Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 
 
 
 
 
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 
 
 
 
 
 
 805
 
 
 
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	int status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
1558		goto err_read_i2c_eeprom;
1559
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
1850	}
1851
1852	hw->phy.id = identifier;
1853
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
 
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
 
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
 
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
 
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2821	return status;
2822}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return IXGBE_ERR_SWFW_SYNC;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return IXGBE_ERR_I2C;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return IXGBE_ERR_SWFW_SYNC;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return IXGBE_ERR_I2C;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 
 265	u32 phy_addr;
 266	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = (hw->phy.nw_mng_if_sel &
 280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 282		if (ixgbe_probe_phy(hw, phy_addr))
 283			return 0;
 284		else
 285			return IXGBE_ERR_PHY_ADDR_INVALID;
 286	}
 287
 288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 289		if (ixgbe_probe_phy(hw, phy_addr)) {
 290			status = 0;
 291			break;
 292		}
 293	}
 294
 295	/* Certain media types do not have a phy so an address will not
 296	 * be found and the code will take this path.  Caller has to
 297	 * decide if it is an error or not.
 298	 */
 299	if (status)
 300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 301
 302	return status;
 303}
 304
 305/**
 306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 307 * @hw: pointer to the hardware structure
 308 *
 309 * This function checks the MMNGC.MNG_VETO bit to see if there are
 310 * any constraints on link from manageability.  For MAC's that don't
 311 * have this bit just return false since the link can not be blocked
 312 * via this method.
 313 **/
 314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 315{
 316	u32 mmngc;
 317
 318	/* If we don't have this bit, it can't be blocking */
 319	if (hw->mac.type == ixgbe_mac_82598EB)
 320		return false;
 321
 322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 324		hw_dbg(hw, "MNG_VETO bit detected.\n");
 325		return true;
 326	}
 327
 328	return false;
 329}
 330
 331/**
 332 *  ixgbe_get_phy_id - Get the phy type
 333 *  @hw: pointer to hardware structure
 334 *
 335 **/
 336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 337{
 338	s32 status;
 339	u16 phy_id_high = 0;
 340	u16 phy_id_low = 0;
 
 341
 342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 343				      &phy_id_high);
 344
 345	if (!status) {
 346		hw->phy.id = (u32)(phy_id_high << 16);
 347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 348					      &phy_id_low);
 349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 351	}
 352	return status;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_type_from_id - Get the phy type
 357 *  @phy_id: hardware phy id
 358 *
 359 **/
 360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 361{
 362	enum ixgbe_phy_type phy_type;
 363
 364	switch (phy_id) {
 365	case TN1010_PHY_ID:
 366		phy_type = ixgbe_phy_tn;
 367		break;
 368	case X550_PHY_ID2:
 369	case X550_PHY_ID3:
 370	case X540_PHY_ID:
 371		phy_type = ixgbe_phy_aq;
 372		break;
 373	case QT2022_PHY_ID:
 374		phy_type = ixgbe_phy_qt;
 375		break;
 376	case ATH_PHY_ID:
 377		phy_type = ixgbe_phy_nl;
 378		break;
 379	case X557_PHY_ID:
 380	case X557_PHY_ID2:
 381		phy_type = ixgbe_phy_x550em_ext_t;
 382		break;
 383	case BCM54616S_E_PHY_ID:
 384		phy_type = ixgbe_phy_ext_1g_t;
 385		break;
 386	default:
 387		phy_type = ixgbe_phy_unknown;
 388		break;
 389	}
 390
 391	return phy_type;
 392}
 393
 394/**
 395 *  ixgbe_reset_phy_generic - Performs a PHY reset
 396 *  @hw: pointer to hardware structure
 397 **/
 398s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 399{
 400	u32 i;
 401	u16 ctrl = 0;
 402	s32 status = 0;
 403
 404	if (hw->phy.type == ixgbe_phy_unknown)
 405		status = ixgbe_identify_phy_generic(hw);
 406
 407	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 408		return status;
 409
 410	/* Don't reset PHY if it's shut down due to overtemp. */
 411	if (!hw->phy.reset_if_overtemp &&
 412	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 413		return 0;
 414
 415	/* Blocked by MNG FW so bail */
 416	if (ixgbe_check_reset_blocked(hw))
 417		return 0;
 418
 419	/*
 420	 * Perform soft PHY reset to the PHY_XS.
 421	 * This will cause a soft reset to the PHY
 422	 */
 423	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 424			      MDIO_MMD_PHYXS,
 425			      MDIO_CTRL1_RESET);
 426
 427	/*
 428	 * Poll for reset bit to self-clear indicating reset is complete.
 429	 * Some PHYs could take up to 3 seconds to complete and need about
 430	 * 1.7 usec delay after the reset is complete.
 431	 */
 432	for (i = 0; i < 30; i++) {
 433		msleep(100);
 434		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 435			status = hw->phy.ops.read_reg(hw,
 436						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 437						  MDIO_MMD_PMAPMD, &ctrl);
 438			if (status)
 439				return status;
 440
 441			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 442				udelay(2);
 443				break;
 444			}
 445		} else {
 446			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 447						      MDIO_MMD_PHYXS, &ctrl);
 448			if (status)
 449				return status;
 450
 451			if (!(ctrl & MDIO_CTRL1_RESET)) {
 452				udelay(2);
 453				break;
 454			}
 455		}
 456	}
 457
 458	if (ctrl & MDIO_CTRL1_RESET) {
 459		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 460		return IXGBE_ERR_RESET_FAILED;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 *  ixgbe_read_phy_reg_mdi - read PHY register
 468 *  @hw: pointer to hardware structure
 469 *  @reg_addr: 32 bit address of PHY register to read
 470 *  @device_type: 5 bit device type
 471 *  @phy_data: Pointer to read data from PHY register
 472 *
 473 *  Reads a value from a specified PHY register without the SWFW lock
 474 **/
 475s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 476		       u16 *phy_data)
 477{
 478	u32 i, data, command;
 479
 480	/* Setup and write the address cycle command */
 481	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 482		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 483		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 484		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 485
 486	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 487
 488	/* Check every 10 usec to see if the address cycle completed.
 489	 * The MDI Command bit will clear when the operation is
 490	 * complete
 491	 */
 492	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 493		udelay(10);
 494
 495		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 496		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 497				break;
 498	}
 499
 500
 501	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 502		hw_dbg(hw, "PHY address command did not complete.\n");
 503		return IXGBE_ERR_PHY;
 504	}
 505
 506	/* Address cycle complete, setup and write the read
 507	 * command
 508	 */
 509	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 510		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 511		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 512		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 513
 514	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 515
 516	/* Check every 10 usec to see if the address cycle
 517	 * completed. The MDI Command bit will clear when the
 518	 * operation is complete
 519	 */
 520	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 521		udelay(10);
 522
 523		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 524		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 525			break;
 526	}
 527
 528	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 529		hw_dbg(hw, "PHY read command didn't complete\n");
 530		return IXGBE_ERR_PHY;
 531	}
 532
 533	/* Read operation is complete.  Get the data
 534	 * from MSRWD
 535	 */
 536	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 537	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 538	*phy_data = (u16)(data);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 545 *  using the SWFW lock - this function is needed in most cases
 546 *  @hw: pointer to hardware structure
 547 *  @reg_addr: 32 bit address of PHY register to read
 548 *  @device_type: 5 bit device type
 549 *  @phy_data: Pointer to read data from PHY register
 550 **/
 551s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 552			       u32 device_type, u16 *phy_data)
 553{
 554	s32 status;
 555	u32 gssr = hw->phy.phy_semaphore_mask;
 
 556
 557	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 558		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 559						phy_data);
 560		hw->mac.ops.release_swfw_sync(hw, gssr);
 561	} else {
 562		return IXGBE_ERR_SWFW_SYNC;
 563	}
 564
 565	return status;
 566}
 567
 568/**
 569 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 570 *  without SWFW lock
 571 *  @hw: pointer to hardware structure
 572 *  @reg_addr: 32 bit PHY register to write
 573 *  @device_type: 5 bit device type
 574 *  @phy_data: Data to write to the PHY register
 575 **/
 576s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 577				u32 device_type, u16 phy_data)
 578{
 579	u32 i, command;
 580
 581	/* Put the data in the MDI single read and write data register*/
 582	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 583
 584	/* Setup and write the address cycle command */
 585	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 586		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 587		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 588		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 589
 590	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 591
 592	/*
 593	 * Check every 10 usec to see if the address cycle completed.
 594	 * The MDI Command bit will clear when the operation is
 595	 * complete
 596	 */
 597	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 598		udelay(10);
 599
 600		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 601		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 602			break;
 603	}
 604
 605	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 606		hw_dbg(hw, "PHY address cmd didn't complete\n");
 607		return IXGBE_ERR_PHY;
 608	}
 609
 610	/*
 611	 * Address cycle complete, setup and write the write
 612	 * command
 613	 */
 614	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 615		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 616		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 617		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 618
 619	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 620
 621	/* Check every 10 usec to see if the address cycle
 622	 * completed. The MDI Command bit will clear when the
 623	 * operation is complete
 624	 */
 625	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 626		udelay(10);
 627
 628		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 629		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 630			break;
 631	}
 632
 633	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 634		hw_dbg(hw, "PHY write cmd didn't complete\n");
 635		return IXGBE_ERR_PHY;
 636	}
 637
 638	return 0;
 639}
 640
 641/**
 642 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 643 *  using SWFW lock- this function is needed in most cases
 644 *  @hw: pointer to hardware structure
 645 *  @reg_addr: 32 bit PHY register to write
 646 *  @device_type: 5 bit device type
 647 *  @phy_data: Data to write to the PHY register
 648 **/
 649s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 650				u32 device_type, u16 phy_data)
 651{
 652	s32 status;
 653	u32 gssr = hw->phy.phy_semaphore_mask;
 
 654
 655	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 656		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 657						 phy_data);
 658		hw->mac.ops.release_swfw_sync(hw, gssr);
 659	} else {
 660		return IXGBE_ERR_SWFW_SYNC;
 661	}
 662
 663	return status;
 664}
 665
 666#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 667
 668/**
 669 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 670 *  @hw: pointer to hardware structure
 671 *  @cmd: command register value to write
 672 **/
 673static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 674{
 675	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 676
 677	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 678				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 679				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 680}
 681
 682/**
 683 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
 684 *  @hw: pointer to hardware structure
 685 *  @addr: address
 686 *  @regnum: register number
 687 *  @gssr: semaphore flags to acquire
 688 **/
 689static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
 690				      int regnum, u32 gssr)
 691{
 692	u32 hwaddr, cmd;
 693	s32 data;
 694
 695	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 696		return -EBUSY;
 697
 698	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 699	if (regnum & MII_ADDR_C45) {
 700		hwaddr |= regnum & GENMASK(21, 0);
 701		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 702	} else {
 703		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 704		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 705			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 706	}
 707
 708	data = ixgbe_msca_cmd(hw, cmd);
 709	if (data < 0)
 710		goto mii_bus_read_done;
 711
 712	/* For a clause 45 access the address cycle just completed, we still
 713	 * need to do the read command, otherwise just get the data
 714	 */
 715	if (!(regnum & MII_ADDR_C45))
 716		goto do_mii_bus_read;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 719	data = ixgbe_msca_cmd(hw, cmd);
 720	if (data < 0)
 721		goto mii_bus_read_done;
 722
 723do_mii_bus_read:
 724	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 725	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 726
 727mii_bus_read_done:
 728	hw->mac.ops.release_swfw_sync(hw, gssr);
 729	return data;
 730}
 731
 732/**
 733 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734 *  @hw: pointer to hardware structure
 735 *  @addr: address
 
 736 *  @regnum: register number
 737 *  @val: value to write
 738 *  @gssr: semaphore flags to acquire
 739 **/
 740static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
 741				       int regnum, u16 val, u32 gssr)
 
 742{
 743	u32 hwaddr, cmd;
 744	s32 err;
 745
 746	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 747		return -EBUSY;
 748
 749	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 750
 751	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 752	if (regnum & MII_ADDR_C45) {
 753		hwaddr |= regnum & GENMASK(21, 0);
 754		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 755	} else {
 756		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 757		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 758			IXGBE_MSCA_MDI_COMMAND;
 759	}
 760
 761	/* For clause 45 this is an address cycle, for clause 22 this is the
 762	 * entire transaction
 763	 */
 764	err = ixgbe_msca_cmd(hw, cmd);
 765	if (err < 0 || !(regnum & MII_ADDR_C45))
 766		goto mii_bus_write_done;
 767
 768	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 769	err = ixgbe_msca_cmd(hw, cmd);
 770
 771mii_bus_write_done:
 772	hw->mac.ops.release_swfw_sync(hw, gssr);
 773	return err;
 774}
 775
 776/**
 777 *  ixgbe_mii_bus_read - Read a clause 22/45 register
 778 *  @bus: pointer to mii_bus structure which points to our driver private
 779 *  @addr: address
 780 *  @regnum: register number
 781 **/
 782static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
 783{
 784	struct ixgbe_adapter *adapter = bus->priv;
 785	struct ixgbe_hw *hw = &adapter->hw;
 786	u32 gssr = hw->phy.phy_semaphore_mask;
 787
 788	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 789}
 790
 791/**
 792 *  ixgbe_mii_bus_write - Write a clause 22/45 register
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793 *  @bus: pointer to mii_bus structure which points to our driver private
 794 *  @addr: address
 795 *  @regnum: register number
 796 *  @val: value to write
 797 **/
 798static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
 799			       u16 val)
 800{
 801	struct ixgbe_adapter *adapter = bus->priv;
 802	struct ixgbe_hw *hw = &adapter->hw;
 803	u32 gssr = hw->phy.phy_semaphore_mask;
 804
 805	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 806}
 807
 808/**
 809 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
 810 *  @bus: pointer to mii_bus structure which points to our driver private
 811 *  @addr: address
 
 812 *  @regnum: register number
 
 813 **/
 814static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
 815				       int regnum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816{
 817	struct ixgbe_adapter *adapter = bus->priv;
 818	struct ixgbe_hw *hw = &adapter->hw;
 819	u32 gssr = hw->phy.phy_semaphore_mask;
 820
 821	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 822	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 823}
 824
 825/**
 826 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
 827 *  @bus: pointer to mii_bus structure which points to our driver private
 828 *  @addr: address
 829 *  @regnum: register number
 830 *  @val: value to write
 831 **/
 832static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
 833					int regnum, u16 val)
 834{
 835	struct ixgbe_adapter *adapter = bus->priv;
 836	struct ixgbe_hw *hw = &adapter->hw;
 837	u32 gssr = hw->phy.phy_semaphore_mask;
 838
 839	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 840	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841}
 842
 843/**
 844 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 845 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 846 *
 847 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 848 * on domain 0, bus 0, devfn = 'devfn'
 849 **/
 850static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 851{
 852	struct pci_dev *rp_pdev;
 853	int bus;
 854
 855	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 856	if (rp_pdev && rp_pdev->subordinate) {
 857		bus = rp_pdev->subordinate->number;
 858		pci_dev_put(rp_pdev);
 859		return pci_get_domain_bus_and_slot(0, bus, 0);
 860	}
 861
 862	pci_dev_put(rp_pdev);
 863	return NULL;
 864}
 865
 866/**
 867 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 868 * @hw: pointer to hardware structure
 869 *
 870 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 871 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 872 * but we only want to register one MDIO bus.
 873 **/
 874static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 875{
 876	struct ixgbe_adapter *adapter = hw->back;
 877	struct pci_dev *pdev = adapter->pdev;
 878	struct pci_dev *func0_pdev;
 879	bool has_mii = false;
 880
 881	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 882	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 883	 * It's not valid for function 0 to be disabled and function 1 is up,
 884	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
 885	 * of those two root ports
 886	 */
 887	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
 888	if (func0_pdev) {
 889		if (func0_pdev == pdev)
 890			has_mii = true;
 891		goto out;
 892	}
 893	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
 894	if (func0_pdev == pdev)
 895		has_mii = true;
 896
 897out:
 898	pci_dev_put(func0_pdev);
 899	return has_mii;
 900}
 901
 902/**
 903 * ixgbe_mii_bus_init - mii_bus structure setup
 904 * @hw: pointer to hardware structure
 905 *
 906 * Returns 0 on success, negative on failure
 907 *
 908 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
 909 **/
 910s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
 911{
 912	s32 (*write)(struct mii_bus *bus, int addr, int regnum, u16 val);
 913	s32 (*read)(struct mii_bus *bus, int addr, int regnum);
 
 
 
 914	struct ixgbe_adapter *adapter = hw->back;
 915	struct pci_dev *pdev = adapter->pdev;
 916	struct device *dev = &adapter->netdev->dev;
 917	struct mii_bus *bus;
 918
 919	switch (hw->device_id) {
 920	/* C3000 SoCs */
 921	case IXGBE_DEV_ID_X550EM_A_KR:
 922	case IXGBE_DEV_ID_X550EM_A_KR_L:
 923	case IXGBE_DEV_ID_X550EM_A_SFP_N:
 924	case IXGBE_DEV_ID_X550EM_A_SGMII:
 925	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
 926	case IXGBE_DEV_ID_X550EM_A_10G_T:
 927	case IXGBE_DEV_ID_X550EM_A_SFP:
 928	case IXGBE_DEV_ID_X550EM_A_1G_T:
 929	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 930		if (!ixgbe_x550em_a_has_mii(hw))
 931			return 0;
 932		read = &ixgbe_x550em_a_mii_bus_read;
 933		write = &ixgbe_x550em_a_mii_bus_write;
 
 
 934		break;
 935	default:
 936		read = &ixgbe_mii_bus_read;
 937		write = &ixgbe_mii_bus_write;
 
 
 938		break;
 939	}
 940
 941	bus = devm_mdiobus_alloc(dev);
 942	if (!bus)
 943		return -ENOMEM;
 944
 945	bus->read = read;
 946	bus->write = write;
 
 
 947
 948	/* Use the position of the device in the PCI hierarchy as the id */
 949	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
 950		 pci_name(pdev));
 951
 952	bus->name = "ixgbe-mdio";
 953	bus->priv = adapter;
 954	bus->parent = dev;
 955	bus->phy_mask = GENMASK(31, 0);
 956
 957	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
 958	 * unfortunately that causes some clause 22 frames to be sent with
 959	 * clause 45 addressing.  We don't want that.
 960	 */
 961	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
 962
 963	adapter->mii_bus = bus;
 964	return mdiobus_register(bus);
 965}
 966
 967/**
 968 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 969 *  @hw: pointer to hardware structure
 970 *
 971 *  Restart autonegotiation and PHY and waits for completion.
 972 **/
 973s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 974{
 975	s32 status = 0;
 976	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 977	bool autoneg = false;
 978	ixgbe_link_speed speed;
 979
 980	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 981
 982	/* Set or unset auto-negotiation 10G advertisement */
 983	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 984
 985	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 986	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 987	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 988		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 989
 990	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 991
 992	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 993			     MDIO_MMD_AN, &autoneg_reg);
 994
 995	if (hw->mac.type == ixgbe_mac_X550) {
 996		/* Set or unset auto-negotiation 5G advertisement */
 997		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 998		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 999		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1000			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1001
1002		/* Set or unset auto-negotiation 2.5G advertisement */
1003		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1004		if ((hw->phy.autoneg_advertised &
1005		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1006		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1007			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1008	}
1009
1010	/* Set or unset auto-negotiation 1G advertisement */
1011	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1012	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1013	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1014		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1015
1016	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1017			      MDIO_MMD_AN, autoneg_reg);
1018
1019	/* Set or unset auto-negotiation 100M advertisement */
1020	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1021
1022	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1023	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1024	    (speed & IXGBE_LINK_SPEED_100_FULL))
1025		autoneg_reg |= ADVERTISE_100FULL;
1026
1027	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1028
1029	/* Blocked by MNG FW so don't reset PHY */
1030	if (ixgbe_check_reset_blocked(hw))
1031		return 0;
1032
1033	/* Restart PHY autonegotiation and wait for completion */
1034	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1035			     MDIO_MMD_AN, &autoneg_reg);
1036
1037	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1038
1039	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1040			      MDIO_MMD_AN, autoneg_reg);
1041
1042	return status;
1043}
1044
1045/**
1046 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1047 *  @hw: pointer to hardware structure
1048 *  @speed: new link speed
1049 *  @autoneg_wait_to_complete: unused
1050 **/
1051s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1052				       ixgbe_link_speed speed,
1053				       bool autoneg_wait_to_complete)
1054{
1055	/* Clear autoneg_advertised and set new values based on input link
1056	 * speed.
1057	 */
1058	hw->phy.autoneg_advertised = 0;
1059
1060	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1061		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1062
1063	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1064		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1065
1066	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1067		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1068
1069	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1070		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1071
1072	if (speed & IXGBE_LINK_SPEED_100_FULL)
1073		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1074
1075	if (speed & IXGBE_LINK_SPEED_10_FULL)
1076		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1077
1078	/* Setup link based on the new speed settings */
1079	if (hw->phy.ops.setup_link)
1080		hw->phy.ops.setup_link(hw);
1081
1082	return 0;
1083}
1084
1085/**
1086 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1087 * @hw: pointer to hardware structure
1088 *
1089 * Determines the supported link capabilities by reading the PHY auto
1090 * negotiation register.
1091 */
1092static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1093{
1094	u16 speed_ability;
1095	s32 status;
1096
1097	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1098				      &speed_ability);
1099	if (status)
1100		return status;
1101
1102	if (speed_ability & MDIO_SPEED_10G)
1103		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1104	if (speed_ability & MDIO_PMA_SPEED_1000)
1105		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1106	if (speed_ability & MDIO_PMA_SPEED_100)
1107		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1108
1109	switch (hw->mac.type) {
1110	case ixgbe_mac_X550:
1111		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1112		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1113		break;
1114	case ixgbe_mac_X550EM_x:
1115	case ixgbe_mac_x550em_a:
1116		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1117		break;
1118	default:
1119		break;
1120	}
1121
1122	return 0;
1123}
1124
1125/**
1126 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1127 * @hw: pointer to hardware structure
1128 * @speed: pointer to link speed
1129 * @autoneg: boolean auto-negotiation value
1130 */
1131s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1132					       ixgbe_link_speed *speed,
1133					       bool *autoneg)
1134{
1135	s32 status = 0;
1136
1137	*autoneg = true;
1138	if (!hw->phy.speeds_supported)
1139		status = ixgbe_get_copper_speeds_supported(hw);
1140
1141	*speed = hw->phy.speeds_supported;
1142	return status;
1143}
1144
1145/**
1146 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1147 *  @hw: pointer to hardware structure
1148 *  @speed: link speed
1149 *  @link_up: status of link
1150 *
1151 *  Reads the VS1 register to determine if link is up and the current speed for
1152 *  the PHY.
1153 **/
1154s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1155			     bool *link_up)
1156{
1157	s32 status;
1158	u32 time_out;
1159	u32 max_time_out = 10;
 
1160	u16 phy_link = 0;
1161	u16 phy_speed = 0;
1162	u16 phy_data = 0;
 
 
1163
1164	/* Initialize speed and link to default case */
1165	*link_up = false;
1166	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1167
1168	/*
1169	 * Check current speed and link status of the PHY register.
1170	 * This is a vendor specific register and may have to
1171	 * be changed for other copper PHYs.
1172	 */
1173	for (time_out = 0; time_out < max_time_out; time_out++) {
1174		udelay(10);
1175		status = hw->phy.ops.read_reg(hw,
1176					      MDIO_STAT1,
1177					      MDIO_MMD_VEND1,
1178					      &phy_data);
1179		phy_link = phy_data &
1180			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1181		phy_speed = phy_data &
1182			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1183		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1184			*link_up = true;
1185			if (phy_speed ==
1186			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1187				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1188			break;
1189		}
1190	}
1191
1192	return status;
1193}
1194
1195/**
1196 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1197 *	@hw: pointer to hardware structure
1198 *
1199 *	Restart autonegotiation and PHY and waits for completion.
1200 *      This function always returns success, this is nessary since
1201 *	it is called via a function pointer that could call other
1202 *	functions that could return an error.
1203 **/
1204s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1205{
1206	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1207	bool autoneg = false;
1208	ixgbe_link_speed speed;
1209
1210	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1211
1212	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1213		/* Set or unset auto-negotiation 10G advertisement */
1214		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1215				     MDIO_MMD_AN,
1216				     &autoneg_reg);
1217
1218		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1219		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1220			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1221
1222		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1223				      MDIO_MMD_AN,
1224				      autoneg_reg);
1225	}
1226
1227	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1228		/* Set or unset auto-negotiation 1G advertisement */
1229		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1230				     MDIO_MMD_AN,
1231				     &autoneg_reg);
1232
1233		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1234		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1235			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1236
1237		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1238				      MDIO_MMD_AN,
1239				      autoneg_reg);
1240	}
1241
1242	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1243		/* Set or unset auto-negotiation 100M advertisement */
1244		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1245				     MDIO_MMD_AN,
1246				     &autoneg_reg);
1247
1248		autoneg_reg &= ~(ADVERTISE_100FULL |
1249				 ADVERTISE_100HALF);
1250		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1251			autoneg_reg |= ADVERTISE_100FULL;
1252
1253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1254				      MDIO_MMD_AN,
1255				      autoneg_reg);
1256	}
1257
1258	/* Blocked by MNG FW so don't reset PHY */
1259	if (ixgbe_check_reset_blocked(hw))
1260		return 0;
1261
1262	/* Restart PHY autonegotiation and wait for completion */
1263	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1264			     MDIO_MMD_AN, &autoneg_reg);
1265
1266	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1267
1268	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1269			      MDIO_MMD_AN, autoneg_reg);
1270	return 0;
1271}
1272
1273/**
1274 *  ixgbe_reset_phy_nl - Performs a PHY reset
1275 *  @hw: pointer to hardware structure
1276 **/
1277s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1278{
1279	u16 phy_offset, control, eword, edata, block_crc;
 
1280	bool end_data = false;
1281	u16 list_offset, data_offset;
1282	u16 phy_data = 0;
1283	s32 ret_val;
1284	u32 i;
1285
1286	/* Blocked by MNG FW so bail */
1287	if (ixgbe_check_reset_blocked(hw))
1288		return 0;
1289
1290	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1291
1292	/* reset the PHY and poll for completion */
1293	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1294			      (phy_data | MDIO_CTRL1_RESET));
1295
1296	for (i = 0; i < 100; i++) {
1297		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1298				     &phy_data);
1299		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1300			break;
1301		usleep_range(10000, 20000);
1302	}
1303
1304	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1305		hw_dbg(hw, "PHY reset did not complete.\n");
1306		return IXGBE_ERR_PHY;
1307	}
1308
1309	/* Get init offsets */
1310	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1311						      &data_offset);
1312	if (ret_val)
1313		return ret_val;
1314
1315	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1316	data_offset++;
1317	while (!end_data) {
1318		/*
1319		 * Read control word from PHY init contents offset
1320		 */
1321		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1322		if (ret_val)
1323			goto err_eeprom;
1324		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1325			   IXGBE_CONTROL_SHIFT_NL;
1326		edata = eword & IXGBE_DATA_MASK_NL;
1327		switch (control) {
1328		case IXGBE_DELAY_NL:
1329			data_offset++;
1330			hw_dbg(hw, "DELAY: %d MS\n", edata);
1331			usleep_range(edata * 1000, edata * 2000);
1332			break;
1333		case IXGBE_DATA_NL:
1334			hw_dbg(hw, "DATA:\n");
1335			data_offset++;
1336			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1337						      &phy_offset);
1338			if (ret_val)
1339				goto err_eeprom;
1340			for (i = 0; i < edata; i++) {
1341				ret_val = hw->eeprom.ops.read(hw, data_offset,
1342							      &eword);
1343				if (ret_val)
1344					goto err_eeprom;
1345				hw->phy.ops.write_reg(hw, phy_offset,
1346						      MDIO_MMD_PMAPMD, eword);
1347				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1348				       phy_offset);
1349				data_offset++;
1350				phy_offset++;
1351			}
1352			break;
1353		case IXGBE_CONTROL_NL:
1354			data_offset++;
1355			hw_dbg(hw, "CONTROL:\n");
1356			if (edata == IXGBE_CONTROL_EOL_NL) {
1357				hw_dbg(hw, "EOL\n");
1358				end_data = true;
1359			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1360				hw_dbg(hw, "SOL\n");
1361			} else {
1362				hw_dbg(hw, "Bad control value\n");
1363				return IXGBE_ERR_PHY;
1364			}
1365			break;
1366		default:
1367			hw_dbg(hw, "Bad control type\n");
1368			return IXGBE_ERR_PHY;
1369		}
1370	}
1371
1372	return ret_val;
1373
1374err_eeprom:
1375	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1376	return IXGBE_ERR_PHY;
1377}
1378
1379/**
1380 *  ixgbe_identify_module_generic - Identifies module type
1381 *  @hw: pointer to hardware structure
1382 *
1383 *  Determines HW type and calls appropriate function.
1384 **/
1385s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1386{
1387	switch (hw->mac.ops.get_media_type(hw)) {
1388	case ixgbe_media_type_fiber:
1389		return ixgbe_identify_sfp_module_generic(hw);
1390	case ixgbe_media_type_fiber_qsfp:
1391		return ixgbe_identify_qsfp_module_generic(hw);
1392	default:
1393		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1394		return IXGBE_ERR_SFP_NOT_PRESENT;
1395	}
1396
1397	return IXGBE_ERR_SFP_NOT_PRESENT;
1398}
1399
1400/**
1401 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1402 *  @hw: pointer to hardware structure
1403 *
1404 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1405 **/
1406s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1407{
 
1408	struct ixgbe_adapter *adapter = hw->back;
1409	s32 status;
 
 
 
 
1410	u32 vendor_oui = 0;
1411	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1412	u8 identifier = 0;
1413	u8 comp_codes_1g = 0;
1414	u8 comp_codes_10g = 0;
1415	u8 oui_bytes[3] = {0, 0, 0};
1416	u8 cable_tech = 0;
1417	u8 cable_spec = 0;
1418	u16 enforce_sfp = 0;
1419
1420	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1421		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1422		return IXGBE_ERR_SFP_NOT_PRESENT;
1423	}
1424
1425	/* LAN ID is needed for sfp_type determination */
1426	hw->mac.ops.set_lan_id(hw);
1427
1428	status = hw->phy.ops.read_i2c_eeprom(hw,
1429					     IXGBE_SFF_IDENTIFIER,
1430					     &identifier);
1431
1432	if (status)
1433		goto err_read_i2c_eeprom;
1434
1435	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1436		hw->phy.type = ixgbe_phy_sfp_unsupported;
1437		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1438	}
1439	status = hw->phy.ops.read_i2c_eeprom(hw,
1440					     IXGBE_SFF_1GBE_COMP_CODES,
1441					     &comp_codes_1g);
1442
1443	if (status)
1444		goto err_read_i2c_eeprom;
1445
1446	status = hw->phy.ops.read_i2c_eeprom(hw,
1447					     IXGBE_SFF_10GBE_COMP_CODES,
1448					     &comp_codes_10g);
1449
1450	if (status)
1451		goto err_read_i2c_eeprom;
1452	status = hw->phy.ops.read_i2c_eeprom(hw,
1453					     IXGBE_SFF_CABLE_TECHNOLOGY,
1454					     &cable_tech);
 
 
1455
 
 
 
1456	if (status)
1457		goto err_read_i2c_eeprom;
1458
1459	 /* ID Module
1460	  * =========
1461	  * 0   SFP_DA_CU
1462	  * 1   SFP_SR
1463	  * 2   SFP_LR
1464	  * 3   SFP_DA_CORE0 - 82599-specific
1465	  * 4   SFP_DA_CORE1 - 82599-specific
1466	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1467	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1468	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1469	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1470	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1471	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1472	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1473	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1474	  */
1475	if (hw->mac.type == ixgbe_mac_82598EB) {
1476		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1477			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1478		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1479			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1480		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1481			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1482		else
1483			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1484	} else {
1485		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1486			if (hw->bus.lan_id == 0)
1487				hw->phy.sfp_type =
1488					     ixgbe_sfp_type_da_cu_core0;
1489			else
1490				hw->phy.sfp_type =
1491					     ixgbe_sfp_type_da_cu_core1;
1492		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1493			hw->phy.ops.read_i2c_eeprom(
1494					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1495					&cable_spec);
1496			if (cable_spec &
1497			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1498				if (hw->bus.lan_id == 0)
1499					hw->phy.sfp_type =
1500					ixgbe_sfp_type_da_act_lmt_core0;
1501				else
1502					hw->phy.sfp_type =
1503					ixgbe_sfp_type_da_act_lmt_core1;
1504			} else {
1505				hw->phy.sfp_type =
1506						ixgbe_sfp_type_unknown;
1507			}
1508		} else if (comp_codes_10g &
1509			   (IXGBE_SFF_10GBASESR_CAPABLE |
1510			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1511			if (hw->bus.lan_id == 0)
1512				hw->phy.sfp_type =
1513					      ixgbe_sfp_type_srlr_core0;
1514			else
1515				hw->phy.sfp_type =
1516					      ixgbe_sfp_type_srlr_core1;
1517		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1518			if (hw->bus.lan_id == 0)
1519				hw->phy.sfp_type =
1520					ixgbe_sfp_type_1g_cu_core0;
1521			else
1522				hw->phy.sfp_type =
1523					ixgbe_sfp_type_1g_cu_core1;
1524		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1525			if (hw->bus.lan_id == 0)
1526				hw->phy.sfp_type =
1527					ixgbe_sfp_type_1g_sx_core0;
1528			else
1529				hw->phy.sfp_type =
1530					ixgbe_sfp_type_1g_sx_core1;
1531		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1532			if (hw->bus.lan_id == 0)
1533				hw->phy.sfp_type =
1534					ixgbe_sfp_type_1g_lx_core0;
1535			else
1536				hw->phy.sfp_type =
1537					ixgbe_sfp_type_1g_lx_core1;
 
 
 
 
 
 
 
 
 
 
 
 
1538		} else {
1539			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1540		}
1541	}
1542
1543	if (hw->phy.sfp_type != stored_sfp_type)
1544		hw->phy.sfp_setup_needed = true;
1545
1546	/* Determine if the SFP+ PHY is dual speed or not. */
1547	hw->phy.multispeed_fiber = false;
1548	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1549	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1550	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1551	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1552		hw->phy.multispeed_fiber = true;
1553
1554	/* Determine PHY vendor */
1555	if (hw->phy.type != ixgbe_phy_nl) {
1556		hw->phy.id = identifier;
1557		status = hw->phy.ops.read_i2c_eeprom(hw,
1558					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1559					    &oui_bytes[0]);
1560
1561		if (status != 0)
1562			goto err_read_i2c_eeprom;
1563
1564		status = hw->phy.ops.read_i2c_eeprom(hw,
1565					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1566					    &oui_bytes[1]);
1567
1568		if (status != 0)
1569			goto err_read_i2c_eeprom;
1570
1571		status = hw->phy.ops.read_i2c_eeprom(hw,
1572					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1573					    &oui_bytes[2]);
1574
1575		if (status != 0)
1576			goto err_read_i2c_eeprom;
1577
1578		vendor_oui =
1579		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1580		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1581		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1582
1583		switch (vendor_oui) {
1584		case IXGBE_SFF_VENDOR_OUI_TYCO:
1585			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1586				hw->phy.type =
1587					    ixgbe_phy_sfp_passive_tyco;
1588			break;
1589		case IXGBE_SFF_VENDOR_OUI_FTL:
1590			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1591				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1592			else
1593				hw->phy.type = ixgbe_phy_sfp_ftl;
1594			break;
1595		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1596			hw->phy.type = ixgbe_phy_sfp_avago;
1597			break;
1598		case IXGBE_SFF_VENDOR_OUI_INTEL:
1599			hw->phy.type = ixgbe_phy_sfp_intel;
1600			break;
1601		default:
1602			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1603				hw->phy.type =
1604					 ixgbe_phy_sfp_passive_unknown;
1605			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1606				hw->phy.type =
1607					ixgbe_phy_sfp_active_unknown;
1608			else
1609				hw->phy.type = ixgbe_phy_sfp_unknown;
1610			break;
1611		}
1612	}
1613
1614	/* Allow any DA cable vendor */
1615	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1616	    IXGBE_SFF_DA_ACTIVE_CABLE))
1617		return 0;
1618
1619	/* Verify supported 1G SFP modules */
1620	if (comp_codes_10g == 0 &&
1621	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1622	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1623	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1624	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1625	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1626	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1627		hw->phy.type = ixgbe_phy_sfp_unsupported;
1628		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1629	}
1630
1631	/* Anything else 82598-based is supported */
1632	if (hw->mac.type == ixgbe_mac_82598EB)
1633		return 0;
1634
1635	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1636	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1637	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1638	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1639	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1640	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1641	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1642	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1643		/* Make sure we're a supported PHY type */
1644		if (hw->phy.type == ixgbe_phy_sfp_intel)
1645			return 0;
1646		if (hw->allow_unsupported_sfp) {
1647			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1648			return 0;
1649		}
1650		hw_dbg(hw, "SFP+ module not supported\n");
1651		hw->phy.type = ixgbe_phy_sfp_unsupported;
1652		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1653	}
1654	return 0;
1655
1656err_read_i2c_eeprom:
1657	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1658	if (hw->phy.type != ixgbe_phy_nl) {
1659		hw->phy.id = 0;
1660		hw->phy.type = ixgbe_phy_unknown;
1661	}
1662	return IXGBE_ERR_SFP_NOT_PRESENT;
1663}
1664
1665/**
1666 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1667 * @hw: pointer to hardware structure
1668 *
1669 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1670 **/
1671static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1672{
1673	struct ixgbe_adapter *adapter = hw->back;
1674	s32 status;
1675	u32 vendor_oui = 0;
1676	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1677	u8 identifier = 0;
1678	u8 comp_codes_1g = 0;
1679	u8 comp_codes_10g = 0;
1680	u8 oui_bytes[3] = {0, 0, 0};
1681	u16 enforce_sfp = 0;
1682	u8 connector = 0;
1683	u8 cable_length = 0;
1684	u8 device_tech = 0;
1685	bool active_cable = false;
1686
1687	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1688		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1689		return IXGBE_ERR_SFP_NOT_PRESENT;
1690	}
1691
1692	/* LAN ID is needed for sfp_type determination */
1693	hw->mac.ops.set_lan_id(hw);
1694
1695	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1696					     &identifier);
1697
1698	if (status != 0)
1699		goto err_read_i2c_eeprom;
1700
1701	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1702		hw->phy.type = ixgbe_phy_sfp_unsupported;
1703		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1704	}
1705
1706	hw->phy.id = identifier;
1707
1708	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1709					     &comp_codes_10g);
1710
1711	if (status != 0)
1712		goto err_read_i2c_eeprom;
1713
1714	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1715					     &comp_codes_1g);
1716
1717	if (status != 0)
1718		goto err_read_i2c_eeprom;
1719
1720	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1721		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1722		if (hw->bus.lan_id == 0)
1723			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1724		else
1725			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1726	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1727				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1728		if (hw->bus.lan_id == 0)
1729			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1730		else
1731			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1732	} else {
1733		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1734			active_cable = true;
1735
1736		if (!active_cable) {
1737			/* check for active DA cables that pre-date
1738			 * SFF-8436 v3.6
1739			 */
1740			hw->phy.ops.read_i2c_eeprom(hw,
1741					IXGBE_SFF_QSFP_CONNECTOR,
1742					&connector);
1743
1744			hw->phy.ops.read_i2c_eeprom(hw,
1745					IXGBE_SFF_QSFP_CABLE_LENGTH,
1746					&cable_length);
1747
1748			hw->phy.ops.read_i2c_eeprom(hw,
1749					IXGBE_SFF_QSFP_DEVICE_TECH,
1750					&device_tech);
1751
1752			if ((connector ==
1753				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1754			    (cable_length > 0) &&
1755			    ((device_tech >> 4) ==
1756				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1757				active_cable = true;
1758		}
1759
1760		if (active_cable) {
1761			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1762			if (hw->bus.lan_id == 0)
1763				hw->phy.sfp_type =
1764						ixgbe_sfp_type_da_act_lmt_core0;
1765			else
1766				hw->phy.sfp_type =
1767						ixgbe_sfp_type_da_act_lmt_core1;
1768		} else {
1769			/* unsupported module type */
1770			hw->phy.type = ixgbe_phy_sfp_unsupported;
1771			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1772		}
1773	}
1774
1775	if (hw->phy.sfp_type != stored_sfp_type)
1776		hw->phy.sfp_setup_needed = true;
1777
1778	/* Determine if the QSFP+ PHY is dual speed or not. */
1779	hw->phy.multispeed_fiber = false;
1780	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1781	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1782	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1783	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1784		hw->phy.multispeed_fiber = true;
1785
1786	/* Determine PHY vendor for optical modules */
1787	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1788			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1789		status = hw->phy.ops.read_i2c_eeprom(hw,
1790					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1791					&oui_bytes[0]);
1792
1793		if (status != 0)
1794			goto err_read_i2c_eeprom;
1795
1796		status = hw->phy.ops.read_i2c_eeprom(hw,
1797					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1798					&oui_bytes[1]);
1799
1800		if (status != 0)
1801			goto err_read_i2c_eeprom;
1802
1803		status = hw->phy.ops.read_i2c_eeprom(hw,
1804					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1805					&oui_bytes[2]);
1806
1807		if (status != 0)
1808			goto err_read_i2c_eeprom;
1809
1810		vendor_oui =
1811			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1812			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1813			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1814
1815		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1816			hw->phy.type = ixgbe_phy_qsfp_intel;
1817		else
1818			hw->phy.type = ixgbe_phy_qsfp_unknown;
1819
1820		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1821		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1822			/* Make sure we're a supported PHY type */
1823			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1824				return 0;
1825			if (hw->allow_unsupported_sfp) {
1826				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1827				return 0;
1828			}
1829			hw_dbg(hw, "QSFP module not supported\n");
1830			hw->phy.type = ixgbe_phy_sfp_unsupported;
1831			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1832		}
1833		return 0;
1834	}
1835	return 0;
1836
1837err_read_i2c_eeprom:
1838	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1839	hw->phy.id = 0;
1840	hw->phy.type = ixgbe_phy_unknown;
1841
1842	return IXGBE_ERR_SFP_NOT_PRESENT;
1843}
1844
1845/**
1846 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1847 *  @hw: pointer to hardware structure
1848 *  @list_offset: offset to the SFP ID list
1849 *  @data_offset: offset to the SFP data block
1850 *
1851 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1852 *  so it returns the offsets to the phy init sequence block.
1853 **/
1854s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1855					u16 *list_offset,
1856					u16 *data_offset)
1857{
1858	u16 sfp_id;
1859	u16 sfp_type = hw->phy.sfp_type;
1860
1861	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1862		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1863
1864	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1865		return IXGBE_ERR_SFP_NOT_PRESENT;
1866
1867	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1868	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1869		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1870
1871	/*
1872	 * Limiting active cables and 1G Phys must be initialized as
1873	 * SR modules
1874	 */
1875	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1876	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1877	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1878	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
 
1879		sfp_type = ixgbe_sfp_type_srlr_core0;
1880	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1881		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1882		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1883		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
 
1884		sfp_type = ixgbe_sfp_type_srlr_core1;
1885
1886	/* Read offset to PHY init contents */
1887	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1888		hw_err(hw, "eeprom read at %d failed\n",
1889		       IXGBE_PHY_INIT_OFFSET_NL);
1890		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1891	}
1892
1893	if ((!*list_offset) || (*list_offset == 0xFFFF))
1894		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1895
1896	/* Shift offset to first ID word */
1897	(*list_offset)++;
1898
1899	/*
1900	 * Find the matching SFP ID in the EEPROM
1901	 * and program the init sequence
1902	 */
1903	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1904		goto err_phy;
1905
1906	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1907		if (sfp_id == sfp_type) {
1908			(*list_offset)++;
1909			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1910				goto err_phy;
1911			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1912				hw_dbg(hw, "SFP+ module not supported\n");
1913				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1914			} else {
1915				break;
1916			}
1917		} else {
1918			(*list_offset) += 2;
1919			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1920				goto err_phy;
1921		}
1922	}
1923
1924	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1925		hw_dbg(hw, "No matching SFP+ module found\n");
1926		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1927	}
1928
1929	return 0;
1930
1931err_phy:
1932	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1933	return IXGBE_ERR_PHY;
1934}
1935
1936/**
1937 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1938 *  @hw: pointer to hardware structure
1939 *  @byte_offset: EEPROM byte offset to read
1940 *  @eeprom_data: value read
1941 *
1942 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1943 **/
1944s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1945				  u8 *eeprom_data)
1946{
1947	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1948					 IXGBE_I2C_EEPROM_DEV_ADDR,
1949					 eeprom_data);
1950}
1951
1952/**
1953 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1954 *  @hw: pointer to hardware structure
1955 *  @byte_offset: byte offset at address 0xA2
1956 *  @sff8472_data: value read
1957 *
1958 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1959 **/
1960s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1961				   u8 *sff8472_data)
1962{
1963	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1964					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1965					 sff8472_data);
1966}
1967
1968/**
1969 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1970 *  @hw: pointer to hardware structure
1971 *  @byte_offset: EEPROM byte offset to write
1972 *  @eeprom_data: value to write
1973 *
1974 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1975 **/
1976s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1977				   u8 eeprom_data)
1978{
1979	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1980					  IXGBE_I2C_EEPROM_DEV_ADDR,
1981					  eeprom_data);
1982}
1983
1984/**
1985 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1986 * @hw: pointer to hardware structure
1987 * @offset: eeprom offset to be read
1988 * @addr: I2C address to be read
1989 */
1990static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1991{
1992	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1993	    offset == IXGBE_SFF_IDENTIFIER &&
1994	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1995		return true;
1996	return false;
1997}
1998
1999/**
2000 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2001 *  @hw: pointer to hardware structure
2002 *  @byte_offset: byte offset to read
2003 *  @dev_addr: device address
2004 *  @data: value read
2005 *  @lock: true if to take and release semaphore
2006 *
2007 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2008 *  a specified device address.
2009 */
2010static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2011					   u8 dev_addr, u8 *data, bool lock)
2012{
2013	s32 status;
2014	u32 max_retry = 10;
 
2015	u32 retry = 0;
2016	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2017	bool nack = true;
2018
2019	if (hw->mac.type >= ixgbe_mac_X550)
2020		max_retry = 3;
2021	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2022		max_retry = IXGBE_SFP_DETECT_RETRIES;
2023
2024	*data = 0;
2025
2026	do {
2027		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2028			return IXGBE_ERR_SWFW_SYNC;
2029
2030		ixgbe_i2c_start(hw);
2031
2032		/* Device Address and write indication */
2033		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2034		if (status != 0)
2035			goto fail;
2036
2037		status = ixgbe_get_i2c_ack(hw);
2038		if (status != 0)
2039			goto fail;
2040
2041		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2042		if (status != 0)
2043			goto fail;
2044
2045		status = ixgbe_get_i2c_ack(hw);
2046		if (status != 0)
2047			goto fail;
2048
2049		ixgbe_i2c_start(hw);
2050
2051		/* Device Address and read indication */
2052		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2053		if (status != 0)
2054			goto fail;
2055
2056		status = ixgbe_get_i2c_ack(hw);
2057		if (status != 0)
2058			goto fail;
2059
2060		status = ixgbe_clock_in_i2c_byte(hw, data);
2061		if (status != 0)
2062			goto fail;
2063
2064		status = ixgbe_clock_out_i2c_bit(hw, nack);
2065		if (status != 0)
2066			goto fail;
2067
2068		ixgbe_i2c_stop(hw);
2069		if (lock)
2070			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2071		return 0;
2072
2073fail:
2074		ixgbe_i2c_bus_clear(hw);
2075		if (lock) {
2076			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2077			msleep(100);
2078		}
2079		retry++;
2080		if (retry < max_retry)
2081			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2082		else
2083			hw_dbg(hw, "I2C byte read error.\n");
2084
2085	} while (retry < max_retry);
2086
2087	return status;
2088}
2089
2090/**
2091 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2092 *  @hw: pointer to hardware structure
2093 *  @byte_offset: byte offset to read
2094 *  @dev_addr: device address
2095 *  @data: value read
2096 *
2097 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2098 *  a specified device address.
2099 */
2100s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2101				u8 dev_addr, u8 *data)
2102{
2103	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2104					       data, true);
2105}
2106
2107/**
2108 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2109 *  @hw: pointer to hardware structure
2110 *  @byte_offset: byte offset to read
2111 *  @dev_addr: device address
2112 *  @data: value read
2113 *
2114 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2115 *  a specified device address.
2116 */
2117s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2118					 u8 dev_addr, u8 *data)
2119{
2120	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2121					       data, false);
2122}
2123
2124/**
2125 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2126 *  @hw: pointer to hardware structure
2127 *  @byte_offset: byte offset to write
2128 *  @dev_addr: device address
2129 *  @data: value to write
2130 *  @lock: true if to take and release semaphore
2131 *
2132 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2133 *  a specified device address.
2134 */
2135static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2136					    u8 dev_addr, u8 data, bool lock)
2137{
2138	s32 status;
2139	u32 max_retry = 1;
2140	u32 retry = 0;
2141	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2142
2143	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2144		return IXGBE_ERR_SWFW_SYNC;
2145
2146	do {
2147		ixgbe_i2c_start(hw);
2148
2149		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2150		if (status != 0)
2151			goto fail;
2152
2153		status = ixgbe_get_i2c_ack(hw);
2154		if (status != 0)
2155			goto fail;
2156
2157		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2158		if (status != 0)
2159			goto fail;
2160
2161		status = ixgbe_get_i2c_ack(hw);
2162		if (status != 0)
2163			goto fail;
2164
2165		status = ixgbe_clock_out_i2c_byte(hw, data);
2166		if (status != 0)
2167			goto fail;
2168
2169		status = ixgbe_get_i2c_ack(hw);
2170		if (status != 0)
2171			goto fail;
2172
2173		ixgbe_i2c_stop(hw);
2174		if (lock)
2175			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2176		return 0;
2177
2178fail:
2179		ixgbe_i2c_bus_clear(hw);
2180		retry++;
2181		if (retry < max_retry)
2182			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2183		else
2184			hw_dbg(hw, "I2C byte write error.\n");
2185	} while (retry < max_retry);
2186
2187	if (lock)
2188		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2189
2190	return status;
2191}
2192
2193/**
2194 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2195 *  @hw: pointer to hardware structure
2196 *  @byte_offset: byte offset to write
2197 *  @dev_addr: device address
2198 *  @data: value to write
2199 *
2200 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2201 *  a specified device address.
2202 */
2203s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2204				 u8 dev_addr, u8 data)
2205{
2206	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2207						data, true);
2208}
2209
2210/**
2211 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2212 *  @hw: pointer to hardware structure
2213 *  @byte_offset: byte offset to write
2214 *  @dev_addr: device address
2215 *  @data: value to write
2216 *
2217 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2218 *  a specified device address.
2219 */
2220s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2221					  u8 dev_addr, u8 data)
2222{
2223	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2224						data, false);
2225}
2226
2227/**
2228 *  ixgbe_i2c_start - Sets I2C start condition
2229 *  @hw: pointer to hardware structure
2230 *
2231 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2232 *  Set bit-bang mode on X550 hardware.
2233 **/
2234static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2235{
2236	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2237
2238	i2cctl |= IXGBE_I2C_BB_EN(hw);
2239
2240	/* Start condition must begin with data and clock high */
2241	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2242	ixgbe_raise_i2c_clk(hw, &i2cctl);
2243
2244	/* Setup time for start condition (4.7us) */
2245	udelay(IXGBE_I2C_T_SU_STA);
2246
2247	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2248
2249	/* Hold time for start condition (4us) */
2250	udelay(IXGBE_I2C_T_HD_STA);
2251
2252	ixgbe_lower_i2c_clk(hw, &i2cctl);
2253
2254	/* Minimum low period of clock is 4.7 us */
2255	udelay(IXGBE_I2C_T_LOW);
2256
2257}
2258
2259/**
2260 *  ixgbe_i2c_stop - Sets I2C stop condition
2261 *  @hw: pointer to hardware structure
2262 *
2263 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2264 *  Disables bit-bang mode and negates data output enable on X550
2265 *  hardware.
2266 **/
2267static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2268{
2269	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2270	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2271	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2272	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2273
2274	/* Stop condition must begin with data low and clock high */
2275	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2276	ixgbe_raise_i2c_clk(hw, &i2cctl);
2277
2278	/* Setup time for stop condition (4us) */
2279	udelay(IXGBE_I2C_T_SU_STO);
2280
2281	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2282
2283	/* bus free time between stop and start (4.7us)*/
2284	udelay(IXGBE_I2C_T_BUF);
2285
2286	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2287		i2cctl &= ~bb_en_bit;
2288		i2cctl |= data_oe_bit | clk_oe_bit;
2289		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2290		IXGBE_WRITE_FLUSH(hw);
2291	}
2292}
2293
2294/**
2295 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2296 *  @hw: pointer to hardware structure
2297 *  @data: data byte to clock in
2298 *
2299 *  Clocks in one byte data via I2C data/clock
2300 **/
2301static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2302{
2303	s32 i;
2304	bool bit = false;
 
2305
2306	*data = 0;
2307	for (i = 7; i >= 0; i--) {
2308		ixgbe_clock_in_i2c_bit(hw, &bit);
2309		*data |= bit << i;
2310	}
2311
2312	return 0;
2313}
2314
2315/**
2316 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2317 *  @hw: pointer to hardware structure
2318 *  @data: data byte clocked out
2319 *
2320 *  Clocks out one byte data via I2C data/clock
2321 **/
2322static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2323{
2324	s32 status;
2325	s32 i;
2326	u32 i2cctl;
2327	bool bit = false;
2328
2329	for (i = 7; i >= 0; i--) {
2330		bit = (data >> i) & 0x1;
2331		status = ixgbe_clock_out_i2c_bit(hw, bit);
2332
2333		if (status != 0)
2334			break;
2335	}
2336
2337	/* Release SDA line (set high) */
2338	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2339	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2340	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2341	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2342	IXGBE_WRITE_FLUSH(hw);
2343
2344	return status;
2345}
2346
2347/**
2348 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2349 *  @hw: pointer to hardware structure
2350 *
2351 *  Clocks in/out one bit via I2C data/clock
2352 **/
2353static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2354{
 
2355	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2356	s32 status = 0;
2357	u32 i = 0;
2358	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2359	u32 timeout = 10;
2360	bool ack = true;
 
 
2361
2362	if (data_oe_bit) {
2363		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2364		i2cctl |= data_oe_bit;
2365		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2366		IXGBE_WRITE_FLUSH(hw);
2367	}
2368	ixgbe_raise_i2c_clk(hw, &i2cctl);
2369
2370	/* Minimum high period of clock is 4us */
2371	udelay(IXGBE_I2C_T_HIGH);
2372
2373	/* Poll for ACK.  Note that ACK in I2C spec is
2374	 * transition from 1 to 0 */
2375	for (i = 0; i < timeout; i++) {
2376		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2377		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2378
2379		udelay(1);
2380		if (ack == 0)
2381			break;
2382	}
2383
2384	if (ack == 1) {
2385		hw_dbg(hw, "I2C ack was not received.\n");
2386		status = IXGBE_ERR_I2C;
2387	}
2388
2389	ixgbe_lower_i2c_clk(hw, &i2cctl);
2390
2391	/* Minimum low period of clock is 4.7 us */
2392	udelay(IXGBE_I2C_T_LOW);
2393
2394	return status;
2395}
2396
2397/**
2398 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2399 *  @hw: pointer to hardware structure
2400 *  @data: read data value
2401 *
2402 *  Clocks in one bit via I2C data/clock
2403 **/
2404static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2405{
2406	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2407	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2408
2409	if (data_oe_bit) {
2410		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2411		i2cctl |= data_oe_bit;
2412		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2413		IXGBE_WRITE_FLUSH(hw);
2414	}
2415	ixgbe_raise_i2c_clk(hw, &i2cctl);
2416
2417	/* Minimum high period of clock is 4us */
2418	udelay(IXGBE_I2C_T_HIGH);
2419
2420	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2421	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2422
2423	ixgbe_lower_i2c_clk(hw, &i2cctl);
2424
2425	/* Minimum low period of clock is 4.7 us */
2426	udelay(IXGBE_I2C_T_LOW);
2427
2428	return 0;
2429}
2430
2431/**
2432 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2433 *  @hw: pointer to hardware structure
2434 *  @data: data value to write
2435 *
2436 *  Clocks out one bit via I2C data/clock
2437 **/
2438static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2439{
2440	s32 status;
2441	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
 
2442
2443	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2444	if (status == 0) {
2445		ixgbe_raise_i2c_clk(hw, &i2cctl);
2446
2447		/* Minimum high period of clock is 4us */
2448		udelay(IXGBE_I2C_T_HIGH);
2449
2450		ixgbe_lower_i2c_clk(hw, &i2cctl);
2451
2452		/* Minimum low period of clock is 4.7 us.
2453		 * This also takes care of the data hold time.
2454		 */
2455		udelay(IXGBE_I2C_T_LOW);
2456	} else {
2457		hw_dbg(hw, "I2C data was not set to %X\n", data);
2458		return IXGBE_ERR_I2C;
2459	}
2460
2461	return 0;
2462}
2463/**
2464 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2465 *  @hw: pointer to hardware structure
2466 *  @i2cctl: Current value of I2CCTL register
2467 *
2468 *  Raises the I2C clock line '0'->'1'
2469 *  Negates the I2C clock output enable on X550 hardware.
2470 **/
2471static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2472{
2473	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2474	u32 i = 0;
2475	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2476	u32 i2cctl_r = 0;
2477
2478	if (clk_oe_bit) {
2479		*i2cctl |= clk_oe_bit;
2480		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2481	}
2482
2483	for (i = 0; i < timeout; i++) {
2484		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2485		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2486		IXGBE_WRITE_FLUSH(hw);
2487		/* SCL rise time (1000ns) */
2488		udelay(IXGBE_I2C_T_RISE);
2489
2490		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2491		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2492			break;
2493	}
2494}
2495
2496/**
2497 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2498 *  @hw: pointer to hardware structure
2499 *  @i2cctl: Current value of I2CCTL register
2500 *
2501 *  Lowers the I2C clock line '1'->'0'
2502 *  Asserts the I2C clock output enable on X550 hardware.
2503 **/
2504static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2505{
2506
2507	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2508	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2509
2510	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2511	IXGBE_WRITE_FLUSH(hw);
2512
2513	/* SCL fall time (300ns) */
2514	udelay(IXGBE_I2C_T_FALL);
2515}
2516
2517/**
2518 *  ixgbe_set_i2c_data - Sets the I2C data bit
2519 *  @hw: pointer to hardware structure
2520 *  @i2cctl: Current value of I2CCTL register
2521 *  @data: I2C data value (0 or 1) to set
2522 *
2523 *  Sets the I2C data bit
2524 *  Asserts the I2C data output enable on X550 hardware.
2525 **/
2526static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2527{
2528	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2529
2530	if (data)
2531		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2532	else
2533		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2534	*i2cctl &= ~data_oe_bit;
2535
2536	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2537	IXGBE_WRITE_FLUSH(hw);
2538
2539	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2540	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2541
2542	if (!data)	/* Can't verify data in this case */
2543		return 0;
2544	if (data_oe_bit) {
2545		*i2cctl |= data_oe_bit;
2546		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2547		IXGBE_WRITE_FLUSH(hw);
2548	}
2549
2550	/* Verify data was set correctly */
2551	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2552	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2553		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2554		return IXGBE_ERR_I2C;
2555	}
2556
2557	return 0;
2558}
2559
2560/**
2561 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2562 *  @hw: pointer to hardware structure
2563 *  @i2cctl: Current value of I2CCTL register
2564 *
2565 *  Returns the I2C data bit value
2566 *  Negates the I2C data output enable on X550 hardware.
2567 **/
2568static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2569{
2570	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2571
2572	if (data_oe_bit) {
2573		*i2cctl |= data_oe_bit;
2574		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2575		IXGBE_WRITE_FLUSH(hw);
2576		udelay(IXGBE_I2C_T_FALL);
2577	}
2578
2579	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2580		return true;
2581	return false;
2582}
2583
2584/**
2585 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2586 *  @hw: pointer to hardware structure
2587 *
2588 *  Clears the I2C bus by sending nine clock pulses.
2589 *  Used when data line is stuck low.
2590 **/
2591static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2592{
2593	u32 i2cctl;
2594	u32 i;
2595
2596	ixgbe_i2c_start(hw);
2597	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2598
2599	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2600
2601	for (i = 0; i < 9; i++) {
2602		ixgbe_raise_i2c_clk(hw, &i2cctl);
2603
2604		/* Min high period of clock is 4us */
2605		udelay(IXGBE_I2C_T_HIGH);
2606
2607		ixgbe_lower_i2c_clk(hw, &i2cctl);
2608
2609		/* Min low period of clock is 4.7us*/
2610		udelay(IXGBE_I2C_T_LOW);
2611	}
2612
2613	ixgbe_i2c_start(hw);
2614
2615	/* Put the i2c bus back to default state */
2616	ixgbe_i2c_stop(hw);
2617}
2618
2619/**
2620 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2621 *  @hw: pointer to hardware structure
2622 *
2623 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2624 **/
2625s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2626{
2627	u16 phy_data = 0;
 
2628
2629	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2630		return 0;
2631
2632	/* Check that the LASI temp alarm status was triggered */
2633	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2634			     MDIO_MMD_PMAPMD, &phy_data);
2635
2636	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2637		return 0;
2638
2639	return IXGBE_ERR_OVERTEMP;
2640}
2641
2642/** ixgbe_set_copper_phy_power - Control power for copper phy
2643 *  @hw: pointer to hardware structure
2644 *  @on: true for on, false for off
2645 **/
2646s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2647{
2648	u32 status;
2649	u16 reg;
2650
2651	/* Bail if we don't have copper phy */
2652	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2653		return 0;
2654
2655	if (!on && ixgbe_mng_present(hw))
2656		return 0;
2657
2658	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2659	if (status)
2660		return status;
2661
2662	if (on) {
2663		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2664	} else {
2665		if (ixgbe_check_reset_blocked(hw))
2666			return 0;
2667		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2668	}
2669
2670	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2671	return status;
2672}