Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
 
  37#include "props.h"
  38#include "xattr.h"
  39#include "bio.h"
  40#include "export.h"
  41#include "compression.h"
 
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#include "raid56.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "defrag.h"
  56#include "dir-item.h"
  57#include "ioctl.h"
  58#include "scrub.h"
  59#include "verity.h"
  60#include "super.h"
  61#include "extent-tree.h"
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/btrfs.h>
  64
  65static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
  66static struct file_system_type btrfs_fs_type;
 
 
 
  67
  68static void btrfs_put_super(struct super_block *sb)
  69{
  70	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  71
  72	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  73	close_ctree(fs_info);
  74}
  75
  76/* Store the mount options related information. */
  77struct btrfs_fs_context {
  78	char *subvol_name;
  79	u64 subvol_objectid;
  80	u64 max_inline;
  81	u32 commit_interval;
  82	u32 metadata_ratio;
  83	u32 thread_pool_size;
  84	unsigned long mount_opt;
  85	unsigned long compress_type:4;
  86	unsigned int compress_level;
  87	refcount_t refs;
  88};
  89
  90enum {
  91	Opt_acl,
  92	Opt_clear_cache,
  93	Opt_commit_interval,
  94	Opt_compress,
  95	Opt_compress_force,
  96	Opt_compress_force_type,
  97	Opt_compress_type,
  98	Opt_degraded,
  99	Opt_device,
 100	Opt_fatal_errors,
 101	Opt_flushoncommit,
 102	Opt_max_inline,
 103	Opt_barrier,
 104	Opt_datacow,
 105	Opt_datasum,
 106	Opt_defrag,
 107	Opt_discard,
 108	Opt_discard_mode,
 
 109	Opt_ratio,
 110	Opt_rescan_uuid_tree,
 111	Opt_skip_balance,
 112	Opt_space_cache,
 113	Opt_space_cache_version,
 114	Opt_ssd,
 115	Opt_ssd_spread,
 116	Opt_subvol,
 117	Opt_subvol_empty,
 118	Opt_subvolid,
 119	Opt_thread_pool,
 120	Opt_treelog,
 121	Opt_user_subvol_rm_allowed,
 122
 123	/* Rescue options */
 124	Opt_rescue,
 125	Opt_usebackuproot,
 126	Opt_nologreplay,
 127	Opt_ignorebadroots,
 128	Opt_ignoredatacsums,
 129	Opt_rescue_all,
 130
 
 
 
 
 131	/* Debugging options */
 132	Opt_enospc_debug,
 
 
 
 133#ifdef CONFIG_BTRFS_DEBUG
 134	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 135#endif
 136#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 137	Opt_ref_verify,
 138#endif
 139	Opt_err,
 140};
 141
 142enum {
 143	Opt_fatal_errors_panic,
 144	Opt_fatal_errors_bug,
 145};
 146
 147static const struct constant_table btrfs_parameter_fatal_errors[] = {
 148	{ "panic", Opt_fatal_errors_panic },
 149	{ "bug", Opt_fatal_errors_bug },
 150	{}
 151};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153enum {
 154	Opt_discard_sync,
 155	Opt_discard_async,
 156};
 157
 158static const struct constant_table btrfs_parameter_discard[] = {
 159	{ "sync", Opt_discard_sync },
 160	{ "async", Opt_discard_async },
 161	{}
 162};
 163
 164enum {
 165	Opt_space_cache_v1,
 166	Opt_space_cache_v2,
 167};
 168
 169static const struct constant_table btrfs_parameter_space_cache[] = {
 170	{ "v1", Opt_space_cache_v1 },
 171	{ "v2", Opt_space_cache_v2 },
 172	{}
 173};
 174
 175enum {
 176	Opt_rescue_usebackuproot,
 177	Opt_rescue_nologreplay,
 178	Opt_rescue_ignorebadroots,
 179	Opt_rescue_ignoredatacsums,
 180	Opt_rescue_parameter_all,
 181};
 182
 183static const struct constant_table btrfs_parameter_rescue[] = {
 184	{ "usebackuproot", Opt_rescue_usebackuproot },
 185	{ "nologreplay", Opt_rescue_nologreplay },
 186	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 187	{ "ibadroots", Opt_rescue_ignorebadroots },
 188	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 189	{ "idatacsums", Opt_rescue_ignoredatacsums },
 190	{ "all", Opt_rescue_parameter_all },
 191	{}
 192};
 193
 194#ifdef CONFIG_BTRFS_DEBUG
 195enum {
 196	Opt_fragment_parameter_data,
 197	Opt_fragment_parameter_metadata,
 198	Opt_fragment_parameter_all,
 199};
 200
 201static const struct constant_table btrfs_parameter_fragment[] = {
 202	{ "data", Opt_fragment_parameter_data },
 203	{ "metadata", Opt_fragment_parameter_metadata },
 204	{ "all", Opt_fragment_parameter_all },
 205	{}
 206};
 207#endif
 208
 209static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 210	fsparam_flag_no("acl", Opt_acl),
 211	fsparam_flag_no("autodefrag", Opt_defrag),
 212	fsparam_flag_no("barrier", Opt_barrier),
 213	fsparam_flag("clear_cache", Opt_clear_cache),
 214	fsparam_u32("commit", Opt_commit_interval),
 215	fsparam_flag("compress", Opt_compress),
 216	fsparam_string("compress", Opt_compress_type),
 217	fsparam_flag("compress-force", Opt_compress_force),
 218	fsparam_string("compress-force", Opt_compress_force_type),
 219	fsparam_flag_no("datacow", Opt_datacow),
 220	fsparam_flag_no("datasum", Opt_datasum),
 221	fsparam_flag("degraded", Opt_degraded),
 222	fsparam_string("device", Opt_device),
 223	fsparam_flag_no("discard", Opt_discard),
 224	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 225	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 226	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 227	fsparam_string("max_inline", Opt_max_inline),
 228	fsparam_u32("metadata_ratio", Opt_ratio),
 229	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 230	fsparam_flag("skip_balance", Opt_skip_balance),
 231	fsparam_flag_no("space_cache", Opt_space_cache),
 232	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 233	fsparam_flag_no("ssd", Opt_ssd),
 234	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 235	fsparam_string("subvol", Opt_subvol),
 236	fsparam_flag("subvol=", Opt_subvol_empty),
 237	fsparam_u64("subvolid", Opt_subvolid),
 238	fsparam_u32("thread_pool", Opt_thread_pool),
 239	fsparam_flag_no("treelog", Opt_treelog),
 240	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 241
 242	/* Rescue options. */
 243	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 244	/* Deprecated, with alias rescue=nologreplay */
 245	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 246	/* Deprecated, with alias rescue=usebackuproot */
 247	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 
 
 
 248
 249	/* Debugging options. */
 250	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 
 
 
 
 251#ifdef CONFIG_BTRFS_DEBUG
 252	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 
 
 253#endif
 254#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 255	fsparam_flag("ref_verify", Opt_ref_verify),
 256#endif
 257	{}
 
 
 
 
 
 
 
 
 
 
 
 258};
 259
 260/* No support for restricting writes to btrfs devices yet... */
 261static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 262{
 263	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 
 
 
 
 
 264}
 265
 266static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 267{
 268	struct btrfs_fs_context *ctx = fc->fs_private;
 269	struct fs_parse_result result;
 270	int opt;
 
 
 271
 272	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 273	if (opt < 0)
 274		return opt;
 
 275
 276	switch (opt) {
 277	case Opt_degraded:
 278		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 279		break;
 280	case Opt_subvol_empty:
 281		/*
 282		 * This exists because we used to allow it on accident, so we're
 283		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 284		 * empty subvol= again").
 285		 */
 286		break;
 287	case Opt_subvol:
 288		kfree(ctx->subvol_name);
 289		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 290		if (!ctx->subvol_name)
 291			return -ENOMEM;
 292		break;
 293	case Opt_subvolid:
 294		ctx->subvol_objectid = result.uint_64;
 295
 296		/* subvolid=0 means give me the original fs_tree. */
 297		if (!ctx->subvol_objectid)
 298			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 299		break;
 300	case Opt_device: {
 301		struct btrfs_device *device;
 302		blk_mode_t mode = btrfs_open_mode(fc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303
 304		mutex_lock(&uuid_mutex);
 305		device = btrfs_scan_one_device(param->string, mode, false);
 306		mutex_unlock(&uuid_mutex);
 307		if (IS_ERR(device))
 308			return PTR_ERR(device);
 309		break;
 310	}
 311	case Opt_datasum:
 312		if (result.negated) {
 313			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 314		} else {
 315			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 316			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 317		}
 318		break;
 319	case Opt_datacow:
 320		if (result.negated) {
 321			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 322			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 323			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 324			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 325		} else {
 326			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 327		}
 328		break;
 329	case Opt_compress_force:
 330	case Opt_compress_force_type:
 331		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 332		fallthrough;
 333	case Opt_compress:
 334	case Opt_compress_type:
 335		if (opt == Opt_compress || opt == Opt_compress_force) {
 336			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 337			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 338			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 339			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 340			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 341		} else if (strncmp(param->string, "zlib", 4) == 0) {
 342			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 343			ctx->compress_level =
 344				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 345							 param->string + 4);
 346			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 347			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 348			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 349		} else if (strncmp(param->string, "lzo", 3) == 0) {
 350			ctx->compress_type = BTRFS_COMPRESS_LZO;
 351			ctx->compress_level = 0;
 352			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 353			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 354			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 355		} else if (strncmp(param->string, "zstd", 4) == 0) {
 356			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 357			ctx->compress_level =
 358				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 359							 param->string + 4);
 360			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 361			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 362			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 363		} else if (strncmp(param->string, "no", 2) == 0) {
 364			ctx->compress_level = 0;
 365			ctx->compress_type = 0;
 366			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 367			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 368		} else {
 369			btrfs_err(NULL, "unrecognized compression value %s",
 370				  param->string);
 371			return -EINVAL;
 372		}
 373		break;
 374	case Opt_ssd:
 375		if (result.negated) {
 376			btrfs_set_opt(ctx->mount_opt, NOSSD);
 377			btrfs_clear_opt(ctx->mount_opt, SSD);
 378			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 379		} else {
 380			btrfs_set_opt(ctx->mount_opt, SSD);
 381			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 382		}
 383		break;
 384	case Opt_ssd_spread:
 385		if (result.negated) {
 386			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 387		} else {
 388			btrfs_set_opt(ctx->mount_opt, SSD);
 389			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 390			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 391		}
 392		break;
 393	case Opt_barrier:
 394		if (result.negated)
 395			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 396		else
 397			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 398		break;
 399	case Opt_thread_pool:
 400		if (result.uint_32 == 0) {
 401			btrfs_err(NULL, "invalid value 0 for thread_pool");
 402			return -EINVAL;
 403		}
 404		ctx->thread_pool_size = result.uint_32;
 405		break;
 406	case Opt_max_inline:
 407		ctx->max_inline = memparse(param->string, NULL);
 408		break;
 409	case Opt_acl:
 410		if (result.negated) {
 411			fc->sb_flags &= ~SB_POSIXACL;
 412		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 414			fc->sb_flags |= SB_POSIXACL;
 
 415#else
 416			btrfs_err(NULL, "support for ACL not compiled in");
 417			return -EINVAL;
 
 418#endif
 419		}
 420		/*
 421		 * VFS limits the ability to toggle ACL on and off via remount,
 422		 * despite every file system allowing this.  This seems to be
 423		 * an oversight since we all do, but it'll fail if we're
 424		 * remounting.  So don't set the mask here, we'll check it in
 425		 * btrfs_reconfigure and do the toggling ourselves.
 426		 */
 427		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 428			fc->sb_flags_mask |= SB_POSIXACL;
 429		break;
 430	case Opt_treelog:
 431		if (result.negated)
 432			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 433		else
 434			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 435		break;
 436	case Opt_nologreplay:
 437		btrfs_warn(NULL,
 438		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 439		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 440		break;
 441	case Opt_flushoncommit:
 442		if (result.negated)
 443			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 444		else
 445			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		break;
 447	case Opt_ratio:
 448		ctx->metadata_ratio = result.uint_32;
 449		break;
 450	case Opt_discard:
 451		if (result.negated) {
 452			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 453			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 454			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 455		} else {
 456			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 457			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 458		}
 459		break;
 460	case Opt_discard_mode:
 461		switch (result.uint_32) {
 462		case Opt_discard_sync:
 463			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 464			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 465			break;
 466		case Opt_discard_async:
 467			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 468			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 469			break;
 470		default:
 471			btrfs_err(NULL, "unrecognized discard mode value %s",
 472				  param->key);
 473			return -EINVAL;
 474		}
 475		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 476		break;
 477	case Opt_space_cache:
 478		if (result.negated) {
 479			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 480			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 481			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 482		} else {
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 485		}
 486		break;
 487	case Opt_space_cache_version:
 488		switch (result.uint_32) {
 489		case Opt_space_cache_v1:
 490			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 491			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 492			break;
 493		case Opt_space_cache_v2:
 494			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 495			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 496			break;
 497		default:
 498			btrfs_err(NULL, "unrecognized space_cache value %s",
 499				  param->key);
 500			return -EINVAL;
 501		}
 502		break;
 503	case Opt_rescan_uuid_tree:
 504		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 505		break;
 506	case Opt_clear_cache:
 507		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 508		break;
 509	case Opt_user_subvol_rm_allowed:
 510		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 511		break;
 512	case Opt_enospc_debug:
 513		if (result.negated)
 514			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 515		else
 516			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		break;
 518	case Opt_defrag:
 519		if (result.negated)
 520			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 521		else
 522			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		break;
 524	case Opt_usebackuproot:
 525		btrfs_warn(NULL,
 526			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 527		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 528
 529		/* If we're loading the backup roots we can't trust the space cache. */
 530		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 531		break;
 532	case Opt_skip_balance:
 533		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 534		break;
 535	case Opt_fatal_errors:
 536		switch (result.uint_32) {
 537		case Opt_fatal_errors_panic:
 538			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 539			break;
 540		case Opt_fatal_errors_bug:
 541			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 
 
 
 
 
 
 
 
 542			break;
 543		default:
 544			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 545				  param->key);
 546			return -EINVAL;
 547		}
 548		break;
 549	case Opt_commit_interval:
 550		ctx->commit_interval = result.uint_32;
 551		if (ctx->commit_interval == 0)
 552			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 553		break;
 554	case Opt_rescue:
 555		switch (result.uint_32) {
 556		case Opt_rescue_usebackuproot:
 557			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 558			break;
 559		case Opt_rescue_nologreplay:
 560			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 561			break;
 562		case Opt_rescue_ignorebadroots:
 563			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 564			break;
 565		case Opt_rescue_ignoredatacsums:
 566			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 567			break;
 568		case Opt_rescue_parameter_all:
 569			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 570			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 571			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572			break;
 573		default:
 574			btrfs_info(NULL, "unrecognized rescue option '%s'",
 575				   param->key);
 576			return -EINVAL;
 577		}
 578		break;
 579#ifdef CONFIG_BTRFS_DEBUG
 580	case Opt_fragment:
 581		switch (result.uint_32) {
 582		case Opt_fragment_parameter_all:
 583			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 584			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 585			break;
 586		case Opt_fragment_parameter_metadata:
 587			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 
 
 588			break;
 589		case Opt_fragment_parameter_data:
 590			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 
 591			break;
 592		default:
 593			btrfs_info(NULL, "unrecognized fragment option '%s'",
 594				   param->key);
 595			return -EINVAL;
 596		}
 597		break;
 598#endif
 599#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 600	case Opt_ref_verify:
 601		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 602		break;
 
 603#endif
 604	default:
 605		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 606		return -EINVAL;
 
 
 
 
 607	}
 
 
 
 
 608
 609	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610}
 611
 612/*
 613 * Some options only have meaning at mount time and shouldn't persist across
 614 * remounts, or be displayed. Clear these at the end of mount and remount code
 615 * paths.
 
 616 */
 617static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 
 618{
 619	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 620	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 621	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 622}
 623
 624static bool check_ro_option(struct btrfs_fs_info *fs_info,
 625			    unsigned long mount_opt, unsigned long opt,
 626			    const char *opt_name)
 627{
 628	if (mount_opt & opt) {
 629		btrfs_err(fs_info, "%s must be used with ro mount option",
 630			  opt_name);
 631		return true;
 632	}
 633	return false;
 634}
 635
 636bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 637			 unsigned long flags)
 638{
 639	bool ret = true;
 640
 641	if (!(flags & SB_RDONLY) &&
 642	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 643	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 644	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 645		ret = false;
 
 
 
 646
 647	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 648	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 649	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 650		btrfs_err(info, "cannot disable free-space-tree");
 651		ret = false;
 652	}
 653	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 654	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 655		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 656		ret = false;
 657	}
 658
 659	if (btrfs_check_mountopts_zoned(info, mount_opt))
 660		ret = false;
 661
 662	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 663		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 664			btrfs_info(info, "disk space caching is enabled");
 665		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 666			btrfs_info(info, "using free-space-tree");
 
 
 
 
 
 
 
 
 
 
 667	}
 668
 669	return ret;
 
 
 670}
 671
 672/*
 673 * This is subtle, we only call this during open_ctree().  We need to pre-load
 674 * the mount options with the on-disk settings.  Before the new mount API took
 675 * effect we would do this on mount and remount.  With the new mount API we'll
 676 * only do this on the initial mount.
 677 *
 678 * This isn't a change in behavior, because we're using the current state of the
 679 * file system to set the current mount options.  If you mounted with special
 680 * options to disable these features and then remounted we wouldn't revert the
 681 * settings, because mounting without these features cleared the on-disk
 682 * settings, so this being called on re-mount is not needed.
 683 */
 684void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 
 685{
 686	if (fs_info->sectorsize < PAGE_SIZE) {
 687		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 688		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 689			btrfs_info(fs_info,
 690				   "forcing free space tree for sector size %u with page size %lu",
 691				   fs_info->sectorsize, PAGE_SIZE);
 692			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 693		}
 694	}
 695
 696	/*
 697	 * At this point our mount options are populated, so we only mess with
 698	 * these settings if we don't have any settings already.
 699	 */
 700	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 701		return;
 702
 703	if (btrfs_is_zoned(fs_info) &&
 704	    btrfs_free_space_cache_v1_active(fs_info)) {
 705		btrfs_info(fs_info, "zoned: clearing existing space cache");
 706		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 707		return;
 708	}
 709
 710	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 711		return;
 
 
 712
 713	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 714		return;
 
 
 
 
 
 
 
 
 
 
 
 
 715
 716	/*
 717	 * At this point we don't have explicit options set by the user, set
 718	 * them ourselves based on the state of the file system.
 719	 */
 720	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 721		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 722	else if (btrfs_free_space_cache_v1_active(fs_info))
 723		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 724}
 725
 726static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 727{
 728	if (!btrfs_test_opt(fs_info, NOSSD) &&
 729	    !fs_info->fs_devices->rotating)
 730		btrfs_set_opt(fs_info->mount_opt, SSD);
 
 731
 732	/*
 733	 * For devices supporting discard turn on discard=async automatically,
 734	 * unless it's already set or disabled. This could be turned off by
 735	 * nodiscard for the same mount.
 736	 *
 737	 * The zoned mode piggy backs on the discard functionality for
 738	 * resetting a zone. There is no reason to delay the zone reset as it is
 739	 * fast enough. So, do not enable async discard for zoned mode.
 740	 */
 741	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 742	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 743	      btrfs_test_opt(fs_info, NODISCARD)) &&
 744	    fs_info->fs_devices->discardable &&
 745	    !btrfs_is_zoned(fs_info))
 746		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 747}
 748
 749char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 750					  u64 subvol_objectid)
 751{
 752	struct btrfs_root *root = fs_info->tree_root;
 753	struct btrfs_root *fs_root = NULL;
 754	struct btrfs_root_ref *root_ref;
 755	struct btrfs_inode_ref *inode_ref;
 756	struct btrfs_key key;
 757	struct btrfs_path *path = NULL;
 758	char *name = NULL, *ptr;
 759	u64 dirid;
 760	int len;
 761	int ret;
 762
 763	path = btrfs_alloc_path();
 764	if (!path) {
 765		ret = -ENOMEM;
 766		goto err;
 767	}
 768
 769	name = kmalloc(PATH_MAX, GFP_KERNEL);
 770	if (!name) {
 771		ret = -ENOMEM;
 772		goto err;
 773	}
 774	ptr = name + PATH_MAX - 1;
 775	ptr[0] = '\0';
 776
 777	/*
 778	 * Walk up the subvolume trees in the tree of tree roots by root
 779	 * backrefs until we hit the top-level subvolume.
 780	 */
 781	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 782		key.objectid = subvol_objectid;
 783		key.type = BTRFS_ROOT_BACKREF_KEY;
 784		key.offset = (u64)-1;
 785
 786		ret = btrfs_search_backwards(root, &key, path);
 787		if (ret < 0) {
 788			goto err;
 789		} else if (ret > 0) {
 790			ret = -ENOENT;
 791			goto err;
 792		}
 793
 794		subvol_objectid = key.offset;
 795
 796		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 797					  struct btrfs_root_ref);
 798		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 799		ptr -= len + 1;
 800		if (ptr < name) {
 801			ret = -ENAMETOOLONG;
 802			goto err;
 803		}
 804		read_extent_buffer(path->nodes[0], ptr + 1,
 805				   (unsigned long)(root_ref + 1), len);
 806		ptr[0] = '/';
 807		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 808		btrfs_release_path(path);
 809
 810		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 811		if (IS_ERR(fs_root)) {
 812			ret = PTR_ERR(fs_root);
 813			fs_root = NULL;
 814			goto err;
 815		}
 816
 817		/*
 818		 * Walk up the filesystem tree by inode refs until we hit the
 819		 * root directory.
 820		 */
 821		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 822			key.objectid = dirid;
 823			key.type = BTRFS_INODE_REF_KEY;
 824			key.offset = (u64)-1;
 825
 826			ret = btrfs_search_backwards(fs_root, &key, path);
 827			if (ret < 0) {
 828				goto err;
 829			} else if (ret > 0) {
 830				ret = -ENOENT;
 831				goto err;
 832			}
 833
 834			dirid = key.offset;
 835
 836			inode_ref = btrfs_item_ptr(path->nodes[0],
 837						   path->slots[0],
 838						   struct btrfs_inode_ref);
 839			len = btrfs_inode_ref_name_len(path->nodes[0],
 840						       inode_ref);
 841			ptr -= len + 1;
 842			if (ptr < name) {
 843				ret = -ENAMETOOLONG;
 844				goto err;
 845			}
 846			read_extent_buffer(path->nodes[0], ptr + 1,
 847					   (unsigned long)(inode_ref + 1), len);
 848			ptr[0] = '/';
 849			btrfs_release_path(path);
 850		}
 851		btrfs_put_root(fs_root);
 852		fs_root = NULL;
 853	}
 854
 855	btrfs_free_path(path);
 856	if (ptr == name + PATH_MAX - 1) {
 857		name[0] = '/';
 858		name[1] = '\0';
 859	} else {
 860		memmove(name, ptr, name + PATH_MAX - ptr);
 861	}
 862	return name;
 863
 864err:
 865	btrfs_put_root(fs_root);
 866	btrfs_free_path(path);
 867	kfree(name);
 868	return ERR_PTR(ret);
 869}
 870
 871static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 872{
 873	struct btrfs_root *root = fs_info->tree_root;
 874	struct btrfs_dir_item *di;
 875	struct btrfs_path *path;
 876	struct btrfs_key location;
 877	struct fscrypt_str name = FSTR_INIT("default", 7);
 878	u64 dir_id;
 879
 880	path = btrfs_alloc_path();
 881	if (!path)
 882		return -ENOMEM;
 883
 884	/*
 885	 * Find the "default" dir item which points to the root item that we
 886	 * will mount by default if we haven't been given a specific subvolume
 887	 * to mount.
 888	 */
 889	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 890	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 891	if (IS_ERR(di)) {
 892		btrfs_free_path(path);
 893		return PTR_ERR(di);
 894	}
 895	if (!di) {
 896		/*
 897		 * Ok the default dir item isn't there.  This is weird since
 898		 * it's always been there, but don't freak out, just try and
 899		 * mount the top-level subvolume.
 900		 */
 901		btrfs_free_path(path);
 902		*objectid = BTRFS_FS_TREE_OBJECTID;
 903		return 0;
 904	}
 905
 906	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907	btrfs_free_path(path);
 908	*objectid = location.objectid;
 909	return 0;
 910}
 911
 912static int btrfs_fill_super(struct super_block *sb,
 913			    struct btrfs_fs_devices *fs_devices,
 914			    void *data)
 915{
 916	struct inode *inode;
 917	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 918	int err;
 919
 920	sb->s_maxbytes = MAX_LFS_FILESIZE;
 921	sb->s_magic = BTRFS_SUPER_MAGIC;
 922	sb->s_op = &btrfs_super_ops;
 923	sb->s_d_op = &btrfs_dentry_operations;
 924	sb->s_export_op = &btrfs_export_ops;
 925#ifdef CONFIG_FS_VERITY
 926	sb->s_vop = &btrfs_verityops;
 927#endif
 928	sb->s_xattr = btrfs_xattr_handlers;
 929	sb->s_time_gran = 1;
 
 
 
 
 930	sb->s_iflags |= SB_I_CGROUPWB;
 931
 932	err = super_setup_bdi(sb);
 933	if (err) {
 934		btrfs_err(fs_info, "super_setup_bdi failed");
 935		return err;
 936	}
 937
 938	err = open_ctree(sb, fs_devices, (char *)data);
 939	if (err) {
 940		btrfs_err(fs_info, "open_ctree failed");
 941		return err;
 942	}
 943
 944	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 945	if (IS_ERR(inode)) {
 946		err = PTR_ERR(inode);
 947		btrfs_handle_fs_error(fs_info, err, NULL);
 948		goto fail_close;
 949	}
 950
 951	sb->s_root = d_make_root(inode);
 952	if (!sb->s_root) {
 953		err = -ENOMEM;
 954		goto fail_close;
 955	}
 956
 957	sb->s_flags |= SB_ACTIVE;
 958	return 0;
 959
 960fail_close:
 961	close_ctree(fs_info);
 962	return err;
 963}
 964
 965int btrfs_sync_fs(struct super_block *sb, int wait)
 966{
 967	struct btrfs_trans_handle *trans;
 968	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 969	struct btrfs_root *root = fs_info->tree_root;
 970
 971	trace_btrfs_sync_fs(fs_info, wait);
 972
 973	if (!wait) {
 974		filemap_flush(fs_info->btree_inode->i_mapping);
 975		return 0;
 976	}
 977
 978	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 979
 980	trans = btrfs_attach_transaction_barrier(root);
 981	if (IS_ERR(trans)) {
 982		/* no transaction, don't bother */
 983		if (PTR_ERR(trans) == -ENOENT) {
 984			/*
 985			 * Exit unless we have some pending changes
 986			 * that need to go through commit
 987			 */
 988			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 989				      &fs_info->flags))
 990				return 0;
 991			/*
 992			 * A non-blocking test if the fs is frozen. We must not
 993			 * start a new transaction here otherwise a deadlock
 994			 * happens. The pending operations are delayed to the
 995			 * next commit after thawing.
 996			 */
 997			if (sb_start_write_trylock(sb))
 998				sb_end_write(sb);
 999			else
1000				return 0;
1001			trans = btrfs_start_transaction(root, 0);
1002		}
1003		if (IS_ERR(trans))
1004			return PTR_ERR(trans);
1005	}
1006	return btrfs_commit_transaction(trans);
1007}
1008
1009static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1010{
1011	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1012	*printed = true;
1013}
1014
1015static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1016{
1017	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1018	const char *compress_type;
1019	const char *subvol_name;
1020	bool printed = false;
1021
1022	if (btrfs_test_opt(info, DEGRADED))
1023		seq_puts(seq, ",degraded");
1024	if (btrfs_test_opt(info, NODATASUM))
1025		seq_puts(seq, ",nodatasum");
1026	if (btrfs_test_opt(info, NODATACOW))
1027		seq_puts(seq, ",nodatacow");
1028	if (btrfs_test_opt(info, NOBARRIER))
1029		seq_puts(seq, ",nobarrier");
1030	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1031		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032	if (info->thread_pool_size !=  min_t(unsigned long,
1033					     num_online_cpus() + 2, 8))
1034		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1035	if (btrfs_test_opt(info, COMPRESS)) {
1036		compress_type = btrfs_compress_type2str(info->compress_type);
1037		if (btrfs_test_opt(info, FORCE_COMPRESS))
1038			seq_printf(seq, ",compress-force=%s", compress_type);
1039		else
1040			seq_printf(seq, ",compress=%s", compress_type);
1041		if (info->compress_level)
1042			seq_printf(seq, ":%d", info->compress_level);
1043	}
1044	if (btrfs_test_opt(info, NOSSD))
1045		seq_puts(seq, ",nossd");
1046	if (btrfs_test_opt(info, SSD_SPREAD))
1047		seq_puts(seq, ",ssd_spread");
1048	else if (btrfs_test_opt(info, SSD))
1049		seq_puts(seq, ",ssd");
1050	if (btrfs_test_opt(info, NOTREELOG))
1051		seq_puts(seq, ",notreelog");
1052	if (btrfs_test_opt(info, NOLOGREPLAY))
1053		print_rescue_option(seq, "nologreplay", &printed);
1054	if (btrfs_test_opt(info, USEBACKUPROOT))
1055		print_rescue_option(seq, "usebackuproot", &printed);
1056	if (btrfs_test_opt(info, IGNOREBADROOTS))
1057		print_rescue_option(seq, "ignorebadroots", &printed);
1058	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1059		print_rescue_option(seq, "ignoredatacsums", &printed);
1060	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1061		seq_puts(seq, ",flushoncommit");
1062	if (btrfs_test_opt(info, DISCARD_SYNC))
1063		seq_puts(seq, ",discard");
1064	if (btrfs_test_opt(info, DISCARD_ASYNC))
1065		seq_puts(seq, ",discard=async");
1066	if (!(info->sb->s_flags & SB_POSIXACL))
1067		seq_puts(seq, ",noacl");
1068	if (btrfs_free_space_cache_v1_active(info))
1069		seq_puts(seq, ",space_cache");
1070	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1071		seq_puts(seq, ",space_cache=v2");
1072	else
1073		seq_puts(seq, ",nospace_cache");
1074	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1075		seq_puts(seq, ",rescan_uuid_tree");
1076	if (btrfs_test_opt(info, CLEAR_CACHE))
1077		seq_puts(seq, ",clear_cache");
1078	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1079		seq_puts(seq, ",user_subvol_rm_allowed");
1080	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1081		seq_puts(seq, ",enospc_debug");
1082	if (btrfs_test_opt(info, AUTO_DEFRAG))
1083		seq_puts(seq, ",autodefrag");
1084	if (btrfs_test_opt(info, SKIP_BALANCE))
1085		seq_puts(seq, ",skip_balance");
 
 
 
 
 
 
 
 
 
1086	if (info->metadata_ratio)
1087		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1088	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1089		seq_puts(seq, ",fatal_errors=panic");
1090	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091		seq_printf(seq, ",commit=%u", info->commit_interval);
1092#ifdef CONFIG_BTRFS_DEBUG
1093	if (btrfs_test_opt(info, FRAGMENT_DATA))
1094		seq_puts(seq, ",fragment=data");
1095	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1096		seq_puts(seq, ",fragment=metadata");
1097#endif
1098	if (btrfs_test_opt(info, REF_VERIFY))
1099		seq_puts(seq, ",ref_verify");
1100	seq_printf(seq, ",subvolid=%llu",
1101		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1102	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1103			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	if (!IS_ERR(subvol_name)) {
1105		seq_puts(seq, ",subvol=");
1106		seq_escape(seq, subvol_name, " \t\n\\");
1107		kfree(subvol_name);
1108	}
1109	return 0;
1110}
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112/*
1113 * subvolumes are identified by ino 256
1114 */
1115static inline int is_subvolume_inode(struct inode *inode)
1116{
1117	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1118		return 1;
1119	return 0;
1120}
1121
1122static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1123				   struct vfsmount *mnt)
1124{
1125	struct dentry *root;
1126	int ret;
1127
1128	if (!subvol_name) {
1129		if (!subvol_objectid) {
1130			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1131							  &subvol_objectid);
1132			if (ret) {
1133				root = ERR_PTR(ret);
1134				goto out;
1135			}
1136		}
1137		subvol_name = btrfs_get_subvol_name_from_objectid(
1138					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1139		if (IS_ERR(subvol_name)) {
1140			root = ERR_CAST(subvol_name);
1141			subvol_name = NULL;
1142			goto out;
1143		}
1144
1145	}
1146
1147	root = mount_subtree(mnt, subvol_name);
1148	/* mount_subtree() drops our reference on the vfsmount. */
1149	mnt = NULL;
1150
1151	if (!IS_ERR(root)) {
1152		struct super_block *s = root->d_sb;
1153		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1154		struct inode *root_inode = d_inode(root);
1155		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1156
1157		ret = 0;
1158		if (!is_subvolume_inode(root_inode)) {
1159			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1160			       subvol_name);
1161			ret = -EINVAL;
1162		}
1163		if (subvol_objectid && root_objectid != subvol_objectid) {
1164			/*
1165			 * This will also catch a race condition where a
1166			 * subvolume which was passed by ID is renamed and
1167			 * another subvolume is renamed over the old location.
1168			 */
1169			btrfs_err(fs_info,
1170				  "subvol '%s' does not match subvolid %llu",
1171				  subvol_name, subvol_objectid);
1172			ret = -EINVAL;
1173		}
1174		if (ret) {
1175			dput(root);
1176			root = ERR_PTR(ret);
1177			deactivate_locked_super(s);
1178		}
1179	}
1180
1181out:
1182	mntput(mnt);
1183	kfree(subvol_name);
1184	return root;
1185}
1186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1188				     u32 new_pool_size, u32 old_pool_size)
1189{
1190	if (new_pool_size == old_pool_size)
1191		return;
1192
1193	fs_info->thread_pool_size = new_pool_size;
1194
1195	btrfs_info(fs_info, "resize thread pool %d -> %d",
1196	       old_pool_size, new_pool_size);
1197
1198	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
 
1199	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1200	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1201	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1202	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1203	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1204	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1205	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1206}
1207
1208static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1209				       unsigned long old_opts, int flags)
1210{
1211	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1212	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1213	     (flags & SB_RDONLY))) {
1214		/* wait for any defraggers to finish */
1215		wait_event(fs_info->transaction_wait,
1216			   (atomic_read(&fs_info->defrag_running) == 0));
1217		if (flags & SB_RDONLY)
1218			sync_filesystem(fs_info->sb);
1219	}
1220}
1221
1222static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1223					 unsigned long old_opts)
1224{
1225	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1226
1227	/*
1228	 * We need to cleanup all defragable inodes if the autodefragment is
1229	 * close or the filesystem is read only.
1230	 */
1231	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1232	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1233		btrfs_cleanup_defrag_inodes(fs_info);
1234	}
1235
1236	/* If we toggled discard async */
1237	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1238	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1239		btrfs_discard_resume(fs_info);
1240	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1241		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1242		btrfs_discard_cleanup(fs_info);
1243
1244	/* If we toggled space cache */
1245	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1246		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1247}
1248
1249static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1250{
 
 
 
 
 
 
 
1251	int ret;
1252
1253	if (BTRFS_FS_ERROR(fs_info)) {
1254		btrfs_err(fs_info,
1255			  "remounting read-write after error is not allowed");
1256		return -EINVAL;
1257	}
1258
1259	if (fs_info->fs_devices->rw_devices == 0)
1260		return -EACCES;
1261
1262	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1263		btrfs_warn(fs_info,
1264			   "too many missing devices, writable remount is not allowed");
1265		return -EACCES;
 
 
1266	}
1267
1268	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1269		btrfs_warn(fs_info,
1270			   "mount required to replay tree-log, cannot remount read-write");
1271		return -EINVAL;
1272	}
1273
1274	/*
1275	 * NOTE: when remounting with a change that does writes, don't put it
1276	 * anywhere above this point, as we are not sure to be safe to write
1277	 * until we pass the above checks.
1278	 */
1279	ret = btrfs_start_pre_rw_mount(fs_info);
1280	if (ret)
1281		return ret;
1282
1283	btrfs_clear_sb_rdonly(fs_info->sb);
1284
1285	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1286
1287	/*
1288	 * If we've gone from readonly -> read-write, we need to get our
1289	 * sync/async discard lists in the right state.
1290	 */
1291	btrfs_discard_resume(fs_info);
1292
1293	return 0;
1294}
1295
1296static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1297{
1298	/*
1299	 * This also happens on 'umount -rf' or on shutdown, when the
1300	 * filesystem is busy.
1301	 */
1302	cancel_work_sync(&fs_info->async_reclaim_work);
1303	cancel_work_sync(&fs_info->async_data_reclaim_work);
1304
1305	btrfs_discard_cleanup(fs_info);
 
 
1306
1307	/* Wait for the uuid_scan task to finish */
1308	down(&fs_info->uuid_tree_rescan_sem);
1309	/* Avoid complains from lockdep et al. */
1310	up(&fs_info->uuid_tree_rescan_sem);
1311
1312	btrfs_set_sb_rdonly(fs_info->sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313
1314	/*
1315	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1316	 * loop if it's already active.  If it's already asleep, we'll leave
1317	 * unused block groups on disk until we're mounted read-write again
1318	 * unless we clean them up here.
1319	 */
1320	btrfs_delete_unused_bgs(fs_info);
1321
1322	/*
1323	 * The cleaner task could be already running before we set the flag
1324	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1325	 * sure that after we finish the remount, i.e. after we call
1326	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1327	 * - either because it was dropping a dead root, running delayed iputs
1328	 *   or deleting an unused block group (the cleaner picked a block
1329	 *   group from the list of unused block groups before we were able to
1330	 *   in the previous call to btrfs_delete_unused_bgs()).
1331	 */
1332	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1333
1334	/*
1335	 * We've set the superblock to RO mode, so we might have made the
1336	 * cleaner task sleep without running all pending delayed iputs. Go
1337	 * through all the delayed iputs here, so that if an unmount happens
1338	 * without remounting RW we don't end up at finishing close_ctree()
1339	 * with a non-empty list of delayed iputs.
1340	 */
1341	btrfs_run_delayed_iputs(fs_info);
1342
1343	btrfs_dev_replace_suspend_for_unmount(fs_info);
1344	btrfs_scrub_cancel(fs_info);
1345	btrfs_pause_balance(fs_info);
 
1346
1347	/*
1348	 * Pause the qgroup rescan worker if it is running. We don't want it to
1349	 * be still running after we are in RO mode, as after that, by the time
1350	 * we unmount, it might have left a transaction open, so we would leak
1351	 * the transaction and/or crash.
1352	 */
1353	btrfs_qgroup_wait_for_completion(fs_info, false);
1354
1355	return btrfs_commit_super(fs_info);
1356}
 
 
 
 
 
 
1357
1358static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1359{
1360	fs_info->max_inline = ctx->max_inline;
1361	fs_info->commit_interval = ctx->commit_interval;
1362	fs_info->metadata_ratio = ctx->metadata_ratio;
1363	fs_info->thread_pool_size = ctx->thread_pool_size;
1364	fs_info->mount_opt = ctx->mount_opt;
1365	fs_info->compress_type = ctx->compress_type;
1366	fs_info->compress_level = ctx->compress_level;
1367}
1368
1369static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1370{
1371	ctx->max_inline = fs_info->max_inline;
1372	ctx->commit_interval = fs_info->commit_interval;
1373	ctx->metadata_ratio = fs_info->metadata_ratio;
1374	ctx->thread_pool_size = fs_info->thread_pool_size;
1375	ctx->mount_opt = fs_info->mount_opt;
1376	ctx->compress_type = fs_info->compress_type;
1377	ctx->compress_level = fs_info->compress_level;
1378}
1379
1380#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1381do {										\
1382	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1383	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1384		btrfs_info(fs_info, fmt, ##args);				\
1385} while (0)
1386
1387#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1388do {									\
1389	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1390	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1391		btrfs_info(fs_info, fmt, ##args);			\
1392} while (0)
1393
1394static void btrfs_emit_options(struct btrfs_fs_info *info,
1395			       struct btrfs_fs_context *old)
1396{
1397	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1398	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1401	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1402	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1403	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1404	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1405	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1406	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1407	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1408	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1409	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1410	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1411	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1412	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1413	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1414	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1415	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1416	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1417	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1418
1419	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1420	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1421	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1422	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1423	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1424	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1425	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1426	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1427	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1428
1429	/* Did the compression settings change? */
1430	if (btrfs_test_opt(info, COMPRESS) &&
1431	    (!old ||
1432	     old->compress_type != info->compress_type ||
1433	     old->compress_level != info->compress_level ||
1434	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1435	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1436		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1437
1438		btrfs_info(info, "%s %s compression, level %d",
1439			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1440			   compress_type, info->compress_level);
1441	}
1442
1443	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1444		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1445}
 
 
 
 
 
 
1446
1447static int btrfs_reconfigure(struct fs_context *fc)
1448{
1449	struct super_block *sb = fc->root->d_sb;
1450	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1451	struct btrfs_fs_context *ctx = fc->fs_private;
1452	struct btrfs_fs_context old_ctx;
1453	int ret = 0;
1454	bool mount_reconfigure = (fc->s_fs_info != NULL);
1455
1456	btrfs_info_to_ctx(fs_info, &old_ctx);
 
 
 
 
 
 
1457
1458	/*
1459	 * This is our "bind mount" trick, we don't want to allow the user to do
1460	 * anything other than mount a different ro/rw and a different subvol,
1461	 * all of the mount options should be maintained.
1462	 */
1463	if (mount_reconfigure)
1464		ctx->mount_opt = old_ctx.mount_opt;
 
 
 
 
 
 
 
1465
1466	sync_filesystem(sb);
1467	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
1468
1469	if (!mount_reconfigure &&
1470	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1471		return -EINVAL;
 
 
 
1472
1473	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1474	if (ret < 0)
1475		return ret;
 
 
 
 
 
1476
1477	btrfs_ctx_to_info(fs_info, ctx);
1478	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1479	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1480				 old_ctx.thread_pool_size);
1481
1482	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1483	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1484	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1485		btrfs_warn(fs_info,
1486		"remount supports changing free space tree only from RO to RW");
1487		/* Make sure free space cache options match the state on disk. */
1488		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1489			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1490			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1491		}
1492		if (btrfs_free_space_cache_v1_active(fs_info)) {
1493			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1494			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1495		}
1496	}
1497
1498	ret = 0;
1499	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1500		ret = btrfs_remount_ro(fs_info);
1501	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_rw(fs_info);
1503	if (ret)
1504		goto restore;
1505
1506	/*
1507	 * If we set the mask during the parameter parsing VFS would reject the
1508	 * remount.  Here we can set the mask and the value will be updated
1509	 * appropriately.
1510	 */
1511	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1512		fc->sb_flags_mask |= SB_POSIXACL;
1513
1514	btrfs_emit_options(fs_info, &old_ctx);
1515	wake_up_process(fs_info->transaction_kthread);
1516	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1517	btrfs_clear_oneshot_options(fs_info);
1518	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1519
1520	return 0;
 
1521restore:
1522	btrfs_ctx_to_info(fs_info, &old_ctx);
1523	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
 
 
 
 
 
 
 
 
 
 
 
1524	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
1525	return ret;
1526}
1527
1528/* Used to sort the devices by max_avail(descending sort) */
1529static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1530{
1531	const struct btrfs_device_info *dev_info1 = a;
1532	const struct btrfs_device_info *dev_info2 = b;
1533
1534	if (dev_info1->max_avail > dev_info2->max_avail)
1535		return -1;
1536	else if (dev_info1->max_avail < dev_info2->max_avail)
1537		return 1;
1538	return 0;
1539}
1540
1541/*
1542 * sort the devices by max_avail, in which max free extent size of each device
1543 * is stored.(Descending Sort)
1544 */
1545static inline void btrfs_descending_sort_devices(
1546					struct btrfs_device_info *devices,
1547					size_t nr_devices)
1548{
1549	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1550	     btrfs_cmp_device_free_bytes, NULL);
1551}
1552
1553/*
1554 * The helper to calc the free space on the devices that can be used to store
1555 * file data.
1556 */
1557static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1558					      u64 *free_bytes)
1559{
1560	struct btrfs_device_info *devices_info;
1561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1562	struct btrfs_device *device;
1563	u64 type;
1564	u64 avail_space;
1565	u64 min_stripe_size;
1566	int num_stripes = 1;
1567	int i = 0, nr_devices;
1568	const struct btrfs_raid_attr *rattr;
1569
1570	/*
1571	 * We aren't under the device list lock, so this is racy-ish, but good
1572	 * enough for our purposes.
1573	 */
1574	nr_devices = fs_info->fs_devices->open_devices;
1575	if (!nr_devices) {
1576		smp_mb();
1577		nr_devices = fs_info->fs_devices->open_devices;
1578		ASSERT(nr_devices);
1579		if (!nr_devices) {
1580			*free_bytes = 0;
1581			return 0;
1582		}
1583	}
1584
1585	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1586			       GFP_KERNEL);
1587	if (!devices_info)
1588		return -ENOMEM;
1589
1590	/* calc min stripe number for data space allocation */
1591	type = btrfs_data_alloc_profile(fs_info);
1592	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1593
1594	if (type & BTRFS_BLOCK_GROUP_RAID0)
1595		num_stripes = nr_devices;
1596	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1597		num_stripes = rattr->ncopies;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1599		num_stripes = 4;
1600
1601	/* Adjust for more than 1 stripe per device */
1602	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1603
1604	rcu_read_lock();
1605	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1606		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1607						&device->dev_state) ||
1608		    !device->bdev ||
1609		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1610			continue;
1611
1612		if (i >= nr_devices)
1613			break;
1614
1615		avail_space = device->total_bytes - device->bytes_used;
1616
1617		/* align with stripe_len */
1618		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1619
1620		/*
1621		 * Ensure we have at least min_stripe_size on top of the
1622		 * reserved space on the device.
1623		 */
1624		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1625			continue;
1626
1627		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1628
1629		devices_info[i].dev = device;
1630		devices_info[i].max_avail = avail_space;
1631
1632		i++;
1633	}
1634	rcu_read_unlock();
1635
1636	nr_devices = i;
1637
1638	btrfs_descending_sort_devices(devices_info, nr_devices);
1639
1640	i = nr_devices - 1;
1641	avail_space = 0;
1642	while (nr_devices >= rattr->devs_min) {
1643		num_stripes = min(num_stripes, nr_devices);
1644
1645		if (devices_info[i].max_avail >= min_stripe_size) {
1646			int j;
1647			u64 alloc_size;
1648
1649			avail_space += devices_info[i].max_avail * num_stripes;
1650			alloc_size = devices_info[i].max_avail;
1651			for (j = i + 1 - num_stripes; j <= i; j++)
1652				devices_info[j].max_avail -= alloc_size;
1653		}
1654		i--;
1655		nr_devices--;
1656	}
1657
1658	kfree(devices_info);
1659	*free_bytes = avail_space;
1660	return 0;
1661}
1662
1663/*
1664 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1665 *
1666 * If there's a redundant raid level at DATA block groups, use the respective
1667 * multiplier to scale the sizes.
1668 *
1669 * Unused device space usage is based on simulating the chunk allocator
1670 * algorithm that respects the device sizes and order of allocations.  This is
1671 * a close approximation of the actual use but there are other factors that may
1672 * change the result (like a new metadata chunk).
1673 *
1674 * If metadata is exhausted, f_bavail will be 0.
1675 */
1676static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1677{
1678	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1679	struct btrfs_super_block *disk_super = fs_info->super_copy;
1680	struct btrfs_space_info *found;
1681	u64 total_used = 0;
1682	u64 total_free_data = 0;
1683	u64 total_free_meta = 0;
1684	u32 bits = fs_info->sectorsize_bits;
1685	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1686	unsigned factor = 1;
1687	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1688	int ret;
1689	u64 thresh = 0;
1690	int mixed = 0;
1691
1692	list_for_each_entry(found, &fs_info->space_info, list) {
1693		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1694			int i;
1695
1696			total_free_data += found->disk_total - found->disk_used;
1697			total_free_data -=
1698				btrfs_account_ro_block_groups_free_space(found);
1699
1700			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1701				if (!list_empty(&found->block_groups[i]))
1702					factor = btrfs_bg_type_to_factor(
1703						btrfs_raid_array[i].bg_flag);
1704			}
1705		}
1706
1707		/*
1708		 * Metadata in mixed block group profiles are accounted in data
1709		 */
1710		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1711			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1712				mixed = 1;
1713			else
1714				total_free_meta += found->disk_total -
1715					found->disk_used;
1716		}
1717
1718		total_used += found->disk_used;
1719	}
1720
1721	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1722	buf->f_blocks >>= bits;
1723	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1724
1725	/* Account global block reserve as used, it's in logical size already */
1726	spin_lock(&block_rsv->lock);
1727	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1728	if (buf->f_bfree >= block_rsv->size >> bits)
1729		buf->f_bfree -= block_rsv->size >> bits;
1730	else
1731		buf->f_bfree = 0;
1732	spin_unlock(&block_rsv->lock);
1733
1734	buf->f_bavail = div_u64(total_free_data, factor);
1735	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1736	if (ret)
1737		return ret;
1738	buf->f_bavail += div_u64(total_free_data, factor);
1739	buf->f_bavail = buf->f_bavail >> bits;
1740
1741	/*
1742	 * We calculate the remaining metadata space minus global reserve. If
1743	 * this is (supposedly) smaller than zero, there's no space. But this
1744	 * does not hold in practice, the exhausted state happens where's still
1745	 * some positive delta. So we apply some guesswork and compare the
1746	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1747	 *
1748	 * We probably cannot calculate the exact threshold value because this
1749	 * depends on the internal reservations requested by various
1750	 * operations, so some operations that consume a few metadata will
1751	 * succeed even if the Avail is zero. But this is better than the other
1752	 * way around.
1753	 */
1754	thresh = SZ_4M;
1755
1756	/*
1757	 * We only want to claim there's no available space if we can no longer
1758	 * allocate chunks for our metadata profile and our global reserve will
1759	 * not fit in the free metadata space.  If we aren't ->full then we
1760	 * still can allocate chunks and thus are fine using the currently
1761	 * calculated f_bavail.
1762	 */
1763	if (!mixed && block_rsv->space_info->full &&
1764	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1765		buf->f_bavail = 0;
1766
1767	buf->f_type = BTRFS_SUPER_MAGIC;
1768	buf->f_bsize = fs_info->sectorsize;
1769	buf->f_namelen = BTRFS_NAME_LEN;
1770
1771	/* We treat it as constant endianness (it doesn't matter _which_)
1772	   because we want the fsid to come out the same whether mounted
1773	   on a big-endian or little-endian host */
1774	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1775	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1776	/* Mask in the root object ID too, to disambiguate subvols */
1777	buf->f_fsid.val[0] ^=
1778		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1779	buf->f_fsid.val[1] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1781
1782	return 0;
1783}
1784
1785static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1786{
1787	struct btrfs_fs_info *p = fc->s_fs_info;
1788	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1789
1790	return fs_info->fs_devices == p->fs_devices;
1791}
1792
1793static int btrfs_get_tree_super(struct fs_context *fc)
1794{
1795	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1796	struct btrfs_fs_context *ctx = fc->fs_private;
1797	struct btrfs_fs_devices *fs_devices = NULL;
1798	struct block_device *bdev;
1799	struct btrfs_device *device;
1800	struct super_block *sb;
1801	blk_mode_t mode = btrfs_open_mode(fc);
1802	int ret;
1803
1804	btrfs_ctx_to_info(fs_info, ctx);
1805	mutex_lock(&uuid_mutex);
1806
1807	/*
1808	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1809	 * either a valid device or an error.
1810	 */
1811	device = btrfs_scan_one_device(fc->source, mode, true);
1812	ASSERT(device != NULL);
1813	if (IS_ERR(device)) {
1814		mutex_unlock(&uuid_mutex);
1815		return PTR_ERR(device);
1816	}
1817
1818	fs_devices = device->fs_devices;
1819	fs_info->fs_devices = fs_devices;
1820
1821	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1822	mutex_unlock(&uuid_mutex);
1823	if (ret)
1824		return ret;
1825
1826	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1827		ret = -EACCES;
1828		goto error;
1829	}
1830
1831	bdev = fs_devices->latest_dev->bdev;
1832
1833	/*
1834	 * From now on the error handling is not straightforward.
1835	 *
1836	 * If successful, this will transfer the fs_info into the super block,
1837	 * and fc->s_fs_info will be NULL.  However if there's an existing
1838	 * super, we'll still have fc->s_fs_info populated.  If we error
1839	 * completely out it'll be cleaned up when we drop the fs_context,
1840	 * otherwise it's tied to the lifetime of the super_block.
1841	 */
1842	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1843	if (IS_ERR(sb)) {
1844		ret = PTR_ERR(sb);
1845		goto error;
1846	}
1847
1848	set_device_specific_options(fs_info);
1849
1850	if (sb->s_root) {
1851		btrfs_close_devices(fs_devices);
1852		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1853			ret = -EBUSY;
1854	} else {
1855		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1856		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1857		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1858		ret = btrfs_fill_super(sb, fs_devices, NULL);
1859	}
1860
1861	if (ret) {
1862		deactivate_locked_super(sb);
1863		return ret;
1864	}
1865
1866	btrfs_clear_oneshot_options(fs_info);
1867
1868	fc->root = dget(sb->s_root);
1869	return 0;
1870
1871error:
1872	btrfs_close_devices(fs_devices);
1873	return ret;
1874}
1875
1876/*
1877 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1878 * with different ro/rw options") the following works:
1879 *
1880 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1881 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1882 *
1883 * which looks nice and innocent but is actually pretty intricate and deserves
1884 * a long comment.
1885 *
1886 * On another filesystem a subvolume mount is close to something like:
1887 *
1888 *	(iii) # create rw superblock + initial mount
1889 *	      mount -t xfs /dev/sdb /opt/
1890 *
1891 *	      # create ro bind mount
1892 *	      mount --bind -o ro /opt/foo /mnt/foo
1893 *
1894 *	      # unmount initial mount
1895 *	      umount /opt
1896 *
1897 * Of course, there's some special subvolume sauce and there's the fact that the
1898 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1899 * it's very close and will help us understand the issue.
1900 *
1901 * The old mount API didn't cleanly distinguish between a mount being made ro
1902 * and a superblock being made ro.  The only way to change the ro state of
1903 * either object was by passing ms_rdonly. If a new mount was created via
1904 * mount(2) such as:
1905 *
1906 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1907 *
1908 * the MS_RDONLY flag being specified had two effects:
1909 *
1910 * (1) MNT_READONLY was raised -> the resulting mount got
1911 *     @mnt->mnt_flags |= MNT_READONLY raised.
1912 *
1913 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1914 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1915 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1916 *
1917 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1918 * subtree mounted ro.
1919 *
1920 * But consider the effect on the old mount API on btrfs subvolume mounting
1921 * which combines the distinct step in (iii) into a single step.
1922 *
1923 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1924 * is issued the superblock is ro and thus even if the mount created for (ii) is
1925 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1926 * to rw for (ii) which it did using an internal remount call.
1927 *
1928 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1929 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1930 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1931 * passed by mount(8) to mount(2).
1932 *
1933 * Enter the new mount API. The new mount API disambiguates making a mount ro
1934 * and making a superblock ro.
1935 *
1936 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1937 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1938 *     specific mount or mount tree that is never seen by the filesystem itself.
1939 *
1940 * (4) To turn a superblock ro the "ro" flag must be used with
1941 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1942 *     in fc->sb_flags.
1943 *
1944 * This disambiguation has rather positive consequences.  Mounting a subvolume
1945 * ro will not also turn the superblock ro. Only the mount for the subvolume
1946 * will become ro.
1947 *
1948 * So, if the superblock creation request comes from the new mount API the
1949 * caller must have explicitly done:
1950 *
1951 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1952 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1953 *
1954 * IOW, at some point the caller must have explicitly turned the whole
1955 * superblock ro and we shouldn't just undo it like we did for the old mount
1956 * API. In any case, it lets us avoid the hack in the new mount API.
1957 *
1958 * Consequently, the remounting hack must only be used for requests originating
1959 * from the old mount API and should be marked for full deprecation so it can be
1960 * turned off in a couple of years.
1961 *
1962 * The new mount API has no reason to support this hack.
1963 */
1964static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1965{
1966	struct vfsmount *mnt;
1967	int ret;
1968	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1969
1970	/*
1971	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1972	 * super block, so invert our setting here and retry the mount so we
1973	 * can get our vfsmount.
1974	 */
1975	if (ro2rw)
1976		fc->sb_flags |= SB_RDONLY;
1977	else
1978		fc->sb_flags &= ~SB_RDONLY;
1979
1980	mnt = fc_mount(fc);
1981	if (IS_ERR(mnt))
1982		return mnt;
1983
1984	if (!fc->oldapi || !ro2rw)
1985		return mnt;
1986
1987	/* We need to convert to rw, call reconfigure. */
1988	fc->sb_flags &= ~SB_RDONLY;
1989	down_write(&mnt->mnt_sb->s_umount);
1990	ret = btrfs_reconfigure(fc);
1991	up_write(&mnt->mnt_sb->s_umount);
1992	if (ret) {
1993		mntput(mnt);
1994		return ERR_PTR(ret);
1995	}
1996	return mnt;
1997}
1998
1999static int btrfs_get_tree_subvol(struct fs_context *fc)
2000{
2001	struct btrfs_fs_info *fs_info = NULL;
2002	struct btrfs_fs_context *ctx = fc->fs_private;
2003	struct fs_context *dup_fc;
2004	struct dentry *dentry;
2005	struct vfsmount *mnt;
2006
2007	/*
2008	 * Setup a dummy root and fs_info for test/set super.  This is because
2009	 * we don't actually fill this stuff out until open_ctree, but we need
2010	 * then open_ctree will properly initialize the file system specific
2011	 * settings later.  btrfs_init_fs_info initializes the static elements
2012	 * of the fs_info (locks and such) to make cleanup easier if we find a
2013	 * superblock with our given fs_devices later on at sget() time.
2014	 */
2015	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2016	if (!fs_info)
2017		return -ENOMEM;
2018
2019	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2021	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2022		btrfs_free_fs_info(fs_info);
2023		return -ENOMEM;
2024	}
2025	btrfs_init_fs_info(fs_info);
2026
2027	dup_fc = vfs_dup_fs_context(fc);
2028	if (IS_ERR(dup_fc)) {
2029		btrfs_free_fs_info(fs_info);
2030		return PTR_ERR(dup_fc);
2031	}
2032
2033	/*
2034	 * When we do the sget_fc this gets transferred to the sb, so we only
2035	 * need to set it on the dup_fc as this is what creates the super block.
2036	 */
2037	dup_fc->s_fs_info = fs_info;
2038
2039	/*
2040	 * We'll do the security settings in our btrfs_get_tree_super() mount
2041	 * loop, they were duplicated into dup_fc, we can drop the originals
2042	 * here.
2043	 */
2044	security_free_mnt_opts(&fc->security);
2045	fc->security = NULL;
2046
2047	mnt = fc_mount(dup_fc);
2048	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2049		mnt = btrfs_reconfigure_for_mount(dup_fc);
2050	put_fs_context(dup_fc);
2051	if (IS_ERR(mnt))
2052		return PTR_ERR(mnt);
2053
2054	/*
2055	 * This free's ->subvol_name, because if it isn't set we have to
2056	 * allocate a buffer to hold the subvol_name, so we just drop our
2057	 * reference to it here.
2058	 */
2059	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2060	ctx->subvol_name = NULL;
2061	if (IS_ERR(dentry))
2062		return PTR_ERR(dentry);
2063
2064	fc->root = dentry;
2065	return 0;
2066}
2067
2068static int btrfs_get_tree(struct fs_context *fc)
2069{
2070	/*
2071	 * Since we use mount_subtree to mount the default/specified subvol, we
2072	 * have to do mounts in two steps.
2073	 *
2074	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2075	 * wrapper around fc_mount() to call back into here again, and this time
2076	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2077	 * everything to open the devices and file system.  Then we return back
2078	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2079	 * from there we can do our mount_subvol() call, which will lookup
2080	 * whichever subvol we're mounting and setup this fc with the
2081	 * appropriate dentry for the subvol.
2082	 */
2083	if (fc->s_fs_info)
2084		return btrfs_get_tree_super(fc);
2085	return btrfs_get_tree_subvol(fc);
2086}
2087
2088static void btrfs_kill_super(struct super_block *sb)
2089{
2090	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091	kill_anon_super(sb);
2092	btrfs_free_fs_info(fs_info);
2093}
2094
2095static void btrfs_free_fs_context(struct fs_context *fc)
2096{
2097	struct btrfs_fs_context *ctx = fc->fs_private;
2098	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2099
2100	if (fs_info)
2101		btrfs_free_fs_info(fs_info);
2102
2103	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2104		kfree(ctx->subvol_name);
2105		kfree(ctx);
2106	}
2107}
2108
2109static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2110{
2111	struct btrfs_fs_context *ctx = src_fc->fs_private;
2112
2113	/*
2114	 * Give a ref to our ctx to this dup, as we want to keep it around for
2115	 * our original fc so we can have the subvolume name or objectid.
2116	 *
2117	 * We unset ->source in the original fc because the dup needs it for
2118	 * mounting, and then once we free the dup it'll free ->source, so we
2119	 * need to make sure we're only pointing to it in one fc.
2120	 */
2121	refcount_inc(&ctx->refs);
2122	fc->fs_private = ctx;
2123	fc->source = src_fc->source;
2124	src_fc->source = NULL;
2125	return 0;
2126}
2127
2128static const struct fs_context_operations btrfs_fs_context_ops = {
2129	.parse_param	= btrfs_parse_param,
2130	.reconfigure	= btrfs_reconfigure,
2131	.get_tree	= btrfs_get_tree,
2132	.dup		= btrfs_dup_fs_context,
2133	.free		= btrfs_free_fs_context,
2134};
2135
2136static int btrfs_init_fs_context(struct fs_context *fc)
2137{
2138	struct btrfs_fs_context *ctx;
2139
2140	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2141	if (!ctx)
2142		return -ENOMEM;
2143
2144	refcount_set(&ctx->refs, 1);
2145	fc->fs_private = ctx;
2146	fc->ops = &btrfs_fs_context_ops;
2147
2148	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2149		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2150	} else {
2151		ctx->thread_pool_size =
2152			min_t(unsigned long, num_online_cpus() + 2, 8);
2153		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2154		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2155	}
2156
2157#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2158	fc->sb_flags |= SB_POSIXACL;
2159#endif
2160	fc->sb_flags |= SB_I_VERSION;
2161
2162	return 0;
2163}
2164
2165static struct file_system_type btrfs_fs_type = {
2166	.owner			= THIS_MODULE,
2167	.name			= "btrfs",
2168	.init_fs_context	= btrfs_init_fs_context,
2169	.parameters		= btrfs_fs_parameters,
2170	.kill_sb		= btrfs_kill_super,
2171	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2172 };
2173
2174MODULE_ALIAS_FS("btrfs");
2175
2176static int btrfs_control_open(struct inode *inode, struct file *file)
2177{
2178	/*
2179	 * The control file's private_data is used to hold the
2180	 * transaction when it is started and is used to keep
2181	 * track of whether a transaction is already in progress.
2182	 */
2183	file->private_data = NULL;
2184	return 0;
2185}
2186
2187/*
2188 * Used by /dev/btrfs-control for devices ioctls.
2189 */
2190static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2191				unsigned long arg)
2192{
2193	struct btrfs_ioctl_vol_args *vol;
2194	struct btrfs_device *device = NULL;
2195	dev_t devt = 0;
2196	int ret = -ENOTTY;
2197
2198	if (!capable(CAP_SYS_ADMIN))
2199		return -EPERM;
2200
2201	vol = memdup_user((void __user *)arg, sizeof(*vol));
2202	if (IS_ERR(vol))
2203		return PTR_ERR(vol);
2204	ret = btrfs_check_ioctl_vol_args_path(vol);
2205	if (ret < 0)
2206		goto out;
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
2248out:
2249	kfree(vol);
2250	return ret;
2251}
2252
2253static int btrfs_freeze(struct super_block *sb)
2254{
2255	struct btrfs_trans_handle *trans;
2256	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2257	struct btrfs_root *root = fs_info->tree_root;
2258
2259	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2260	/*
2261	 * We don't need a barrier here, we'll wait for any transaction that
2262	 * could be in progress on other threads (and do delayed iputs that
2263	 * we want to avoid on a frozen filesystem), or do the commit
2264	 * ourselves.
2265	 */
2266	trans = btrfs_attach_transaction_barrier(root);
2267	if (IS_ERR(trans)) {
2268		/* no transaction, don't bother */
2269		if (PTR_ERR(trans) == -ENOENT)
2270			return 0;
2271		return PTR_ERR(trans);
2272	}
2273	return btrfs_commit_transaction(trans);
2274}
2275
2276static int check_dev_super(struct btrfs_device *dev)
2277{
2278	struct btrfs_fs_info *fs_info = dev->fs_info;
2279	struct btrfs_super_block *sb;
2280	u64 last_trans;
2281	u16 csum_type;
2282	int ret = 0;
2283
2284	/* This should be called with fs still frozen. */
2285	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2286
2287	/* Missing dev, no need to check. */
2288	if (!dev->bdev)
2289		return 0;
2290
2291	/* Only need to check the primary super block. */
2292	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2293	if (IS_ERR(sb))
2294		return PTR_ERR(sb);
2295
2296	/* Verify the checksum. */
2297	csum_type = btrfs_super_csum_type(sb);
2298	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2299		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2300			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2301		ret = -EUCLEAN;
2302		goto out;
2303	}
2304
2305	if (btrfs_check_super_csum(fs_info, sb)) {
2306		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2307		ret = -EUCLEAN;
2308		goto out;
2309	}
2310
2311	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2312	ret = btrfs_validate_super(fs_info, sb, 0);
2313	if (ret < 0)
2314		goto out;
2315
2316	last_trans = btrfs_get_last_trans_committed(fs_info);
2317	if (btrfs_super_generation(sb) != last_trans) {
2318		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2319			  btrfs_super_generation(sb), last_trans);
 
2320		ret = -EUCLEAN;
2321		goto out;
2322	}
2323out:
2324	btrfs_release_disk_super(sb);
2325	return ret;
2326}
2327
2328static int btrfs_unfreeze(struct super_block *sb)
2329{
2330	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2331	struct btrfs_device *device;
2332	int ret = 0;
2333
2334	/*
2335	 * Make sure the fs is not changed by accident (like hibernation then
2336	 * modified by other OS).
2337	 * If we found anything wrong, we mark the fs error immediately.
2338	 *
2339	 * And since the fs is frozen, no one can modify the fs yet, thus
2340	 * we don't need to hold device_list_mutex.
2341	 */
2342	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2343		ret = check_dev_super(device);
2344		if (ret < 0) {
2345			btrfs_handle_fs_error(fs_info, ret,
2346				"super block on devid %llu got modified unexpectedly",
2347				device->devid);
2348			break;
2349		}
2350	}
2351	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2352
2353	/*
2354	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2355	 * above checks failed. Since the fs is either fine or read-only, we're
2356	 * safe to continue, without causing further damage.
2357	 */
2358	return 0;
2359}
2360
2361static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2362{
2363	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2364
2365	/*
2366	 * There should be always a valid pointer in latest_dev, it may be stale
2367	 * for a short moment in case it's being deleted but still valid until
2368	 * the end of RCU grace period.
2369	 */
2370	rcu_read_lock();
2371	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2372	rcu_read_unlock();
2373
2374	return 0;
2375}
2376
2377static const struct super_operations btrfs_super_ops = {
2378	.drop_inode	= btrfs_drop_inode,
2379	.evict_inode	= btrfs_evict_inode,
2380	.put_super	= btrfs_put_super,
2381	.sync_fs	= btrfs_sync_fs,
2382	.show_options	= btrfs_show_options,
2383	.show_devname	= btrfs_show_devname,
2384	.alloc_inode	= btrfs_alloc_inode,
2385	.destroy_inode	= btrfs_destroy_inode,
2386	.free_inode	= btrfs_free_inode,
2387	.statfs		= btrfs_statfs,
 
2388	.freeze_fs	= btrfs_freeze,
2389	.unfreeze_fs	= btrfs_unfreeze,
2390};
2391
2392static const struct file_operations btrfs_ctl_fops = {
2393	.open = btrfs_control_open,
2394	.unlocked_ioctl	 = btrfs_control_ioctl,
2395	.compat_ioctl = compat_ptr_ioctl,
2396	.owner	 = THIS_MODULE,
2397	.llseek = noop_llseek,
2398};
2399
2400static struct miscdevice btrfs_misc = {
2401	.minor		= BTRFS_MINOR,
2402	.name		= "btrfs-control",
2403	.fops		= &btrfs_ctl_fops
2404};
2405
2406MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2407MODULE_ALIAS("devname:btrfs-control");
2408
2409static int __init btrfs_interface_init(void)
2410{
2411	return misc_register(&btrfs_misc);
2412}
2413
2414static __cold void btrfs_interface_exit(void)
2415{
2416	misc_deregister(&btrfs_misc);
2417}
2418
2419static int __init btrfs_print_mod_info(void)
2420{
2421	static const char options[] = ""
2422#ifdef CONFIG_BTRFS_DEBUG
2423			", debug=on"
2424#endif
2425#ifdef CONFIG_BTRFS_ASSERT
2426			", assert=on"
2427#endif
 
 
 
2428#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2429			", ref-verify=on"
2430#endif
2431#ifdef CONFIG_BLK_DEV_ZONED
2432			", zoned=yes"
2433#else
2434			", zoned=no"
2435#endif
2436#ifdef CONFIG_FS_VERITY
2437			", fsverity=yes"
2438#else
2439			", fsverity=no"
2440#endif
2441			;
2442	pr_info("Btrfs loaded%s\n", options);
2443	return 0;
2444}
2445
2446static int register_btrfs(void)
2447{
2448	return register_filesystem(&btrfs_fs_type);
2449}
2450
2451static void unregister_btrfs(void)
2452{
2453	unregister_filesystem(&btrfs_fs_type);
2454}
2455
2456/* Helper structure for long init/exit functions. */
2457struct init_sequence {
2458	int (*init_func)(void);
2459	/* Can be NULL if the init_func doesn't need cleanup. */
2460	void (*exit_func)(void);
2461};
2462
2463static const struct init_sequence mod_init_seq[] = {
2464	{
2465		.init_func = btrfs_props_init,
2466		.exit_func = NULL,
2467	}, {
2468		.init_func = btrfs_init_sysfs,
2469		.exit_func = btrfs_exit_sysfs,
2470	}, {
2471		.init_func = btrfs_init_compress,
2472		.exit_func = btrfs_exit_compress,
2473	}, {
2474		.init_func = btrfs_init_cachep,
2475		.exit_func = btrfs_destroy_cachep,
2476	}, {
2477		.init_func = btrfs_transaction_init,
2478		.exit_func = btrfs_transaction_exit,
2479	}, {
2480		.init_func = btrfs_ctree_init,
2481		.exit_func = btrfs_ctree_exit,
2482	}, {
2483		.init_func = btrfs_free_space_init,
2484		.exit_func = btrfs_free_space_exit,
2485	}, {
2486		.init_func = extent_state_init_cachep,
2487		.exit_func = extent_state_free_cachep,
2488	}, {
2489		.init_func = extent_buffer_init_cachep,
2490		.exit_func = extent_buffer_free_cachep,
2491	}, {
2492		.init_func = btrfs_bioset_init,
2493		.exit_func = btrfs_bioset_exit,
2494	}, {
2495		.init_func = extent_map_init,
2496		.exit_func = extent_map_exit,
2497	}, {
2498		.init_func = ordered_data_init,
2499		.exit_func = ordered_data_exit,
2500	}, {
2501		.init_func = btrfs_delayed_inode_init,
2502		.exit_func = btrfs_delayed_inode_exit,
2503	}, {
2504		.init_func = btrfs_auto_defrag_init,
2505		.exit_func = btrfs_auto_defrag_exit,
2506	}, {
2507		.init_func = btrfs_delayed_ref_init,
2508		.exit_func = btrfs_delayed_ref_exit,
2509	}, {
2510		.init_func = btrfs_prelim_ref_init,
2511		.exit_func = btrfs_prelim_ref_exit,
2512	}, {
2513		.init_func = btrfs_interface_init,
2514		.exit_func = btrfs_interface_exit,
2515	}, {
2516		.init_func = btrfs_print_mod_info,
2517		.exit_func = NULL,
2518	}, {
2519		.init_func = btrfs_run_sanity_tests,
2520		.exit_func = NULL,
2521	}, {
2522		.init_func = register_btrfs,
2523		.exit_func = unregister_btrfs,
2524	}
2525};
2526
2527static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2528
2529static __always_inline void btrfs_exit_btrfs_fs(void)
2530{
2531	int i;
2532
2533	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2534		if (!mod_init_result[i])
2535			continue;
2536		if (mod_init_seq[i].exit_func)
2537			mod_init_seq[i].exit_func();
2538		mod_init_result[i] = false;
2539	}
2540}
2541
2542static void __exit exit_btrfs_fs(void)
2543{
2544	btrfs_exit_btrfs_fs();
2545	btrfs_cleanup_fs_uuids();
2546}
2547
2548static int __init init_btrfs_fs(void)
2549{
2550	int ret;
2551	int i;
2552
2553	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2554		ASSERT(!mod_init_result[i]);
2555		ret = mod_init_seq[i].init_func();
2556		if (ret < 0) {
2557			btrfs_exit_btrfs_fs();
2558			return ret;
2559		}
2560		mod_init_result[i] = true;
2561	}
2562	return 0;
2563}
2564
2565late_initcall(init_btrfs_fs);
2566module_exit(exit_btrfs_fs)
2567
2568MODULE_LICENSE("GPL");
2569MODULE_SOFTDEP("pre: crc32c");
2570MODULE_SOFTDEP("pre: xxhash64");
2571MODULE_SOFTDEP("pre: sha256");
2572MODULE_SOFTDEP("pre: blake2b-256");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
 
 
  29#include "messages.h"
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "bio.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#include "raid56.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "defrag.h"
  56#include "dir-item.h"
  57#include "ioctl.h"
  58#include "scrub.h"
  59#include "verity.h"
  60#include "super.h"
 
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/btrfs.h>
  63
  64static const struct super_operations btrfs_super_ops;
  65
  66/*
  67 * Types for mounting the default subvolume and a subvolume explicitly
  68 * requested by subvol=/path. That way the callchain is straightforward and we
  69 * don't have to play tricks with the mount options and recursive calls to
  70 * btrfs_mount.
  71 *
  72 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  73 */
  74static struct file_system_type btrfs_fs_type;
  75static struct file_system_type btrfs_root_fs_type;
  76
  77static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  78
  79static void btrfs_put_super(struct super_block *sb)
  80{
  81	close_ctree(btrfs_sb(sb));
 
 
 
  82}
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84enum {
  85	Opt_acl, Opt_noacl,
  86	Opt_clear_cache,
  87	Opt_commit_interval,
  88	Opt_compress,
  89	Opt_compress_force,
  90	Opt_compress_force_type,
  91	Opt_compress_type,
  92	Opt_degraded,
  93	Opt_device,
  94	Opt_fatal_errors,
  95	Opt_flushoncommit, Opt_noflushoncommit,
  96	Opt_max_inline,
  97	Opt_barrier, Opt_nobarrier,
  98	Opt_datacow, Opt_nodatacow,
  99	Opt_datasum, Opt_nodatasum,
 100	Opt_defrag, Opt_nodefrag,
 101	Opt_discard, Opt_nodiscard,
 102	Opt_discard_mode,
 103	Opt_norecovery,
 104	Opt_ratio,
 105	Opt_rescan_uuid_tree,
 106	Opt_skip_balance,
 107	Opt_space_cache, Opt_no_space_cache,
 108	Opt_space_cache_version,
 109	Opt_ssd, Opt_nossd,
 110	Opt_ssd_spread, Opt_nossd_spread,
 111	Opt_subvol,
 112	Opt_subvol_empty,
 113	Opt_subvolid,
 114	Opt_thread_pool,
 115	Opt_treelog, Opt_notreelog,
 116	Opt_user_subvol_rm_allowed,
 117
 118	/* Rescue options */
 119	Opt_rescue,
 120	Opt_usebackuproot,
 121	Opt_nologreplay,
 122	Opt_ignorebadroots,
 123	Opt_ignoredatacsums,
 124	Opt_rescue_all,
 125
 126	/* Deprecated options */
 127	Opt_recovery,
 128	Opt_inode_cache, Opt_noinode_cache,
 129
 130	/* Debugging options */
 131	Opt_check_integrity,
 132	Opt_check_integrity_including_extent_data,
 133	Opt_check_integrity_print_mask,
 134	Opt_enospc_debug, Opt_noenospc_debug,
 135#ifdef CONFIG_BTRFS_DEBUG
 136	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 137#endif
 138#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 139	Opt_ref_verify,
 140#endif
 141	Opt_err,
 142};
 143
 144static const match_table_t tokens = {
 145	{Opt_acl, "acl"},
 146	{Opt_noacl, "noacl"},
 147	{Opt_clear_cache, "clear_cache"},
 148	{Opt_commit_interval, "commit=%u"},
 149	{Opt_compress, "compress"},
 150	{Opt_compress_type, "compress=%s"},
 151	{Opt_compress_force, "compress-force"},
 152	{Opt_compress_force_type, "compress-force=%s"},
 153	{Opt_degraded, "degraded"},
 154	{Opt_device, "device=%s"},
 155	{Opt_fatal_errors, "fatal_errors=%s"},
 156	{Opt_flushoncommit, "flushoncommit"},
 157	{Opt_noflushoncommit, "noflushoncommit"},
 158	{Opt_inode_cache, "inode_cache"},
 159	{Opt_noinode_cache, "noinode_cache"},
 160	{Opt_max_inline, "max_inline=%s"},
 161	{Opt_barrier, "barrier"},
 162	{Opt_nobarrier, "nobarrier"},
 163	{Opt_datacow, "datacow"},
 164	{Opt_nodatacow, "nodatacow"},
 165	{Opt_datasum, "datasum"},
 166	{Opt_nodatasum, "nodatasum"},
 167	{Opt_defrag, "autodefrag"},
 168	{Opt_nodefrag, "noautodefrag"},
 169	{Opt_discard, "discard"},
 170	{Opt_discard_mode, "discard=%s"},
 171	{Opt_nodiscard, "nodiscard"},
 172	{Opt_norecovery, "norecovery"},
 173	{Opt_ratio, "metadata_ratio=%u"},
 174	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 175	{Opt_skip_balance, "skip_balance"},
 176	{Opt_space_cache, "space_cache"},
 177	{Opt_no_space_cache, "nospace_cache"},
 178	{Opt_space_cache_version, "space_cache=%s"},
 179	{Opt_ssd, "ssd"},
 180	{Opt_nossd, "nossd"},
 181	{Opt_ssd_spread, "ssd_spread"},
 182	{Opt_nossd_spread, "nossd_spread"},
 183	{Opt_subvol, "subvol=%s"},
 184	{Opt_subvol_empty, "subvol="},
 185	{Opt_subvolid, "subvolid=%s"},
 186	{Opt_thread_pool, "thread_pool=%u"},
 187	{Opt_treelog, "treelog"},
 188	{Opt_notreelog, "notreelog"},
 189	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 190
 191	/* Rescue options */
 192	{Opt_rescue, "rescue=%s"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193	/* Deprecated, with alias rescue=nologreplay */
 194	{Opt_nologreplay, "nologreplay"},
 195	/* Deprecated, with alias rescue=usebackuproot */
 196	{Opt_usebackuproot, "usebackuproot"},
 197
 198	/* Deprecated options */
 199	{Opt_recovery, "recovery"},
 200
 201	/* Debugging options */
 202	{Opt_check_integrity, "check_int"},
 203	{Opt_check_integrity_including_extent_data, "check_int_data"},
 204	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 205	{Opt_enospc_debug, "enospc_debug"},
 206	{Opt_noenospc_debug, "noenospc_debug"},
 207#ifdef CONFIG_BTRFS_DEBUG
 208	{Opt_fragment_data, "fragment=data"},
 209	{Opt_fragment_metadata, "fragment=metadata"},
 210	{Opt_fragment_all, "fragment=all"},
 211#endif
 212#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 213	{Opt_ref_verify, "ref_verify"},
 214#endif
 215	{Opt_err, NULL},
 216};
 217
 218static const match_table_t rescue_tokens = {
 219	{Opt_usebackuproot, "usebackuproot"},
 220	{Opt_nologreplay, "nologreplay"},
 221	{Opt_ignorebadroots, "ignorebadroots"},
 222	{Opt_ignorebadroots, "ibadroots"},
 223	{Opt_ignoredatacsums, "ignoredatacsums"},
 224	{Opt_ignoredatacsums, "idatacsums"},
 225	{Opt_rescue_all, "all"},
 226	{Opt_err, NULL},
 227};
 228
 229static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
 230			    const char *opt_name)
 231{
 232	if (fs_info->mount_opt & opt) {
 233		btrfs_err(fs_info, "%s must be used with ro mount option",
 234			  opt_name);
 235		return true;
 236	}
 237	return false;
 238}
 239
 240static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 241{
 242	char *opts;
 243	char *orig;
 244	char *p;
 245	substring_t args[MAX_OPT_ARGS];
 246	int ret = 0;
 247
 248	opts = kstrdup(options, GFP_KERNEL);
 249	if (!opts)
 250		return -ENOMEM;
 251	orig = opts;
 252
 253	while ((p = strsep(&opts, ":")) != NULL) {
 254		int token;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256		if (!*p)
 257			continue;
 258		token = match_token(p, rescue_tokens, args);
 259		switch (token){
 260		case Opt_usebackuproot:
 261			btrfs_info(info,
 262				   "trying to use backup root at mount time");
 263			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 264			break;
 265		case Opt_nologreplay:
 266			btrfs_set_and_info(info, NOLOGREPLAY,
 267					   "disabling log replay at mount time");
 268			break;
 269		case Opt_ignorebadroots:
 270			btrfs_set_and_info(info, IGNOREBADROOTS,
 271					   "ignoring bad roots");
 272			break;
 273		case Opt_ignoredatacsums:
 274			btrfs_set_and_info(info, IGNOREDATACSUMS,
 275					   "ignoring data csums");
 276			break;
 277		case Opt_rescue_all:
 278			btrfs_info(info, "enabling all of the rescue options");
 279			btrfs_set_and_info(info, IGNOREDATACSUMS,
 280					   "ignoring data csums");
 281			btrfs_set_and_info(info, IGNOREBADROOTS,
 282					   "ignoring bad roots");
 283			btrfs_set_and_info(info, NOLOGREPLAY,
 284					   "disabling log replay at mount time");
 285			break;
 286		case Opt_err:
 287			btrfs_info(info, "unrecognized rescue option '%s'", p);
 288			ret = -EINVAL;
 289			goto out;
 290		default:
 291			break;
 292		}
 293
 
 
 
 
 
 
 294	}
 295out:
 296	kfree(orig);
 297	return ret;
 298}
 299
 300/*
 301 * Regular mount options parser.  Everything that is needed only when
 302 * reading in a new superblock is parsed here.
 303 * XXX JDM: This needs to be cleaned up for remount.
 304 */
 305int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 306			unsigned long new_flags)
 307{
 308	substring_t args[MAX_OPT_ARGS];
 309	char *p, *num;
 310	int intarg;
 311	int ret = 0;
 312	char *compress_type;
 313	bool compress_force = false;
 314	enum btrfs_compression_type saved_compress_type;
 315	int saved_compress_level;
 316	bool saved_compress_force;
 317	int no_compress = 0;
 318	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
 319
 320	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 321		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 322	else if (btrfs_free_space_cache_v1_active(info)) {
 323		if (btrfs_is_zoned(info)) {
 324			btrfs_info(info,
 325			"zoned: clearing existing space cache");
 326			btrfs_set_super_cache_generation(info->super_copy, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327		} else {
 328			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 329		}
 330	}
 331
 332	/*
 333	 * Even the options are empty, we still need to do extra check
 334	 * against new flags
 335	 */
 336	if (!options)
 337		goto check;
 338
 339	while ((p = strsep(&options, ",")) != NULL) {
 340		int token;
 341		if (!*p)
 342			continue;
 343
 344		token = match_token(p, tokens, args);
 345		switch (token) {
 346		case Opt_degraded:
 347			btrfs_info(info, "allowing degraded mounts");
 348			btrfs_set_opt(info->mount_opt, DEGRADED);
 349			break;
 350		case Opt_subvol:
 351		case Opt_subvol_empty:
 352		case Opt_subvolid:
 353		case Opt_device:
 354			/*
 355			 * These are parsed by btrfs_parse_subvol_options or
 356			 * btrfs_parse_device_options and can be ignored here.
 357			 */
 358			break;
 359		case Opt_nodatasum:
 360			btrfs_set_and_info(info, NODATASUM,
 361					   "setting nodatasum");
 362			break;
 363		case Opt_datasum:
 364			if (btrfs_test_opt(info, NODATASUM)) {
 365				if (btrfs_test_opt(info, NODATACOW))
 366					btrfs_info(info,
 367						   "setting datasum, datacow enabled");
 368				else
 369					btrfs_info(info, "setting datasum");
 370			}
 371			btrfs_clear_opt(info->mount_opt, NODATACOW);
 372			btrfs_clear_opt(info->mount_opt, NODATASUM);
 373			break;
 374		case Opt_nodatacow:
 375			if (!btrfs_test_opt(info, NODATACOW)) {
 376				if (!btrfs_test_opt(info, COMPRESS) ||
 377				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 378					btrfs_info(info,
 379						   "setting nodatacow, compression disabled");
 380				} else {
 381					btrfs_info(info, "setting nodatacow");
 382				}
 383			}
 384			btrfs_clear_opt(info->mount_opt, COMPRESS);
 385			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 386			btrfs_set_opt(info->mount_opt, NODATACOW);
 387			btrfs_set_opt(info->mount_opt, NODATASUM);
 388			break;
 389		case Opt_datacow:
 390			btrfs_clear_and_info(info, NODATACOW,
 391					     "setting datacow");
 392			break;
 393		case Opt_compress_force:
 394		case Opt_compress_force_type:
 395			compress_force = true;
 396			fallthrough;
 397		case Opt_compress:
 398		case Opt_compress_type:
 399			saved_compress_type = btrfs_test_opt(info,
 400							     COMPRESS) ?
 401				info->compress_type : BTRFS_COMPRESS_NONE;
 402			saved_compress_force =
 403				btrfs_test_opt(info, FORCE_COMPRESS);
 404			saved_compress_level = info->compress_level;
 405			if (token == Opt_compress ||
 406			    token == Opt_compress_force ||
 407			    strncmp(args[0].from, "zlib", 4) == 0) {
 408				compress_type = "zlib";
 409
 410				info->compress_type = BTRFS_COMPRESS_ZLIB;
 411				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 412				/*
 413				 * args[0] contains uninitialized data since
 414				 * for these tokens we don't expect any
 415				 * parameter.
 416				 */
 417				if (token != Opt_compress &&
 418				    token != Opt_compress_force)
 419					info->compress_level =
 420					  btrfs_compress_str2level(
 421							BTRFS_COMPRESS_ZLIB,
 422							args[0].from + 4);
 423				btrfs_set_opt(info->mount_opt, COMPRESS);
 424				btrfs_clear_opt(info->mount_opt, NODATACOW);
 425				btrfs_clear_opt(info->mount_opt, NODATASUM);
 426				no_compress = 0;
 427			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 428				compress_type = "lzo";
 429				info->compress_type = BTRFS_COMPRESS_LZO;
 430				info->compress_level = 0;
 431				btrfs_set_opt(info->mount_opt, COMPRESS);
 432				btrfs_clear_opt(info->mount_opt, NODATACOW);
 433				btrfs_clear_opt(info->mount_opt, NODATASUM);
 434				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 435				no_compress = 0;
 436			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 437				compress_type = "zstd";
 438				info->compress_type = BTRFS_COMPRESS_ZSTD;
 439				info->compress_level =
 440					btrfs_compress_str2level(
 441							 BTRFS_COMPRESS_ZSTD,
 442							 args[0].from + 4);
 443				btrfs_set_opt(info->mount_opt, COMPRESS);
 444				btrfs_clear_opt(info->mount_opt, NODATACOW);
 445				btrfs_clear_opt(info->mount_opt, NODATASUM);
 446				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 447				no_compress = 0;
 448			} else if (strncmp(args[0].from, "no", 2) == 0) {
 449				compress_type = "no";
 450				info->compress_level = 0;
 451				info->compress_type = 0;
 452				btrfs_clear_opt(info->mount_opt, COMPRESS);
 453				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 454				compress_force = false;
 455				no_compress++;
 456			} else {
 457				btrfs_err(info, "unrecognized compression value %s",
 458					  args[0].from);
 459				ret = -EINVAL;
 460				goto out;
 461			}
 462
 463			if (compress_force) {
 464				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 465			} else {
 466				/*
 467				 * If we remount from compress-force=xxx to
 468				 * compress=xxx, we need clear FORCE_COMPRESS
 469				 * flag, otherwise, there is no way for users
 470				 * to disable forcible compression separately.
 471				 */
 472				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 473			}
 474			if (no_compress == 1) {
 475				btrfs_info(info, "use no compression");
 476			} else if ((info->compress_type != saved_compress_type) ||
 477				   (compress_force != saved_compress_force) ||
 478				   (info->compress_level != saved_compress_level)) {
 479				btrfs_info(info, "%s %s compression, level %d",
 480					   (compress_force) ? "force" : "use",
 481					   compress_type, info->compress_level);
 482			}
 483			compress_force = false;
 484			break;
 485		case Opt_ssd:
 486			btrfs_set_and_info(info, SSD,
 487					   "enabling ssd optimizations");
 488			btrfs_clear_opt(info->mount_opt, NOSSD);
 489			break;
 490		case Opt_ssd_spread:
 491			btrfs_set_and_info(info, SSD,
 492					   "enabling ssd optimizations");
 493			btrfs_set_and_info(info, SSD_SPREAD,
 494					   "using spread ssd allocation scheme");
 495			btrfs_clear_opt(info->mount_opt, NOSSD);
 496			break;
 497		case Opt_nossd:
 498			btrfs_set_opt(info->mount_opt, NOSSD);
 499			btrfs_clear_and_info(info, SSD,
 500					     "not using ssd optimizations");
 501			fallthrough;
 502		case Opt_nossd_spread:
 503			btrfs_clear_and_info(info, SSD_SPREAD,
 504					     "not using spread ssd allocation scheme");
 505			break;
 506		case Opt_barrier:
 507			btrfs_clear_and_info(info, NOBARRIER,
 508					     "turning on barriers");
 509			break;
 510		case Opt_nobarrier:
 511			btrfs_set_and_info(info, NOBARRIER,
 512					   "turning off barriers");
 513			break;
 514		case Opt_thread_pool:
 515			ret = match_int(&args[0], &intarg);
 516			if (ret) {
 517				btrfs_err(info, "unrecognized thread_pool value %s",
 518					  args[0].from);
 519				goto out;
 520			} else if (intarg == 0) {
 521				btrfs_err(info, "invalid value 0 for thread_pool");
 522				ret = -EINVAL;
 523				goto out;
 524			}
 525			info->thread_pool_size = intarg;
 526			break;
 527		case Opt_max_inline:
 528			num = match_strdup(&args[0]);
 529			if (num) {
 530				info->max_inline = memparse(num, NULL);
 531				kfree(num);
 532
 533				if (info->max_inline) {
 534					info->max_inline = min_t(u64,
 535						info->max_inline,
 536						info->sectorsize);
 537				}
 538				btrfs_info(info, "max_inline at %llu",
 539					   info->max_inline);
 540			} else {
 541				ret = -ENOMEM;
 542				goto out;
 543			}
 544			break;
 545		case Opt_acl:
 546#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 547			info->sb->s_flags |= SB_POSIXACL;
 548			break;
 549#else
 550			btrfs_err(info, "support for ACL not compiled in!");
 551			ret = -EINVAL;
 552			goto out;
 553#endif
 554		case Opt_noacl:
 555			info->sb->s_flags &= ~SB_POSIXACL;
 556			break;
 557		case Opt_notreelog:
 558			btrfs_set_and_info(info, NOTREELOG,
 559					   "disabling tree log");
 560			break;
 561		case Opt_treelog:
 562			btrfs_clear_and_info(info, NOTREELOG,
 563					     "enabling tree log");
 564			break;
 565		case Opt_norecovery:
 566		case Opt_nologreplay:
 567			btrfs_warn(info,
 
 
 
 
 
 568		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 569			btrfs_set_and_info(info, NOLOGREPLAY,
 570					   "disabling log replay at mount time");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571			break;
 572		case Opt_flushoncommit:
 573			btrfs_set_and_info(info, FLUSHONCOMMIT,
 574					   "turning on flush-on-commit");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575			break;
 576		case Opt_noflushoncommit:
 577			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 578					     "turning off flush-on-commit");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579			break;
 580		case Opt_ratio:
 581			ret = match_int(&args[0], &intarg);
 582			if (ret) {
 583				btrfs_err(info, "unrecognized metadata_ratio value %s",
 584					  args[0].from);
 585				goto out;
 586			}
 587			info->metadata_ratio = intarg;
 588			btrfs_info(info, "metadata ratio %u",
 589				   info->metadata_ratio);
 590			break;
 591		case Opt_discard:
 592		case Opt_discard_mode:
 593			if (token == Opt_discard ||
 594			    strcmp(args[0].from, "sync") == 0) {
 595				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 596				btrfs_set_and_info(info, DISCARD_SYNC,
 597						   "turning on sync discard");
 598			} else if (strcmp(args[0].from, "async") == 0) {
 599				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 600				btrfs_set_and_info(info, DISCARD_ASYNC,
 601						   "turning on async discard");
 602			} else {
 603				btrfs_err(info, "unrecognized discard mode value %s",
 604					  args[0].from);
 605				ret = -EINVAL;
 606				goto out;
 607			}
 608			btrfs_clear_opt(info->mount_opt, NODISCARD);
 609			break;
 610		case Opt_nodiscard:
 611			btrfs_clear_and_info(info, DISCARD_SYNC,
 612					     "turning off discard");
 613			btrfs_clear_and_info(info, DISCARD_ASYNC,
 614					     "turning off async discard");
 615			btrfs_set_opt(info->mount_opt, NODISCARD);
 616			break;
 617		case Opt_space_cache:
 618		case Opt_space_cache_version:
 619			/*
 620			 * We already set FREE_SPACE_TREE above because we have
 621			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
 622			 * to allow v1 to be set for extent tree v2, simply
 623			 * ignore this setting if we're extent tree v2.
 624			 */
 625			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 626				break;
 627			if (token == Opt_space_cache ||
 628			    strcmp(args[0].from, "v1") == 0) {
 629				btrfs_clear_opt(info->mount_opt,
 630						FREE_SPACE_TREE);
 631				btrfs_set_and_info(info, SPACE_CACHE,
 632					   "enabling disk space caching");
 633			} else if (strcmp(args[0].from, "v2") == 0) {
 634				btrfs_clear_opt(info->mount_opt,
 635						SPACE_CACHE);
 636				btrfs_set_and_info(info, FREE_SPACE_TREE,
 637						   "enabling free space tree");
 638			} else {
 639				btrfs_err(info, "unrecognized space_cache value %s",
 640					  args[0].from);
 641				ret = -EINVAL;
 642				goto out;
 643			}
 644			break;
 645		case Opt_rescan_uuid_tree:
 646			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 647			break;
 648		case Opt_no_space_cache:
 649			/*
 650			 * We cannot operate without the free space tree with
 651			 * extent tree v2, ignore this option.
 652			 */
 653			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 654				break;
 655			if (btrfs_test_opt(info, SPACE_CACHE)) {
 656				btrfs_clear_and_info(info, SPACE_CACHE,
 657					     "disabling disk space caching");
 658			}
 659			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 660				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 661					     "disabling free space tree");
 662			}
 663			break;
 664		case Opt_inode_cache:
 665		case Opt_noinode_cache:
 666			btrfs_warn(info,
 667	"the 'inode_cache' option is deprecated and has no effect since 5.11");
 668			break;
 669		case Opt_clear_cache:
 670			/*
 671			 * We cannot clear the free space tree with extent tree
 672			 * v2, ignore this option.
 673			 */
 674			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
 675				break;
 676			btrfs_set_and_info(info, CLEAR_CACHE,
 677					   "force clearing of disk cache");
 678			break;
 679		case Opt_user_subvol_rm_allowed:
 680			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 681			break;
 682		case Opt_enospc_debug:
 683			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 684			break;
 685		case Opt_noenospc_debug:
 686			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 687			break;
 688		case Opt_defrag:
 689			btrfs_set_and_info(info, AUTO_DEFRAG,
 690					   "enabling auto defrag");
 691			break;
 692		case Opt_nodefrag:
 693			btrfs_clear_and_info(info, AUTO_DEFRAG,
 694					     "disabling auto defrag");
 695			break;
 696		case Opt_recovery:
 697		case Opt_usebackuproot:
 698			btrfs_warn(info,
 699			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 700				   token == Opt_recovery ? "recovery" :
 701				   "usebackuproot");
 702			btrfs_info(info,
 703				   "trying to use backup root at mount time");
 704			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 705			break;
 706		case Opt_skip_balance:
 707			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 708			break;
 709#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 710		case Opt_check_integrity_including_extent_data:
 711			btrfs_info(info,
 712				   "enabling check integrity including extent data");
 713			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
 714			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 715			break;
 716		case Opt_check_integrity:
 717			btrfs_info(info, "enabling check integrity");
 718			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 719			break;
 720		case Opt_check_integrity_print_mask:
 721			ret = match_int(&args[0], &intarg);
 722			if (ret) {
 723				btrfs_err(info,
 724				"unrecognized check_integrity_print_mask value %s",
 725					args[0].from);
 726				goto out;
 727			}
 728			info->check_integrity_print_mask = intarg;
 729			btrfs_info(info, "check_integrity_print_mask 0x%x",
 730				   info->check_integrity_print_mask);
 731			break;
 732#else
 733		case Opt_check_integrity_including_extent_data:
 734		case Opt_check_integrity:
 735		case Opt_check_integrity_print_mask:
 736			btrfs_err(info,
 737				  "support for check_integrity* not compiled in!");
 738			ret = -EINVAL;
 739			goto out;
 740#endif
 741		case Opt_fatal_errors:
 742			if (strcmp(args[0].from, "panic") == 0) {
 743				btrfs_set_opt(info->mount_opt,
 744					      PANIC_ON_FATAL_ERROR);
 745			} else if (strcmp(args[0].from, "bug") == 0) {
 746				btrfs_clear_opt(info->mount_opt,
 747					      PANIC_ON_FATAL_ERROR);
 748			} else {
 749				btrfs_err(info, "unrecognized fatal_errors value %s",
 750					  args[0].from);
 751				ret = -EINVAL;
 752				goto out;
 753			}
 754			break;
 755		case Opt_commit_interval:
 756			intarg = 0;
 757			ret = match_int(&args[0], &intarg);
 758			if (ret) {
 759				btrfs_err(info, "unrecognized commit_interval value %s",
 760					  args[0].from);
 761				ret = -EINVAL;
 762				goto out;
 763			}
 764			if (intarg == 0) {
 765				btrfs_info(info,
 766					   "using default commit interval %us",
 767					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 768				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 769			} else if (intarg > 300) {
 770				btrfs_warn(info, "excessive commit interval %d",
 771					   intarg);
 772			}
 773			info->commit_interval = intarg;
 774			break;
 775		case Opt_rescue:
 776			ret = parse_rescue_options(info, args[0].from);
 777			if (ret < 0) {
 778				btrfs_err(info, "unrecognized rescue value %s",
 779					  args[0].from);
 780				goto out;
 781			}
 782			break;
 
 
 
 
 
 
 783#ifdef CONFIG_BTRFS_DEBUG
 784		case Opt_fragment_all:
 785			btrfs_info(info, "fragmenting all space");
 786			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 787			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 
 788			break;
 789		case Opt_fragment_metadata:
 790			btrfs_info(info, "fragmenting metadata");
 791			btrfs_set_opt(info->mount_opt,
 792				      FRAGMENT_METADATA);
 793			break;
 794		case Opt_fragment_data:
 795			btrfs_info(info, "fragmenting data");
 796			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 797			break;
 
 
 
 
 
 
 798#endif
 799#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 800		case Opt_ref_verify:
 801			btrfs_info(info, "doing ref verification");
 802			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 803			break;
 804#endif
 805		case Opt_err:
 806			btrfs_err(info, "unrecognized mount option '%s'", p);
 807			ret = -EINVAL;
 808			goto out;
 809		default:
 810			break;
 811		}
 812	}
 813check:
 814	/* We're read-only, don't have to check. */
 815	if (new_flags & SB_RDONLY)
 816		goto out;
 817
 818	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 819	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 820	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
 821		ret = -EINVAL;
 822out:
 823	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 824	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 825	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 826		btrfs_err(info, "cannot disable free space tree");
 827		ret = -EINVAL;
 828
 829	}
 830	if (!ret)
 831		ret = btrfs_check_mountopts_zoned(info);
 832	if (!ret && !remounting) {
 833		if (btrfs_test_opt(info, SPACE_CACHE))
 834			btrfs_info(info, "disk space caching is enabled");
 835		if (btrfs_test_opt(info, FREE_SPACE_TREE))
 836			btrfs_info(info, "using free space tree");
 837	}
 838	return ret;
 839}
 840
 841/*
 842 * Parse mount options that are required early in the mount process.
 843 *
 844 * All other options will be parsed on much later in the mount process and
 845 * only when we need to allocate a new super block.
 846 */
 847static int btrfs_parse_device_options(const char *options, fmode_t flags,
 848				      void *holder)
 849{
 850	substring_t args[MAX_OPT_ARGS];
 851	char *device_name, *opts, *orig, *p;
 852	struct btrfs_device *device = NULL;
 853	int error = 0;
 854
 855	lockdep_assert_held(&uuid_mutex);
 
 
 
 
 
 
 
 
 
 
 856
 857	if (!options)
 858		return 0;
 
 
 859
 860	/*
 861	 * strsep changes the string, duplicate it because btrfs_parse_options
 862	 * gets called later
 863	 */
 864	opts = kstrdup(options, GFP_KERNEL);
 865	if (!opts)
 866		return -ENOMEM;
 867	orig = opts;
 868
 869	while ((p = strsep(&opts, ",")) != NULL) {
 870		int token;
 
 
 
 
 
 
 
 
 
 871
 872		if (!*p)
 873			continue;
 874
 875		token = match_token(p, tokens, args);
 876		if (token == Opt_device) {
 877			device_name = match_strdup(&args[0]);
 878			if (!device_name) {
 879				error = -ENOMEM;
 880				goto out;
 881			}
 882			device = btrfs_scan_one_device(device_name, flags,
 883					holder);
 884			kfree(device_name);
 885			if (IS_ERR(device)) {
 886				error = PTR_ERR(device);
 887				goto out;
 888			}
 889		}
 890	}
 891
 892out:
 893	kfree(orig);
 894	return error;
 895}
 896
 897/*
 898 * Parse mount options that are related to subvolume id
 
 
 
 899 *
 900 * The value is later passed to mount_subvol()
 
 
 
 
 901 */
 902static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
 903		u64 *subvol_objectid)
 904{
 905	substring_t args[MAX_OPT_ARGS];
 906	char *opts, *orig, *p;
 907	int error = 0;
 908	u64 subvolid;
 909
 910	if (!options)
 911		return 0;
 
 
 912
 913	/*
 914	 * strsep changes the string, duplicate it because
 915	 * btrfs_parse_device_options gets called later
 916	 */
 917	opts = kstrdup(options, GFP_KERNEL);
 918	if (!opts)
 919		return -ENOMEM;
 920	orig = opts;
 
 
 
 
 
 921
 922	while ((p = strsep(&opts, ",")) != NULL) {
 923		int token;
 924		if (!*p)
 925			continue;
 926
 927		token = match_token(p, tokens, args);
 928		switch (token) {
 929		case Opt_subvol:
 930			kfree(*subvol_name);
 931			*subvol_name = match_strdup(&args[0]);
 932			if (!*subvol_name) {
 933				error = -ENOMEM;
 934				goto out;
 935			}
 936			break;
 937		case Opt_subvolid:
 938			error = match_u64(&args[0], &subvolid);
 939			if (error)
 940				goto out;
 941
 942			/* we want the original fs_tree */
 943			if (subvolid == 0)
 944				subvolid = BTRFS_FS_TREE_OBJECTID;
 
 
 
 
 
 
 945
 946			*subvol_objectid = subvolid;
 947			break;
 948		default:
 949			break;
 950		}
 951	}
 952
 953out:
 954	kfree(orig);
 955	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957
 958char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 959					  u64 subvol_objectid)
 960{
 961	struct btrfs_root *root = fs_info->tree_root;
 962	struct btrfs_root *fs_root = NULL;
 963	struct btrfs_root_ref *root_ref;
 964	struct btrfs_inode_ref *inode_ref;
 965	struct btrfs_key key;
 966	struct btrfs_path *path = NULL;
 967	char *name = NULL, *ptr;
 968	u64 dirid;
 969	int len;
 970	int ret;
 971
 972	path = btrfs_alloc_path();
 973	if (!path) {
 974		ret = -ENOMEM;
 975		goto err;
 976	}
 977
 978	name = kmalloc(PATH_MAX, GFP_KERNEL);
 979	if (!name) {
 980		ret = -ENOMEM;
 981		goto err;
 982	}
 983	ptr = name + PATH_MAX - 1;
 984	ptr[0] = '\0';
 985
 986	/*
 987	 * Walk up the subvolume trees in the tree of tree roots by root
 988	 * backrefs until we hit the top-level subvolume.
 989	 */
 990	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 991		key.objectid = subvol_objectid;
 992		key.type = BTRFS_ROOT_BACKREF_KEY;
 993		key.offset = (u64)-1;
 994
 995		ret = btrfs_search_backwards(root, &key, path);
 996		if (ret < 0) {
 997			goto err;
 998		} else if (ret > 0) {
 999			ret = -ENOENT;
1000			goto err;
1001		}
1002
1003		subvol_objectid = key.offset;
1004
1005		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1006					  struct btrfs_root_ref);
1007		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1008		ptr -= len + 1;
1009		if (ptr < name) {
1010			ret = -ENAMETOOLONG;
1011			goto err;
1012		}
1013		read_extent_buffer(path->nodes[0], ptr + 1,
1014				   (unsigned long)(root_ref + 1), len);
1015		ptr[0] = '/';
1016		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1017		btrfs_release_path(path);
1018
1019		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1020		if (IS_ERR(fs_root)) {
1021			ret = PTR_ERR(fs_root);
1022			fs_root = NULL;
1023			goto err;
1024		}
1025
1026		/*
1027		 * Walk up the filesystem tree by inode refs until we hit the
1028		 * root directory.
1029		 */
1030		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1031			key.objectid = dirid;
1032			key.type = BTRFS_INODE_REF_KEY;
1033			key.offset = (u64)-1;
1034
1035			ret = btrfs_search_backwards(fs_root, &key, path);
1036			if (ret < 0) {
1037				goto err;
1038			} else if (ret > 0) {
1039				ret = -ENOENT;
1040				goto err;
1041			}
1042
1043			dirid = key.offset;
1044
1045			inode_ref = btrfs_item_ptr(path->nodes[0],
1046						   path->slots[0],
1047						   struct btrfs_inode_ref);
1048			len = btrfs_inode_ref_name_len(path->nodes[0],
1049						       inode_ref);
1050			ptr -= len + 1;
1051			if (ptr < name) {
1052				ret = -ENAMETOOLONG;
1053				goto err;
1054			}
1055			read_extent_buffer(path->nodes[0], ptr + 1,
1056					   (unsigned long)(inode_ref + 1), len);
1057			ptr[0] = '/';
1058			btrfs_release_path(path);
1059		}
1060		btrfs_put_root(fs_root);
1061		fs_root = NULL;
1062	}
1063
1064	btrfs_free_path(path);
1065	if (ptr == name + PATH_MAX - 1) {
1066		name[0] = '/';
1067		name[1] = '\0';
1068	} else {
1069		memmove(name, ptr, name + PATH_MAX - ptr);
1070	}
1071	return name;
1072
1073err:
1074	btrfs_put_root(fs_root);
1075	btrfs_free_path(path);
1076	kfree(name);
1077	return ERR_PTR(ret);
1078}
1079
1080static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1081{
1082	struct btrfs_root *root = fs_info->tree_root;
1083	struct btrfs_dir_item *di;
1084	struct btrfs_path *path;
1085	struct btrfs_key location;
1086	struct fscrypt_str name = FSTR_INIT("default", 7);
1087	u64 dir_id;
1088
1089	path = btrfs_alloc_path();
1090	if (!path)
1091		return -ENOMEM;
1092
1093	/*
1094	 * Find the "default" dir item which points to the root item that we
1095	 * will mount by default if we haven't been given a specific subvolume
1096	 * to mount.
1097	 */
1098	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1099	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1100	if (IS_ERR(di)) {
1101		btrfs_free_path(path);
1102		return PTR_ERR(di);
1103	}
1104	if (!di) {
1105		/*
1106		 * Ok the default dir item isn't there.  This is weird since
1107		 * it's always been there, but don't freak out, just try and
1108		 * mount the top-level subvolume.
1109		 */
1110		btrfs_free_path(path);
1111		*objectid = BTRFS_FS_TREE_OBJECTID;
1112		return 0;
1113	}
1114
1115	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1116	btrfs_free_path(path);
1117	*objectid = location.objectid;
1118	return 0;
1119}
1120
1121static int btrfs_fill_super(struct super_block *sb,
1122			    struct btrfs_fs_devices *fs_devices,
1123			    void *data)
1124{
1125	struct inode *inode;
1126	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1127	int err;
1128
1129	sb->s_maxbytes = MAX_LFS_FILESIZE;
1130	sb->s_magic = BTRFS_SUPER_MAGIC;
1131	sb->s_op = &btrfs_super_ops;
1132	sb->s_d_op = &btrfs_dentry_operations;
1133	sb->s_export_op = &btrfs_export_ops;
1134#ifdef CONFIG_FS_VERITY
1135	sb->s_vop = &btrfs_verityops;
1136#endif
1137	sb->s_xattr = btrfs_xattr_handlers;
1138	sb->s_time_gran = 1;
1139#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1140	sb->s_flags |= SB_POSIXACL;
1141#endif
1142	sb->s_flags |= SB_I_VERSION;
1143	sb->s_iflags |= SB_I_CGROUPWB;
1144
1145	err = super_setup_bdi(sb);
1146	if (err) {
1147		btrfs_err(fs_info, "super_setup_bdi failed");
1148		return err;
1149	}
1150
1151	err = open_ctree(sb, fs_devices, (char *)data);
1152	if (err) {
1153		btrfs_err(fs_info, "open_ctree failed");
1154		return err;
1155	}
1156
1157	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1158	if (IS_ERR(inode)) {
1159		err = PTR_ERR(inode);
 
1160		goto fail_close;
1161	}
1162
1163	sb->s_root = d_make_root(inode);
1164	if (!sb->s_root) {
1165		err = -ENOMEM;
1166		goto fail_close;
1167	}
1168
1169	sb->s_flags |= SB_ACTIVE;
1170	return 0;
1171
1172fail_close:
1173	close_ctree(fs_info);
1174	return err;
1175}
1176
1177int btrfs_sync_fs(struct super_block *sb, int wait)
1178{
1179	struct btrfs_trans_handle *trans;
1180	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181	struct btrfs_root *root = fs_info->tree_root;
1182
1183	trace_btrfs_sync_fs(fs_info, wait);
1184
1185	if (!wait) {
1186		filemap_flush(fs_info->btree_inode->i_mapping);
1187		return 0;
1188	}
1189
1190	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1191
1192	trans = btrfs_attach_transaction_barrier(root);
1193	if (IS_ERR(trans)) {
1194		/* no transaction, don't bother */
1195		if (PTR_ERR(trans) == -ENOENT) {
1196			/*
1197			 * Exit unless we have some pending changes
1198			 * that need to go through commit
1199			 */
1200			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1201				      &fs_info->flags))
1202				return 0;
1203			/*
1204			 * A non-blocking test if the fs is frozen. We must not
1205			 * start a new transaction here otherwise a deadlock
1206			 * happens. The pending operations are delayed to the
1207			 * next commit after thawing.
1208			 */
1209			if (sb_start_write_trylock(sb))
1210				sb_end_write(sb);
1211			else
1212				return 0;
1213			trans = btrfs_start_transaction(root, 0);
1214		}
1215		if (IS_ERR(trans))
1216			return PTR_ERR(trans);
1217	}
1218	return btrfs_commit_transaction(trans);
1219}
1220
1221static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1222{
1223	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1224	*printed = true;
1225}
1226
1227static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1228{
1229	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1230	const char *compress_type;
1231	const char *subvol_name;
1232	bool printed = false;
1233
1234	if (btrfs_test_opt(info, DEGRADED))
1235		seq_puts(seq, ",degraded");
1236	if (btrfs_test_opt(info, NODATASUM))
1237		seq_puts(seq, ",nodatasum");
1238	if (btrfs_test_opt(info, NODATACOW))
1239		seq_puts(seq, ",nodatacow");
1240	if (btrfs_test_opt(info, NOBARRIER))
1241		seq_puts(seq, ",nobarrier");
1242	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1243		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1244	if (info->thread_pool_size !=  min_t(unsigned long,
1245					     num_online_cpus() + 2, 8))
1246		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1247	if (btrfs_test_opt(info, COMPRESS)) {
1248		compress_type = btrfs_compress_type2str(info->compress_type);
1249		if (btrfs_test_opt(info, FORCE_COMPRESS))
1250			seq_printf(seq, ",compress-force=%s", compress_type);
1251		else
1252			seq_printf(seq, ",compress=%s", compress_type);
1253		if (info->compress_level)
1254			seq_printf(seq, ":%d", info->compress_level);
1255	}
1256	if (btrfs_test_opt(info, NOSSD))
1257		seq_puts(seq, ",nossd");
1258	if (btrfs_test_opt(info, SSD_SPREAD))
1259		seq_puts(seq, ",ssd_spread");
1260	else if (btrfs_test_opt(info, SSD))
1261		seq_puts(seq, ",ssd");
1262	if (btrfs_test_opt(info, NOTREELOG))
1263		seq_puts(seq, ",notreelog");
1264	if (btrfs_test_opt(info, NOLOGREPLAY))
1265		print_rescue_option(seq, "nologreplay", &printed);
1266	if (btrfs_test_opt(info, USEBACKUPROOT))
1267		print_rescue_option(seq, "usebackuproot", &printed);
1268	if (btrfs_test_opt(info, IGNOREBADROOTS))
1269		print_rescue_option(seq, "ignorebadroots", &printed);
1270	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1271		print_rescue_option(seq, "ignoredatacsums", &printed);
1272	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1273		seq_puts(seq, ",flushoncommit");
1274	if (btrfs_test_opt(info, DISCARD_SYNC))
1275		seq_puts(seq, ",discard");
1276	if (btrfs_test_opt(info, DISCARD_ASYNC))
1277		seq_puts(seq, ",discard=async");
1278	if (!(info->sb->s_flags & SB_POSIXACL))
1279		seq_puts(seq, ",noacl");
1280	if (btrfs_free_space_cache_v1_active(info))
1281		seq_puts(seq, ",space_cache");
1282	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1283		seq_puts(seq, ",space_cache=v2");
1284	else
1285		seq_puts(seq, ",nospace_cache");
1286	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1287		seq_puts(seq, ",rescan_uuid_tree");
1288	if (btrfs_test_opt(info, CLEAR_CACHE))
1289		seq_puts(seq, ",clear_cache");
1290	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1291		seq_puts(seq, ",user_subvol_rm_allowed");
1292	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1293		seq_puts(seq, ",enospc_debug");
1294	if (btrfs_test_opt(info, AUTO_DEFRAG))
1295		seq_puts(seq, ",autodefrag");
1296	if (btrfs_test_opt(info, SKIP_BALANCE))
1297		seq_puts(seq, ",skip_balance");
1298#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1299	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1300		seq_puts(seq, ",check_int_data");
1301	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1302		seq_puts(seq, ",check_int");
1303	if (info->check_integrity_print_mask)
1304		seq_printf(seq, ",check_int_print_mask=%d",
1305				info->check_integrity_print_mask);
1306#endif
1307	if (info->metadata_ratio)
1308		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1309	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1310		seq_puts(seq, ",fatal_errors=panic");
1311	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1312		seq_printf(seq, ",commit=%u", info->commit_interval);
1313#ifdef CONFIG_BTRFS_DEBUG
1314	if (btrfs_test_opt(info, FRAGMENT_DATA))
1315		seq_puts(seq, ",fragment=data");
1316	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1317		seq_puts(seq, ",fragment=metadata");
1318#endif
1319	if (btrfs_test_opt(info, REF_VERIFY))
1320		seq_puts(seq, ",ref_verify");
1321	seq_printf(seq, ",subvolid=%llu",
1322		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1323	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1324			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1325	if (!IS_ERR(subvol_name)) {
1326		seq_puts(seq, ",subvol=");
1327		seq_escape(seq, subvol_name, " \t\n\\");
1328		kfree(subvol_name);
1329	}
1330	return 0;
1331}
1332
1333static int btrfs_test_super(struct super_block *s, void *data)
1334{
1335	struct btrfs_fs_info *p = data;
1336	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1337
1338	return fs_info->fs_devices == p->fs_devices;
1339}
1340
1341static int btrfs_set_super(struct super_block *s, void *data)
1342{
1343	int err = set_anon_super(s, data);
1344	if (!err)
1345		s->s_fs_info = data;
1346	return err;
1347}
1348
1349/*
1350 * subvolumes are identified by ino 256
1351 */
1352static inline int is_subvolume_inode(struct inode *inode)
1353{
1354	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1355		return 1;
1356	return 0;
1357}
1358
1359static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1360				   struct vfsmount *mnt)
1361{
1362	struct dentry *root;
1363	int ret;
1364
1365	if (!subvol_name) {
1366		if (!subvol_objectid) {
1367			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1368							  &subvol_objectid);
1369			if (ret) {
1370				root = ERR_PTR(ret);
1371				goto out;
1372			}
1373		}
1374		subvol_name = btrfs_get_subvol_name_from_objectid(
1375					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1376		if (IS_ERR(subvol_name)) {
1377			root = ERR_CAST(subvol_name);
1378			subvol_name = NULL;
1379			goto out;
1380		}
1381
1382	}
1383
1384	root = mount_subtree(mnt, subvol_name);
1385	/* mount_subtree() drops our reference on the vfsmount. */
1386	mnt = NULL;
1387
1388	if (!IS_ERR(root)) {
1389		struct super_block *s = root->d_sb;
1390		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1391		struct inode *root_inode = d_inode(root);
1392		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1393
1394		ret = 0;
1395		if (!is_subvolume_inode(root_inode)) {
1396			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1397			       subvol_name);
1398			ret = -EINVAL;
1399		}
1400		if (subvol_objectid && root_objectid != subvol_objectid) {
1401			/*
1402			 * This will also catch a race condition where a
1403			 * subvolume which was passed by ID is renamed and
1404			 * another subvolume is renamed over the old location.
1405			 */
1406			btrfs_err(fs_info,
1407				  "subvol '%s' does not match subvolid %llu",
1408				  subvol_name, subvol_objectid);
1409			ret = -EINVAL;
1410		}
1411		if (ret) {
1412			dput(root);
1413			root = ERR_PTR(ret);
1414			deactivate_locked_super(s);
1415		}
1416	}
1417
1418out:
1419	mntput(mnt);
1420	kfree(subvol_name);
1421	return root;
1422}
1423
1424/*
1425 * Find a superblock for the given device / mount point.
1426 *
1427 * Note: This is based on mount_bdev from fs/super.c with a few additions
1428 *       for multiple device setup.  Make sure to keep it in sync.
1429 */
1430static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1431		int flags, const char *device_name, void *data)
1432{
1433	struct block_device *bdev = NULL;
1434	struct super_block *s;
1435	struct btrfs_device *device = NULL;
1436	struct btrfs_fs_devices *fs_devices = NULL;
1437	struct btrfs_fs_info *fs_info = NULL;
1438	void *new_sec_opts = NULL;
1439	fmode_t mode = FMODE_READ;
1440	int error = 0;
1441
1442	if (!(flags & SB_RDONLY))
1443		mode |= FMODE_WRITE;
1444
1445	if (data) {
1446		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1447		if (error)
1448			return ERR_PTR(error);
1449	}
1450
1451	/*
1452	 * Setup a dummy root and fs_info for test/set super.  This is because
1453	 * we don't actually fill this stuff out until open_ctree, but we need
1454	 * then open_ctree will properly initialize the file system specific
1455	 * settings later.  btrfs_init_fs_info initializes the static elements
1456	 * of the fs_info (locks and such) to make cleanup easier if we find a
1457	 * superblock with our given fs_devices later on at sget() time.
1458	 */
1459	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1460	if (!fs_info) {
1461		error = -ENOMEM;
1462		goto error_sec_opts;
1463	}
1464	btrfs_init_fs_info(fs_info);
1465
1466	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1467	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1468	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1469		error = -ENOMEM;
1470		goto error_fs_info;
1471	}
1472
1473	mutex_lock(&uuid_mutex);
1474	error = btrfs_parse_device_options(data, mode, fs_type);
1475	if (error) {
1476		mutex_unlock(&uuid_mutex);
1477		goto error_fs_info;
1478	}
1479
1480	device = btrfs_scan_one_device(device_name, mode, fs_type);
1481	if (IS_ERR(device)) {
1482		mutex_unlock(&uuid_mutex);
1483		error = PTR_ERR(device);
1484		goto error_fs_info;
1485	}
1486
1487	fs_devices = device->fs_devices;
1488	fs_info->fs_devices = fs_devices;
1489
1490	error = btrfs_open_devices(fs_devices, mode, fs_type);
1491	mutex_unlock(&uuid_mutex);
1492	if (error)
1493		goto error_fs_info;
1494
1495	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1496		error = -EACCES;
1497		goto error_close_devices;
1498	}
1499
1500	bdev = fs_devices->latest_dev->bdev;
1501	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1502		 fs_info);
1503	if (IS_ERR(s)) {
1504		error = PTR_ERR(s);
1505		goto error_close_devices;
1506	}
1507
1508	if (s->s_root) {
1509		btrfs_close_devices(fs_devices);
1510		btrfs_free_fs_info(fs_info);
1511		if ((flags ^ s->s_flags) & SB_RDONLY)
1512			error = -EBUSY;
1513	} else {
1514		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1515		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1516					s->s_id);
1517		btrfs_sb(s)->bdev_holder = fs_type;
1518		if (!strstr(crc32c_impl(), "generic"))
1519			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1520		error = btrfs_fill_super(s, fs_devices, data);
1521	}
1522	if (!error)
1523		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1524	security_free_mnt_opts(&new_sec_opts);
1525	if (error) {
1526		deactivate_locked_super(s);
1527		return ERR_PTR(error);
1528	}
1529
1530	return dget(s->s_root);
1531
1532error_close_devices:
1533	btrfs_close_devices(fs_devices);
1534error_fs_info:
1535	btrfs_free_fs_info(fs_info);
1536error_sec_opts:
1537	security_free_mnt_opts(&new_sec_opts);
1538	return ERR_PTR(error);
1539}
1540
1541/*
1542 * Mount function which is called by VFS layer.
1543 *
1544 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1545 * which needs vfsmount* of device's root (/).  This means device's root has to
1546 * be mounted internally in any case.
1547 *
1548 * Operation flow:
1549 *   1. Parse subvol id related options for later use in mount_subvol().
1550 *
1551 *   2. Mount device's root (/) by calling vfs_kern_mount().
1552 *
1553 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1554 *      first place. In order to avoid calling btrfs_mount() again, we use
1555 *      different file_system_type which is not registered to VFS by
1556 *      register_filesystem() (btrfs_root_fs_type). As a result,
1557 *      btrfs_mount_root() is called. The return value will be used by
1558 *      mount_subtree() in mount_subvol().
1559 *
1560 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1561 *      "btrfs subvolume set-default", mount_subvol() is called always.
1562 */
1563static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1564		const char *device_name, void *data)
1565{
1566	struct vfsmount *mnt_root;
1567	struct dentry *root;
1568	char *subvol_name = NULL;
1569	u64 subvol_objectid = 0;
1570	int error = 0;
1571
1572	error = btrfs_parse_subvol_options(data, &subvol_name,
1573					&subvol_objectid);
1574	if (error) {
1575		kfree(subvol_name);
1576		return ERR_PTR(error);
1577	}
1578
1579	/* mount device's root (/) */
1580	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1581	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1582		if (flags & SB_RDONLY) {
1583			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1584				flags & ~SB_RDONLY, device_name, data);
1585		} else {
1586			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1587				flags | SB_RDONLY, device_name, data);
1588			if (IS_ERR(mnt_root)) {
1589				root = ERR_CAST(mnt_root);
1590				kfree(subvol_name);
1591				goto out;
1592			}
1593
1594			down_write(&mnt_root->mnt_sb->s_umount);
1595			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1596			up_write(&mnt_root->mnt_sb->s_umount);
1597			if (error < 0) {
1598				root = ERR_PTR(error);
1599				mntput(mnt_root);
1600				kfree(subvol_name);
1601				goto out;
1602			}
1603		}
1604	}
1605	if (IS_ERR(mnt_root)) {
1606		root = ERR_CAST(mnt_root);
1607		kfree(subvol_name);
1608		goto out;
1609	}
1610
1611	/* mount_subvol() will free subvol_name and mnt_root */
1612	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1613
1614out:
1615	return root;
1616}
1617
1618static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1619				     u32 new_pool_size, u32 old_pool_size)
1620{
1621	if (new_pool_size == old_pool_size)
1622		return;
1623
1624	fs_info->thread_pool_size = new_pool_size;
1625
1626	btrfs_info(fs_info, "resize thread pool %d -> %d",
1627	       old_pool_size, new_pool_size);
1628
1629	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1630	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1631	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1632	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
 
 
1633	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1634	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1635	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1636}
1637
1638static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1639				       unsigned long old_opts, int flags)
1640{
1641	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1642	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1643	     (flags & SB_RDONLY))) {
1644		/* wait for any defraggers to finish */
1645		wait_event(fs_info->transaction_wait,
1646			   (atomic_read(&fs_info->defrag_running) == 0));
1647		if (flags & SB_RDONLY)
1648			sync_filesystem(fs_info->sb);
1649	}
1650}
1651
1652static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1653					 unsigned long old_opts)
1654{
1655	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1656
1657	/*
1658	 * We need to cleanup all defragable inodes if the autodefragment is
1659	 * close or the filesystem is read only.
1660	 */
1661	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1662	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1663		btrfs_cleanup_defrag_inodes(fs_info);
1664	}
1665
1666	/* If we toggled discard async */
1667	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1668	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1669		btrfs_discard_resume(fs_info);
1670	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1671		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1672		btrfs_discard_cleanup(fs_info);
1673
1674	/* If we toggled space cache */
1675	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1676		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1677}
1678
1679static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1680{
1681	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1682	unsigned old_flags = sb->s_flags;
1683	unsigned long old_opts = fs_info->mount_opt;
1684	unsigned long old_compress_type = fs_info->compress_type;
1685	u64 old_max_inline = fs_info->max_inline;
1686	u32 old_thread_pool_size = fs_info->thread_pool_size;
1687	u32 old_metadata_ratio = fs_info->metadata_ratio;
1688	int ret;
1689
1690	sync_filesystem(sb);
1691	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
1692
1693	if (data) {
1694		void *new_sec_opts = NULL;
1695
1696		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1697		if (!ret)
1698			ret = security_sb_remount(sb, new_sec_opts);
1699		security_free_mnt_opts(&new_sec_opts);
1700		if (ret)
1701			goto restore;
1702	}
1703
1704	ret = btrfs_parse_options(fs_info, data, *flags);
 
 
 
 
 
 
 
 
 
 
 
1705	if (ret)
1706		goto restore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708	ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1709	if (ret < 0)
1710		goto restore;
1711
1712	btrfs_remount_begin(fs_info, old_opts, *flags);
1713	btrfs_resize_thread_pool(fs_info,
1714		fs_info->thread_pool_size, old_thread_pool_size);
 
1715
1716	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1717	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1718	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1719		btrfs_warn(fs_info,
1720		"remount supports changing free space tree only from ro to rw");
1721		/* Make sure free space cache options match the state on disk */
1722		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1723			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1724			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1725		}
1726		if (btrfs_free_space_cache_v1_active(fs_info)) {
1727			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1728			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1729		}
1730	}
1731
1732	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1733		goto out;
 
 
 
 
 
1734
1735	if (*flags & SB_RDONLY) {
1736		/*
1737		 * this also happens on 'umount -rf' or on shutdown, when
1738		 * the filesystem is busy.
1739		 */
1740		cancel_work_sync(&fs_info->async_reclaim_work);
1741		cancel_work_sync(&fs_info->async_data_reclaim_work);
 
 
 
 
1742
1743		btrfs_discard_cleanup(fs_info);
 
 
 
 
 
 
 
1744
1745		/* wait for the uuid_scan task to finish */
1746		down(&fs_info->uuid_tree_rescan_sem);
1747		/* avoid complains from lockdep et al. */
1748		up(&fs_info->uuid_tree_rescan_sem);
1749
1750		btrfs_set_sb_rdonly(sb);
 
 
 
 
 
 
1751
1752		/*
1753		 * Setting SB_RDONLY will put the cleaner thread to
1754		 * sleep at the next loop if it's already active.
1755		 * If it's already asleep, we'll leave unused block
1756		 * groups on disk until we're mounted read-write again
1757		 * unless we clean them up here.
1758		 */
1759		btrfs_delete_unused_bgs(fs_info);
1760
1761		/*
1762		 * The cleaner task could be already running before we set the
1763		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1764		 * We must make sure that after we finish the remount, i.e. after
1765		 * we call btrfs_commit_super(), the cleaner can no longer start
1766		 * a transaction - either because it was dropping a dead root,
1767		 * running delayed iputs or deleting an unused block group (the
1768		 * cleaner picked a block group from the list of unused block
1769		 * groups before we were able to in the previous call to
1770		 * btrfs_delete_unused_bgs()).
1771		 */
1772		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1773			    TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775		/*
1776		 * We've set the superblock to RO mode, so we might have made
1777		 * the cleaner task sleep without running all pending delayed
1778		 * iputs. Go through all the delayed iputs here, so that if an
1779		 * unmount happens without remounting RW we don't end up at
1780		 * finishing close_ctree() with a non-empty list of delayed
1781		 * iputs.
1782		 */
1783		btrfs_run_delayed_iputs(fs_info);
1784
1785		btrfs_dev_replace_suspend_for_unmount(fs_info);
1786		btrfs_scrub_cancel(fs_info);
1787		btrfs_pause_balance(fs_info);
 
 
 
 
 
1788
1789		/*
1790		 * Pause the qgroup rescan worker if it is running. We don't want
1791		 * it to be still running after we are in RO mode, as after that,
1792		 * by the time we unmount, it might have left a transaction open,
1793		 * so we would leak the transaction and/or crash.
1794		 */
1795		btrfs_qgroup_wait_for_completion(fs_info, false);
1796
1797		ret = btrfs_commit_super(fs_info);
1798		if (ret)
1799			goto restore;
1800	} else {
1801		if (BTRFS_FS_ERROR(fs_info)) {
1802			btrfs_err(fs_info,
1803				"Remounting read-write after error is not allowed");
1804			ret = -EINVAL;
1805			goto restore;
1806		}
1807		if (fs_info->fs_devices->rw_devices == 0) {
1808			ret = -EACCES;
1809			goto restore;
1810		}
1811
1812		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1813			btrfs_warn(fs_info,
1814		"too many missing devices, writable remount is not allowed");
1815			ret = -EACCES;
1816			goto restore;
1817		}
1818
1819		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1820			btrfs_warn(fs_info,
1821		"mount required to replay tree-log, cannot remount read-write");
1822			ret = -EINVAL;
1823			goto restore;
1824		}
1825
1826		/*
1827		 * NOTE: when remounting with a change that does writes, don't
1828		 * put it anywhere above this point, as we are not sure to be
1829		 * safe to write until we pass the above checks.
1830		 */
1831		ret = btrfs_start_pre_rw_mount(fs_info);
1832		if (ret)
1833			goto restore;
1834
1835		btrfs_clear_sb_rdonly(sb);
 
 
 
1836
1837		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1838	}
1839out:
 
 
 
 
 
 
 
 
1840	/*
1841	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1842	 * since the absence of the flag means it can be toggled off by remount.
 
1843	 */
1844	*flags |= SB_I_VERSION;
 
1845
 
1846	wake_up_process(fs_info->transaction_kthread);
1847	btrfs_remount_cleanup(fs_info, old_opts);
1848	btrfs_clear_oneshot_options(fs_info);
1849	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1850
1851	return 0;
1852
1853restore:
1854	/* We've hit an error - don't reset SB_RDONLY */
1855	if (sb_rdonly(sb))
1856		old_flags |= SB_RDONLY;
1857	if (!(old_flags & SB_RDONLY))
1858		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1859	sb->s_flags = old_flags;
1860	fs_info->mount_opt = old_opts;
1861	fs_info->compress_type = old_compress_type;
1862	fs_info->max_inline = old_max_inline;
1863	btrfs_resize_thread_pool(fs_info,
1864		old_thread_pool_size, fs_info->thread_pool_size);
1865	fs_info->metadata_ratio = old_metadata_ratio;
1866	btrfs_remount_cleanup(fs_info, old_opts);
1867	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1868
1869	return ret;
1870}
1871
1872/* Used to sort the devices by max_avail(descending sort) */
1873static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1874{
1875	const struct btrfs_device_info *dev_info1 = a;
1876	const struct btrfs_device_info *dev_info2 = b;
1877
1878	if (dev_info1->max_avail > dev_info2->max_avail)
1879		return -1;
1880	else if (dev_info1->max_avail < dev_info2->max_avail)
1881		return 1;
1882	return 0;
1883}
1884
1885/*
1886 * sort the devices by max_avail, in which max free extent size of each device
1887 * is stored.(Descending Sort)
1888 */
1889static inline void btrfs_descending_sort_devices(
1890					struct btrfs_device_info *devices,
1891					size_t nr_devices)
1892{
1893	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1894	     btrfs_cmp_device_free_bytes, NULL);
1895}
1896
1897/*
1898 * The helper to calc the free space on the devices that can be used to store
1899 * file data.
1900 */
1901static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1902					      u64 *free_bytes)
1903{
1904	struct btrfs_device_info *devices_info;
1905	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1906	struct btrfs_device *device;
1907	u64 type;
1908	u64 avail_space;
1909	u64 min_stripe_size;
1910	int num_stripes = 1;
1911	int i = 0, nr_devices;
1912	const struct btrfs_raid_attr *rattr;
1913
1914	/*
1915	 * We aren't under the device list lock, so this is racy-ish, but good
1916	 * enough for our purposes.
1917	 */
1918	nr_devices = fs_info->fs_devices->open_devices;
1919	if (!nr_devices) {
1920		smp_mb();
1921		nr_devices = fs_info->fs_devices->open_devices;
1922		ASSERT(nr_devices);
1923		if (!nr_devices) {
1924			*free_bytes = 0;
1925			return 0;
1926		}
1927	}
1928
1929	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1930			       GFP_KERNEL);
1931	if (!devices_info)
1932		return -ENOMEM;
1933
1934	/* calc min stripe number for data space allocation */
1935	type = btrfs_data_alloc_profile(fs_info);
1936	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1937
1938	if (type & BTRFS_BLOCK_GROUP_RAID0)
1939		num_stripes = nr_devices;
1940	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1941		num_stripes = rattr->ncopies;
1942	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1943		num_stripes = 4;
1944
1945	/* Adjust for more than 1 stripe per device */
1946	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1947
1948	rcu_read_lock();
1949	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1950		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1951						&device->dev_state) ||
1952		    !device->bdev ||
1953		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1954			continue;
1955
1956		if (i >= nr_devices)
1957			break;
1958
1959		avail_space = device->total_bytes - device->bytes_used;
1960
1961		/* align with stripe_len */
1962		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1963
1964		/*
1965		 * Ensure we have at least min_stripe_size on top of the
1966		 * reserved space on the device.
1967		 */
1968		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1969			continue;
1970
1971		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1972
1973		devices_info[i].dev = device;
1974		devices_info[i].max_avail = avail_space;
1975
1976		i++;
1977	}
1978	rcu_read_unlock();
1979
1980	nr_devices = i;
1981
1982	btrfs_descending_sort_devices(devices_info, nr_devices);
1983
1984	i = nr_devices - 1;
1985	avail_space = 0;
1986	while (nr_devices >= rattr->devs_min) {
1987		num_stripes = min(num_stripes, nr_devices);
1988
1989		if (devices_info[i].max_avail >= min_stripe_size) {
1990			int j;
1991			u64 alloc_size;
1992
1993			avail_space += devices_info[i].max_avail * num_stripes;
1994			alloc_size = devices_info[i].max_avail;
1995			for (j = i + 1 - num_stripes; j <= i; j++)
1996				devices_info[j].max_avail -= alloc_size;
1997		}
1998		i--;
1999		nr_devices--;
2000	}
2001
2002	kfree(devices_info);
2003	*free_bytes = avail_space;
2004	return 0;
2005}
2006
2007/*
2008 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2009 *
2010 * If there's a redundant raid level at DATA block groups, use the respective
2011 * multiplier to scale the sizes.
2012 *
2013 * Unused device space usage is based on simulating the chunk allocator
2014 * algorithm that respects the device sizes and order of allocations.  This is
2015 * a close approximation of the actual use but there are other factors that may
2016 * change the result (like a new metadata chunk).
2017 *
2018 * If metadata is exhausted, f_bavail will be 0.
2019 */
2020static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2021{
2022	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2023	struct btrfs_super_block *disk_super = fs_info->super_copy;
2024	struct btrfs_space_info *found;
2025	u64 total_used = 0;
2026	u64 total_free_data = 0;
2027	u64 total_free_meta = 0;
2028	u32 bits = fs_info->sectorsize_bits;
2029	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2030	unsigned factor = 1;
2031	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2032	int ret;
2033	u64 thresh = 0;
2034	int mixed = 0;
2035
2036	list_for_each_entry(found, &fs_info->space_info, list) {
2037		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2038			int i;
2039
2040			total_free_data += found->disk_total - found->disk_used;
2041			total_free_data -=
2042				btrfs_account_ro_block_groups_free_space(found);
2043
2044			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045				if (!list_empty(&found->block_groups[i]))
2046					factor = btrfs_bg_type_to_factor(
2047						btrfs_raid_array[i].bg_flag);
2048			}
2049		}
2050
2051		/*
2052		 * Metadata in mixed block goup profiles are accounted in data
2053		 */
2054		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2055			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2056				mixed = 1;
2057			else
2058				total_free_meta += found->disk_total -
2059					found->disk_used;
2060		}
2061
2062		total_used += found->disk_used;
2063	}
2064
2065	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2066	buf->f_blocks >>= bits;
2067	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2068
2069	/* Account global block reserve as used, it's in logical size already */
2070	spin_lock(&block_rsv->lock);
2071	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2072	if (buf->f_bfree >= block_rsv->size >> bits)
2073		buf->f_bfree -= block_rsv->size >> bits;
2074	else
2075		buf->f_bfree = 0;
2076	spin_unlock(&block_rsv->lock);
2077
2078	buf->f_bavail = div_u64(total_free_data, factor);
2079	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2080	if (ret)
2081		return ret;
2082	buf->f_bavail += div_u64(total_free_data, factor);
2083	buf->f_bavail = buf->f_bavail >> bits;
2084
2085	/*
2086	 * We calculate the remaining metadata space minus global reserve. If
2087	 * this is (supposedly) smaller than zero, there's no space. But this
2088	 * does not hold in practice, the exhausted state happens where's still
2089	 * some positive delta. So we apply some guesswork and compare the
2090	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2091	 *
2092	 * We probably cannot calculate the exact threshold value because this
2093	 * depends on the internal reservations requested by various
2094	 * operations, so some operations that consume a few metadata will
2095	 * succeed even if the Avail is zero. But this is better than the other
2096	 * way around.
2097	 */
2098	thresh = SZ_4M;
2099
2100	/*
2101	 * We only want to claim there's no available space if we can no longer
2102	 * allocate chunks for our metadata profile and our global reserve will
2103	 * not fit in the free metadata space.  If we aren't ->full then we
2104	 * still can allocate chunks and thus are fine using the currently
2105	 * calculated f_bavail.
2106	 */
2107	if (!mixed && block_rsv->space_info->full &&
2108	    total_free_meta - thresh < block_rsv->size)
2109		buf->f_bavail = 0;
2110
2111	buf->f_type = BTRFS_SUPER_MAGIC;
2112	buf->f_bsize = dentry->d_sb->s_blocksize;
2113	buf->f_namelen = BTRFS_NAME_LEN;
2114
2115	/* We treat it as constant endianness (it doesn't matter _which_)
2116	   because we want the fsid to come out the same whether mounted
2117	   on a big-endian or little-endian host */
2118	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2119	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2120	/* Mask in the root object ID too, to disambiguate subvols */
2121	buf->f_fsid.val[0] ^=
2122		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2123	buf->f_fsid.val[1] ^=
2124		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2125
2126	return 0;
2127}
2128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2129static void btrfs_kill_super(struct super_block *sb)
2130{
2131	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2132	kill_anon_super(sb);
2133	btrfs_free_fs_info(fs_info);
2134}
2135
2136static struct file_system_type btrfs_fs_type = {
2137	.owner		= THIS_MODULE,
2138	.name		= "btrfs",
2139	.mount		= btrfs_mount,
2140	.kill_sb	= btrfs_kill_super,
2141	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142};
2143
2144static struct file_system_type btrfs_root_fs_type = {
2145	.owner		= THIS_MODULE,
2146	.name		= "btrfs",
2147	.mount		= btrfs_mount_root,
2148	.kill_sb	= btrfs_kill_super,
2149	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2150};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151
2152MODULE_ALIAS_FS("btrfs");
2153
2154static int btrfs_control_open(struct inode *inode, struct file *file)
2155{
2156	/*
2157	 * The control file's private_data is used to hold the
2158	 * transaction when it is started and is used to keep
2159	 * track of whether a transaction is already in progress.
2160	 */
2161	file->private_data = NULL;
2162	return 0;
2163}
2164
2165/*
2166 * Used by /dev/btrfs-control for devices ioctls.
2167 */
2168static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2169				unsigned long arg)
2170{
2171	struct btrfs_ioctl_vol_args *vol;
2172	struct btrfs_device *device = NULL;
2173	dev_t devt = 0;
2174	int ret = -ENOTTY;
2175
2176	if (!capable(CAP_SYS_ADMIN))
2177		return -EPERM;
2178
2179	vol = memdup_user((void __user *)arg, sizeof(*vol));
2180	if (IS_ERR(vol))
2181		return PTR_ERR(vol);
2182	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
2183
2184	switch (cmd) {
2185	case BTRFS_IOC_SCAN_DEV:
2186		mutex_lock(&uuid_mutex);
2187		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2188					       &btrfs_root_fs_type);
 
 
 
2189		ret = PTR_ERR_OR_ZERO(device);
2190		mutex_unlock(&uuid_mutex);
2191		break;
2192	case BTRFS_IOC_FORGET_DEV:
2193		if (vol->name[0] != 0) {
2194			ret = lookup_bdev(vol->name, &devt);
2195			if (ret)
2196				break;
2197		}
2198		ret = btrfs_forget_devices(devt);
2199		break;
2200	case BTRFS_IOC_DEVICES_READY:
2201		mutex_lock(&uuid_mutex);
2202		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2203					       &btrfs_root_fs_type);
2204		if (IS_ERR(device)) {
 
 
 
2205			mutex_unlock(&uuid_mutex);
2206			ret = PTR_ERR(device);
2207			break;
2208		}
2209		ret = !(device->fs_devices->num_devices ==
2210			device->fs_devices->total_devices);
2211		mutex_unlock(&uuid_mutex);
2212		break;
2213	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2214		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2215		break;
2216	}
2217
 
2218	kfree(vol);
2219	return ret;
2220}
2221
2222static int btrfs_freeze(struct super_block *sb)
2223{
2224	struct btrfs_trans_handle *trans;
2225	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2226	struct btrfs_root *root = fs_info->tree_root;
2227
2228	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2229	/*
2230	 * We don't need a barrier here, we'll wait for any transaction that
2231	 * could be in progress on other threads (and do delayed iputs that
2232	 * we want to avoid on a frozen filesystem), or do the commit
2233	 * ourselves.
2234	 */
2235	trans = btrfs_attach_transaction_barrier(root);
2236	if (IS_ERR(trans)) {
2237		/* no transaction, don't bother */
2238		if (PTR_ERR(trans) == -ENOENT)
2239			return 0;
2240		return PTR_ERR(trans);
2241	}
2242	return btrfs_commit_transaction(trans);
2243}
2244
2245static int check_dev_super(struct btrfs_device *dev)
2246{
2247	struct btrfs_fs_info *fs_info = dev->fs_info;
2248	struct btrfs_super_block *sb;
 
2249	u16 csum_type;
2250	int ret = 0;
2251
2252	/* This should be called with fs still frozen. */
2253	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2254
2255	/* Missing dev, no need to check. */
2256	if (!dev->bdev)
2257		return 0;
2258
2259	/* Only need to check the primary super block. */
2260	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2261	if (IS_ERR(sb))
2262		return PTR_ERR(sb);
2263
2264	/* Verify the checksum. */
2265	csum_type = btrfs_super_csum_type(sb);
2266	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2267		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2268			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2269		ret = -EUCLEAN;
2270		goto out;
2271	}
2272
2273	if (btrfs_check_super_csum(fs_info, sb)) {
2274		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2275		ret = -EUCLEAN;
2276		goto out;
2277	}
2278
2279	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2280	ret = btrfs_validate_super(fs_info, sb, 0);
2281	if (ret < 0)
2282		goto out;
2283
2284	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
 
2285		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2286			btrfs_super_generation(sb),
2287			fs_info->last_trans_committed);
2288		ret = -EUCLEAN;
2289		goto out;
2290	}
2291out:
2292	btrfs_release_disk_super(sb);
2293	return ret;
2294}
2295
2296static int btrfs_unfreeze(struct super_block *sb)
2297{
2298	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2299	struct btrfs_device *device;
2300	int ret = 0;
2301
2302	/*
2303	 * Make sure the fs is not changed by accident (like hibernation then
2304	 * modified by other OS).
2305	 * If we found anything wrong, we mark the fs error immediately.
2306	 *
2307	 * And since the fs is frozen, no one can modify the fs yet, thus
2308	 * we don't need to hold device_list_mutex.
2309	 */
2310	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2311		ret = check_dev_super(device);
2312		if (ret < 0) {
2313			btrfs_handle_fs_error(fs_info, ret,
2314				"super block on devid %llu got modified unexpectedly",
2315				device->devid);
2316			break;
2317		}
2318	}
2319	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2320
2321	/*
2322	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2323	 * above checks failed. Since the fs is either fine or read-only, we're
2324	 * safe to continue, without causing further damage.
2325	 */
2326	return 0;
2327}
2328
2329static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2330{
2331	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2332
2333	/*
2334	 * There should be always a valid pointer in latest_dev, it may be stale
2335	 * for a short moment in case it's being deleted but still valid until
2336	 * the end of RCU grace period.
2337	 */
2338	rcu_read_lock();
2339	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2340	rcu_read_unlock();
2341
2342	return 0;
2343}
2344
2345static const struct super_operations btrfs_super_ops = {
2346	.drop_inode	= btrfs_drop_inode,
2347	.evict_inode	= btrfs_evict_inode,
2348	.put_super	= btrfs_put_super,
2349	.sync_fs	= btrfs_sync_fs,
2350	.show_options	= btrfs_show_options,
2351	.show_devname	= btrfs_show_devname,
2352	.alloc_inode	= btrfs_alloc_inode,
2353	.destroy_inode	= btrfs_destroy_inode,
2354	.free_inode	= btrfs_free_inode,
2355	.statfs		= btrfs_statfs,
2356	.remount_fs	= btrfs_remount,
2357	.freeze_fs	= btrfs_freeze,
2358	.unfreeze_fs	= btrfs_unfreeze,
2359};
2360
2361static const struct file_operations btrfs_ctl_fops = {
2362	.open = btrfs_control_open,
2363	.unlocked_ioctl	 = btrfs_control_ioctl,
2364	.compat_ioctl = compat_ptr_ioctl,
2365	.owner	 = THIS_MODULE,
2366	.llseek = noop_llseek,
2367};
2368
2369static struct miscdevice btrfs_misc = {
2370	.minor		= BTRFS_MINOR,
2371	.name		= "btrfs-control",
2372	.fops		= &btrfs_ctl_fops
2373};
2374
2375MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2376MODULE_ALIAS("devname:btrfs-control");
2377
2378static int __init btrfs_interface_init(void)
2379{
2380	return misc_register(&btrfs_misc);
2381}
2382
2383static __cold void btrfs_interface_exit(void)
2384{
2385	misc_deregister(&btrfs_misc);
2386}
2387
2388static int __init btrfs_print_mod_info(void)
2389{
2390	static const char options[] = ""
2391#ifdef CONFIG_BTRFS_DEBUG
2392			", debug=on"
2393#endif
2394#ifdef CONFIG_BTRFS_ASSERT
2395			", assert=on"
2396#endif
2397#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2398			", integrity-checker=on"
2399#endif
2400#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2401			", ref-verify=on"
2402#endif
2403#ifdef CONFIG_BLK_DEV_ZONED
2404			", zoned=yes"
2405#else
2406			", zoned=no"
2407#endif
2408#ifdef CONFIG_FS_VERITY
2409			", fsverity=yes"
2410#else
2411			", fsverity=no"
2412#endif
2413			;
2414	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2415	return 0;
2416}
2417
2418static int register_btrfs(void)
2419{
2420	return register_filesystem(&btrfs_fs_type);
2421}
2422
2423static void unregister_btrfs(void)
2424{
2425	unregister_filesystem(&btrfs_fs_type);
2426}
2427
2428/* Helper structure for long init/exit functions. */
2429struct init_sequence {
2430	int (*init_func)(void);
2431	/* Can be NULL if the init_func doesn't need cleanup. */
2432	void (*exit_func)(void);
2433};
2434
2435static const struct init_sequence mod_init_seq[] = {
2436	{
2437		.init_func = btrfs_props_init,
2438		.exit_func = NULL,
2439	}, {
2440		.init_func = btrfs_init_sysfs,
2441		.exit_func = btrfs_exit_sysfs,
2442	}, {
2443		.init_func = btrfs_init_compress,
2444		.exit_func = btrfs_exit_compress,
2445	}, {
2446		.init_func = btrfs_init_cachep,
2447		.exit_func = btrfs_destroy_cachep,
2448	}, {
2449		.init_func = btrfs_transaction_init,
2450		.exit_func = btrfs_transaction_exit,
2451	}, {
2452		.init_func = btrfs_ctree_init,
2453		.exit_func = btrfs_ctree_exit,
2454	}, {
2455		.init_func = btrfs_free_space_init,
2456		.exit_func = btrfs_free_space_exit,
2457	}, {
2458		.init_func = extent_state_init_cachep,
2459		.exit_func = extent_state_free_cachep,
2460	}, {
2461		.init_func = extent_buffer_init_cachep,
2462		.exit_func = extent_buffer_free_cachep,
2463	}, {
2464		.init_func = btrfs_bioset_init,
2465		.exit_func = btrfs_bioset_exit,
2466	}, {
2467		.init_func = extent_map_init,
2468		.exit_func = extent_map_exit,
2469	}, {
2470		.init_func = ordered_data_init,
2471		.exit_func = ordered_data_exit,
2472	}, {
2473		.init_func = btrfs_delayed_inode_init,
2474		.exit_func = btrfs_delayed_inode_exit,
2475	}, {
2476		.init_func = btrfs_auto_defrag_init,
2477		.exit_func = btrfs_auto_defrag_exit,
2478	}, {
2479		.init_func = btrfs_delayed_ref_init,
2480		.exit_func = btrfs_delayed_ref_exit,
2481	}, {
2482		.init_func = btrfs_prelim_ref_init,
2483		.exit_func = btrfs_prelim_ref_exit,
2484	}, {
2485		.init_func = btrfs_interface_init,
2486		.exit_func = btrfs_interface_exit,
2487	}, {
2488		.init_func = btrfs_print_mod_info,
2489		.exit_func = NULL,
2490	}, {
2491		.init_func = btrfs_run_sanity_tests,
2492		.exit_func = NULL,
2493	}, {
2494		.init_func = register_btrfs,
2495		.exit_func = unregister_btrfs,
2496	}
2497};
2498
2499static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2500
2501static __always_inline void btrfs_exit_btrfs_fs(void)
2502{
2503	int i;
2504
2505	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2506		if (!mod_init_result[i])
2507			continue;
2508		if (mod_init_seq[i].exit_func)
2509			mod_init_seq[i].exit_func();
2510		mod_init_result[i] = false;
2511	}
2512}
2513
2514static void __exit exit_btrfs_fs(void)
2515{
2516	btrfs_exit_btrfs_fs();
2517	btrfs_cleanup_fs_uuids();
2518}
2519
2520static int __init init_btrfs_fs(void)
2521{
2522	int ret;
2523	int i;
2524
2525	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2526		ASSERT(!mod_init_result[i]);
2527		ret = mod_init_seq[i].init_func();
2528		if (ret < 0) {
2529			btrfs_exit_btrfs_fs();
2530			return ret;
2531		}
2532		mod_init_result[i] = true;
2533	}
2534	return 0;
2535}
2536
2537late_initcall(init_btrfs_fs);
2538module_exit(exit_btrfs_fs)
2539
2540MODULE_LICENSE("GPL");
2541MODULE_SOFTDEP("pre: crc32c");
2542MODULE_SOFTDEP("pre: xxhash64");
2543MODULE_SOFTDEP("pre: sha256");
2544MODULE_SOFTDEP("pre: blake2b-256");