	 * that come from THPs splitting.
2880	 */
2881	local_irq_save(flags);
2882	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2883	local_irq_restore(flags);
2884
2885	/*
2886	 * When pinning pages for DMA there could be a concurrent write protect
2887	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2888	 */
2889	if (gup_flags & FOLL_PIN) {
2890		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2891			unpin_user_pages_lockless(pages, nr_pinned);
2892			return 0;
2893		} else {
2894			sanity_check_pinned_pages(pages, nr_pinned);
2895		}
2896	}
2897	return nr_pinned;
2898}
2899
2900static int internal_get_user_pages_fast(unsigned long start,
2901					unsigned long nr_pages,
2902					unsigned int gup_flags,
2903					struct page **pages)
2904{
2905	unsigned long len, end;
2906	unsigned long nr_pinned;
 
2907	int ret;
2908
2909	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2910				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2911				       FOLL_FAST_ONLY | FOLL_NOFAULT |
2912				       FOLL_PCI_P2PDMA)))
2913		return -EINVAL;
2914
2915	if (gup_flags & FOLL_PIN)
2916		mm_set_has_pinned_flag(&current->mm->flags);
2917
2918	if (!(gup_flags & FOLL_FAST_ONLY))
2919		might_lock_read(&current->mm->mmap_lock);
2920
2921	start = untagged_addr(start) & PAGE_MASK;
2922	len = nr_pages << PAGE_SHIFT;
2923	if (check_add_overflow(start, len, &end))
2924		return 0;
 
 
2925	if (unlikely(!access_ok((void __user *)start, len)))
2926		return -EFAULT;
2927
2928	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2929	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2930		return nr_pinned;
2931
2932	/* Slow path: try to get the remaining pages with get_user_pages */
2933	start += nr_pinned << PAGE_SHIFT;
2934	pages += nr_pinned;
2935	ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2936				      gup_flags);
 
2937	if (ret < 0) {
2938		/*
2939		 * The caller has to unpin the pages we already pinned so
2940		 * returning -errno is not an option
2941		 */
2942		if (nr_pinned)
2943			return nr_pinned;
2944		return ret;
2945	}
2946	return ret + nr_pinned;
2947}
2948
2949/**
2950 * get_user_pages_fast_only() - pin user pages in memory
2951 * @start:      starting user address
2952 * @nr_pages:   number of pages from start to pin
2953 * @gup_flags:  flags modifying pin behaviour
2954 * @pages:      array that receives pointers to the pages pinned.
2955 *              Should be at least nr_pages long.
2956 *
2957 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2958 * the regular GUP.
2959 * Note a difference with get_user_pages_fast: this always returns the
2960 * number of pages pinned, 0 if no pages were pinned.
2961 *
2962 * If the architecture does not support this function, simply return with no
2963 * pages pinned.
2964 *
2965 * Careful, careful! COW breaking can go either way, so a non-write
2966 * access can get ambiguous page results. If you call this function without
2967 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2968 */
2969int get_user_pages_fast_only(unsigned long start, int nr_pages,
2970			     unsigned int gup_flags, struct page **pages)
2971{
2972	int nr_pinned;
2973	/*
2974	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2975	 * because gup fast is always a "pin with a +1 page refcount" request.
2976	 *
2977	 * FOLL_FAST_ONLY is required in order to match the API description of
2978	 * this routine: no fall back to regular ("slow") GUP.
2979	 */
2980	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
 
 
2981
2982	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2983						 pages);
2984
2985	/*
2986	 * As specified in the API description above, this routine is not
2987	 * allowed to return negative values. However, the common core
2988	 * routine internal_get_user_pages_fast() *can* return -errno.
2989	 * Therefore, correct for that here:
2990	 */
2991	if (nr_pinned < 0)
2992		nr_pinned = 0;
2993
2994	return nr_pinned;
2995}
2996EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2997
2998/**
2999 * get_user_pages_fast() - pin user pages in memory
3000 * @start:      starting user address
3001 * @nr_pages:   number of pages from start to pin
3002 * @gup_flags:  flags modifying pin behaviour
3003 * @pages:      array that receives pointers to the pages pinned.
3004 *              Should be at least nr_pages long.
3005 *
3006 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3007 * If not successful, it will fall back to taking the lock and
3008 * calling get_user_pages().
3009 *
3010 * Returns number of pages pinned. This may be fewer than the number requested.
3011 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3012 * -errno.
3013 */
3014int get_user_pages_fast(unsigned long start, int nr_pages,
3015			unsigned int gup_flags, struct page **pages)
3016{
3017	if (!is_valid_gup_flags(gup_flags))
3018		return -EINVAL;
3019
3020	/*
3021	 * The caller may or may not have explicitly set FOLL_GET; either way is
3022	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3023	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3024	 * request.
3025	 */
3026	gup_flags |= FOLL_GET;
 
3027	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3028}
3029EXPORT_SYMBOL_GPL(get_user_pages_fast);
3030
3031/**
3032 * pin_user_pages_fast() - pin user pages in memory without taking locks
3033 *
3034 * @start:      starting user address
3035 * @nr_pages:   number of pages from start to pin
3036 * @gup_flags:  flags modifying pin behaviour
3037 * @pages:      array that receives pointers to the pages pinned.
3038 *              Should be at least nr_pages long.
3039 *
3040 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3041 * get_user_pages_fast() for documentation on the function arguments, because
3042 * the arguments here are identical.
3043 *
3044 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3045 * see Documentation/core-api/pin_user_pages.rst for further details.
 
 
 
3046 */
3047int pin_user_pages_fast(unsigned long start, int nr_pages,
3048			unsigned int gup_flags, struct page **pages)
3049{
3050	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052		return -EINVAL;
3053
3054	if (WARN_ON_ONCE(!pages))
3055		return -EINVAL;
3056
3057	gup_flags |= FOLL_PIN;
3058	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3059}
3060EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3061
3062/*
3063 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3064 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3065 *
3066 * The API rules are the same, too: no negative values may be returned.
3067 */
3068int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3069			     unsigned int gup_flags, struct page **pages)
3070{
3071	int nr_pinned;
3072
3073	/*
3074	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3075	 * rules require returning 0, rather than -errno:
3076	 */
3077	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078		return 0;
3079
3080	if (WARN_ON_ONCE(!pages))
3081		return 0;
3082	/*
3083	 * FOLL_FAST_ONLY is required in order to match the API description of
3084	 * this routine: no fall back to regular ("slow") GUP.
3085	 */
3086	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3087	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3088						 pages);
3089	/*
3090	 * This routine is not allowed to return negative values. However,
3091	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3092	 * correct for that here:
3093	 */
3094	if (nr_pinned < 0)
3095		nr_pinned = 0;
3096
3097	return nr_pinned;
3098}
3099EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3100
3101/**
3102 * pin_user_pages_remote() - pin pages of a remote process
3103 *
3104 * @mm:		mm_struct of target mm
3105 * @start:	starting user address
3106 * @nr_pages:	number of pages from start to pin
3107 * @gup_flags:	flags modifying lookup behaviour
3108 * @pages:	array that receives pointers to the pages pinned.
3109 *		Should be at least nr_pages long.
3110 * @vmas:	array of pointers to vmas corresponding to each page.
3111 *		Or NULL if the caller does not require them.
3112 * @locked:	pointer to lock flag indicating whether lock is held and
3113 *		subsequently whether VM_FAULT_RETRY functionality can be
3114 *		utilised. Lock must initially be held.
3115 *
3116 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3117 * get_user_pages_remote() for documentation on the function arguments, because
3118 * the arguments here are identical.
3119 *
3120 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3121 * see Documentation/core-api/pin_user_pages.rst for details.
 
 
 
3122 */
3123long pin_user_pages_remote(struct mm_struct *mm,
3124			   unsigned long start, unsigned long nr_pages,
3125			   unsigned int gup_flags, struct page **pages,
3126			   struct vm_area_struct **vmas, int *locked)
3127{
3128	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3129	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3130		return -EINVAL;
3131
3132	if (WARN_ON_ONCE(!pages))
3133		return -EINVAL;
3134
3135	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3136				     gup_flags | FOLL_PIN | FOLL_TOUCH |
3137					     FOLL_REMOTE);
3138}
3139EXPORT_SYMBOL(pin_user_pages_remote);
3140
3141/**
3142 * pin_user_pages() - pin user pages in memory for use by other devices
3143 *
3144 * @start:	starting user address
3145 * @nr_pages:	number of pages from start to pin
3146 * @gup_flags:	flags modifying lookup behaviour
3147 * @pages:	array that receives pointers to the pages pinned.
3148 *		Should be at least nr_pages long.
3149 * @vmas:	array of pointers to vmas corresponding to each page.
3150 *		Or NULL if the caller does not require them.
3151 *
3152 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3153 * FOLL_PIN is set.
3154 *
3155 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3156 * see Documentation/core-api/pin_user_pages.rst for details.
 
 
 
3157 */
3158long pin_user_pages(unsigned long start, unsigned long nr_pages,
3159		    unsigned int gup_flags, struct page **pages,
3160		    struct vm_area_struct **vmas)
3161{
3162	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164		return -EINVAL;
3165
3166	if (WARN_ON_ONCE(!pages))
3167		return -EINVAL;
3168
3169	gup_flags |= FOLL_PIN;
3170	return __gup_longterm_locked(current->mm, start, nr_pages,
3171				     pages, vmas, NULL, gup_flags);
3172}
3173EXPORT_SYMBOL(pin_user_pages);
3174
3175/*
3176 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3177 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3178 * FOLL_PIN and rejects FOLL_GET.
 
 
 
3179 */
3180long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3181			     struct page **pages, unsigned int gup_flags)
3182{
3183	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3184	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3185		return -EINVAL;
3186
3187	if (WARN_ON_ONCE(!pages))
3188		return -EINVAL;
 
3189
3190	gup_flags |= FOLL_PIN;
3191	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3192}
3193EXPORT_SYMBOL(pin_user_pages_unlocked);