Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 
 
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187void scsi_failures_reset_retries(struct scsi_failures *failures)
 188{
 189	struct scsi_failure *failure;
 190
 191	failures->total_retries = 0;
 192
 193	for (failure = failures->failure_definitions; failure->result;
 194	     failure++)
 195		failure->retries = 0;
 196}
 197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
 198
 199/**
 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
 201 * @scmd: scsi_cmnd to check.
 202 * @failures: scsi_failures struct that lists failures to check for.
 203 *
 204 * Returns -EAGAIN if the caller should retry else 0.
 205 */
 206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
 207				  struct scsi_failures *failures)
 208{
 209	struct scsi_failure *failure;
 210	struct scsi_sense_hdr sshdr;
 211	enum sam_status status;
 212
 213	if (!failures)
 214		return 0;
 215
 216	for (failure = failures->failure_definitions; failure->result;
 217	     failure++) {
 218		if (failure->result == SCMD_FAILURE_RESULT_ANY)
 219			goto maybe_retry;
 220
 221		if (host_byte(scmd->result) &&
 222		    host_byte(scmd->result) == host_byte(failure->result))
 223			goto maybe_retry;
 224
 225		status = status_byte(scmd->result);
 226		if (!status)
 227			continue;
 228
 229		if (failure->result == SCMD_FAILURE_STAT_ANY &&
 230		    !scsi_status_is_good(scmd->result))
 231			goto maybe_retry;
 232
 233		if (status != status_byte(failure->result))
 234			continue;
 235
 236		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
 237		    failure->sense == SCMD_FAILURE_SENSE_ANY)
 238			goto maybe_retry;
 239
 240		if (!scsi_command_normalize_sense(scmd, &sshdr))
 241			return 0;
 242
 243		if (failure->sense != sshdr.sense_key)
 244			continue;
 245
 246		if (failure->asc == SCMD_FAILURE_ASC_ANY)
 247			goto maybe_retry;
 248
 249		if (failure->asc != sshdr.asc)
 250			continue;
 251
 252		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
 253		    failure->ascq == sshdr.ascq)
 254			goto maybe_retry;
 255	}
 256
 257	return 0;
 258
 259maybe_retry:
 260	if (failure->allowed) {
 261		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
 262		    ++failure->retries <= failure->allowed)
 263			return -EAGAIN;
 264	} else {
 265		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
 266		    ++failures->total_retries <= failures->total_allowed)
 267			return -EAGAIN;
 268	}
 269
 270	return 0;
 271}
 272
 273/**
 274 * scsi_execute_cmd - insert request and wait for the result
 275 * @sdev:	scsi_device
 276 * @cmd:	scsi command
 277 * @opf:	block layer request cmd_flags
 278 * @buffer:	data buffer
 279 * @bufflen:	len of buffer
 
 
 280 * @timeout:	request timeout in HZ
 281 * @ml_retries:	number of times SCSI midlayer will retry request
 282 * @args:	Optional args. See struct definition for field descriptions
 
 
 283 *
 284 * Returns the scsi_cmnd result field if a command was executed, or a negative
 285 * Linux error code if we didn't get that far.
 286 */
 287int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 288		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 289		     int timeout, int ml_retries,
 290		     const struct scsi_exec_args *args)
 
 291{
 292	static const struct scsi_exec_args default_args;
 293	struct request *req;
 294	struct scsi_cmnd *scmd;
 295	int ret;
 296
 297	if (!args)
 298		args = &default_args;
 299	else if (WARN_ON_ONCE(args->sense &&
 300			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 301		return -EINVAL;
 302
 303retry:
 304	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 305	if (IS_ERR(req))
 306		return PTR_ERR(req);
 307
 308	if (bufflen) {
 309		ret = blk_rq_map_kern(sdev->request_queue, req,
 310				      buffer, bufflen, GFP_NOIO);
 311		if (ret)
 312			goto out;
 313	}
 314	scmd = blk_mq_rq_to_pdu(req);
 315	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 316	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 317	scmd->allowed = ml_retries;
 318	scmd->flags |= args->scmd_flags;
 319	req->timeout = timeout;
 320	req->rq_flags |= RQF_QUIET;
 
 321
 322	/*
 323	 * head injection *required* here otherwise quiesce won't work
 324	 */
 325	blk_execute_rq(req, true);
 326
 327	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
 328		blk_mq_free_request(req);
 329		goto retry;
 330	}
 331
 332	/*
 333	 * Some devices (USB mass-storage in particular) may transfer
 334	 * garbage data together with a residue indicating that the data
 335	 * is invalid.  Prevent the garbage from being misinterpreted
 336	 * and prevent security leaks by zeroing out the excess data.
 337	 */
 338	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 339		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 340
 341	if (args->resid)
 342		*args->resid = scmd->resid_len;
 343	if (args->sense)
 344		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 345	if (args->sshdr)
 346		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 347				     args->sshdr);
 348
 349	ret = scmd->result;
 350 out:
 351	blk_mq_free_request(req);
 352
 353	return ret;
 354}
 355EXPORT_SYMBOL(scsi_execute_cmd);
 356
 357/*
 358 * Wake up the error handler if necessary. Avoid as follows that the error
 359 * handler is not woken up if host in-flight requests number ==
 360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 361 * with an RCU read lock in this function to ensure that this function in
 362 * its entirety either finishes before scsi_eh_scmd_add() increases the
 363 * host_failed counter or that it notices the shost state change made by
 364 * scsi_eh_scmd_add().
 365 */
 366static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 367{
 368	unsigned long flags;
 369
 370	rcu_read_lock();
 371	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 372	if (unlikely(scsi_host_in_recovery(shost))) {
 373		unsigned int busy = scsi_host_busy(shost);
 374
 375		spin_lock_irqsave(shost->host_lock, flags);
 376		if (shost->host_failed || shost->host_eh_scheduled)
 377			scsi_eh_wakeup(shost, busy);
 378		spin_unlock_irqrestore(shost->host_lock, flags);
 379	}
 380	rcu_read_unlock();
 381}
 382
 383void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 384{
 385	struct Scsi_Host *shost = sdev->host;
 386	struct scsi_target *starget = scsi_target(sdev);
 387
 388	scsi_dec_host_busy(shost, cmd);
 389
 390	if (starget->can_queue > 0)
 391		atomic_dec(&starget->target_busy);
 392
 393	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 394	cmd->budget_token = -1;
 395}
 396
 
 
 
 
 
 397/*
 398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 399 * interrupts disabled.
 400 */
 401static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 402{
 403	struct scsi_device *current_sdev = data;
 404
 405	if (sdev != current_sdev)
 406		blk_mq_run_hw_queues(sdev->request_queue, true);
 407}
 408
 409/*
 410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 411 * and call blk_run_queue for all the scsi_devices on the target -
 412 * including current_sdev first.
 413 *
 414 * Called with *no* scsi locks held.
 415 */
 416static void scsi_single_lun_run(struct scsi_device *current_sdev)
 417{
 418	struct Scsi_Host *shost = current_sdev->host;
 419	struct scsi_target *starget = scsi_target(current_sdev);
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(shost->host_lock, flags);
 423	starget->starget_sdev_user = NULL;
 424	spin_unlock_irqrestore(shost->host_lock, flags);
 425
 426	/*
 427	 * Call blk_run_queue for all LUNs on the target, starting with
 428	 * current_sdev. We race with others (to set starget_sdev_user),
 429	 * but in most cases, we will be first. Ideally, each LU on the
 430	 * target would get some limited time or requests on the target.
 431	 */
 432	blk_mq_run_hw_queues(current_sdev->request_queue,
 433			     shost->queuecommand_may_block);
 434
 435	spin_lock_irqsave(shost->host_lock, flags);
 436	if (!starget->starget_sdev_user)
 437		__starget_for_each_device(starget, current_sdev,
 438					  scsi_kick_sdev_queue);
 439	spin_unlock_irqrestore(shost->host_lock, flags);
 440}
 441
 442static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 443{
 444	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 445		return true;
 446	if (atomic_read(&sdev->device_blocked) > 0)
 447		return true;
 448	return false;
 449}
 450
 451static inline bool scsi_target_is_busy(struct scsi_target *starget)
 452{
 453	if (starget->can_queue > 0) {
 454		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 455			return true;
 456		if (atomic_read(&starget->target_blocked) > 0)
 457			return true;
 458	}
 459	return false;
 460}
 461
 462static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 463{
 464	if (atomic_read(&shost->host_blocked) > 0)
 465		return true;
 466	if (shost->host_self_blocked)
 467		return true;
 468	return false;
 469}
 470
 471static void scsi_starved_list_run(struct Scsi_Host *shost)
 472{
 473	LIST_HEAD(starved_list);
 474	struct scsi_device *sdev;
 475	unsigned long flags;
 476
 477	spin_lock_irqsave(shost->host_lock, flags);
 478	list_splice_init(&shost->starved_list, &starved_list);
 479
 480	while (!list_empty(&starved_list)) {
 481		struct request_queue *slq;
 482
 483		/*
 484		 * As long as shost is accepting commands and we have
 485		 * starved queues, call blk_run_queue. scsi_request_fn
 486		 * drops the queue_lock and can add us back to the
 487		 * starved_list.
 488		 *
 489		 * host_lock protects the starved_list and starved_entry.
 490		 * scsi_request_fn must get the host_lock before checking
 491		 * or modifying starved_list or starved_entry.
 492		 */
 493		if (scsi_host_is_busy(shost))
 494			break;
 495
 496		sdev = list_entry(starved_list.next,
 497				  struct scsi_device, starved_entry);
 498		list_del_init(&sdev->starved_entry);
 499		if (scsi_target_is_busy(scsi_target(sdev))) {
 500			list_move_tail(&sdev->starved_entry,
 501				       &shost->starved_list);
 502			continue;
 503		}
 504
 505		/*
 506		 * Once we drop the host lock, a racing scsi_remove_device()
 507		 * call may remove the sdev from the starved list and destroy
 508		 * it and the queue.  Mitigate by taking a reference to the
 509		 * queue and never touching the sdev again after we drop the
 510		 * host lock.  Note: if __scsi_remove_device() invokes
 511		 * blk_mq_destroy_queue() before the queue is run from this
 512		 * function then blk_run_queue() will return immediately since
 513		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 514		 */
 515		slq = sdev->request_queue;
 516		if (!blk_get_queue(slq))
 517			continue;
 518		spin_unlock_irqrestore(shost->host_lock, flags);
 519
 520		blk_mq_run_hw_queues(slq, false);
 521		blk_put_queue(slq);
 522
 523		spin_lock_irqsave(shost->host_lock, flags);
 524	}
 525	/* put any unprocessed entries back */
 526	list_splice(&starved_list, &shost->starved_list);
 527	spin_unlock_irqrestore(shost->host_lock, flags);
 528}
 529
 530/**
 531 * scsi_run_queue - Select a proper request queue to serve next.
 532 * @q:  last request's queue
 533 *
 534 * The previous command was completely finished, start a new one if possible.
 535 */
 536static void scsi_run_queue(struct request_queue *q)
 537{
 538	struct scsi_device *sdev = q->queuedata;
 539
 540	if (scsi_target(sdev)->single_lun)
 541		scsi_single_lun_run(sdev);
 542	if (!list_empty(&sdev->host->starved_list))
 543		scsi_starved_list_run(sdev->host);
 544
 545	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 546	blk_mq_kick_requeue_list(q);
 547}
 548
 549void scsi_requeue_run_queue(struct work_struct *work)
 550{
 551	struct scsi_device *sdev;
 552	struct request_queue *q;
 553
 554	sdev = container_of(work, struct scsi_device, requeue_work);
 555	q = sdev->request_queue;
 556	scsi_run_queue(q);
 557}
 558
 559void scsi_run_host_queues(struct Scsi_Host *shost)
 560{
 561	struct scsi_device *sdev;
 562
 563	shost_for_each_device(sdev, shost)
 564		scsi_run_queue(sdev->request_queue);
 565}
 566
 567static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 568{
 569	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 570		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 571
 572		if (drv->uninit_command)
 573			drv->uninit_command(cmd);
 574	}
 575}
 576
 577void scsi_free_sgtables(struct scsi_cmnd *cmd)
 578{
 579	if (cmd->sdb.table.nents)
 580		sg_free_table_chained(&cmd->sdb.table,
 581				SCSI_INLINE_SG_CNT);
 582	if (scsi_prot_sg_count(cmd))
 583		sg_free_table_chained(&cmd->prot_sdb->table,
 584				SCSI_INLINE_PROT_SG_CNT);
 585}
 586EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 587
 588static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 589{
 590	scsi_free_sgtables(cmd);
 591	scsi_uninit_cmd(cmd);
 592}
 593
 594static void scsi_run_queue_async(struct scsi_device *sdev)
 595{
 596	if (scsi_host_in_recovery(sdev->host))
 597		return;
 598
 599	if (scsi_target(sdev)->single_lun ||
 600	    !list_empty(&sdev->host->starved_list)) {
 601		kblockd_schedule_work(&sdev->requeue_work);
 602	} else {
 603		/*
 604		 * smp_mb() present in sbitmap_queue_clear() or implied in
 605		 * .end_io is for ordering writing .device_busy in
 606		 * scsi_device_unbusy() and reading sdev->restarts.
 607		 */
 608		int old = atomic_read(&sdev->restarts);
 609
 610		/*
 611		 * ->restarts has to be kept as non-zero if new budget
 612		 *  contention occurs.
 613		 *
 614		 *  No need to run queue when either another re-run
 615		 *  queue wins in updating ->restarts or a new budget
 616		 *  contention occurs.
 617		 */
 618		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 619			blk_mq_run_hw_queues(sdev->request_queue, true);
 620	}
 621}
 622
 623/* Returns false when no more bytes to process, true if there are more */
 624static bool scsi_end_request(struct request *req, blk_status_t error,
 625		unsigned int bytes)
 626{
 627	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 628	struct scsi_device *sdev = cmd->device;
 629	struct request_queue *q = sdev->request_queue;
 630
 631	if (blk_update_request(req, error, bytes))
 632		return true;
 633
 634	// XXX:
 635	if (blk_queue_add_random(q))
 636		add_disk_randomness(req->q->disk);
 637
 638	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
 639		     !(cmd->flags & SCMD_INITIALIZED));
 640	cmd->flags = 0;
 
 641
 642	/*
 643	 * Calling rcu_barrier() is not necessary here because the
 644	 * SCSI error handler guarantees that the function called by
 645	 * call_rcu() has been called before scsi_end_request() is
 646	 * called.
 647	 */
 648	destroy_rcu_head(&cmd->rcu);
 649
 650	/*
 651	 * In the MQ case the command gets freed by __blk_mq_end_request,
 652	 * so we have to do all cleanup that depends on it earlier.
 653	 *
 654	 * We also can't kick the queues from irq context, so we
 655	 * will have to defer it to a workqueue.
 656	 */
 657	scsi_mq_uninit_cmd(cmd);
 658
 659	/*
 660	 * queue is still alive, so grab the ref for preventing it
 661	 * from being cleaned up during running queue.
 662	 */
 663	percpu_ref_get(&q->q_usage_counter);
 664
 665	__blk_mq_end_request(req, error);
 666
 667	scsi_run_queue_async(sdev);
 668
 669	percpu_ref_put(&q->q_usage_counter);
 670	return false;
 671}
 672
 
 
 
 
 
 673/**
 674 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 675 * @result:	scsi error code
 676 *
 677 * Translate a SCSI result code into a blk_status_t value.
 678 */
 679static blk_status_t scsi_result_to_blk_status(int result)
 680{
 681	/*
 682	 * Check the scsi-ml byte first in case we converted a host or status
 683	 * byte.
 684	 */
 685	switch (scsi_ml_byte(result)) {
 686	case SCSIML_STAT_OK:
 687		break;
 688	case SCSIML_STAT_RESV_CONFLICT:
 689		return BLK_STS_RESV_CONFLICT;
 690	case SCSIML_STAT_NOSPC:
 691		return BLK_STS_NOSPC;
 692	case SCSIML_STAT_MED_ERROR:
 693		return BLK_STS_MEDIUM;
 694	case SCSIML_STAT_TGT_FAILURE:
 695		return BLK_STS_TARGET;
 696	case SCSIML_STAT_DL_TIMEOUT:
 697		return BLK_STS_DURATION_LIMIT;
 698	}
 699
 700	switch (host_byte(result)) {
 701	case DID_OK:
 702		if (scsi_status_is_good(result))
 703			return BLK_STS_OK;
 704		return BLK_STS_IOERR;
 705	case DID_TRANSPORT_FAILFAST:
 706	case DID_TRANSPORT_MARGINAL:
 707		return BLK_STS_TRANSPORT;
 708	default:
 709		return BLK_STS_IOERR;
 710	}
 711}
 712
 713/**
 714 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 715 * @rq: request to examine
 716 *
 717 * Description:
 718 *     A request could be merge of IOs which require different failure
 719 *     handling.  This function determines the number of bytes which
 720 *     can be failed from the beginning of the request without
 721 *     crossing into area which need to be retried further.
 722 *
 723 * Return:
 724 *     The number of bytes to fail.
 725 */
 726static unsigned int scsi_rq_err_bytes(const struct request *rq)
 727{
 728	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 729	unsigned int bytes = 0;
 730	struct bio *bio;
 731
 732	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 733		return blk_rq_bytes(rq);
 734
 735	/*
 736	 * Currently the only 'mixing' which can happen is between
 737	 * different fastfail types.  We can safely fail portions
 738	 * which have all the failfast bits that the first one has -
 739	 * the ones which are at least as eager to fail as the first
 740	 * one.
 741	 */
 742	for (bio = rq->bio; bio; bio = bio->bi_next) {
 743		if ((bio->bi_opf & ff) != ff)
 744			break;
 745		bytes += bio->bi_iter.bi_size;
 746	}
 747
 748	/* this could lead to infinite loop */
 749	BUG_ON(blk_rq_bytes(rq) && !bytes);
 750	return bytes;
 751}
 752
 753static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 754{
 755	struct request *req = scsi_cmd_to_rq(cmd);
 756	unsigned long wait_for;
 757
 758	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 759		return false;
 760
 761	wait_for = (cmd->allowed + 1) * req->timeout;
 762	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 763		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 764			    wait_for/HZ);
 765		return true;
 766	}
 767	return false;
 768}
 769
 770/*
 771 * When ALUA transition state is returned, reprep the cmd to
 772 * use the ALUA handler's transition timeout. Delay the reprep
 773 * 1 sec to avoid aggressive retries of the target in that
 774 * state.
 775 */
 776#define ALUA_TRANSITION_REPREP_DELAY	1000
 777
 778/* Helper for scsi_io_completion() when special action required. */
 779static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 780{
 781	struct request *req = scsi_cmd_to_rq(cmd);
 782	int level = 0;
 783	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 784	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 785	struct scsi_sense_hdr sshdr;
 786	bool sense_valid;
 787	bool sense_current = true;      /* false implies "deferred sense" */
 788	blk_status_t blk_stat;
 789
 790	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 791	if (sense_valid)
 792		sense_current = !scsi_sense_is_deferred(&sshdr);
 793
 794	blk_stat = scsi_result_to_blk_status(result);
 795
 796	if (host_byte(result) == DID_RESET) {
 797		/* Third party bus reset or reset for error recovery
 798		 * reasons.  Just retry the command and see what
 799		 * happens.
 800		 */
 801		action = ACTION_RETRY;
 802	} else if (sense_valid && sense_current) {
 803		switch (sshdr.sense_key) {
 804		case UNIT_ATTENTION:
 805			if (cmd->device->removable) {
 806				/* Detected disc change.  Set a bit
 807				 * and quietly refuse further access.
 808				 */
 809				cmd->device->changed = 1;
 810				action = ACTION_FAIL;
 811			} else {
 812				/* Must have been a power glitch, or a
 813				 * bus reset.  Could not have been a
 814				 * media change, so we just retry the
 815				 * command and see what happens.
 816				 */
 817				action = ACTION_RETRY;
 818			}
 819			break;
 820		case ILLEGAL_REQUEST:
 821			/* If we had an ILLEGAL REQUEST returned, then
 822			 * we may have performed an unsupported
 823			 * command.  The only thing this should be
 824			 * would be a ten byte read where only a six
 825			 * byte read was supported.  Also, on a system
 826			 * where READ CAPACITY failed, we may have
 827			 * read past the end of the disk.
 828			 */
 829			if ((cmd->device->use_10_for_rw &&
 830			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 831			    (cmd->cmnd[0] == READ_10 ||
 832			     cmd->cmnd[0] == WRITE_10)) {
 833				/* This will issue a new 6-byte command. */
 834				cmd->device->use_10_for_rw = 0;
 835				action = ACTION_REPREP;
 836			} else if (sshdr.asc == 0x10) /* DIX */ {
 837				action = ACTION_FAIL;
 838				blk_stat = BLK_STS_PROTECTION;
 839			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 840			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 841				action = ACTION_FAIL;
 842				blk_stat = BLK_STS_TARGET;
 843			} else
 844				action = ACTION_FAIL;
 845			break;
 846		case ABORTED_COMMAND:
 847			action = ACTION_FAIL;
 848			if (sshdr.asc == 0x10) /* DIF */
 849				blk_stat = BLK_STS_PROTECTION;
 850			break;
 851		case NOT_READY:
 852			/* If the device is in the process of becoming
 853			 * ready, or has a temporary blockage, retry.
 854			 */
 855			if (sshdr.asc == 0x04) {
 856				switch (sshdr.ascq) {
 857				case 0x01: /* becoming ready */
 858				case 0x04: /* format in progress */
 859				case 0x05: /* rebuild in progress */
 860				case 0x06: /* recalculation in progress */
 861				case 0x07: /* operation in progress */
 862				case 0x08: /* Long write in progress */
 863				case 0x09: /* self test in progress */
 864				case 0x11: /* notify (enable spinup) required */
 865				case 0x14: /* space allocation in progress */
 866				case 0x1a: /* start stop unit in progress */
 867				case 0x1b: /* sanitize in progress */
 868				case 0x1d: /* configuration in progress */
 869				case 0x24: /* depopulation in progress */
 870				case 0x25: /* depopulation restore in progress */
 871					action = ACTION_DELAYED_RETRY;
 872					break;
 873				case 0x0a: /* ALUA state transition */
 874					action = ACTION_DELAYED_REPREP;
 875					break;
 876				default:
 877					action = ACTION_FAIL;
 878					break;
 879				}
 880			} else
 881				action = ACTION_FAIL;
 882			break;
 883		case VOLUME_OVERFLOW:
 884			/* See SSC3rXX or current. */
 885			action = ACTION_FAIL;
 886			break;
 887		case DATA_PROTECT:
 888			action = ACTION_FAIL;
 889			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 890			    (sshdr.asc == 0x55 &&
 891			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 892				/* Insufficient zone resources */
 893				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 894			}
 895			break;
 896		case COMPLETED:
 897			fallthrough;
 898		default:
 899			action = ACTION_FAIL;
 900			break;
 901		}
 902	} else
 903		action = ACTION_FAIL;
 904
 905	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 906		action = ACTION_FAIL;
 907
 908	switch (action) {
 909	case ACTION_FAIL:
 910		/* Give up and fail the remainder of the request */
 911		if (!(req->rq_flags & RQF_QUIET)) {
 912			static DEFINE_RATELIMIT_STATE(_rs,
 913					DEFAULT_RATELIMIT_INTERVAL,
 914					DEFAULT_RATELIMIT_BURST);
 915
 916			if (unlikely(scsi_logging_level))
 917				level =
 918				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 919						    SCSI_LOG_MLCOMPLETE_BITS);
 920
 921			/*
 922			 * if logging is enabled the failure will be printed
 923			 * in scsi_log_completion(), so avoid duplicate messages
 924			 */
 925			if (!level && __ratelimit(&_rs)) {
 926				scsi_print_result(cmd, NULL, FAILED);
 927				if (sense_valid)
 928					scsi_print_sense(cmd);
 929				scsi_print_command(cmd);
 930			}
 931		}
 932		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 933			return;
 934		fallthrough;
 935	case ACTION_REPREP:
 936		scsi_mq_requeue_cmd(cmd, 0);
 937		break;
 938	case ACTION_DELAYED_REPREP:
 939		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 940		break;
 941	case ACTION_RETRY:
 942		/* Retry the same command immediately */
 943		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 944		break;
 945	case ACTION_DELAYED_RETRY:
 946		/* Retry the same command after a delay */
 947		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 948		break;
 949	}
 950}
 951
 952/*
 953 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 954 * new result that may suppress further error checking. Also modifies
 955 * *blk_statp in some cases.
 956 */
 957static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 958					blk_status_t *blk_statp)
 959{
 960	bool sense_valid;
 961	bool sense_current = true;	/* false implies "deferred sense" */
 962	struct request *req = scsi_cmd_to_rq(cmd);
 963	struct scsi_sense_hdr sshdr;
 964
 965	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 966	if (sense_valid)
 967		sense_current = !scsi_sense_is_deferred(&sshdr);
 968
 969	if (blk_rq_is_passthrough(req)) {
 970		if (sense_valid) {
 971			/*
 972			 * SG_IO wants current and deferred errors
 973			 */
 974			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 975					     SCSI_SENSE_BUFFERSIZE);
 976		}
 977		if (sense_current)
 978			*blk_statp = scsi_result_to_blk_status(result);
 979	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 980		/*
 981		 * Flush commands do not transfers any data, and thus cannot use
 982		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 983		 * This sets *blk_statp explicitly for the problem case.
 984		 */
 985		*blk_statp = scsi_result_to_blk_status(result);
 986	}
 987	/*
 988	 * Recovered errors need reporting, but they're always treated as
 989	 * success, so fiddle the result code here.  For passthrough requests
 990	 * we already took a copy of the original into sreq->result which
 991	 * is what gets returned to the user
 992	 */
 993	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 994		bool do_print = true;
 995		/*
 996		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 997		 * skip print since caller wants ATA registers. Only occurs
 998		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 999		 */
1000		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001			do_print = false;
1002		else if (req->rq_flags & RQF_QUIET)
1003			do_print = false;
1004		if (do_print)
1005			scsi_print_sense(cmd);
1006		result = 0;
1007		/* for passthrough, *blk_statp may be set */
1008		*blk_statp = BLK_STS_OK;
1009	}
1010	/*
1011	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1012	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015	 * intermediate statuses (both obsolete in SAM-4) as good.
1016	 */
1017	if ((result & 0xff) && scsi_status_is_good(result)) {
1018		result = 0;
1019		*blk_statp = BLK_STS_OK;
1020	}
1021	return result;
1022}
1023
1024/**
1025 * scsi_io_completion - Completion processing for SCSI commands.
1026 * @cmd:	command that is finished.
1027 * @good_bytes:	number of processed bytes.
1028 *
1029 * We will finish off the specified number of sectors. If we are done, the
1030 * command block will be released and the queue function will be goosed. If we
1031 * are not done then we have to figure out what to do next:
1032 *
1033 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1034 *	unprepared and put back on the queue.  Then a new command will
1035 *	be created for it.  This should be used if we made forward
1036 *	progress, or if we want to switch from READ(10) to READ(6) for
1037 *	example.
1038 *
1039 *   b) We can call scsi_io_completion_action().  The request will be
1040 *	put back on the queue and retried using the same command as
1041 *	before, possibly after a delay.
1042 *
1043 *   c) We can call scsi_end_request() with blk_stat other than
1044 *	BLK_STS_OK, to fail the remainder of the request.
1045 */
1046void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047{
1048	int result = cmd->result;
1049	struct request *req = scsi_cmd_to_rq(cmd);
1050	blk_status_t blk_stat = BLK_STS_OK;
1051
1052	if (unlikely(result))	/* a nz result may or may not be an error */
1053		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054
1055	/*
1056	 * Next deal with any sectors which we were able to correctly
1057	 * handle.
1058	 */
1059	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060		"%u sectors total, %d bytes done.\n",
1061		blk_rq_sectors(req), good_bytes));
1062
1063	/*
1064	 * Failed, zero length commands always need to drop down
1065	 * to retry code. Fast path should return in this block.
1066	 */
1067	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069			return; /* no bytes remaining */
1070	}
1071
1072	/* Kill remainder if no retries. */
1073	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075			WARN_ONCE(true,
1076			    "Bytes remaining after failed, no-retry command");
1077		return;
1078	}
1079
1080	/*
1081	 * If there had been no error, but we have leftover bytes in the
1082	 * request just queue the command up again.
1083	 */
1084	if (likely(result == 0))
1085		scsi_mq_requeue_cmd(cmd, 0);
1086	else
1087		scsi_io_completion_action(cmd, result);
1088}
1089
1090static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091		struct request *rq)
1092{
1093	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094	       !op_is_write(req_op(rq)) &&
1095	       sdev->host->hostt->dma_need_drain(rq);
1096}
1097
1098/**
1099 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100 * @cmd: SCSI command data structure to initialize.
1101 *
1102 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103 * for @cmd.
1104 *
1105 * Returns:
1106 * * BLK_STS_OK       - on success
1107 * * BLK_STS_RESOURCE - if the failure is retryable
1108 * * BLK_STS_IOERR    - if the failure is fatal
1109 */
1110blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111{
1112	struct scsi_device *sdev = cmd->device;
1113	struct request *rq = scsi_cmd_to_rq(cmd);
1114	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115	struct scatterlist *last_sg = NULL;
1116	blk_status_t ret;
1117	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118	int count;
1119
1120	if (WARN_ON_ONCE(!nr_segs))
1121		return BLK_STS_IOERR;
1122
1123	/*
1124	 * Make sure there is space for the drain.  The driver must adjust
1125	 * max_hw_segments to be prepared for this.
1126	 */
1127	if (need_drain)
1128		nr_segs++;
1129
1130	/*
1131	 * If sg table allocation fails, requeue request later.
1132	 */
1133	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135		return BLK_STS_RESOURCE;
1136
1137	/*
1138	 * Next, walk the list, and fill in the addresses and sizes of
1139	 * each segment.
1140	 */
1141	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142
1143	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144		unsigned int pad_len =
1145			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146
1147		last_sg->length += pad_len;
1148		cmd->extra_len += pad_len;
1149	}
1150
1151	if (need_drain) {
1152		sg_unmark_end(last_sg);
1153		last_sg = sg_next(last_sg);
1154		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155		sg_mark_end(last_sg);
1156
1157		cmd->extra_len += sdev->dma_drain_len;
1158		count++;
1159	}
1160
1161	BUG_ON(count > cmd->sdb.table.nents);
1162	cmd->sdb.table.nents = count;
1163	cmd->sdb.length = blk_rq_payload_bytes(rq);
1164
1165	if (blk_integrity_rq(rq)) {
1166		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167		int ivecs;
1168
1169		if (WARN_ON_ONCE(!prot_sdb)) {
1170			/*
1171			 * This can happen if someone (e.g. multipath)
1172			 * queues a command to a device on an adapter
1173			 * that does not support DIX.
1174			 */
1175			ret = BLK_STS_IOERR;
1176			goto out_free_sgtables;
1177		}
1178
1179		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180
1181		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182				prot_sdb->table.sgl,
1183				SCSI_INLINE_PROT_SG_CNT)) {
1184			ret = BLK_STS_RESOURCE;
1185			goto out_free_sgtables;
1186		}
1187
1188		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189						prot_sdb->table.sgl);
1190		BUG_ON(count > ivecs);
1191		BUG_ON(count > queue_max_integrity_segments(rq->q));
1192
1193		cmd->prot_sdb = prot_sdb;
1194		cmd->prot_sdb->table.nents = count;
1195	}
1196
1197	return BLK_STS_OK;
1198out_free_sgtables:
1199	scsi_free_sgtables(cmd);
1200	return ret;
1201}
1202EXPORT_SYMBOL(scsi_alloc_sgtables);
1203
1204/**
1205 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206 * @rq: Request associated with the SCSI command to be initialized.
1207 *
1208 * This function initializes the members of struct scsi_cmnd that must be
1209 * initialized before request processing starts and that won't be
1210 * reinitialized if a SCSI command is requeued.
1211 */
1212static void scsi_initialize_rq(struct request *rq)
1213{
1214	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215
1216	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217	cmd->cmd_len = MAX_COMMAND_SIZE;
1218	cmd->sense_len = 0;
1219	init_rcu_head(&cmd->rcu);
1220	cmd->jiffies_at_alloc = jiffies;
1221	cmd->retries = 0;
1222}
1223
1224struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225				   blk_mq_req_flags_t flags)
1226{
1227	struct request *rq;
1228
1229	rq = blk_mq_alloc_request(q, opf, flags);
1230	if (!IS_ERR(rq))
1231		scsi_initialize_rq(rq);
1232	return rq;
1233}
1234EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235
1236/*
1237 * Only called when the request isn't completed by SCSI, and not freed by
1238 * SCSI
1239 */
1240static void scsi_cleanup_rq(struct request *rq)
1241{
1242	if (rq->rq_flags & RQF_DONTPREP) {
1243		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244		rq->rq_flags &= ~RQF_DONTPREP;
1245	}
1246}
1247
1248/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250{
1251	struct request *rq = scsi_cmd_to_rq(cmd);
1252
1253	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254		cmd->flags |= SCMD_INITIALIZED;
1255		scsi_initialize_rq(rq);
1256	}
1257
1258	cmd->device = dev;
1259	INIT_LIST_HEAD(&cmd->eh_entry);
1260	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261}
1262
1263static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264		struct request *req)
1265{
1266	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268	/*
1269	 * Passthrough requests may transfer data, in which case they must
1270	 * a bio attached to them.  Or they might contain a SCSI command
1271	 * that does not transfer data, in which case they may optionally
1272	 * submit a request without an attached bio.
1273	 */
1274	if (req->bio) {
1275		blk_status_t ret = scsi_alloc_sgtables(cmd);
1276		if (unlikely(ret != BLK_STS_OK))
1277			return ret;
1278	} else {
1279		BUG_ON(blk_rq_bytes(req));
1280
1281		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282	}
1283
1284	cmd->transfersize = blk_rq_bytes(req);
1285	return BLK_STS_OK;
1286}
1287
1288static blk_status_t
1289scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290{
1291	switch (sdev->sdev_state) {
1292	case SDEV_CREATED:
1293		return BLK_STS_OK;
1294	case SDEV_OFFLINE:
1295	case SDEV_TRANSPORT_OFFLINE:
1296		/*
1297		 * If the device is offline we refuse to process any
1298		 * commands.  The device must be brought online
1299		 * before trying any recovery commands.
1300		 */
1301		if (!sdev->offline_already) {
1302			sdev->offline_already = true;
1303			sdev_printk(KERN_ERR, sdev,
1304				    "rejecting I/O to offline device\n");
1305		}
1306		return BLK_STS_IOERR;
1307	case SDEV_DEL:
1308		/*
1309		 * If the device is fully deleted, we refuse to
1310		 * process any commands as well.
1311		 */
1312		sdev_printk(KERN_ERR, sdev,
1313			    "rejecting I/O to dead device\n");
1314		return BLK_STS_IOERR;
1315	case SDEV_BLOCK:
1316	case SDEV_CREATED_BLOCK:
1317		return BLK_STS_RESOURCE;
1318	case SDEV_QUIESCE:
1319		/*
1320		 * If the device is blocked we only accept power management
1321		 * commands.
1322		 */
1323		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324			return BLK_STS_RESOURCE;
1325		return BLK_STS_OK;
1326	default:
1327		/*
1328		 * For any other not fully online state we only allow
1329		 * power management commands.
1330		 */
1331		if (req && !(req->rq_flags & RQF_PM))
1332			return BLK_STS_OFFLINE;
1333		return BLK_STS_OK;
1334	}
1335}
1336
1337/*
1338 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339 * and return the token else return -1.
1340 */
1341static inline int scsi_dev_queue_ready(struct request_queue *q,
1342				  struct scsi_device *sdev)
1343{
1344	int token;
1345
1346	token = sbitmap_get(&sdev->budget_map);
1347	if (token < 0)
1348		return -1;
 
1349
1350	if (!atomic_read(&sdev->device_blocked))
1351		return token;
1352
1353	/*
1354	 * Only unblock if no other commands are pending and
1355	 * if device_blocked has decreased to zero
1356	 */
1357	if (scsi_device_busy(sdev) > 1 ||
1358	    atomic_dec_return(&sdev->device_blocked) > 0) {
1359		sbitmap_put(&sdev->budget_map, token);
1360		return -1;
1361	}
1362
1363	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364			 "unblocking device at zero depth\n"));
1365
1366	return token;
 
 
 
 
 
1367}
1368
1369/*
1370 * scsi_target_queue_ready: checks if there we can send commands to target
1371 * @sdev: scsi device on starget to check.
1372 */
1373static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374					   struct scsi_device *sdev)
1375{
1376	struct scsi_target *starget = scsi_target(sdev);
1377	unsigned int busy;
1378
1379	if (starget->single_lun) {
1380		spin_lock_irq(shost->host_lock);
1381		if (starget->starget_sdev_user &&
1382		    starget->starget_sdev_user != sdev) {
1383			spin_unlock_irq(shost->host_lock);
1384			return 0;
1385		}
1386		starget->starget_sdev_user = sdev;
1387		spin_unlock_irq(shost->host_lock);
1388	}
1389
1390	if (starget->can_queue <= 0)
1391		return 1;
1392
1393	busy = atomic_inc_return(&starget->target_busy) - 1;
1394	if (atomic_read(&starget->target_blocked) > 0) {
1395		if (busy)
1396			goto starved;
1397
1398		/*
1399		 * unblock after target_blocked iterates to zero
1400		 */
1401		if (atomic_dec_return(&starget->target_blocked) > 0)
1402			goto out_dec;
1403
1404		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405				 "unblocking target at zero depth\n"));
1406	}
1407
1408	if (busy >= starget->can_queue)
1409		goto starved;
1410
1411	return 1;
1412
1413starved:
1414	spin_lock_irq(shost->host_lock);
1415	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416	spin_unlock_irq(shost->host_lock);
1417out_dec:
1418	if (starget->can_queue > 0)
1419		atomic_dec(&starget->target_busy);
1420	return 0;
1421}
1422
1423/*
1424 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425 * return 0. We must end up running the queue again whenever 0 is
1426 * returned, else IO can hang.
1427 */
1428static inline int scsi_host_queue_ready(struct request_queue *q,
1429				   struct Scsi_Host *shost,
1430				   struct scsi_device *sdev,
1431				   struct scsi_cmnd *cmd)
1432{
1433	if (atomic_read(&shost->host_blocked) > 0) {
1434		if (scsi_host_busy(shost) > 0)
1435			goto starved;
1436
1437		/*
1438		 * unblock after host_blocked iterates to zero
1439		 */
1440		if (atomic_dec_return(&shost->host_blocked) > 0)
1441			goto out_dec;
1442
1443		SCSI_LOG_MLQUEUE(3,
1444			shost_printk(KERN_INFO, shost,
1445				     "unblocking host at zero depth\n"));
1446	}
1447
1448	if (shost->host_self_blocked)
1449		goto starved;
1450
1451	/* We're OK to process the command, so we can't be starved */
1452	if (!list_empty(&sdev->starved_entry)) {
1453		spin_lock_irq(shost->host_lock);
1454		if (!list_empty(&sdev->starved_entry))
1455			list_del_init(&sdev->starved_entry);
1456		spin_unlock_irq(shost->host_lock);
1457	}
1458
1459	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460
1461	return 1;
1462
1463starved:
1464	spin_lock_irq(shost->host_lock);
1465	if (list_empty(&sdev->starved_entry))
1466		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467	spin_unlock_irq(shost->host_lock);
1468out_dec:
1469	scsi_dec_host_busy(shost, cmd);
1470	return 0;
1471}
1472
1473/*
1474 * Busy state exporting function for request stacking drivers.
1475 *
1476 * For efficiency, no lock is taken to check the busy state of
1477 * shost/starget/sdev, since the returned value is not guaranteed and
1478 * may be changed after request stacking drivers call the function,
1479 * regardless of taking lock or not.
1480 *
1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482 * needs to return 'not busy'. Otherwise, request stacking drivers
1483 * may hold requests forever.
1484 */
1485static bool scsi_mq_lld_busy(struct request_queue *q)
1486{
1487	struct scsi_device *sdev = q->queuedata;
1488	struct Scsi_Host *shost;
1489
1490	if (blk_queue_dying(q))
1491		return false;
1492
1493	shost = sdev->host;
1494
1495	/*
1496	 * Ignore host/starget busy state.
1497	 * Since block layer does not have a concept of fairness across
1498	 * multiple queues, congestion of host/starget needs to be handled
1499	 * in SCSI layer.
1500	 */
1501	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502		return true;
1503
1504	return false;
1505}
1506
1507/*
1508 * Block layer request completion callback. May be called from interrupt
1509 * context.
1510 */
1511static void scsi_complete(struct request *rq)
1512{
1513	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514	enum scsi_disposition disposition;
1515
1516	INIT_LIST_HEAD(&cmd->eh_entry);
1517
1518	atomic_inc(&cmd->device->iodone_cnt);
1519	if (cmd->result)
1520		atomic_inc(&cmd->device->ioerr_cnt);
1521
1522	disposition = scsi_decide_disposition(cmd);
1523	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1524		disposition = SUCCESS;
1525
1526	scsi_log_completion(cmd, disposition);
1527
1528	switch (disposition) {
1529	case SUCCESS:
1530		scsi_finish_command(cmd);
1531		break;
1532	case NEEDS_RETRY:
1533		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534		break;
1535	case ADD_TO_MLQUEUE:
1536		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537		break;
1538	default:
1539		scsi_eh_scmd_add(cmd);
1540		break;
1541	}
1542}
1543
1544/**
1545 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546 * @cmd: command block we are dispatching.
1547 *
1548 * Return: nonzero return request was rejected and device's queue needs to be
1549 * plugged.
1550 */
1551static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552{
1553	struct Scsi_Host *host = cmd->device->host;
1554	int rtn = 0;
1555
1556	atomic_inc(&cmd->device->iorequest_cnt);
1557
1558	/* check if the device is still usable */
1559	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561		 * returns an immediate error upwards, and signals
1562		 * that the device is no longer present */
1563		cmd->result = DID_NO_CONNECT << 16;
1564		goto done;
1565	}
1566
1567	/* Check to see if the scsi lld made this device blocked. */
1568	if (unlikely(scsi_device_blocked(cmd->device))) {
1569		/*
1570		 * in blocked state, the command is just put back on
1571		 * the device queue.  The suspend state has already
1572		 * blocked the queue so future requests should not
1573		 * occur until the device transitions out of the
1574		 * suspend state.
1575		 */
1576		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577			"queuecommand : device blocked\n"));
1578		atomic_dec(&cmd->device->iorequest_cnt);
1579		return SCSI_MLQUEUE_DEVICE_BUSY;
1580	}
1581
1582	/* Store the LUN value in cmnd, if needed. */
1583	if (cmd->device->lun_in_cdb)
1584		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585			       (cmd->device->lun << 5 & 0xe0);
1586
1587	scsi_log_send(cmd);
1588
1589	/*
1590	 * Before we queue this command, check if the command
1591	 * length exceeds what the host adapter can handle.
1592	 */
1593	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595			       "queuecommand : command too long. "
1596			       "cdb_size=%d host->max_cmd_len=%d\n",
1597			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1598		cmd->result = (DID_ABORT << 16);
1599		goto done;
1600	}
1601
1602	if (unlikely(host->shost_state == SHOST_DEL)) {
1603		cmd->result = (DID_NO_CONNECT << 16);
1604		goto done;
1605
1606	}
1607
1608	trace_scsi_dispatch_cmd_start(cmd);
1609	rtn = host->hostt->queuecommand(host, cmd);
1610	if (rtn) {
1611		atomic_dec(&cmd->device->iorequest_cnt);
1612		trace_scsi_dispatch_cmd_error(cmd, rtn);
1613		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615			rtn = SCSI_MLQUEUE_HOST_BUSY;
1616
1617		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618			"queuecommand : request rejected\n"));
1619	}
1620
1621	return rtn;
1622 done:
1623	scsi_done(cmd);
1624	return 0;
1625}
1626
1627/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1629{
1630	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631		sizeof(struct scatterlist);
1632}
1633
1634static blk_status_t scsi_prepare_cmd(struct request *req)
1635{
1636	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637	struct scsi_device *sdev = req->q->queuedata;
1638	struct Scsi_Host *shost = sdev->host;
1639	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640	struct scatterlist *sg;
1641
1642	scsi_init_command(sdev, cmd);
1643
1644	cmd->eh_eflags = 0;
1645	cmd->prot_type = 0;
1646	cmd->prot_flags = 0;
1647	cmd->submitter = 0;
1648	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649	cmd->underflow = 0;
1650	cmd->transfersize = 0;
1651	cmd->host_scribble = NULL;
1652	cmd->result = 0;
1653	cmd->extra_len = 0;
1654	cmd->state = 0;
1655	if (in_flight)
1656		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657
1658	/*
1659	 * Only clear the driver-private command data if the LLD does not supply
1660	 * a function to initialize that data.
1661	 */
1662	if (!shost->hostt->init_cmd_priv)
1663		memset(cmd + 1, 0, shost->hostt->cmd_size);
1664
1665	cmd->prot_op = SCSI_PROT_NORMAL;
1666	if (blk_rq_bytes(req))
1667		cmd->sc_data_direction = rq_dma_dir(req);
1668	else
1669		cmd->sc_data_direction = DMA_NONE;
1670
1671	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672	cmd->sdb.table.sgl = sg;
1673
1674	if (scsi_host_get_prot(shost)) {
1675		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1676
1677		cmd->prot_sdb->table.sgl =
1678			(struct scatterlist *)(cmd->prot_sdb + 1);
1679	}
1680
1681	/*
1682	 * Special handling for passthrough commands, which don't go to the ULP
1683	 * at all:
1684	 */
1685	if (blk_rq_is_passthrough(req))
1686		return scsi_setup_scsi_cmnd(sdev, req);
1687
1688	if (sdev->handler && sdev->handler->prep_fn) {
1689		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690
1691		if (ret != BLK_STS_OK)
1692			return ret;
1693	}
1694
1695	/* Usually overridden by the ULP */
1696	cmd->allowed = 0;
1697	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699}
1700
1701static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702{
1703	struct request *req = scsi_cmd_to_rq(cmd);
1704
1705	switch (cmd->submitter) {
1706	case SUBMITTED_BY_BLOCK_LAYER:
1707		break;
1708	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709		return scsi_eh_done(cmd);
1710	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711		return;
1712	}
1713
1714	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715		return;
1716	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717		return;
1718	trace_scsi_dispatch_cmd_done(cmd);
1719
1720	if (complete_directly)
1721		blk_mq_complete_request_direct(req, scsi_complete);
1722	else
1723		blk_mq_complete_request(req);
1724}
1725
1726void scsi_done(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, false);
1729}
1730EXPORT_SYMBOL(scsi_done);
1731
1732void scsi_done_direct(struct scsi_cmnd *cmd)
1733{
1734	scsi_done_internal(cmd, true);
1735}
1736EXPORT_SYMBOL(scsi_done_direct);
1737
1738static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739{
1740	struct scsi_device *sdev = q->queuedata;
1741
1742	sbitmap_put(&sdev->budget_map, budget_token);
1743}
1744
1745/*
1746 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747 * not change behaviour from the previous unplug mechanism, experimentation
1748 * may prove this needs changing.
1749 */
1750#define SCSI_QUEUE_DELAY 3
1751
1752static int scsi_mq_get_budget(struct request_queue *q)
1753{
1754	struct scsi_device *sdev = q->queuedata;
1755	int token = scsi_dev_queue_ready(q, sdev);
1756
1757	if (token >= 0)
1758		return token;
1759
1760	atomic_inc(&sdev->restarts);
1761
1762	/*
1763	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764	 * .restarts must be incremented before .device_busy is read because the
1765	 * code in scsi_run_queue_async() depends on the order of these operations.
1766	 */
1767	smp_mb__after_atomic();
1768
1769	/*
1770	 * If all in-flight requests originated from this LUN are completed
1771	 * before reading .device_busy, sdev->device_busy will be observed as
1772	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773	 * soon. Otherwise, completion of one of these requests will observe
1774	 * the .restarts flag, and the request queue will be run for handling
1775	 * this request, see scsi_end_request().
1776	 */
1777	if (unlikely(scsi_device_busy(sdev) == 0 &&
1778				!scsi_device_blocked(sdev)))
1779		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780	return -1;
1781}
1782
1783static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784{
1785	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786
1787	cmd->budget_token = token;
1788}
1789
1790static int scsi_mq_get_rq_budget_token(struct request *req)
1791{
1792	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794	return cmd->budget_token;
1795}
1796
1797static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798			 const struct blk_mq_queue_data *bd)
1799{
1800	struct request *req = bd->rq;
1801	struct request_queue *q = req->q;
1802	struct scsi_device *sdev = q->queuedata;
1803	struct Scsi_Host *shost = sdev->host;
1804	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805	blk_status_t ret;
1806	int reason;
1807
1808	WARN_ON_ONCE(cmd->budget_token < 0);
1809
1810	/*
1811	 * If the device is not in running state we will reject some or all
1812	 * commands.
1813	 */
1814	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815		ret = scsi_device_state_check(sdev, req);
1816		if (ret != BLK_STS_OK)
1817			goto out_put_budget;
1818	}
1819
1820	ret = BLK_STS_RESOURCE;
1821	if (!scsi_target_queue_ready(shost, sdev))
1822		goto out_put_budget;
1823	if (unlikely(scsi_host_in_recovery(shost))) {
1824		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825			ret = BLK_STS_OFFLINE;
1826		goto out_dec_target_busy;
1827	}
1828	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829		goto out_dec_target_busy;
1830
1831	if (!(req->rq_flags & RQF_DONTPREP)) {
1832		ret = scsi_prepare_cmd(req);
1833		if (ret != BLK_STS_OK)
1834			goto out_dec_host_busy;
1835		req->rq_flags |= RQF_DONTPREP;
1836	} else {
1837		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838	}
1839
1840	cmd->flags &= SCMD_PRESERVED_FLAGS;
1841	if (sdev->simple_tags)
1842		cmd->flags |= SCMD_TAGGED;
1843	if (bd->last)
1844		cmd->flags |= SCMD_LAST;
1845
1846	scsi_set_resid(cmd, 0);
1847	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849
1850	blk_mq_start_request(req);
1851	reason = scsi_dispatch_cmd(cmd);
1852	if (reason) {
1853		scsi_set_blocked(cmd, reason);
1854		ret = BLK_STS_RESOURCE;
1855		goto out_dec_host_busy;
1856	}
1857
 
1858	return BLK_STS_OK;
1859
1860out_dec_host_busy:
1861	scsi_dec_host_busy(shost, cmd);
1862out_dec_target_busy:
1863	if (scsi_target(sdev)->can_queue > 0)
1864		atomic_dec(&scsi_target(sdev)->target_busy);
1865out_put_budget:
1866	scsi_mq_put_budget(q, cmd->budget_token);
1867	cmd->budget_token = -1;
1868	switch (ret) {
1869	case BLK_STS_OK:
1870		break;
1871	case BLK_STS_RESOURCE:
1872	case BLK_STS_ZONE_RESOURCE:
1873		if (scsi_device_blocked(sdev))
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
1894		break;
1895	}
1896	return ret;
1897}
1898
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
1901{
1902	struct Scsi_Host *shost = set->driver_data;
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946	return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	/*
1972	 * this limit is imposed by hardware restrictions
1973	 */
1974	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1975					SG_MAX_SEGMENTS));
1976
1977	if (scsi_host_prot_dma(shost)) {
1978		shost->sg_prot_tablesize =
1979			min_not_zero(shost->sg_prot_tablesize,
1980				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1981		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1982		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1983	}
1984
1985	blk_queue_max_hw_sectors(q, shost->max_sectors);
1986	blk_queue_segment_boundary(q, shost->dma_boundary);
1987	dma_set_seg_boundary(dev, shost->dma_boundary);
1988
1989	blk_queue_max_segment_size(q, shost->max_segment_size);
1990	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1991	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1992
1993	/*
1994	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1995	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1996	 * which is set by the platform.
1997	 *
1998	 * Devices that require a bigger alignment can increase it later.
1999	 */
2000	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2001}
2002EXPORT_SYMBOL_GPL(__scsi_init_queue);
2003
2004static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2005	.get_budget	= scsi_mq_get_budget,
2006	.put_budget	= scsi_mq_put_budget,
2007	.queue_rq	= scsi_queue_rq,
2008	.complete	= scsi_complete,
2009	.timeout	= scsi_timeout,
2010#ifdef CONFIG_BLK_DEBUG_FS
2011	.show_rq	= scsi_show_rq,
2012#endif
2013	.init_request	= scsi_mq_init_request,
2014	.exit_request	= scsi_mq_exit_request,
2015	.cleanup_rq	= scsi_cleanup_rq,
2016	.busy		= scsi_mq_lld_busy,
2017	.map_queues	= scsi_map_queues,
2018	.init_hctx	= scsi_init_hctx,
2019	.poll		= scsi_mq_poll,
2020	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2021	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2022};
2023
2024
2025static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2026{
2027	struct Scsi_Host *shost = hctx->driver_data;
2028
2029	shost->hostt->commit_rqs(shost, hctx->queue_num);
2030}
2031
2032static const struct blk_mq_ops scsi_mq_ops = {
2033	.get_budget	= scsi_mq_get_budget,
2034	.put_budget	= scsi_mq_put_budget,
2035	.queue_rq	= scsi_queue_rq,
2036	.commit_rqs	= scsi_commit_rqs,
2037	.complete	= scsi_complete,
2038	.timeout	= scsi_timeout,
2039#ifdef CONFIG_BLK_DEBUG_FS
2040	.show_rq	= scsi_show_rq,
2041#endif
2042	.init_request	= scsi_mq_init_request,
2043	.exit_request	= scsi_mq_exit_request,
2044	.cleanup_rq	= scsi_cleanup_rq,
2045	.busy		= scsi_mq_lld_busy,
2046	.map_queues	= scsi_map_queues,
2047	.init_hctx	= scsi_init_hctx,
2048	.poll		= scsi_mq_poll,
2049	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2050	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2051};
2052
2053int scsi_mq_setup_tags(struct Scsi_Host *shost)
2054{
2055	unsigned int cmd_size, sgl_size;
2056	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2057
2058	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2059				scsi_mq_inline_sgl_size(shost));
2060	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2061	if (scsi_host_get_prot(shost))
2062		cmd_size += sizeof(struct scsi_data_buffer) +
2063			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2064
2065	memset(tag_set, 0, sizeof(*tag_set));
2066	if (shost->hostt->commit_rqs)
2067		tag_set->ops = &scsi_mq_ops;
2068	else
2069		tag_set->ops = &scsi_mq_ops_no_commit;
2070	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2071	tag_set->nr_maps = shost->nr_maps ? : 1;
2072	tag_set->queue_depth = shost->can_queue;
2073	tag_set->cmd_size = cmd_size;
2074	tag_set->numa_node = dev_to_node(shost->dma_dev);
2075	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2076	tag_set->flags |=
2077		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2078	if (shost->queuecommand_may_block)
2079		tag_set->flags |= BLK_MQ_F_BLOCKING;
2080	tag_set->driver_data = shost;
2081	if (shost->host_tagset)
2082		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2083
2084	return blk_mq_alloc_tag_set(tag_set);
2085}
2086
2087void scsi_mq_free_tags(struct kref *kref)
2088{
2089	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2090					       tagset_refcnt);
2091
2092	blk_mq_free_tag_set(&shost->tag_set);
2093	complete(&shost->tagset_freed);
2094}
2095
2096/**
2097 * scsi_device_from_queue - return sdev associated with a request_queue
2098 * @q: The request queue to return the sdev from
2099 *
2100 * Return the sdev associated with a request queue or NULL if the
2101 * request_queue does not reference a SCSI device.
2102 */
2103struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2104{
2105	struct scsi_device *sdev = NULL;
2106
2107	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2108	    q->mq_ops == &scsi_mq_ops)
2109		sdev = q->queuedata;
2110	if (!sdev || !get_device(&sdev->sdev_gendev))
2111		sdev = NULL;
2112
2113	return sdev;
2114}
2115/*
2116 * pktcdvd should have been integrated into the SCSI layers, but for historical
2117 * reasons like the old IDE driver it isn't.  This export allows it to safely
2118 * probe if a given device is a SCSI one and only attach to that.
2119 */
2120#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2121EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2122#endif
2123
2124/**
2125 * scsi_block_requests - Utility function used by low-level drivers to prevent
2126 * further commands from being queued to the device.
2127 * @shost:  host in question
2128 *
2129 * There is no timer nor any other means by which the requests get unblocked
2130 * other than the low-level driver calling scsi_unblock_requests().
2131 */
2132void scsi_block_requests(struct Scsi_Host *shost)
2133{
2134	shost->host_self_blocked = 1;
2135}
2136EXPORT_SYMBOL(scsi_block_requests);
2137
2138/**
2139 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2140 * further commands to be queued to the device.
2141 * @shost:  host in question
2142 *
2143 * There is no timer nor any other means by which the requests get unblocked
2144 * other than the low-level driver calling scsi_unblock_requests(). This is done
2145 * as an API function so that changes to the internals of the scsi mid-layer
2146 * won't require wholesale changes to drivers that use this feature.
2147 */
2148void scsi_unblock_requests(struct Scsi_Host *shost)
2149{
2150	shost->host_self_blocked = 0;
2151	scsi_run_host_queues(shost);
2152}
2153EXPORT_SYMBOL(scsi_unblock_requests);
2154
2155void scsi_exit_queue(void)
2156{
2157	kmem_cache_destroy(scsi_sense_cache);
2158}
2159
2160/**
2161 *	scsi_mode_select - issue a mode select
2162 *	@sdev:	SCSI device to be queried
2163 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2164 *	@sp:	Save page bit (0 == don't save, 1 == save)
2165 *	@buffer: request buffer (may not be smaller than eight bytes)
2166 *	@len:	length of request buffer.
2167 *	@timeout: command timeout
2168 *	@retries: number of retries before failing
2169 *	@data: returns a structure abstracting the mode header data
2170 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2171 *		must be SCSI_SENSE_BUFFERSIZE big.
2172 *
2173 *	Returns zero if successful; negative error number or scsi
2174 *	status on error
2175 *
2176 */
2177int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2178		     unsigned char *buffer, int len, int timeout, int retries,
2179		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2180{
2181	unsigned char cmd[10];
2182	unsigned char *real_buffer;
2183	const struct scsi_exec_args exec_args = {
2184		.sshdr = sshdr,
2185	};
2186	int ret;
2187
2188	memset(cmd, 0, sizeof(cmd));
2189	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2190
2191	/*
2192	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2193	 * and the mode select header cannot fit within the maximumm 255 bytes
2194	 * of the MODE SELECT(6) command.
2195	 */
2196	if (sdev->use_10_for_ms ||
2197	    len + 4 > 255 ||
2198	    data->block_descriptor_length > 255) {
2199		if (len > 65535 - 8)
2200			return -EINVAL;
2201		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2202		if (!real_buffer)
2203			return -ENOMEM;
2204		memcpy(real_buffer + 8, buffer, len);
2205		len += 8;
2206		real_buffer[0] = 0;
2207		real_buffer[1] = 0;
2208		real_buffer[2] = data->medium_type;
2209		real_buffer[3] = data->device_specific;
2210		real_buffer[4] = data->longlba ? 0x01 : 0;
2211		real_buffer[5] = 0;
2212		put_unaligned_be16(data->block_descriptor_length,
2213				   &real_buffer[6]);
2214
2215		cmd[0] = MODE_SELECT_10;
2216		put_unaligned_be16(len, &cmd[7]);
2217	} else {
2218		if (data->longlba)
2219			return -EINVAL;
2220
2221		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2222		if (!real_buffer)
2223			return -ENOMEM;
2224		memcpy(real_buffer + 4, buffer, len);
2225		len += 4;
2226		real_buffer[0] = 0;
2227		real_buffer[1] = data->medium_type;
2228		real_buffer[2] = data->device_specific;
2229		real_buffer[3] = data->block_descriptor_length;
2230
2231		cmd[0] = MODE_SELECT;
2232		cmd[4] = len;
2233	}
2234
2235	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2236			       timeout, retries, &exec_args);
2237	kfree(real_buffer);
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(scsi_mode_select);
2241
2242/**
2243 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2244 *	@sdev:	SCSI device to be queried
2245 *	@dbd:	set to prevent mode sense from returning block descriptors
2246 *	@modepage: mode page being requested
2247 *	@subpage: sub-page of the mode page being requested
2248 *	@buffer: request buffer (may not be smaller than eight bytes)
2249 *	@len:	length of request buffer.
2250 *	@timeout: command timeout
2251 *	@retries: number of retries before failing
2252 *	@data: returns a structure abstracting the mode header data
2253 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2254 *		must be SCSI_SENSE_BUFFERSIZE big.
2255 *
2256 *	Returns zero if successful, or a negative error number on failure
2257 */
2258int
2259scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2260		  unsigned char *buffer, int len, int timeout, int retries,
2261		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2262{
2263	unsigned char cmd[12];
2264	int use_10_for_ms;
2265	int header_length;
2266	int result;
2267	struct scsi_sense_hdr my_sshdr;
2268	struct scsi_failure failure_defs[] = {
2269		{
2270			.sense = UNIT_ATTENTION,
2271			.asc = SCMD_FAILURE_ASC_ANY,
2272			.ascq = SCMD_FAILURE_ASCQ_ANY,
2273			.allowed = retries,
2274			.result = SAM_STAT_CHECK_CONDITION,
2275		},
2276		{}
2277	};
2278	struct scsi_failures failures = {
2279		.failure_definitions = failure_defs,
2280	};
2281	const struct scsi_exec_args exec_args = {
2282		/* caller might not be interested in sense, but we need it */
2283		.sshdr = sshdr ? : &my_sshdr,
2284		.failures = &failures,
2285	};
2286
2287	memset(data, 0, sizeof(*data));
2288	memset(&cmd[0], 0, 12);
2289
2290	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2291	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2292	cmd[2] = modepage;
2293	cmd[3] = subpage;
2294
2295	sshdr = exec_args.sshdr;
 
 
2296
2297 retry:
2298	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2299
2300	if (use_10_for_ms) {
2301		if (len < 8 || len > 65535)
2302			return -EINVAL;
2303
2304		cmd[0] = MODE_SENSE_10;
2305		put_unaligned_be16(len, &cmd[7]);
2306		header_length = 8;
2307	} else {
2308		if (len < 4)
2309			return -EINVAL;
2310
2311		cmd[0] = MODE_SENSE;
2312		cmd[4] = len;
2313		header_length = 4;
2314	}
2315
2316	memset(buffer, 0, len);
2317
2318	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2319				  timeout, retries, &exec_args);
2320	if (result < 0)
2321		return result;
2322
2323	/* This code looks awful: what it's doing is making sure an
2324	 * ILLEGAL REQUEST sense return identifies the actual command
2325	 * byte as the problem.  MODE_SENSE commands can return
2326	 * ILLEGAL REQUEST if the code page isn't supported */
2327
2328	if (!scsi_status_is_good(result)) {
2329		if (scsi_sense_valid(sshdr)) {
2330			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2331			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2332				/*
2333				 * Invalid command operation code: retry using
2334				 * MODE SENSE(6) if this was a MODE SENSE(10)
2335				 * request, except if the request mode page is
2336				 * too large for MODE SENSE single byte
2337				 * allocation length field.
2338				 */
2339				if (use_10_for_ms) {
2340					if (len > 255)
2341						return -EIO;
2342					sdev->use_10_for_ms = 0;
2343					goto retry;
2344				}
2345			}
 
 
 
 
 
 
2346		}
2347		return -EIO;
2348	}
2349	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2350		     (modepage == 6 || modepage == 8))) {
2351		/* Initio breakage? */
2352		header_length = 0;
2353		data->length = 13;
2354		data->medium_type = 0;
2355		data->device_specific = 0;
2356		data->longlba = 0;
2357		data->block_descriptor_length = 0;
2358	} else if (use_10_for_ms) {
2359		data->length = get_unaligned_be16(&buffer[0]) + 2;
2360		data->medium_type = buffer[2];
2361		data->device_specific = buffer[3];
2362		data->longlba = buffer[4] & 0x01;
2363		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2364	} else {
2365		data->length = buffer[0] + 1;
2366		data->medium_type = buffer[1];
2367		data->device_specific = buffer[2];
2368		data->block_descriptor_length = buffer[3];
2369	}
2370	data->header_length = header_length;
2371
2372	return 0;
2373}
2374EXPORT_SYMBOL(scsi_mode_sense);
2375
2376/**
2377 *	scsi_test_unit_ready - test if unit is ready
2378 *	@sdev:	scsi device to change the state of.
2379 *	@timeout: command timeout
2380 *	@retries: number of retries before failing
2381 *	@sshdr: outpout pointer for decoded sense information.
2382 *
2383 *	Returns zero if unsuccessful or an error if TUR failed.  For
2384 *	removable media, UNIT_ATTENTION sets ->changed flag.
2385 **/
2386int
2387scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2388		     struct scsi_sense_hdr *sshdr)
2389{
2390	char cmd[] = {
2391		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2392	};
2393	const struct scsi_exec_args exec_args = {
2394		.sshdr = sshdr,
2395	};
2396	int result;
2397
2398	/* try to eat the UNIT_ATTENTION if there are enough retries */
2399	do {
2400		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2401					  timeout, 1, &exec_args);
2402		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2403		    sshdr->sense_key == UNIT_ATTENTION)
2404			sdev->changed = 1;
2405	} while (result > 0 && scsi_sense_valid(sshdr) &&
2406		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2407
2408	return result;
2409}
2410EXPORT_SYMBOL(scsi_test_unit_ready);
2411
2412/**
2413 *	scsi_device_set_state - Take the given device through the device state model.
2414 *	@sdev:	scsi device to change the state of.
2415 *	@state:	state to change to.
2416 *
2417 *	Returns zero if successful or an error if the requested
2418 *	transition is illegal.
2419 */
2420int
2421scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2422{
2423	enum scsi_device_state oldstate = sdev->sdev_state;
2424
2425	if (state == oldstate)
2426		return 0;
2427
2428	switch (state) {
2429	case SDEV_CREATED:
2430		switch (oldstate) {
2431		case SDEV_CREATED_BLOCK:
2432			break;
2433		default:
2434			goto illegal;
2435		}
2436		break;
2437
2438	case SDEV_RUNNING:
2439		switch (oldstate) {
2440		case SDEV_CREATED:
2441		case SDEV_OFFLINE:
2442		case SDEV_TRANSPORT_OFFLINE:
2443		case SDEV_QUIESCE:
2444		case SDEV_BLOCK:
2445			break;
2446		default:
2447			goto illegal;
2448		}
2449		break;
2450
2451	case SDEV_QUIESCE:
2452		switch (oldstate) {
2453		case SDEV_RUNNING:
2454		case SDEV_OFFLINE:
2455		case SDEV_TRANSPORT_OFFLINE:
2456			break;
2457		default:
2458			goto illegal;
2459		}
2460		break;
2461
2462	case SDEV_OFFLINE:
2463	case SDEV_TRANSPORT_OFFLINE:
2464		switch (oldstate) {
2465		case SDEV_CREATED:
2466		case SDEV_RUNNING:
2467		case SDEV_QUIESCE:
2468		case SDEV_BLOCK:
2469			break;
2470		default:
2471			goto illegal;
2472		}
2473		break;
2474
2475	case SDEV_BLOCK:
2476		switch (oldstate) {
2477		case SDEV_RUNNING:
2478		case SDEV_CREATED_BLOCK:
2479		case SDEV_QUIESCE:
2480		case SDEV_OFFLINE:
2481			break;
2482		default:
2483			goto illegal;
2484		}
2485		break;
2486
2487	case SDEV_CREATED_BLOCK:
2488		switch (oldstate) {
2489		case SDEV_CREATED:
2490			break;
2491		default:
2492			goto illegal;
2493		}
2494		break;
2495
2496	case SDEV_CANCEL:
2497		switch (oldstate) {
2498		case SDEV_CREATED:
2499		case SDEV_RUNNING:
2500		case SDEV_QUIESCE:
2501		case SDEV_OFFLINE:
2502		case SDEV_TRANSPORT_OFFLINE:
2503			break;
2504		default:
2505			goto illegal;
2506		}
2507		break;
2508
2509	case SDEV_DEL:
2510		switch (oldstate) {
2511		case SDEV_CREATED:
2512		case SDEV_RUNNING:
2513		case SDEV_OFFLINE:
2514		case SDEV_TRANSPORT_OFFLINE:
2515		case SDEV_CANCEL:
2516		case SDEV_BLOCK:
2517		case SDEV_CREATED_BLOCK:
2518			break;
2519		default:
2520			goto illegal;
2521		}
2522		break;
2523
2524	}
2525	sdev->offline_already = false;
2526	sdev->sdev_state = state;
2527	return 0;
2528
2529 illegal:
2530	SCSI_LOG_ERROR_RECOVERY(1,
2531				sdev_printk(KERN_ERR, sdev,
2532					    "Illegal state transition %s->%s",
2533					    scsi_device_state_name(oldstate),
2534					    scsi_device_state_name(state))
2535				);
2536	return -EINVAL;
2537}
2538EXPORT_SYMBOL(scsi_device_set_state);
2539
2540/**
2541 *	scsi_evt_emit - emit a single SCSI device uevent
2542 *	@sdev: associated SCSI device
2543 *	@evt: event to emit
2544 *
2545 *	Send a single uevent (scsi_event) to the associated scsi_device.
2546 */
2547static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2548{
2549	int idx = 0;
2550	char *envp[3];
2551
2552	switch (evt->evt_type) {
2553	case SDEV_EVT_MEDIA_CHANGE:
2554		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2555		break;
2556	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2557		scsi_rescan_device(sdev);
2558		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2559		break;
2560	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2561		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2562		break;
2563	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2564	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2565		break;
2566	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2568		break;
2569	case SDEV_EVT_LUN_CHANGE_REPORTED:
2570		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2571		break;
2572	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2574		break;
2575	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2576		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2577		break;
2578	default:
2579		/* do nothing */
2580		break;
2581	}
2582
2583	envp[idx++] = NULL;
2584
2585	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2586}
2587
2588/**
2589 *	scsi_evt_thread - send a uevent for each scsi event
2590 *	@work: work struct for scsi_device
2591 *
2592 *	Dispatch queued events to their associated scsi_device kobjects
2593 *	as uevents.
2594 */
2595void scsi_evt_thread(struct work_struct *work)
2596{
2597	struct scsi_device *sdev;
2598	enum scsi_device_event evt_type;
2599	LIST_HEAD(event_list);
2600
2601	sdev = container_of(work, struct scsi_device, event_work);
2602
2603	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2604		if (test_and_clear_bit(evt_type, sdev->pending_events))
2605			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2606
2607	while (1) {
2608		struct scsi_event *evt;
2609		struct list_head *this, *tmp;
2610		unsigned long flags;
2611
2612		spin_lock_irqsave(&sdev->list_lock, flags);
2613		list_splice_init(&sdev->event_list, &event_list);
2614		spin_unlock_irqrestore(&sdev->list_lock, flags);
2615
2616		if (list_empty(&event_list))
2617			break;
2618
2619		list_for_each_safe(this, tmp, &event_list) {
2620			evt = list_entry(this, struct scsi_event, node);
2621			list_del(&evt->node);
2622			scsi_evt_emit(sdev, evt);
2623			kfree(evt);
2624		}
2625	}
2626}
2627
2628/**
2629 * 	sdev_evt_send - send asserted event to uevent thread
2630 *	@sdev: scsi_device event occurred on
2631 *	@evt: event to send
2632 *
2633 *	Assert scsi device event asynchronously.
2634 */
2635void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2636{
2637	unsigned long flags;
2638
2639#if 0
2640	/* FIXME: currently this check eliminates all media change events
2641	 * for polled devices.  Need to update to discriminate between AN
2642	 * and polled events */
2643	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2644		kfree(evt);
2645		return;
2646	}
2647#endif
2648
2649	spin_lock_irqsave(&sdev->list_lock, flags);
2650	list_add_tail(&evt->node, &sdev->event_list);
2651	schedule_work(&sdev->event_work);
2652	spin_unlock_irqrestore(&sdev->list_lock, flags);
2653}
2654EXPORT_SYMBOL_GPL(sdev_evt_send);
2655
2656/**
2657 * 	sdev_evt_alloc - allocate a new scsi event
2658 *	@evt_type: type of event to allocate
2659 *	@gfpflags: GFP flags for allocation
2660 *
2661 *	Allocates and returns a new scsi_event.
2662 */
2663struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2664				  gfp_t gfpflags)
2665{
2666	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2667	if (!evt)
2668		return NULL;
2669
2670	evt->evt_type = evt_type;
2671	INIT_LIST_HEAD(&evt->node);
2672
2673	/* evt_type-specific initialization, if any */
2674	switch (evt_type) {
2675	case SDEV_EVT_MEDIA_CHANGE:
2676	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2677	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2678	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2679	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680	case SDEV_EVT_LUN_CHANGE_REPORTED:
2681	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2683	default:
2684		/* do nothing */
2685		break;
2686	}
2687
2688	return evt;
2689}
2690EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2691
2692/**
2693 * 	sdev_evt_send_simple - send asserted event to uevent thread
2694 *	@sdev: scsi_device event occurred on
2695 *	@evt_type: type of event to send
2696 *	@gfpflags: GFP flags for allocation
2697 *
2698 *	Assert scsi device event asynchronously, given an event type.
2699 */
2700void sdev_evt_send_simple(struct scsi_device *sdev,
2701			  enum scsi_device_event evt_type, gfp_t gfpflags)
2702{
2703	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2704	if (!evt) {
2705		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2706			    evt_type);
2707		return;
2708	}
2709
2710	sdev_evt_send(sdev, evt);
2711}
2712EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2713
2714/**
2715 *	scsi_device_quiesce - Block all commands except power management.
2716 *	@sdev:	scsi device to quiesce.
2717 *
2718 *	This works by trying to transition to the SDEV_QUIESCE state
2719 *	(which must be a legal transition).  When the device is in this
2720 *	state, only power management requests will be accepted, all others will
2721 *	be deferred.
2722 *
2723 *	Must be called with user context, may sleep.
2724 *
2725 *	Returns zero if unsuccessful or an error if not.
2726 */
2727int
2728scsi_device_quiesce(struct scsi_device *sdev)
2729{
2730	struct request_queue *q = sdev->request_queue;
2731	int err;
2732
2733	/*
2734	 * It is allowed to call scsi_device_quiesce() multiple times from
2735	 * the same context but concurrent scsi_device_quiesce() calls are
2736	 * not allowed.
2737	 */
2738	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2739
2740	if (sdev->quiesced_by == current)
2741		return 0;
2742
2743	blk_set_pm_only(q);
2744
2745	blk_mq_freeze_queue(q);
2746	/*
2747	 * Ensure that the effect of blk_set_pm_only() will be visible
2748	 * for percpu_ref_tryget() callers that occur after the queue
2749	 * unfreeze even if the queue was already frozen before this function
2750	 * was called. See also https://lwn.net/Articles/573497/.
2751	 */
2752	synchronize_rcu();
2753	blk_mq_unfreeze_queue(q);
2754
2755	mutex_lock(&sdev->state_mutex);
2756	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2757	if (err == 0)
2758		sdev->quiesced_by = current;
2759	else
2760		blk_clear_pm_only(q);
2761	mutex_unlock(&sdev->state_mutex);
2762
2763	return err;
2764}
2765EXPORT_SYMBOL(scsi_device_quiesce);
2766
2767/**
2768 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2769 *	@sdev:	scsi device to resume.
2770 *
2771 *	Moves the device from quiesced back to running and restarts the
2772 *	queues.
2773 *
2774 *	Must be called with user context, may sleep.
2775 */
2776void scsi_device_resume(struct scsi_device *sdev)
2777{
2778	/* check if the device state was mutated prior to resume, and if
2779	 * so assume the state is being managed elsewhere (for example
2780	 * device deleted during suspend)
2781	 */
2782	mutex_lock(&sdev->state_mutex);
2783	if (sdev->sdev_state == SDEV_QUIESCE)
2784		scsi_device_set_state(sdev, SDEV_RUNNING);
2785	if (sdev->quiesced_by) {
2786		sdev->quiesced_by = NULL;
2787		blk_clear_pm_only(sdev->request_queue);
2788	}
2789	mutex_unlock(&sdev->state_mutex);
2790}
2791EXPORT_SYMBOL(scsi_device_resume);
2792
2793static void
2794device_quiesce_fn(struct scsi_device *sdev, void *data)
2795{
2796	scsi_device_quiesce(sdev);
2797}
2798
2799void
2800scsi_target_quiesce(struct scsi_target *starget)
2801{
2802	starget_for_each_device(starget, NULL, device_quiesce_fn);
2803}
2804EXPORT_SYMBOL(scsi_target_quiesce);
2805
2806static void
2807device_resume_fn(struct scsi_device *sdev, void *data)
2808{
2809	scsi_device_resume(sdev);
2810}
2811
2812void
2813scsi_target_resume(struct scsi_target *starget)
2814{
2815	starget_for_each_device(starget, NULL, device_resume_fn);
2816}
2817EXPORT_SYMBOL(scsi_target_resume);
2818
2819static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2820{
2821	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2822		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2823
2824	return 0;
2825}
2826
2827void scsi_start_queue(struct scsi_device *sdev)
2828{
2829	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2830		blk_mq_unquiesce_queue(sdev->request_queue);
2831}
2832
2833static void scsi_stop_queue(struct scsi_device *sdev)
2834{
2835	/*
2836	 * The atomic variable of ->queue_stopped covers that
2837	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2838	 *
2839	 * The caller needs to wait until quiesce is done.
 
2840	 */
2841	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2842		blk_mq_quiesce_queue_nowait(sdev->request_queue);
 
 
 
 
 
 
 
2843}
2844
2845/**
2846 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2847 * @sdev: device to block
2848 *
2849 * Pause SCSI command processing on the specified device. Does not sleep.
2850 *
2851 * Returns zero if successful or a negative error code upon failure.
2852 *
2853 * Notes:
2854 * This routine transitions the device to the SDEV_BLOCK state (which must be
2855 * a legal transition). When the device is in this state, command processing
2856 * is paused until the device leaves the SDEV_BLOCK state. See also
2857 * scsi_internal_device_unblock_nowait().
2858 */
2859int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2860{
2861	int ret = __scsi_internal_device_block_nowait(sdev);
2862
2863	/*
2864	 * The device has transitioned to SDEV_BLOCK.  Stop the
2865	 * block layer from calling the midlayer with this device's
2866	 * request queue.
2867	 */
2868	if (!ret)
2869		scsi_stop_queue(sdev);
2870	return ret;
2871}
2872EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2873
2874/**
2875 * scsi_device_block - try to transition to the SDEV_BLOCK state
2876 * @sdev: device to block
2877 * @data: dummy argument, ignored
2878 *
2879 * Pause SCSI command processing on the specified device. Callers must wait
2880 * until all ongoing scsi_queue_rq() calls have finished after this function
2881 * returns.
 
2882 *
2883 * Note:
2884 * This routine transitions the device to the SDEV_BLOCK state (which must be
2885 * a legal transition). When the device is in this state, command processing
2886 * is paused until the device leaves the SDEV_BLOCK state. See also
2887 * scsi_internal_device_unblock().
2888 */
2889static void scsi_device_block(struct scsi_device *sdev, void *data)
2890{
2891	int err;
2892	enum scsi_device_state state;
2893
2894	mutex_lock(&sdev->state_mutex);
2895	err = __scsi_internal_device_block_nowait(sdev);
2896	state = sdev->sdev_state;
2897	if (err == 0)
2898		/*
2899		 * scsi_stop_queue() must be called with the state_mutex
2900		 * held. Otherwise a simultaneous scsi_start_queue() call
2901		 * might unquiesce the queue before we quiesce it.
2902		 */
2903		scsi_stop_queue(sdev);
2904
2905	mutex_unlock(&sdev->state_mutex);
2906
2907	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2908		  __func__, dev_name(&sdev->sdev_gendev), state);
2909}
2910
2911/**
2912 * scsi_internal_device_unblock_nowait - resume a device after a block request
2913 * @sdev:	device to resume
2914 * @new_state:	state to set the device to after unblocking
2915 *
2916 * Restart the device queue for a previously suspended SCSI device. Does not
2917 * sleep.
2918 *
2919 * Returns zero if successful or a negative error code upon failure.
2920 *
2921 * Notes:
2922 * This routine transitions the device to the SDEV_RUNNING state or to one of
2923 * the offline states (which must be a legal transition) allowing the midlayer
2924 * to goose the queue for this device.
2925 */
2926int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2927					enum scsi_device_state new_state)
2928{
2929	switch (new_state) {
2930	case SDEV_RUNNING:
2931	case SDEV_TRANSPORT_OFFLINE:
2932		break;
2933	default:
2934		return -EINVAL;
2935	}
2936
2937	/*
2938	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2939	 * offlined states and goose the device queue if successful.
2940	 */
2941	switch (sdev->sdev_state) {
2942	case SDEV_BLOCK:
2943	case SDEV_TRANSPORT_OFFLINE:
2944		sdev->sdev_state = new_state;
2945		break;
2946	case SDEV_CREATED_BLOCK:
2947		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2948		    new_state == SDEV_OFFLINE)
2949			sdev->sdev_state = new_state;
2950		else
2951			sdev->sdev_state = SDEV_CREATED;
2952		break;
2953	case SDEV_CANCEL:
2954	case SDEV_OFFLINE:
2955		break;
2956	default:
2957		return -EINVAL;
2958	}
2959	scsi_start_queue(sdev);
2960
2961	return 0;
2962}
2963EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2964
2965/**
2966 * scsi_internal_device_unblock - resume a device after a block request
2967 * @sdev:	device to resume
2968 * @new_state:	state to set the device to after unblocking
2969 *
2970 * Restart the device queue for a previously suspended SCSI device. May sleep.
2971 *
2972 * Returns zero if successful or a negative error code upon failure.
2973 *
2974 * Notes:
2975 * This routine transitions the device to the SDEV_RUNNING state or to one of
2976 * the offline states (which must be a legal transition) allowing the midlayer
2977 * to goose the queue for this device.
2978 */
2979static int scsi_internal_device_unblock(struct scsi_device *sdev,
2980					enum scsi_device_state new_state)
2981{
2982	int ret;
2983
2984	mutex_lock(&sdev->state_mutex);
2985	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2986	mutex_unlock(&sdev->state_mutex);
2987
2988	return ret;
2989}
2990
 
 
 
 
 
 
 
 
 
 
 
2991static int
2992target_block(struct device *dev, void *data)
2993{
2994	if (scsi_is_target_device(dev))
2995		starget_for_each_device(to_scsi_target(dev), NULL,
2996					scsi_device_block);
2997	return 0;
2998}
2999
3000/**
3001 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3002 * @dev: a parent device of one or more scsi_target devices
3003 * @shost: the Scsi_Host to which this device belongs
3004 *
3005 * Iterate over all children of @dev, which should be scsi_target devices,
3006 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3007 * ongoing scsi_queue_rq() calls to finish. May sleep.
3008 *
3009 * Note:
3010 * @dev must not itself be a scsi_target device.
3011 */
3012void
3013scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3014{
3015	WARN_ON_ONCE(scsi_is_target_device(dev));
3016	device_for_each_child(dev, NULL, target_block);
3017	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
3018}
3019EXPORT_SYMBOL_GPL(scsi_block_targets);
3020
3021static void
3022device_unblock(struct scsi_device *sdev, void *data)
3023{
3024	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3025}
3026
3027static int
3028target_unblock(struct device *dev, void *data)
3029{
3030	if (scsi_is_target_device(dev))
3031		starget_for_each_device(to_scsi_target(dev), data,
3032					device_unblock);
3033	return 0;
3034}
3035
3036void
3037scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3038{
3039	if (scsi_is_target_device(dev))
3040		starget_for_each_device(to_scsi_target(dev), &new_state,
3041					device_unblock);
3042	else
3043		device_for_each_child(dev, &new_state, target_unblock);
3044}
3045EXPORT_SYMBOL_GPL(scsi_target_unblock);
3046
3047/**
3048 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3049 * @shost: device to block
3050 *
3051 * Pause SCSI command processing for all logical units associated with the SCSI
3052 * host and wait until pending scsi_queue_rq() calls have finished.
3053 *
3054 * Returns zero if successful or a negative error code upon failure.
3055 */
3056int
3057scsi_host_block(struct Scsi_Host *shost)
3058{
3059	struct scsi_device *sdev;
3060	int ret;
3061
3062	/*
3063	 * Call scsi_internal_device_block_nowait so we can avoid
3064	 * calling synchronize_rcu() for each LUN.
3065	 */
3066	shost_for_each_device(sdev, shost) {
3067		mutex_lock(&sdev->state_mutex);
3068		ret = scsi_internal_device_block_nowait(sdev);
3069		mutex_unlock(&sdev->state_mutex);
3070		if (ret) {
3071			scsi_device_put(sdev);
3072			return ret;
3073		}
3074	}
3075
3076	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3077	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
 
 
 
 
3078
3079	return 0;
3080}
3081EXPORT_SYMBOL_GPL(scsi_host_block);
3082
3083int
3084scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3085{
3086	struct scsi_device *sdev;
3087	int ret = 0;
3088
3089	shost_for_each_device(sdev, shost) {
3090		ret = scsi_internal_device_unblock(sdev, new_state);
3091		if (ret) {
3092			scsi_device_put(sdev);
3093			break;
3094		}
3095	}
3096	return ret;
3097}
3098EXPORT_SYMBOL_GPL(scsi_host_unblock);
3099
3100/**
3101 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3102 * @sgl:	scatter-gather list
3103 * @sg_count:	number of segments in sg
3104 * @offset:	offset in bytes into sg, on return offset into the mapped area
3105 * @len:	bytes to map, on return number of bytes mapped
3106 *
3107 * Returns virtual address of the start of the mapped page
3108 */
3109void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3110			  size_t *offset, size_t *len)
3111{
3112	int i;
3113	size_t sg_len = 0, len_complete = 0;
3114	struct scatterlist *sg;
3115	struct page *page;
3116
3117	WARN_ON(!irqs_disabled());
3118
3119	for_each_sg(sgl, sg, sg_count, i) {
3120		len_complete = sg_len; /* Complete sg-entries */
3121		sg_len += sg->length;
3122		if (sg_len > *offset)
3123			break;
3124	}
3125
3126	if (unlikely(i == sg_count)) {
3127		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3128			"elements %d\n",
3129		       __func__, sg_len, *offset, sg_count);
3130		WARN_ON(1);
3131		return NULL;
3132	}
3133
3134	/* Offset starting from the beginning of first page in this sg-entry */
3135	*offset = *offset - len_complete + sg->offset;
3136
3137	/* Assumption: contiguous pages can be accessed as "page + i" */
3138	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3139	*offset &= ~PAGE_MASK;
3140
3141	/* Bytes in this sg-entry from *offset to the end of the page */
3142	sg_len = PAGE_SIZE - *offset;
3143	if (*len > sg_len)
3144		*len = sg_len;
3145
3146	return kmap_atomic(page);
3147}
3148EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3149
3150/**
3151 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3152 * @virt:	virtual address to be unmapped
3153 */
3154void scsi_kunmap_atomic_sg(void *virt)
3155{
3156	kunmap_atomic(virt);
3157}
3158EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3159
3160void sdev_disable_disk_events(struct scsi_device *sdev)
3161{
3162	atomic_inc(&sdev->disk_events_disable_depth);
3163}
3164EXPORT_SYMBOL(sdev_disable_disk_events);
3165
3166void sdev_enable_disk_events(struct scsi_device *sdev)
3167{
3168	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3169		return;
3170	atomic_dec(&sdev->disk_events_disable_depth);
3171}
3172EXPORT_SYMBOL(sdev_enable_disk_events);
3173
3174static unsigned char designator_prio(const unsigned char *d)
3175{
3176	if (d[1] & 0x30)
3177		/* not associated with LUN */
3178		return 0;
3179
3180	if (d[3] == 0)
3181		/* invalid length */
3182		return 0;
3183
3184	/*
3185	 * Order of preference for lun descriptor:
3186	 * - SCSI name string
3187	 * - NAA IEEE Registered Extended
3188	 * - EUI-64 based 16-byte
3189	 * - EUI-64 based 12-byte
3190	 * - NAA IEEE Registered
3191	 * - NAA IEEE Extended
3192	 * - EUI-64 based 8-byte
3193	 * - SCSI name string (truncated)
3194	 * - T10 Vendor ID
3195	 * as longer descriptors reduce the likelyhood
3196	 * of identification clashes.
3197	 */
3198
3199	switch (d[1] & 0xf) {
3200	case 8:
3201		/* SCSI name string, variable-length UTF-8 */
3202		return 9;
3203	case 3:
3204		switch (d[4] >> 4) {
3205		case 6:
3206			/* NAA registered extended */
3207			return 8;
3208		case 5:
3209			/* NAA registered */
3210			return 5;
3211		case 4:
3212			/* NAA extended */
3213			return 4;
3214		case 3:
3215			/* NAA locally assigned */
3216			return 1;
3217		default:
3218			break;
3219		}
3220		break;
3221	case 2:
3222		switch (d[3]) {
3223		case 16:
3224			/* EUI64-based, 16 byte */
3225			return 7;
3226		case 12:
3227			/* EUI64-based, 12 byte */
3228			return 6;
3229		case 8:
3230			/* EUI64-based, 8 byte */
3231			return 3;
3232		default:
3233			break;
3234		}
3235		break;
3236	case 1:
3237		/* T10 vendor ID */
3238		return 1;
3239	default:
3240		break;
3241	}
3242
3243	return 0;
3244}
3245
3246/**
3247 * scsi_vpd_lun_id - return a unique device identification
3248 * @sdev: SCSI device
3249 * @id:   buffer for the identification
3250 * @id_len:  length of the buffer
3251 *
3252 * Copies a unique device identification into @id based
3253 * on the information in the VPD page 0x83 of the device.
3254 * The string will be formatted as a SCSI name string.
3255 *
3256 * Returns the length of the identification or error on failure.
3257 * If the identifier is longer than the supplied buffer the actual
3258 * identifier length is returned and the buffer is not zero-padded.
3259 */
3260int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3261{
3262	u8 cur_id_prio = 0;
3263	u8 cur_id_size = 0;
3264	const unsigned char *d, *cur_id_str;
3265	const struct scsi_vpd *vpd_pg83;
3266	int id_size = -EINVAL;
3267
3268	rcu_read_lock();
3269	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270	if (!vpd_pg83) {
3271		rcu_read_unlock();
3272		return -ENXIO;
3273	}
3274
3275	/* The id string must be at least 20 bytes + terminating NULL byte */
3276	if (id_len < 21) {
3277		rcu_read_unlock();
3278		return -EINVAL;
3279	}
3280
3281	memset(id, 0, id_len);
3282	for (d = vpd_pg83->data + 4;
3283	     d < vpd_pg83->data + vpd_pg83->len;
3284	     d += d[3] + 4) {
3285		u8 prio = designator_prio(d);
3286
3287		if (prio == 0 || cur_id_prio > prio)
3288			continue;
3289
3290		switch (d[1] & 0xf) {
3291		case 0x1:
3292			/* T10 Vendor ID */
3293			if (cur_id_size > d[3])
3294				break;
3295			cur_id_prio = prio;
3296			cur_id_size = d[3];
3297			if (cur_id_size + 4 > id_len)
3298				cur_id_size = id_len - 4;
3299			cur_id_str = d + 4;
3300			id_size = snprintf(id, id_len, "t10.%*pE",
3301					   cur_id_size, cur_id_str);
3302			break;
3303		case 0x2:
3304			/* EUI-64 */
3305			cur_id_prio = prio;
3306			cur_id_size = d[3];
3307			cur_id_str = d + 4;
3308			switch (cur_id_size) {
3309			case 8:
3310				id_size = snprintf(id, id_len,
3311						   "eui.%8phN",
3312						   cur_id_str);
3313				break;
3314			case 12:
3315				id_size = snprintf(id, id_len,
3316						   "eui.%12phN",
3317						   cur_id_str);
3318				break;
3319			case 16:
3320				id_size = snprintf(id, id_len,
3321						   "eui.%16phN",
3322						   cur_id_str);
3323				break;
3324			default:
3325				break;
3326			}
3327			break;
3328		case 0x3:
3329			/* NAA */
3330			cur_id_prio = prio;
3331			cur_id_size = d[3];
3332			cur_id_str = d + 4;
3333			switch (cur_id_size) {
3334			case 8:
3335				id_size = snprintf(id, id_len,
3336						   "naa.%8phN",
3337						   cur_id_str);
3338				break;
3339			case 16:
3340				id_size = snprintf(id, id_len,
3341						   "naa.%16phN",
3342						   cur_id_str);
3343				break;
3344			default:
3345				break;
3346			}
3347			break;
3348		case 0x8:
3349			/* SCSI name string */
3350			if (cur_id_size > d[3])
3351				break;
3352			/* Prefer others for truncated descriptor */
3353			if (d[3] > id_len) {
3354				prio = 2;
3355				if (cur_id_prio > prio)
3356					break;
3357			}
3358			cur_id_prio = prio;
3359			cur_id_size = id_size = d[3];
3360			cur_id_str = d + 4;
3361			if (cur_id_size >= id_len)
3362				cur_id_size = id_len - 1;
3363			memcpy(id, cur_id_str, cur_id_size);
3364			break;
3365		default:
3366			break;
3367		}
3368	}
3369	rcu_read_unlock();
3370
3371	return id_size;
3372}
3373EXPORT_SYMBOL(scsi_vpd_lun_id);
3374
3375/*
3376 * scsi_vpd_tpg_id - return a target port group identifier
3377 * @sdev: SCSI device
3378 *
3379 * Returns the Target Port Group identifier from the information
3380 * froom VPD page 0x83 of the device.
3381 *
3382 * Returns the identifier or error on failure.
3383 */
3384int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3385{
3386	const unsigned char *d;
3387	const struct scsi_vpd *vpd_pg83;
3388	int group_id = -EAGAIN, rel_port = -1;
3389
3390	rcu_read_lock();
3391	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392	if (!vpd_pg83) {
3393		rcu_read_unlock();
3394		return -ENXIO;
3395	}
3396
3397	d = vpd_pg83->data + 4;
3398	while (d < vpd_pg83->data + vpd_pg83->len) {
3399		switch (d[1] & 0xf) {
3400		case 0x4:
3401			/* Relative target port */
3402			rel_port = get_unaligned_be16(&d[6]);
3403			break;
3404		case 0x5:
3405			/* Target port group */
3406			group_id = get_unaligned_be16(&d[6]);
3407			break;
3408		default:
3409			break;
3410		}
3411		d += d[3] + 4;
3412	}
3413	rcu_read_unlock();
3414
3415	if (group_id >= 0 && rel_id && rel_port != -1)
3416		*rel_id = rel_port;
3417
3418	return group_id;
3419}
3420EXPORT_SYMBOL(scsi_vpd_tpg_id);
3421
3422/**
3423 * scsi_build_sense - build sense data for a command
3424 * @scmd:	scsi command for which the sense should be formatted
3425 * @desc:	Sense format (non-zero == descriptor format,
3426 *              0 == fixed format)
3427 * @key:	Sense key
3428 * @asc:	Additional sense code
3429 * @ascq:	Additional sense code qualifier
3430 *
3431 **/
3432void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3433{
3434	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3435	scmd->result = SAM_STAT_CHECK_CONDITION;
3436}
3437EXPORT_SYMBOL_GPL(scsi_build_sense);
3438
3439#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3440#include "scsi_lib_test.c"
3441#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	if (msecs) {
 126		blk_mq_requeue_request(rq, false);
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128	} else
 129		blk_mq_requeue_request(rq, true);
 130}
 131
 132/**
 133 * __scsi_queue_insert - private queue insertion
 134 * @cmd: The SCSI command being requeued
 135 * @reason:  The reason for the requeue
 136 * @unbusy: Whether the queue should be unbusied
 137 *
 138 * This is a private queue insertion.  The public interface
 139 * scsi_queue_insert() always assumes the queue should be unbusied
 140 * because it's always called before the completion.  This function is
 141 * for a requeue after completion, which should only occur in this
 142 * file.
 143 */
 144static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 145{
 146	struct scsi_device *device = cmd->device;
 147
 148	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 149		"Inserting command %p into mlqueue\n", cmd));
 150
 151	scsi_set_blocked(cmd, reason);
 152
 153	/*
 154	 * Decrement the counters, since these commands are no longer
 155	 * active on the host/device.
 156	 */
 157	if (unbusy)
 158		scsi_device_unbusy(device, cmd);
 159
 160	/*
 161	 * Requeue this command.  It will go before all other commands
 162	 * that are already in the queue. Schedule requeue work under
 163	 * lock such that the kblockd_schedule_work() call happens
 164	 * before blk_mq_destroy_queue() finishes.
 165	 */
 166	cmd->result = 0;
 167
 168	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
 
 169}
 170
 171/**
 172 * scsi_queue_insert - Reinsert a command in the queue.
 173 * @cmd:    command that we are adding to queue.
 174 * @reason: why we are inserting command to queue.
 175 *
 176 * We do this for one of two cases. Either the host is busy and it cannot accept
 177 * any more commands for the time being, or the device returned QUEUE_FULL and
 178 * can accept no more commands.
 179 *
 180 * Context: This could be called either from an interrupt context or a normal
 181 * process context.
 182 */
 183void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 184{
 185	__scsi_queue_insert(cmd, reason, true);
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189/**
 190 * __scsi_execute - insert request and wait for the result
 191 * @sdev:	scsi device
 192 * @cmd:	scsi command
 193 * @data_direction: data direction
 194 * @buffer:	data buffer
 195 * @bufflen:	len of buffer
 196 * @sense:	optional sense buffer
 197 * @sshdr:	optional decoded sense header
 198 * @timeout:	request timeout in HZ
 199 * @retries:	number of times to retry request
 200 * @flags:	flags for ->cmd_flags
 201 * @rq_flags:	flags for ->rq_flags
 202 * @resid:	optional residual length
 203 *
 204 * Returns the scsi_cmnd result field if a command was executed, or a negative
 205 * Linux error code if we didn't get that far.
 206 */
 207int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 210		 int timeout, int retries, blk_opf_t flags,
 211		 req_flags_t rq_flags, int *resid)
 212{
 
 213	struct request *req;
 214	struct scsi_cmnd *scmd;
 215	int ret;
 216
 217	req = scsi_alloc_request(sdev->request_queue,
 218			data_direction == DMA_TO_DEVICE ?
 219			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 220			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
 
 
 
 
 221	if (IS_ERR(req))
 222		return PTR_ERR(req);
 223
 224	if (bufflen) {
 225		ret = blk_rq_map_kern(sdev->request_queue, req,
 226				      buffer, bufflen, GFP_NOIO);
 227		if (ret)
 228			goto out;
 229	}
 230	scmd = blk_mq_rq_to_pdu(req);
 231	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 232	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 233	scmd->allowed = retries;
 
 234	req->timeout = timeout;
 235	req->cmd_flags |= flags;
 236	req->rq_flags |= rq_flags | RQF_QUIET;
 237
 238	/*
 239	 * head injection *required* here otherwise quiesce won't work
 240	 */
 241	blk_execute_rq(req, true);
 242
 
 
 
 
 
 243	/*
 244	 * Some devices (USB mass-storage in particular) may transfer
 245	 * garbage data together with a residue indicating that the data
 246	 * is invalid.  Prevent the garbage from being misinterpreted
 247	 * and prevent security leaks by zeroing out the excess data.
 248	 */
 249	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 250		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 251
 252	if (resid)
 253		*resid = scmd->resid_len;
 254	if (sense && scmd->sense_len)
 255		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 256	if (sshdr)
 257		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 258				     sshdr);
 
 259	ret = scmd->result;
 260 out:
 261	blk_mq_free_request(req);
 262
 263	return ret;
 264}
 265EXPORT_SYMBOL(__scsi_execute);
 266
 267/*
 268 * Wake up the error handler if necessary. Avoid as follows that the error
 269 * handler is not woken up if host in-flight requests number ==
 270 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 271 * with an RCU read lock in this function to ensure that this function in
 272 * its entirety either finishes before scsi_eh_scmd_add() increases the
 273 * host_failed counter or that it notices the shost state change made by
 274 * scsi_eh_scmd_add().
 275 */
 276static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 277{
 278	unsigned long flags;
 279
 280	rcu_read_lock();
 281	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 282	if (unlikely(scsi_host_in_recovery(shost))) {
 
 
 283		spin_lock_irqsave(shost->host_lock, flags);
 284		if (shost->host_failed || shost->host_eh_scheduled)
 285			scsi_eh_wakeup(shost);
 286		spin_unlock_irqrestore(shost->host_lock, flags);
 287	}
 288	rcu_read_unlock();
 289}
 290
 291void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 292{
 293	struct Scsi_Host *shost = sdev->host;
 294	struct scsi_target *starget = scsi_target(sdev);
 295
 296	scsi_dec_host_busy(shost, cmd);
 297
 298	if (starget->can_queue > 0)
 299		atomic_dec(&starget->target_busy);
 300
 301	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 302	cmd->budget_token = -1;
 303}
 304
 305static void scsi_kick_queue(struct request_queue *q)
 306{
 307	blk_mq_run_hw_queues(q, false);
 308}
 309
 310/*
 311 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 312 * interrupts disabled.
 313 */
 314static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 315{
 316	struct scsi_device *current_sdev = data;
 317
 318	if (sdev != current_sdev)
 319		blk_mq_run_hw_queues(sdev->request_queue, true);
 320}
 321
 322/*
 323 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 324 * and call blk_run_queue for all the scsi_devices on the target -
 325 * including current_sdev first.
 326 *
 327 * Called with *no* scsi locks held.
 328 */
 329static void scsi_single_lun_run(struct scsi_device *current_sdev)
 330{
 331	struct Scsi_Host *shost = current_sdev->host;
 332	struct scsi_target *starget = scsi_target(current_sdev);
 333	unsigned long flags;
 334
 335	spin_lock_irqsave(shost->host_lock, flags);
 336	starget->starget_sdev_user = NULL;
 337	spin_unlock_irqrestore(shost->host_lock, flags);
 338
 339	/*
 340	 * Call blk_run_queue for all LUNs on the target, starting with
 341	 * current_sdev. We race with others (to set starget_sdev_user),
 342	 * but in most cases, we will be first. Ideally, each LU on the
 343	 * target would get some limited time or requests on the target.
 344	 */
 345	scsi_kick_queue(current_sdev->request_queue);
 
 346
 347	spin_lock_irqsave(shost->host_lock, flags);
 348	if (!starget->starget_sdev_user)
 349		__starget_for_each_device(starget, current_sdev,
 350					  scsi_kick_sdev_queue);
 351	spin_unlock_irqrestore(shost->host_lock, flags);
 352}
 353
 354static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 355{
 356	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 357		return true;
 358	if (atomic_read(&sdev->device_blocked) > 0)
 359		return true;
 360	return false;
 361}
 362
 363static inline bool scsi_target_is_busy(struct scsi_target *starget)
 364{
 365	if (starget->can_queue > 0) {
 366		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 367			return true;
 368		if (atomic_read(&starget->target_blocked) > 0)
 369			return true;
 370	}
 371	return false;
 372}
 373
 374static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 375{
 376	if (atomic_read(&shost->host_blocked) > 0)
 377		return true;
 378	if (shost->host_self_blocked)
 379		return true;
 380	return false;
 381}
 382
 383static void scsi_starved_list_run(struct Scsi_Host *shost)
 384{
 385	LIST_HEAD(starved_list);
 386	struct scsi_device *sdev;
 387	unsigned long flags;
 388
 389	spin_lock_irqsave(shost->host_lock, flags);
 390	list_splice_init(&shost->starved_list, &starved_list);
 391
 392	while (!list_empty(&starved_list)) {
 393		struct request_queue *slq;
 394
 395		/*
 396		 * As long as shost is accepting commands and we have
 397		 * starved queues, call blk_run_queue. scsi_request_fn
 398		 * drops the queue_lock and can add us back to the
 399		 * starved_list.
 400		 *
 401		 * host_lock protects the starved_list and starved_entry.
 402		 * scsi_request_fn must get the host_lock before checking
 403		 * or modifying starved_list or starved_entry.
 404		 */
 405		if (scsi_host_is_busy(shost))
 406			break;
 407
 408		sdev = list_entry(starved_list.next,
 409				  struct scsi_device, starved_entry);
 410		list_del_init(&sdev->starved_entry);
 411		if (scsi_target_is_busy(scsi_target(sdev))) {
 412			list_move_tail(&sdev->starved_entry,
 413				       &shost->starved_list);
 414			continue;
 415		}
 416
 417		/*
 418		 * Once we drop the host lock, a racing scsi_remove_device()
 419		 * call may remove the sdev from the starved list and destroy
 420		 * it and the queue.  Mitigate by taking a reference to the
 421		 * queue and never touching the sdev again after we drop the
 422		 * host lock.  Note: if __scsi_remove_device() invokes
 423		 * blk_mq_destroy_queue() before the queue is run from this
 424		 * function then blk_run_queue() will return immediately since
 425		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 426		 */
 427		slq = sdev->request_queue;
 428		if (!blk_get_queue(slq))
 429			continue;
 430		spin_unlock_irqrestore(shost->host_lock, flags);
 431
 432		scsi_kick_queue(slq);
 433		blk_put_queue(slq);
 434
 435		spin_lock_irqsave(shost->host_lock, flags);
 436	}
 437	/* put any unprocessed entries back */
 438	list_splice(&starved_list, &shost->starved_list);
 439	spin_unlock_irqrestore(shost->host_lock, flags);
 440}
 441
 442/**
 443 * scsi_run_queue - Select a proper request queue to serve next.
 444 * @q:  last request's queue
 445 *
 446 * The previous command was completely finished, start a new one if possible.
 447 */
 448static void scsi_run_queue(struct request_queue *q)
 449{
 450	struct scsi_device *sdev = q->queuedata;
 451
 452	if (scsi_target(sdev)->single_lun)
 453		scsi_single_lun_run(sdev);
 454	if (!list_empty(&sdev->host->starved_list))
 455		scsi_starved_list_run(sdev->host);
 456
 457	blk_mq_run_hw_queues(q, false);
 
 458}
 459
 460void scsi_requeue_run_queue(struct work_struct *work)
 461{
 462	struct scsi_device *sdev;
 463	struct request_queue *q;
 464
 465	sdev = container_of(work, struct scsi_device, requeue_work);
 466	q = sdev->request_queue;
 467	scsi_run_queue(q);
 468}
 469
 470void scsi_run_host_queues(struct Scsi_Host *shost)
 471{
 472	struct scsi_device *sdev;
 473
 474	shost_for_each_device(sdev, shost)
 475		scsi_run_queue(sdev->request_queue);
 476}
 477
 478static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 479{
 480	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 481		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 482
 483		if (drv->uninit_command)
 484			drv->uninit_command(cmd);
 485	}
 486}
 487
 488void scsi_free_sgtables(struct scsi_cmnd *cmd)
 489{
 490	if (cmd->sdb.table.nents)
 491		sg_free_table_chained(&cmd->sdb.table,
 492				SCSI_INLINE_SG_CNT);
 493	if (scsi_prot_sg_count(cmd))
 494		sg_free_table_chained(&cmd->prot_sdb->table,
 495				SCSI_INLINE_PROT_SG_CNT);
 496}
 497EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 498
 499static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 500{
 501	scsi_free_sgtables(cmd);
 502	scsi_uninit_cmd(cmd);
 503}
 504
 505static void scsi_run_queue_async(struct scsi_device *sdev)
 506{
 
 
 
 507	if (scsi_target(sdev)->single_lun ||
 508	    !list_empty(&sdev->host->starved_list)) {
 509		kblockd_schedule_work(&sdev->requeue_work);
 510	} else {
 511		/*
 512		 * smp_mb() present in sbitmap_queue_clear() or implied in
 513		 * .end_io is for ordering writing .device_busy in
 514		 * scsi_device_unbusy() and reading sdev->restarts.
 515		 */
 516		int old = atomic_read(&sdev->restarts);
 517
 518		/*
 519		 * ->restarts has to be kept as non-zero if new budget
 520		 *  contention occurs.
 521		 *
 522		 *  No need to run queue when either another re-run
 523		 *  queue wins in updating ->restarts or a new budget
 524		 *  contention occurs.
 525		 */
 526		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 527			blk_mq_run_hw_queues(sdev->request_queue, true);
 528	}
 529}
 530
 531/* Returns false when no more bytes to process, true if there are more */
 532static bool scsi_end_request(struct request *req, blk_status_t error,
 533		unsigned int bytes)
 534{
 535	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 536	struct scsi_device *sdev = cmd->device;
 537	struct request_queue *q = sdev->request_queue;
 538
 539	if (blk_update_request(req, error, bytes))
 540		return true;
 541
 542	// XXX:
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->q->disk);
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 549	}
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 575
 576	scsi_run_queue_async(sdev);
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 580}
 581
 582static inline u8 get_scsi_ml_byte(int result)
 583{
 584	return (result >> 8) & 0xff;
 585}
 586
 587/**
 588 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 589 * @result:	scsi error code
 590 *
 591 * Translate a SCSI result code into a blk_status_t value.
 592 */
 593static blk_status_t scsi_result_to_blk_status(int result)
 594{
 595	/*
 596	 * Check the scsi-ml byte first in case we converted a host or status
 597	 * byte.
 598	 */
 599	switch (get_scsi_ml_byte(result)) {
 600	case SCSIML_STAT_OK:
 601		break;
 602	case SCSIML_STAT_RESV_CONFLICT:
 603		return BLK_STS_NEXUS;
 604	case SCSIML_STAT_NOSPC:
 605		return BLK_STS_NOSPC;
 606	case SCSIML_STAT_MED_ERROR:
 607		return BLK_STS_MEDIUM;
 608	case SCSIML_STAT_TGT_FAILURE:
 609		return BLK_STS_TARGET;
 
 
 610	}
 611
 612	switch (host_byte(result)) {
 613	case DID_OK:
 614		if (scsi_status_is_good(result))
 615			return BLK_STS_OK;
 616		return BLK_STS_IOERR;
 617	case DID_TRANSPORT_FAILFAST:
 618	case DID_TRANSPORT_MARGINAL:
 619		return BLK_STS_TRANSPORT;
 620	default:
 621		return BLK_STS_IOERR;
 622	}
 623}
 624
 625/**
 626 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 627 * @rq: request to examine
 628 *
 629 * Description:
 630 *     A request could be merge of IOs which require different failure
 631 *     handling.  This function determines the number of bytes which
 632 *     can be failed from the beginning of the request without
 633 *     crossing into area which need to be retried further.
 634 *
 635 * Return:
 636 *     The number of bytes to fail.
 637 */
 638static unsigned int scsi_rq_err_bytes(const struct request *rq)
 639{
 640	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 641	unsigned int bytes = 0;
 642	struct bio *bio;
 643
 644	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 645		return blk_rq_bytes(rq);
 646
 647	/*
 648	 * Currently the only 'mixing' which can happen is between
 649	 * different fastfail types.  We can safely fail portions
 650	 * which have all the failfast bits that the first one has -
 651	 * the ones which are at least as eager to fail as the first
 652	 * one.
 653	 */
 654	for (bio = rq->bio; bio; bio = bio->bi_next) {
 655		if ((bio->bi_opf & ff) != ff)
 656			break;
 657		bytes += bio->bi_iter.bi_size;
 658	}
 659
 660	/* this could lead to infinite loop */
 661	BUG_ON(blk_rq_bytes(rq) && !bytes);
 662	return bytes;
 663}
 664
 665static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 666{
 667	struct request *req = scsi_cmd_to_rq(cmd);
 668	unsigned long wait_for;
 669
 670	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 671		return false;
 672
 673	wait_for = (cmd->allowed + 1) * req->timeout;
 674	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 675		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 676			    wait_for/HZ);
 677		return true;
 678	}
 679	return false;
 680}
 681
 682/*
 683 * When ALUA transition state is returned, reprep the cmd to
 684 * use the ALUA handler's transition timeout. Delay the reprep
 685 * 1 sec to avoid aggressive retries of the target in that
 686 * state.
 687 */
 688#define ALUA_TRANSITION_REPREP_DELAY	1000
 689
 690/* Helper for scsi_io_completion() when special action required. */
 691static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 692{
 693	struct request *req = scsi_cmd_to_rq(cmd);
 694	int level = 0;
 695	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 696	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 697	struct scsi_sense_hdr sshdr;
 698	bool sense_valid;
 699	bool sense_current = true;      /* false implies "deferred sense" */
 700	blk_status_t blk_stat;
 701
 702	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 703	if (sense_valid)
 704		sense_current = !scsi_sense_is_deferred(&sshdr);
 705
 706	blk_stat = scsi_result_to_blk_status(result);
 707
 708	if (host_byte(result) == DID_RESET) {
 709		/* Third party bus reset or reset for error recovery
 710		 * reasons.  Just retry the command and see what
 711		 * happens.
 712		 */
 713		action = ACTION_RETRY;
 714	} else if (sense_valid && sense_current) {
 715		switch (sshdr.sense_key) {
 716		case UNIT_ATTENTION:
 717			if (cmd->device->removable) {
 718				/* Detected disc change.  Set a bit
 719				 * and quietly refuse further access.
 720				 */
 721				cmd->device->changed = 1;
 722				action = ACTION_FAIL;
 723			} else {
 724				/* Must have been a power glitch, or a
 725				 * bus reset.  Could not have been a
 726				 * media change, so we just retry the
 727				 * command and see what happens.
 728				 */
 729				action = ACTION_RETRY;
 730			}
 731			break;
 732		case ILLEGAL_REQUEST:
 733			/* If we had an ILLEGAL REQUEST returned, then
 734			 * we may have performed an unsupported
 735			 * command.  The only thing this should be
 736			 * would be a ten byte read where only a six
 737			 * byte read was supported.  Also, on a system
 738			 * where READ CAPACITY failed, we may have
 739			 * read past the end of the disk.
 740			 */
 741			if ((cmd->device->use_10_for_rw &&
 742			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 743			    (cmd->cmnd[0] == READ_10 ||
 744			     cmd->cmnd[0] == WRITE_10)) {
 745				/* This will issue a new 6-byte command. */
 746				cmd->device->use_10_for_rw = 0;
 747				action = ACTION_REPREP;
 748			} else if (sshdr.asc == 0x10) /* DIX */ {
 749				action = ACTION_FAIL;
 750				blk_stat = BLK_STS_PROTECTION;
 751			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 752			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 753				action = ACTION_FAIL;
 754				blk_stat = BLK_STS_TARGET;
 755			} else
 756				action = ACTION_FAIL;
 757			break;
 758		case ABORTED_COMMAND:
 759			action = ACTION_FAIL;
 760			if (sshdr.asc == 0x10) /* DIF */
 761				blk_stat = BLK_STS_PROTECTION;
 762			break;
 763		case NOT_READY:
 764			/* If the device is in the process of becoming
 765			 * ready, or has a temporary blockage, retry.
 766			 */
 767			if (sshdr.asc == 0x04) {
 768				switch (sshdr.ascq) {
 769				case 0x01: /* becoming ready */
 770				case 0x04: /* format in progress */
 771				case 0x05: /* rebuild in progress */
 772				case 0x06: /* recalculation in progress */
 773				case 0x07: /* operation in progress */
 774				case 0x08: /* Long write in progress */
 775				case 0x09: /* self test in progress */
 776				case 0x11: /* notify (enable spinup) required */
 777				case 0x14: /* space allocation in progress */
 778				case 0x1a: /* start stop unit in progress */
 779				case 0x1b: /* sanitize in progress */
 780				case 0x1d: /* configuration in progress */
 781				case 0x24: /* depopulation in progress */
 
 782					action = ACTION_DELAYED_RETRY;
 783					break;
 784				case 0x0a: /* ALUA state transition */
 785					action = ACTION_DELAYED_REPREP;
 786					break;
 787				default:
 788					action = ACTION_FAIL;
 789					break;
 790				}
 791			} else
 792				action = ACTION_FAIL;
 793			break;
 794		case VOLUME_OVERFLOW:
 795			/* See SSC3rXX or current. */
 796			action = ACTION_FAIL;
 797			break;
 798		case DATA_PROTECT:
 799			action = ACTION_FAIL;
 800			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 801			    (sshdr.asc == 0x55 &&
 802			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 803				/* Insufficient zone resources */
 804				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 805			}
 806			break;
 
 
 807		default:
 808			action = ACTION_FAIL;
 809			break;
 810		}
 811	} else
 812		action = ACTION_FAIL;
 813
 814	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 815		action = ACTION_FAIL;
 816
 817	switch (action) {
 818	case ACTION_FAIL:
 819		/* Give up and fail the remainder of the request */
 820		if (!(req->rq_flags & RQF_QUIET)) {
 821			static DEFINE_RATELIMIT_STATE(_rs,
 822					DEFAULT_RATELIMIT_INTERVAL,
 823					DEFAULT_RATELIMIT_BURST);
 824
 825			if (unlikely(scsi_logging_level))
 826				level =
 827				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 828						    SCSI_LOG_MLCOMPLETE_BITS);
 829
 830			/*
 831			 * if logging is enabled the failure will be printed
 832			 * in scsi_log_completion(), so avoid duplicate messages
 833			 */
 834			if (!level && __ratelimit(&_rs)) {
 835				scsi_print_result(cmd, NULL, FAILED);
 836				if (sense_valid)
 837					scsi_print_sense(cmd);
 838				scsi_print_command(cmd);
 839			}
 840		}
 841		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 842			return;
 843		fallthrough;
 844	case ACTION_REPREP:
 845		scsi_mq_requeue_cmd(cmd, 0);
 846		break;
 847	case ACTION_DELAYED_REPREP:
 848		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 849		break;
 850	case ACTION_RETRY:
 851		/* Retry the same command immediately */
 852		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 853		break;
 854	case ACTION_DELAYED_RETRY:
 855		/* Retry the same command after a delay */
 856		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 857		break;
 858	}
 859}
 860
 861/*
 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 863 * new result that may suppress further error checking. Also modifies
 864 * *blk_statp in some cases.
 865 */
 866static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 867					blk_status_t *blk_statp)
 868{
 869	bool sense_valid;
 870	bool sense_current = true;	/* false implies "deferred sense" */
 871	struct request *req = scsi_cmd_to_rq(cmd);
 872	struct scsi_sense_hdr sshdr;
 873
 874	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 875	if (sense_valid)
 876		sense_current = !scsi_sense_is_deferred(&sshdr);
 877
 878	if (blk_rq_is_passthrough(req)) {
 879		if (sense_valid) {
 880			/*
 881			 * SG_IO wants current and deferred errors
 882			 */
 883			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 884					     SCSI_SENSE_BUFFERSIZE);
 885		}
 886		if (sense_current)
 887			*blk_statp = scsi_result_to_blk_status(result);
 888	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 889		/*
 890		 * Flush commands do not transfers any data, and thus cannot use
 891		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 892		 * This sets *blk_statp explicitly for the problem case.
 893		 */
 894		*blk_statp = scsi_result_to_blk_status(result);
 895	}
 896	/*
 897	 * Recovered errors need reporting, but they're always treated as
 898	 * success, so fiddle the result code here.  For passthrough requests
 899	 * we already took a copy of the original into sreq->result which
 900	 * is what gets returned to the user
 901	 */
 902	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 903		bool do_print = true;
 904		/*
 905		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 906		 * skip print since caller wants ATA registers. Only occurs
 907		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 908		 */
 909		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 910			do_print = false;
 911		else if (req->rq_flags & RQF_QUIET)
 912			do_print = false;
 913		if (do_print)
 914			scsi_print_sense(cmd);
 915		result = 0;
 916		/* for passthrough, *blk_statp may be set */
 917		*blk_statp = BLK_STS_OK;
 918	}
 919	/*
 920	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 921	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 922	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 923	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 924	 * intermediate statuses (both obsolete in SAM-4) as good.
 925	 */
 926	if ((result & 0xff) && scsi_status_is_good(result)) {
 927		result = 0;
 928		*blk_statp = BLK_STS_OK;
 929	}
 930	return result;
 931}
 932
 933/**
 934 * scsi_io_completion - Completion processing for SCSI commands.
 935 * @cmd:	command that is finished.
 936 * @good_bytes:	number of processed bytes.
 937 *
 938 * We will finish off the specified number of sectors. If we are done, the
 939 * command block will be released and the queue function will be goosed. If we
 940 * are not done then we have to figure out what to do next:
 941 *
 942 *   a) We can call scsi_mq_requeue_cmd().  The request will be
 943 *	unprepared and put back on the queue.  Then a new command will
 944 *	be created for it.  This should be used if we made forward
 945 *	progress, or if we want to switch from READ(10) to READ(6) for
 946 *	example.
 947 *
 948 *   b) We can call scsi_io_completion_action().  The request will be
 949 *	put back on the queue and retried using the same command as
 950 *	before, possibly after a delay.
 951 *
 952 *   c) We can call scsi_end_request() with blk_stat other than
 953 *	BLK_STS_OK, to fail the remainder of the request.
 954 */
 955void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 956{
 957	int result = cmd->result;
 958	struct request *req = scsi_cmd_to_rq(cmd);
 959	blk_status_t blk_stat = BLK_STS_OK;
 960
 961	if (unlikely(result))	/* a nz result may or may not be an error */
 962		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 963
 964	/*
 965	 * Next deal with any sectors which we were able to correctly
 966	 * handle.
 967	 */
 968	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 969		"%u sectors total, %d bytes done.\n",
 970		blk_rq_sectors(req), good_bytes));
 971
 972	/*
 973	 * Failed, zero length commands always need to drop down
 974	 * to retry code. Fast path should return in this block.
 975	 */
 976	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 977		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 978			return; /* no bytes remaining */
 979	}
 980
 981	/* Kill remainder if no retries. */
 982	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 983		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 984			WARN_ONCE(true,
 985			    "Bytes remaining after failed, no-retry command");
 986		return;
 987	}
 988
 989	/*
 990	 * If there had been no error, but we have leftover bytes in the
 991	 * request just queue the command up again.
 992	 */
 993	if (likely(result == 0))
 994		scsi_mq_requeue_cmd(cmd, 0);
 995	else
 996		scsi_io_completion_action(cmd, result);
 997}
 998
 999static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000		struct request *rq)
1001{
1002	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003	       !op_is_write(req_op(rq)) &&
1004	       sdev->host->hostt->dma_need_drain(rq);
1005}
1006
1007/**
1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009 * @cmd: SCSI command data structure to initialize.
1010 *
1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012 * for @cmd.
1013 *
1014 * Returns:
1015 * * BLK_STS_OK       - on success
1016 * * BLK_STS_RESOURCE - if the failure is retryable
1017 * * BLK_STS_IOERR    - if the failure is fatal
1018 */
1019blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020{
1021	struct scsi_device *sdev = cmd->device;
1022	struct request *rq = scsi_cmd_to_rq(cmd);
1023	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024	struct scatterlist *last_sg = NULL;
1025	blk_status_t ret;
1026	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027	int count;
1028
1029	if (WARN_ON_ONCE(!nr_segs))
1030		return BLK_STS_IOERR;
1031
1032	/*
1033	 * Make sure there is space for the drain.  The driver must adjust
1034	 * max_hw_segments to be prepared for this.
1035	 */
1036	if (need_drain)
1037		nr_segs++;
1038
1039	/*
1040	 * If sg table allocation fails, requeue request later.
1041	 */
1042	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044		return BLK_STS_RESOURCE;
1045
1046	/*
1047	 * Next, walk the list, and fill in the addresses and sizes of
1048	 * each segment.
1049	 */
1050	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051
1052	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053		unsigned int pad_len =
1054			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055
1056		last_sg->length += pad_len;
1057		cmd->extra_len += pad_len;
1058	}
1059
1060	if (need_drain) {
1061		sg_unmark_end(last_sg);
1062		last_sg = sg_next(last_sg);
1063		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064		sg_mark_end(last_sg);
1065
1066		cmd->extra_len += sdev->dma_drain_len;
1067		count++;
1068	}
1069
1070	BUG_ON(count > cmd->sdb.table.nents);
1071	cmd->sdb.table.nents = count;
1072	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073
1074	if (blk_integrity_rq(rq)) {
1075		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076		int ivecs;
1077
1078		if (WARN_ON_ONCE(!prot_sdb)) {
1079			/*
1080			 * This can happen if someone (e.g. multipath)
1081			 * queues a command to a device on an adapter
1082			 * that does not support DIX.
1083			 */
1084			ret = BLK_STS_IOERR;
1085			goto out_free_sgtables;
1086		}
1087
1088		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089
1090		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091				prot_sdb->table.sgl,
1092				SCSI_INLINE_PROT_SG_CNT)) {
1093			ret = BLK_STS_RESOURCE;
1094			goto out_free_sgtables;
1095		}
1096
1097		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098						prot_sdb->table.sgl);
1099		BUG_ON(count > ivecs);
1100		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101
1102		cmd->prot_sdb = prot_sdb;
1103		cmd->prot_sdb->table.nents = count;
1104	}
1105
1106	return BLK_STS_OK;
1107out_free_sgtables:
1108	scsi_free_sgtables(cmd);
1109	return ret;
1110}
1111EXPORT_SYMBOL(scsi_alloc_sgtables);
1112
1113/**
1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115 * @rq: Request associated with the SCSI command to be initialized.
1116 *
1117 * This function initializes the members of struct scsi_cmnd that must be
1118 * initialized before request processing starts and that won't be
1119 * reinitialized if a SCSI command is requeued.
1120 */
1121static void scsi_initialize_rq(struct request *rq)
1122{
1123	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124
1125	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126	cmd->cmd_len = MAX_COMMAND_SIZE;
1127	cmd->sense_len = 0;
1128	init_rcu_head(&cmd->rcu);
1129	cmd->jiffies_at_alloc = jiffies;
1130	cmd->retries = 0;
1131}
1132
1133struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134				   blk_mq_req_flags_t flags)
1135{
1136	struct request *rq;
1137
1138	rq = blk_mq_alloc_request(q, opf, flags);
1139	if (!IS_ERR(rq))
1140		scsi_initialize_rq(rq);
1141	return rq;
1142}
1143EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144
1145/*
1146 * Only called when the request isn't completed by SCSI, and not freed by
1147 * SCSI
1148 */
1149static void scsi_cleanup_rq(struct request *rq)
1150{
1151	if (rq->rq_flags & RQF_DONTPREP) {
1152		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153		rq->rq_flags &= ~RQF_DONTPREP;
1154	}
1155}
1156
1157/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159{
1160	struct request *rq = scsi_cmd_to_rq(cmd);
1161
1162	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163		cmd->flags |= SCMD_INITIALIZED;
1164		scsi_initialize_rq(rq);
1165	}
1166
1167	cmd->device = dev;
1168	INIT_LIST_HEAD(&cmd->eh_entry);
1169	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170}
1171
1172static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173		struct request *req)
1174{
1175	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177	/*
1178	 * Passthrough requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185		if (unlikely(ret != BLK_STS_OK))
1186			return ret;
1187	} else {
1188		BUG_ON(blk_rq_bytes(req));
1189
1190		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191	}
1192
1193	cmd->transfersize = blk_rq_bytes(req);
1194	return BLK_STS_OK;
1195}
1196
1197static blk_status_t
1198scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1199{
1200	switch (sdev->sdev_state) {
1201	case SDEV_CREATED:
1202		return BLK_STS_OK;
1203	case SDEV_OFFLINE:
1204	case SDEV_TRANSPORT_OFFLINE:
1205		/*
1206		 * If the device is offline we refuse to process any
1207		 * commands.  The device must be brought online
1208		 * before trying any recovery commands.
1209		 */
1210		if (!sdev->offline_already) {
1211			sdev->offline_already = true;
1212			sdev_printk(KERN_ERR, sdev,
1213				    "rejecting I/O to offline device\n");
1214		}
1215		return BLK_STS_IOERR;
1216	case SDEV_DEL:
1217		/*
1218		 * If the device is fully deleted, we refuse to
1219		 * process any commands as well.
1220		 */
1221		sdev_printk(KERN_ERR, sdev,
1222			    "rejecting I/O to dead device\n");
1223		return BLK_STS_IOERR;
1224	case SDEV_BLOCK:
1225	case SDEV_CREATED_BLOCK:
1226		return BLK_STS_RESOURCE;
1227	case SDEV_QUIESCE:
1228		/*
1229		 * If the device is blocked we only accept power management
1230		 * commands.
1231		 */
1232		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233			return BLK_STS_RESOURCE;
1234		return BLK_STS_OK;
1235	default:
1236		/*
1237		 * For any other not fully online state we only allow
1238		 * power management commands.
1239		 */
1240		if (req && !(req->rq_flags & RQF_PM))
1241			return BLK_STS_OFFLINE;
1242		return BLK_STS_OK;
1243	}
1244}
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248 * and return the token else return -1.
1249 */
1250static inline int scsi_dev_queue_ready(struct request_queue *q,
1251				  struct scsi_device *sdev)
1252{
1253	int token;
1254
1255	token = sbitmap_get(&sdev->budget_map);
1256	if (atomic_read(&sdev->device_blocked)) {
1257		if (token < 0)
1258			goto out;
1259
1260		if (scsi_device_busy(sdev) > 1)
1261			goto out_dec;
1262
1263		/*
1264		 * unblock after device_blocked iterates to zero
1265		 */
1266		if (atomic_dec_return(&sdev->device_blocked) > 0)
1267			goto out_dec;
1268		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1269				   "unblocking device at zero depth\n"));
 
1270	}
1271
 
 
 
1272	return token;
1273out_dec:
1274	if (token >= 0)
1275		sbitmap_put(&sdev->budget_map, token);
1276out:
1277	return -1;
1278}
1279
1280/*
1281 * scsi_target_queue_ready: checks if there we can send commands to target
1282 * @sdev: scsi device on starget to check.
1283 */
1284static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1285					   struct scsi_device *sdev)
1286{
1287	struct scsi_target *starget = scsi_target(sdev);
1288	unsigned int busy;
1289
1290	if (starget->single_lun) {
1291		spin_lock_irq(shost->host_lock);
1292		if (starget->starget_sdev_user &&
1293		    starget->starget_sdev_user != sdev) {
1294			spin_unlock_irq(shost->host_lock);
1295			return 0;
1296		}
1297		starget->starget_sdev_user = sdev;
1298		spin_unlock_irq(shost->host_lock);
1299	}
1300
1301	if (starget->can_queue <= 0)
1302		return 1;
1303
1304	busy = atomic_inc_return(&starget->target_busy) - 1;
1305	if (atomic_read(&starget->target_blocked) > 0) {
1306		if (busy)
1307			goto starved;
1308
1309		/*
1310		 * unblock after target_blocked iterates to zero
1311		 */
1312		if (atomic_dec_return(&starget->target_blocked) > 0)
1313			goto out_dec;
1314
1315		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1316				 "unblocking target at zero depth\n"));
1317	}
1318
1319	if (busy >= starget->can_queue)
1320		goto starved;
1321
1322	return 1;
1323
1324starved:
1325	spin_lock_irq(shost->host_lock);
1326	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327	spin_unlock_irq(shost->host_lock);
1328out_dec:
1329	if (starget->can_queue > 0)
1330		atomic_dec(&starget->target_busy);
1331	return 0;
1332}
1333
1334/*
1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336 * return 0. We must end up running the queue again whenever 0 is
1337 * returned, else IO can hang.
1338 */
1339static inline int scsi_host_queue_ready(struct request_queue *q,
1340				   struct Scsi_Host *shost,
1341				   struct scsi_device *sdev,
1342				   struct scsi_cmnd *cmd)
1343{
1344	if (atomic_read(&shost->host_blocked) > 0) {
1345		if (scsi_host_busy(shost) > 0)
1346			goto starved;
1347
1348		/*
1349		 * unblock after host_blocked iterates to zero
1350		 */
1351		if (atomic_dec_return(&shost->host_blocked) > 0)
1352			goto out_dec;
1353
1354		SCSI_LOG_MLQUEUE(3,
1355			shost_printk(KERN_INFO, shost,
1356				     "unblocking host at zero depth\n"));
1357	}
1358
1359	if (shost->host_self_blocked)
1360		goto starved;
1361
1362	/* We're OK to process the command, so we can't be starved */
1363	if (!list_empty(&sdev->starved_entry)) {
1364		spin_lock_irq(shost->host_lock);
1365		if (!list_empty(&sdev->starved_entry))
1366			list_del_init(&sdev->starved_entry);
1367		spin_unlock_irq(shost->host_lock);
1368	}
1369
1370	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1371
1372	return 1;
1373
1374starved:
1375	spin_lock_irq(shost->host_lock);
1376	if (list_empty(&sdev->starved_entry))
1377		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1378	spin_unlock_irq(shost->host_lock);
1379out_dec:
1380	scsi_dec_host_busy(shost, cmd);
1381	return 0;
1382}
1383
1384/*
1385 * Busy state exporting function for request stacking drivers.
1386 *
1387 * For efficiency, no lock is taken to check the busy state of
1388 * shost/starget/sdev, since the returned value is not guaranteed and
1389 * may be changed after request stacking drivers call the function,
1390 * regardless of taking lock or not.
1391 *
1392 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1393 * needs to return 'not busy'. Otherwise, request stacking drivers
1394 * may hold requests forever.
1395 */
1396static bool scsi_mq_lld_busy(struct request_queue *q)
1397{
1398	struct scsi_device *sdev = q->queuedata;
1399	struct Scsi_Host *shost;
1400
1401	if (blk_queue_dying(q))
1402		return false;
1403
1404	shost = sdev->host;
1405
1406	/*
1407	 * Ignore host/starget busy state.
1408	 * Since block layer does not have a concept of fairness across
1409	 * multiple queues, congestion of host/starget needs to be handled
1410	 * in SCSI layer.
1411	 */
1412	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1413		return true;
1414
1415	return false;
1416}
1417
1418/*
1419 * Block layer request completion callback. May be called from interrupt
1420 * context.
1421 */
1422static void scsi_complete(struct request *rq)
1423{
1424	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1425	enum scsi_disposition disposition;
1426
1427	INIT_LIST_HEAD(&cmd->eh_entry);
1428
1429	atomic_inc(&cmd->device->iodone_cnt);
1430	if (cmd->result)
1431		atomic_inc(&cmd->device->ioerr_cnt);
1432
1433	disposition = scsi_decide_disposition(cmd);
1434	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1435		disposition = SUCCESS;
1436
1437	scsi_log_completion(cmd, disposition);
1438
1439	switch (disposition) {
1440	case SUCCESS:
1441		scsi_finish_command(cmd);
1442		break;
1443	case NEEDS_RETRY:
1444		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1445		break;
1446	case ADD_TO_MLQUEUE:
1447		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1448		break;
1449	default:
1450		scsi_eh_scmd_add(cmd);
1451		break;
1452	}
1453}
1454
1455/**
1456 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1457 * @cmd: command block we are dispatching.
1458 *
1459 * Return: nonzero return request was rejected and device's queue needs to be
1460 * plugged.
1461 */
1462static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1463{
1464	struct Scsi_Host *host = cmd->device->host;
1465	int rtn = 0;
1466
 
 
1467	/* check if the device is still usable */
1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470		 * returns an immediate error upwards, and signals
1471		 * that the device is no longer present */
1472		cmd->result = DID_NO_CONNECT << 16;
1473		goto done;
1474	}
1475
1476	/* Check to see if the scsi lld made this device blocked. */
1477	if (unlikely(scsi_device_blocked(cmd->device))) {
1478		/*
1479		 * in blocked state, the command is just put back on
1480		 * the device queue.  The suspend state has already
1481		 * blocked the queue so future requests should not
1482		 * occur until the device transitions out of the
1483		 * suspend state.
1484		 */
1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486			"queuecommand : device blocked\n"));
 
1487		return SCSI_MLQUEUE_DEVICE_BUSY;
1488	}
1489
1490	/* Store the LUN value in cmnd, if needed. */
1491	if (cmd->device->lun_in_cdb)
1492		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493			       (cmd->device->lun << 5 & 0xe0);
1494
1495	scsi_log_send(cmd);
1496
1497	/*
1498	 * Before we queue this command, check if the command
1499	 * length exceeds what the host adapter can handle.
1500	 */
1501	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503			       "queuecommand : command too long. "
1504			       "cdb_size=%d host->max_cmd_len=%d\n",
1505			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506		cmd->result = (DID_ABORT << 16);
1507		goto done;
1508	}
1509
1510	if (unlikely(host->shost_state == SHOST_DEL)) {
1511		cmd->result = (DID_NO_CONNECT << 16);
1512		goto done;
1513
1514	}
1515
1516	trace_scsi_dispatch_cmd_start(cmd);
1517	rtn = host->hostt->queuecommand(host, cmd);
1518	if (rtn) {
 
1519		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523
1524		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525			"queuecommand : request rejected\n"));
1526	}
1527
1528	return rtn;
1529 done:
1530	scsi_done(cmd);
1531	return 0;
1532}
1533
1534/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536{
1537	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538		sizeof(struct scatterlist);
1539}
1540
1541static blk_status_t scsi_prepare_cmd(struct request *req)
1542{
1543	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544	struct scsi_device *sdev = req->q->queuedata;
1545	struct Scsi_Host *shost = sdev->host;
1546	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547	struct scatterlist *sg;
1548
1549	scsi_init_command(sdev, cmd);
1550
1551	cmd->eh_eflags = 0;
1552	cmd->prot_type = 0;
1553	cmd->prot_flags = 0;
1554	cmd->submitter = 0;
1555	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556	cmd->underflow = 0;
1557	cmd->transfersize = 0;
1558	cmd->host_scribble = NULL;
1559	cmd->result = 0;
1560	cmd->extra_len = 0;
1561	cmd->state = 0;
1562	if (in_flight)
1563		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564
1565	/*
1566	 * Only clear the driver-private command data if the LLD does not supply
1567	 * a function to initialize that data.
1568	 */
1569	if (!shost->hostt->init_cmd_priv)
1570		memset(cmd + 1, 0, shost->hostt->cmd_size);
1571
1572	cmd->prot_op = SCSI_PROT_NORMAL;
1573	if (blk_rq_bytes(req))
1574		cmd->sc_data_direction = rq_dma_dir(req);
1575	else
1576		cmd->sc_data_direction = DMA_NONE;
1577
1578	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579	cmd->sdb.table.sgl = sg;
1580
1581	if (scsi_host_get_prot(shost)) {
1582		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1583
1584		cmd->prot_sdb->table.sgl =
1585			(struct scatterlist *)(cmd->prot_sdb + 1);
1586	}
1587
1588	/*
1589	 * Special handling for passthrough commands, which don't go to the ULP
1590	 * at all:
1591	 */
1592	if (blk_rq_is_passthrough(req))
1593		return scsi_setup_scsi_cmnd(sdev, req);
1594
1595	if (sdev->handler && sdev->handler->prep_fn) {
1596		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597
1598		if (ret != BLK_STS_OK)
1599			return ret;
1600	}
1601
1602	/* Usually overridden by the ULP */
1603	cmd->allowed = 0;
1604	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606}
1607
1608static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609{
1610	struct request *req = scsi_cmd_to_rq(cmd);
1611
1612	switch (cmd->submitter) {
1613	case SUBMITTED_BY_BLOCK_LAYER:
1614		break;
1615	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616		return scsi_eh_done(cmd);
1617	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618		return;
1619	}
1620
1621	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622		return;
1623	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624		return;
1625	trace_scsi_dispatch_cmd_done(cmd);
1626
1627	if (complete_directly)
1628		blk_mq_complete_request_direct(req, scsi_complete);
1629	else
1630		blk_mq_complete_request(req);
1631}
1632
1633void scsi_done(struct scsi_cmnd *cmd)
1634{
1635	scsi_done_internal(cmd, false);
1636}
1637EXPORT_SYMBOL(scsi_done);
1638
1639void scsi_done_direct(struct scsi_cmnd *cmd)
1640{
1641	scsi_done_internal(cmd, true);
1642}
1643EXPORT_SYMBOL(scsi_done_direct);
1644
1645static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646{
1647	struct scsi_device *sdev = q->queuedata;
1648
1649	sbitmap_put(&sdev->budget_map, budget_token);
1650}
1651
1652/*
1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654 * not change behaviour from the previous unplug mechanism, experimentation
1655 * may prove this needs changing.
1656 */
1657#define SCSI_QUEUE_DELAY 3
1658
1659static int scsi_mq_get_budget(struct request_queue *q)
1660{
1661	struct scsi_device *sdev = q->queuedata;
1662	int token = scsi_dev_queue_ready(q, sdev);
1663
1664	if (token >= 0)
1665		return token;
1666
1667	atomic_inc(&sdev->restarts);
1668
1669	/*
1670	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671	 * .restarts must be incremented before .device_busy is read because the
1672	 * code in scsi_run_queue_async() depends on the order of these operations.
1673	 */
1674	smp_mb__after_atomic();
1675
1676	/*
1677	 * If all in-flight requests originated from this LUN are completed
1678	 * before reading .device_busy, sdev->device_busy will be observed as
1679	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680	 * soon. Otherwise, completion of one of these requests will observe
1681	 * the .restarts flag, and the request queue will be run for handling
1682	 * this request, see scsi_end_request().
1683	 */
1684	if (unlikely(scsi_device_busy(sdev) == 0 &&
1685				!scsi_device_blocked(sdev)))
1686		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1687	return -1;
1688}
1689
1690static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691{
1692	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693
1694	cmd->budget_token = token;
1695}
1696
1697static int scsi_mq_get_rq_budget_token(struct request *req)
1698{
1699	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700
1701	return cmd->budget_token;
1702}
1703
1704static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705			 const struct blk_mq_queue_data *bd)
1706{
1707	struct request *req = bd->rq;
1708	struct request_queue *q = req->q;
1709	struct scsi_device *sdev = q->queuedata;
1710	struct Scsi_Host *shost = sdev->host;
1711	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1712	blk_status_t ret;
1713	int reason;
1714
1715	WARN_ON_ONCE(cmd->budget_token < 0);
1716
1717	/*
1718	 * If the device is not in running state we will reject some or all
1719	 * commands.
1720	 */
1721	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722		ret = scsi_device_state_check(sdev, req);
1723		if (ret != BLK_STS_OK)
1724			goto out_put_budget;
1725	}
1726
1727	ret = BLK_STS_RESOURCE;
1728	if (!scsi_target_queue_ready(shost, sdev))
1729		goto out_put_budget;
1730	if (unlikely(scsi_host_in_recovery(shost))) {
1731		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732			ret = BLK_STS_OFFLINE;
1733		goto out_dec_target_busy;
1734	}
1735	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736		goto out_dec_target_busy;
1737
1738	if (!(req->rq_flags & RQF_DONTPREP)) {
1739		ret = scsi_prepare_cmd(req);
1740		if (ret != BLK_STS_OK)
1741			goto out_dec_host_busy;
1742		req->rq_flags |= RQF_DONTPREP;
1743	} else {
1744		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1745	}
1746
1747	cmd->flags &= SCMD_PRESERVED_FLAGS;
1748	if (sdev->simple_tags)
1749		cmd->flags |= SCMD_TAGGED;
1750	if (bd->last)
1751		cmd->flags |= SCMD_LAST;
1752
1753	scsi_set_resid(cmd, 0);
1754	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756
1757	blk_mq_start_request(req);
1758	reason = scsi_dispatch_cmd(cmd);
1759	if (reason) {
1760		scsi_set_blocked(cmd, reason);
1761		ret = BLK_STS_RESOURCE;
1762		goto out_dec_host_busy;
1763	}
1764
1765	atomic_inc(&cmd->device->iorequest_cnt);
1766	return BLK_STS_OK;
1767
1768out_dec_host_busy:
1769	scsi_dec_host_busy(shost, cmd);
1770out_dec_target_busy:
1771	if (scsi_target(sdev)->can_queue > 0)
1772		atomic_dec(&scsi_target(sdev)->target_busy);
1773out_put_budget:
1774	scsi_mq_put_budget(q, cmd->budget_token);
1775	cmd->budget_token = -1;
1776	switch (ret) {
1777	case BLK_STS_OK:
1778		break;
1779	case BLK_STS_RESOURCE:
1780	case BLK_STS_ZONE_RESOURCE:
1781		if (scsi_device_blocked(sdev))
1782			ret = BLK_STS_DEV_RESOURCE;
1783		break;
1784	case BLK_STS_AGAIN:
1785		cmd->result = DID_BUS_BUSY << 16;
1786		if (req->rq_flags & RQF_DONTPREP)
1787			scsi_mq_uninit_cmd(cmd);
1788		break;
1789	default:
1790		if (unlikely(!scsi_device_online(sdev)))
1791			cmd->result = DID_NO_CONNECT << 16;
1792		else
1793			cmd->result = DID_ERROR << 16;
1794		/*
1795		 * Make sure to release all allocated resources when
1796		 * we hit an error, as we will never see this command
1797		 * again.
1798		 */
1799		if (req->rq_flags & RQF_DONTPREP)
1800			scsi_mq_uninit_cmd(cmd);
1801		scsi_run_queue_async(sdev);
1802		break;
1803	}
1804	return ret;
1805}
1806
1807static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808				unsigned int hctx_idx, unsigned int numa_node)
1809{
1810	struct Scsi_Host *shost = set->driver_data;
1811	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812	struct scatterlist *sg;
1813	int ret = 0;
1814
1815	cmd->sense_buffer =
1816		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1817	if (!cmd->sense_buffer)
1818		return -ENOMEM;
1819
1820	if (scsi_host_get_prot(shost)) {
1821		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822			shost->hostt->cmd_size;
1823		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824	}
1825
1826	if (shost->hostt->init_cmd_priv) {
1827		ret = shost->hostt->init_cmd_priv(shost, cmd);
1828		if (ret < 0)
1829			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830	}
1831
1832	return ret;
1833}
1834
1835static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836				 unsigned int hctx_idx)
1837{
1838	struct Scsi_Host *shost = set->driver_data;
1839	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840
1841	if (shost->hostt->exit_cmd_priv)
1842		shost->hostt->exit_cmd_priv(shost, cmd);
1843	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1844}
1845
1846
1847static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848{
1849	struct Scsi_Host *shost = hctx->driver_data;
1850
1851	if (shost->hostt->mq_poll)
1852		return shost->hostt->mq_poll(shost, hctx->queue_num);
1853
1854	return 0;
1855}
1856
1857static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858			  unsigned int hctx_idx)
1859{
1860	struct Scsi_Host *shost = data;
1861
1862	hctx->driver_data = shost;
1863	return 0;
1864}
1865
1866static void scsi_map_queues(struct blk_mq_tag_set *set)
1867{
1868	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869
1870	if (shost->hostt->map_queues)
1871		return shost->hostt->map_queues(shost);
1872	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873}
1874
1875void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876{
1877	struct device *dev = shost->dma_dev;
1878
1879	/*
1880	 * this limit is imposed by hardware restrictions
1881	 */
1882	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883					SG_MAX_SEGMENTS));
1884
1885	if (scsi_host_prot_dma(shost)) {
1886		shost->sg_prot_tablesize =
1887			min_not_zero(shost->sg_prot_tablesize,
1888				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891	}
1892
1893	blk_queue_max_hw_sectors(q, shost->max_sectors);
1894	blk_queue_segment_boundary(q, shost->dma_boundary);
1895	dma_set_seg_boundary(dev, shost->dma_boundary);
1896
1897	blk_queue_max_segment_size(q, shost->max_segment_size);
1898	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1900
1901	/*
1902	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1903	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1904	 * which is set by the platform.
1905	 *
1906	 * Devices that require a bigger alignment can increase it later.
1907	 */
1908	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909}
1910EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911
1912static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913	.get_budget	= scsi_mq_get_budget,
1914	.put_budget	= scsi_mq_put_budget,
1915	.queue_rq	= scsi_queue_rq,
1916	.complete	= scsi_complete,
1917	.timeout	= scsi_timeout,
1918#ifdef CONFIG_BLK_DEBUG_FS
1919	.show_rq	= scsi_show_rq,
1920#endif
1921	.init_request	= scsi_mq_init_request,
1922	.exit_request	= scsi_mq_exit_request,
1923	.cleanup_rq	= scsi_cleanup_rq,
1924	.busy		= scsi_mq_lld_busy,
1925	.map_queues	= scsi_map_queues,
1926	.init_hctx	= scsi_init_hctx,
1927	.poll		= scsi_mq_poll,
1928	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930};
1931
1932
1933static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934{
1935	struct Scsi_Host *shost = hctx->driver_data;
1936
1937	shost->hostt->commit_rqs(shost, hctx->queue_num);
1938}
1939
1940static const struct blk_mq_ops scsi_mq_ops = {
1941	.get_budget	= scsi_mq_get_budget,
1942	.put_budget	= scsi_mq_put_budget,
1943	.queue_rq	= scsi_queue_rq,
1944	.commit_rqs	= scsi_commit_rqs,
1945	.complete	= scsi_complete,
1946	.timeout	= scsi_timeout,
1947#ifdef CONFIG_BLK_DEBUG_FS
1948	.show_rq	= scsi_show_rq,
1949#endif
1950	.init_request	= scsi_mq_init_request,
1951	.exit_request	= scsi_mq_exit_request,
1952	.cleanup_rq	= scsi_cleanup_rq,
1953	.busy		= scsi_mq_lld_busy,
1954	.map_queues	= scsi_map_queues,
1955	.init_hctx	= scsi_init_hctx,
1956	.poll		= scsi_mq_poll,
1957	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959};
1960
1961int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962{
1963	unsigned int cmd_size, sgl_size;
1964	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965
1966	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967				scsi_mq_inline_sgl_size(shost));
1968	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969	if (scsi_host_get_prot(shost))
1970		cmd_size += sizeof(struct scsi_data_buffer) +
1971			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972
1973	memset(tag_set, 0, sizeof(*tag_set));
1974	if (shost->hostt->commit_rqs)
1975		tag_set->ops = &scsi_mq_ops;
1976	else
1977		tag_set->ops = &scsi_mq_ops_no_commit;
1978	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979	tag_set->nr_maps = shost->nr_maps ? : 1;
1980	tag_set->queue_depth = shost->can_queue;
1981	tag_set->cmd_size = cmd_size;
1982	tag_set->numa_node = dev_to_node(shost->dma_dev);
1983	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984	tag_set->flags |=
1985		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
 
 
1986	tag_set->driver_data = shost;
1987	if (shost->host_tagset)
1988		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1989
1990	return blk_mq_alloc_tag_set(tag_set);
1991}
1992
1993void scsi_mq_free_tags(struct kref *kref)
1994{
1995	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1996					       tagset_refcnt);
1997
1998	blk_mq_free_tag_set(&shost->tag_set);
1999	complete(&shost->tagset_freed);
2000}
2001
2002/**
2003 * scsi_device_from_queue - return sdev associated with a request_queue
2004 * @q: The request queue to return the sdev from
2005 *
2006 * Return the sdev associated with a request queue or NULL if the
2007 * request_queue does not reference a SCSI device.
2008 */
2009struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2010{
2011	struct scsi_device *sdev = NULL;
2012
2013	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2014	    q->mq_ops == &scsi_mq_ops)
2015		sdev = q->queuedata;
2016	if (!sdev || !get_device(&sdev->sdev_gendev))
2017		sdev = NULL;
2018
2019	return sdev;
2020}
2021/*
2022 * pktcdvd should have been integrated into the SCSI layers, but for historical
2023 * reasons like the old IDE driver it isn't.  This export allows it to safely
2024 * probe if a given device is a SCSI one and only attach to that.
2025 */
2026#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2027EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2028#endif
2029
2030/**
2031 * scsi_block_requests - Utility function used by low-level drivers to prevent
2032 * further commands from being queued to the device.
2033 * @shost:  host in question
2034 *
2035 * There is no timer nor any other means by which the requests get unblocked
2036 * other than the low-level driver calling scsi_unblock_requests().
2037 */
2038void scsi_block_requests(struct Scsi_Host *shost)
2039{
2040	shost->host_self_blocked = 1;
2041}
2042EXPORT_SYMBOL(scsi_block_requests);
2043
2044/**
2045 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2046 * further commands to be queued to the device.
2047 * @shost:  host in question
2048 *
2049 * There is no timer nor any other means by which the requests get unblocked
2050 * other than the low-level driver calling scsi_unblock_requests(). This is done
2051 * as an API function so that changes to the internals of the scsi mid-layer
2052 * won't require wholesale changes to drivers that use this feature.
2053 */
2054void scsi_unblock_requests(struct Scsi_Host *shost)
2055{
2056	shost->host_self_blocked = 0;
2057	scsi_run_host_queues(shost);
2058}
2059EXPORT_SYMBOL(scsi_unblock_requests);
2060
2061void scsi_exit_queue(void)
2062{
2063	kmem_cache_destroy(scsi_sense_cache);
2064}
2065
2066/**
2067 *	scsi_mode_select - issue a mode select
2068 *	@sdev:	SCSI device to be queried
2069 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2070 *	@sp:	Save page bit (0 == don't save, 1 == save)
2071 *	@buffer: request buffer (may not be smaller than eight bytes)
2072 *	@len:	length of request buffer.
2073 *	@timeout: command timeout
2074 *	@retries: number of retries before failing
2075 *	@data: returns a structure abstracting the mode header data
2076 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2077 *		must be SCSI_SENSE_BUFFERSIZE big.
2078 *
2079 *	Returns zero if successful; negative error number or scsi
2080 *	status on error
2081 *
2082 */
2083int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2084		     unsigned char *buffer, int len, int timeout, int retries,
2085		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2086{
2087	unsigned char cmd[10];
2088	unsigned char *real_buffer;
 
 
 
2089	int ret;
2090
2091	memset(cmd, 0, sizeof(cmd));
2092	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2093
2094	/*
2095	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2096	 * and the mode select header cannot fit within the maximumm 255 bytes
2097	 * of the MODE SELECT(6) command.
2098	 */
2099	if (sdev->use_10_for_ms ||
2100	    len + 4 > 255 ||
2101	    data->block_descriptor_length > 255) {
2102		if (len > 65535 - 8)
2103			return -EINVAL;
2104		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2105		if (!real_buffer)
2106			return -ENOMEM;
2107		memcpy(real_buffer + 8, buffer, len);
2108		len += 8;
2109		real_buffer[0] = 0;
2110		real_buffer[1] = 0;
2111		real_buffer[2] = data->medium_type;
2112		real_buffer[3] = data->device_specific;
2113		real_buffer[4] = data->longlba ? 0x01 : 0;
2114		real_buffer[5] = 0;
2115		put_unaligned_be16(data->block_descriptor_length,
2116				   &real_buffer[6]);
2117
2118		cmd[0] = MODE_SELECT_10;
2119		put_unaligned_be16(len, &cmd[7]);
2120	} else {
2121		if (data->longlba)
2122			return -EINVAL;
2123
2124		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2125		if (!real_buffer)
2126			return -ENOMEM;
2127		memcpy(real_buffer + 4, buffer, len);
2128		len += 4;
2129		real_buffer[0] = 0;
2130		real_buffer[1] = data->medium_type;
2131		real_buffer[2] = data->device_specific;
2132		real_buffer[3] = data->block_descriptor_length;
2133
2134		cmd[0] = MODE_SELECT;
2135		cmd[4] = len;
2136	}
2137
2138	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2139			       sshdr, timeout, retries, NULL);
2140	kfree(real_buffer);
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(scsi_mode_select);
2144
2145/**
2146 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2147 *	@sdev:	SCSI device to be queried
2148 *	@dbd:	set to prevent mode sense from returning block descriptors
2149 *	@modepage: mode page being requested
 
2150 *	@buffer: request buffer (may not be smaller than eight bytes)
2151 *	@len:	length of request buffer.
2152 *	@timeout: command timeout
2153 *	@retries: number of retries before failing
2154 *	@data: returns a structure abstracting the mode header data
2155 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2156 *		must be SCSI_SENSE_BUFFERSIZE big.
2157 *
2158 *	Returns zero if successful, or a negative error number on failure
2159 */
2160int
2161scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2162		  unsigned char *buffer, int len, int timeout, int retries,
2163		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2164{
2165	unsigned char cmd[12];
2166	int use_10_for_ms;
2167	int header_length;
2168	int result, retry_count = retries;
2169	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171	memset(data, 0, sizeof(*data));
2172	memset(&cmd[0], 0, 12);
2173
2174	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2175	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2176	cmd[2] = modepage;
 
2177
2178	/* caller might not be interested in sense, but we need it */
2179	if (!sshdr)
2180		sshdr = &my_sshdr;
2181
2182 retry:
2183	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2184
2185	if (use_10_for_ms) {
2186		if (len < 8 || len > 65535)
2187			return -EINVAL;
2188
2189		cmd[0] = MODE_SENSE_10;
2190		put_unaligned_be16(len, &cmd[7]);
2191		header_length = 8;
2192	} else {
2193		if (len < 4)
2194			return -EINVAL;
2195
2196		cmd[0] = MODE_SENSE;
2197		cmd[4] = len;
2198		header_length = 4;
2199	}
2200
2201	memset(buffer, 0, len);
2202
2203	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2204				  sshdr, timeout, retries, NULL);
2205	if (result < 0)
2206		return result;
2207
2208	/* This code looks awful: what it's doing is making sure an
2209	 * ILLEGAL REQUEST sense return identifies the actual command
2210	 * byte as the problem.  MODE_SENSE commands can return
2211	 * ILLEGAL REQUEST if the code page isn't supported */
2212
2213	if (!scsi_status_is_good(result)) {
2214		if (scsi_sense_valid(sshdr)) {
2215			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2216			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2217				/*
2218				 * Invalid command operation code: retry using
2219				 * MODE SENSE(6) if this was a MODE SENSE(10)
2220				 * request, except if the request mode page is
2221				 * too large for MODE SENSE single byte
2222				 * allocation length field.
2223				 */
2224				if (use_10_for_ms) {
2225					if (len > 255)
2226						return -EIO;
2227					sdev->use_10_for_ms = 0;
2228					goto retry;
2229				}
2230			}
2231			if (scsi_status_is_check_condition(result) &&
2232			    sshdr->sense_key == UNIT_ATTENTION &&
2233			    retry_count) {
2234				retry_count--;
2235				goto retry;
2236			}
2237		}
2238		return -EIO;
2239	}
2240	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2241		     (modepage == 6 || modepage == 8))) {
2242		/* Initio breakage? */
2243		header_length = 0;
2244		data->length = 13;
2245		data->medium_type = 0;
2246		data->device_specific = 0;
2247		data->longlba = 0;
2248		data->block_descriptor_length = 0;
2249	} else if (use_10_for_ms) {
2250		data->length = get_unaligned_be16(&buffer[0]) + 2;
2251		data->medium_type = buffer[2];
2252		data->device_specific = buffer[3];
2253		data->longlba = buffer[4] & 0x01;
2254		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2255	} else {
2256		data->length = buffer[0] + 1;
2257		data->medium_type = buffer[1];
2258		data->device_specific = buffer[2];
2259		data->block_descriptor_length = buffer[3];
2260	}
2261	data->header_length = header_length;
2262
2263	return 0;
2264}
2265EXPORT_SYMBOL(scsi_mode_sense);
2266
2267/**
2268 *	scsi_test_unit_ready - test if unit is ready
2269 *	@sdev:	scsi device to change the state of.
2270 *	@timeout: command timeout
2271 *	@retries: number of retries before failing
2272 *	@sshdr: outpout pointer for decoded sense information.
2273 *
2274 *	Returns zero if unsuccessful or an error if TUR failed.  For
2275 *	removable media, UNIT_ATTENTION sets ->changed flag.
2276 **/
2277int
2278scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2279		     struct scsi_sense_hdr *sshdr)
2280{
2281	char cmd[] = {
2282		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2283	};
 
 
 
2284	int result;
2285
2286	/* try to eat the UNIT_ATTENTION if there are enough retries */
2287	do {
2288		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2289					  timeout, 1, NULL);
2290		if (sdev->removable && scsi_sense_valid(sshdr) &&
2291		    sshdr->sense_key == UNIT_ATTENTION)
2292			sdev->changed = 1;
2293	} while (scsi_sense_valid(sshdr) &&
2294		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2295
2296	return result;
2297}
2298EXPORT_SYMBOL(scsi_test_unit_ready);
2299
2300/**
2301 *	scsi_device_set_state - Take the given device through the device state model.
2302 *	@sdev:	scsi device to change the state of.
2303 *	@state:	state to change to.
2304 *
2305 *	Returns zero if successful or an error if the requested
2306 *	transition is illegal.
2307 */
2308int
2309scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2310{
2311	enum scsi_device_state oldstate = sdev->sdev_state;
2312
2313	if (state == oldstate)
2314		return 0;
2315
2316	switch (state) {
2317	case SDEV_CREATED:
2318		switch (oldstate) {
2319		case SDEV_CREATED_BLOCK:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_RUNNING:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_OFFLINE:
2330		case SDEV_TRANSPORT_OFFLINE:
2331		case SDEV_QUIESCE:
2332		case SDEV_BLOCK:
2333			break;
2334		default:
2335			goto illegal;
2336		}
2337		break;
2338
2339	case SDEV_QUIESCE:
2340		switch (oldstate) {
2341		case SDEV_RUNNING:
2342		case SDEV_OFFLINE:
2343		case SDEV_TRANSPORT_OFFLINE:
2344			break;
2345		default:
2346			goto illegal;
2347		}
2348		break;
2349
2350	case SDEV_OFFLINE:
2351	case SDEV_TRANSPORT_OFFLINE:
2352		switch (oldstate) {
2353		case SDEV_CREATED:
2354		case SDEV_RUNNING:
2355		case SDEV_QUIESCE:
2356		case SDEV_BLOCK:
2357			break;
2358		default:
2359			goto illegal;
2360		}
2361		break;
2362
2363	case SDEV_BLOCK:
2364		switch (oldstate) {
2365		case SDEV_RUNNING:
2366		case SDEV_CREATED_BLOCK:
2367		case SDEV_QUIESCE:
2368		case SDEV_OFFLINE:
2369			break;
2370		default:
2371			goto illegal;
2372		}
2373		break;
2374
2375	case SDEV_CREATED_BLOCK:
2376		switch (oldstate) {
2377		case SDEV_CREATED:
2378			break;
2379		default:
2380			goto illegal;
2381		}
2382		break;
2383
2384	case SDEV_CANCEL:
2385		switch (oldstate) {
2386		case SDEV_CREATED:
2387		case SDEV_RUNNING:
2388		case SDEV_QUIESCE:
2389		case SDEV_OFFLINE:
2390		case SDEV_TRANSPORT_OFFLINE:
2391			break;
2392		default:
2393			goto illegal;
2394		}
2395		break;
2396
2397	case SDEV_DEL:
2398		switch (oldstate) {
2399		case SDEV_CREATED:
2400		case SDEV_RUNNING:
2401		case SDEV_OFFLINE:
2402		case SDEV_TRANSPORT_OFFLINE:
2403		case SDEV_CANCEL:
2404		case SDEV_BLOCK:
2405		case SDEV_CREATED_BLOCK:
2406			break;
2407		default:
2408			goto illegal;
2409		}
2410		break;
2411
2412	}
2413	sdev->offline_already = false;
2414	sdev->sdev_state = state;
2415	return 0;
2416
2417 illegal:
2418	SCSI_LOG_ERROR_RECOVERY(1,
2419				sdev_printk(KERN_ERR, sdev,
2420					    "Illegal state transition %s->%s",
2421					    scsi_device_state_name(oldstate),
2422					    scsi_device_state_name(state))
2423				);
2424	return -EINVAL;
2425}
2426EXPORT_SYMBOL(scsi_device_set_state);
2427
2428/**
2429 *	scsi_evt_emit - emit a single SCSI device uevent
2430 *	@sdev: associated SCSI device
2431 *	@evt: event to emit
2432 *
2433 *	Send a single uevent (scsi_event) to the associated scsi_device.
2434 */
2435static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2436{
2437	int idx = 0;
2438	char *envp[3];
2439
2440	switch (evt->evt_type) {
2441	case SDEV_EVT_MEDIA_CHANGE:
2442		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2443		break;
2444	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2445		scsi_rescan_device(&sdev->sdev_gendev);
2446		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2447		break;
2448	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2449		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2450		break;
2451	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2452	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2453		break;
2454	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2456		break;
2457	case SDEV_EVT_LUN_CHANGE_REPORTED:
2458		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2459		break;
2460	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2461		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2462		break;
2463	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2464		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2465		break;
2466	default:
2467		/* do nothing */
2468		break;
2469	}
2470
2471	envp[idx++] = NULL;
2472
2473	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2474}
2475
2476/**
2477 *	scsi_evt_thread - send a uevent for each scsi event
2478 *	@work: work struct for scsi_device
2479 *
2480 *	Dispatch queued events to their associated scsi_device kobjects
2481 *	as uevents.
2482 */
2483void scsi_evt_thread(struct work_struct *work)
2484{
2485	struct scsi_device *sdev;
2486	enum scsi_device_event evt_type;
2487	LIST_HEAD(event_list);
2488
2489	sdev = container_of(work, struct scsi_device, event_work);
2490
2491	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2492		if (test_and_clear_bit(evt_type, sdev->pending_events))
2493			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2494
2495	while (1) {
2496		struct scsi_event *evt;
2497		struct list_head *this, *tmp;
2498		unsigned long flags;
2499
2500		spin_lock_irqsave(&sdev->list_lock, flags);
2501		list_splice_init(&sdev->event_list, &event_list);
2502		spin_unlock_irqrestore(&sdev->list_lock, flags);
2503
2504		if (list_empty(&event_list))
2505			break;
2506
2507		list_for_each_safe(this, tmp, &event_list) {
2508			evt = list_entry(this, struct scsi_event, node);
2509			list_del(&evt->node);
2510			scsi_evt_emit(sdev, evt);
2511			kfree(evt);
2512		}
2513	}
2514}
2515
2516/**
2517 * 	sdev_evt_send - send asserted event to uevent thread
2518 *	@sdev: scsi_device event occurred on
2519 *	@evt: event to send
2520 *
2521 *	Assert scsi device event asynchronously.
2522 */
2523void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2524{
2525	unsigned long flags;
2526
2527#if 0
2528	/* FIXME: currently this check eliminates all media change events
2529	 * for polled devices.  Need to update to discriminate between AN
2530	 * and polled events */
2531	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2532		kfree(evt);
2533		return;
2534	}
2535#endif
2536
2537	spin_lock_irqsave(&sdev->list_lock, flags);
2538	list_add_tail(&evt->node, &sdev->event_list);
2539	schedule_work(&sdev->event_work);
2540	spin_unlock_irqrestore(&sdev->list_lock, flags);
2541}
2542EXPORT_SYMBOL_GPL(sdev_evt_send);
2543
2544/**
2545 * 	sdev_evt_alloc - allocate a new scsi event
2546 *	@evt_type: type of event to allocate
2547 *	@gfpflags: GFP flags for allocation
2548 *
2549 *	Allocates and returns a new scsi_event.
2550 */
2551struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2552				  gfp_t gfpflags)
2553{
2554	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2555	if (!evt)
2556		return NULL;
2557
2558	evt->evt_type = evt_type;
2559	INIT_LIST_HEAD(&evt->node);
2560
2561	/* evt_type-specific initialization, if any */
2562	switch (evt_type) {
2563	case SDEV_EVT_MEDIA_CHANGE:
2564	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2565	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2566	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568	case SDEV_EVT_LUN_CHANGE_REPORTED:
2569	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2570	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2571	default:
2572		/* do nothing */
2573		break;
2574	}
2575
2576	return evt;
2577}
2578EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2579
2580/**
2581 * 	sdev_evt_send_simple - send asserted event to uevent thread
2582 *	@sdev: scsi_device event occurred on
2583 *	@evt_type: type of event to send
2584 *	@gfpflags: GFP flags for allocation
2585 *
2586 *	Assert scsi device event asynchronously, given an event type.
2587 */
2588void sdev_evt_send_simple(struct scsi_device *sdev,
2589			  enum scsi_device_event evt_type, gfp_t gfpflags)
2590{
2591	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2592	if (!evt) {
2593		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2594			    evt_type);
2595		return;
2596	}
2597
2598	sdev_evt_send(sdev, evt);
2599}
2600EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2601
2602/**
2603 *	scsi_device_quiesce - Block all commands except power management.
2604 *	@sdev:	scsi device to quiesce.
2605 *
2606 *	This works by trying to transition to the SDEV_QUIESCE state
2607 *	(which must be a legal transition).  When the device is in this
2608 *	state, only power management requests will be accepted, all others will
2609 *	be deferred.
2610 *
2611 *	Must be called with user context, may sleep.
2612 *
2613 *	Returns zero if unsuccessful or an error if not.
2614 */
2615int
2616scsi_device_quiesce(struct scsi_device *sdev)
2617{
2618	struct request_queue *q = sdev->request_queue;
2619	int err;
2620
2621	/*
2622	 * It is allowed to call scsi_device_quiesce() multiple times from
2623	 * the same context but concurrent scsi_device_quiesce() calls are
2624	 * not allowed.
2625	 */
2626	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2627
2628	if (sdev->quiesced_by == current)
2629		return 0;
2630
2631	blk_set_pm_only(q);
2632
2633	blk_mq_freeze_queue(q);
2634	/*
2635	 * Ensure that the effect of blk_set_pm_only() will be visible
2636	 * for percpu_ref_tryget() callers that occur after the queue
2637	 * unfreeze even if the queue was already frozen before this function
2638	 * was called. See also https://lwn.net/Articles/573497/.
2639	 */
2640	synchronize_rcu();
2641	blk_mq_unfreeze_queue(q);
2642
2643	mutex_lock(&sdev->state_mutex);
2644	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2645	if (err == 0)
2646		sdev->quiesced_by = current;
2647	else
2648		blk_clear_pm_only(q);
2649	mutex_unlock(&sdev->state_mutex);
2650
2651	return err;
2652}
2653EXPORT_SYMBOL(scsi_device_quiesce);
2654
2655/**
2656 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2657 *	@sdev:	scsi device to resume.
2658 *
2659 *	Moves the device from quiesced back to running and restarts the
2660 *	queues.
2661 *
2662 *	Must be called with user context, may sleep.
2663 */
2664void scsi_device_resume(struct scsi_device *sdev)
2665{
2666	/* check if the device state was mutated prior to resume, and if
2667	 * so assume the state is being managed elsewhere (for example
2668	 * device deleted during suspend)
2669	 */
2670	mutex_lock(&sdev->state_mutex);
2671	if (sdev->sdev_state == SDEV_QUIESCE)
2672		scsi_device_set_state(sdev, SDEV_RUNNING);
2673	if (sdev->quiesced_by) {
2674		sdev->quiesced_by = NULL;
2675		blk_clear_pm_only(sdev->request_queue);
2676	}
2677	mutex_unlock(&sdev->state_mutex);
2678}
2679EXPORT_SYMBOL(scsi_device_resume);
2680
2681static void
2682device_quiesce_fn(struct scsi_device *sdev, void *data)
2683{
2684	scsi_device_quiesce(sdev);
2685}
2686
2687void
2688scsi_target_quiesce(struct scsi_target *starget)
2689{
2690	starget_for_each_device(starget, NULL, device_quiesce_fn);
2691}
2692EXPORT_SYMBOL(scsi_target_quiesce);
2693
2694static void
2695device_resume_fn(struct scsi_device *sdev, void *data)
2696{
2697	scsi_device_resume(sdev);
2698}
2699
2700void
2701scsi_target_resume(struct scsi_target *starget)
2702{
2703	starget_for_each_device(starget, NULL, device_resume_fn);
2704}
2705EXPORT_SYMBOL(scsi_target_resume);
2706
2707static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2708{
2709	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2710		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2711
2712	return 0;
2713}
2714
2715void scsi_start_queue(struct scsi_device *sdev)
2716{
2717	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2718		blk_mq_unquiesce_queue(sdev->request_queue);
2719}
2720
2721static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2722{
2723	/*
2724	 * The atomic variable of ->queue_stopped covers that
2725	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2726	 *
2727	 * However, we still need to wait until quiesce is done
2728	 * in case that queue has been stopped.
2729	 */
2730	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2731		if (nowait)
2732			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2733		else
2734			blk_mq_quiesce_queue(sdev->request_queue);
2735	} else {
2736		if (!nowait)
2737			blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2738	}
2739}
2740
2741/**
2742 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2743 * @sdev: device to block
2744 *
2745 * Pause SCSI command processing on the specified device. Does not sleep.
2746 *
2747 * Returns zero if successful or a negative error code upon failure.
2748 *
2749 * Notes:
2750 * This routine transitions the device to the SDEV_BLOCK state (which must be
2751 * a legal transition). When the device is in this state, command processing
2752 * is paused until the device leaves the SDEV_BLOCK state. See also
2753 * scsi_internal_device_unblock_nowait().
2754 */
2755int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2756{
2757	int ret = __scsi_internal_device_block_nowait(sdev);
2758
2759	/*
2760	 * The device has transitioned to SDEV_BLOCK.  Stop the
2761	 * block layer from calling the midlayer with this device's
2762	 * request queue.
2763	 */
2764	if (!ret)
2765		scsi_stop_queue(sdev, true);
2766	return ret;
2767}
2768EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2769
2770/**
2771 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2772 * @sdev: device to block
 
2773 *
2774 * Pause SCSI command processing on the specified device and wait until all
2775 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2776 *
2777 * Returns zero if successful or a negative error code upon failure.
2778 *
2779 * Note:
2780 * This routine transitions the device to the SDEV_BLOCK state (which must be
2781 * a legal transition). When the device is in this state, command processing
2782 * is paused until the device leaves the SDEV_BLOCK state. See also
2783 * scsi_internal_device_unblock().
2784 */
2785static int scsi_internal_device_block(struct scsi_device *sdev)
2786{
2787	int err;
 
2788
2789	mutex_lock(&sdev->state_mutex);
2790	err = __scsi_internal_device_block_nowait(sdev);
 
2791	if (err == 0)
2792		scsi_stop_queue(sdev, false);
 
 
 
 
 
 
2793	mutex_unlock(&sdev->state_mutex);
2794
2795	return err;
 
2796}
2797
2798/**
2799 * scsi_internal_device_unblock_nowait - resume a device after a block request
2800 * @sdev:	device to resume
2801 * @new_state:	state to set the device to after unblocking
2802 *
2803 * Restart the device queue for a previously suspended SCSI device. Does not
2804 * sleep.
2805 *
2806 * Returns zero if successful or a negative error code upon failure.
2807 *
2808 * Notes:
2809 * This routine transitions the device to the SDEV_RUNNING state or to one of
2810 * the offline states (which must be a legal transition) allowing the midlayer
2811 * to goose the queue for this device.
2812 */
2813int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2814					enum scsi_device_state new_state)
2815{
2816	switch (new_state) {
2817	case SDEV_RUNNING:
2818	case SDEV_TRANSPORT_OFFLINE:
2819		break;
2820	default:
2821		return -EINVAL;
2822	}
2823
2824	/*
2825	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2826	 * offlined states and goose the device queue if successful.
2827	 */
2828	switch (sdev->sdev_state) {
2829	case SDEV_BLOCK:
2830	case SDEV_TRANSPORT_OFFLINE:
2831		sdev->sdev_state = new_state;
2832		break;
2833	case SDEV_CREATED_BLOCK:
2834		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2835		    new_state == SDEV_OFFLINE)
2836			sdev->sdev_state = new_state;
2837		else
2838			sdev->sdev_state = SDEV_CREATED;
2839		break;
2840	case SDEV_CANCEL:
2841	case SDEV_OFFLINE:
2842		break;
2843	default:
2844		return -EINVAL;
2845	}
2846	scsi_start_queue(sdev);
2847
2848	return 0;
2849}
2850EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2851
2852/**
2853 * scsi_internal_device_unblock - resume a device after a block request
2854 * @sdev:	device to resume
2855 * @new_state:	state to set the device to after unblocking
2856 *
2857 * Restart the device queue for a previously suspended SCSI device. May sleep.
2858 *
2859 * Returns zero if successful or a negative error code upon failure.
2860 *
2861 * Notes:
2862 * This routine transitions the device to the SDEV_RUNNING state or to one of
2863 * the offline states (which must be a legal transition) allowing the midlayer
2864 * to goose the queue for this device.
2865 */
2866static int scsi_internal_device_unblock(struct scsi_device *sdev,
2867					enum scsi_device_state new_state)
2868{
2869	int ret;
2870
2871	mutex_lock(&sdev->state_mutex);
2872	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2873	mutex_unlock(&sdev->state_mutex);
2874
2875	return ret;
2876}
2877
2878static void
2879device_block(struct scsi_device *sdev, void *data)
2880{
2881	int ret;
2882
2883	ret = scsi_internal_device_block(sdev);
2884
2885	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2886		  dev_name(&sdev->sdev_gendev), ret);
2887}
2888
2889static int
2890target_block(struct device *dev, void *data)
2891{
2892	if (scsi_is_target_device(dev))
2893		starget_for_each_device(to_scsi_target(dev), NULL,
2894					device_block);
2895	return 0;
2896}
2897
 
 
 
 
 
 
 
 
 
 
 
 
2898void
2899scsi_target_block(struct device *dev)
2900{
2901	if (scsi_is_target_device(dev))
2902		starget_for_each_device(to_scsi_target(dev), NULL,
2903					device_block);
2904	else
2905		device_for_each_child(dev, NULL, target_block);
2906}
2907EXPORT_SYMBOL_GPL(scsi_target_block);
2908
2909static void
2910device_unblock(struct scsi_device *sdev, void *data)
2911{
2912	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2913}
2914
2915static int
2916target_unblock(struct device *dev, void *data)
2917{
2918	if (scsi_is_target_device(dev))
2919		starget_for_each_device(to_scsi_target(dev), data,
2920					device_unblock);
2921	return 0;
2922}
2923
2924void
2925scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2926{
2927	if (scsi_is_target_device(dev))
2928		starget_for_each_device(to_scsi_target(dev), &new_state,
2929					device_unblock);
2930	else
2931		device_for_each_child(dev, &new_state, target_unblock);
2932}
2933EXPORT_SYMBOL_GPL(scsi_target_unblock);
2934
 
 
 
 
 
 
 
 
 
2935int
2936scsi_host_block(struct Scsi_Host *shost)
2937{
2938	struct scsi_device *sdev;
2939	int ret = 0;
2940
2941	/*
2942	 * Call scsi_internal_device_block_nowait so we can avoid
2943	 * calling synchronize_rcu() for each LUN.
2944	 */
2945	shost_for_each_device(sdev, shost) {
2946		mutex_lock(&sdev->state_mutex);
2947		ret = scsi_internal_device_block_nowait(sdev);
2948		mutex_unlock(&sdev->state_mutex);
2949		if (ret) {
2950			scsi_device_put(sdev);
2951			break;
2952		}
2953	}
2954
2955	/*
2956	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2957	 * calling synchronize_rcu() once is enough.
2958	 */
2959	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2960
2961	if (!ret)
2962		synchronize_rcu();
2963
2964	return ret;
2965}
2966EXPORT_SYMBOL_GPL(scsi_host_block);
2967
2968int
2969scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2970{
2971	struct scsi_device *sdev;
2972	int ret = 0;
2973
2974	shost_for_each_device(sdev, shost) {
2975		ret = scsi_internal_device_unblock(sdev, new_state);
2976		if (ret) {
2977			scsi_device_put(sdev);
2978			break;
2979		}
2980	}
2981	return ret;
2982}
2983EXPORT_SYMBOL_GPL(scsi_host_unblock);
2984
2985/**
2986 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2987 * @sgl:	scatter-gather list
2988 * @sg_count:	number of segments in sg
2989 * @offset:	offset in bytes into sg, on return offset into the mapped area
2990 * @len:	bytes to map, on return number of bytes mapped
2991 *
2992 * Returns virtual address of the start of the mapped page
2993 */
2994void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2995			  size_t *offset, size_t *len)
2996{
2997	int i;
2998	size_t sg_len = 0, len_complete = 0;
2999	struct scatterlist *sg;
3000	struct page *page;
3001
3002	WARN_ON(!irqs_disabled());
3003
3004	for_each_sg(sgl, sg, sg_count, i) {
3005		len_complete = sg_len; /* Complete sg-entries */
3006		sg_len += sg->length;
3007		if (sg_len > *offset)
3008			break;
3009	}
3010
3011	if (unlikely(i == sg_count)) {
3012		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3013			"elements %d\n",
3014		       __func__, sg_len, *offset, sg_count);
3015		WARN_ON(1);
3016		return NULL;
3017	}
3018
3019	/* Offset starting from the beginning of first page in this sg-entry */
3020	*offset = *offset - len_complete + sg->offset;
3021
3022	/* Assumption: contiguous pages can be accessed as "page + i" */
3023	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3024	*offset &= ~PAGE_MASK;
3025
3026	/* Bytes in this sg-entry from *offset to the end of the page */
3027	sg_len = PAGE_SIZE - *offset;
3028	if (*len > sg_len)
3029		*len = sg_len;
3030
3031	return kmap_atomic(page);
3032}
3033EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3034
3035/**
3036 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3037 * @virt:	virtual address to be unmapped
3038 */
3039void scsi_kunmap_atomic_sg(void *virt)
3040{
3041	kunmap_atomic(virt);
3042}
3043EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3044
3045void sdev_disable_disk_events(struct scsi_device *sdev)
3046{
3047	atomic_inc(&sdev->disk_events_disable_depth);
3048}
3049EXPORT_SYMBOL(sdev_disable_disk_events);
3050
3051void sdev_enable_disk_events(struct scsi_device *sdev)
3052{
3053	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3054		return;
3055	atomic_dec(&sdev->disk_events_disable_depth);
3056}
3057EXPORT_SYMBOL(sdev_enable_disk_events);
3058
3059static unsigned char designator_prio(const unsigned char *d)
3060{
3061	if (d[1] & 0x30)
3062		/* not associated with LUN */
3063		return 0;
3064
3065	if (d[3] == 0)
3066		/* invalid length */
3067		return 0;
3068
3069	/*
3070	 * Order of preference for lun descriptor:
3071	 * - SCSI name string
3072	 * - NAA IEEE Registered Extended
3073	 * - EUI-64 based 16-byte
3074	 * - EUI-64 based 12-byte
3075	 * - NAA IEEE Registered
3076	 * - NAA IEEE Extended
3077	 * - EUI-64 based 8-byte
3078	 * - SCSI name string (truncated)
3079	 * - T10 Vendor ID
3080	 * as longer descriptors reduce the likelyhood
3081	 * of identification clashes.
3082	 */
3083
3084	switch (d[1] & 0xf) {
3085	case 8:
3086		/* SCSI name string, variable-length UTF-8 */
3087		return 9;
3088	case 3:
3089		switch (d[4] >> 4) {
3090		case 6:
3091			/* NAA registered extended */
3092			return 8;
3093		case 5:
3094			/* NAA registered */
3095			return 5;
3096		case 4:
3097			/* NAA extended */
3098			return 4;
3099		case 3:
3100			/* NAA locally assigned */
3101			return 1;
3102		default:
3103			break;
3104		}
3105		break;
3106	case 2:
3107		switch (d[3]) {
3108		case 16:
3109			/* EUI64-based, 16 byte */
3110			return 7;
3111		case 12:
3112			/* EUI64-based, 12 byte */
3113			return 6;
3114		case 8:
3115			/* EUI64-based, 8 byte */
3116			return 3;
3117		default:
3118			break;
3119		}
3120		break;
3121	case 1:
3122		/* T10 vendor ID */
3123		return 1;
3124	default:
3125		break;
3126	}
3127
3128	return 0;
3129}
3130
3131/**
3132 * scsi_vpd_lun_id - return a unique device identification
3133 * @sdev: SCSI device
3134 * @id:   buffer for the identification
3135 * @id_len:  length of the buffer
3136 *
3137 * Copies a unique device identification into @id based
3138 * on the information in the VPD page 0x83 of the device.
3139 * The string will be formatted as a SCSI name string.
3140 *
3141 * Returns the length of the identification or error on failure.
3142 * If the identifier is longer than the supplied buffer the actual
3143 * identifier length is returned and the buffer is not zero-padded.
3144 */
3145int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3146{
3147	u8 cur_id_prio = 0;
3148	u8 cur_id_size = 0;
3149	const unsigned char *d, *cur_id_str;
3150	const struct scsi_vpd *vpd_pg83;
3151	int id_size = -EINVAL;
3152
3153	rcu_read_lock();
3154	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3155	if (!vpd_pg83) {
3156		rcu_read_unlock();
3157		return -ENXIO;
3158	}
3159
3160	/* The id string must be at least 20 bytes + terminating NULL byte */
3161	if (id_len < 21) {
3162		rcu_read_unlock();
3163		return -EINVAL;
3164	}
3165
3166	memset(id, 0, id_len);
3167	for (d = vpd_pg83->data + 4;
3168	     d < vpd_pg83->data + vpd_pg83->len;
3169	     d += d[3] + 4) {
3170		u8 prio = designator_prio(d);
3171
3172		if (prio == 0 || cur_id_prio > prio)
3173			continue;
3174
3175		switch (d[1] & 0xf) {
3176		case 0x1:
3177			/* T10 Vendor ID */
3178			if (cur_id_size > d[3])
3179				break;
3180			cur_id_prio = prio;
3181			cur_id_size = d[3];
3182			if (cur_id_size + 4 > id_len)
3183				cur_id_size = id_len - 4;
3184			cur_id_str = d + 4;
3185			id_size = snprintf(id, id_len, "t10.%*pE",
3186					   cur_id_size, cur_id_str);
3187			break;
3188		case 0x2:
3189			/* EUI-64 */
3190			cur_id_prio = prio;
3191			cur_id_size = d[3];
3192			cur_id_str = d + 4;
3193			switch (cur_id_size) {
3194			case 8:
3195				id_size = snprintf(id, id_len,
3196						   "eui.%8phN",
3197						   cur_id_str);
3198				break;
3199			case 12:
3200				id_size = snprintf(id, id_len,
3201						   "eui.%12phN",
3202						   cur_id_str);
3203				break;
3204			case 16:
3205				id_size = snprintf(id, id_len,
3206						   "eui.%16phN",
3207						   cur_id_str);
3208				break;
3209			default:
3210				break;
3211			}
3212			break;
3213		case 0x3:
3214			/* NAA */
3215			cur_id_prio = prio;
3216			cur_id_size = d[3];
3217			cur_id_str = d + 4;
3218			switch (cur_id_size) {
3219			case 8:
3220				id_size = snprintf(id, id_len,
3221						   "naa.%8phN",
3222						   cur_id_str);
3223				break;
3224			case 16:
3225				id_size = snprintf(id, id_len,
3226						   "naa.%16phN",
3227						   cur_id_str);
3228				break;
3229			default:
3230				break;
3231			}
3232			break;
3233		case 0x8:
3234			/* SCSI name string */
3235			if (cur_id_size > d[3])
3236				break;
3237			/* Prefer others for truncated descriptor */
3238			if (d[3] > id_len) {
3239				prio = 2;
3240				if (cur_id_prio > prio)
3241					break;
3242			}
3243			cur_id_prio = prio;
3244			cur_id_size = id_size = d[3];
3245			cur_id_str = d + 4;
3246			if (cur_id_size >= id_len)
3247				cur_id_size = id_len - 1;
3248			memcpy(id, cur_id_str, cur_id_size);
3249			break;
3250		default:
3251			break;
3252		}
3253	}
3254	rcu_read_unlock();
3255
3256	return id_size;
3257}
3258EXPORT_SYMBOL(scsi_vpd_lun_id);
3259
3260/*
3261 * scsi_vpd_tpg_id - return a target port group identifier
3262 * @sdev: SCSI device
3263 *
3264 * Returns the Target Port Group identifier from the information
3265 * froom VPD page 0x83 of the device.
3266 *
3267 * Returns the identifier or error on failure.
3268 */
3269int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3270{
3271	const unsigned char *d;
3272	const struct scsi_vpd *vpd_pg83;
3273	int group_id = -EAGAIN, rel_port = -1;
3274
3275	rcu_read_lock();
3276	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3277	if (!vpd_pg83) {
3278		rcu_read_unlock();
3279		return -ENXIO;
3280	}
3281
3282	d = vpd_pg83->data + 4;
3283	while (d < vpd_pg83->data + vpd_pg83->len) {
3284		switch (d[1] & 0xf) {
3285		case 0x4:
3286			/* Relative target port */
3287			rel_port = get_unaligned_be16(&d[6]);
3288			break;
3289		case 0x5:
3290			/* Target port group */
3291			group_id = get_unaligned_be16(&d[6]);
3292			break;
3293		default:
3294			break;
3295		}
3296		d += d[3] + 4;
3297	}
3298	rcu_read_unlock();
3299
3300	if (group_id >= 0 && rel_id && rel_port != -1)
3301		*rel_id = rel_port;
3302
3303	return group_id;
3304}
3305EXPORT_SYMBOL(scsi_vpd_tpg_id);
3306
3307/**
3308 * scsi_build_sense - build sense data for a command
3309 * @scmd:	scsi command for which the sense should be formatted
3310 * @desc:	Sense format (non-zero == descriptor format,
3311 *              0 == fixed format)
3312 * @key:	Sense key
3313 * @asc:	Additional sense code
3314 * @ascq:	Additional sense code qualifier
3315 *
3316 **/
3317void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3318{
3319	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3320	scmd->result = SAM_STAT_CHECK_CONDITION;
3321}
3322EXPORT_SYMBOL_GPL(scsi_build_sense);