Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
   6
   7#define ICE_ETH_DA_OFFSET		0
   8#define ICE_ETH_ETHTYPE_OFFSET		12
   9#define ICE_ETH_VLAN_TCI_OFFSET		14
  10#define ICE_MAX_VLAN_ID			0xFFF
  11#define ICE_IPV6_ETHER_ID		0x86DD
  12
  13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  14 * struct to configure any switch filter rules.
  15 * {DA (6 bytes), SA(6 bytes),
  16 * Ether type (2 bytes for header without VLAN tag) OR
  17 * VLAN tag (4 bytes for header with VLAN tag) }
  18 *
  19 * Word on Hardcoded values
  20 * byte 0 = 0x2: to identify it as locally administered DA MAC
  21 * byte 6 = 0x2: to identify it as locally administered SA MAC
  22 * byte 12 = 0x81 & byte 13 = 0x00:
  23 *      In case of VLAN filter first two bytes defines ether type (0x8100)
  24 *      and remaining two bytes are placeholder for programming a given VLAN ID
  25 *      In case of Ether type filter it is treated as header without VLAN tag
  26 *      and byte 12 and 13 is used to program a given Ether type instead
  27 */
 
  28static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  29							0x2, 0, 0, 0, 0, 0,
  30							0x81, 0, 0, 0};
  31
  32enum {
  33	ICE_PKT_OUTER_IPV6	= BIT(0),
  34	ICE_PKT_TUN_GTPC	= BIT(1),
  35	ICE_PKT_TUN_GTPU	= BIT(2),
  36	ICE_PKT_TUN_NVGRE	= BIT(3),
  37	ICE_PKT_TUN_UDP		= BIT(4),
  38	ICE_PKT_INNER_IPV6	= BIT(5),
  39	ICE_PKT_INNER_TCP	= BIT(6),
  40	ICE_PKT_INNER_UDP	= BIT(7),
  41	ICE_PKT_GTP_NOPAY	= BIT(8),
  42	ICE_PKT_KMALLOC		= BIT(9),
  43	ICE_PKT_PPPOE		= BIT(10),
  44	ICE_PKT_L2TPV3		= BIT(11),
  45};
  46
  47struct ice_dummy_pkt_offsets {
  48	enum ice_protocol_type type;
  49	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  50};
  51
  52struct ice_dummy_pkt_profile {
  53	const struct ice_dummy_pkt_offsets *offsets;
  54	const u8 *pkt;
  55	u32 match;
  56	u16 pkt_len;
  57	u16 offsets_len;
  58};
  59
  60#define ICE_DECLARE_PKT_OFFSETS(type)					\
  61	static const struct ice_dummy_pkt_offsets			\
  62	ice_dummy_##type##_packet_offsets[]
  63
  64#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  65	static const u8 ice_dummy_##type##_packet[]
  66
  67#define ICE_PKT_PROFILE(type, m) {					\
  68	.match		= (m),						\
  69	.pkt		= ice_dummy_##type##_packet,			\
  70	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  71	.offsets	= ice_dummy_##type##_packet_offsets,		\
  72	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  73}
  74
  75ICE_DECLARE_PKT_OFFSETS(vlan) = {
  76	{ ICE_VLAN_OFOS,        12 },
  77};
  78
  79ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  80	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  81};
  82
  83ICE_DECLARE_PKT_OFFSETS(qinq) = {
  84	{ ICE_VLAN_EX,          12 },
  85	{ ICE_VLAN_IN,          16 },
  86};
  87
  88ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  89	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  90	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  91};
  92
  93ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  94	{ ICE_MAC_OFOS,		0 },
  95	{ ICE_ETYPE_OL,		12 },
  96	{ ICE_IPV4_OFOS,	14 },
  97	{ ICE_NVGRE,		34 },
  98	{ ICE_MAC_IL,		42 },
  99	{ ICE_ETYPE_IL,		54 },
 100	{ ICE_IPV4_IL,		56 },
 101	{ ICE_TCP_IL,		76 },
 102	{ ICE_PROTOCOL_LAST,	0 },
 103};
 104
 105ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 106	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 107	0x00, 0x00, 0x00, 0x00,
 108	0x00, 0x00, 0x00, 0x00,
 109
 110	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 111
 112	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 113	0x00, 0x00, 0x00, 0x00,
 114	0x00, 0x2F, 0x00, 0x00,
 115	0x00, 0x00, 0x00, 0x00,
 116	0x00, 0x00, 0x00, 0x00,
 117
 118	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 119	0x00, 0x00, 0x00, 0x00,
 120
 121	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 122	0x00, 0x00, 0x00, 0x00,
 123	0x00, 0x00, 0x00, 0x00,
 124
 125	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 126
 127	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 128	0x00, 0x00, 0x00, 0x00,
 129	0x00, 0x06, 0x00, 0x00,
 130	0x00, 0x00, 0x00, 0x00,
 131	0x00, 0x00, 0x00, 0x00,
 132
 133	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 134	0x00, 0x00, 0x00, 0x00,
 135	0x00, 0x00, 0x00, 0x00,
 136	0x50, 0x02, 0x20, 0x00,
 137	0x00, 0x00, 0x00, 0x00
 138};
 139
 140ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 141	{ ICE_MAC_OFOS,		0 },
 142	{ ICE_ETYPE_OL,		12 },
 143	{ ICE_IPV4_OFOS,	14 },
 144	{ ICE_NVGRE,		34 },
 145	{ ICE_MAC_IL,		42 },
 146	{ ICE_ETYPE_IL,		54 },
 147	{ ICE_IPV4_IL,		56 },
 148	{ ICE_UDP_ILOS,		76 },
 149	{ ICE_PROTOCOL_LAST,	0 },
 150};
 151
 152ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 153	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 154	0x00, 0x00, 0x00, 0x00,
 155	0x00, 0x00, 0x00, 0x00,
 156
 157	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 158
 159	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 160	0x00, 0x00, 0x00, 0x00,
 161	0x00, 0x2F, 0x00, 0x00,
 162	0x00, 0x00, 0x00, 0x00,
 163	0x00, 0x00, 0x00, 0x00,
 164
 165	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 166	0x00, 0x00, 0x00, 0x00,
 167
 168	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 169	0x00, 0x00, 0x00, 0x00,
 170	0x00, 0x00, 0x00, 0x00,
 171
 172	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 173
 174	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 175	0x00, 0x00, 0x00, 0x00,
 176	0x00, 0x11, 0x00, 0x00,
 177	0x00, 0x00, 0x00, 0x00,
 178	0x00, 0x00, 0x00, 0x00,
 179
 180	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 181	0x00, 0x08, 0x00, 0x00,
 182};
 183
 184ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 185	{ ICE_MAC_OFOS,		0 },
 186	{ ICE_ETYPE_OL,		12 },
 187	{ ICE_IPV4_OFOS,	14 },
 188	{ ICE_UDP_OF,		34 },
 189	{ ICE_VXLAN,		42 },
 190	{ ICE_GENEVE,		42 },
 191	{ ICE_VXLAN_GPE,	42 },
 192	{ ICE_MAC_IL,		50 },
 193	{ ICE_ETYPE_IL,		62 },
 194	{ ICE_IPV4_IL,		64 },
 195	{ ICE_TCP_IL,		84 },
 196	{ ICE_PROTOCOL_LAST,	0 },
 197};
 198
 199ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 200	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 201	0x00, 0x00, 0x00, 0x00,
 202	0x00, 0x00, 0x00, 0x00,
 203
 204	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 205
 206	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 207	0x00, 0x01, 0x00, 0x00,
 208	0x40, 0x11, 0x00, 0x00,
 209	0x00, 0x00, 0x00, 0x00,
 210	0x00, 0x00, 0x00, 0x00,
 211
 212	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 213	0x00, 0x46, 0x00, 0x00,
 214
 215	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 216	0x00, 0x00, 0x00, 0x00,
 217
 218	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 219	0x00, 0x00, 0x00, 0x00,
 220	0x00, 0x00, 0x00, 0x00,
 221
 222	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 223
 224	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 225	0x00, 0x01, 0x00, 0x00,
 226	0x40, 0x06, 0x00, 0x00,
 227	0x00, 0x00, 0x00, 0x00,
 228	0x00, 0x00, 0x00, 0x00,
 229
 230	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 231	0x00, 0x00, 0x00, 0x00,
 232	0x00, 0x00, 0x00, 0x00,
 233	0x50, 0x02, 0x20, 0x00,
 234	0x00, 0x00, 0x00, 0x00
 235};
 236
 237ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 238	{ ICE_MAC_OFOS,		0 },
 239	{ ICE_ETYPE_OL,		12 },
 240	{ ICE_IPV4_OFOS,	14 },
 241	{ ICE_UDP_OF,		34 },
 242	{ ICE_VXLAN,		42 },
 243	{ ICE_GENEVE,		42 },
 244	{ ICE_VXLAN_GPE,	42 },
 245	{ ICE_MAC_IL,		50 },
 246	{ ICE_ETYPE_IL,		62 },
 247	{ ICE_IPV4_IL,		64 },
 248	{ ICE_UDP_ILOS,		84 },
 249	{ ICE_PROTOCOL_LAST,	0 },
 250};
 251
 252ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 253	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 254	0x00, 0x00, 0x00, 0x00,
 255	0x00, 0x00, 0x00, 0x00,
 256
 257	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 258
 259	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 260	0x00, 0x01, 0x00, 0x00,
 261	0x00, 0x11, 0x00, 0x00,
 262	0x00, 0x00, 0x00, 0x00,
 263	0x00, 0x00, 0x00, 0x00,
 264
 265	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 266	0x00, 0x3a, 0x00, 0x00,
 267
 268	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 269	0x00, 0x00, 0x00, 0x00,
 270
 271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 272	0x00, 0x00, 0x00, 0x00,
 273	0x00, 0x00, 0x00, 0x00,
 274
 275	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 276
 277	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 278	0x00, 0x01, 0x00, 0x00,
 279	0x00, 0x11, 0x00, 0x00,
 280	0x00, 0x00, 0x00, 0x00,
 281	0x00, 0x00, 0x00, 0x00,
 282
 283	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 284	0x00, 0x08, 0x00, 0x00,
 285};
 286
 287ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 288	{ ICE_MAC_OFOS,		0 },
 289	{ ICE_ETYPE_OL,		12 },
 290	{ ICE_IPV4_OFOS,	14 },
 291	{ ICE_NVGRE,		34 },
 292	{ ICE_MAC_IL,		42 },
 293	{ ICE_ETYPE_IL,		54 },
 294	{ ICE_IPV6_IL,		56 },
 295	{ ICE_TCP_IL,		96 },
 296	{ ICE_PROTOCOL_LAST,	0 },
 297};
 298
 299ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 300	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 301	0x00, 0x00, 0x00, 0x00,
 302	0x00, 0x00, 0x00, 0x00,
 303
 304	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 305
 306	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 307	0x00, 0x00, 0x00, 0x00,
 308	0x00, 0x2F, 0x00, 0x00,
 309	0x00, 0x00, 0x00, 0x00,
 310	0x00, 0x00, 0x00, 0x00,
 311
 312	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 313	0x00, 0x00, 0x00, 0x00,
 314
 315	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 316	0x00, 0x00, 0x00, 0x00,
 317	0x00, 0x00, 0x00, 0x00,
 318
 319	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 320
 321	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 322	0x00, 0x08, 0x06, 0x40,
 323	0x00, 0x00, 0x00, 0x00,
 324	0x00, 0x00, 0x00, 0x00,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331
 332	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 333	0x00, 0x00, 0x00, 0x00,
 334	0x00, 0x00, 0x00, 0x00,
 335	0x50, 0x02, 0x20, 0x00,
 336	0x00, 0x00, 0x00, 0x00
 337};
 338
 339ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 340	{ ICE_MAC_OFOS,		0 },
 341	{ ICE_ETYPE_OL,		12 },
 342	{ ICE_IPV4_OFOS,	14 },
 343	{ ICE_NVGRE,		34 },
 344	{ ICE_MAC_IL,		42 },
 345	{ ICE_ETYPE_IL,		54 },
 346	{ ICE_IPV6_IL,		56 },
 347	{ ICE_UDP_ILOS,		96 },
 348	{ ICE_PROTOCOL_LAST,	0 },
 349};
 350
 351ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 352	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 353	0x00, 0x00, 0x00, 0x00,
 354	0x00, 0x00, 0x00, 0x00,
 355
 356	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 357
 358	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 359	0x00, 0x00, 0x00, 0x00,
 360	0x00, 0x2F, 0x00, 0x00,
 361	0x00, 0x00, 0x00, 0x00,
 362	0x00, 0x00, 0x00, 0x00,
 363
 364	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 365	0x00, 0x00, 0x00, 0x00,
 366
 367	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 368	0x00, 0x00, 0x00, 0x00,
 369	0x00, 0x00, 0x00, 0x00,
 370
 371	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 372
 373	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 374	0x00, 0x08, 0x11, 0x40,
 375	0x00, 0x00, 0x00, 0x00,
 376	0x00, 0x00, 0x00, 0x00,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383
 384	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 385	0x00, 0x08, 0x00, 0x00,
 386};
 387
 388ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 389	{ ICE_MAC_OFOS,		0 },
 390	{ ICE_ETYPE_OL,		12 },
 391	{ ICE_IPV4_OFOS,	14 },
 392	{ ICE_UDP_OF,		34 },
 393	{ ICE_VXLAN,		42 },
 394	{ ICE_GENEVE,		42 },
 395	{ ICE_VXLAN_GPE,	42 },
 396	{ ICE_MAC_IL,		50 },
 397	{ ICE_ETYPE_IL,		62 },
 398	{ ICE_IPV6_IL,		64 },
 399	{ ICE_TCP_IL,		104 },
 400	{ ICE_PROTOCOL_LAST,	0 },
 401};
 402
 403ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 404	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 405	0x00, 0x00, 0x00, 0x00,
 406	0x00, 0x00, 0x00, 0x00,
 407
 408	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 409
 410	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 411	0x00, 0x01, 0x00, 0x00,
 412	0x40, 0x11, 0x00, 0x00,
 413	0x00, 0x00, 0x00, 0x00,
 414	0x00, 0x00, 0x00, 0x00,
 415
 416	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 417	0x00, 0x5a, 0x00, 0x00,
 418
 419	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 420	0x00, 0x00, 0x00, 0x00,
 421
 422	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 423	0x00, 0x00, 0x00, 0x00,
 424	0x00, 0x00, 0x00, 0x00,
 425
 426	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 427
 428	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 429	0x00, 0x08, 0x06, 0x40,
 430	0x00, 0x00, 0x00, 0x00,
 431	0x00, 0x00, 0x00, 0x00,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438
 439	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 440	0x00, 0x00, 0x00, 0x00,
 441	0x00, 0x00, 0x00, 0x00,
 442	0x50, 0x02, 0x20, 0x00,
 443	0x00, 0x00, 0x00, 0x00
 444};
 445
 446ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 447	{ ICE_MAC_OFOS,		0 },
 448	{ ICE_ETYPE_OL,		12 },
 449	{ ICE_IPV4_OFOS,	14 },
 450	{ ICE_UDP_OF,		34 },
 451	{ ICE_VXLAN,		42 },
 452	{ ICE_GENEVE,		42 },
 453	{ ICE_VXLAN_GPE,	42 },
 454	{ ICE_MAC_IL,		50 },
 455	{ ICE_ETYPE_IL,		62 },
 456	{ ICE_IPV6_IL,		64 },
 457	{ ICE_UDP_ILOS,		104 },
 458	{ ICE_PROTOCOL_LAST,	0 },
 459};
 460
 461ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 462	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 463	0x00, 0x00, 0x00, 0x00,
 464	0x00, 0x00, 0x00, 0x00,
 465
 466	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 467
 468	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 469	0x00, 0x01, 0x00, 0x00,
 470	0x00, 0x11, 0x00, 0x00,
 471	0x00, 0x00, 0x00, 0x00,
 472	0x00, 0x00, 0x00, 0x00,
 473
 474	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 475	0x00, 0x4e, 0x00, 0x00,
 476
 477	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 478	0x00, 0x00, 0x00, 0x00,
 479
 480	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 481	0x00, 0x00, 0x00, 0x00,
 482	0x00, 0x00, 0x00, 0x00,
 483
 484	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 485
 486	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 487	0x00, 0x08, 0x11, 0x40,
 488	0x00, 0x00, 0x00, 0x00,
 489	0x00, 0x00, 0x00, 0x00,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496
 497	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 498	0x00, 0x08, 0x00, 0x00,
 499};
 500
 501/* offset info for MAC + IPv4 + UDP dummy packet */
 502ICE_DECLARE_PKT_OFFSETS(udp) = {
 503	{ ICE_MAC_OFOS,		0 },
 504	{ ICE_ETYPE_OL,		12 },
 505	{ ICE_IPV4_OFOS,	14 },
 506	{ ICE_UDP_ILOS,		34 },
 507	{ ICE_PROTOCOL_LAST,	0 },
 508};
 509
 510/* Dummy packet for MAC + IPv4 + UDP */
 511ICE_DECLARE_PKT_TEMPLATE(udp) = {
 512	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 513	0x00, 0x00, 0x00, 0x00,
 514	0x00, 0x00, 0x00, 0x00,
 515
 516	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 517
 518	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 519	0x00, 0x01, 0x00, 0x00,
 520	0x00, 0x11, 0x00, 0x00,
 521	0x00, 0x00, 0x00, 0x00,
 522	0x00, 0x00, 0x00, 0x00,
 523
 524	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 525	0x00, 0x08, 0x00, 0x00,
 526
 527	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 528};
 529
 530/* offset info for MAC + IPv4 + TCP dummy packet */
 531ICE_DECLARE_PKT_OFFSETS(tcp) = {
 532	{ ICE_MAC_OFOS,		0 },
 533	{ ICE_ETYPE_OL,		12 },
 534	{ ICE_IPV4_OFOS,	14 },
 535	{ ICE_TCP_IL,		34 },
 536	{ ICE_PROTOCOL_LAST,	0 },
 537};
 538
 539/* Dummy packet for MAC + IPv4 + TCP */
 540ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 541	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 542	0x00, 0x00, 0x00, 0x00,
 543	0x00, 0x00, 0x00, 0x00,
 544
 545	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 546
 547	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 548	0x00, 0x01, 0x00, 0x00,
 549	0x00, 0x06, 0x00, 0x00,
 550	0x00, 0x00, 0x00, 0x00,
 551	0x00, 0x00, 0x00, 0x00,
 552
 553	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 554	0x00, 0x00, 0x00, 0x00,
 555	0x00, 0x00, 0x00, 0x00,
 556	0x50, 0x00, 0x00, 0x00,
 557	0x00, 0x00, 0x00, 0x00,
 558
 559	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 560};
 561
 562ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 563	{ ICE_MAC_OFOS,		0 },
 564	{ ICE_ETYPE_OL,		12 },
 565	{ ICE_IPV6_OFOS,	14 },
 566	{ ICE_TCP_IL,		54 },
 567	{ ICE_PROTOCOL_LAST,	0 },
 568};
 569
 570ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 571	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 572	0x00, 0x00, 0x00, 0x00,
 573	0x00, 0x00, 0x00, 0x00,
 574
 575	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 576
 577	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 578	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 579	0x00, 0x00, 0x00, 0x00,
 580	0x00, 0x00, 0x00, 0x00,
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587
 588	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 589	0x00, 0x00, 0x00, 0x00,
 590	0x00, 0x00, 0x00, 0x00,
 591	0x50, 0x00, 0x00, 0x00,
 592	0x00, 0x00, 0x00, 0x00,
 593
 594	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 595};
 596
 597/* IPv6 + UDP */
 598ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 599	{ ICE_MAC_OFOS,		0 },
 600	{ ICE_ETYPE_OL,		12 },
 601	{ ICE_IPV6_OFOS,	14 },
 602	{ ICE_UDP_ILOS,		54 },
 603	{ ICE_PROTOCOL_LAST,	0 },
 604};
 605
 606/* IPv6 + UDP dummy packet */
 607ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 608	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 609	0x00, 0x00, 0x00, 0x00,
 610	0x00, 0x00, 0x00, 0x00,
 611
 612	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 613
 614	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 615	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 616	0x00, 0x00, 0x00, 0x00,
 617	0x00, 0x00, 0x00, 0x00,
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624
 625	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 626	0x00, 0x10, 0x00, 0x00,
 627
 628	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 629	0x00, 0x00, 0x00, 0x00,
 630
 631	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 632};
 633
 634/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 635ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 636	{ ICE_MAC_OFOS,		0 },
 637	{ ICE_IPV4_OFOS,	14 },
 638	{ ICE_UDP_OF,		34 },
 639	{ ICE_GTP,		42 },
 640	{ ICE_IPV4_IL,		62 },
 641	{ ICE_TCP_IL,		82 },
 642	{ ICE_PROTOCOL_LAST,	0 },
 643};
 644
 645ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 646	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 647	0x00, 0x00, 0x00, 0x00,
 648	0x00, 0x00, 0x00, 0x00,
 649	0x08, 0x00,
 650
 651	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 652	0x00, 0x00, 0x00, 0x00,
 653	0x00, 0x11, 0x00, 0x00,
 654	0x00, 0x00, 0x00, 0x00,
 655	0x00, 0x00, 0x00, 0x00,
 656
 657	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 658	0x00, 0x44, 0x00, 0x00,
 659
 660	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 661	0x00, 0x00, 0x00, 0x00,
 662	0x00, 0x00, 0x00, 0x85,
 663
 664	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 665	0x00, 0x00, 0x00, 0x00,
 666
 667	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 668	0x00, 0x00, 0x00, 0x00,
 669	0x00, 0x06, 0x00, 0x00,
 670	0x00, 0x00, 0x00, 0x00,
 671	0x00, 0x00, 0x00, 0x00,
 672
 673	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 674	0x00, 0x00, 0x00, 0x00,
 675	0x00, 0x00, 0x00, 0x00,
 676	0x50, 0x00, 0x00, 0x00,
 677	0x00, 0x00, 0x00, 0x00,
 678
 679	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 680};
 681
 682/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 683ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 684	{ ICE_MAC_OFOS,		0 },
 685	{ ICE_IPV4_OFOS,	14 },
 686	{ ICE_UDP_OF,		34 },
 687	{ ICE_GTP,		42 },
 688	{ ICE_IPV4_IL,		62 },
 689	{ ICE_UDP_ILOS,		82 },
 690	{ ICE_PROTOCOL_LAST,	0 },
 691};
 692
 693ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 694	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 695	0x00, 0x00, 0x00, 0x00,
 696	0x00, 0x00, 0x00, 0x00,
 697	0x08, 0x00,
 698
 699	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 700	0x00, 0x00, 0x00, 0x00,
 701	0x00, 0x11, 0x00, 0x00,
 702	0x00, 0x00, 0x00, 0x00,
 703	0x00, 0x00, 0x00, 0x00,
 704
 705	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 706	0x00, 0x38, 0x00, 0x00,
 707
 708	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 709	0x00, 0x00, 0x00, 0x00,
 710	0x00, 0x00, 0x00, 0x85,
 711
 712	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 713	0x00, 0x00, 0x00, 0x00,
 714
 715	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 716	0x00, 0x00, 0x00, 0x00,
 717	0x00, 0x11, 0x00, 0x00,
 718	0x00, 0x00, 0x00, 0x00,
 719	0x00, 0x00, 0x00, 0x00,
 720
 721	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 722	0x00, 0x08, 0x00, 0x00,
 723
 724	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 725};
 726
 727/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 728ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 729	{ ICE_MAC_OFOS,		0 },
 730	{ ICE_IPV4_OFOS,	14 },
 731	{ ICE_UDP_OF,		34 },
 732	{ ICE_GTP,		42 },
 733	{ ICE_IPV6_IL,		62 },
 734	{ ICE_TCP_IL,		102 },
 735	{ ICE_PROTOCOL_LAST,	0 },
 736};
 737
 738ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 739	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 740	0x00, 0x00, 0x00, 0x00,
 741	0x00, 0x00, 0x00, 0x00,
 742	0x08, 0x00,
 743
 744	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 745	0x00, 0x00, 0x00, 0x00,
 746	0x00, 0x11, 0x00, 0x00,
 747	0x00, 0x00, 0x00, 0x00,
 748	0x00, 0x00, 0x00, 0x00,
 749
 750	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 751	0x00, 0x58, 0x00, 0x00,
 752
 753	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 754	0x00, 0x00, 0x00, 0x00,
 755	0x00, 0x00, 0x00, 0x85,
 756
 757	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 758	0x00, 0x00, 0x00, 0x00,
 759
 760	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 761	0x00, 0x14, 0x06, 0x00,
 762	0x00, 0x00, 0x00, 0x00,
 763	0x00, 0x00, 0x00, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770
 771	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 772	0x00, 0x00, 0x00, 0x00,
 773	0x00, 0x00, 0x00, 0x00,
 774	0x50, 0x00, 0x00, 0x00,
 775	0x00, 0x00, 0x00, 0x00,
 776
 777	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 778};
 779
 780ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 781	{ ICE_MAC_OFOS,		0 },
 782	{ ICE_IPV4_OFOS,	14 },
 783	{ ICE_UDP_OF,		34 },
 784	{ ICE_GTP,		42 },
 785	{ ICE_IPV6_IL,		62 },
 786	{ ICE_UDP_ILOS,		102 },
 787	{ ICE_PROTOCOL_LAST,	0 },
 788};
 789
 790ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 791	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 792	0x00, 0x00, 0x00, 0x00,
 793	0x00, 0x00, 0x00, 0x00,
 794	0x08, 0x00,
 795
 796	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 797	0x00, 0x00, 0x00, 0x00,
 798	0x00, 0x11, 0x00, 0x00,
 799	0x00, 0x00, 0x00, 0x00,
 800	0x00, 0x00, 0x00, 0x00,
 801
 802	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 803	0x00, 0x4c, 0x00, 0x00,
 804
 805	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 806	0x00, 0x00, 0x00, 0x00,
 807	0x00, 0x00, 0x00, 0x85,
 808
 809	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 810	0x00, 0x00, 0x00, 0x00,
 811
 812	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 813	0x00, 0x08, 0x11, 0x00,
 814	0x00, 0x00, 0x00, 0x00,
 815	0x00, 0x00, 0x00, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822
 823	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 824	0x00, 0x08, 0x00, 0x00,
 825
 826	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 827};
 828
 829ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 830	{ ICE_MAC_OFOS,		0 },
 831	{ ICE_IPV6_OFOS,	14 },
 832	{ ICE_UDP_OF,		54 },
 833	{ ICE_GTP,		62 },
 834	{ ICE_IPV4_IL,		82 },
 835	{ ICE_TCP_IL,		102 },
 836	{ ICE_PROTOCOL_LAST,	0 },
 837};
 838
 839ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 840	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 841	0x00, 0x00, 0x00, 0x00,
 842	0x00, 0x00, 0x00, 0x00,
 843	0x86, 0xdd,
 844
 845	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 846	0x00, 0x44, 0x11, 0x00,
 847	0x00, 0x00, 0x00, 0x00,
 848	0x00, 0x00, 0x00, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855
 856	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 857	0x00, 0x44, 0x00, 0x00,
 858
 859	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 860	0x00, 0x00, 0x00, 0x00,
 861	0x00, 0x00, 0x00, 0x85,
 862
 863	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 864	0x00, 0x00, 0x00, 0x00,
 865
 866	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 867	0x00, 0x00, 0x00, 0x00,
 868	0x00, 0x06, 0x00, 0x00,
 869	0x00, 0x00, 0x00, 0x00,
 870	0x00, 0x00, 0x00, 0x00,
 871
 872	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 873	0x00, 0x00, 0x00, 0x00,
 874	0x00, 0x00, 0x00, 0x00,
 875	0x50, 0x00, 0x00, 0x00,
 876	0x00, 0x00, 0x00, 0x00,
 877
 878	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 879};
 880
 881ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 882	{ ICE_MAC_OFOS,		0 },
 883	{ ICE_IPV6_OFOS,	14 },
 884	{ ICE_UDP_OF,		54 },
 885	{ ICE_GTP,		62 },
 886	{ ICE_IPV4_IL,		82 },
 887	{ ICE_UDP_ILOS,		102 },
 888	{ ICE_PROTOCOL_LAST,	0 },
 889};
 890
 891ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 892	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 893	0x00, 0x00, 0x00, 0x00,
 894	0x00, 0x00, 0x00, 0x00,
 895	0x86, 0xdd,
 896
 897	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 898	0x00, 0x38, 0x11, 0x00,
 899	0x00, 0x00, 0x00, 0x00,
 900	0x00, 0x00, 0x00, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907
 908	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 909	0x00, 0x38, 0x00, 0x00,
 910
 911	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 912	0x00, 0x00, 0x00, 0x00,
 913	0x00, 0x00, 0x00, 0x85,
 914
 915	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 916	0x00, 0x00, 0x00, 0x00,
 917
 918	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 919	0x00, 0x00, 0x00, 0x00,
 920	0x00, 0x11, 0x00, 0x00,
 921	0x00, 0x00, 0x00, 0x00,
 922	0x00, 0x00, 0x00, 0x00,
 923
 924	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 925	0x00, 0x08, 0x00, 0x00,
 926
 927	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 928};
 929
 930ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 931	{ ICE_MAC_OFOS,		0 },
 932	{ ICE_IPV6_OFOS,	14 },
 933	{ ICE_UDP_OF,		54 },
 934	{ ICE_GTP,		62 },
 935	{ ICE_IPV6_IL,		82 },
 936	{ ICE_TCP_IL,		122 },
 937	{ ICE_PROTOCOL_LAST,	0 },
 938};
 939
 940ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 941	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 942	0x00, 0x00, 0x00, 0x00,
 943	0x00, 0x00, 0x00, 0x00,
 944	0x86, 0xdd,
 945
 946	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 947	0x00, 0x58, 0x11, 0x00,
 948	0x00, 0x00, 0x00, 0x00,
 949	0x00, 0x00, 0x00, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956
 957	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 958	0x00, 0x58, 0x00, 0x00,
 959
 960	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 961	0x00, 0x00, 0x00, 0x00,
 962	0x00, 0x00, 0x00, 0x85,
 963
 964	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 965	0x00, 0x00, 0x00, 0x00,
 966
 967	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 968	0x00, 0x14, 0x06, 0x00,
 969	0x00, 0x00, 0x00, 0x00,
 970	0x00, 0x00, 0x00, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977
 978	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 979	0x00, 0x00, 0x00, 0x00,
 980	0x00, 0x00, 0x00, 0x00,
 981	0x50, 0x00, 0x00, 0x00,
 982	0x00, 0x00, 0x00, 0x00,
 983
 984	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 985};
 986
 987ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 988	{ ICE_MAC_OFOS,		0 },
 989	{ ICE_IPV6_OFOS,	14 },
 990	{ ICE_UDP_OF,		54 },
 991	{ ICE_GTP,		62 },
 992	{ ICE_IPV6_IL,		82 },
 993	{ ICE_UDP_ILOS,		122 },
 994	{ ICE_PROTOCOL_LAST,	0 },
 995};
 996
 997ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
 998	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 999	0x00, 0x00, 0x00, 0x00,
1000	0x00, 0x00, 0x00, 0x00,
1001	0x86, 0xdd,
1002
1003	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004	0x00, 0x4c, 0x11, 0x00,
1005	0x00, 0x00, 0x00, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013
1014	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015	0x00, 0x4c, 0x00, 0x00,
1016
1017	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018	0x00, 0x00, 0x00, 0x00,
1019	0x00, 0x00, 0x00, 0x85,
1020
1021	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022	0x00, 0x00, 0x00, 0x00,
1023
1024	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025	0x00, 0x08, 0x11, 0x00,
1026	0x00, 0x00, 0x00, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034
1035	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036	0x00, 0x08, 0x00, 0x00,
1037
1038	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039};
1040
1041ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042	{ ICE_MAC_OFOS,		0 },
1043	{ ICE_IPV4_OFOS,	14 },
1044	{ ICE_UDP_OF,		34 },
1045	{ ICE_GTP_NO_PAY,	42 },
1046	{ ICE_PROTOCOL_LAST,	0 },
1047};
1048
1049ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051	0x00, 0x00, 0x00, 0x00,
1052	0x00, 0x00, 0x00, 0x00,
1053	0x08, 0x00,
1054
1055	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056	0x00, 0x00, 0x40, 0x00,
1057	0x40, 0x11, 0x00, 0x00,
1058	0x00, 0x00, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060
1061	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062	0x00, 0x00, 0x00, 0x00,
1063
1064	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065	0x00, 0x00, 0x00, 0x00,
1066	0x00, 0x00, 0x00, 0x85,
1067
1068	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069	0x00, 0x00, 0x00, 0x00,
1070
1071	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072	0x00, 0x00, 0x40, 0x00,
1073	0x40, 0x00, 0x00, 0x00,
1074	0x00, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00,
1077};
1078
1079ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080	{ ICE_MAC_OFOS,		0 },
1081	{ ICE_IPV6_OFOS,	14 },
1082	{ ICE_UDP_OF,		54 },
1083	{ ICE_GTP_NO_PAY,	62 },
1084	{ ICE_PROTOCOL_LAST,	0 },
1085};
1086
1087ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089	0x00, 0x00, 0x00, 0x00,
1090	0x00, 0x00, 0x00, 0x00,
1091	0x86, 0xdd,
1092
1093	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095	0x00, 0x00, 0x00, 0x00,
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103
1104	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105	0x00, 0x00, 0x00, 0x00,
1106
1107	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108	0x00, 0x00, 0x00, 0x00,
1109
1110	0x00, 0x00,
1111};
1112
1113ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114	{ ICE_MAC_OFOS,		0 },
1115	{ ICE_ETYPE_OL,		12 },
1116	{ ICE_PPPOE,		14 },
1117	{ ICE_IPV4_OFOS,	22 },
1118	{ ICE_TCP_IL,		42 },
1119	{ ICE_PROTOCOL_LAST,	0 },
1120};
1121
1122ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124	0x00, 0x00, 0x00, 0x00,
1125	0x00, 0x00, 0x00, 0x00,
1126
1127	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128
1129	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130	0x00, 0x16,
1131
1132	0x00, 0x21,		/* PPP Link Layer 20 */
1133
1134	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135	0x00, 0x01, 0x00, 0x00,
1136	0x00, 0x06, 0x00, 0x00,
1137	0x00, 0x00, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139
1140	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x50, 0x00, 0x00, 0x00,
1144	0x00, 0x00, 0x00, 0x00,
1145
1146	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147};
1148
1149ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150	{ ICE_MAC_OFOS,		0 },
1151	{ ICE_ETYPE_OL,		12 },
1152	{ ICE_PPPOE,		14 },
1153	{ ICE_IPV4_OFOS,	22 },
1154	{ ICE_UDP_ILOS,		42 },
1155	{ ICE_PROTOCOL_LAST,	0 },
1156};
1157
1158ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160	0x00, 0x00, 0x00, 0x00,
1161	0x00, 0x00, 0x00, 0x00,
1162
1163	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164
1165	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166	0x00, 0x16,
1167
1168	0x00, 0x21,		/* PPP Link Layer 20 */
1169
1170	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171	0x00, 0x01, 0x00, 0x00,
1172	0x00, 0x11, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175
1176	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177	0x00, 0x08, 0x00, 0x00,
1178
1179	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180};
1181
1182ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183	{ ICE_MAC_OFOS,		0 },
1184	{ ICE_ETYPE_OL,		12 },
1185	{ ICE_PPPOE,		14 },
1186	{ ICE_IPV6_OFOS,	22 },
1187	{ ICE_TCP_IL,		62 },
1188	{ ICE_PROTOCOL_LAST,	0 },
1189};
1190
1191ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193	0x00, 0x00, 0x00, 0x00,
1194	0x00, 0x00, 0x00, 0x00,
1195
1196	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197
1198	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199	0x00, 0x2a,
1200
1201	0x00, 0x57,		/* PPP Link Layer 20 */
1202
1203	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205	0x00, 0x00, 0x00, 0x00,
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213
1214	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215	0x00, 0x00, 0x00, 0x00,
1216	0x00, 0x00, 0x00, 0x00,
1217	0x50, 0x00, 0x00, 0x00,
1218	0x00, 0x00, 0x00, 0x00,
1219
1220	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221};
1222
1223ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224	{ ICE_MAC_OFOS,		0 },
1225	{ ICE_ETYPE_OL,		12 },
1226	{ ICE_PPPOE,		14 },
1227	{ ICE_IPV6_OFOS,	22 },
1228	{ ICE_UDP_ILOS,		62 },
1229	{ ICE_PROTOCOL_LAST,	0 },
1230};
1231
1232ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234	0x00, 0x00, 0x00, 0x00,
1235	0x00, 0x00, 0x00, 0x00,
1236
1237	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238
1239	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240	0x00, 0x2a,
1241
1242	0x00, 0x57,		/* PPP Link Layer 20 */
1243
1244	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254
1255	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256	0x00, 0x08, 0x00, 0x00,
1257
1258	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259};
1260
1261ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262	{ ICE_MAC_OFOS,		0 },
1263	{ ICE_ETYPE_OL,		12 },
1264	{ ICE_IPV4_OFOS,	14 },
1265	{ ICE_L2TPV3,		34 },
1266	{ ICE_PROTOCOL_LAST,	0 },
1267};
1268
1269ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271	0x00, 0x00, 0x00, 0x00,
1272	0x00, 0x00, 0x00, 0x00,
1273
1274	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275
1276	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277	0x00, 0x00, 0x40, 0x00,
1278	0x40, 0x73, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281
1282	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286};
1287
1288ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289	{ ICE_MAC_OFOS,		0 },
1290	{ ICE_ETYPE_OL,		12 },
1291	{ ICE_IPV6_OFOS,	14 },
1292	{ ICE_L2TPV3,		54 },
1293	{ ICE_PROTOCOL_LAST,	0 },
1294};
1295
1296ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298	0x00, 0x00, 0x00, 0x00,
1299	0x00, 0x00, 0x00, 0x00,
1300
1301	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302
1303	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304	0x00, 0x0c, 0x73, 0x40,
1305	0x00, 0x00, 0x00, 0x00,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313
1314	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315	0x00, 0x00, 0x00, 0x00,
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318};
1319
1320static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322				  ICE_PKT_GTP_NOPAY),
1323	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324					    ICE_PKT_OUTER_IPV6 |
1325					    ICE_PKT_INNER_IPV6 |
1326					    ICE_PKT_INNER_UDP),
1327	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328					    ICE_PKT_OUTER_IPV6 |
1329					    ICE_PKT_INNER_IPV6),
1330	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331					    ICE_PKT_OUTER_IPV6 |
1332					    ICE_PKT_INNER_UDP),
1333	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334					    ICE_PKT_OUTER_IPV6),
1335	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337					    ICE_PKT_INNER_IPV6 |
1338					    ICE_PKT_INNER_UDP),
1339	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340					    ICE_PKT_INNER_IPV6),
1341	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342					    ICE_PKT_INNER_UDP),
1343	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347					ICE_PKT_INNER_UDP),
1348	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352				      ICE_PKT_INNER_TCP),
1353	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357					  ICE_PKT_INNER_IPV6 |
1358					  ICE_PKT_INNER_TCP),
1359	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363					  ICE_PKT_INNER_IPV6),
1364	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368	ICE_PKT_PROFILE(tcp, 0),
1369};
1370
 
 
 
 
 
 
 
 
1371/* this is a recipe to profile association bitmap */
1372static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373			  ICE_MAX_NUM_PROFILES);
1374
1375/* this is a profile to recipe association bitmap */
1376static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377			  ICE_MAX_NUM_RECIPES);
1378
1379/**
1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381 * @hw: pointer to the HW struct
1382 *
1383 * Allocate memory for the entire recipe table and initialize the structures/
1384 * entries corresponding to basic recipes.
1385 */
1386int ice_init_def_sw_recp(struct ice_hw *hw)
1387{
1388	struct ice_sw_recipe *recps;
1389	u8 i;
1390
1391	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392			     sizeof(*recps), GFP_KERNEL);
1393	if (!recps)
1394		return -ENOMEM;
1395
1396	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397		recps[i].root_rid = i;
1398		INIT_LIST_HEAD(&recps[i].filt_rules);
1399		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400		INIT_LIST_HEAD(&recps[i].rg_list);
1401		mutex_init(&recps[i].filt_rule_lock);
1402	}
1403
1404	hw->switch_info->recp_list = recps;
1405
1406	return 0;
1407}
1408
1409/**
1410 * ice_aq_get_sw_cfg - get switch configuration
1411 * @hw: pointer to the hardware structure
1412 * @buf: pointer to the result buffer
1413 * @buf_size: length of the buffer available for response
1414 * @req_desc: pointer to requested descriptor
1415 * @num_elems: pointer to number of elements
1416 * @cd: pointer to command details structure or NULL
1417 *
1418 * Get switch configuration (0x0200) to be placed in buf.
1419 * This admin command returns information such as initial VSI/port number
1420 * and switch ID it belongs to.
1421 *
1422 * NOTE: *req_desc is both an input/output parameter.
1423 * The caller of this function first calls this function with *request_desc set
1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425 * configuration information has been returned; if non-zero (meaning not all
1426 * the information was returned), the caller should call this function again
1427 * with *req_desc set to the previous value returned by f/w to get the
1428 * next block of switch configuration information.
1429 *
1430 * *num_elems is output only parameter. This reflects the number of elements
1431 * in response buffer. The caller of this function to use *num_elems while
1432 * parsing the response buffer.
1433 */
1434static int
1435ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437		  struct ice_sq_cd *cd)
1438{
1439	struct ice_aqc_get_sw_cfg *cmd;
1440	struct ice_aq_desc desc;
1441	int status;
1442
1443	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444	cmd = &desc.params.get_sw_conf;
1445	cmd->element = cpu_to_le16(*req_desc);
1446
1447	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448	if (!status) {
1449		*req_desc = le16_to_cpu(cmd->element);
1450		*num_elems = le16_to_cpu(cmd->num_elems);
1451	}
1452
1453	return status;
1454}
1455
1456/**
1457 * ice_aq_add_vsi
1458 * @hw: pointer to the HW struct
1459 * @vsi_ctx: pointer to a VSI context struct
1460 * @cd: pointer to command details structure or NULL
1461 *
1462 * Add a VSI context to the hardware (0x0210)
1463 */
1464static int
1465ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466	       struct ice_sq_cd *cd)
1467{
1468	struct ice_aqc_add_update_free_vsi_resp *res;
1469	struct ice_aqc_add_get_update_free_vsi *cmd;
1470	struct ice_aq_desc desc;
1471	int status;
1472
1473	cmd = &desc.params.vsi_cmd;
1474	res = &desc.params.add_update_free_vsi_res;
1475
1476	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477
1478	if (!vsi_ctx->alloc_from_pool)
1479		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480					   ICE_AQ_VSI_IS_VALID);
1481	cmd->vf_id = vsi_ctx->vf_num;
1482
1483	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484
1485	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486
1487	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488				 sizeof(vsi_ctx->info), cd);
1489
1490	if (!status) {
1491		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494	}
1495
1496	return status;
1497}
1498
1499/**
1500 * ice_aq_free_vsi
1501 * @hw: pointer to the HW struct
1502 * @vsi_ctx: pointer to a VSI context struct
1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504 * @cd: pointer to command details structure or NULL
1505 *
1506 * Free VSI context info from hardware (0x0213)
1507 */
1508static int
1509ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511{
1512	struct ice_aqc_add_update_free_vsi_resp *resp;
1513	struct ice_aqc_add_get_update_free_vsi *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	cmd = &desc.params.vsi_cmd;
1518	resp = &desc.params.add_update_free_vsi_res;
1519
1520	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521
1522	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523	if (keep_vsi_alloc)
1524		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525
1526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527	if (!status) {
1528		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530	}
1531
1532	return status;
1533}
1534
1535/**
1536 * ice_aq_update_vsi
1537 * @hw: pointer to the HW struct
1538 * @vsi_ctx: pointer to a VSI context struct
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Update VSI context in the hardware (0x0211)
1542 */
1543static int
1544ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545		  struct ice_sq_cd *cd)
1546{
1547	struct ice_aqc_add_update_free_vsi_resp *resp;
1548	struct ice_aqc_add_get_update_free_vsi *cmd;
1549	struct ice_aq_desc desc;
1550	int status;
1551
1552	cmd = &desc.params.vsi_cmd;
1553	resp = &desc.params.add_update_free_vsi_res;
1554
1555	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556
1557	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567	}
1568
1569	return status;
1570}
1571
1572/**
1573 * ice_is_vsi_valid - check whether the VSI is valid or not
1574 * @hw: pointer to the HW struct
1575 * @vsi_handle: VSI handle
1576 *
1577 * check whether the VSI is valid or not
1578 */
1579bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580{
1581	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582}
1583
1584/**
1585 * ice_get_hw_vsi_num - return the HW VSI number
1586 * @hw: pointer to the HW struct
1587 * @vsi_handle: VSI handle
1588 *
1589 * return the HW VSI number
1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591 */
1592u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593{
1594	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595}
1596
1597/**
1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599 * @hw: pointer to the HW struct
1600 * @vsi_handle: VSI handle
1601 *
1602 * return the VSI context entry for a given VSI handle
1603 */
1604struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605{
1606	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607}
1608
1609/**
1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611 * @hw: pointer to the HW struct
1612 * @vsi_handle: VSI handle
1613 * @vsi: VSI context pointer
1614 *
1615 * save the VSI context entry for a given VSI handle
1616 */
1617static void
1618ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619{
1620	hw->vsi_ctx[vsi_handle] = vsi;
1621}
1622
1623/**
1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625 * @hw: pointer to the HW struct
1626 * @vsi_handle: VSI handle
1627 */
1628static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629{
1630	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631	u8 i;
1632
 
1633	if (!vsi)
1634		return;
1635	ice_for_each_traffic_class(i) {
1636		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637		vsi->lan_q_ctx[i] = NULL;
1638		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639		vsi->rdma_q_ctx[i] = NULL;
 
 
 
 
1640	}
1641}
1642
1643/**
1644 * ice_clear_vsi_ctx - clear the VSI context entry
1645 * @hw: pointer to the HW struct
1646 * @vsi_handle: VSI handle
1647 *
1648 * clear the VSI context entry
1649 */
1650static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651{
1652	struct ice_vsi_ctx *vsi;
1653
1654	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655	if (vsi) {
1656		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657		devm_kfree(ice_hw_to_dev(hw), vsi);
1658		hw->vsi_ctx[vsi_handle] = NULL;
1659	}
1660}
1661
1662/**
1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664 * @hw: pointer to the HW struct
1665 */
1666void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667{
1668	u16 i;
1669
1670	for (i = 0; i < ICE_MAX_VSI; i++)
1671		ice_clear_vsi_ctx(hw, i);
1672}
1673
1674/**
1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676 * @hw: pointer to the HW struct
1677 * @vsi_handle: unique VSI handle provided by drivers
1678 * @vsi_ctx: pointer to a VSI context struct
1679 * @cd: pointer to command details structure or NULL
1680 *
1681 * Add a VSI context to the hardware also add it into the VSI handle list.
1682 * If this function gets called after reset for existing VSIs then update
1683 * with the new HW VSI number in the corresponding VSI handle list entry.
1684 */
1685int
1686ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687	    struct ice_sq_cd *cd)
1688{
1689	struct ice_vsi_ctx *tmp_vsi_ctx;
1690	int status;
1691
1692	if (vsi_handle >= ICE_MAX_VSI)
1693		return -EINVAL;
1694	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695	if (status)
1696		return status;
1697	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698	if (!tmp_vsi_ctx) {
1699		/* Create a new VSI context */
1700		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702		if (!tmp_vsi_ctx) {
1703			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704			return -ENOMEM;
1705		}
1706		*tmp_vsi_ctx = *vsi_ctx;
1707		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708	} else {
1709		/* update with new HW VSI num */
1710		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711	}
1712
1713	return 0;
1714}
1715
1716/**
1717 * ice_free_vsi- free VSI context from hardware and VSI handle list
1718 * @hw: pointer to the HW struct
1719 * @vsi_handle: unique VSI handle
1720 * @vsi_ctx: pointer to a VSI context struct
1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722 * @cd: pointer to command details structure or NULL
1723 *
1724 * Free VSI context info from hardware as well as from VSI handle list
1725 */
1726int
1727ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729{
1730	int status;
1731
1732	if (!ice_is_vsi_valid(hw, vsi_handle))
1733		return -EINVAL;
1734	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736	if (!status)
1737		ice_clear_vsi_ctx(hw, vsi_handle);
1738	return status;
1739}
1740
1741/**
1742 * ice_update_vsi
1743 * @hw: pointer to the HW struct
1744 * @vsi_handle: unique VSI handle
1745 * @vsi_ctx: pointer to a VSI context struct
1746 * @cd: pointer to command details structure or NULL
1747 *
1748 * Update VSI context in the hardware
1749 */
1750int
1751ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752	       struct ice_sq_cd *cd)
1753{
1754	if (!ice_is_vsi_valid(hw, vsi_handle))
1755		return -EINVAL;
1756	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758}
1759
1760/**
1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762 * @hw: pointer to HW struct
1763 * @vsi_handle: VSI SW index
1764 * @enable: boolean for enable/disable
1765 */
1766int
1767ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768{
1769	struct ice_vsi_ctx *ctx, *cached_ctx;
1770	int status;
1771
1772	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773	if (!cached_ctx)
1774		return -ENOENT;
1775
1776	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777	if (!ctx)
1778		return -ENOMEM;
1779
1780	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783
1784	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785
1786	if (enable)
1787		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788	else
1789		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790
1791	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792	if (!status) {
1793		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795	}
1796
1797	kfree(ctx);
1798	return status;
1799}
1800
1801/**
1802 * ice_aq_alloc_free_vsi_list
1803 * @hw: pointer to the HW struct
1804 * @vsi_list_id: VSI list ID returned or used for lookup
1805 * @lkup_type: switch rule filter lookup type
1806 * @opc: switch rules population command type - pass in the command opcode
1807 *
1808 * allocates or free a VSI list resource
1809 */
1810static int
1811ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812			   enum ice_sw_lkup_type lkup_type,
1813			   enum ice_adminq_opc opc)
1814{
1815	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816	u16 buf_len = __struct_size(sw_buf);
1817	struct ice_aqc_res_elem *vsi_ele;
 
1818	int status;
1819
 
 
 
 
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		if (opc == ice_aqc_opc_alloc_res)
1832			sw_buf->res_type =
1833				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835		else
1836			sw_buf->res_type =
1837				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838	} else {
1839		return -EINVAL;
 
1840	}
1841
1842	if (opc == ice_aqc_opc_free_res)
1843		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844
1845	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846	if (status)
1847		return status;
1848
1849	if (opc == ice_aqc_opc_alloc_res) {
1850		vsi_ele = &sw_buf->elem[0];
1851		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852	}
1853
1854	return 0;
 
 
1855}
1856
1857/**
1858 * ice_aq_sw_rules - add/update/remove switch rules
1859 * @hw: pointer to the HW struct
1860 * @rule_list: pointer to switch rule population list
1861 * @rule_list_sz: total size of the rule list in bytes
1862 * @num_rules: number of switch rules in the rule_list
1863 * @opc: switch rules population command type - pass in the command opcode
1864 * @cd: pointer to command details structure or NULL
1865 *
1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867 */
1868int
1869ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871{
1872	struct ice_aq_desc desc;
1873	int status;
1874
1875	if (opc != ice_aqc_opc_add_sw_rules &&
1876	    opc != ice_aqc_opc_update_sw_rules &&
1877	    opc != ice_aqc_opc_remove_sw_rules)
1878		return -EINVAL;
1879
1880	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881
1882	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883	desc.params.sw_rules.num_rules_fltr_entry_index =
1884		cpu_to_le16(num_rules);
1885	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886	if (opc != ice_aqc_opc_add_sw_rules &&
1887	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888		status = -ENOENT;
1889
1890	return status;
1891}
1892
1893/**
1894 * ice_aq_add_recipe - add switch recipe
1895 * @hw: pointer to the HW struct
1896 * @s_recipe_list: pointer to switch rule population list
1897 * @num_recipes: number of switch recipes in the list
1898 * @cd: pointer to command details structure or NULL
1899 *
1900 * Add(0x0290)
1901 */
1902int
1903ice_aq_add_recipe(struct ice_hw *hw,
1904		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905		  u16 num_recipes, struct ice_sq_cd *cd)
1906{
1907	struct ice_aqc_add_get_recipe *cmd;
1908	struct ice_aq_desc desc;
1909	u16 buf_size;
1910
1911	cmd = &desc.params.add_get_recipe;
1912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913
1914	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916
1917	buf_size = num_recipes * sizeof(*s_recipe_list);
1918
1919	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920}
1921
1922/**
1923 * ice_aq_get_recipe - get switch recipe
1924 * @hw: pointer to the HW struct
1925 * @s_recipe_list: pointer to switch rule population list
1926 * @num_recipes: pointer to the number of recipes (input and output)
1927 * @recipe_root: root recipe number of recipe(s) to retrieve
1928 * @cd: pointer to command details structure or NULL
1929 *
1930 * Get(0x0292)
1931 *
1932 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933 * On output, *num_recipes will equal the number of entries returned in
1934 * s_recipe_list.
1935 *
1936 * The caller must supply enough space in s_recipe_list to hold all possible
1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938 */
1939int
1940ice_aq_get_recipe(struct ice_hw *hw,
1941		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943{
1944	struct ice_aqc_add_get_recipe *cmd;
1945	struct ice_aq_desc desc;
1946	u16 buf_size;
1947	int status;
1948
1949	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950		return -EINVAL;
1951
1952	cmd = &desc.params.add_get_recipe;
1953	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954
1955	cmd->return_index = cpu_to_le16(recipe_root);
1956	cmd->num_sub_recipes = 0;
1957
1958	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959
1960	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962
1963	return status;
1964}
1965
1966/**
1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968 * @hw: pointer to the HW struct
1969 * @params: parameters used to update the default recipe
1970 *
1971 * This function only supports updating default recipes and it only supports
1972 * updating a single recipe based on the lkup_idx at a time.
1973 *
1974 * This is done as a read-modify-write operation. First, get the current recipe
1975 * contents based on the recipe's ID. Then modify the field vector index and
1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977 * the pre-existing recipe with the modifications.
1978 */
1979int
1980ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981			   struct ice_update_recipe_lkup_idx_params *params)
1982{
1983	struct ice_aqc_recipe_data_elem *rcp_list;
1984	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985	int status;
1986
1987	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988	if (!rcp_list)
1989		return -ENOMEM;
1990
1991	/* read current recipe list from firmware */
1992	rcp_list->recipe_indx = params->rid;
1993	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994	if (status) {
1995		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996			  params->rid, status);
1997		goto error_out;
1998	}
1999
2000	/* only modify existing recipe's lkup_idx and mask if valid, while
2001	 * leaving all other fields the same, then update the recipe firmware
2002	 */
2003	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004	if (params->mask_valid)
2005		rcp_list->content.mask[params->lkup_idx] =
2006			cpu_to_le16(params->mask);
2007
2008	if (params->ignore_valid)
2009		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010			ICE_AQ_RECIPE_LKUP_IGNORE;
2011
2012	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013	if (status)
2014		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015			  params->rid, params->lkup_idx, params->fv_idx,
2016			  params->mask, params->mask_valid ? "true" : "false",
2017			  status);
2018
2019error_out:
2020	kfree(rcp_list);
2021	return status;
2022}
2023
2024/**
2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026 * @hw: pointer to the HW struct
2027 * @profile_id: package profile ID to associate the recipe with
2028 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2029 * @cd: pointer to command details structure or NULL
2030 * Recipe to profile association (0x0291)
2031 */
2032int
2033ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2034			     struct ice_sq_cd *cd)
2035{
2036	struct ice_aqc_recipe_to_profile *cmd;
2037	struct ice_aq_desc desc;
2038
2039	cmd = &desc.params.recipe_to_profile;
2040	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041	cmd->profile_id = cpu_to_le16(profile_id);
2042	/* Set the recipe ID bit in the bitmask to let the device know which
2043	 * profile we are associating the recipe to
2044	 */
2045	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2046
2047	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048}
2049
2050/**
2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052 * @hw: pointer to the HW struct
2053 * @profile_id: package profile ID to associate the recipe with
2054 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2055 * @cd: pointer to command details structure or NULL
2056 * Associate profile ID with given recipe (0x0293)
2057 */
2058int
2059ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2060			     struct ice_sq_cd *cd)
2061{
2062	struct ice_aqc_recipe_to_profile *cmd;
2063	struct ice_aq_desc desc;
2064	int status;
2065
2066	cmd = &desc.params.recipe_to_profile;
2067	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068	cmd->profile_id = cpu_to_le16(profile_id);
2069
2070	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071	if (!status)
2072		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2073
2074	return status;
2075}
2076
2077/**
2078 * ice_alloc_recipe - add recipe resource
2079 * @hw: pointer to the hardware structure
2080 * @rid: recipe ID returned as response to AQ call
2081 */
2082int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083{
2084	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085	u16 buf_len = __struct_size(sw_buf);
2086	int status;
2087
 
 
 
 
 
2088	sw_buf->num_elems = cpu_to_le16(1);
2089	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090					ICE_AQC_RES_TYPE_S) |
2091					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093				       ice_aqc_opc_alloc_res);
2094	if (!status)
2095		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
 
2096
2097	return status;
2098}
2099
2100/**
2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102 * @hw: pointer to hardware structure
2103 *
2104 * This function is used to populate recipe_to_profile matrix where index to
2105 * this array is the recipe ID and the element is the mapping of which profiles
2106 * is this recipe mapped to.
2107 */
2108static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109{
2110	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111	u64 recp_assoc;
2112	u16 i;
2113
2114	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2115		u16 j;
2116
2117		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2118		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2119		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2120			continue;
2121		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2122		bitmap_copy(profile_to_recipe[i], r_bitmap,
2123			    ICE_MAX_NUM_RECIPES);
2124		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2125			set_bit(i, recipe_to_profile[j]);
2126	}
2127}
2128
2129/**
2130 * ice_collect_result_idx - copy result index values
2131 * @buf: buffer that contains the result index
2132 * @recp: the recipe struct to copy data into
2133 */
2134static void
2135ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2136		       struct ice_sw_recipe *recp)
2137{
2138	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2139		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2140			recp->res_idxs);
2141}
2142
2143/**
2144 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2145 * @hw: pointer to hardware structure
2146 * @recps: struct that we need to populate
2147 * @rid: recipe ID that we are populating
2148 * @refresh_required: true if we should get recipe to profile mapping from FW
2149 *
2150 * This function is used to populate all the necessary entries into our
2151 * bookkeeping so that we have a current list of all the recipes that are
2152 * programmed in the firmware.
2153 */
2154static int
2155ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2156		    bool *refresh_required)
2157{
2158	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2159	struct ice_aqc_recipe_data_elem *tmp;
2160	u16 num_recps = ICE_MAX_NUM_RECIPES;
2161	struct ice_prot_lkup_ext *lkup_exts;
2162	u8 fv_word_idx = 0;
2163	u16 sub_recps;
2164	int status;
2165
2166	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2167
2168	/* we need a buffer big enough to accommodate all the recipes */
2169	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2170	if (!tmp)
2171		return -ENOMEM;
2172
2173	tmp[0].recipe_indx = rid;
2174	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2175	/* non-zero status meaning recipe doesn't exist */
2176	if (status)
2177		goto err_unroll;
2178
2179	/* Get recipe to profile map so that we can get the fv from lkups that
2180	 * we read for a recipe from FW. Since we want to minimize the number of
2181	 * times we make this FW call, just make one call and cache the copy
2182	 * until a new recipe is added. This operation is only required the
2183	 * first time to get the changes from FW. Then to search existing
2184	 * entries we don't need to update the cache again until another recipe
2185	 * gets added.
2186	 */
2187	if (*refresh_required) {
2188		ice_get_recp_to_prof_map(hw);
2189		*refresh_required = false;
2190	}
2191
2192	/* Start populating all the entries for recps[rid] based on lkups from
2193	 * firmware. Note that we are only creating the root recipe in our
2194	 * database.
2195	 */
2196	lkup_exts = &recps[rid].lkup_exts;
2197
2198	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2199		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2200		struct ice_recp_grp_entry *rg_entry;
2201		u8 i, prof, idx, prot = 0;
2202		bool is_root;
2203		u16 off = 0;
2204
2205		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2206					GFP_KERNEL);
2207		if (!rg_entry) {
2208			status = -ENOMEM;
2209			goto err_unroll;
2210		}
2211
2212		idx = root_bufs.recipe_indx;
2213		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2214
2215		/* Mark all result indices in this chain */
2216		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2217			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2218				result_bm);
2219
2220		/* get the first profile that is associated with rid */
2221		prof = find_first_bit(recipe_to_profile[idx],
2222				      ICE_MAX_NUM_PROFILES);
2223		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2224			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2225
2226			rg_entry->fv_idx[i] = lkup_indx;
2227			rg_entry->fv_mask[i] =
2228				le16_to_cpu(root_bufs.content.mask[i + 1]);
2229
2230			/* If the recipe is a chained recipe then all its
2231			 * child recipe's result will have a result index.
2232			 * To fill fv_words we should not use those result
2233			 * index, we only need the protocol ids and offsets.
2234			 * We will skip all the fv_idx which stores result
2235			 * index in them. We also need to skip any fv_idx which
2236			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2237			 * valid offset value.
2238			 */
2239			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2240			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2241			    rg_entry->fv_idx[i] == 0)
2242				continue;
2243
2244			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2245					  rg_entry->fv_idx[i], &prot, &off);
2246			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2247			lkup_exts->fv_words[fv_word_idx].off = off;
2248			lkup_exts->field_mask[fv_word_idx] =
2249				rg_entry->fv_mask[i];
2250			fv_word_idx++;
2251		}
2252		/* populate rg_list with the data from the child entry of this
2253		 * recipe
2254		 */
2255		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2256
2257		/* Propagate some data to the recipe database */
2258		recps[idx].is_root = !!is_root;
2259		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2260		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2261					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2262		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2263					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2264		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2265		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2266			recps[idx].chain_idx = root_bufs.content.result_indx &
2267				~ICE_AQ_RECIPE_RESULT_EN;
2268			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2269		} else {
2270			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2271		}
2272
2273		if (!is_root)
2274			continue;
2275
2276		/* Only do the following for root recipes entries */
2277		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2278		       sizeof(recps[idx].r_bitmap));
2279		recps[idx].root_rid = root_bufs.content.rid &
2280			~ICE_AQ_RECIPE_ID_IS_ROOT;
2281		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2282	}
2283
2284	/* Complete initialization of the root recipe entry */
2285	lkup_exts->n_val_words = fv_word_idx;
2286	recps[rid].big_recp = (num_recps > 1);
2287	recps[rid].n_grp_count = (u8)num_recps;
2288	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2289					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2290					   GFP_KERNEL);
2291	if (!recps[rid].root_buf) {
2292		status = -ENOMEM;
2293		goto err_unroll;
2294	}
2295
2296	/* Copy result indexes */
2297	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2298	recps[rid].recp_created = true;
2299
2300err_unroll:
2301	kfree(tmp);
2302	return status;
2303}
2304
2305/* ice_init_port_info - Initialize port_info with switch configuration data
2306 * @pi: pointer to port_info
2307 * @vsi_port_num: VSI number or port number
2308 * @type: Type of switch element (port or VSI)
2309 * @swid: switch ID of the switch the element is attached to
2310 * @pf_vf_num: PF or VF number
2311 * @is_vf: true if the element is a VF, false otherwise
2312 */
2313static void
2314ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2315		   u16 swid, u16 pf_vf_num, bool is_vf)
2316{
2317	switch (type) {
2318	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2319		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2320		pi->sw_id = swid;
2321		pi->pf_vf_num = pf_vf_num;
2322		pi->is_vf = is_vf;
2323		break;
2324	default:
2325		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2326		break;
2327	}
2328}
2329
2330/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2331 * @hw: pointer to the hardware structure
2332 */
2333int ice_get_initial_sw_cfg(struct ice_hw *hw)
2334{
2335	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2336	u16 req_desc = 0;
2337	u16 num_elems;
2338	int status;
2339	u16 i;
2340
2341	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2342	if (!rbuf)
2343		return -ENOMEM;
2344
2345	/* Multiple calls to ice_aq_get_sw_cfg may be required
2346	 * to get all the switch configuration information. The need
2347	 * for additional calls is indicated by ice_aq_get_sw_cfg
2348	 * writing a non-zero value in req_desc
2349	 */
2350	do {
2351		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2352
2353		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2354					   &req_desc, &num_elems, NULL);
2355
2356		if (status)
2357			break;
2358
2359		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2360			u16 pf_vf_num, swid, vsi_port_num;
2361			bool is_vf = false;
2362			u8 res_type;
2363
2364			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2365				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2366
2367			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2368				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2369
2370			swid = le16_to_cpu(ele->swid);
2371
2372			if (le16_to_cpu(ele->pf_vf_num) &
2373			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2374				is_vf = true;
2375
2376			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2377					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2378
2379			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2380				/* FW VSI is not needed. Just continue. */
2381				continue;
2382			}
2383
2384			ice_init_port_info(hw->port_info, vsi_port_num,
2385					   res_type, swid, pf_vf_num, is_vf);
2386		}
2387	} while (req_desc && !status);
2388
2389	kfree(rbuf);
2390	return status;
2391}
2392
2393/**
2394 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2395 * @hw: pointer to the hardware structure
2396 * @fi: filter info structure to fill/update
2397 *
2398 * This helper function populates the lb_en and lan_en elements of the provided
2399 * ice_fltr_info struct using the switch's type and characteristics of the
2400 * switch rule being configured.
2401 */
2402static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2403{
2404	fi->lb_en = false;
2405	fi->lan_en = false;
2406	if ((fi->flag & ICE_FLTR_TX) &&
2407	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2408	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2409	     fi->fltr_act == ICE_FWD_TO_Q ||
2410	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2411		/* Setting LB for prune actions will result in replicated
2412		 * packets to the internal switch that will be dropped.
2413		 */
2414		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2415			fi->lb_en = true;
2416
2417		/* Set lan_en to TRUE if
2418		 * 1. The switch is a VEB AND
2419		 * 2
2420		 * 2.1 The lookup is a directional lookup like ethertype,
2421		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2422		 * and default-port OR
2423		 * 2.2 The lookup is VLAN, OR
2424		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2425		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2426		 *
2427		 * OR
2428		 *
2429		 * The switch is a VEPA.
2430		 *
2431		 * In all other cases, the LAN enable has to be set to false.
2432		 */
2433		if (hw->evb_veb) {
2434			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2436			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2437			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2438			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2439			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2442			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2443			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2444				fi->lan_en = true;
2445		} else {
2446			fi->lan_en = true;
2447		}
2448	}
2449}
2450
2451/**
2452 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2453 * @eth_hdr: pointer to buffer to populate
2454 */
2455void ice_fill_eth_hdr(u8 *eth_hdr)
2456{
2457	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2458}
2459
2460/**
2461 * ice_fill_sw_rule - Helper function to fill switch rule structure
2462 * @hw: pointer to the hardware structure
2463 * @f_info: entry containing packet forwarding information
2464 * @s_rule: switch rule structure to be filled in based on mac_entry
2465 * @opc: switch rules population command type - pass in the command opcode
2466 */
2467static void
2468ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2469		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2470		 enum ice_adminq_opc opc)
2471{
2472	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2473	u16 vlan_tpid = ETH_P_8021Q;
2474	void *daddr = NULL;
2475	u16 eth_hdr_sz;
2476	u8 *eth_hdr;
2477	u32 act = 0;
2478	__be16 *off;
2479	u8 q_rgn;
2480
2481	if (opc == ice_aqc_opc_remove_sw_rules) {
2482		s_rule->act = 0;
2483		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2484		s_rule->hdr_len = 0;
2485		return;
2486	}
2487
2488	eth_hdr_sz = sizeof(dummy_eth_header);
2489	eth_hdr = s_rule->hdr_data;
2490
2491	/* initialize the ether header with a dummy header */
2492	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2493	ice_fill_sw_info(hw, f_info);
2494
2495	switch (f_info->fltr_act) {
2496	case ICE_FWD_TO_VSI:
2497		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2498				  f_info->fwd_id.hw_vsi_id);
2499		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2500			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2501				ICE_SINGLE_ACT_VALID_BIT;
2502		break;
2503	case ICE_FWD_TO_VSI_LIST:
2504		act |= ICE_SINGLE_ACT_VSI_LIST;
2505		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2506				  f_info->fwd_id.vsi_list_id);
 
2507		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2508			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2509				ICE_SINGLE_ACT_VALID_BIT;
2510		break;
2511	case ICE_FWD_TO_Q:
2512		act |= ICE_SINGLE_ACT_TO_Q;
2513		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2514				  f_info->fwd_id.q_id);
2515		break;
2516	case ICE_DROP_PACKET:
2517		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2518			ICE_SINGLE_ACT_VALID_BIT;
2519		break;
2520	case ICE_FWD_TO_QGRP:
2521		q_rgn = f_info->qgrp_size > 0 ?
2522			(u8)ilog2(f_info->qgrp_size) : 0;
2523		act |= ICE_SINGLE_ACT_TO_Q;
2524		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2525				  f_info->fwd_id.q_id);
2526		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
 
2527		break;
2528	default:
2529		return;
2530	}
2531
2532	if (f_info->lb_en)
2533		act |= ICE_SINGLE_ACT_LB_ENABLE;
2534	if (f_info->lan_en)
2535		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2536
2537	switch (f_info->lkup_type) {
2538	case ICE_SW_LKUP_MAC:
2539		daddr = f_info->l_data.mac.mac_addr;
2540		break;
2541	case ICE_SW_LKUP_VLAN:
2542		vlan_id = f_info->l_data.vlan.vlan_id;
2543		if (f_info->l_data.vlan.tpid_valid)
2544			vlan_tpid = f_info->l_data.vlan.tpid;
2545		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2546		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2547			act |= ICE_SINGLE_ACT_PRUNE;
2548			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2549		}
2550		break;
2551	case ICE_SW_LKUP_ETHERTYPE_MAC:
2552		daddr = f_info->l_data.ethertype_mac.mac_addr;
2553		fallthrough;
2554	case ICE_SW_LKUP_ETHERTYPE:
2555		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2556		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2557		break;
2558	case ICE_SW_LKUP_MAC_VLAN:
2559		daddr = f_info->l_data.mac_vlan.mac_addr;
2560		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2561		break;
2562	case ICE_SW_LKUP_PROMISC_VLAN:
2563		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2564		fallthrough;
2565	case ICE_SW_LKUP_PROMISC:
2566		daddr = f_info->l_data.mac_vlan.mac_addr;
2567		break;
2568	default:
2569		break;
2570	}
2571
2572	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2573		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2574		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2575
2576	/* Recipe set depending on lookup type */
2577	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2578	s_rule->src = cpu_to_le16(f_info->src);
2579	s_rule->act = cpu_to_le32(act);
2580
2581	if (daddr)
2582		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2583
2584	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2585		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2586		*off = cpu_to_be16(vlan_id);
2587		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2588		*off = cpu_to_be16(vlan_tpid);
2589	}
2590
2591	/* Create the switch rule with the final dummy Ethernet header */
2592	if (opc != ice_aqc_opc_update_sw_rules)
2593		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2594}
2595
2596/**
2597 * ice_add_marker_act
2598 * @hw: pointer to the hardware structure
2599 * @m_ent: the management entry for which sw marker needs to be added
2600 * @sw_marker: sw marker to tag the Rx descriptor with
2601 * @l_id: large action resource ID
2602 *
2603 * Create a large action to hold software marker and update the switch rule
2604 * entry pointed by m_ent with newly created large action
2605 */
2606static int
2607ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2608		   u16 sw_marker, u16 l_id)
2609{
2610	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2611	struct ice_sw_rule_lg_act *lg_act;
2612	/* For software marker we need 3 large actions
2613	 * 1. FWD action: FWD TO VSI or VSI LIST
2614	 * 2. GENERIC VALUE action to hold the profile ID
2615	 * 3. GENERIC VALUE action to hold the software marker ID
2616	 */
2617	const u16 num_lg_acts = 3;
2618	u16 lg_act_size;
2619	u16 rules_size;
2620	int status;
2621	u32 act;
2622	u16 id;
2623
2624	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2625		return -EINVAL;
2626
2627	/* Create two back-to-back switch rules and submit them to the HW using
2628	 * one memory buffer:
2629	 *    1. Large Action
2630	 *    2. Look up Tx Rx
2631	 */
2632	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2633	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2634	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2635	if (!lg_act)
2636		return -ENOMEM;
2637
2638	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2639
2640	/* Fill in the first switch rule i.e. large action */
2641	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2642	lg_act->index = cpu_to_le16(l_id);
2643	lg_act->size = cpu_to_le16(num_lg_acts);
2644
2645	/* First action VSI forwarding or VSI list forwarding depending on how
2646	 * many VSIs
2647	 */
2648	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2649		m_ent->fltr_info.fwd_id.hw_vsi_id;
2650
2651	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2652	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2653	if (m_ent->vsi_count > 1)
2654		act |= ICE_LG_ACT_VSI_LIST;
2655	lg_act->act[0] = cpu_to_le32(act);
2656
2657	/* Second action descriptor type */
2658	act = ICE_LG_ACT_GENERIC;
2659
2660	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2661	lg_act->act[1] = cpu_to_le32(act);
2662
2663	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2664			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2665
2666	/* Third action Marker value */
2667	act |= ICE_LG_ACT_GENERIC;
2668	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
 
2669
2670	lg_act->act[2] = cpu_to_le32(act);
2671
2672	/* call the fill switch rule to fill the lookup Tx Rx structure */
2673	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2674			 ice_aqc_opc_update_sw_rules);
2675
2676	/* Update the action to point to the large action ID */
2677	act = ICE_SINGLE_ACT_PTR;
2678	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2679	rx_tx->act = cpu_to_le32(act);
2680
2681	/* Use the filter rule ID of the previously created rule with single
2682	 * act. Once the update happens, hardware will treat this as large
2683	 * action
2684	 */
2685	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2686
2687	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2688				 ice_aqc_opc_update_sw_rules, NULL);
2689	if (!status) {
2690		m_ent->lg_act_idx = l_id;
2691		m_ent->sw_marker_id = sw_marker;
2692	}
2693
2694	devm_kfree(ice_hw_to_dev(hw), lg_act);
2695	return status;
2696}
2697
2698/**
2699 * ice_create_vsi_list_map
2700 * @hw: pointer to the hardware structure
2701 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2702 * @num_vsi: number of VSI handles in the array
2703 * @vsi_list_id: VSI list ID generated as part of allocate resource
2704 *
2705 * Helper function to create a new entry of VSI list ID to VSI mapping
2706 * using the given VSI list ID
2707 */
2708static struct ice_vsi_list_map_info *
2709ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2710			u16 vsi_list_id)
2711{
2712	struct ice_switch_info *sw = hw->switch_info;
2713	struct ice_vsi_list_map_info *v_map;
2714	int i;
2715
2716	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2717	if (!v_map)
2718		return NULL;
2719
2720	v_map->vsi_list_id = vsi_list_id;
2721	v_map->ref_cnt = 1;
2722	for (i = 0; i < num_vsi; i++)
2723		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2724
2725	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2726	return v_map;
2727}
2728
2729/**
2730 * ice_update_vsi_list_rule
2731 * @hw: pointer to the hardware structure
2732 * @vsi_handle_arr: array of VSI handles to form a VSI list
2733 * @num_vsi: number of VSI handles in the array
2734 * @vsi_list_id: VSI list ID generated as part of allocate resource
2735 * @remove: Boolean value to indicate if this is a remove action
2736 * @opc: switch rules population command type - pass in the command opcode
2737 * @lkup_type: lookup type of the filter
2738 *
2739 * Call AQ command to add a new switch rule or update existing switch rule
2740 * using the given VSI list ID
2741 */
2742static int
2743ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2744			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2745			 enum ice_sw_lkup_type lkup_type)
2746{
2747	struct ice_sw_rule_vsi_list *s_rule;
2748	u16 s_rule_size;
2749	u16 rule_type;
2750	int status;
2751	int i;
2752
2753	if (!num_vsi)
2754		return -EINVAL;
2755
2756	if (lkup_type == ICE_SW_LKUP_MAC ||
2757	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2758	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2759	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2760	    lkup_type == ICE_SW_LKUP_PROMISC ||
2761	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2762	    lkup_type == ICE_SW_LKUP_DFLT)
2763		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2764			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2765	else if (lkup_type == ICE_SW_LKUP_VLAN)
2766		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2767			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2768	else
2769		return -EINVAL;
2770
2771	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2772	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2773	if (!s_rule)
2774		return -ENOMEM;
2775	for (i = 0; i < num_vsi; i++) {
2776		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2777			status = -EINVAL;
2778			goto exit;
2779		}
2780		/* AQ call requires hw_vsi_id(s) */
2781		s_rule->vsi[i] =
2782			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2783	}
2784
2785	s_rule->hdr.type = cpu_to_le16(rule_type);
2786	s_rule->number_vsi = cpu_to_le16(num_vsi);
2787	s_rule->index = cpu_to_le16(vsi_list_id);
2788
2789	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2790
2791exit:
2792	devm_kfree(ice_hw_to_dev(hw), s_rule);
2793	return status;
2794}
2795
2796/**
2797 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2798 * @hw: pointer to the HW struct
2799 * @vsi_handle_arr: array of VSI handles to form a VSI list
2800 * @num_vsi: number of VSI handles in the array
2801 * @vsi_list_id: stores the ID of the VSI list to be created
2802 * @lkup_type: switch rule filter's lookup type
2803 */
2804static int
2805ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2806			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2807{
2808	int status;
2809
2810	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2811					    ice_aqc_opc_alloc_res);
2812	if (status)
2813		return status;
2814
2815	/* Update the newly created VSI list to include the specified VSIs */
2816	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2817					*vsi_list_id, false,
2818					ice_aqc_opc_add_sw_rules, lkup_type);
2819}
2820
2821/**
2822 * ice_create_pkt_fwd_rule
2823 * @hw: pointer to the hardware structure
2824 * @f_entry: entry containing packet forwarding information
2825 *
2826 * Create switch rule with given filter information and add an entry
2827 * to the corresponding filter management list to track this switch rule
2828 * and VSI mapping
2829 */
2830static int
2831ice_create_pkt_fwd_rule(struct ice_hw *hw,
2832			struct ice_fltr_list_entry *f_entry)
2833{
2834	struct ice_fltr_mgmt_list_entry *fm_entry;
2835	struct ice_sw_rule_lkup_rx_tx *s_rule;
2836	enum ice_sw_lkup_type l_type;
2837	struct ice_sw_recipe *recp;
2838	int status;
2839
2840	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2841			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2842			      GFP_KERNEL);
2843	if (!s_rule)
2844		return -ENOMEM;
2845	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2846				GFP_KERNEL);
2847	if (!fm_entry) {
2848		status = -ENOMEM;
2849		goto ice_create_pkt_fwd_rule_exit;
2850	}
2851
2852	fm_entry->fltr_info = f_entry->fltr_info;
2853
2854	/* Initialize all the fields for the management entry */
2855	fm_entry->vsi_count = 1;
2856	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2857	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2858	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2859
2860	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2861			 ice_aqc_opc_add_sw_rules);
2862
2863	status = ice_aq_sw_rules(hw, s_rule,
2864				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2865				 ice_aqc_opc_add_sw_rules, NULL);
2866	if (status) {
2867		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2868		goto ice_create_pkt_fwd_rule_exit;
2869	}
2870
2871	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2872	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2873
2874	/* The book keeping entries will get removed when base driver
2875	 * calls remove filter AQ command
2876	 */
2877	l_type = fm_entry->fltr_info.lkup_type;
2878	recp = &hw->switch_info->recp_list[l_type];
2879	list_add(&fm_entry->list_entry, &recp->filt_rules);
2880
2881ice_create_pkt_fwd_rule_exit:
2882	devm_kfree(ice_hw_to_dev(hw), s_rule);
2883	return status;
2884}
2885
2886/**
2887 * ice_update_pkt_fwd_rule
2888 * @hw: pointer to the hardware structure
2889 * @f_info: filter information for switch rule
2890 *
2891 * Call AQ command to update a previously created switch rule with a
2892 * VSI list ID
2893 */
2894static int
2895ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2896{
2897	struct ice_sw_rule_lkup_rx_tx *s_rule;
2898	int status;
2899
2900	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2901			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2902			      GFP_KERNEL);
2903	if (!s_rule)
2904		return -ENOMEM;
2905
2906	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2907
2908	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2909
2910	/* Update switch rule with new rule set to forward VSI list */
2911	status = ice_aq_sw_rules(hw, s_rule,
2912				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2913				 ice_aqc_opc_update_sw_rules, NULL);
2914
2915	devm_kfree(ice_hw_to_dev(hw), s_rule);
2916	return status;
2917}
2918
2919/**
2920 * ice_update_sw_rule_bridge_mode
2921 * @hw: pointer to the HW struct
2922 *
2923 * Updates unicast switch filter rules based on VEB/VEPA mode
2924 */
2925int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2926{
2927	struct ice_switch_info *sw = hw->switch_info;
2928	struct ice_fltr_mgmt_list_entry *fm_entry;
2929	struct list_head *rule_head;
2930	struct mutex *rule_lock; /* Lock to protect filter rule list */
2931	int status = 0;
2932
2933	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2934	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2935
2936	mutex_lock(rule_lock);
2937	list_for_each_entry(fm_entry, rule_head, list_entry) {
2938		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2939		u8 *addr = fi->l_data.mac.mac_addr;
2940
2941		/* Update unicast Tx rules to reflect the selected
2942		 * VEB/VEPA mode
2943		 */
2944		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2945		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2946		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2947		     fi->fltr_act == ICE_FWD_TO_Q ||
2948		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2949			status = ice_update_pkt_fwd_rule(hw, fi);
2950			if (status)
2951				break;
2952		}
2953	}
2954
2955	mutex_unlock(rule_lock);
2956
2957	return status;
2958}
2959
2960/**
2961 * ice_add_update_vsi_list
2962 * @hw: pointer to the hardware structure
2963 * @m_entry: pointer to current filter management list entry
2964 * @cur_fltr: filter information from the book keeping entry
2965 * @new_fltr: filter information with the new VSI to be added
2966 *
2967 * Call AQ command to add or update previously created VSI list with new VSI.
2968 *
2969 * Helper function to do book keeping associated with adding filter information
2970 * The algorithm to do the book keeping is described below :
2971 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2972 *	if only one VSI has been added till now
2973 *		Allocate a new VSI list and add two VSIs
2974 *		to this list using switch rule command
2975 *		Update the previously created switch rule with the
2976 *		newly created VSI list ID
2977 *	if a VSI list was previously created
2978 *		Add the new VSI to the previously created VSI list set
2979 *		using the update switch rule command
2980 */
2981static int
2982ice_add_update_vsi_list(struct ice_hw *hw,
2983			struct ice_fltr_mgmt_list_entry *m_entry,
2984			struct ice_fltr_info *cur_fltr,
2985			struct ice_fltr_info *new_fltr)
2986{
2987	u16 vsi_list_id = 0;
2988	int status = 0;
2989
2990	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2991	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2992		return -EOPNOTSUPP;
2993
2994	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2995	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2996	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2997	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2998		return -EOPNOTSUPP;
2999
3000	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3001		/* Only one entry existed in the mapping and it was not already
3002		 * a part of a VSI list. So, create a VSI list with the old and
3003		 * new VSIs.
3004		 */
3005		struct ice_fltr_info tmp_fltr;
3006		u16 vsi_handle_arr[2];
3007
3008		/* A rule already exists with the new VSI being added */
3009		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3010			return -EEXIST;
3011
3012		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3013		vsi_handle_arr[1] = new_fltr->vsi_handle;
3014		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3015						  &vsi_list_id,
3016						  new_fltr->lkup_type);
3017		if (status)
3018			return status;
3019
3020		tmp_fltr = *new_fltr;
3021		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3022		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3023		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3024		/* Update the previous switch rule of "MAC forward to VSI" to
3025		 * "MAC fwd to VSI list"
3026		 */
3027		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3028		if (status)
3029			return status;
3030
3031		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3032		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3033		m_entry->vsi_list_info =
3034			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3035						vsi_list_id);
3036
3037		if (!m_entry->vsi_list_info)
3038			return -ENOMEM;
3039
3040		/* If this entry was large action then the large action needs
3041		 * to be updated to point to FWD to VSI list
3042		 */
3043		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3044			status =
3045			    ice_add_marker_act(hw, m_entry,
3046					       m_entry->sw_marker_id,
3047					       m_entry->lg_act_idx);
3048	} else {
3049		u16 vsi_handle = new_fltr->vsi_handle;
3050		enum ice_adminq_opc opcode;
3051
3052		if (!m_entry->vsi_list_info)
3053			return -EIO;
3054
3055		/* A rule already exists with the new VSI being added */
3056		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3057			return 0;
3058
3059		/* Update the previously created VSI list set with
3060		 * the new VSI ID passed in
3061		 */
3062		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3063		opcode = ice_aqc_opc_update_sw_rules;
3064
3065		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3066						  vsi_list_id, false, opcode,
3067						  new_fltr->lkup_type);
3068		/* update VSI list mapping info with new VSI ID */
3069		if (!status)
3070			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3071	}
3072	if (!status)
3073		m_entry->vsi_count++;
3074	return status;
3075}
3076
3077/**
3078 * ice_find_rule_entry - Search a rule entry
3079 * @hw: pointer to the hardware structure
3080 * @recp_id: lookup type for which the specified rule needs to be searched
3081 * @f_info: rule information
3082 *
3083 * Helper function to search for a given rule entry
3084 * Returns pointer to entry storing the rule if found
3085 */
3086static struct ice_fltr_mgmt_list_entry *
3087ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3088{
3089	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3090	struct ice_switch_info *sw = hw->switch_info;
3091	struct list_head *list_head;
3092
3093	list_head = &sw->recp_list[recp_id].filt_rules;
3094	list_for_each_entry(list_itr, list_head, list_entry) {
3095		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3096			    sizeof(f_info->l_data)) &&
3097		    f_info->flag == list_itr->fltr_info.flag) {
3098			ret = list_itr;
3099			break;
3100		}
3101	}
3102	return ret;
3103}
3104
3105/**
3106 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3107 * @hw: pointer to the hardware structure
3108 * @recp_id: lookup type for which VSI lists needs to be searched
3109 * @vsi_handle: VSI handle to be found in VSI list
3110 * @vsi_list_id: VSI list ID found containing vsi_handle
3111 *
3112 * Helper function to search a VSI list with single entry containing given VSI
3113 * handle element. This can be extended further to search VSI list with more
3114 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3115 */
3116struct ice_vsi_list_map_info *
3117ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3118			u16 *vsi_list_id)
3119{
3120	struct ice_vsi_list_map_info *map_info = NULL;
3121	struct ice_switch_info *sw = hw->switch_info;
3122	struct ice_fltr_mgmt_list_entry *list_itr;
3123	struct list_head *list_head;
3124
3125	list_head = &sw->recp_list[recp_id].filt_rules;
3126	list_for_each_entry(list_itr, list_head, list_entry) {
3127		if (list_itr->vsi_list_info) {
3128			map_info = list_itr->vsi_list_info;
3129			if (test_bit(vsi_handle, map_info->vsi_map)) {
3130				*vsi_list_id = map_info->vsi_list_id;
3131				return map_info;
3132			}
3133		}
3134	}
3135	return NULL;
3136}
3137
3138/**
3139 * ice_add_rule_internal - add rule for a given lookup type
3140 * @hw: pointer to the hardware structure
3141 * @recp_id: lookup type (recipe ID) for which rule has to be added
3142 * @f_entry: structure containing MAC forwarding information
3143 *
3144 * Adds or updates the rule lists for a given recipe
3145 */
3146static int
3147ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3148		      struct ice_fltr_list_entry *f_entry)
3149{
3150	struct ice_switch_info *sw = hw->switch_info;
3151	struct ice_fltr_info *new_fltr, *cur_fltr;
3152	struct ice_fltr_mgmt_list_entry *m_entry;
3153	struct mutex *rule_lock; /* Lock to protect filter rule list */
3154	int status = 0;
3155
3156	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3157		return -EINVAL;
3158	f_entry->fltr_info.fwd_id.hw_vsi_id =
3159		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3160
3161	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3162
3163	mutex_lock(rule_lock);
3164	new_fltr = &f_entry->fltr_info;
3165	if (new_fltr->flag & ICE_FLTR_RX)
3166		new_fltr->src = hw->port_info->lport;
3167	else if (new_fltr->flag & ICE_FLTR_TX)
3168		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3169
3170	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3171	if (!m_entry) {
3172		mutex_unlock(rule_lock);
3173		return ice_create_pkt_fwd_rule(hw, f_entry);
3174	}
3175
3176	cur_fltr = &m_entry->fltr_info;
3177	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3178	mutex_unlock(rule_lock);
3179
3180	return status;
3181}
3182
3183/**
3184 * ice_remove_vsi_list_rule
3185 * @hw: pointer to the hardware structure
3186 * @vsi_list_id: VSI list ID generated as part of allocate resource
3187 * @lkup_type: switch rule filter lookup type
3188 *
3189 * The VSI list should be emptied before this function is called to remove the
3190 * VSI list.
3191 */
3192static int
3193ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3194			 enum ice_sw_lkup_type lkup_type)
3195{
3196	struct ice_sw_rule_vsi_list *s_rule;
3197	u16 s_rule_size;
3198	int status;
3199
3200	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3201	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3202	if (!s_rule)
3203		return -ENOMEM;
3204
3205	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3206	s_rule->index = cpu_to_le16(vsi_list_id);
3207
3208	/* Free the vsi_list resource that we allocated. It is assumed that the
3209	 * list is empty at this point.
3210	 */
3211	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3212					    ice_aqc_opc_free_res);
3213
3214	devm_kfree(ice_hw_to_dev(hw), s_rule);
3215	return status;
3216}
3217
3218/**
3219 * ice_rem_update_vsi_list
3220 * @hw: pointer to the hardware structure
3221 * @vsi_handle: VSI handle of the VSI to remove
3222 * @fm_list: filter management entry for which the VSI list management needs to
3223 *           be done
3224 */
3225static int
3226ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3227			struct ice_fltr_mgmt_list_entry *fm_list)
3228{
3229	enum ice_sw_lkup_type lkup_type;
3230	u16 vsi_list_id;
3231	int status = 0;
3232
3233	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3234	    fm_list->vsi_count == 0)
3235		return -EINVAL;
3236
3237	/* A rule with the VSI being removed does not exist */
3238	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3239		return -ENOENT;
3240
3241	lkup_type = fm_list->fltr_info.lkup_type;
3242	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3243	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3244					  ice_aqc_opc_update_sw_rules,
3245					  lkup_type);
3246	if (status)
3247		return status;
3248
3249	fm_list->vsi_count--;
3250	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3251
3252	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3253		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3254		struct ice_vsi_list_map_info *vsi_list_info =
3255			fm_list->vsi_list_info;
3256		u16 rem_vsi_handle;
3257
3258		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3259						ICE_MAX_VSI);
3260		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3261			return -EIO;
3262
3263		/* Make sure VSI list is empty before removing it below */
3264		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3265						  vsi_list_id, true,
3266						  ice_aqc_opc_update_sw_rules,
3267						  lkup_type);
3268		if (status)
3269			return status;
3270
3271		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3272		tmp_fltr_info.fwd_id.hw_vsi_id =
3273			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3274		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3275		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3276		if (status) {
3277			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3278				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3279			return status;
3280		}
3281
3282		fm_list->fltr_info = tmp_fltr_info;
3283	}
3284
3285	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3286	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3287		struct ice_vsi_list_map_info *vsi_list_info =
3288			fm_list->vsi_list_info;
3289
3290		/* Remove the VSI list since it is no longer used */
3291		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3292		if (status) {
3293			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3294				  vsi_list_id, status);
3295			return status;
3296		}
3297
3298		list_del(&vsi_list_info->list_entry);
3299		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3300		fm_list->vsi_list_info = NULL;
3301	}
3302
3303	return status;
3304}
3305
3306/**
3307 * ice_remove_rule_internal - Remove a filter rule of a given type
3308 * @hw: pointer to the hardware structure
3309 * @recp_id: recipe ID for which the rule needs to removed
3310 * @f_entry: rule entry containing filter information
3311 */
3312static int
3313ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3314			 struct ice_fltr_list_entry *f_entry)
3315{
3316	struct ice_switch_info *sw = hw->switch_info;
3317	struct ice_fltr_mgmt_list_entry *list_elem;
3318	struct mutex *rule_lock; /* Lock to protect filter rule list */
3319	bool remove_rule = false;
3320	u16 vsi_handle;
3321	int status = 0;
3322
3323	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3324		return -EINVAL;
3325	f_entry->fltr_info.fwd_id.hw_vsi_id =
3326		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3327
3328	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3329	mutex_lock(rule_lock);
3330	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3331	if (!list_elem) {
3332		status = -ENOENT;
3333		goto exit;
3334	}
3335
3336	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3337		remove_rule = true;
3338	} else if (!list_elem->vsi_list_info) {
3339		status = -ENOENT;
3340		goto exit;
3341	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3342		/* a ref_cnt > 1 indicates that the vsi_list is being
3343		 * shared by multiple rules. Decrement the ref_cnt and
3344		 * remove this rule, but do not modify the list, as it
3345		 * is in-use by other rules.
3346		 */
3347		list_elem->vsi_list_info->ref_cnt--;
3348		remove_rule = true;
3349	} else {
3350		/* a ref_cnt of 1 indicates the vsi_list is only used
3351		 * by one rule. However, the original removal request is only
3352		 * for a single VSI. Update the vsi_list first, and only
3353		 * remove the rule if there are no further VSIs in this list.
3354		 */
3355		vsi_handle = f_entry->fltr_info.vsi_handle;
3356		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3357		if (status)
3358			goto exit;
3359		/* if VSI count goes to zero after updating the VSI list */
3360		if (list_elem->vsi_count == 0)
3361			remove_rule = true;
3362	}
3363
3364	if (remove_rule) {
3365		/* Remove the lookup rule */
3366		struct ice_sw_rule_lkup_rx_tx *s_rule;
3367
3368		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3369				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3370				      GFP_KERNEL);
3371		if (!s_rule) {
3372			status = -ENOMEM;
3373			goto exit;
3374		}
3375
3376		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3377				 ice_aqc_opc_remove_sw_rules);
3378
3379		status = ice_aq_sw_rules(hw, s_rule,
3380					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3381					 1, ice_aqc_opc_remove_sw_rules, NULL);
3382
3383		/* Remove a book keeping from the list */
3384		devm_kfree(ice_hw_to_dev(hw), s_rule);
3385
3386		if (status)
3387			goto exit;
3388
3389		list_del(&list_elem->list_entry);
3390		devm_kfree(ice_hw_to_dev(hw), list_elem);
3391	}
3392exit:
3393	mutex_unlock(rule_lock);
3394	return status;
3395}
3396
3397/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3398 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3399 * @hw: pointer to the hardware structure
3400 * @vlan_id: VLAN ID
3401 * @vsi_handle: check MAC filter for this VSI
3402 */
3403bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3404{
3405	struct ice_fltr_mgmt_list_entry *entry;
3406	struct list_head *rule_head;
3407	struct ice_switch_info *sw;
3408	struct mutex *rule_lock; /* Lock to protect filter rule list */
3409	u16 hw_vsi_id;
3410
3411	if (vlan_id > ICE_MAX_VLAN_ID)
3412		return false;
3413
3414	if (!ice_is_vsi_valid(hw, vsi_handle))
3415		return false;
3416
3417	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3418	sw = hw->switch_info;
3419	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3420	if (!rule_head)
3421		return false;
3422
3423	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3424	mutex_lock(rule_lock);
3425	list_for_each_entry(entry, rule_head, list_entry) {
3426		struct ice_fltr_info *f_info = &entry->fltr_info;
3427		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3428		struct ice_vsi_list_map_info *map_info;
3429
3430		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3431			continue;
3432
3433		if (f_info->flag != ICE_FLTR_TX ||
3434		    f_info->src_id != ICE_SRC_ID_VSI ||
3435		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3436			continue;
3437
3438		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3439		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3440		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3441			continue;
3442
3443		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3444			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3445				continue;
3446		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3447			/* If filter_action is FWD_TO_VSI_LIST, make sure
3448			 * that VSI being checked is part of VSI list
3449			 */
3450			if (entry->vsi_count == 1 &&
3451			    entry->vsi_list_info) {
3452				map_info = entry->vsi_list_info;
3453				if (!test_bit(vsi_handle, map_info->vsi_map))
3454					continue;
3455			}
3456		}
3457
3458		if (vlan_id == entry_vlan_id) {
3459			mutex_unlock(rule_lock);
3460			return true;
3461		}
3462	}
3463	mutex_unlock(rule_lock);
3464
3465	return false;
3466}
3467
3468/**
3469 * ice_add_mac - Add a MAC address based filter rule
3470 * @hw: pointer to the hardware structure
3471 * @m_list: list of MAC addresses and forwarding information
3472 */
3473int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3474{
3475	struct ice_fltr_list_entry *m_list_itr;
3476	int status = 0;
3477
3478	if (!m_list || !hw)
3479		return -EINVAL;
3480
3481	list_for_each_entry(m_list_itr, m_list, list_entry) {
3482		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3483		u16 vsi_handle;
3484		u16 hw_vsi_id;
3485
3486		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3487		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3488		if (!ice_is_vsi_valid(hw, vsi_handle))
3489			return -EINVAL;
3490		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3491		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3492		/* update the src in case it is VSI num */
3493		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3494			return -EINVAL;
3495		m_list_itr->fltr_info.src = hw_vsi_id;
3496		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3497		    is_zero_ether_addr(add))
3498			return -EINVAL;
3499
3500		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3501							   m_list_itr);
3502		if (m_list_itr->status)
3503			return m_list_itr->status;
3504	}
3505
3506	return status;
3507}
3508
3509/**
3510 * ice_add_vlan_internal - Add one VLAN based filter rule
3511 * @hw: pointer to the hardware structure
3512 * @f_entry: filter entry containing one VLAN information
3513 */
3514static int
3515ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3516{
3517	struct ice_switch_info *sw = hw->switch_info;
3518	struct ice_fltr_mgmt_list_entry *v_list_itr;
3519	struct ice_fltr_info *new_fltr, *cur_fltr;
3520	enum ice_sw_lkup_type lkup_type;
3521	u16 vsi_list_id = 0, vsi_handle;
3522	struct mutex *rule_lock; /* Lock to protect filter rule list */
3523	int status = 0;
3524
3525	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3526		return -EINVAL;
3527
3528	f_entry->fltr_info.fwd_id.hw_vsi_id =
3529		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3530	new_fltr = &f_entry->fltr_info;
3531
3532	/* VLAN ID should only be 12 bits */
3533	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3534		return -EINVAL;
3535
3536	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3537		return -EINVAL;
3538
3539	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3540	lkup_type = new_fltr->lkup_type;
3541	vsi_handle = new_fltr->vsi_handle;
3542	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3543	mutex_lock(rule_lock);
3544	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3545	if (!v_list_itr) {
3546		struct ice_vsi_list_map_info *map_info = NULL;
3547
3548		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3549			/* All VLAN pruning rules use a VSI list. Check if
3550			 * there is already a VSI list containing VSI that we
3551			 * want to add. If found, use the same vsi_list_id for
3552			 * this new VLAN rule or else create a new list.
3553			 */
3554			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3555							   vsi_handle,
3556							   &vsi_list_id);
3557			if (!map_info) {
3558				status = ice_create_vsi_list_rule(hw,
3559								  &vsi_handle,
3560								  1,
3561								  &vsi_list_id,
3562								  lkup_type);
3563				if (status)
3564					goto exit;
3565			}
3566			/* Convert the action to forwarding to a VSI list. */
3567			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3568			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3569		}
3570
3571		status = ice_create_pkt_fwd_rule(hw, f_entry);
3572		if (!status) {
3573			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3574							 new_fltr);
3575			if (!v_list_itr) {
3576				status = -ENOENT;
3577				goto exit;
3578			}
3579			/* reuse VSI list for new rule and increment ref_cnt */
3580			if (map_info) {
3581				v_list_itr->vsi_list_info = map_info;
3582				map_info->ref_cnt++;
3583			} else {
3584				v_list_itr->vsi_list_info =
3585					ice_create_vsi_list_map(hw, &vsi_handle,
3586								1, vsi_list_id);
3587			}
3588		}
3589	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3590		/* Update existing VSI list to add new VSI ID only if it used
3591		 * by one VLAN rule.
3592		 */
3593		cur_fltr = &v_list_itr->fltr_info;
3594		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3595						 new_fltr);
3596	} else {
3597		/* If VLAN rule exists and VSI list being used by this rule is
3598		 * referenced by more than 1 VLAN rule. Then create a new VSI
3599		 * list appending previous VSI with new VSI and update existing
3600		 * VLAN rule to point to new VSI list ID
3601		 */
3602		struct ice_fltr_info tmp_fltr;
3603		u16 vsi_handle_arr[2];
3604		u16 cur_handle;
3605
3606		/* Current implementation only supports reusing VSI list with
3607		 * one VSI count. We should never hit below condition
3608		 */
3609		if (v_list_itr->vsi_count > 1 &&
3610		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3611			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3612			status = -EIO;
3613			goto exit;
3614		}
3615
3616		cur_handle =
3617			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3618				       ICE_MAX_VSI);
3619
3620		/* A rule already exists with the new VSI being added */
3621		if (cur_handle == vsi_handle) {
3622			status = -EEXIST;
3623			goto exit;
3624		}
3625
3626		vsi_handle_arr[0] = cur_handle;
3627		vsi_handle_arr[1] = vsi_handle;
3628		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3629						  &vsi_list_id, lkup_type);
3630		if (status)
3631			goto exit;
3632
3633		tmp_fltr = v_list_itr->fltr_info;
3634		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3635		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3636		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3637		/* Update the previous switch rule to a new VSI list which
3638		 * includes current VSI that is requested
3639		 */
3640		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3641		if (status)
3642			goto exit;
3643
3644		/* before overriding VSI list map info. decrement ref_cnt of
3645		 * previous VSI list
3646		 */
3647		v_list_itr->vsi_list_info->ref_cnt--;
3648
3649		/* now update to newly created list */
3650		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3651		v_list_itr->vsi_list_info =
3652			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3653						vsi_list_id);
3654		v_list_itr->vsi_count++;
3655	}
3656
3657exit:
3658	mutex_unlock(rule_lock);
3659	return status;
3660}
3661
3662/**
3663 * ice_add_vlan - Add VLAN based filter rule
3664 * @hw: pointer to the hardware structure
3665 * @v_list: list of VLAN entries and forwarding information
3666 */
3667int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3668{
3669	struct ice_fltr_list_entry *v_list_itr;
3670
3671	if (!v_list || !hw)
3672		return -EINVAL;
3673
3674	list_for_each_entry(v_list_itr, v_list, list_entry) {
3675		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3676			return -EINVAL;
3677		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3678		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3679		if (v_list_itr->status)
3680			return v_list_itr->status;
3681	}
3682	return 0;
3683}
3684
3685/**
3686 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3687 * @hw: pointer to the hardware structure
3688 * @em_list: list of ether type MAC filter, MAC is optional
3689 *
3690 * This function requires the caller to populate the entries in
3691 * the filter list with the necessary fields (including flags to
3692 * indicate Tx or Rx rules).
3693 */
3694int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3695{
3696	struct ice_fltr_list_entry *em_list_itr;
3697
3698	if (!em_list || !hw)
3699		return -EINVAL;
3700
3701	list_for_each_entry(em_list_itr, em_list, list_entry) {
3702		enum ice_sw_lkup_type l_type =
3703			em_list_itr->fltr_info.lkup_type;
3704
3705		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3706		    l_type != ICE_SW_LKUP_ETHERTYPE)
3707			return -EINVAL;
3708
3709		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3710							    em_list_itr);
3711		if (em_list_itr->status)
3712			return em_list_itr->status;
3713	}
3714	return 0;
3715}
3716
3717/**
3718 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3719 * @hw: pointer to the hardware structure
3720 * @em_list: list of ethertype or ethertype MAC entries
3721 */
3722int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3723{
3724	struct ice_fltr_list_entry *em_list_itr, *tmp;
3725
3726	if (!em_list || !hw)
3727		return -EINVAL;
3728
3729	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3730		enum ice_sw_lkup_type l_type =
3731			em_list_itr->fltr_info.lkup_type;
3732
3733		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3734		    l_type != ICE_SW_LKUP_ETHERTYPE)
3735			return -EINVAL;
3736
3737		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3738							       em_list_itr);
3739		if (em_list_itr->status)
3740			return em_list_itr->status;
3741	}
3742	return 0;
3743}
3744
3745/**
3746 * ice_rem_sw_rule_info
3747 * @hw: pointer to the hardware structure
3748 * @rule_head: pointer to the switch list structure that we want to delete
3749 */
3750static void
3751ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3752{
3753	if (!list_empty(rule_head)) {
3754		struct ice_fltr_mgmt_list_entry *entry;
3755		struct ice_fltr_mgmt_list_entry *tmp;
3756
3757		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3758			list_del(&entry->list_entry);
3759			devm_kfree(ice_hw_to_dev(hw), entry);
3760		}
3761	}
3762}
3763
3764/**
3765 * ice_rem_adv_rule_info
3766 * @hw: pointer to the hardware structure
3767 * @rule_head: pointer to the switch list structure that we want to delete
3768 */
3769static void
3770ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3771{
3772	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3773	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3774
3775	if (list_empty(rule_head))
3776		return;
3777
3778	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3779		list_del(&lst_itr->list_entry);
3780		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3781		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3782	}
3783}
3784
3785/**
3786 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3787 * @pi: pointer to the port_info structure
3788 * @vsi_handle: VSI handle to set as default
3789 * @set: true to add the above mentioned switch rule, false to remove it
3790 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3791 *
3792 * add filter rule to set/unset given VSI as default VSI for the switch
3793 * (represented by swid)
3794 */
3795int
3796ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3797		 u8 direction)
3798{
3799	struct ice_fltr_list_entry f_list_entry;
3800	struct ice_fltr_info f_info;
3801	struct ice_hw *hw = pi->hw;
3802	u16 hw_vsi_id;
3803	int status;
3804
3805	if (!ice_is_vsi_valid(hw, vsi_handle))
3806		return -EINVAL;
3807
3808	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3809
3810	memset(&f_info, 0, sizeof(f_info));
3811
3812	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3813	f_info.flag = direction;
3814	f_info.fltr_act = ICE_FWD_TO_VSI;
3815	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3816	f_info.vsi_handle = vsi_handle;
3817
3818	if (f_info.flag & ICE_FLTR_RX) {
3819		f_info.src = hw->port_info->lport;
3820		f_info.src_id = ICE_SRC_ID_LPORT;
3821	} else if (f_info.flag & ICE_FLTR_TX) {
3822		f_info.src_id = ICE_SRC_ID_VSI;
3823		f_info.src = hw_vsi_id;
3824	}
3825	f_list_entry.fltr_info = f_info;
3826
3827	if (set)
3828		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3829					       &f_list_entry);
3830	else
3831		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3832						  &f_list_entry);
3833
3834	return status;
3835}
3836
3837/**
3838 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3839 * @fm_entry: filter entry to inspect
3840 * @vsi_handle: VSI handle to compare with filter info
3841 */
3842static bool
3843ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3844{
3845	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3846		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3847		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3848		 fm_entry->vsi_list_info &&
3849		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3850}
3851
3852/**
3853 * ice_check_if_dflt_vsi - check if VSI is default VSI
3854 * @pi: pointer to the port_info structure
3855 * @vsi_handle: vsi handle to check for in filter list
3856 * @rule_exists: indicates if there are any VSI's in the rule list
3857 *
3858 * checks if the VSI is in a default VSI list, and also indicates
3859 * if the default VSI list is empty
3860 */
3861bool
3862ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3863		      bool *rule_exists)
3864{
3865	struct ice_fltr_mgmt_list_entry *fm_entry;
3866	struct ice_sw_recipe *recp_list;
3867	struct list_head *rule_head;
3868	struct mutex *rule_lock; /* Lock to protect filter rule list */
3869	bool ret = false;
3870
3871	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3872	rule_lock = &recp_list->filt_rule_lock;
3873	rule_head = &recp_list->filt_rules;
3874
3875	mutex_lock(rule_lock);
3876
3877	if (rule_exists && !list_empty(rule_head))
3878		*rule_exists = true;
3879
3880	list_for_each_entry(fm_entry, rule_head, list_entry) {
3881		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3882			ret = true;
3883			break;
3884		}
3885	}
3886
3887	mutex_unlock(rule_lock);
3888
3889	return ret;
3890}
3891
3892/**
3893 * ice_remove_mac - remove a MAC address based filter rule
3894 * @hw: pointer to the hardware structure
3895 * @m_list: list of MAC addresses and forwarding information
3896 *
3897 * This function removes either a MAC filter rule or a specific VSI from a
3898 * VSI list for a multicast MAC address.
3899 *
3900 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3901 * be aware that this call will only work if all the entries passed into m_list
3902 * were added previously. It will not attempt to do a partial remove of entries
3903 * that were found.
3904 */
3905int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3906{
3907	struct ice_fltr_list_entry *list_itr, *tmp;
3908
3909	if (!m_list)
3910		return -EINVAL;
3911
3912	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3913		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3914		u16 vsi_handle;
3915
3916		if (l_type != ICE_SW_LKUP_MAC)
3917			return -EINVAL;
3918
3919		vsi_handle = list_itr->fltr_info.vsi_handle;
3920		if (!ice_is_vsi_valid(hw, vsi_handle))
3921			return -EINVAL;
3922
3923		list_itr->fltr_info.fwd_id.hw_vsi_id =
3924					ice_get_hw_vsi_num(hw, vsi_handle);
3925
3926		list_itr->status = ice_remove_rule_internal(hw,
3927							    ICE_SW_LKUP_MAC,
3928							    list_itr);
3929		if (list_itr->status)
3930			return list_itr->status;
3931	}
3932	return 0;
3933}
3934
3935/**
3936 * ice_remove_vlan - Remove VLAN based filter rule
3937 * @hw: pointer to the hardware structure
3938 * @v_list: list of VLAN entries and forwarding information
3939 */
3940int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3941{
3942	struct ice_fltr_list_entry *v_list_itr, *tmp;
3943
3944	if (!v_list || !hw)
3945		return -EINVAL;
3946
3947	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3948		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3949
3950		if (l_type != ICE_SW_LKUP_VLAN)
3951			return -EINVAL;
3952		v_list_itr->status = ice_remove_rule_internal(hw,
3953							      ICE_SW_LKUP_VLAN,
3954							      v_list_itr);
3955		if (v_list_itr->status)
3956			return v_list_itr->status;
3957	}
3958	return 0;
3959}
3960
3961/**
3962 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3963 * @hw: pointer to the hardware structure
3964 * @vsi_handle: VSI handle to remove filters from
3965 * @vsi_list_head: pointer to the list to add entry to
3966 * @fi: pointer to fltr_info of filter entry to copy & add
3967 *
3968 * Helper function, used when creating a list of filters to remove from
3969 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3970 * original filter entry, with the exception of fltr_info.fltr_act and
3971 * fltr_info.fwd_id fields. These are set such that later logic can
3972 * extract which VSI to remove the fltr from, and pass on that information.
3973 */
3974static int
3975ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3976			       struct list_head *vsi_list_head,
3977			       struct ice_fltr_info *fi)
3978{
3979	struct ice_fltr_list_entry *tmp;
3980
3981	/* this memory is freed up in the caller function
3982	 * once filters for this VSI are removed
3983	 */
3984	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3985	if (!tmp)
3986		return -ENOMEM;
3987
3988	tmp->fltr_info = *fi;
3989
3990	/* Overwrite these fields to indicate which VSI to remove filter from,
3991	 * so find and remove logic can extract the information from the
3992	 * list entries. Note that original entries will still have proper
3993	 * values.
3994	 */
3995	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3996	tmp->fltr_info.vsi_handle = vsi_handle;
3997	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3998
3999	list_add(&tmp->list_entry, vsi_list_head);
4000
4001	return 0;
4002}
4003
4004/**
4005 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4006 * @hw: pointer to the hardware structure
4007 * @vsi_handle: VSI handle to remove filters from
4008 * @lkup_list_head: pointer to the list that has certain lookup type filters
4009 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4010 *
4011 * Locates all filters in lkup_list_head that are used by the given VSI,
4012 * and adds COPIES of those entries to vsi_list_head (intended to be used
4013 * to remove the listed filters).
4014 * Note that this means all entries in vsi_list_head must be explicitly
4015 * deallocated by the caller when done with list.
4016 */
4017static int
4018ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4019			 struct list_head *lkup_list_head,
4020			 struct list_head *vsi_list_head)
4021{
4022	struct ice_fltr_mgmt_list_entry *fm_entry;
4023	int status = 0;
4024
4025	/* check to make sure VSI ID is valid and within boundary */
4026	if (!ice_is_vsi_valid(hw, vsi_handle))
4027		return -EINVAL;
4028
4029	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4030		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4031			continue;
4032
4033		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4034							vsi_list_head,
4035							&fm_entry->fltr_info);
4036		if (status)
4037			return status;
4038	}
4039	return status;
4040}
4041
4042/**
4043 * ice_determine_promisc_mask
4044 * @fi: filter info to parse
4045 *
4046 * Helper function to determine which ICE_PROMISC_ mask corresponds
4047 * to given filter into.
4048 */
4049static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4050{
4051	u16 vid = fi->l_data.mac_vlan.vlan_id;
4052	u8 *macaddr = fi->l_data.mac.mac_addr;
4053	bool is_tx_fltr = false;
4054	u8 promisc_mask = 0;
4055
4056	if (fi->flag == ICE_FLTR_TX)
4057		is_tx_fltr = true;
4058
4059	if (is_broadcast_ether_addr(macaddr))
4060		promisc_mask |= is_tx_fltr ?
4061			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4062	else if (is_multicast_ether_addr(macaddr))
4063		promisc_mask |= is_tx_fltr ?
4064			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4065	else if (is_unicast_ether_addr(macaddr))
4066		promisc_mask |= is_tx_fltr ?
4067			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4068	if (vid)
4069		promisc_mask |= is_tx_fltr ?
4070			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4071
4072	return promisc_mask;
4073}
4074
4075/**
4076 * ice_remove_promisc - Remove promisc based filter rules
4077 * @hw: pointer to the hardware structure
4078 * @recp_id: recipe ID for which the rule needs to removed
4079 * @v_list: list of promisc entries
4080 */
4081static int
4082ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4083{
4084	struct ice_fltr_list_entry *v_list_itr, *tmp;
4085
4086	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4087		v_list_itr->status =
4088			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4089		if (v_list_itr->status)
4090			return v_list_itr->status;
4091	}
4092	return 0;
4093}
4094
4095/**
4096 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4097 * @hw: pointer to the hardware structure
4098 * @vsi_handle: VSI handle to clear mode
4099 * @promisc_mask: mask of promiscuous config bits to clear
4100 * @vid: VLAN ID to clear VLAN promiscuous
4101 */
4102int
4103ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4104		      u16 vid)
4105{
4106	struct ice_switch_info *sw = hw->switch_info;
4107	struct ice_fltr_list_entry *fm_entry, *tmp;
4108	struct list_head remove_list_head;
4109	struct ice_fltr_mgmt_list_entry *itr;
4110	struct list_head *rule_head;
4111	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4112	int status = 0;
4113	u8 recipe_id;
4114
4115	if (!ice_is_vsi_valid(hw, vsi_handle))
4116		return -EINVAL;
4117
4118	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4119		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4120	else
4121		recipe_id = ICE_SW_LKUP_PROMISC;
4122
4123	rule_head = &sw->recp_list[recipe_id].filt_rules;
4124	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4125
4126	INIT_LIST_HEAD(&remove_list_head);
4127
4128	mutex_lock(rule_lock);
4129	list_for_each_entry(itr, rule_head, list_entry) {
4130		struct ice_fltr_info *fltr_info;
4131		u8 fltr_promisc_mask = 0;
4132
4133		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4134			continue;
4135		fltr_info = &itr->fltr_info;
4136
4137		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4138		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4139			continue;
4140
4141		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4142
4143		/* Skip if filter is not completely specified by given mask */
4144		if (fltr_promisc_mask & ~promisc_mask)
4145			continue;
4146
4147		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4148							&remove_list_head,
4149							fltr_info);
4150		if (status) {
4151			mutex_unlock(rule_lock);
4152			goto free_fltr_list;
4153		}
4154	}
4155	mutex_unlock(rule_lock);
4156
4157	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4158
4159free_fltr_list:
4160	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4161		list_del(&fm_entry->list_entry);
4162		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4163	}
4164
4165	return status;
4166}
4167
4168/**
4169 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4170 * @hw: pointer to the hardware structure
4171 * @vsi_handle: VSI handle to configure
4172 * @promisc_mask: mask of promiscuous config bits
4173 * @vid: VLAN ID to set VLAN promiscuous
4174 */
4175int
4176ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4177{
4178	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4179	struct ice_fltr_list_entry f_list_entry;
4180	struct ice_fltr_info new_fltr;
4181	bool is_tx_fltr;
4182	int status = 0;
4183	u16 hw_vsi_id;
4184	int pkt_type;
4185	u8 recipe_id;
4186
4187	if (!ice_is_vsi_valid(hw, vsi_handle))
4188		return -EINVAL;
4189	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4190
4191	memset(&new_fltr, 0, sizeof(new_fltr));
4192
4193	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4194		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4195		new_fltr.l_data.mac_vlan.vlan_id = vid;
4196		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4197	} else {
4198		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4199		recipe_id = ICE_SW_LKUP_PROMISC;
4200	}
4201
4202	/* Separate filters must be set for each direction/packet type
4203	 * combination, so we will loop over the mask value, store the
4204	 * individual type, and clear it out in the input mask as it
4205	 * is found.
4206	 */
4207	while (promisc_mask) {
4208		u8 *mac_addr;
4209
4210		pkt_type = 0;
4211		is_tx_fltr = false;
4212
4213		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4214			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4215			pkt_type = UCAST_FLTR;
4216		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4217			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4218			pkt_type = UCAST_FLTR;
4219			is_tx_fltr = true;
4220		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4221			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4222			pkt_type = MCAST_FLTR;
4223		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4224			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4225			pkt_type = MCAST_FLTR;
4226			is_tx_fltr = true;
4227		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4228			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4229			pkt_type = BCAST_FLTR;
4230		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4231			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4232			pkt_type = BCAST_FLTR;
4233			is_tx_fltr = true;
4234		}
4235
4236		/* Check for VLAN promiscuous flag */
4237		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4238			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4239		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4240			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4241			is_tx_fltr = true;
4242		}
4243
4244		/* Set filter DA based on packet type */
4245		mac_addr = new_fltr.l_data.mac.mac_addr;
4246		if (pkt_type == BCAST_FLTR) {
4247			eth_broadcast_addr(mac_addr);
4248		} else if (pkt_type == MCAST_FLTR ||
4249			   pkt_type == UCAST_FLTR) {
4250			/* Use the dummy ether header DA */
4251			ether_addr_copy(mac_addr, dummy_eth_header);
4252			if (pkt_type == MCAST_FLTR)
4253				mac_addr[0] |= 0x1;	/* Set multicast bit */
4254		}
4255
4256		/* Need to reset this to zero for all iterations */
4257		new_fltr.flag = 0;
4258		if (is_tx_fltr) {
4259			new_fltr.flag |= ICE_FLTR_TX;
4260			new_fltr.src = hw_vsi_id;
4261		} else {
4262			new_fltr.flag |= ICE_FLTR_RX;
4263			new_fltr.src = hw->port_info->lport;
4264		}
4265
4266		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4267		new_fltr.vsi_handle = vsi_handle;
4268		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4269		f_list_entry.fltr_info = new_fltr;
4270
4271		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4272		if (status)
4273			goto set_promisc_exit;
4274	}
4275
4276set_promisc_exit:
4277	return status;
4278}
4279
4280/**
4281 * ice_set_vlan_vsi_promisc
4282 * @hw: pointer to the hardware structure
4283 * @vsi_handle: VSI handle to configure
4284 * @promisc_mask: mask of promiscuous config bits
4285 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4286 *
4287 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4288 */
4289int
4290ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4291			 bool rm_vlan_promisc)
4292{
4293	struct ice_switch_info *sw = hw->switch_info;
4294	struct ice_fltr_list_entry *list_itr, *tmp;
4295	struct list_head vsi_list_head;
4296	struct list_head *vlan_head;
4297	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4298	u16 vlan_id;
4299	int status;
4300
4301	INIT_LIST_HEAD(&vsi_list_head);
4302	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4303	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4304	mutex_lock(vlan_lock);
4305	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4306					  &vsi_list_head);
4307	mutex_unlock(vlan_lock);
4308	if (status)
4309		goto free_fltr_list;
4310
4311	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4312		/* Avoid enabling or disabling VLAN zero twice when in double
4313		 * VLAN mode
4314		 */
4315		if (ice_is_dvm_ena(hw) &&
4316		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4317			continue;
4318
4319		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4320		if (rm_vlan_promisc)
4321			status = ice_clear_vsi_promisc(hw, vsi_handle,
4322						       promisc_mask, vlan_id);
4323		else
4324			status = ice_set_vsi_promisc(hw, vsi_handle,
4325						     promisc_mask, vlan_id);
4326		if (status && status != -EEXIST)
4327			break;
4328	}
4329
4330free_fltr_list:
4331	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4332		list_del(&list_itr->list_entry);
4333		devm_kfree(ice_hw_to_dev(hw), list_itr);
4334	}
4335	return status;
4336}
4337
4338/**
4339 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4340 * @hw: pointer to the hardware structure
4341 * @vsi_handle: VSI handle to remove filters from
4342 * @lkup: switch rule filter lookup type
4343 */
4344static void
4345ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4346			 enum ice_sw_lkup_type lkup)
4347{
4348	struct ice_switch_info *sw = hw->switch_info;
4349	struct ice_fltr_list_entry *fm_entry;
4350	struct list_head remove_list_head;
4351	struct list_head *rule_head;
4352	struct ice_fltr_list_entry *tmp;
4353	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4354	int status;
4355
4356	INIT_LIST_HEAD(&remove_list_head);
4357	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4358	rule_head = &sw->recp_list[lkup].filt_rules;
4359	mutex_lock(rule_lock);
4360	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4361					  &remove_list_head);
4362	mutex_unlock(rule_lock);
4363	if (status)
4364		goto free_fltr_list;
4365
4366	switch (lkup) {
4367	case ICE_SW_LKUP_MAC:
4368		ice_remove_mac(hw, &remove_list_head);
4369		break;
4370	case ICE_SW_LKUP_VLAN:
4371		ice_remove_vlan(hw, &remove_list_head);
4372		break;
4373	case ICE_SW_LKUP_PROMISC:
4374	case ICE_SW_LKUP_PROMISC_VLAN:
4375		ice_remove_promisc(hw, lkup, &remove_list_head);
4376		break;
4377	case ICE_SW_LKUP_MAC_VLAN:
4378	case ICE_SW_LKUP_ETHERTYPE:
4379	case ICE_SW_LKUP_ETHERTYPE_MAC:
4380	case ICE_SW_LKUP_DFLT:
4381	case ICE_SW_LKUP_LAST:
4382	default:
4383		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4384		break;
4385	}
4386
4387free_fltr_list:
4388	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4389		list_del(&fm_entry->list_entry);
4390		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4391	}
4392}
4393
4394/**
4395 * ice_remove_vsi_fltr - Remove all filters for a VSI
4396 * @hw: pointer to the hardware structure
4397 * @vsi_handle: VSI handle to remove filters from
4398 */
4399void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4400{
4401	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4402	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4403	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4404	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4405	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4406	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4407	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4408	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4409}
4410
4411/**
4412 * ice_alloc_res_cntr - allocating resource counter
4413 * @hw: pointer to the hardware structure
4414 * @type: type of resource
4415 * @alloc_shared: if set it is shared else dedicated
4416 * @num_items: number of entries requested for FD resource type
4417 * @counter_id: counter index returned by AQ call
4418 */
4419int
4420ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4421		   u16 *counter_id)
4422{
4423	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4424	u16 buf_len = __struct_size(buf);
4425	int status;
4426
 
 
 
 
 
 
4427	buf->num_elems = cpu_to_le16(num_items);
4428	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4429				    alloc_shared);
4430
4431	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
 
4432	if (status)
4433		return status;
4434
4435	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
 
 
 
4436	return status;
4437}
4438
4439/**
4440 * ice_free_res_cntr - free resource counter
4441 * @hw: pointer to the hardware structure
4442 * @type: type of resource
4443 * @alloc_shared: if set it is shared else dedicated
4444 * @num_items: number of entries to be freed for FD resource type
4445 * @counter_id: counter ID resource which needs to be freed
4446 */
4447int
4448ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4449		  u16 counter_id)
4450{
4451	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4452	u16 buf_len = __struct_size(buf);
4453	int status;
4454
 
 
 
 
 
 
4455	buf->num_elems = cpu_to_le16(num_items);
4456	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4457				    alloc_shared);
4458	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4459
4460	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
 
4461	if (status)
4462		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4463
4464	return status;
4465}
4466
4467#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4468	.prot_type	= id,			\
4469	.offs		= {__VA_ARGS__},	\
4470}
4471
4472/**
4473 * ice_share_res - set a resource as shared or dedicated
4474 * @hw: hw struct of original owner of resource
4475 * @type: resource type
4476 * @shared: is the resource being set to shared
4477 * @res_id: resource id (descriptor)
4478 */
4479int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4480{
4481	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4482	u16 buf_len = __struct_size(buf);
4483	u16 res_type;
4484	int status;
4485
4486	buf->num_elems = cpu_to_le16(1);
4487	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4488	if (shared)
4489		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4490
4491	buf->res_type = cpu_to_le16(res_type);
4492	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4493	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4494				       ice_aqc_opc_share_res);
4495	if (status)
4496		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4497			  type, res_id, shared ? "SHARED" : "DEDICATED");
4498
4499	return status;
4500}
4501
4502/* This is mapping table entry that maps every word within a given protocol
4503 * structure to the real byte offset as per the specification of that
4504 * protocol header.
4505 * for example dst address is 3 words in ethertype header and corresponding
4506 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4507 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4508 * matching entry describing its field. This needs to be updated if new
4509 * structure is added to that union.
4510 */
4511static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4512	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4513	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4514	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4515	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4516	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4517	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4518	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4519	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4520			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4521	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4522			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4523	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4524	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4525	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4526	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4527	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4528	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4529	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4530	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4531	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4532	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4533	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4534	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4535	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4536			   ICE_SOURCE_PORT_MDID_OFFSET,
4537			   ICE_PTYPE_MDID_OFFSET,
4538			   ICE_PACKET_LENGTH_MDID_OFFSET,
4539			   ICE_SOURCE_VSI_MDID_OFFSET,
4540			   ICE_PKT_VLAN_MDID_OFFSET,
4541			   ICE_PKT_TUNNEL_MDID_OFFSET,
4542			   ICE_PKT_TCP_MDID_OFFSET,
4543			   ICE_PKT_ERROR_MDID_OFFSET),
4544};
4545
4546static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4547	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4548	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4549	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4550	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4551	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4552	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4553	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4554	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4555	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4556	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4557	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4558	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4559	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4560	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4561	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4562	{ ICE_GTP,		ICE_UDP_OF_HW },
4563	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4564	{ ICE_PPPOE,		ICE_PPPOE_HW },
4565	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4566	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4567	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4568	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4569};
4570
4571/**
4572 * ice_find_recp - find a recipe
4573 * @hw: pointer to the hardware structure
4574 * @lkup_exts: extension sequence to match
4575 * @rinfo: information regarding the rule e.g. priority and action info
4576 *
4577 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4578 */
4579static u16
4580ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4581	      const struct ice_adv_rule_info *rinfo)
4582{
4583	bool refresh_required = true;
4584	struct ice_sw_recipe *recp;
4585	u8 i;
4586
4587	/* Walk through existing recipes to find a match */
4588	recp = hw->switch_info->recp_list;
4589	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4590		/* If recipe was not created for this ID, in SW bookkeeping,
4591		 * check if FW has an entry for this recipe. If the FW has an
4592		 * entry update it in our SW bookkeeping and continue with the
4593		 * matching.
4594		 */
4595		if (!recp[i].recp_created)
4596			if (ice_get_recp_frm_fw(hw,
4597						hw->switch_info->recp_list, i,
4598						&refresh_required))
4599				continue;
4600
4601		/* Skip inverse action recipes */
4602		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4603		    ICE_AQ_RECIPE_ACT_INV_ACT)
4604			continue;
4605
4606		/* if number of words we are looking for match */
4607		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4608			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4609			struct ice_fv_word *be = lkup_exts->fv_words;
4610			u16 *cr = recp[i].lkup_exts.field_mask;
4611			u16 *de = lkup_exts->field_mask;
4612			bool found = true;
4613			u8 pe, qr;
4614
4615			/* ar, cr, and qr are related to the recipe words, while
4616			 * be, de, and pe are related to the lookup words
4617			 */
4618			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4619				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4620				     qr++) {
4621					if (ar[qr].off == be[pe].off &&
4622					    ar[qr].prot_id == be[pe].prot_id &&
4623					    cr[qr] == de[pe])
4624						/* Found the "pe"th word in the
4625						 * given recipe
4626						 */
4627						break;
4628				}
4629				/* After walking through all the words in the
4630				 * "i"th recipe if "p"th word was not found then
4631				 * this recipe is not what we are looking for.
4632				 * So break out from this loop and try the next
4633				 * recipe
4634				 */
4635				if (qr >= recp[i].lkup_exts.n_val_words) {
4636					found = false;
4637					break;
4638				}
4639			}
4640			/* If for "i"th recipe the found was never set to false
4641			 * then it means we found our match
4642			 * Also tun type and *_pass_l2 of recipe needs to be
4643			 * checked
4644			 */
4645			if (found && recp[i].tun_type == rinfo->tun_type &&
4646			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4647			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4648				return i; /* Return the recipe ID */
4649		}
4650	}
4651	return ICE_MAX_NUM_RECIPES;
4652}
4653
4654/**
4655 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4656 *
4657 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4658 * supported protocol array record for outer vlan has to be modified to
4659 * reflect the value proper for DVM.
4660 */
4661void ice_change_proto_id_to_dvm(void)
4662{
4663	u8 i;
4664
4665	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4666		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4667		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4668			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4669}
4670
4671/**
4672 * ice_prot_type_to_id - get protocol ID from protocol type
4673 * @type: protocol type
4674 * @id: pointer to variable that will receive the ID
4675 *
4676 * Returns true if found, false otherwise
4677 */
4678static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4679{
4680	u8 i;
4681
4682	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4683		if (ice_prot_id_tbl[i].type == type) {
4684			*id = ice_prot_id_tbl[i].protocol_id;
4685			return true;
4686		}
4687	return false;
4688}
4689
4690/**
4691 * ice_fill_valid_words - count valid words
4692 * @rule: advanced rule with lookup information
4693 * @lkup_exts: byte offset extractions of the words that are valid
4694 *
4695 * calculate valid words in a lookup rule using mask value
4696 */
4697static u8
4698ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4699		     struct ice_prot_lkup_ext *lkup_exts)
4700{
4701	u8 j, word, prot_id, ret_val;
4702
4703	if (!ice_prot_type_to_id(rule->type, &prot_id))
4704		return 0;
4705
4706	word = lkup_exts->n_val_words;
4707
4708	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4709		if (((u16 *)&rule->m_u)[j] &&
4710		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4711			/* No more space to accommodate */
4712			if (word >= ICE_MAX_CHAIN_WORDS)
4713				return 0;
4714			lkup_exts->fv_words[word].off =
4715				ice_prot_ext[rule->type].offs[j];
4716			lkup_exts->fv_words[word].prot_id =
4717				ice_prot_id_tbl[rule->type].protocol_id;
4718			lkup_exts->field_mask[word] =
4719				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4720			word++;
4721		}
4722
4723	ret_val = word - lkup_exts->n_val_words;
4724	lkup_exts->n_val_words = word;
4725
4726	return ret_val;
4727}
4728
4729/**
4730 * ice_create_first_fit_recp_def - Create a recipe grouping
4731 * @hw: pointer to the hardware structure
4732 * @lkup_exts: an array of protocol header extractions
4733 * @rg_list: pointer to a list that stores new recipe groups
4734 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4735 *
4736 * Using first fit algorithm, take all the words that are still not done
4737 * and start grouping them in 4-word groups. Each group makes up one
4738 * recipe.
4739 */
4740static int
4741ice_create_first_fit_recp_def(struct ice_hw *hw,
4742			      struct ice_prot_lkup_ext *lkup_exts,
4743			      struct list_head *rg_list,
4744			      u8 *recp_cnt)
4745{
4746	struct ice_pref_recipe_group *grp = NULL;
4747	u8 j;
4748
4749	*recp_cnt = 0;
4750
4751	/* Walk through every word in the rule to check if it is not done. If so
4752	 * then this word needs to be part of a new recipe.
4753	 */
4754	for (j = 0; j < lkup_exts->n_val_words; j++)
4755		if (!test_bit(j, lkup_exts->done)) {
4756			if (!grp ||
4757			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4758				struct ice_recp_grp_entry *entry;
4759
4760				entry = devm_kzalloc(ice_hw_to_dev(hw),
4761						     sizeof(*entry),
4762						     GFP_KERNEL);
4763				if (!entry)
4764					return -ENOMEM;
4765				list_add(&entry->l_entry, rg_list);
4766				grp = &entry->r_group;
4767				(*recp_cnt)++;
4768			}
4769
4770			grp->pairs[grp->n_val_pairs].prot_id =
4771				lkup_exts->fv_words[j].prot_id;
4772			grp->pairs[grp->n_val_pairs].off =
4773				lkup_exts->fv_words[j].off;
4774			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4775			grp->n_val_pairs++;
4776		}
4777
4778	return 0;
4779}
4780
4781/**
4782 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4783 * @hw: pointer to the hardware structure
4784 * @fv_list: field vector with the extraction sequence information
4785 * @rg_list: recipe groupings with protocol-offset pairs
4786 *
4787 * Helper function to fill in the field vector indices for protocol-offset
4788 * pairs. These indexes are then ultimately programmed into a recipe.
4789 */
4790static int
4791ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4792		       struct list_head *rg_list)
4793{
4794	struct ice_sw_fv_list_entry *fv;
4795	struct ice_recp_grp_entry *rg;
4796	struct ice_fv_word *fv_ext;
4797
4798	if (list_empty(fv_list))
4799		return 0;
4800
4801	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4802			      list_entry);
4803	fv_ext = fv->fv_ptr->ew;
4804
4805	list_for_each_entry(rg, rg_list, l_entry) {
4806		u8 i;
4807
4808		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4809			struct ice_fv_word *pr;
4810			bool found = false;
4811			u16 mask;
4812			u8 j;
4813
4814			pr = &rg->r_group.pairs[i];
4815			mask = rg->r_group.mask[i];
4816
4817			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4818				if (fv_ext[j].prot_id == pr->prot_id &&
4819				    fv_ext[j].off == pr->off) {
4820					found = true;
4821
4822					/* Store index of field vector */
4823					rg->fv_idx[i] = j;
4824					rg->fv_mask[i] = mask;
4825					break;
4826				}
4827
4828			/* Protocol/offset could not be found, caller gave an
4829			 * invalid pair
4830			 */
4831			if (!found)
4832				return -EINVAL;
4833		}
4834	}
4835
4836	return 0;
4837}
4838
4839/**
4840 * ice_find_free_recp_res_idx - find free result indexes for recipe
4841 * @hw: pointer to hardware structure
4842 * @profiles: bitmap of profiles that will be associated with the new recipe
4843 * @free_idx: pointer to variable to receive the free index bitmap
4844 *
4845 * The algorithm used here is:
4846 *	1. When creating a new recipe, create a set P which contains all
4847 *	   Profiles that will be associated with our new recipe
4848 *
4849 *	2. For each Profile p in set P:
4850 *	    a. Add all recipes associated with Profile p into set R
4851 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4852 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4853 *		i. Or just assume they all have the same possible indexes:
4854 *			44, 45, 46, 47
4855 *			i.e., PossibleIndexes = 0x0000F00000000000
4856 *
4857 *	3. For each Recipe r in set R:
4858 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4859 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4860 *
4861 *	FreeIndexes will contain the bits indicating the indexes free for use,
4862 *      then the code needs to update the recipe[r].used_result_idx_bits to
4863 *      indicate which indexes were selected for use by this recipe.
4864 */
4865static u16
4866ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4867			   unsigned long *free_idx)
4868{
4869	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4870	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4871	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4872	u16 bit;
4873
4874	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4875	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4876
4877	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4878
4879	/* For each profile we are going to associate the recipe with, add the
4880	 * recipes that are associated with that profile. This will give us
4881	 * the set of recipes that our recipe may collide with. Also, determine
4882	 * what possible result indexes are usable given this set of profiles.
4883	 */
4884	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4885		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4886			  ICE_MAX_NUM_RECIPES);
4887		bitmap_and(possible_idx, possible_idx,
4888			   hw->switch_info->prof_res_bm[bit],
4889			   ICE_MAX_FV_WORDS);
4890	}
4891
4892	/* For each recipe that our new recipe may collide with, determine
4893	 * which indexes have been used.
4894	 */
4895	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4896		bitmap_or(used_idx, used_idx,
4897			  hw->switch_info->recp_list[bit].res_idxs,
4898			  ICE_MAX_FV_WORDS);
4899
4900	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4901
4902	/* return number of free indexes */
4903	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4904}
4905
4906/**
4907 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4908 * @hw: pointer to hardware structure
4909 * @rm: recipe management list entry
4910 * @profiles: bitmap of profiles that will be associated.
4911 */
4912static int
4913ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4914		  unsigned long *profiles)
4915{
4916	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4917	struct ice_aqc_recipe_content *content;
4918	struct ice_aqc_recipe_data_elem *tmp;
4919	struct ice_aqc_recipe_data_elem *buf;
4920	struct ice_recp_grp_entry *entry;
4921	u16 free_res_idx;
4922	u16 recipe_count;
4923	u8 chain_idx;
4924	u8 recps = 0;
4925	int status;
4926
4927	/* When more than one recipe are required, another recipe is needed to
4928	 * chain them together. Matching a tunnel metadata ID takes up one of
4929	 * the match fields in the chaining recipe reducing the number of
4930	 * chained recipes by one.
4931	 */
4932	 /* check number of free result indices */
4933	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4934	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4935
4936	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4937		  free_res_idx, rm->n_grp_count);
4938
4939	if (rm->n_grp_count > 1) {
4940		if (rm->n_grp_count > free_res_idx)
4941			return -ENOSPC;
4942
4943		rm->n_grp_count++;
4944	}
4945
4946	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4947		return -ENOSPC;
4948
4949	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4950	if (!tmp)
4951		return -ENOMEM;
4952
4953	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4954			   GFP_KERNEL);
4955	if (!buf) {
4956		status = -ENOMEM;
4957		goto err_mem;
4958	}
4959
4960	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4961	recipe_count = ICE_MAX_NUM_RECIPES;
4962	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4963				   NULL);
4964	if (status || recipe_count == 0)
4965		goto err_unroll;
4966
4967	/* Allocate the recipe resources, and configure them according to the
4968	 * match fields from protocol headers and extracted field vectors.
4969	 */
4970	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4971	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4972		u8 i;
4973
4974		status = ice_alloc_recipe(hw, &entry->rid);
4975		if (status)
4976			goto err_unroll;
4977
4978		content = &buf[recps].content;
4979
4980		/* Clear the result index of the located recipe, as this will be
4981		 * updated, if needed, later in the recipe creation process.
4982		 */
4983		tmp[0].content.result_indx = 0;
4984
4985		buf[recps] = tmp[0];
4986		buf[recps].recipe_indx = (u8)entry->rid;
4987		/* if the recipe is a non-root recipe RID should be programmed
4988		 * as 0 for the rules to be applied correctly.
4989		 */
4990		content->rid = 0;
4991		memset(&content->lkup_indx, 0,
4992		       sizeof(content->lkup_indx));
4993
4994		/* All recipes use look-up index 0 to match switch ID. */
4995		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4996		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
 
4997		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4998		 * to be 0
4999		 */
5000		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5001			content->lkup_indx[i] = 0x80;
5002			content->mask[i] = 0;
5003		}
5004
5005		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5006			content->lkup_indx[i + 1] = entry->fv_idx[i];
5007			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
 
5008		}
5009
5010		if (rm->n_grp_count > 1) {
5011			/* Checks to see if there really is a valid result index
5012			 * that can be used.
5013			 */
5014			if (chain_idx >= ICE_MAX_FV_WORDS) {
5015				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5016				status = -ENOSPC;
5017				goto err_unroll;
5018			}
5019
5020			entry->chain_idx = chain_idx;
5021			content->result_indx =
5022				ICE_AQ_RECIPE_RESULT_EN |
5023				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5024					   chain_idx);
5025			clear_bit(chain_idx, result_idx_bm);
5026			chain_idx = find_first_bit(result_idx_bm,
5027						   ICE_MAX_FV_WORDS);
5028		}
5029
5030		/* fill recipe dependencies */
5031		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5032			    ICE_MAX_NUM_RECIPES);
5033		set_bit(buf[recps].recipe_indx,
5034			(unsigned long *)buf[recps].recipe_bitmap);
5035		content->act_ctrl_fwd_priority = rm->priority;
5036
5037		if (rm->need_pass_l2)
5038			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5039
5040		if (rm->allow_pass_l2)
5041			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5042		recps++;
5043	}
5044
5045	if (rm->n_grp_count == 1) {
5046		rm->root_rid = buf[0].recipe_indx;
5047		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5048		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5049		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5050			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5051			       sizeof(buf[0].recipe_bitmap));
5052		} else {
5053			status = -EINVAL;
5054			goto err_unroll;
5055		}
5056		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5057		 * the recipe which is getting created if specified
5058		 * by user. Usually any advanced switch filter, which results
5059		 * into new extraction sequence, ended up creating a new recipe
5060		 * of type ROOT and usually recipes are associated with profiles
5061		 * Switch rule referreing newly created recipe, needs to have
5062		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5063		 * evaluation will not happen correctly. In other words, if
5064		 * switch rule to be evaluated on priority basis, then recipe
5065		 * needs to have priority, otherwise it will be evaluated last.
5066		 */
5067		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5068	} else {
5069		struct ice_recp_grp_entry *last_chain_entry;
5070		u16 rid, i;
5071
5072		/* Allocate the last recipe that will chain the outcomes of the
5073		 * other recipes together
5074		 */
5075		status = ice_alloc_recipe(hw, &rid);
5076		if (status)
5077			goto err_unroll;
5078
5079		content = &buf[recps].content;
5080
5081		buf[recps].recipe_indx = (u8)rid;
5082		content->rid = (u8)rid;
5083		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5084		/* the new entry created should also be part of rg_list to
5085		 * make sure we have complete recipe
5086		 */
5087		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5088						sizeof(*last_chain_entry),
5089						GFP_KERNEL);
5090		if (!last_chain_entry) {
5091			status = -ENOMEM;
5092			goto err_unroll;
5093		}
5094		last_chain_entry->rid = rid;
5095		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
 
5096		/* All recipes use look-up index 0 to match switch ID. */
5097		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5098		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
 
5099		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5100			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5101			content->mask[i] = 0;
 
5102		}
5103
5104		i = 1;
5105		/* update r_bitmap with the recp that is used for chaining */
5106		set_bit(rid, rm->r_bitmap);
5107		/* this is the recipe that chains all the other recipes so it
5108		 * should not have a chaining ID to indicate the same
5109		 */
5110		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5111		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5112			last_chain_entry->fv_idx[i] = entry->chain_idx;
5113			content->lkup_indx[i] = entry->chain_idx;
5114			content->mask[i++] = cpu_to_le16(0xFFFF);
5115			set_bit(entry->rid, rm->r_bitmap);
5116		}
5117		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5118		if (sizeof(buf[recps].recipe_bitmap) >=
5119		    sizeof(rm->r_bitmap)) {
5120			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5121			       sizeof(buf[recps].recipe_bitmap));
5122		} else {
5123			status = -EINVAL;
5124			goto err_unroll;
5125		}
5126		content->act_ctrl_fwd_priority = rm->priority;
5127
5128		recps++;
5129		rm->root_rid = (u8)rid;
5130	}
5131	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5132	if (status)
5133		goto err_unroll;
5134
5135	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5136	ice_release_change_lock(hw);
5137	if (status)
5138		goto err_unroll;
5139
5140	/* Every recipe that just got created add it to the recipe
5141	 * book keeping list
5142	 */
5143	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5144		struct ice_switch_info *sw = hw->switch_info;
5145		bool is_root, idx_found = false;
5146		struct ice_sw_recipe *recp;
5147		u16 idx, buf_idx = 0;
5148
5149		/* find buffer index for copying some data */
5150		for (idx = 0; idx < rm->n_grp_count; idx++)
5151			if (buf[idx].recipe_indx == entry->rid) {
5152				buf_idx = idx;
5153				idx_found = true;
5154			}
5155
5156		if (!idx_found) {
5157			status = -EIO;
5158			goto err_unroll;
5159		}
5160
5161		recp = &sw->recp_list[entry->rid];
5162		is_root = (rm->root_rid == entry->rid);
5163		recp->is_root = is_root;
5164
5165		recp->root_rid = entry->rid;
5166		recp->big_recp = (is_root && rm->n_grp_count > 1);
5167
5168		memcpy(&recp->ext_words, entry->r_group.pairs,
5169		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5170
5171		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5172		       sizeof(recp->r_bitmap));
5173
5174		/* Copy non-result fv index values and masks to recipe. This
5175		 * call will also update the result recipe bitmask.
5176		 */
5177		ice_collect_result_idx(&buf[buf_idx], recp);
5178
5179		/* for non-root recipes, also copy to the root, this allows
5180		 * easier matching of a complete chained recipe
5181		 */
5182		if (!is_root)
5183			ice_collect_result_idx(&buf[buf_idx],
5184					       &sw->recp_list[rm->root_rid]);
5185
5186		recp->n_ext_words = entry->r_group.n_val_pairs;
5187		recp->chain_idx = entry->chain_idx;
5188		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5189		recp->n_grp_count = rm->n_grp_count;
5190		recp->tun_type = rm->tun_type;
5191		recp->need_pass_l2 = rm->need_pass_l2;
5192		recp->allow_pass_l2 = rm->allow_pass_l2;
5193		recp->recp_created = true;
5194	}
5195	rm->root_buf = buf;
5196	kfree(tmp);
5197	return status;
5198
5199err_unroll:
5200err_mem:
5201	kfree(tmp);
5202	devm_kfree(ice_hw_to_dev(hw), buf);
5203	return status;
5204}
5205
5206/**
5207 * ice_create_recipe_group - creates recipe group
5208 * @hw: pointer to hardware structure
5209 * @rm: recipe management list entry
5210 * @lkup_exts: lookup elements
5211 */
5212static int
5213ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5214			struct ice_prot_lkup_ext *lkup_exts)
5215{
5216	u8 recp_count = 0;
5217	int status;
5218
5219	rm->n_grp_count = 0;
5220
5221	/* Create recipes for words that are marked not done by packing them
5222	 * as best fit.
5223	 */
5224	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5225					       &rm->rg_list, &recp_count);
5226	if (!status) {
5227		rm->n_grp_count += recp_count;
5228		rm->n_ext_words = lkup_exts->n_val_words;
5229		memcpy(&rm->ext_words, lkup_exts->fv_words,
5230		       sizeof(rm->ext_words));
5231		memcpy(rm->word_masks, lkup_exts->field_mask,
5232		       sizeof(rm->word_masks));
5233	}
5234
5235	return status;
5236}
5237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5238/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5239 * @hw: pointer to hardware structure
5240 * @rinfo: other information regarding the rule e.g. priority and action info
5241 * @bm: pointer to memory for returning the bitmap of field vectors
5242 */
5243static void
5244ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5245			 unsigned long *bm)
5246{
5247	enum ice_prof_type prof_type;
5248
5249	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5250
5251	switch (rinfo->tun_type) {
5252	case ICE_NON_TUN:
5253		prof_type = ICE_PROF_NON_TUN;
5254		break;
5255	case ICE_ALL_TUNNELS:
5256		prof_type = ICE_PROF_TUN_ALL;
5257		break;
5258	case ICE_SW_TUN_GENEVE:
5259	case ICE_SW_TUN_VXLAN:
5260		prof_type = ICE_PROF_TUN_UDP;
5261		break;
5262	case ICE_SW_TUN_NVGRE:
5263		prof_type = ICE_PROF_TUN_GRE;
5264		break;
5265	case ICE_SW_TUN_GTPU:
5266		prof_type = ICE_PROF_TUN_GTPU;
5267		break;
5268	case ICE_SW_TUN_GTPC:
5269		prof_type = ICE_PROF_TUN_GTPC;
5270		break;
5271	case ICE_SW_TUN_AND_NON_TUN:
5272	default:
5273		prof_type = ICE_PROF_ALL;
5274		break;
5275	}
5276
5277	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5278}
5279
5280/**
5281 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5282 * @hw: pointer to hardware structure
5283 * @lkups: lookup elements or match criteria for the advanced recipe, one
5284 *  structure per protocol header
5285 * @lkups_cnt: number of protocols
5286 * @rinfo: other information regarding the rule e.g. priority and action info
5287 * @rid: return the recipe ID of the recipe created
5288 */
5289static int
5290ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5291		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5292{
5293	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5294	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5295	struct ice_prot_lkup_ext *lkup_exts;
5296	struct ice_recp_grp_entry *r_entry;
5297	struct ice_sw_fv_list_entry *fvit;
5298	struct ice_recp_grp_entry *r_tmp;
5299	struct ice_sw_fv_list_entry *tmp;
5300	struct ice_sw_recipe *rm;
5301	int status = 0;
5302	u8 i;
5303
5304	if (!lkups_cnt)
5305		return -EINVAL;
5306
5307	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5308	if (!lkup_exts)
5309		return -ENOMEM;
5310
5311	/* Determine the number of words to be matched and if it exceeds a
5312	 * recipe's restrictions
5313	 */
5314	for (i = 0; i < lkups_cnt; i++) {
5315		u16 count;
5316
5317		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5318			status = -EIO;
5319			goto err_free_lkup_exts;
5320		}
5321
5322		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5323		if (!count) {
5324			status = -EIO;
5325			goto err_free_lkup_exts;
5326		}
5327	}
5328
5329	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5330	if (!rm) {
5331		status = -ENOMEM;
5332		goto err_free_lkup_exts;
5333	}
5334
5335	/* Get field vectors that contain fields extracted from all the protocol
5336	 * headers being programmed.
5337	 */
5338	INIT_LIST_HEAD(&rm->fv_list);
5339	INIT_LIST_HEAD(&rm->rg_list);
5340
5341	/* Get bitmap of field vectors (profiles) that are compatible with the
5342	 * rule request; only these will be searched in the subsequent call to
5343	 * ice_get_sw_fv_list.
5344	 */
5345	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5346
5347	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5348	if (status)
5349		goto err_unroll;
5350
 
 
 
 
 
 
 
5351	/* Group match words into recipes using preferred recipe grouping
5352	 * criteria.
5353	 */
5354	status = ice_create_recipe_group(hw, rm, lkup_exts);
5355	if (status)
5356		goto err_unroll;
5357
5358	/* set the recipe priority if specified */
5359	rm->priority = (u8)rinfo->priority;
5360
5361	rm->need_pass_l2 = rinfo->need_pass_l2;
5362	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5363
5364	/* Find offsets from the field vector. Pick the first one for all the
5365	 * recipes.
5366	 */
5367	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5368	if (status)
5369		goto err_unroll;
5370
5371	/* get bitmap of all profiles the recipe will be associated with */
5372	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5373	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5374		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5375		set_bit((u16)fvit->profile_id, profiles);
5376	}
5377
5378	/* Look for a recipe which matches our requested fv / mask list */
5379	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5380	if (*rid < ICE_MAX_NUM_RECIPES)
5381		/* Success if found a recipe that match the existing criteria */
5382		goto err_unroll;
5383
5384	rm->tun_type = rinfo->tun_type;
5385	/* Recipe we need does not exist, add a recipe */
5386	status = ice_add_sw_recipe(hw, rm, profiles);
5387	if (status)
5388		goto err_unroll;
5389
5390	/* Associate all the recipes created with all the profiles in the
5391	 * common field vector.
5392	 */
5393	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5394		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5395		u64 recp_assoc;
5396		u16 j;
5397
5398		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5399						      &recp_assoc, NULL);
5400		if (status)
5401			goto err_unroll;
5402
5403		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5404		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5405			  ICE_MAX_NUM_RECIPES);
5406		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5407		if (status)
5408			goto err_unroll;
5409
5410		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5411		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5412						      recp_assoc, NULL);
 
5413		ice_release_change_lock(hw);
5414
5415		if (status)
5416			goto err_unroll;
5417
5418		/* Update profile to recipe bitmap array */
5419		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5420			    ICE_MAX_NUM_RECIPES);
5421
5422		/* Update recipe to profile bitmap array */
5423		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5424			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5425	}
5426
5427	*rid = rm->root_rid;
5428	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5429	       sizeof(*lkup_exts));
5430err_unroll:
5431	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5432		list_del(&r_entry->l_entry);
5433		devm_kfree(ice_hw_to_dev(hw), r_entry);
5434	}
5435
5436	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5437		list_del(&fvit->list_entry);
5438		devm_kfree(ice_hw_to_dev(hw), fvit);
5439	}
5440
5441	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
 
 
5442	kfree(rm);
5443
5444err_free_lkup_exts:
5445	kfree(lkup_exts);
5446
5447	return status;
5448}
5449
5450/**
5451 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5452 *
5453 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5454 * @num_vlan: number of VLAN tags
5455 */
5456static struct ice_dummy_pkt_profile *
5457ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5458			  u32 num_vlan)
5459{
5460	struct ice_dummy_pkt_profile *profile;
5461	struct ice_dummy_pkt_offsets *offsets;
5462	u32 buf_len, off, etype_off, i;
5463	u8 *pkt;
5464
5465	if (num_vlan < 1 || num_vlan > 2)
5466		return ERR_PTR(-EINVAL);
5467
5468	off = num_vlan * VLAN_HLEN;
5469
5470	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5471		  dummy_pkt->offsets_len;
5472	offsets = kzalloc(buf_len, GFP_KERNEL);
5473	if (!offsets)
5474		return ERR_PTR(-ENOMEM);
5475
5476	offsets[0] = dummy_pkt->offsets[0];
5477	if (num_vlan == 2) {
5478		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5479		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5480	} else if (num_vlan == 1) {
5481		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5482	}
5483
5484	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5485		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5486		offsets[i + num_vlan].offset =
5487			dummy_pkt->offsets[i].offset + off;
5488	}
5489	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5490
5491	etype_off = dummy_pkt->offsets[1].offset;
5492
5493	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5494		  dummy_pkt->pkt_len;
5495	pkt = kzalloc(buf_len, GFP_KERNEL);
5496	if (!pkt) {
5497		kfree(offsets);
5498		return ERR_PTR(-ENOMEM);
5499	}
5500
5501	memcpy(pkt, dummy_pkt->pkt, etype_off);
5502	memcpy(pkt + etype_off,
5503	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5504	       off);
5505	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5506	       dummy_pkt->pkt_len - etype_off);
5507
5508	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5509	if (!profile) {
5510		kfree(offsets);
5511		kfree(pkt);
5512		return ERR_PTR(-ENOMEM);
5513	}
5514
5515	profile->offsets = offsets;
5516	profile->pkt = pkt;
5517	profile->pkt_len = buf_len;
5518	profile->match |= ICE_PKT_KMALLOC;
5519
5520	return profile;
5521}
5522
5523/**
5524 * ice_find_dummy_packet - find dummy packet
5525 *
5526 * @lkups: lookup elements or match criteria for the advanced recipe, one
5527 *	   structure per protocol header
5528 * @lkups_cnt: number of protocols
5529 * @tun_type: tunnel type
5530 *
5531 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5532 */
5533static const struct ice_dummy_pkt_profile *
5534ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5535		      enum ice_sw_tunnel_type tun_type)
5536{
5537	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5538	u32 match = 0, vlan_count = 0;
5539	u16 i;
5540
5541	switch (tun_type) {
5542	case ICE_SW_TUN_GTPC:
5543		match |= ICE_PKT_TUN_GTPC;
5544		break;
5545	case ICE_SW_TUN_GTPU:
5546		match |= ICE_PKT_TUN_GTPU;
5547		break;
5548	case ICE_SW_TUN_NVGRE:
5549		match |= ICE_PKT_TUN_NVGRE;
5550		break;
5551	case ICE_SW_TUN_GENEVE:
5552	case ICE_SW_TUN_VXLAN:
5553		match |= ICE_PKT_TUN_UDP;
5554		break;
5555	default:
5556		break;
5557	}
5558
5559	for (i = 0; i < lkups_cnt; i++) {
5560		if (lkups[i].type == ICE_UDP_ILOS)
5561			match |= ICE_PKT_INNER_UDP;
5562		else if (lkups[i].type == ICE_TCP_IL)
5563			match |= ICE_PKT_INNER_TCP;
5564		else if (lkups[i].type == ICE_IPV6_OFOS)
5565			match |= ICE_PKT_OUTER_IPV6;
5566		else if (lkups[i].type == ICE_VLAN_OFOS ||
5567			 lkups[i].type == ICE_VLAN_EX)
5568			vlan_count++;
5569		else if (lkups[i].type == ICE_VLAN_IN)
5570			vlan_count++;
5571		else if (lkups[i].type == ICE_ETYPE_OL &&
5572			 lkups[i].h_u.ethertype.ethtype_id ==
5573				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5574			 lkups[i].m_u.ethertype.ethtype_id ==
5575				cpu_to_be16(0xFFFF))
5576			match |= ICE_PKT_OUTER_IPV6;
5577		else if (lkups[i].type == ICE_ETYPE_IL &&
5578			 lkups[i].h_u.ethertype.ethtype_id ==
5579				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5580			 lkups[i].m_u.ethertype.ethtype_id ==
5581				cpu_to_be16(0xFFFF))
5582			match |= ICE_PKT_INNER_IPV6;
5583		else if (lkups[i].type == ICE_IPV6_IL)
5584			match |= ICE_PKT_INNER_IPV6;
5585		else if (lkups[i].type == ICE_GTP_NO_PAY)
5586			match |= ICE_PKT_GTP_NOPAY;
5587		else if (lkups[i].type == ICE_PPPOE) {
5588			match |= ICE_PKT_PPPOE;
5589			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5590			    htons(PPP_IPV6))
5591				match |= ICE_PKT_OUTER_IPV6;
5592		} else if (lkups[i].type == ICE_L2TPV3)
5593			match |= ICE_PKT_L2TPV3;
5594	}
5595
5596	while (ret->match && (match & ret->match) != ret->match)
5597		ret++;
5598
5599	if (vlan_count != 0)
5600		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5601
5602	return ret;
5603}
5604
5605/**
5606 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5607 *
5608 * @lkups: lookup elements or match criteria for the advanced recipe, one
5609 *	   structure per protocol header
5610 * @lkups_cnt: number of protocols
5611 * @s_rule: stores rule information from the match criteria
5612 * @profile: dummy packet profile (the template, its size and header offsets)
5613 */
5614static int
5615ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5616			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5617			  const struct ice_dummy_pkt_profile *profile)
5618{
5619	u8 *pkt;
5620	u16 i;
5621
5622	/* Start with a packet with a pre-defined/dummy content. Then, fill
5623	 * in the header values to be looked up or matched.
5624	 */
5625	pkt = s_rule->hdr_data;
5626
5627	memcpy(pkt, profile->pkt, profile->pkt_len);
5628
5629	for (i = 0; i < lkups_cnt; i++) {
5630		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5631		enum ice_protocol_type type;
5632		u16 offset = 0, len = 0, j;
5633		bool found = false;
5634
5635		/* find the start of this layer; it should be found since this
5636		 * was already checked when search for the dummy packet
5637		 */
5638		type = lkups[i].type;
5639		/* metadata isn't present in the packet */
5640		if (type == ICE_HW_METADATA)
5641			continue;
5642
5643		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5644			if (type == offsets[j].type) {
5645				offset = offsets[j].offset;
5646				found = true;
5647				break;
5648			}
5649		}
5650		/* this should never happen in a correct calling sequence */
5651		if (!found)
5652			return -EINVAL;
5653
5654		switch (lkups[i].type) {
5655		case ICE_MAC_OFOS:
5656		case ICE_MAC_IL:
5657			len = sizeof(struct ice_ether_hdr);
5658			break;
5659		case ICE_ETYPE_OL:
5660		case ICE_ETYPE_IL:
5661			len = sizeof(struct ice_ethtype_hdr);
5662			break;
5663		case ICE_VLAN_OFOS:
5664		case ICE_VLAN_EX:
5665		case ICE_VLAN_IN:
5666			len = sizeof(struct ice_vlan_hdr);
5667			break;
5668		case ICE_IPV4_OFOS:
5669		case ICE_IPV4_IL:
5670			len = sizeof(struct ice_ipv4_hdr);
5671			break;
5672		case ICE_IPV6_OFOS:
5673		case ICE_IPV6_IL:
5674			len = sizeof(struct ice_ipv6_hdr);
5675			break;
5676		case ICE_TCP_IL:
5677		case ICE_UDP_OF:
5678		case ICE_UDP_ILOS:
5679			len = sizeof(struct ice_l4_hdr);
5680			break;
5681		case ICE_SCTP_IL:
5682			len = sizeof(struct ice_sctp_hdr);
5683			break;
5684		case ICE_NVGRE:
5685			len = sizeof(struct ice_nvgre_hdr);
5686			break;
5687		case ICE_VXLAN:
5688		case ICE_GENEVE:
5689			len = sizeof(struct ice_udp_tnl_hdr);
5690			break;
5691		case ICE_GTP_NO_PAY:
5692		case ICE_GTP:
5693			len = sizeof(struct ice_udp_gtp_hdr);
5694			break;
5695		case ICE_PPPOE:
5696			len = sizeof(struct ice_pppoe_hdr);
5697			break;
5698		case ICE_L2TPV3:
5699			len = sizeof(struct ice_l2tpv3_sess_hdr);
5700			break;
5701		default:
5702			return -EINVAL;
5703		}
5704
5705		/* the length should be a word multiple */
5706		if (len % ICE_BYTES_PER_WORD)
5707			return -EIO;
5708
5709		/* We have the offset to the header start, the length, the
5710		 * caller's header values and mask. Use this information to
5711		 * copy the data into the dummy packet appropriately based on
5712		 * the mask. Note that we need to only write the bits as
5713		 * indicated by the mask to make sure we don't improperly write
5714		 * over any significant packet data.
5715		 */
5716		for (j = 0; j < len / sizeof(u16); j++) {
5717			u16 *ptr = (u16 *)(pkt + offset);
5718			u16 mask = lkups[i].m_raw[j];
5719
5720			if (!mask)
5721				continue;
5722
5723			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5724		}
5725	}
5726
5727	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5728
5729	return 0;
5730}
5731
5732/**
5733 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5734 * @hw: pointer to the hardware structure
5735 * @tun_type: tunnel type
5736 * @pkt: dummy packet to fill in
5737 * @offsets: offset info for the dummy packet
5738 */
5739static int
5740ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5741			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5742{
5743	u16 open_port, i;
5744
5745	switch (tun_type) {
5746	case ICE_SW_TUN_VXLAN:
5747		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5748			return -EIO;
5749		break;
5750	case ICE_SW_TUN_GENEVE:
5751		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5752			return -EIO;
5753		break;
5754	default:
5755		/* Nothing needs to be done for this tunnel type */
5756		return 0;
5757	}
5758
5759	/* Find the outer UDP protocol header and insert the port number */
5760	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5761		if (offsets[i].type == ICE_UDP_OF) {
5762			struct ice_l4_hdr *hdr;
5763			u16 offset;
5764
5765			offset = offsets[i].offset;
5766			hdr = (struct ice_l4_hdr *)&pkt[offset];
5767			hdr->dst_port = cpu_to_be16(open_port);
5768
5769			return 0;
5770		}
5771	}
5772
5773	return -EIO;
5774}
5775
5776/**
5777 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5778 * @hw: pointer to hw structure
5779 * @vlan_type: VLAN tag type
5780 * @pkt: dummy packet to fill in
5781 * @offsets: offset info for the dummy packet
5782 */
5783static int
5784ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5785			 const struct ice_dummy_pkt_offsets *offsets)
5786{
5787	u16 i;
5788
5789	/* Check if there is something to do */
5790	if (!vlan_type || !ice_is_dvm_ena(hw))
5791		return 0;
5792
5793	/* Find VLAN header and insert VLAN TPID */
5794	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5795		if (offsets[i].type == ICE_VLAN_OFOS ||
5796		    offsets[i].type == ICE_VLAN_EX) {
5797			struct ice_vlan_hdr *hdr;
5798			u16 offset;
5799
5800			offset = offsets[i].offset;
5801			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5802			hdr->type = cpu_to_be16(vlan_type);
5803
5804			return 0;
5805		}
5806	}
5807
5808	return -EIO;
5809}
5810
5811static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5812			    const struct ice_adv_rule_info *second)
5813{
5814	return first->sw_act.flag == second->sw_act.flag &&
5815	       first->tun_type == second->tun_type &&
5816	       first->vlan_type == second->vlan_type &&
5817	       first->src_vsi == second->src_vsi &&
5818	       first->need_pass_l2 == second->need_pass_l2 &&
5819	       first->allow_pass_l2 == second->allow_pass_l2;
5820}
5821
5822/**
5823 * ice_find_adv_rule_entry - Search a rule entry
5824 * @hw: pointer to the hardware structure
5825 * @lkups: lookup elements or match criteria for the advanced recipe, one
5826 *	   structure per protocol header
5827 * @lkups_cnt: number of protocols
5828 * @recp_id: recipe ID for which we are finding the rule
5829 * @rinfo: other information regarding the rule e.g. priority and action info
5830 *
5831 * Helper function to search for a given advance rule entry
5832 * Returns pointer to entry storing the rule if found
5833 */
5834static struct ice_adv_fltr_mgmt_list_entry *
5835ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5836			u16 lkups_cnt, u16 recp_id,
5837			struct ice_adv_rule_info *rinfo)
5838{
5839	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5840	struct ice_switch_info *sw = hw->switch_info;
5841	int i;
5842
5843	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5844			    list_entry) {
5845		bool lkups_matched = true;
5846
5847		if (lkups_cnt != list_itr->lkups_cnt)
5848			continue;
5849		for (i = 0; i < list_itr->lkups_cnt; i++)
5850			if (memcmp(&list_itr->lkups[i], &lkups[i],
5851				   sizeof(*lkups))) {
5852				lkups_matched = false;
5853				break;
5854			}
5855		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
 
 
5856		    lkups_matched)
5857			return list_itr;
5858	}
5859	return NULL;
5860}
5861
5862/**
5863 * ice_adv_add_update_vsi_list
5864 * @hw: pointer to the hardware structure
5865 * @m_entry: pointer to current adv filter management list entry
5866 * @cur_fltr: filter information from the book keeping entry
5867 * @new_fltr: filter information with the new VSI to be added
5868 *
5869 * Call AQ command to add or update previously created VSI list with new VSI.
5870 *
5871 * Helper function to do book keeping associated with adding filter information
5872 * The algorithm to do the booking keeping is described below :
5873 * When a VSI needs to subscribe to a given advanced filter
5874 *	if only one VSI has been added till now
5875 *		Allocate a new VSI list and add two VSIs
5876 *		to this list using switch rule command
5877 *		Update the previously created switch rule with the
5878 *		newly created VSI list ID
5879 *	if a VSI list was previously created
5880 *		Add the new VSI to the previously created VSI list set
5881 *		using the update switch rule command
5882 */
5883static int
5884ice_adv_add_update_vsi_list(struct ice_hw *hw,
5885			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5886			    struct ice_adv_rule_info *cur_fltr,
5887			    struct ice_adv_rule_info *new_fltr)
5888{
5889	u16 vsi_list_id = 0;
5890	int status;
5891
5892	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5893	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5894	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5895		return -EOPNOTSUPP;
5896
5897	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5898	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5899	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5900	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5901		return -EOPNOTSUPP;
5902
5903	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5904		 /* Only one entry existed in the mapping and it was not already
5905		  * a part of a VSI list. So, create a VSI list with the old and
5906		  * new VSIs.
5907		  */
5908		struct ice_fltr_info tmp_fltr;
5909		u16 vsi_handle_arr[2];
5910
5911		/* A rule already exists with the new VSI being added */
5912		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5913		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5914			return -EEXIST;
5915
5916		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5917		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5918		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5919						  &vsi_list_id,
5920						  ICE_SW_LKUP_LAST);
5921		if (status)
5922			return status;
5923
5924		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5925		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5926		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5927		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5928		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5929		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5930
5931		/* Update the previous switch rule of "forward to VSI" to
5932		 * "fwd to VSI list"
5933		 */
5934		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5935		if (status)
5936			return status;
5937
5938		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5939		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5940		m_entry->vsi_list_info =
5941			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5942						vsi_list_id);
5943	} else {
5944		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5945
5946		if (!m_entry->vsi_list_info)
5947			return -EIO;
5948
5949		/* A rule already exists with the new VSI being added */
5950		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5951			return 0;
5952
5953		/* Update the previously created VSI list set with
5954		 * the new VSI ID passed in
5955		 */
5956		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5957
5958		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5959						  vsi_list_id, false,
5960						  ice_aqc_opc_update_sw_rules,
5961						  ICE_SW_LKUP_LAST);
5962		/* update VSI list mapping info with new VSI ID */
5963		if (!status)
5964			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5965	}
5966	if (!status)
5967		m_entry->vsi_count++;
5968	return status;
5969}
5970
5971void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5972{
5973	lkup->type = ICE_HW_METADATA;
5974	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5975		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5976}
5977
5978void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5979{
5980	lkup->type = ICE_HW_METADATA;
5981	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5982		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5983}
5984
5985void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5986{
5987	lkup->type = ICE_HW_METADATA;
5988	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5989		cpu_to_be16(ICE_PKT_VLAN_MASK);
5990}
5991
5992void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5993{
5994	lkup->type = ICE_HW_METADATA;
5995	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5996}
5997
5998/**
5999 * ice_add_adv_rule - helper function to create an advanced switch rule
6000 * @hw: pointer to the hardware structure
6001 * @lkups: information on the words that needs to be looked up. All words
6002 * together makes one recipe
6003 * @lkups_cnt: num of entries in the lkups array
6004 * @rinfo: other information related to the rule that needs to be programmed
6005 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6006 *               ignored is case of error.
6007 *
6008 * This function can program only 1 rule at a time. The lkups is used to
6009 * describe the all the words that forms the "lookup" portion of the recipe.
6010 * These words can span multiple protocols. Callers to this function need to
6011 * pass in a list of protocol headers with lookup information along and mask
6012 * that determines which words are valid from the given protocol header.
6013 * rinfo describes other information related to this rule such as forwarding
6014 * IDs, priority of this rule, etc.
6015 */
6016int
6017ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6018		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6019		 struct ice_rule_query_data *added_entry)
6020{
6021	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6022	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6023	const struct ice_dummy_pkt_profile *profile;
6024	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6025	struct list_head *rule_head;
6026	struct ice_switch_info *sw;
6027	u16 word_cnt;
6028	u32 act = 0;
6029	int status;
6030	u8 q_rgn;
6031
6032	/* Initialize profile to result index bitmap */
6033	if (!hw->switch_info->prof_res_bm_init) {
6034		hw->switch_info->prof_res_bm_init = 1;
6035		ice_init_prof_result_bm(hw);
6036	}
6037
6038	if (!lkups_cnt)
6039		return -EINVAL;
6040
6041	/* get # of words we need to match */
6042	word_cnt = 0;
6043	for (i = 0; i < lkups_cnt; i++) {
6044		u16 j;
6045
6046		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6047			if (lkups[i].m_raw[j])
6048				word_cnt++;
6049	}
6050
6051	if (!word_cnt)
6052		return -EINVAL;
6053
6054	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6055		return -ENOSPC;
6056
6057	/* locate a dummy packet */
6058	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6059	if (IS_ERR(profile))
6060		return PTR_ERR(profile);
6061
6062	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6063	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6064	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6065	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6066	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6067	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6068		status = -EIO;
6069		goto free_pkt_profile;
6070	}
6071
6072	vsi_handle = rinfo->sw_act.vsi_handle;
6073	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6074		status =  -EINVAL;
6075		goto free_pkt_profile;
6076	}
6077
6078	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6079	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6080	    rinfo->sw_act.fltr_act == ICE_NOP) {
6081		rinfo->sw_act.fwd_id.hw_vsi_id =
6082			ice_get_hw_vsi_num(hw, vsi_handle);
6083	}
6084
6085	if (rinfo->src_vsi)
6086		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6087	else
6088		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6089
6090	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6091	if (status)
6092		goto free_pkt_profile;
6093	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6094	if (m_entry) {
6095		/* we have to add VSI to VSI_LIST and increment vsi_count.
6096		 * Also Update VSI list so that we can change forwarding rule
6097		 * if the rule already exists, we will check if it exists with
6098		 * same vsi_id, if not then add it to the VSI list if it already
6099		 * exists if not then create a VSI list and add the existing VSI
6100		 * ID and the new VSI ID to the list
6101		 * We will add that VSI to the list
6102		 */
6103		status = ice_adv_add_update_vsi_list(hw, m_entry,
6104						     &m_entry->rule_info,
6105						     rinfo);
6106		if (added_entry) {
6107			added_entry->rid = rid;
6108			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6109			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6110		}
6111		goto free_pkt_profile;
6112	}
6113	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6114	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6115	if (!s_rule) {
6116		status = -ENOMEM;
6117		goto free_pkt_profile;
6118	}
6119
6120	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6121		if (!rinfo->flags_info.act_valid) {
6122			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6123			act |= ICE_SINGLE_ACT_LB_ENABLE;
6124		} else {
6125			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6126							ICE_SINGLE_ACT_LB_ENABLE);
6127		}
6128	}
6129
6130	switch (rinfo->sw_act.fltr_act) {
6131	case ICE_FWD_TO_VSI:
6132		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6133				  rinfo->sw_act.fwd_id.hw_vsi_id);
6134		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6135		break;
6136	case ICE_FWD_TO_Q:
6137		act |= ICE_SINGLE_ACT_TO_Q;
6138		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6139				  rinfo->sw_act.fwd_id.q_id);
6140		break;
6141	case ICE_FWD_TO_QGRP:
6142		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6143			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6144		act |= ICE_SINGLE_ACT_TO_Q;
6145		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6146				  rinfo->sw_act.fwd_id.q_id);
6147		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
 
6148		break;
6149	case ICE_DROP_PACKET:
6150		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6151		       ICE_SINGLE_ACT_VALID_BIT;
6152		break;
6153	case ICE_MIRROR_PACKET:
6154		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6155		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157		break;
6158	case ICE_NOP:
6159		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6160				  rinfo->sw_act.fwd_id.hw_vsi_id);
6161		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6162		break;
6163	default:
6164		status = -EIO;
6165		goto err_ice_add_adv_rule;
6166	}
6167
6168	/* If there is no matching criteria for direction there
6169	 * is only one difference between Rx and Tx:
6170	 * - get switch id base on VSI number from source field (Tx)
6171	 * - get switch id base on port number (Rx)
6172	 *
6173	 * If matching on direction metadata is chose rule direction is
6174	 * extracted from type value set here.
 
6175	 */
6176	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6177		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6178		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6179	} else {
6180		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6181		s_rule->src = cpu_to_le16(hw->port_info->lport);
 
 
 
6182	}
6183
6184	s_rule->recipe_id = cpu_to_le16(rid);
6185	s_rule->act = cpu_to_le32(act);
6186
6187	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6188	if (status)
6189		goto err_ice_add_adv_rule;
6190
6191	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6192					 profile->offsets);
6193	if (status)
6194		goto err_ice_add_adv_rule;
 
 
 
 
6195
6196	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6197					  s_rule->hdr_data,
6198					  profile->offsets);
6199	if (status)
6200		goto err_ice_add_adv_rule;
 
 
6201
6202	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6203				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6204				 NULL);
6205	if (status)
6206		goto err_ice_add_adv_rule;
6207	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6208				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6209				GFP_KERNEL);
6210	if (!adv_fltr) {
6211		status = -ENOMEM;
6212		goto err_ice_add_adv_rule;
6213	}
6214
6215	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6216				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6217	if (!adv_fltr->lkups) {
6218		status = -ENOMEM;
6219		goto err_ice_add_adv_rule;
6220	}
6221
6222	adv_fltr->lkups_cnt = lkups_cnt;
6223	adv_fltr->rule_info = *rinfo;
6224	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6225	sw = hw->switch_info;
6226	sw->recp_list[rid].adv_rule = true;
6227	rule_head = &sw->recp_list[rid].filt_rules;
6228
6229	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6230		adv_fltr->vsi_count = 1;
6231
6232	/* Add rule entry to book keeping list */
6233	list_add(&adv_fltr->list_entry, rule_head);
6234	if (added_entry) {
6235		added_entry->rid = rid;
6236		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6237		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6238	}
6239err_ice_add_adv_rule:
6240	if (status && adv_fltr) {
6241		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6242		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6243	}
6244
6245	kfree(s_rule);
6246
6247free_pkt_profile:
6248	if (profile->match & ICE_PKT_KMALLOC) {
6249		kfree(profile->offsets);
6250		kfree(profile->pkt);
6251		kfree(profile);
6252	}
6253
6254	return status;
6255}
6256
6257/**
6258 * ice_replay_vsi_fltr - Replay filters for requested VSI
6259 * @hw: pointer to the hardware structure
6260 * @vsi_handle: driver VSI handle
6261 * @recp_id: Recipe ID for which rules need to be replayed
6262 * @list_head: list for which filters need to be replayed
6263 *
6264 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6265 * It is required to pass valid VSI handle.
6266 */
6267static int
6268ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6269		    struct list_head *list_head)
6270{
6271	struct ice_fltr_mgmt_list_entry *itr;
6272	int status = 0;
6273	u16 hw_vsi_id;
6274
6275	if (list_empty(list_head))
6276		return status;
6277	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6278
6279	list_for_each_entry(itr, list_head, list_entry) {
6280		struct ice_fltr_list_entry f_entry;
6281
6282		f_entry.fltr_info = itr->fltr_info;
6283		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6284		    itr->fltr_info.vsi_handle == vsi_handle) {
6285			/* update the src in case it is VSI num */
6286			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6287				f_entry.fltr_info.src = hw_vsi_id;
6288			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6289			if (status)
6290				goto end;
6291			continue;
6292		}
6293		if (!itr->vsi_list_info ||
6294		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6295			continue;
6296		/* Clearing it so that the logic can add it back */
6297		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6298		f_entry.fltr_info.vsi_handle = vsi_handle;
6299		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6300		/* update the src in case it is VSI num */
6301		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6302			f_entry.fltr_info.src = hw_vsi_id;
6303		if (recp_id == ICE_SW_LKUP_VLAN)
6304			status = ice_add_vlan_internal(hw, &f_entry);
6305		else
6306			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6307		if (status)
6308			goto end;
6309	}
6310end:
6311	return status;
6312}
6313
6314/**
6315 * ice_adv_rem_update_vsi_list
6316 * @hw: pointer to the hardware structure
6317 * @vsi_handle: VSI handle of the VSI to remove
6318 * @fm_list: filter management entry for which the VSI list management needs to
6319 *	     be done
6320 */
6321static int
6322ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6323			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6324{
6325	struct ice_vsi_list_map_info *vsi_list_info;
6326	enum ice_sw_lkup_type lkup_type;
6327	u16 vsi_list_id;
6328	int status;
6329
6330	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6331	    fm_list->vsi_count == 0)
6332		return -EINVAL;
6333
6334	/* A rule with the VSI being removed does not exist */
6335	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6336		return -ENOENT;
6337
6338	lkup_type = ICE_SW_LKUP_LAST;
6339	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6340	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6341					  ice_aqc_opc_update_sw_rules,
6342					  lkup_type);
6343	if (status)
6344		return status;
6345
6346	fm_list->vsi_count--;
6347	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6348	vsi_list_info = fm_list->vsi_list_info;
6349	if (fm_list->vsi_count == 1) {
6350		struct ice_fltr_info tmp_fltr;
6351		u16 rem_vsi_handle;
6352
6353		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6354						ICE_MAX_VSI);
6355		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6356			return -EIO;
6357
6358		/* Make sure VSI list is empty before removing it below */
6359		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6360						  vsi_list_id, true,
6361						  ice_aqc_opc_update_sw_rules,
6362						  lkup_type);
6363		if (status)
6364			return status;
6365
6366		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6367		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6368		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6369		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6370		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6371		tmp_fltr.fwd_id.hw_vsi_id =
6372			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6373		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6374			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6375		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6376
6377		/* Update the previous switch rule of "MAC forward to VSI" to
6378		 * "MAC fwd to VSI list"
6379		 */
6380		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6381		if (status) {
6382			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6383				  tmp_fltr.fwd_id.hw_vsi_id, status);
6384			return status;
6385		}
6386		fm_list->vsi_list_info->ref_cnt--;
6387
6388		/* Remove the VSI list since it is no longer used */
6389		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6390		if (status) {
6391			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6392				  vsi_list_id, status);
6393			return status;
6394		}
6395
6396		list_del(&vsi_list_info->list_entry);
6397		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6398		fm_list->vsi_list_info = NULL;
6399	}
6400
6401	return status;
6402}
6403
6404/**
6405 * ice_rem_adv_rule - removes existing advanced switch rule
6406 * @hw: pointer to the hardware structure
6407 * @lkups: information on the words that needs to be looked up. All words
6408 *         together makes one recipe
6409 * @lkups_cnt: num of entries in the lkups array
6410 * @rinfo: Its the pointer to the rule information for the rule
6411 *
6412 * This function can be used to remove 1 rule at a time. The lkups is
6413 * used to describe all the words that forms the "lookup" portion of the
6414 * rule. These words can span multiple protocols. Callers to this function
6415 * need to pass in a list of protocol headers with lookup information along
6416 * and mask that determines which words are valid from the given protocol
6417 * header. rinfo describes other information related to this rule such as
6418 * forwarding IDs, priority of this rule, etc.
6419 */
6420static int
6421ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6422		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6423{
6424	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6425	struct ice_prot_lkup_ext lkup_exts;
6426	bool remove_rule = false;
6427	struct mutex *rule_lock; /* Lock to protect filter rule list */
6428	u16 i, rid, vsi_handle;
6429	int status = 0;
6430
6431	memset(&lkup_exts, 0, sizeof(lkup_exts));
6432	for (i = 0; i < lkups_cnt; i++) {
6433		u16 count;
6434
6435		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6436			return -EIO;
6437
6438		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6439		if (!count)
6440			return -EIO;
6441	}
6442
6443	rid = ice_find_recp(hw, &lkup_exts, rinfo);
 
 
 
 
 
 
 
6444	/* If did not find a recipe that match the existing criteria */
6445	if (rid == ICE_MAX_NUM_RECIPES)
6446		return -EINVAL;
6447
6448	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6449	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6450	/* the rule is already removed */
6451	if (!list_elem)
6452		return 0;
6453	mutex_lock(rule_lock);
6454	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6455		remove_rule = true;
6456	} else if (list_elem->vsi_count > 1) {
6457		remove_rule = false;
6458		vsi_handle = rinfo->sw_act.vsi_handle;
6459		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6460	} else {
6461		vsi_handle = rinfo->sw_act.vsi_handle;
6462		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6463		if (status) {
6464			mutex_unlock(rule_lock);
6465			return status;
6466		}
6467		if (list_elem->vsi_count == 0)
6468			remove_rule = true;
6469	}
6470	mutex_unlock(rule_lock);
6471	if (remove_rule) {
6472		struct ice_sw_rule_lkup_rx_tx *s_rule;
6473		u16 rule_buf_sz;
6474
6475		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6476		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6477		if (!s_rule)
6478			return -ENOMEM;
6479		s_rule->act = 0;
6480		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6481		s_rule->hdr_len = 0;
6482		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6483					 rule_buf_sz, 1,
6484					 ice_aqc_opc_remove_sw_rules, NULL);
6485		if (!status || status == -ENOENT) {
6486			struct ice_switch_info *sw = hw->switch_info;
6487
6488			mutex_lock(rule_lock);
6489			list_del(&list_elem->list_entry);
6490			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6491			devm_kfree(ice_hw_to_dev(hw), list_elem);
6492			mutex_unlock(rule_lock);
6493			if (list_empty(&sw->recp_list[rid].filt_rules))
6494				sw->recp_list[rid].adv_rule = false;
6495		}
6496		kfree(s_rule);
6497	}
6498	return status;
6499}
6500
6501/**
6502 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6503 * @hw: pointer to the hardware structure
6504 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6505 *
6506 * This function is used to remove 1 rule at a time. The removal is based on
6507 * the remove_entry parameter. This function will remove rule for a given
6508 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6509 */
6510int
6511ice_rem_adv_rule_by_id(struct ice_hw *hw,
6512		       struct ice_rule_query_data *remove_entry)
6513{
6514	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6515	struct list_head *list_head;
6516	struct ice_adv_rule_info rinfo;
6517	struct ice_switch_info *sw;
6518
6519	sw = hw->switch_info;
6520	if (!sw->recp_list[remove_entry->rid].recp_created)
6521		return -EINVAL;
6522	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6523	list_for_each_entry(list_itr, list_head, list_entry) {
6524		if (list_itr->rule_info.fltr_rule_id ==
6525		    remove_entry->rule_id) {
6526			rinfo = list_itr->rule_info;
6527			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6528			return ice_rem_adv_rule(hw, list_itr->lkups,
6529						list_itr->lkups_cnt, &rinfo);
6530		}
6531	}
6532	/* either list is empty or unable to find rule */
6533	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6534}
6535
6536/**
6537 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6538 * @hw: pointer to the hardware structure
6539 * @vsi_handle: driver VSI handle
6540 * @list_head: list for which filters need to be replayed
6541 *
6542 * Replay the advanced rule for the given VSI.
6543 */
6544static int
6545ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6546			struct list_head *list_head)
6547{
6548	struct ice_rule_query_data added_entry = { 0 };
6549	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6550	int status = 0;
6551
6552	if (list_empty(list_head))
6553		return status;
6554	list_for_each_entry(adv_fltr, list_head, list_entry) {
6555		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6556		u16 lk_cnt = adv_fltr->lkups_cnt;
6557
6558		if (vsi_handle != rinfo->sw_act.vsi_handle)
6559			continue;
6560		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6561					  &added_entry);
6562		if (status)
6563			break;
6564	}
6565	return status;
6566}
6567
6568/**
6569 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6570 * @hw: pointer to the hardware structure
6571 * @vsi_handle: driver VSI handle
6572 *
6573 * Replays filters for requested VSI via vsi_handle.
6574 */
6575int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6576{
6577	struct ice_switch_info *sw = hw->switch_info;
6578	int status;
6579	u8 i;
6580
6581	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6582		struct list_head *head;
6583
6584		head = &sw->recp_list[i].filt_replay_rules;
6585		if (!sw->recp_list[i].adv_rule)
6586			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6587		else
6588			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6589		if (status)
6590			return status;
6591	}
6592	return status;
6593}
6594
6595/**
6596 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6597 * @hw: pointer to the HW struct
6598 *
6599 * Deletes the filter replay rules.
6600 */
6601void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6602{
6603	struct ice_switch_info *sw = hw->switch_info;
6604	u8 i;
6605
6606	if (!sw)
6607		return;
6608
6609	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6610		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6611			struct list_head *l_head;
6612
6613			l_head = &sw->recp_list[i].filt_replay_rules;
6614			if (!sw->recp_list[i].adv_rule)
6615				ice_rem_sw_rule_info(hw, l_head);
6616			else
6617				ice_rem_adv_rule_info(hw, l_head);
6618		}
6619	}
6620}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
   6
   7#define ICE_ETH_DA_OFFSET		0
   8#define ICE_ETH_ETHTYPE_OFFSET		12
   9#define ICE_ETH_VLAN_TCI_OFFSET		14
  10#define ICE_MAX_VLAN_ID			0xFFF
  11#define ICE_IPV6_ETHER_ID		0x86DD
  12
  13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  14 * struct to configure any switch filter rules.
  15 * {DA (6 bytes), SA(6 bytes),
  16 * Ether type (2 bytes for header without VLAN tag) OR
  17 * VLAN tag (4 bytes for header with VLAN tag) }
  18 *
  19 * Word on Hardcoded values
  20 * byte 0 = 0x2: to identify it as locally administered DA MAC
  21 * byte 6 = 0x2: to identify it as locally administered SA MAC
  22 * byte 12 = 0x81 & byte 13 = 0x00:
  23 *	In case of VLAN filter first two bytes defines ether type (0x8100)
  24 *	and remaining two bytes are placeholder for programming a given VLAN ID
  25 *	In case of Ether type filter it is treated as header without VLAN tag
  26 *	and byte 12 and 13 is used to program a given Ether type instead
  27 */
  28#define DUMMY_ETH_HDR_LEN		16
  29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  30							0x2, 0, 0, 0, 0, 0,
  31							0x81, 0, 0, 0};
  32
  33enum {
  34	ICE_PKT_OUTER_IPV6	= BIT(0),
  35	ICE_PKT_TUN_GTPC	= BIT(1),
  36	ICE_PKT_TUN_GTPU	= BIT(2),
  37	ICE_PKT_TUN_NVGRE	= BIT(3),
  38	ICE_PKT_TUN_UDP		= BIT(4),
  39	ICE_PKT_INNER_IPV6	= BIT(5),
  40	ICE_PKT_INNER_TCP	= BIT(6),
  41	ICE_PKT_INNER_UDP	= BIT(7),
  42	ICE_PKT_GTP_NOPAY	= BIT(8),
  43	ICE_PKT_KMALLOC		= BIT(9),
  44	ICE_PKT_PPPOE		= BIT(10),
  45	ICE_PKT_L2TPV3		= BIT(11),
  46};
  47
  48struct ice_dummy_pkt_offsets {
  49	enum ice_protocol_type type;
  50	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  51};
  52
  53struct ice_dummy_pkt_profile {
  54	const struct ice_dummy_pkt_offsets *offsets;
  55	const u8 *pkt;
  56	u32 match;
  57	u16 pkt_len;
  58	u16 offsets_len;
  59};
  60
  61#define ICE_DECLARE_PKT_OFFSETS(type)					\
  62	static const struct ice_dummy_pkt_offsets			\
  63	ice_dummy_##type##_packet_offsets[]
  64
  65#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  66	static const u8 ice_dummy_##type##_packet[]
  67
  68#define ICE_PKT_PROFILE(type, m) {					\
  69	.match		= (m),						\
  70	.pkt		= ice_dummy_##type##_packet,			\
  71	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  72	.offsets	= ice_dummy_##type##_packet_offsets,		\
  73	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  74}
  75
  76ICE_DECLARE_PKT_OFFSETS(vlan) = {
  77	{ ICE_VLAN_OFOS,        12 },
  78};
  79
  80ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  81	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  82};
  83
  84ICE_DECLARE_PKT_OFFSETS(qinq) = {
  85	{ ICE_VLAN_EX,          12 },
  86	{ ICE_VLAN_IN,          16 },
  87};
  88
  89ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  90	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  91	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  92};
  93
  94ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  95	{ ICE_MAC_OFOS,		0 },
  96	{ ICE_ETYPE_OL,		12 },
  97	{ ICE_IPV4_OFOS,	14 },
  98	{ ICE_NVGRE,		34 },
  99	{ ICE_MAC_IL,		42 },
 100	{ ICE_ETYPE_IL,		54 },
 101	{ ICE_IPV4_IL,		56 },
 102	{ ICE_TCP_IL,		76 },
 103	{ ICE_PROTOCOL_LAST,	0 },
 104};
 105
 106ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 107	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 108	0x00, 0x00, 0x00, 0x00,
 109	0x00, 0x00, 0x00, 0x00,
 110
 111	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 112
 113	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 114	0x00, 0x00, 0x00, 0x00,
 115	0x00, 0x2F, 0x00, 0x00,
 116	0x00, 0x00, 0x00, 0x00,
 117	0x00, 0x00, 0x00, 0x00,
 118
 119	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 120	0x00, 0x00, 0x00, 0x00,
 121
 122	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 123	0x00, 0x00, 0x00, 0x00,
 124	0x00, 0x00, 0x00, 0x00,
 125
 126	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 127
 128	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 129	0x00, 0x00, 0x00, 0x00,
 130	0x00, 0x06, 0x00, 0x00,
 131	0x00, 0x00, 0x00, 0x00,
 132	0x00, 0x00, 0x00, 0x00,
 133
 134	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 135	0x00, 0x00, 0x00, 0x00,
 136	0x00, 0x00, 0x00, 0x00,
 137	0x50, 0x02, 0x20, 0x00,
 138	0x00, 0x00, 0x00, 0x00
 139};
 140
 141ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 142	{ ICE_MAC_OFOS,		0 },
 143	{ ICE_ETYPE_OL,		12 },
 144	{ ICE_IPV4_OFOS,	14 },
 145	{ ICE_NVGRE,		34 },
 146	{ ICE_MAC_IL,		42 },
 147	{ ICE_ETYPE_IL,		54 },
 148	{ ICE_IPV4_IL,		56 },
 149	{ ICE_UDP_ILOS,		76 },
 150	{ ICE_PROTOCOL_LAST,	0 },
 151};
 152
 153ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 154	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 155	0x00, 0x00, 0x00, 0x00,
 156	0x00, 0x00, 0x00, 0x00,
 157
 158	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 159
 160	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 161	0x00, 0x00, 0x00, 0x00,
 162	0x00, 0x2F, 0x00, 0x00,
 163	0x00, 0x00, 0x00, 0x00,
 164	0x00, 0x00, 0x00, 0x00,
 165
 166	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 167	0x00, 0x00, 0x00, 0x00,
 168
 169	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 170	0x00, 0x00, 0x00, 0x00,
 171	0x00, 0x00, 0x00, 0x00,
 172
 173	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 174
 175	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 176	0x00, 0x00, 0x00, 0x00,
 177	0x00, 0x11, 0x00, 0x00,
 178	0x00, 0x00, 0x00, 0x00,
 179	0x00, 0x00, 0x00, 0x00,
 180
 181	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 182	0x00, 0x08, 0x00, 0x00,
 183};
 184
 185ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 186	{ ICE_MAC_OFOS,		0 },
 187	{ ICE_ETYPE_OL,		12 },
 188	{ ICE_IPV4_OFOS,	14 },
 189	{ ICE_UDP_OF,		34 },
 190	{ ICE_VXLAN,		42 },
 191	{ ICE_GENEVE,		42 },
 192	{ ICE_VXLAN_GPE,	42 },
 193	{ ICE_MAC_IL,		50 },
 194	{ ICE_ETYPE_IL,		62 },
 195	{ ICE_IPV4_IL,		64 },
 196	{ ICE_TCP_IL,		84 },
 197	{ ICE_PROTOCOL_LAST,	0 },
 198};
 199
 200ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 201	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 202	0x00, 0x00, 0x00, 0x00,
 203	0x00, 0x00, 0x00, 0x00,
 204
 205	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 206
 207	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 208	0x00, 0x01, 0x00, 0x00,
 209	0x40, 0x11, 0x00, 0x00,
 210	0x00, 0x00, 0x00, 0x00,
 211	0x00, 0x00, 0x00, 0x00,
 212
 213	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 214	0x00, 0x46, 0x00, 0x00,
 215
 216	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 217	0x00, 0x00, 0x00, 0x00,
 218
 219	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 220	0x00, 0x00, 0x00, 0x00,
 221	0x00, 0x00, 0x00, 0x00,
 222
 223	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 224
 225	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 226	0x00, 0x01, 0x00, 0x00,
 227	0x40, 0x06, 0x00, 0x00,
 228	0x00, 0x00, 0x00, 0x00,
 229	0x00, 0x00, 0x00, 0x00,
 230
 231	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 232	0x00, 0x00, 0x00, 0x00,
 233	0x00, 0x00, 0x00, 0x00,
 234	0x50, 0x02, 0x20, 0x00,
 235	0x00, 0x00, 0x00, 0x00
 236};
 237
 238ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 239	{ ICE_MAC_OFOS,		0 },
 240	{ ICE_ETYPE_OL,		12 },
 241	{ ICE_IPV4_OFOS,	14 },
 242	{ ICE_UDP_OF,		34 },
 243	{ ICE_VXLAN,		42 },
 244	{ ICE_GENEVE,		42 },
 245	{ ICE_VXLAN_GPE,	42 },
 246	{ ICE_MAC_IL,		50 },
 247	{ ICE_ETYPE_IL,		62 },
 248	{ ICE_IPV4_IL,		64 },
 249	{ ICE_UDP_ILOS,		84 },
 250	{ ICE_PROTOCOL_LAST,	0 },
 251};
 252
 253ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 254	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 255	0x00, 0x00, 0x00, 0x00,
 256	0x00, 0x00, 0x00, 0x00,
 257
 258	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 259
 260	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 261	0x00, 0x01, 0x00, 0x00,
 262	0x00, 0x11, 0x00, 0x00,
 263	0x00, 0x00, 0x00, 0x00,
 264	0x00, 0x00, 0x00, 0x00,
 265
 266	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 267	0x00, 0x3a, 0x00, 0x00,
 268
 269	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 270	0x00, 0x00, 0x00, 0x00,
 271
 272	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 273	0x00, 0x00, 0x00, 0x00,
 274	0x00, 0x00, 0x00, 0x00,
 275
 276	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 277
 278	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 279	0x00, 0x01, 0x00, 0x00,
 280	0x00, 0x11, 0x00, 0x00,
 281	0x00, 0x00, 0x00, 0x00,
 282	0x00, 0x00, 0x00, 0x00,
 283
 284	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 285	0x00, 0x08, 0x00, 0x00,
 286};
 287
 288ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 289	{ ICE_MAC_OFOS,		0 },
 290	{ ICE_ETYPE_OL,		12 },
 291	{ ICE_IPV4_OFOS,	14 },
 292	{ ICE_NVGRE,		34 },
 293	{ ICE_MAC_IL,		42 },
 294	{ ICE_ETYPE_IL,		54 },
 295	{ ICE_IPV6_IL,		56 },
 296	{ ICE_TCP_IL,		96 },
 297	{ ICE_PROTOCOL_LAST,	0 },
 298};
 299
 300ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 301	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 302	0x00, 0x00, 0x00, 0x00,
 303	0x00, 0x00, 0x00, 0x00,
 304
 305	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 306
 307	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 308	0x00, 0x00, 0x00, 0x00,
 309	0x00, 0x2F, 0x00, 0x00,
 310	0x00, 0x00, 0x00, 0x00,
 311	0x00, 0x00, 0x00, 0x00,
 312
 313	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 314	0x00, 0x00, 0x00, 0x00,
 315
 316	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 317	0x00, 0x00, 0x00, 0x00,
 318	0x00, 0x00, 0x00, 0x00,
 319
 320	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 321
 322	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 323	0x00, 0x08, 0x06, 0x40,
 324	0x00, 0x00, 0x00, 0x00,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331	0x00, 0x00, 0x00, 0x00,
 332
 333	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 334	0x00, 0x00, 0x00, 0x00,
 335	0x00, 0x00, 0x00, 0x00,
 336	0x50, 0x02, 0x20, 0x00,
 337	0x00, 0x00, 0x00, 0x00
 338};
 339
 340ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 341	{ ICE_MAC_OFOS,		0 },
 342	{ ICE_ETYPE_OL,		12 },
 343	{ ICE_IPV4_OFOS,	14 },
 344	{ ICE_NVGRE,		34 },
 345	{ ICE_MAC_IL,		42 },
 346	{ ICE_ETYPE_IL,		54 },
 347	{ ICE_IPV6_IL,		56 },
 348	{ ICE_UDP_ILOS,		96 },
 349	{ ICE_PROTOCOL_LAST,	0 },
 350};
 351
 352ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 353	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 354	0x00, 0x00, 0x00, 0x00,
 355	0x00, 0x00, 0x00, 0x00,
 356
 357	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 358
 359	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 360	0x00, 0x00, 0x00, 0x00,
 361	0x00, 0x2F, 0x00, 0x00,
 362	0x00, 0x00, 0x00, 0x00,
 363	0x00, 0x00, 0x00, 0x00,
 364
 365	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 366	0x00, 0x00, 0x00, 0x00,
 367
 368	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 369	0x00, 0x00, 0x00, 0x00,
 370	0x00, 0x00, 0x00, 0x00,
 371
 372	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 373
 374	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 375	0x00, 0x08, 0x11, 0x40,
 376	0x00, 0x00, 0x00, 0x00,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383	0x00, 0x00, 0x00, 0x00,
 384
 385	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 386	0x00, 0x08, 0x00, 0x00,
 387};
 388
 389ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 390	{ ICE_MAC_OFOS,		0 },
 391	{ ICE_ETYPE_OL,		12 },
 392	{ ICE_IPV4_OFOS,	14 },
 393	{ ICE_UDP_OF,		34 },
 394	{ ICE_VXLAN,		42 },
 395	{ ICE_GENEVE,		42 },
 396	{ ICE_VXLAN_GPE,	42 },
 397	{ ICE_MAC_IL,		50 },
 398	{ ICE_ETYPE_IL,		62 },
 399	{ ICE_IPV6_IL,		64 },
 400	{ ICE_TCP_IL,		104 },
 401	{ ICE_PROTOCOL_LAST,	0 },
 402};
 403
 404ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 405	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 406	0x00, 0x00, 0x00, 0x00,
 407	0x00, 0x00, 0x00, 0x00,
 408
 409	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 410
 411	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 412	0x00, 0x01, 0x00, 0x00,
 413	0x40, 0x11, 0x00, 0x00,
 414	0x00, 0x00, 0x00, 0x00,
 415	0x00, 0x00, 0x00, 0x00,
 416
 417	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 418	0x00, 0x5a, 0x00, 0x00,
 419
 420	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 421	0x00, 0x00, 0x00, 0x00,
 422
 423	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 424	0x00, 0x00, 0x00, 0x00,
 425	0x00, 0x00, 0x00, 0x00,
 426
 427	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 428
 429	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 430	0x00, 0x08, 0x06, 0x40,
 431	0x00, 0x00, 0x00, 0x00,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438	0x00, 0x00, 0x00, 0x00,
 439
 440	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 441	0x00, 0x00, 0x00, 0x00,
 442	0x00, 0x00, 0x00, 0x00,
 443	0x50, 0x02, 0x20, 0x00,
 444	0x00, 0x00, 0x00, 0x00
 445};
 446
 447ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 448	{ ICE_MAC_OFOS,		0 },
 449	{ ICE_ETYPE_OL,		12 },
 450	{ ICE_IPV4_OFOS,	14 },
 451	{ ICE_UDP_OF,		34 },
 452	{ ICE_VXLAN,		42 },
 453	{ ICE_GENEVE,		42 },
 454	{ ICE_VXLAN_GPE,	42 },
 455	{ ICE_MAC_IL,		50 },
 456	{ ICE_ETYPE_IL,		62 },
 457	{ ICE_IPV6_IL,		64 },
 458	{ ICE_UDP_ILOS,		104 },
 459	{ ICE_PROTOCOL_LAST,	0 },
 460};
 461
 462ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 463	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 464	0x00, 0x00, 0x00, 0x00,
 465	0x00, 0x00, 0x00, 0x00,
 466
 467	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 468
 469	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 470	0x00, 0x01, 0x00, 0x00,
 471	0x00, 0x11, 0x00, 0x00,
 472	0x00, 0x00, 0x00, 0x00,
 473	0x00, 0x00, 0x00, 0x00,
 474
 475	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 476	0x00, 0x4e, 0x00, 0x00,
 477
 478	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 479	0x00, 0x00, 0x00, 0x00,
 480
 481	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 482	0x00, 0x00, 0x00, 0x00,
 483	0x00, 0x00, 0x00, 0x00,
 484
 485	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 486
 487	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 488	0x00, 0x08, 0x11, 0x40,
 489	0x00, 0x00, 0x00, 0x00,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496	0x00, 0x00, 0x00, 0x00,
 497
 498	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 499	0x00, 0x08, 0x00, 0x00,
 500};
 501
 502/* offset info for MAC + IPv4 + UDP dummy packet */
 503ICE_DECLARE_PKT_OFFSETS(udp) = {
 504	{ ICE_MAC_OFOS,		0 },
 505	{ ICE_ETYPE_OL,		12 },
 506	{ ICE_IPV4_OFOS,	14 },
 507	{ ICE_UDP_ILOS,		34 },
 508	{ ICE_PROTOCOL_LAST,	0 },
 509};
 510
 511/* Dummy packet for MAC + IPv4 + UDP */
 512ICE_DECLARE_PKT_TEMPLATE(udp) = {
 513	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 514	0x00, 0x00, 0x00, 0x00,
 515	0x00, 0x00, 0x00, 0x00,
 516
 517	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 518
 519	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 520	0x00, 0x01, 0x00, 0x00,
 521	0x00, 0x11, 0x00, 0x00,
 522	0x00, 0x00, 0x00, 0x00,
 523	0x00, 0x00, 0x00, 0x00,
 524
 525	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 526	0x00, 0x08, 0x00, 0x00,
 527
 528	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 529};
 530
 531/* offset info for MAC + IPv4 + TCP dummy packet */
 532ICE_DECLARE_PKT_OFFSETS(tcp) = {
 533	{ ICE_MAC_OFOS,		0 },
 534	{ ICE_ETYPE_OL,		12 },
 535	{ ICE_IPV4_OFOS,	14 },
 536	{ ICE_TCP_IL,		34 },
 537	{ ICE_PROTOCOL_LAST,	0 },
 538};
 539
 540/* Dummy packet for MAC + IPv4 + TCP */
 541ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 542	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 543	0x00, 0x00, 0x00, 0x00,
 544	0x00, 0x00, 0x00, 0x00,
 545
 546	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 547
 548	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 549	0x00, 0x01, 0x00, 0x00,
 550	0x00, 0x06, 0x00, 0x00,
 551	0x00, 0x00, 0x00, 0x00,
 552	0x00, 0x00, 0x00, 0x00,
 553
 554	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 555	0x00, 0x00, 0x00, 0x00,
 556	0x00, 0x00, 0x00, 0x00,
 557	0x50, 0x00, 0x00, 0x00,
 558	0x00, 0x00, 0x00, 0x00,
 559
 560	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 561};
 562
 563ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 564	{ ICE_MAC_OFOS,		0 },
 565	{ ICE_ETYPE_OL,		12 },
 566	{ ICE_IPV6_OFOS,	14 },
 567	{ ICE_TCP_IL,		54 },
 568	{ ICE_PROTOCOL_LAST,	0 },
 569};
 570
 571ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 572	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 573	0x00, 0x00, 0x00, 0x00,
 574	0x00, 0x00, 0x00, 0x00,
 575
 576	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 577
 578	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 579	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 580	0x00, 0x00, 0x00, 0x00,
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587	0x00, 0x00, 0x00, 0x00,
 588
 589	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 590	0x00, 0x00, 0x00, 0x00,
 591	0x00, 0x00, 0x00, 0x00,
 592	0x50, 0x00, 0x00, 0x00,
 593	0x00, 0x00, 0x00, 0x00,
 594
 595	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 596};
 597
 598/* IPv6 + UDP */
 599ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 600	{ ICE_MAC_OFOS,		0 },
 601	{ ICE_ETYPE_OL,		12 },
 602	{ ICE_IPV6_OFOS,	14 },
 603	{ ICE_UDP_ILOS,		54 },
 604	{ ICE_PROTOCOL_LAST,	0 },
 605};
 606
 607/* IPv6 + UDP dummy packet */
 608ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 609	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 610	0x00, 0x00, 0x00, 0x00,
 611	0x00, 0x00, 0x00, 0x00,
 612
 613	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 614
 615	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 616	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 617	0x00, 0x00, 0x00, 0x00,
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624	0x00, 0x00, 0x00, 0x00,
 625
 626	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 627	0x00, 0x10, 0x00, 0x00,
 628
 629	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 630	0x00, 0x00, 0x00, 0x00,
 631
 632	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 633};
 634
 635/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 636ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 637	{ ICE_MAC_OFOS,		0 },
 638	{ ICE_IPV4_OFOS,	14 },
 639	{ ICE_UDP_OF,		34 },
 640	{ ICE_GTP,		42 },
 641	{ ICE_IPV4_IL,		62 },
 642	{ ICE_TCP_IL,		82 },
 643	{ ICE_PROTOCOL_LAST,	0 },
 644};
 645
 646ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 647	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 648	0x00, 0x00, 0x00, 0x00,
 649	0x00, 0x00, 0x00, 0x00,
 650	0x08, 0x00,
 651
 652	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 653	0x00, 0x00, 0x00, 0x00,
 654	0x00, 0x11, 0x00, 0x00,
 655	0x00, 0x00, 0x00, 0x00,
 656	0x00, 0x00, 0x00, 0x00,
 657
 658	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 659	0x00, 0x44, 0x00, 0x00,
 660
 661	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 662	0x00, 0x00, 0x00, 0x00,
 663	0x00, 0x00, 0x00, 0x85,
 664
 665	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 666	0x00, 0x00, 0x00, 0x00,
 667
 668	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 669	0x00, 0x00, 0x00, 0x00,
 670	0x00, 0x06, 0x00, 0x00,
 671	0x00, 0x00, 0x00, 0x00,
 672	0x00, 0x00, 0x00, 0x00,
 673
 674	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 675	0x00, 0x00, 0x00, 0x00,
 676	0x00, 0x00, 0x00, 0x00,
 677	0x50, 0x00, 0x00, 0x00,
 678	0x00, 0x00, 0x00, 0x00,
 679
 680	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 681};
 682
 683/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 684ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 685	{ ICE_MAC_OFOS,		0 },
 686	{ ICE_IPV4_OFOS,	14 },
 687	{ ICE_UDP_OF,		34 },
 688	{ ICE_GTP,		42 },
 689	{ ICE_IPV4_IL,		62 },
 690	{ ICE_UDP_ILOS,		82 },
 691	{ ICE_PROTOCOL_LAST,	0 },
 692};
 693
 694ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 695	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 696	0x00, 0x00, 0x00, 0x00,
 697	0x00, 0x00, 0x00, 0x00,
 698	0x08, 0x00,
 699
 700	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 701	0x00, 0x00, 0x00, 0x00,
 702	0x00, 0x11, 0x00, 0x00,
 703	0x00, 0x00, 0x00, 0x00,
 704	0x00, 0x00, 0x00, 0x00,
 705
 706	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 707	0x00, 0x38, 0x00, 0x00,
 708
 709	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 710	0x00, 0x00, 0x00, 0x00,
 711	0x00, 0x00, 0x00, 0x85,
 712
 713	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 714	0x00, 0x00, 0x00, 0x00,
 715
 716	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 717	0x00, 0x00, 0x00, 0x00,
 718	0x00, 0x11, 0x00, 0x00,
 719	0x00, 0x00, 0x00, 0x00,
 720	0x00, 0x00, 0x00, 0x00,
 721
 722	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 723	0x00, 0x08, 0x00, 0x00,
 724
 725	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 726};
 727
 728/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 729ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 730	{ ICE_MAC_OFOS,		0 },
 731	{ ICE_IPV4_OFOS,	14 },
 732	{ ICE_UDP_OF,		34 },
 733	{ ICE_GTP,		42 },
 734	{ ICE_IPV6_IL,		62 },
 735	{ ICE_TCP_IL,		102 },
 736	{ ICE_PROTOCOL_LAST,	0 },
 737};
 738
 739ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 740	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 741	0x00, 0x00, 0x00, 0x00,
 742	0x00, 0x00, 0x00, 0x00,
 743	0x08, 0x00,
 744
 745	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 746	0x00, 0x00, 0x00, 0x00,
 747	0x00, 0x11, 0x00, 0x00,
 748	0x00, 0x00, 0x00, 0x00,
 749	0x00, 0x00, 0x00, 0x00,
 750
 751	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 752	0x00, 0x58, 0x00, 0x00,
 753
 754	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 755	0x00, 0x00, 0x00, 0x00,
 756	0x00, 0x00, 0x00, 0x85,
 757
 758	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 759	0x00, 0x00, 0x00, 0x00,
 760
 761	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 762	0x00, 0x14, 0x06, 0x00,
 763	0x00, 0x00, 0x00, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770	0x00, 0x00, 0x00, 0x00,
 771
 772	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 773	0x00, 0x00, 0x00, 0x00,
 774	0x00, 0x00, 0x00, 0x00,
 775	0x50, 0x00, 0x00, 0x00,
 776	0x00, 0x00, 0x00, 0x00,
 777
 778	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 779};
 780
 781ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 782	{ ICE_MAC_OFOS,		0 },
 783	{ ICE_IPV4_OFOS,	14 },
 784	{ ICE_UDP_OF,		34 },
 785	{ ICE_GTP,		42 },
 786	{ ICE_IPV6_IL,		62 },
 787	{ ICE_UDP_ILOS,		102 },
 788	{ ICE_PROTOCOL_LAST,	0 },
 789};
 790
 791ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 792	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 793	0x00, 0x00, 0x00, 0x00,
 794	0x00, 0x00, 0x00, 0x00,
 795	0x08, 0x00,
 796
 797	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 798	0x00, 0x00, 0x00, 0x00,
 799	0x00, 0x11, 0x00, 0x00,
 800	0x00, 0x00, 0x00, 0x00,
 801	0x00, 0x00, 0x00, 0x00,
 802
 803	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 804	0x00, 0x4c, 0x00, 0x00,
 805
 806	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 807	0x00, 0x00, 0x00, 0x00,
 808	0x00, 0x00, 0x00, 0x85,
 809
 810	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 811	0x00, 0x00, 0x00, 0x00,
 812
 813	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 814	0x00, 0x08, 0x11, 0x00,
 815	0x00, 0x00, 0x00, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822	0x00, 0x00, 0x00, 0x00,
 823
 824	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 825	0x00, 0x08, 0x00, 0x00,
 826
 827	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 828};
 829
 830ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 831	{ ICE_MAC_OFOS,		0 },
 832	{ ICE_IPV6_OFOS,	14 },
 833	{ ICE_UDP_OF,		54 },
 834	{ ICE_GTP,		62 },
 835	{ ICE_IPV4_IL,		82 },
 836	{ ICE_TCP_IL,		102 },
 837	{ ICE_PROTOCOL_LAST,	0 },
 838};
 839
 840ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 841	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 842	0x00, 0x00, 0x00, 0x00,
 843	0x00, 0x00, 0x00, 0x00,
 844	0x86, 0xdd,
 845
 846	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 847	0x00, 0x44, 0x11, 0x00,
 848	0x00, 0x00, 0x00, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855	0x00, 0x00, 0x00, 0x00,
 856
 857	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 858	0x00, 0x44, 0x00, 0x00,
 859
 860	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 861	0x00, 0x00, 0x00, 0x00,
 862	0x00, 0x00, 0x00, 0x85,
 863
 864	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 865	0x00, 0x00, 0x00, 0x00,
 866
 867	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 868	0x00, 0x00, 0x00, 0x00,
 869	0x00, 0x06, 0x00, 0x00,
 870	0x00, 0x00, 0x00, 0x00,
 871	0x00, 0x00, 0x00, 0x00,
 872
 873	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 874	0x00, 0x00, 0x00, 0x00,
 875	0x00, 0x00, 0x00, 0x00,
 876	0x50, 0x00, 0x00, 0x00,
 877	0x00, 0x00, 0x00, 0x00,
 878
 879	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 880};
 881
 882ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 883	{ ICE_MAC_OFOS,		0 },
 884	{ ICE_IPV6_OFOS,	14 },
 885	{ ICE_UDP_OF,		54 },
 886	{ ICE_GTP,		62 },
 887	{ ICE_IPV4_IL,		82 },
 888	{ ICE_UDP_ILOS,		102 },
 889	{ ICE_PROTOCOL_LAST,	0 },
 890};
 891
 892ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 893	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 894	0x00, 0x00, 0x00, 0x00,
 895	0x00, 0x00, 0x00, 0x00,
 896	0x86, 0xdd,
 897
 898	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 899	0x00, 0x38, 0x11, 0x00,
 900	0x00, 0x00, 0x00, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907	0x00, 0x00, 0x00, 0x00,
 908
 909	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 910	0x00, 0x38, 0x00, 0x00,
 911
 912	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 913	0x00, 0x00, 0x00, 0x00,
 914	0x00, 0x00, 0x00, 0x85,
 915
 916	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 917	0x00, 0x00, 0x00, 0x00,
 918
 919	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 920	0x00, 0x00, 0x00, 0x00,
 921	0x00, 0x11, 0x00, 0x00,
 922	0x00, 0x00, 0x00, 0x00,
 923	0x00, 0x00, 0x00, 0x00,
 924
 925	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 926	0x00, 0x08, 0x00, 0x00,
 927
 928	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 929};
 930
 931ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 932	{ ICE_MAC_OFOS,		0 },
 933	{ ICE_IPV6_OFOS,	14 },
 934	{ ICE_UDP_OF,		54 },
 935	{ ICE_GTP,		62 },
 936	{ ICE_IPV6_IL,		82 },
 937	{ ICE_TCP_IL,		122 },
 938	{ ICE_PROTOCOL_LAST,	0 },
 939};
 940
 941ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 942	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 943	0x00, 0x00, 0x00, 0x00,
 944	0x00, 0x00, 0x00, 0x00,
 945	0x86, 0xdd,
 946
 947	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 948	0x00, 0x58, 0x11, 0x00,
 949	0x00, 0x00, 0x00, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956	0x00, 0x00, 0x00, 0x00,
 957
 958	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 959	0x00, 0x58, 0x00, 0x00,
 960
 961	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 962	0x00, 0x00, 0x00, 0x00,
 963	0x00, 0x00, 0x00, 0x85,
 964
 965	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 966	0x00, 0x00, 0x00, 0x00,
 967
 968	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 969	0x00, 0x14, 0x06, 0x00,
 970	0x00, 0x00, 0x00, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977	0x00, 0x00, 0x00, 0x00,
 978
 979	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 980	0x00, 0x00, 0x00, 0x00,
 981	0x00, 0x00, 0x00, 0x00,
 982	0x50, 0x00, 0x00, 0x00,
 983	0x00, 0x00, 0x00, 0x00,
 984
 985	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 986};
 987
 988ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 989	{ ICE_MAC_OFOS,		0 },
 990	{ ICE_IPV6_OFOS,	14 },
 991	{ ICE_UDP_OF,		54 },
 992	{ ICE_GTP,		62 },
 993	{ ICE_IPV6_IL,		82 },
 994	{ ICE_UDP_ILOS,		122 },
 995	{ ICE_PROTOCOL_LAST,	0 },
 996};
 997
 998ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
 999	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1000	0x00, 0x00, 0x00, 0x00,
1001	0x00, 0x00, 0x00, 0x00,
1002	0x86, 0xdd,
1003
1004	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1005	0x00, 0x4c, 0x11, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013	0x00, 0x00, 0x00, 0x00,
1014
1015	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1016	0x00, 0x4c, 0x00, 0x00,
1017
1018	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1019	0x00, 0x00, 0x00, 0x00,
1020	0x00, 0x00, 0x00, 0x85,
1021
1022	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1023	0x00, 0x00, 0x00, 0x00,
1024
1025	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1026	0x00, 0x08, 0x11, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034	0x00, 0x00, 0x00, 0x00,
1035
1036	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1037	0x00, 0x08, 0x00, 0x00,
1038
1039	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1040};
1041
1042ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1043	{ ICE_MAC_OFOS,		0 },
1044	{ ICE_IPV4_OFOS,	14 },
1045	{ ICE_UDP_OF,		34 },
1046	{ ICE_GTP_NO_PAY,	42 },
1047	{ ICE_PROTOCOL_LAST,	0 },
1048};
1049
1050ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1051	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1052	0x00, 0x00, 0x00, 0x00,
1053	0x00, 0x00, 0x00, 0x00,
1054	0x08, 0x00,
1055
1056	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1057	0x00, 0x00, 0x40, 0x00,
1058	0x40, 0x11, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060	0x00, 0x00, 0x00, 0x00,
1061
1062	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1063	0x00, 0x00, 0x00, 0x00,
1064
1065	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1066	0x00, 0x00, 0x00, 0x00,
1067	0x00, 0x00, 0x00, 0x85,
1068
1069	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1070	0x00, 0x00, 0x00, 0x00,
1071
1072	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1073	0x00, 0x00, 0x40, 0x00,
1074	0x40, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00, 0x00, 0x00,
1077	0x00, 0x00,
1078};
1079
1080ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1081	{ ICE_MAC_OFOS,		0 },
1082	{ ICE_IPV6_OFOS,	14 },
1083	{ ICE_UDP_OF,		54 },
1084	{ ICE_GTP_NO_PAY,	62 },
1085	{ ICE_PROTOCOL_LAST,	0 },
1086};
1087
1088ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1089	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1090	0x00, 0x00, 0x00, 0x00,
1091	0x00, 0x00, 0x00, 0x00,
1092	0x86, 0xdd,
1093
1094	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1095	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103	0x00, 0x00, 0x00, 0x00,
1104
1105	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1106	0x00, 0x00, 0x00, 0x00,
1107
1108	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1109	0x00, 0x00, 0x00, 0x00,
1110
1111	0x00, 0x00,
1112};
1113
1114ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1115	{ ICE_MAC_OFOS,		0 },
1116	{ ICE_ETYPE_OL,		12 },
1117	{ ICE_PPPOE,		14 },
1118	{ ICE_IPV4_OFOS,	22 },
1119	{ ICE_TCP_IL,		42 },
1120	{ ICE_PROTOCOL_LAST,	0 },
1121};
1122
1123ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1124	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1125	0x00, 0x00, 0x00, 0x00,
1126	0x00, 0x00, 0x00, 0x00,
1127
1128	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1129
1130	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1131	0x00, 0x16,
1132
1133	0x00, 0x21,		/* PPP Link Layer 20 */
1134
1135	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1136	0x00, 0x01, 0x00, 0x00,
1137	0x00, 0x06, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139	0x00, 0x00, 0x00, 0x00,
1140
1141	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1142	0x00, 0x00, 0x00, 0x00,
1143	0x00, 0x00, 0x00, 0x00,
1144	0x50, 0x00, 0x00, 0x00,
1145	0x00, 0x00, 0x00, 0x00,
1146
1147	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1148};
1149
1150ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1151	{ ICE_MAC_OFOS,		0 },
1152	{ ICE_ETYPE_OL,		12 },
1153	{ ICE_PPPOE,		14 },
1154	{ ICE_IPV4_OFOS,	22 },
1155	{ ICE_UDP_ILOS,		42 },
1156	{ ICE_PROTOCOL_LAST,	0 },
1157};
1158
1159ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1160	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1161	0x00, 0x00, 0x00, 0x00,
1162	0x00, 0x00, 0x00, 0x00,
1163
1164	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1165
1166	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1167	0x00, 0x16,
1168
1169	0x00, 0x21,		/* PPP Link Layer 20 */
1170
1171	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1172	0x00, 0x01, 0x00, 0x00,
1173	0x00, 0x11, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175	0x00, 0x00, 0x00, 0x00,
1176
1177	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1178	0x00, 0x08, 0x00, 0x00,
1179
1180	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1181};
1182
1183ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1184	{ ICE_MAC_OFOS,		0 },
1185	{ ICE_ETYPE_OL,		12 },
1186	{ ICE_PPPOE,		14 },
1187	{ ICE_IPV6_OFOS,	22 },
1188	{ ICE_TCP_IL,		62 },
1189	{ ICE_PROTOCOL_LAST,	0 },
1190};
1191
1192ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1193	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1194	0x00, 0x00, 0x00, 0x00,
1195	0x00, 0x00, 0x00, 0x00,
1196
1197	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1198
1199	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1200	0x00, 0x2a,
1201
1202	0x00, 0x57,		/* PPP Link Layer 20 */
1203
1204	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1205	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213	0x00, 0x00, 0x00, 0x00,
1214
1215	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1216	0x00, 0x00, 0x00, 0x00,
1217	0x00, 0x00, 0x00, 0x00,
1218	0x50, 0x00, 0x00, 0x00,
1219	0x00, 0x00, 0x00, 0x00,
1220
1221	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1222};
1223
1224ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1225	{ ICE_MAC_OFOS,		0 },
1226	{ ICE_ETYPE_OL,		12 },
1227	{ ICE_PPPOE,		14 },
1228	{ ICE_IPV6_OFOS,	22 },
1229	{ ICE_UDP_ILOS,		62 },
1230	{ ICE_PROTOCOL_LAST,	0 },
1231};
1232
1233ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1234	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1235	0x00, 0x00, 0x00, 0x00,
1236	0x00, 0x00, 0x00, 0x00,
1237
1238	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1239
1240	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1241	0x00, 0x2a,
1242
1243	0x00, 0x57,		/* PPP Link Layer 20 */
1244
1245	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1246	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254	0x00, 0x00, 0x00, 0x00,
1255
1256	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1257	0x00, 0x08, 0x00, 0x00,
1258
1259	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1260};
1261
1262ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1263	{ ICE_MAC_OFOS,		0 },
1264	{ ICE_ETYPE_OL,		12 },
1265	{ ICE_IPV4_OFOS,	14 },
1266	{ ICE_L2TPV3,		34 },
1267	{ ICE_PROTOCOL_LAST,	0 },
1268};
1269
1270ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1272	0x00, 0x00, 0x00, 0x00,
1273	0x00, 0x00, 0x00, 0x00,
1274
1275	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1276
1277	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1278	0x00, 0x00, 0x40, 0x00,
1279	0x40, 0x73, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281	0x00, 0x00, 0x00, 0x00,
1282
1283	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00, 0x00, 0x00,
1286	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1287};
1288
1289ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1290	{ ICE_MAC_OFOS,		0 },
1291	{ ICE_ETYPE_OL,		12 },
1292	{ ICE_IPV6_OFOS,	14 },
1293	{ ICE_L2TPV3,		54 },
1294	{ ICE_PROTOCOL_LAST,	0 },
1295};
1296
1297ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1298	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1299	0x00, 0x00, 0x00, 0x00,
1300	0x00, 0x00, 0x00, 0x00,
1301
1302	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1303
1304	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1305	0x00, 0x0c, 0x73, 0x40,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313	0x00, 0x00, 0x00, 0x00,
1314
1315	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00, 0x00, 0x00,
1318	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1319};
1320
1321static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1322	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1323				  ICE_PKT_GTP_NOPAY),
1324	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1325					    ICE_PKT_OUTER_IPV6 |
1326					    ICE_PKT_INNER_IPV6 |
1327					    ICE_PKT_INNER_UDP),
1328	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1329					    ICE_PKT_OUTER_IPV6 |
1330					    ICE_PKT_INNER_IPV6),
1331	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1332					    ICE_PKT_OUTER_IPV6 |
1333					    ICE_PKT_INNER_UDP),
1334	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1335					    ICE_PKT_OUTER_IPV6),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1337	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1338					    ICE_PKT_INNER_IPV6 |
1339					    ICE_PKT_INNER_UDP),
1340	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1341					    ICE_PKT_INNER_IPV6),
1342	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1343					    ICE_PKT_INNER_UDP),
1344	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1345	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1346	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1347	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1348					ICE_PKT_INNER_UDP),
1349	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1350	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1351	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1352	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1353				      ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1355	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1356	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1357	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1358					  ICE_PKT_INNER_IPV6 |
1359					  ICE_PKT_INNER_TCP),
1360	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1361	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1362	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1363	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1364					  ICE_PKT_INNER_IPV6),
1365	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1366	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1368	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1369	ICE_PKT_PROFILE(tcp, 0),
1370};
1371
1372#define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l)	struct_size((s), hdr_data, (l))
1373#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s)	\
1374	ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1375#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s)	\
1376	ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1377#define ICE_SW_RULE_LG_ACT_SIZE(s, n)		struct_size((s), act, (n))
1378#define ICE_SW_RULE_VSI_LIST_SIZE(s, n)		struct_size((s), vsi, (n))
1379
1380/* this is a recipe to profile association bitmap */
1381static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1382			  ICE_MAX_NUM_PROFILES);
1383
1384/* this is a profile to recipe association bitmap */
1385static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1386			  ICE_MAX_NUM_RECIPES);
1387
1388/**
1389 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1390 * @hw: pointer to the HW struct
1391 *
1392 * Allocate memory for the entire recipe table and initialize the structures/
1393 * entries corresponding to basic recipes.
1394 */
1395int ice_init_def_sw_recp(struct ice_hw *hw)
1396{
1397	struct ice_sw_recipe *recps;
1398	u8 i;
1399
1400	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1401			     sizeof(*recps), GFP_KERNEL);
1402	if (!recps)
1403		return -ENOMEM;
1404
1405	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1406		recps[i].root_rid = i;
1407		INIT_LIST_HEAD(&recps[i].filt_rules);
1408		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1409		INIT_LIST_HEAD(&recps[i].rg_list);
1410		mutex_init(&recps[i].filt_rule_lock);
1411	}
1412
1413	hw->switch_info->recp_list = recps;
1414
1415	return 0;
1416}
1417
1418/**
1419 * ice_aq_get_sw_cfg - get switch configuration
1420 * @hw: pointer to the hardware structure
1421 * @buf: pointer to the result buffer
1422 * @buf_size: length of the buffer available for response
1423 * @req_desc: pointer to requested descriptor
1424 * @num_elems: pointer to number of elements
1425 * @cd: pointer to command details structure or NULL
1426 *
1427 * Get switch configuration (0x0200) to be placed in buf.
1428 * This admin command returns information such as initial VSI/port number
1429 * and switch ID it belongs to.
1430 *
1431 * NOTE: *req_desc is both an input/output parameter.
1432 * The caller of this function first calls this function with *request_desc set
1433 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1434 * configuration information has been returned; if non-zero (meaning not all
1435 * the information was returned), the caller should call this function again
1436 * with *req_desc set to the previous value returned by f/w to get the
1437 * next block of switch configuration information.
1438 *
1439 * *num_elems is output only parameter. This reflects the number of elements
1440 * in response buffer. The caller of this function to use *num_elems while
1441 * parsing the response buffer.
1442 */
1443static int
1444ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1445		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1446		  struct ice_sq_cd *cd)
1447{
1448	struct ice_aqc_get_sw_cfg *cmd;
1449	struct ice_aq_desc desc;
1450	int status;
1451
1452	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1453	cmd = &desc.params.get_sw_conf;
1454	cmd->element = cpu_to_le16(*req_desc);
1455
1456	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1457	if (!status) {
1458		*req_desc = le16_to_cpu(cmd->element);
1459		*num_elems = le16_to_cpu(cmd->num_elems);
1460	}
1461
1462	return status;
1463}
1464
1465/**
1466 * ice_aq_add_vsi
1467 * @hw: pointer to the HW struct
1468 * @vsi_ctx: pointer to a VSI context struct
1469 * @cd: pointer to command details structure or NULL
1470 *
1471 * Add a VSI context to the hardware (0x0210)
1472 */
1473static int
1474ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1475	       struct ice_sq_cd *cd)
1476{
1477	struct ice_aqc_add_update_free_vsi_resp *res;
1478	struct ice_aqc_add_get_update_free_vsi *cmd;
1479	struct ice_aq_desc desc;
1480	int status;
1481
1482	cmd = &desc.params.vsi_cmd;
1483	res = &desc.params.add_update_free_vsi_res;
1484
1485	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1486
1487	if (!vsi_ctx->alloc_from_pool)
1488		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1489					   ICE_AQ_VSI_IS_VALID);
1490	cmd->vf_id = vsi_ctx->vf_num;
1491
1492	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1493
1494	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1495
1496	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1497				 sizeof(vsi_ctx->info), cd);
1498
1499	if (!status) {
1500		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1501		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1502		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1503	}
1504
1505	return status;
1506}
1507
1508/**
1509 * ice_aq_free_vsi
1510 * @hw: pointer to the HW struct
1511 * @vsi_ctx: pointer to a VSI context struct
1512 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1513 * @cd: pointer to command details structure or NULL
1514 *
1515 * Free VSI context info from hardware (0x0213)
1516 */
1517static int
1518ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1519		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1520{
1521	struct ice_aqc_add_update_free_vsi_resp *resp;
1522	struct ice_aqc_add_get_update_free_vsi *cmd;
1523	struct ice_aq_desc desc;
1524	int status;
1525
1526	cmd = &desc.params.vsi_cmd;
1527	resp = &desc.params.add_update_free_vsi_res;
1528
1529	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1530
1531	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1532	if (keep_vsi_alloc)
1533		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1534
1535	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1536	if (!status) {
1537		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1538		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1539	}
1540
1541	return status;
1542}
1543
1544/**
1545 * ice_aq_update_vsi
1546 * @hw: pointer to the HW struct
1547 * @vsi_ctx: pointer to a VSI context struct
1548 * @cd: pointer to command details structure or NULL
1549 *
1550 * Update VSI context in the hardware (0x0211)
1551 */
1552static int
1553ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1554		  struct ice_sq_cd *cd)
1555{
1556	struct ice_aqc_add_update_free_vsi_resp *resp;
1557	struct ice_aqc_add_get_update_free_vsi *cmd;
1558	struct ice_aq_desc desc;
1559	int status;
1560
1561	cmd = &desc.params.vsi_cmd;
1562	resp = &desc.params.add_update_free_vsi_res;
1563
1564	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1565
1566	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1567
1568	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1569
1570	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1571				 sizeof(vsi_ctx->info), cd);
1572
1573	if (!status) {
1574		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1575		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1576	}
1577
1578	return status;
1579}
1580
1581/**
1582 * ice_is_vsi_valid - check whether the VSI is valid or not
1583 * @hw: pointer to the HW struct
1584 * @vsi_handle: VSI handle
1585 *
1586 * check whether the VSI is valid or not
1587 */
1588bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1589{
1590	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1591}
1592
1593/**
1594 * ice_get_hw_vsi_num - return the HW VSI number
1595 * @hw: pointer to the HW struct
1596 * @vsi_handle: VSI handle
1597 *
1598 * return the HW VSI number
1599 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1600 */
1601u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1602{
1603	return hw->vsi_ctx[vsi_handle]->vsi_num;
1604}
1605
1606/**
1607 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1608 * @hw: pointer to the HW struct
1609 * @vsi_handle: VSI handle
1610 *
1611 * return the VSI context entry for a given VSI handle
1612 */
1613struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1614{
1615	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1616}
1617
1618/**
1619 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1620 * @hw: pointer to the HW struct
1621 * @vsi_handle: VSI handle
1622 * @vsi: VSI context pointer
1623 *
1624 * save the VSI context entry for a given VSI handle
1625 */
1626static void
1627ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1628{
1629	hw->vsi_ctx[vsi_handle] = vsi;
1630}
1631
1632/**
1633 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1634 * @hw: pointer to the HW struct
1635 * @vsi_handle: VSI handle
1636 */
1637static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1638{
1639	struct ice_vsi_ctx *vsi;
1640	u8 i;
1641
1642	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1643	if (!vsi)
1644		return;
1645	ice_for_each_traffic_class(i) {
1646		if (vsi->lan_q_ctx[i]) {
1647			devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1648			vsi->lan_q_ctx[i] = NULL;
1649		}
1650		if (vsi->rdma_q_ctx[i]) {
1651			devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1652			vsi->rdma_q_ctx[i] = NULL;
1653		}
1654	}
1655}
1656
1657/**
1658 * ice_clear_vsi_ctx - clear the VSI context entry
1659 * @hw: pointer to the HW struct
1660 * @vsi_handle: VSI handle
1661 *
1662 * clear the VSI context entry
1663 */
1664static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1665{
1666	struct ice_vsi_ctx *vsi;
1667
1668	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1669	if (vsi) {
1670		ice_clear_vsi_q_ctx(hw, vsi_handle);
1671		devm_kfree(ice_hw_to_dev(hw), vsi);
1672		hw->vsi_ctx[vsi_handle] = NULL;
1673	}
1674}
1675
1676/**
1677 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1678 * @hw: pointer to the HW struct
1679 */
1680void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1681{
1682	u16 i;
1683
1684	for (i = 0; i < ICE_MAX_VSI; i++)
1685		ice_clear_vsi_ctx(hw, i);
1686}
1687
1688/**
1689 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1690 * @hw: pointer to the HW struct
1691 * @vsi_handle: unique VSI handle provided by drivers
1692 * @vsi_ctx: pointer to a VSI context struct
1693 * @cd: pointer to command details structure or NULL
1694 *
1695 * Add a VSI context to the hardware also add it into the VSI handle list.
1696 * If this function gets called after reset for existing VSIs then update
1697 * with the new HW VSI number in the corresponding VSI handle list entry.
1698 */
1699int
1700ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1701	    struct ice_sq_cd *cd)
1702{
1703	struct ice_vsi_ctx *tmp_vsi_ctx;
1704	int status;
1705
1706	if (vsi_handle >= ICE_MAX_VSI)
1707		return -EINVAL;
1708	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1709	if (status)
1710		return status;
1711	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1712	if (!tmp_vsi_ctx) {
1713		/* Create a new VSI context */
1714		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1715					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1716		if (!tmp_vsi_ctx) {
1717			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1718			return -ENOMEM;
1719		}
1720		*tmp_vsi_ctx = *vsi_ctx;
1721		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1722	} else {
1723		/* update with new HW VSI num */
1724		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1725	}
1726
1727	return 0;
1728}
1729
1730/**
1731 * ice_free_vsi- free VSI context from hardware and VSI handle list
1732 * @hw: pointer to the HW struct
1733 * @vsi_handle: unique VSI handle
1734 * @vsi_ctx: pointer to a VSI context struct
1735 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1736 * @cd: pointer to command details structure or NULL
1737 *
1738 * Free VSI context info from hardware as well as from VSI handle list
1739 */
1740int
1741ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1742	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1743{
1744	int status;
1745
1746	if (!ice_is_vsi_valid(hw, vsi_handle))
1747		return -EINVAL;
1748	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1749	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1750	if (!status)
1751		ice_clear_vsi_ctx(hw, vsi_handle);
1752	return status;
1753}
1754
1755/**
1756 * ice_update_vsi
1757 * @hw: pointer to the HW struct
1758 * @vsi_handle: unique VSI handle
1759 * @vsi_ctx: pointer to a VSI context struct
1760 * @cd: pointer to command details structure or NULL
1761 *
1762 * Update VSI context in the hardware
1763 */
1764int
1765ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1766	       struct ice_sq_cd *cd)
1767{
1768	if (!ice_is_vsi_valid(hw, vsi_handle))
1769		return -EINVAL;
1770	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1771	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1772}
1773
1774/**
1775 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1776 * @hw: pointer to HW struct
1777 * @vsi_handle: VSI SW index
1778 * @enable: boolean for enable/disable
1779 */
1780int
1781ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1782{
1783	struct ice_vsi_ctx *ctx;
 
 
 
 
 
1784
1785	ctx = ice_get_vsi_ctx(hw, vsi_handle);
1786	if (!ctx)
1787		return -EIO;
 
 
 
 
 
 
1788
1789	if (enable)
1790		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1791	else
1792		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1793
1794	return ice_update_vsi(hw, vsi_handle, ctx, NULL);
 
 
 
 
 
 
 
1795}
1796
1797/**
1798 * ice_aq_alloc_free_vsi_list
1799 * @hw: pointer to the HW struct
1800 * @vsi_list_id: VSI list ID returned or used for lookup
1801 * @lkup_type: switch rule filter lookup type
1802 * @opc: switch rules population command type - pass in the command opcode
1803 *
1804 * allocates or free a VSI list resource
1805 */
1806static int
1807ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1808			   enum ice_sw_lkup_type lkup_type,
1809			   enum ice_adminq_opc opc)
1810{
1811	struct ice_aqc_alloc_free_res_elem *sw_buf;
 
1812	struct ice_aqc_res_elem *vsi_ele;
1813	u16 buf_len;
1814	int status;
1815
1816	buf_len = struct_size(sw_buf, elem, 1);
1817	sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1818	if (!sw_buf)
1819		return -ENOMEM;
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		sw_buf->res_type =
1832			cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
 
 
 
 
 
1833	} else {
1834		status = -EINVAL;
1835		goto ice_aq_alloc_free_vsi_list_exit;
1836	}
1837
1838	if (opc == ice_aqc_opc_free_res)
1839		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1840
1841	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1842	if (status)
1843		goto ice_aq_alloc_free_vsi_list_exit;
1844
1845	if (opc == ice_aqc_opc_alloc_res) {
1846		vsi_ele = &sw_buf->elem[0];
1847		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1848	}
1849
1850ice_aq_alloc_free_vsi_list_exit:
1851	devm_kfree(ice_hw_to_dev(hw), sw_buf);
1852	return status;
1853}
1854
1855/**
1856 * ice_aq_sw_rules - add/update/remove switch rules
1857 * @hw: pointer to the HW struct
1858 * @rule_list: pointer to switch rule population list
1859 * @rule_list_sz: total size of the rule list in bytes
1860 * @num_rules: number of switch rules in the rule_list
1861 * @opc: switch rules population command type - pass in the command opcode
1862 * @cd: pointer to command details structure or NULL
1863 *
1864 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1865 */
1866int
1867ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1868		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1869{
1870	struct ice_aq_desc desc;
1871	int status;
1872
1873	if (opc != ice_aqc_opc_add_sw_rules &&
1874	    opc != ice_aqc_opc_update_sw_rules &&
1875	    opc != ice_aqc_opc_remove_sw_rules)
1876		return -EINVAL;
1877
1878	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1879
1880	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1881	desc.params.sw_rules.num_rules_fltr_entry_index =
1882		cpu_to_le16(num_rules);
1883	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1884	if (opc != ice_aqc_opc_add_sw_rules &&
1885	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1886		status = -ENOENT;
1887
1888	return status;
1889}
1890
1891/**
1892 * ice_aq_add_recipe - add switch recipe
1893 * @hw: pointer to the HW struct
1894 * @s_recipe_list: pointer to switch rule population list
1895 * @num_recipes: number of switch recipes in the list
1896 * @cd: pointer to command details structure or NULL
1897 *
1898 * Add(0x0290)
1899 */
1900static int
1901ice_aq_add_recipe(struct ice_hw *hw,
1902		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1903		  u16 num_recipes, struct ice_sq_cd *cd)
1904{
1905	struct ice_aqc_add_get_recipe *cmd;
1906	struct ice_aq_desc desc;
1907	u16 buf_size;
1908
1909	cmd = &desc.params.add_get_recipe;
1910	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1911
1912	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1913	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1914
1915	buf_size = num_recipes * sizeof(*s_recipe_list);
1916
1917	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1918}
1919
1920/**
1921 * ice_aq_get_recipe - get switch recipe
1922 * @hw: pointer to the HW struct
1923 * @s_recipe_list: pointer to switch rule population list
1924 * @num_recipes: pointer to the number of recipes (input and output)
1925 * @recipe_root: root recipe number of recipe(s) to retrieve
1926 * @cd: pointer to command details structure or NULL
1927 *
1928 * Get(0x0292)
1929 *
1930 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1931 * On output, *num_recipes will equal the number of entries returned in
1932 * s_recipe_list.
1933 *
1934 * The caller must supply enough space in s_recipe_list to hold all possible
1935 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1936 */
1937static int
1938ice_aq_get_recipe(struct ice_hw *hw,
1939		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1940		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1941{
1942	struct ice_aqc_add_get_recipe *cmd;
1943	struct ice_aq_desc desc;
1944	u16 buf_size;
1945	int status;
1946
1947	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1948		return -EINVAL;
1949
1950	cmd = &desc.params.add_get_recipe;
1951	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1952
1953	cmd->return_index = cpu_to_le16(recipe_root);
1954	cmd->num_sub_recipes = 0;
1955
1956	buf_size = *num_recipes * sizeof(*s_recipe_list);
1957
1958	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1959	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1960
1961	return status;
1962}
1963
1964/**
1965 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1966 * @hw: pointer to the HW struct
1967 * @params: parameters used to update the default recipe
1968 *
1969 * This function only supports updating default recipes and it only supports
1970 * updating a single recipe based on the lkup_idx at a time.
1971 *
1972 * This is done as a read-modify-write operation. First, get the current recipe
1973 * contents based on the recipe's ID. Then modify the field vector index and
1974 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1975 * the pre-existing recipe with the modifications.
1976 */
1977int
1978ice_update_recipe_lkup_idx(struct ice_hw *hw,
1979			   struct ice_update_recipe_lkup_idx_params *params)
1980{
1981	struct ice_aqc_recipe_data_elem *rcp_list;
1982	u16 num_recps = ICE_MAX_NUM_RECIPES;
1983	int status;
1984
1985	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1986	if (!rcp_list)
1987		return -ENOMEM;
1988
1989	/* read current recipe list from firmware */
1990	rcp_list->recipe_indx = params->rid;
1991	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1992	if (status) {
1993		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1994			  params->rid, status);
1995		goto error_out;
1996	}
1997
1998	/* only modify existing recipe's lkup_idx and mask if valid, while
1999	 * leaving all other fields the same, then update the recipe firmware
2000	 */
2001	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2002	if (params->mask_valid)
2003		rcp_list->content.mask[params->lkup_idx] =
2004			cpu_to_le16(params->mask);
2005
2006	if (params->ignore_valid)
2007		rcp_list->content.lkup_indx[params->lkup_idx] |=
2008			ICE_AQ_RECIPE_LKUP_IGNORE;
2009
2010	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2011	if (status)
2012		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2013			  params->rid, params->lkup_idx, params->fv_idx,
2014			  params->mask, params->mask_valid ? "true" : "false",
2015			  status);
2016
2017error_out:
2018	kfree(rcp_list);
2019	return status;
2020}
2021
2022/**
2023 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2024 * @hw: pointer to the HW struct
2025 * @profile_id: package profile ID to associate the recipe with
2026 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2027 * @cd: pointer to command details structure or NULL
2028 * Recipe to profile association (0x0291)
2029 */
2030static int
2031ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2032			     struct ice_sq_cd *cd)
2033{
2034	struct ice_aqc_recipe_to_profile *cmd;
2035	struct ice_aq_desc desc;
2036
2037	cmd = &desc.params.recipe_to_profile;
2038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2039	cmd->profile_id = cpu_to_le16(profile_id);
2040	/* Set the recipe ID bit in the bitmask to let the device know which
2041	 * profile we are associating the recipe to
2042	 */
2043	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2044
2045	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2046}
2047
2048/**
2049 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2050 * @hw: pointer to the HW struct
2051 * @profile_id: package profile ID to associate the recipe with
2052 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2053 * @cd: pointer to command details structure or NULL
2054 * Associate profile ID with given recipe (0x0293)
2055 */
2056static int
2057ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2058			     struct ice_sq_cd *cd)
2059{
2060	struct ice_aqc_recipe_to_profile *cmd;
2061	struct ice_aq_desc desc;
2062	int status;
2063
2064	cmd = &desc.params.recipe_to_profile;
2065	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2066	cmd->profile_id = cpu_to_le16(profile_id);
2067
2068	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2069	if (!status)
2070		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2071
2072	return status;
2073}
2074
2075/**
2076 * ice_alloc_recipe - add recipe resource
2077 * @hw: pointer to the hardware structure
2078 * @rid: recipe ID returned as response to AQ call
2079 */
2080static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2081{
2082	struct ice_aqc_alloc_free_res_elem *sw_buf;
2083	u16 buf_len;
2084	int status;
2085
2086	buf_len = struct_size(sw_buf, elem, 1);
2087	sw_buf = kzalloc(buf_len, GFP_KERNEL);
2088	if (!sw_buf)
2089		return -ENOMEM;
2090
2091	sw_buf->num_elems = cpu_to_le16(1);
2092	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2093					ICE_AQC_RES_TYPE_S) |
2094					ICE_AQC_RES_TYPE_FLAG_SHARED);
2095	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2096				       ice_aqc_opc_alloc_res, NULL);
2097	if (!status)
2098		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2099	kfree(sw_buf);
2100
2101	return status;
2102}
2103
2104/**
2105 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2106 * @hw: pointer to hardware structure
2107 *
2108 * This function is used to populate recipe_to_profile matrix where index to
2109 * this array is the recipe ID and the element is the mapping of which profiles
2110 * is this recipe mapped to.
2111 */
2112static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2113{
2114	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
 
2115	u16 i;
2116
2117	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2118		u16 j;
2119
2120		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2121		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2122		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2123			continue;
 
2124		bitmap_copy(profile_to_recipe[i], r_bitmap,
2125			    ICE_MAX_NUM_RECIPES);
2126		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2127			set_bit(i, recipe_to_profile[j]);
2128	}
2129}
2130
2131/**
2132 * ice_collect_result_idx - copy result index values
2133 * @buf: buffer that contains the result index
2134 * @recp: the recipe struct to copy data into
2135 */
2136static void
2137ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2138		       struct ice_sw_recipe *recp)
2139{
2140	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2141		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2142			recp->res_idxs);
2143}
2144
2145/**
2146 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2147 * @hw: pointer to hardware structure
2148 * @recps: struct that we need to populate
2149 * @rid: recipe ID that we are populating
2150 * @refresh_required: true if we should get recipe to profile mapping from FW
2151 *
2152 * This function is used to populate all the necessary entries into our
2153 * bookkeeping so that we have a current list of all the recipes that are
2154 * programmed in the firmware.
2155 */
2156static int
2157ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2158		    bool *refresh_required)
2159{
2160	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2161	struct ice_aqc_recipe_data_elem *tmp;
2162	u16 num_recps = ICE_MAX_NUM_RECIPES;
2163	struct ice_prot_lkup_ext *lkup_exts;
2164	u8 fv_word_idx = 0;
2165	u16 sub_recps;
2166	int status;
2167
2168	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2169
2170	/* we need a buffer big enough to accommodate all the recipes */
2171	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2172	if (!tmp)
2173		return -ENOMEM;
2174
2175	tmp[0].recipe_indx = rid;
2176	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2177	/* non-zero status meaning recipe doesn't exist */
2178	if (status)
2179		goto err_unroll;
2180
2181	/* Get recipe to profile map so that we can get the fv from lkups that
2182	 * we read for a recipe from FW. Since we want to minimize the number of
2183	 * times we make this FW call, just make one call and cache the copy
2184	 * until a new recipe is added. This operation is only required the
2185	 * first time to get the changes from FW. Then to search existing
2186	 * entries we don't need to update the cache again until another recipe
2187	 * gets added.
2188	 */
2189	if (*refresh_required) {
2190		ice_get_recp_to_prof_map(hw);
2191		*refresh_required = false;
2192	}
2193
2194	/* Start populating all the entries for recps[rid] based on lkups from
2195	 * firmware. Note that we are only creating the root recipe in our
2196	 * database.
2197	 */
2198	lkup_exts = &recps[rid].lkup_exts;
2199
2200	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2201		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2202		struct ice_recp_grp_entry *rg_entry;
2203		u8 i, prof, idx, prot = 0;
2204		bool is_root;
2205		u16 off = 0;
2206
2207		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2208					GFP_KERNEL);
2209		if (!rg_entry) {
2210			status = -ENOMEM;
2211			goto err_unroll;
2212		}
2213
2214		idx = root_bufs.recipe_indx;
2215		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2216
2217		/* Mark all result indices in this chain */
2218		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2219			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2220				result_bm);
2221
2222		/* get the first profile that is associated with rid */
2223		prof = find_first_bit(recipe_to_profile[idx],
2224				      ICE_MAX_NUM_PROFILES);
2225		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2226			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2227
2228			rg_entry->fv_idx[i] = lkup_indx;
2229			rg_entry->fv_mask[i] =
2230				le16_to_cpu(root_bufs.content.mask[i + 1]);
2231
2232			/* If the recipe is a chained recipe then all its
2233			 * child recipe's result will have a result index.
2234			 * To fill fv_words we should not use those result
2235			 * index, we only need the protocol ids and offsets.
2236			 * We will skip all the fv_idx which stores result
2237			 * index in them. We also need to skip any fv_idx which
2238			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2239			 * valid offset value.
2240			 */
2241			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2242			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2243			    rg_entry->fv_idx[i] == 0)
2244				continue;
2245
2246			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2247					  rg_entry->fv_idx[i], &prot, &off);
2248			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2249			lkup_exts->fv_words[fv_word_idx].off = off;
2250			lkup_exts->field_mask[fv_word_idx] =
2251				rg_entry->fv_mask[i];
2252			fv_word_idx++;
2253		}
2254		/* populate rg_list with the data from the child entry of this
2255		 * recipe
2256		 */
2257		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2258
2259		/* Propagate some data to the recipe database */
2260		recps[idx].is_root = !!is_root;
2261		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
 
 
 
 
2262		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264			recps[idx].chain_idx = root_bufs.content.result_indx &
2265				~ICE_AQ_RECIPE_RESULT_EN;
2266			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267		} else {
2268			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269		}
2270
2271		if (!is_root)
2272			continue;
2273
2274		/* Only do the following for root recipes entries */
2275		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276		       sizeof(recps[idx].r_bitmap));
2277		recps[idx].root_rid = root_bufs.content.rid &
2278			~ICE_AQ_RECIPE_ID_IS_ROOT;
2279		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280	}
2281
2282	/* Complete initialization of the root recipe entry */
2283	lkup_exts->n_val_words = fv_word_idx;
2284	recps[rid].big_recp = (num_recps > 1);
2285	recps[rid].n_grp_count = (u8)num_recps;
2286	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288					   GFP_KERNEL);
2289	if (!recps[rid].root_buf) {
2290		status = -ENOMEM;
2291		goto err_unroll;
2292	}
2293
2294	/* Copy result indexes */
2295	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296	recps[rid].recp_created = true;
2297
2298err_unroll:
2299	kfree(tmp);
2300	return status;
2301}
2302
2303/* ice_init_port_info - Initialize port_info with switch configuration data
2304 * @pi: pointer to port_info
2305 * @vsi_port_num: VSI number or port number
2306 * @type: Type of switch element (port or VSI)
2307 * @swid: switch ID of the switch the element is attached to
2308 * @pf_vf_num: PF or VF number
2309 * @is_vf: true if the element is a VF, false otherwise
2310 */
2311static void
2312ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313		   u16 swid, u16 pf_vf_num, bool is_vf)
2314{
2315	switch (type) {
2316	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318		pi->sw_id = swid;
2319		pi->pf_vf_num = pf_vf_num;
2320		pi->is_vf = is_vf;
2321		break;
2322	default:
2323		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324		break;
2325	}
2326}
2327
2328/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329 * @hw: pointer to the hardware structure
2330 */
2331int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332{
2333	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334	u16 req_desc = 0;
2335	u16 num_elems;
2336	int status;
2337	u16 i;
2338
2339	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340	if (!rbuf)
2341		return -ENOMEM;
2342
2343	/* Multiple calls to ice_aq_get_sw_cfg may be required
2344	 * to get all the switch configuration information. The need
2345	 * for additional calls is indicated by ice_aq_get_sw_cfg
2346	 * writing a non-zero value in req_desc
2347	 */
2348	do {
2349		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350
2351		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352					   &req_desc, &num_elems, NULL);
2353
2354		if (status)
2355			break;
2356
2357		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358			u16 pf_vf_num, swid, vsi_port_num;
2359			bool is_vf = false;
2360			u8 res_type;
2361
2362			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364
2365			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367
2368			swid = le16_to_cpu(ele->swid);
2369
2370			if (le16_to_cpu(ele->pf_vf_num) &
2371			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372				is_vf = true;
2373
2374			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376
2377			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378				/* FW VSI is not needed. Just continue. */
2379				continue;
2380			}
2381
2382			ice_init_port_info(hw->port_info, vsi_port_num,
2383					   res_type, swid, pf_vf_num, is_vf);
2384		}
2385	} while (req_desc && !status);
2386
2387	kfree(rbuf);
2388	return status;
2389}
2390
2391/**
2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393 * @hw: pointer to the hardware structure
2394 * @fi: filter info structure to fill/update
2395 *
2396 * This helper function populates the lb_en and lan_en elements of the provided
2397 * ice_fltr_info struct using the switch's type and characteristics of the
2398 * switch rule being configured.
2399 */
2400static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401{
2402	fi->lb_en = false;
2403	fi->lan_en = false;
2404	if ((fi->flag & ICE_FLTR_TX) &&
2405	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2406	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407	     fi->fltr_act == ICE_FWD_TO_Q ||
2408	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409		/* Setting LB for prune actions will result in replicated
2410		 * packets to the internal switch that will be dropped.
2411		 */
2412		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413			fi->lb_en = true;
2414
2415		/* Set lan_en to TRUE if
2416		 * 1. The switch is a VEB AND
2417		 * 2
2418		 * 2.1 The lookup is a directional lookup like ethertype,
2419		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420		 * and default-port OR
2421		 * 2.2 The lookup is VLAN, OR
2422		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424		 *
2425		 * OR
2426		 *
2427		 * The switch is a VEPA.
2428		 *
2429		 * In all other cases, the LAN enable has to be set to false.
2430		 */
2431		if (hw->evb_veb) {
2432			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442				fi->lan_en = true;
2443		} else {
2444			fi->lan_en = true;
2445		}
2446	}
2447}
2448
2449/**
 
 
 
 
 
 
 
 
 
2450 * ice_fill_sw_rule - Helper function to fill switch rule structure
2451 * @hw: pointer to the hardware structure
2452 * @f_info: entry containing packet forwarding information
2453 * @s_rule: switch rule structure to be filled in based on mac_entry
2454 * @opc: switch rules population command type - pass in the command opcode
2455 */
2456static void
2457ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2458		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2459		 enum ice_adminq_opc opc)
2460{
2461	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2462	u16 vlan_tpid = ETH_P_8021Q;
2463	void *daddr = NULL;
2464	u16 eth_hdr_sz;
2465	u8 *eth_hdr;
2466	u32 act = 0;
2467	__be16 *off;
2468	u8 q_rgn;
2469
2470	if (opc == ice_aqc_opc_remove_sw_rules) {
2471		s_rule->act = 0;
2472		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2473		s_rule->hdr_len = 0;
2474		return;
2475	}
2476
2477	eth_hdr_sz = sizeof(dummy_eth_header);
2478	eth_hdr = s_rule->hdr_data;
2479
2480	/* initialize the ether header with a dummy header */
2481	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2482	ice_fill_sw_info(hw, f_info);
2483
2484	switch (f_info->fltr_act) {
2485	case ICE_FWD_TO_VSI:
2486		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2487			ICE_SINGLE_ACT_VSI_ID_M;
2488		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2489			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2490				ICE_SINGLE_ACT_VALID_BIT;
2491		break;
2492	case ICE_FWD_TO_VSI_LIST:
2493		act |= ICE_SINGLE_ACT_VSI_LIST;
2494		act |= (f_info->fwd_id.vsi_list_id <<
2495			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2496			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2497		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499				ICE_SINGLE_ACT_VALID_BIT;
2500		break;
2501	case ICE_FWD_TO_Q:
2502		act |= ICE_SINGLE_ACT_TO_Q;
2503		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2504			ICE_SINGLE_ACT_Q_INDEX_M;
2505		break;
2506	case ICE_DROP_PACKET:
2507		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2508			ICE_SINGLE_ACT_VALID_BIT;
2509		break;
2510	case ICE_FWD_TO_QGRP:
2511		q_rgn = f_info->qgrp_size > 0 ?
2512			(u8)ilog2(f_info->qgrp_size) : 0;
2513		act |= ICE_SINGLE_ACT_TO_Q;
2514		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2515			ICE_SINGLE_ACT_Q_INDEX_M;
2516		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2517			ICE_SINGLE_ACT_Q_REGION_M;
2518		break;
2519	default:
2520		return;
2521	}
2522
2523	if (f_info->lb_en)
2524		act |= ICE_SINGLE_ACT_LB_ENABLE;
2525	if (f_info->lan_en)
2526		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2527
2528	switch (f_info->lkup_type) {
2529	case ICE_SW_LKUP_MAC:
2530		daddr = f_info->l_data.mac.mac_addr;
2531		break;
2532	case ICE_SW_LKUP_VLAN:
2533		vlan_id = f_info->l_data.vlan.vlan_id;
2534		if (f_info->l_data.vlan.tpid_valid)
2535			vlan_tpid = f_info->l_data.vlan.tpid;
2536		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2537		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2538			act |= ICE_SINGLE_ACT_PRUNE;
2539			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2540		}
2541		break;
2542	case ICE_SW_LKUP_ETHERTYPE_MAC:
2543		daddr = f_info->l_data.ethertype_mac.mac_addr;
2544		fallthrough;
2545	case ICE_SW_LKUP_ETHERTYPE:
2546		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2547		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2548		break;
2549	case ICE_SW_LKUP_MAC_VLAN:
2550		daddr = f_info->l_data.mac_vlan.mac_addr;
2551		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2552		break;
2553	case ICE_SW_LKUP_PROMISC_VLAN:
2554		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2555		fallthrough;
2556	case ICE_SW_LKUP_PROMISC:
2557		daddr = f_info->l_data.mac_vlan.mac_addr;
2558		break;
2559	default:
2560		break;
2561	}
2562
2563	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2564		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2565		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2566
2567	/* Recipe set depending on lookup type */
2568	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2569	s_rule->src = cpu_to_le16(f_info->src);
2570	s_rule->act = cpu_to_le32(act);
2571
2572	if (daddr)
2573		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2574
2575	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2576		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2577		*off = cpu_to_be16(vlan_id);
2578		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2579		*off = cpu_to_be16(vlan_tpid);
2580	}
2581
2582	/* Create the switch rule with the final dummy Ethernet header */
2583	if (opc != ice_aqc_opc_update_sw_rules)
2584		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2585}
2586
2587/**
2588 * ice_add_marker_act
2589 * @hw: pointer to the hardware structure
2590 * @m_ent: the management entry for which sw marker needs to be added
2591 * @sw_marker: sw marker to tag the Rx descriptor with
2592 * @l_id: large action resource ID
2593 *
2594 * Create a large action to hold software marker and update the switch rule
2595 * entry pointed by m_ent with newly created large action
2596 */
2597static int
2598ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2599		   u16 sw_marker, u16 l_id)
2600{
2601	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2602	struct ice_sw_rule_lg_act *lg_act;
2603	/* For software marker we need 3 large actions
2604	 * 1. FWD action: FWD TO VSI or VSI LIST
2605	 * 2. GENERIC VALUE action to hold the profile ID
2606	 * 3. GENERIC VALUE action to hold the software marker ID
2607	 */
2608	const u16 num_lg_acts = 3;
2609	u16 lg_act_size;
2610	u16 rules_size;
2611	int status;
2612	u32 act;
2613	u16 id;
2614
2615	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2616		return -EINVAL;
2617
2618	/* Create two back-to-back switch rules and submit them to the HW using
2619	 * one memory buffer:
2620	 *    1. Large Action
2621	 *    2. Look up Tx Rx
2622	 */
2623	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2624	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2625	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2626	if (!lg_act)
2627		return -ENOMEM;
2628
2629	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2630
2631	/* Fill in the first switch rule i.e. large action */
2632	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2633	lg_act->index = cpu_to_le16(l_id);
2634	lg_act->size = cpu_to_le16(num_lg_acts);
2635
2636	/* First action VSI forwarding or VSI list forwarding depending on how
2637	 * many VSIs
2638	 */
2639	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2640		m_ent->fltr_info.fwd_id.hw_vsi_id;
2641
2642	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2643	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2644	if (m_ent->vsi_count > 1)
2645		act |= ICE_LG_ACT_VSI_LIST;
2646	lg_act->act[0] = cpu_to_le32(act);
2647
2648	/* Second action descriptor type */
2649	act = ICE_LG_ACT_GENERIC;
2650
2651	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2652	lg_act->act[1] = cpu_to_le32(act);
2653
2654	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2655	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2656
2657	/* Third action Marker value */
2658	act |= ICE_LG_ACT_GENERIC;
2659	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2660		ICE_LG_ACT_GENERIC_VALUE_M;
2661
2662	lg_act->act[2] = cpu_to_le32(act);
2663
2664	/* call the fill switch rule to fill the lookup Tx Rx structure */
2665	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2666			 ice_aqc_opc_update_sw_rules);
2667
2668	/* Update the action to point to the large action ID */
2669	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2670				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2671				  ICE_SINGLE_ACT_PTR_VAL_M));
2672
2673	/* Use the filter rule ID of the previously created rule with single
2674	 * act. Once the update happens, hardware will treat this as large
2675	 * action
2676	 */
2677	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2678
2679	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2680				 ice_aqc_opc_update_sw_rules, NULL);
2681	if (!status) {
2682		m_ent->lg_act_idx = l_id;
2683		m_ent->sw_marker_id = sw_marker;
2684	}
2685
2686	devm_kfree(ice_hw_to_dev(hw), lg_act);
2687	return status;
2688}
2689
2690/**
2691 * ice_create_vsi_list_map
2692 * @hw: pointer to the hardware structure
2693 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2694 * @num_vsi: number of VSI handles in the array
2695 * @vsi_list_id: VSI list ID generated as part of allocate resource
2696 *
2697 * Helper function to create a new entry of VSI list ID to VSI mapping
2698 * using the given VSI list ID
2699 */
2700static struct ice_vsi_list_map_info *
2701ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2702			u16 vsi_list_id)
2703{
2704	struct ice_switch_info *sw = hw->switch_info;
2705	struct ice_vsi_list_map_info *v_map;
2706	int i;
2707
2708	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2709	if (!v_map)
2710		return NULL;
2711
2712	v_map->vsi_list_id = vsi_list_id;
2713	v_map->ref_cnt = 1;
2714	for (i = 0; i < num_vsi; i++)
2715		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2716
2717	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2718	return v_map;
2719}
2720
2721/**
2722 * ice_update_vsi_list_rule
2723 * @hw: pointer to the hardware structure
2724 * @vsi_handle_arr: array of VSI handles to form a VSI list
2725 * @num_vsi: number of VSI handles in the array
2726 * @vsi_list_id: VSI list ID generated as part of allocate resource
2727 * @remove: Boolean value to indicate if this is a remove action
2728 * @opc: switch rules population command type - pass in the command opcode
2729 * @lkup_type: lookup type of the filter
2730 *
2731 * Call AQ command to add a new switch rule or update existing switch rule
2732 * using the given VSI list ID
2733 */
2734static int
2735ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2736			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2737			 enum ice_sw_lkup_type lkup_type)
2738{
2739	struct ice_sw_rule_vsi_list *s_rule;
2740	u16 s_rule_size;
2741	u16 rule_type;
2742	int status;
2743	int i;
2744
2745	if (!num_vsi)
2746		return -EINVAL;
2747
2748	if (lkup_type == ICE_SW_LKUP_MAC ||
2749	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2750	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2751	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2752	    lkup_type == ICE_SW_LKUP_PROMISC ||
2753	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2754	    lkup_type == ICE_SW_LKUP_DFLT)
2755		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2756			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2757	else if (lkup_type == ICE_SW_LKUP_VLAN)
2758		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2759			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2760	else
2761		return -EINVAL;
2762
2763	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2764	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2765	if (!s_rule)
2766		return -ENOMEM;
2767	for (i = 0; i < num_vsi; i++) {
2768		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2769			status = -EINVAL;
2770			goto exit;
2771		}
2772		/* AQ call requires hw_vsi_id(s) */
2773		s_rule->vsi[i] =
2774			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2775	}
2776
2777	s_rule->hdr.type = cpu_to_le16(rule_type);
2778	s_rule->number_vsi = cpu_to_le16(num_vsi);
2779	s_rule->index = cpu_to_le16(vsi_list_id);
2780
2781	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2782
2783exit:
2784	devm_kfree(ice_hw_to_dev(hw), s_rule);
2785	return status;
2786}
2787
2788/**
2789 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2790 * @hw: pointer to the HW struct
2791 * @vsi_handle_arr: array of VSI handles to form a VSI list
2792 * @num_vsi: number of VSI handles in the array
2793 * @vsi_list_id: stores the ID of the VSI list to be created
2794 * @lkup_type: switch rule filter's lookup type
2795 */
2796static int
2797ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2798			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2799{
2800	int status;
2801
2802	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2803					    ice_aqc_opc_alloc_res);
2804	if (status)
2805		return status;
2806
2807	/* Update the newly created VSI list to include the specified VSIs */
2808	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2809					*vsi_list_id, false,
2810					ice_aqc_opc_add_sw_rules, lkup_type);
2811}
2812
2813/**
2814 * ice_create_pkt_fwd_rule
2815 * @hw: pointer to the hardware structure
2816 * @f_entry: entry containing packet forwarding information
2817 *
2818 * Create switch rule with given filter information and add an entry
2819 * to the corresponding filter management list to track this switch rule
2820 * and VSI mapping
2821 */
2822static int
2823ice_create_pkt_fwd_rule(struct ice_hw *hw,
2824			struct ice_fltr_list_entry *f_entry)
2825{
2826	struct ice_fltr_mgmt_list_entry *fm_entry;
2827	struct ice_sw_rule_lkup_rx_tx *s_rule;
2828	enum ice_sw_lkup_type l_type;
2829	struct ice_sw_recipe *recp;
2830	int status;
2831
2832	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834			      GFP_KERNEL);
2835	if (!s_rule)
2836		return -ENOMEM;
2837	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2838				GFP_KERNEL);
2839	if (!fm_entry) {
2840		status = -ENOMEM;
2841		goto ice_create_pkt_fwd_rule_exit;
2842	}
2843
2844	fm_entry->fltr_info = f_entry->fltr_info;
2845
2846	/* Initialize all the fields for the management entry */
2847	fm_entry->vsi_count = 1;
2848	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2849	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2850	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2851
2852	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2853			 ice_aqc_opc_add_sw_rules);
2854
2855	status = ice_aq_sw_rules(hw, s_rule,
2856				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2857				 ice_aqc_opc_add_sw_rules, NULL);
2858	if (status) {
2859		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2860		goto ice_create_pkt_fwd_rule_exit;
2861	}
2862
2863	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2864	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2865
2866	/* The book keeping entries will get removed when base driver
2867	 * calls remove filter AQ command
2868	 */
2869	l_type = fm_entry->fltr_info.lkup_type;
2870	recp = &hw->switch_info->recp_list[l_type];
2871	list_add(&fm_entry->list_entry, &recp->filt_rules);
2872
2873ice_create_pkt_fwd_rule_exit:
2874	devm_kfree(ice_hw_to_dev(hw), s_rule);
2875	return status;
2876}
2877
2878/**
2879 * ice_update_pkt_fwd_rule
2880 * @hw: pointer to the hardware structure
2881 * @f_info: filter information for switch rule
2882 *
2883 * Call AQ command to update a previously created switch rule with a
2884 * VSI list ID
2885 */
2886static int
2887ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2888{
2889	struct ice_sw_rule_lkup_rx_tx *s_rule;
2890	int status;
2891
2892	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2893			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2894			      GFP_KERNEL);
2895	if (!s_rule)
2896		return -ENOMEM;
2897
2898	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2899
2900	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2901
2902	/* Update switch rule with new rule set to forward VSI list */
2903	status = ice_aq_sw_rules(hw, s_rule,
2904				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2905				 ice_aqc_opc_update_sw_rules, NULL);
2906
2907	devm_kfree(ice_hw_to_dev(hw), s_rule);
2908	return status;
2909}
2910
2911/**
2912 * ice_update_sw_rule_bridge_mode
2913 * @hw: pointer to the HW struct
2914 *
2915 * Updates unicast switch filter rules based on VEB/VEPA mode
2916 */
2917int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2918{
2919	struct ice_switch_info *sw = hw->switch_info;
2920	struct ice_fltr_mgmt_list_entry *fm_entry;
2921	struct list_head *rule_head;
2922	struct mutex *rule_lock; /* Lock to protect filter rule list */
2923	int status = 0;
2924
2925	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2926	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2927
2928	mutex_lock(rule_lock);
2929	list_for_each_entry(fm_entry, rule_head, list_entry) {
2930		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2931		u8 *addr = fi->l_data.mac.mac_addr;
2932
2933		/* Update unicast Tx rules to reflect the selected
2934		 * VEB/VEPA mode
2935		 */
2936		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2937		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2938		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2939		     fi->fltr_act == ICE_FWD_TO_Q ||
2940		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2941			status = ice_update_pkt_fwd_rule(hw, fi);
2942			if (status)
2943				break;
2944		}
2945	}
2946
2947	mutex_unlock(rule_lock);
2948
2949	return status;
2950}
2951
2952/**
2953 * ice_add_update_vsi_list
2954 * @hw: pointer to the hardware structure
2955 * @m_entry: pointer to current filter management list entry
2956 * @cur_fltr: filter information from the book keeping entry
2957 * @new_fltr: filter information with the new VSI to be added
2958 *
2959 * Call AQ command to add or update previously created VSI list with new VSI.
2960 *
2961 * Helper function to do book keeping associated with adding filter information
2962 * The algorithm to do the book keeping is described below :
2963 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2964 *	if only one VSI has been added till now
2965 *		Allocate a new VSI list and add two VSIs
2966 *		to this list using switch rule command
2967 *		Update the previously created switch rule with the
2968 *		newly created VSI list ID
2969 *	if a VSI list was previously created
2970 *		Add the new VSI to the previously created VSI list set
2971 *		using the update switch rule command
2972 */
2973static int
2974ice_add_update_vsi_list(struct ice_hw *hw,
2975			struct ice_fltr_mgmt_list_entry *m_entry,
2976			struct ice_fltr_info *cur_fltr,
2977			struct ice_fltr_info *new_fltr)
2978{
2979	u16 vsi_list_id = 0;
2980	int status = 0;
2981
2982	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2983	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2984		return -EOPNOTSUPP;
2985
2986	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2987	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2988	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2989	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2990		return -EOPNOTSUPP;
2991
2992	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2993		/* Only one entry existed in the mapping and it was not already
2994		 * a part of a VSI list. So, create a VSI list with the old and
2995		 * new VSIs.
2996		 */
2997		struct ice_fltr_info tmp_fltr;
2998		u16 vsi_handle_arr[2];
2999
3000		/* A rule already exists with the new VSI being added */
3001		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3002			return -EEXIST;
3003
3004		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3005		vsi_handle_arr[1] = new_fltr->vsi_handle;
3006		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3007						  &vsi_list_id,
3008						  new_fltr->lkup_type);
3009		if (status)
3010			return status;
3011
3012		tmp_fltr = *new_fltr;
3013		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3014		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3015		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3016		/* Update the previous switch rule of "MAC forward to VSI" to
3017		 * "MAC fwd to VSI list"
3018		 */
3019		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3020		if (status)
3021			return status;
3022
3023		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3024		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3025		m_entry->vsi_list_info =
3026			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3027						vsi_list_id);
3028
3029		if (!m_entry->vsi_list_info)
3030			return -ENOMEM;
3031
3032		/* If this entry was large action then the large action needs
3033		 * to be updated to point to FWD to VSI list
3034		 */
3035		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3036			status =
3037			    ice_add_marker_act(hw, m_entry,
3038					       m_entry->sw_marker_id,
3039					       m_entry->lg_act_idx);
3040	} else {
3041		u16 vsi_handle = new_fltr->vsi_handle;
3042		enum ice_adminq_opc opcode;
3043
3044		if (!m_entry->vsi_list_info)
3045			return -EIO;
3046
3047		/* A rule already exists with the new VSI being added */
3048		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3049			return 0;
3050
3051		/* Update the previously created VSI list set with
3052		 * the new VSI ID passed in
3053		 */
3054		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3055		opcode = ice_aqc_opc_update_sw_rules;
3056
3057		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3058						  vsi_list_id, false, opcode,
3059						  new_fltr->lkup_type);
3060		/* update VSI list mapping info with new VSI ID */
3061		if (!status)
3062			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3063	}
3064	if (!status)
3065		m_entry->vsi_count++;
3066	return status;
3067}
3068
3069/**
3070 * ice_find_rule_entry - Search a rule entry
3071 * @hw: pointer to the hardware structure
3072 * @recp_id: lookup type for which the specified rule needs to be searched
3073 * @f_info: rule information
3074 *
3075 * Helper function to search for a given rule entry
3076 * Returns pointer to entry storing the rule if found
3077 */
3078static struct ice_fltr_mgmt_list_entry *
3079ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3080{
3081	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3082	struct ice_switch_info *sw = hw->switch_info;
3083	struct list_head *list_head;
3084
3085	list_head = &sw->recp_list[recp_id].filt_rules;
3086	list_for_each_entry(list_itr, list_head, list_entry) {
3087		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3088			    sizeof(f_info->l_data)) &&
3089		    f_info->flag == list_itr->fltr_info.flag) {
3090			ret = list_itr;
3091			break;
3092		}
3093	}
3094	return ret;
3095}
3096
3097/**
3098 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3099 * @hw: pointer to the hardware structure
3100 * @recp_id: lookup type for which VSI lists needs to be searched
3101 * @vsi_handle: VSI handle to be found in VSI list
3102 * @vsi_list_id: VSI list ID found containing vsi_handle
3103 *
3104 * Helper function to search a VSI list with single entry containing given VSI
3105 * handle element. This can be extended further to search VSI list with more
3106 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3107 */
3108static struct ice_vsi_list_map_info *
3109ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3110			u16 *vsi_list_id)
3111{
3112	struct ice_vsi_list_map_info *map_info = NULL;
3113	struct ice_switch_info *sw = hw->switch_info;
3114	struct ice_fltr_mgmt_list_entry *list_itr;
3115	struct list_head *list_head;
3116
3117	list_head = &sw->recp_list[recp_id].filt_rules;
3118	list_for_each_entry(list_itr, list_head, list_entry) {
3119		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3120			map_info = list_itr->vsi_list_info;
3121			if (test_bit(vsi_handle, map_info->vsi_map)) {
3122				*vsi_list_id = map_info->vsi_list_id;
3123				return map_info;
3124			}
3125		}
3126	}
3127	return NULL;
3128}
3129
3130/**
3131 * ice_add_rule_internal - add rule for a given lookup type
3132 * @hw: pointer to the hardware structure
3133 * @recp_id: lookup type (recipe ID) for which rule has to be added
3134 * @f_entry: structure containing MAC forwarding information
3135 *
3136 * Adds or updates the rule lists for a given recipe
3137 */
3138static int
3139ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3140		      struct ice_fltr_list_entry *f_entry)
3141{
3142	struct ice_switch_info *sw = hw->switch_info;
3143	struct ice_fltr_info *new_fltr, *cur_fltr;
3144	struct ice_fltr_mgmt_list_entry *m_entry;
3145	struct mutex *rule_lock; /* Lock to protect filter rule list */
3146	int status = 0;
3147
3148	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3149		return -EINVAL;
3150	f_entry->fltr_info.fwd_id.hw_vsi_id =
3151		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3152
3153	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3154
3155	mutex_lock(rule_lock);
3156	new_fltr = &f_entry->fltr_info;
3157	if (new_fltr->flag & ICE_FLTR_RX)
3158		new_fltr->src = hw->port_info->lport;
3159	else if (new_fltr->flag & ICE_FLTR_TX)
3160		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3161
3162	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3163	if (!m_entry) {
3164		mutex_unlock(rule_lock);
3165		return ice_create_pkt_fwd_rule(hw, f_entry);
3166	}
3167
3168	cur_fltr = &m_entry->fltr_info;
3169	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3170	mutex_unlock(rule_lock);
3171
3172	return status;
3173}
3174
3175/**
3176 * ice_remove_vsi_list_rule
3177 * @hw: pointer to the hardware structure
3178 * @vsi_list_id: VSI list ID generated as part of allocate resource
3179 * @lkup_type: switch rule filter lookup type
3180 *
3181 * The VSI list should be emptied before this function is called to remove the
3182 * VSI list.
3183 */
3184static int
3185ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3186			 enum ice_sw_lkup_type lkup_type)
3187{
3188	struct ice_sw_rule_vsi_list *s_rule;
3189	u16 s_rule_size;
3190	int status;
3191
3192	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3193	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3194	if (!s_rule)
3195		return -ENOMEM;
3196
3197	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3198	s_rule->index = cpu_to_le16(vsi_list_id);
3199
3200	/* Free the vsi_list resource that we allocated. It is assumed that the
3201	 * list is empty at this point.
3202	 */
3203	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3204					    ice_aqc_opc_free_res);
3205
3206	devm_kfree(ice_hw_to_dev(hw), s_rule);
3207	return status;
3208}
3209
3210/**
3211 * ice_rem_update_vsi_list
3212 * @hw: pointer to the hardware structure
3213 * @vsi_handle: VSI handle of the VSI to remove
3214 * @fm_list: filter management entry for which the VSI list management needs to
3215 *           be done
3216 */
3217static int
3218ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3219			struct ice_fltr_mgmt_list_entry *fm_list)
3220{
3221	enum ice_sw_lkup_type lkup_type;
3222	u16 vsi_list_id;
3223	int status = 0;
3224
3225	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3226	    fm_list->vsi_count == 0)
3227		return -EINVAL;
3228
3229	/* A rule with the VSI being removed does not exist */
3230	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3231		return -ENOENT;
3232
3233	lkup_type = fm_list->fltr_info.lkup_type;
3234	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3235	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3236					  ice_aqc_opc_update_sw_rules,
3237					  lkup_type);
3238	if (status)
3239		return status;
3240
3241	fm_list->vsi_count--;
3242	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3243
3244	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3245		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3246		struct ice_vsi_list_map_info *vsi_list_info =
3247			fm_list->vsi_list_info;
3248		u16 rem_vsi_handle;
3249
3250		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3251						ICE_MAX_VSI);
3252		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3253			return -EIO;
3254
3255		/* Make sure VSI list is empty before removing it below */
3256		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3257						  vsi_list_id, true,
3258						  ice_aqc_opc_update_sw_rules,
3259						  lkup_type);
3260		if (status)
3261			return status;
3262
3263		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3264		tmp_fltr_info.fwd_id.hw_vsi_id =
3265			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3266		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3267		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3268		if (status) {
3269			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3270				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3271			return status;
3272		}
3273
3274		fm_list->fltr_info = tmp_fltr_info;
3275	}
3276
3277	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3278	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3279		struct ice_vsi_list_map_info *vsi_list_info =
3280			fm_list->vsi_list_info;
3281
3282		/* Remove the VSI list since it is no longer used */
3283		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3284		if (status) {
3285			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3286				  vsi_list_id, status);
3287			return status;
3288		}
3289
3290		list_del(&vsi_list_info->list_entry);
3291		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3292		fm_list->vsi_list_info = NULL;
3293	}
3294
3295	return status;
3296}
3297
3298/**
3299 * ice_remove_rule_internal - Remove a filter rule of a given type
3300 * @hw: pointer to the hardware structure
3301 * @recp_id: recipe ID for which the rule needs to removed
3302 * @f_entry: rule entry containing filter information
3303 */
3304static int
3305ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3306			 struct ice_fltr_list_entry *f_entry)
3307{
3308	struct ice_switch_info *sw = hw->switch_info;
3309	struct ice_fltr_mgmt_list_entry *list_elem;
3310	struct mutex *rule_lock; /* Lock to protect filter rule list */
3311	bool remove_rule = false;
3312	u16 vsi_handle;
3313	int status = 0;
3314
3315	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3316		return -EINVAL;
3317	f_entry->fltr_info.fwd_id.hw_vsi_id =
3318		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3319
3320	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3321	mutex_lock(rule_lock);
3322	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3323	if (!list_elem) {
3324		status = -ENOENT;
3325		goto exit;
3326	}
3327
3328	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3329		remove_rule = true;
3330	} else if (!list_elem->vsi_list_info) {
3331		status = -ENOENT;
3332		goto exit;
3333	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3334		/* a ref_cnt > 1 indicates that the vsi_list is being
3335		 * shared by multiple rules. Decrement the ref_cnt and
3336		 * remove this rule, but do not modify the list, as it
3337		 * is in-use by other rules.
3338		 */
3339		list_elem->vsi_list_info->ref_cnt--;
3340		remove_rule = true;
3341	} else {
3342		/* a ref_cnt of 1 indicates the vsi_list is only used
3343		 * by one rule. However, the original removal request is only
3344		 * for a single VSI. Update the vsi_list first, and only
3345		 * remove the rule if there are no further VSIs in this list.
3346		 */
3347		vsi_handle = f_entry->fltr_info.vsi_handle;
3348		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3349		if (status)
3350			goto exit;
3351		/* if VSI count goes to zero after updating the VSI list */
3352		if (list_elem->vsi_count == 0)
3353			remove_rule = true;
3354	}
3355
3356	if (remove_rule) {
3357		/* Remove the lookup rule */
3358		struct ice_sw_rule_lkup_rx_tx *s_rule;
3359
3360		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3361				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3362				      GFP_KERNEL);
3363		if (!s_rule) {
3364			status = -ENOMEM;
3365			goto exit;
3366		}
3367
3368		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3369				 ice_aqc_opc_remove_sw_rules);
3370
3371		status = ice_aq_sw_rules(hw, s_rule,
3372					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3373					 1, ice_aqc_opc_remove_sw_rules, NULL);
3374
3375		/* Remove a book keeping from the list */
3376		devm_kfree(ice_hw_to_dev(hw), s_rule);
3377
3378		if (status)
3379			goto exit;
3380
3381		list_del(&list_elem->list_entry);
3382		devm_kfree(ice_hw_to_dev(hw), list_elem);
3383	}
3384exit:
3385	mutex_unlock(rule_lock);
3386	return status;
3387}
3388
3389/**
3390 * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3391 * @hw: pointer to the hardware structure
3392 * @mac: MAC address to be checked (for MAC filter)
3393 * @vsi_handle: check MAC filter for this VSI
3394 */
3395bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3396{
3397	struct ice_fltr_mgmt_list_entry *entry;
3398	struct list_head *rule_head;
3399	struct ice_switch_info *sw;
3400	struct mutex *rule_lock; /* Lock to protect filter rule list */
3401	u16 hw_vsi_id;
3402
3403	if (!ice_is_vsi_valid(hw, vsi_handle))
3404		return false;
3405
3406	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3407	sw = hw->switch_info;
3408	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3409	if (!rule_head)
3410		return false;
3411
3412	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3413	mutex_lock(rule_lock);
3414	list_for_each_entry(entry, rule_head, list_entry) {
3415		struct ice_fltr_info *f_info = &entry->fltr_info;
3416		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3417
3418		if (is_zero_ether_addr(mac_addr))
3419			continue;
3420
3421		if (f_info->flag != ICE_FLTR_TX ||
3422		    f_info->src_id != ICE_SRC_ID_VSI ||
3423		    f_info->lkup_type != ICE_SW_LKUP_MAC ||
3424		    f_info->fltr_act != ICE_FWD_TO_VSI ||
3425		    hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3426			continue;
3427
3428		if (ether_addr_equal(mac, mac_addr)) {
3429			mutex_unlock(rule_lock);
3430			return true;
3431		}
3432	}
3433	mutex_unlock(rule_lock);
3434	return false;
3435}
3436
3437/**
3438 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3439 * @hw: pointer to the hardware structure
3440 * @vlan_id: VLAN ID
3441 * @vsi_handle: check MAC filter for this VSI
3442 */
3443bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3444{
3445	struct ice_fltr_mgmt_list_entry *entry;
3446	struct list_head *rule_head;
3447	struct ice_switch_info *sw;
3448	struct mutex *rule_lock; /* Lock to protect filter rule list */
3449	u16 hw_vsi_id;
3450
3451	if (vlan_id > ICE_MAX_VLAN_ID)
3452		return false;
3453
3454	if (!ice_is_vsi_valid(hw, vsi_handle))
3455		return false;
3456
3457	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3458	sw = hw->switch_info;
3459	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3460	if (!rule_head)
3461		return false;
3462
3463	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3464	mutex_lock(rule_lock);
3465	list_for_each_entry(entry, rule_head, list_entry) {
3466		struct ice_fltr_info *f_info = &entry->fltr_info;
3467		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3468		struct ice_vsi_list_map_info *map_info;
3469
3470		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3471			continue;
3472
3473		if (f_info->flag != ICE_FLTR_TX ||
3474		    f_info->src_id != ICE_SRC_ID_VSI ||
3475		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3476			continue;
3477
3478		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3479		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3480		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3481			continue;
3482
3483		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3484			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3485				continue;
3486		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3487			/* If filter_action is FWD_TO_VSI_LIST, make sure
3488			 * that VSI being checked is part of VSI list
3489			 */
3490			if (entry->vsi_count == 1 &&
3491			    entry->vsi_list_info) {
3492				map_info = entry->vsi_list_info;
3493				if (!test_bit(vsi_handle, map_info->vsi_map))
3494					continue;
3495			}
3496		}
3497
3498		if (vlan_id == entry_vlan_id) {
3499			mutex_unlock(rule_lock);
3500			return true;
3501		}
3502	}
3503	mutex_unlock(rule_lock);
3504
3505	return false;
3506}
3507
3508/**
3509 * ice_add_mac - Add a MAC address based filter rule
3510 * @hw: pointer to the hardware structure
3511 * @m_list: list of MAC addresses and forwarding information
3512 */
3513int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3514{
3515	struct ice_fltr_list_entry *m_list_itr;
3516	int status = 0;
3517
3518	if (!m_list || !hw)
3519		return -EINVAL;
3520
3521	list_for_each_entry(m_list_itr, m_list, list_entry) {
3522		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3523		u16 vsi_handle;
3524		u16 hw_vsi_id;
3525
3526		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3527		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3528		if (!ice_is_vsi_valid(hw, vsi_handle))
3529			return -EINVAL;
3530		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3531		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3532		/* update the src in case it is VSI num */
3533		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3534			return -EINVAL;
3535		m_list_itr->fltr_info.src = hw_vsi_id;
3536		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3537		    is_zero_ether_addr(add))
3538			return -EINVAL;
3539
3540		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3541							   m_list_itr);
3542		if (m_list_itr->status)
3543			return m_list_itr->status;
3544	}
3545
3546	return status;
3547}
3548
3549/**
3550 * ice_add_vlan_internal - Add one VLAN based filter rule
3551 * @hw: pointer to the hardware structure
3552 * @f_entry: filter entry containing one VLAN information
3553 */
3554static int
3555ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3556{
3557	struct ice_switch_info *sw = hw->switch_info;
3558	struct ice_fltr_mgmt_list_entry *v_list_itr;
3559	struct ice_fltr_info *new_fltr, *cur_fltr;
3560	enum ice_sw_lkup_type lkup_type;
3561	u16 vsi_list_id = 0, vsi_handle;
3562	struct mutex *rule_lock; /* Lock to protect filter rule list */
3563	int status = 0;
3564
3565	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3566		return -EINVAL;
3567
3568	f_entry->fltr_info.fwd_id.hw_vsi_id =
3569		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3570	new_fltr = &f_entry->fltr_info;
3571
3572	/* VLAN ID should only be 12 bits */
3573	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3574		return -EINVAL;
3575
3576	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3577		return -EINVAL;
3578
3579	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3580	lkup_type = new_fltr->lkup_type;
3581	vsi_handle = new_fltr->vsi_handle;
3582	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3583	mutex_lock(rule_lock);
3584	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3585	if (!v_list_itr) {
3586		struct ice_vsi_list_map_info *map_info = NULL;
3587
3588		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3589			/* All VLAN pruning rules use a VSI list. Check if
3590			 * there is already a VSI list containing VSI that we
3591			 * want to add. If found, use the same vsi_list_id for
3592			 * this new VLAN rule or else create a new list.
3593			 */
3594			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3595							   vsi_handle,
3596							   &vsi_list_id);
3597			if (!map_info) {
3598				status = ice_create_vsi_list_rule(hw,
3599								  &vsi_handle,
3600								  1,
3601								  &vsi_list_id,
3602								  lkup_type);
3603				if (status)
3604					goto exit;
3605			}
3606			/* Convert the action to forwarding to a VSI list. */
3607			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3608			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3609		}
3610
3611		status = ice_create_pkt_fwd_rule(hw, f_entry);
3612		if (!status) {
3613			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3614							 new_fltr);
3615			if (!v_list_itr) {
3616				status = -ENOENT;
3617				goto exit;
3618			}
3619			/* reuse VSI list for new rule and increment ref_cnt */
3620			if (map_info) {
3621				v_list_itr->vsi_list_info = map_info;
3622				map_info->ref_cnt++;
3623			} else {
3624				v_list_itr->vsi_list_info =
3625					ice_create_vsi_list_map(hw, &vsi_handle,
3626								1, vsi_list_id);
3627			}
3628		}
3629	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3630		/* Update existing VSI list to add new VSI ID only if it used
3631		 * by one VLAN rule.
3632		 */
3633		cur_fltr = &v_list_itr->fltr_info;
3634		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3635						 new_fltr);
3636	} else {
3637		/* If VLAN rule exists and VSI list being used by this rule is
3638		 * referenced by more than 1 VLAN rule. Then create a new VSI
3639		 * list appending previous VSI with new VSI and update existing
3640		 * VLAN rule to point to new VSI list ID
3641		 */
3642		struct ice_fltr_info tmp_fltr;
3643		u16 vsi_handle_arr[2];
3644		u16 cur_handle;
3645
3646		/* Current implementation only supports reusing VSI list with
3647		 * one VSI count. We should never hit below condition
3648		 */
3649		if (v_list_itr->vsi_count > 1 &&
3650		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3651			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3652			status = -EIO;
3653			goto exit;
3654		}
3655
3656		cur_handle =
3657			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3658				       ICE_MAX_VSI);
3659
3660		/* A rule already exists with the new VSI being added */
3661		if (cur_handle == vsi_handle) {
3662			status = -EEXIST;
3663			goto exit;
3664		}
3665
3666		vsi_handle_arr[0] = cur_handle;
3667		vsi_handle_arr[1] = vsi_handle;
3668		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3669						  &vsi_list_id, lkup_type);
3670		if (status)
3671			goto exit;
3672
3673		tmp_fltr = v_list_itr->fltr_info;
3674		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3675		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3676		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3677		/* Update the previous switch rule to a new VSI list which
3678		 * includes current VSI that is requested
3679		 */
3680		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3681		if (status)
3682			goto exit;
3683
3684		/* before overriding VSI list map info. decrement ref_cnt of
3685		 * previous VSI list
3686		 */
3687		v_list_itr->vsi_list_info->ref_cnt--;
3688
3689		/* now update to newly created list */
3690		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3691		v_list_itr->vsi_list_info =
3692			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3693						vsi_list_id);
3694		v_list_itr->vsi_count++;
3695	}
3696
3697exit:
3698	mutex_unlock(rule_lock);
3699	return status;
3700}
3701
3702/**
3703 * ice_add_vlan - Add VLAN based filter rule
3704 * @hw: pointer to the hardware structure
3705 * @v_list: list of VLAN entries and forwarding information
3706 */
3707int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3708{
3709	struct ice_fltr_list_entry *v_list_itr;
3710
3711	if (!v_list || !hw)
3712		return -EINVAL;
3713
3714	list_for_each_entry(v_list_itr, v_list, list_entry) {
3715		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3716			return -EINVAL;
3717		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3718		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3719		if (v_list_itr->status)
3720			return v_list_itr->status;
3721	}
3722	return 0;
3723}
3724
3725/**
3726 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3727 * @hw: pointer to the hardware structure
3728 * @em_list: list of ether type MAC filter, MAC is optional
3729 *
3730 * This function requires the caller to populate the entries in
3731 * the filter list with the necessary fields (including flags to
3732 * indicate Tx or Rx rules).
3733 */
3734int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3735{
3736	struct ice_fltr_list_entry *em_list_itr;
3737
3738	if (!em_list || !hw)
3739		return -EINVAL;
3740
3741	list_for_each_entry(em_list_itr, em_list, list_entry) {
3742		enum ice_sw_lkup_type l_type =
3743			em_list_itr->fltr_info.lkup_type;
3744
3745		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3746		    l_type != ICE_SW_LKUP_ETHERTYPE)
3747			return -EINVAL;
3748
3749		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3750							    em_list_itr);
3751		if (em_list_itr->status)
3752			return em_list_itr->status;
3753	}
3754	return 0;
3755}
3756
3757/**
3758 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3759 * @hw: pointer to the hardware structure
3760 * @em_list: list of ethertype or ethertype MAC entries
3761 */
3762int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3763{
3764	struct ice_fltr_list_entry *em_list_itr, *tmp;
3765
3766	if (!em_list || !hw)
3767		return -EINVAL;
3768
3769	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3770		enum ice_sw_lkup_type l_type =
3771			em_list_itr->fltr_info.lkup_type;
3772
3773		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3774		    l_type != ICE_SW_LKUP_ETHERTYPE)
3775			return -EINVAL;
3776
3777		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3778							       em_list_itr);
3779		if (em_list_itr->status)
3780			return em_list_itr->status;
3781	}
3782	return 0;
3783}
3784
3785/**
3786 * ice_rem_sw_rule_info
3787 * @hw: pointer to the hardware structure
3788 * @rule_head: pointer to the switch list structure that we want to delete
3789 */
3790static void
3791ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3792{
3793	if (!list_empty(rule_head)) {
3794		struct ice_fltr_mgmt_list_entry *entry;
3795		struct ice_fltr_mgmt_list_entry *tmp;
3796
3797		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3798			list_del(&entry->list_entry);
3799			devm_kfree(ice_hw_to_dev(hw), entry);
3800		}
3801	}
3802}
3803
3804/**
3805 * ice_rem_adv_rule_info
3806 * @hw: pointer to the hardware structure
3807 * @rule_head: pointer to the switch list structure that we want to delete
3808 */
3809static void
3810ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3811{
3812	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3813	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3814
3815	if (list_empty(rule_head))
3816		return;
3817
3818	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3819		list_del(&lst_itr->list_entry);
3820		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3821		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3822	}
3823}
3824
3825/**
3826 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3827 * @pi: pointer to the port_info structure
3828 * @vsi_handle: VSI handle to set as default
3829 * @set: true to add the above mentioned switch rule, false to remove it
3830 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3831 *
3832 * add filter rule to set/unset given VSI as default VSI for the switch
3833 * (represented by swid)
3834 */
3835int
3836ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3837		 u8 direction)
3838{
3839	struct ice_fltr_list_entry f_list_entry;
3840	struct ice_fltr_info f_info;
3841	struct ice_hw *hw = pi->hw;
3842	u16 hw_vsi_id;
3843	int status;
3844
3845	if (!ice_is_vsi_valid(hw, vsi_handle))
3846		return -EINVAL;
3847
3848	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3849
3850	memset(&f_info, 0, sizeof(f_info));
3851
3852	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3853	f_info.flag = direction;
3854	f_info.fltr_act = ICE_FWD_TO_VSI;
3855	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3856	f_info.vsi_handle = vsi_handle;
3857
3858	if (f_info.flag & ICE_FLTR_RX) {
3859		f_info.src = hw->port_info->lport;
3860		f_info.src_id = ICE_SRC_ID_LPORT;
3861	} else if (f_info.flag & ICE_FLTR_TX) {
3862		f_info.src_id = ICE_SRC_ID_VSI;
3863		f_info.src = hw_vsi_id;
3864	}
3865	f_list_entry.fltr_info = f_info;
3866
3867	if (set)
3868		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3869					       &f_list_entry);
3870	else
3871		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3872						  &f_list_entry);
3873
3874	return status;
3875}
3876
3877/**
3878 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3879 * @fm_entry: filter entry to inspect
3880 * @vsi_handle: VSI handle to compare with filter info
3881 */
3882static bool
3883ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3884{
3885	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3886		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3887		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3888		 fm_entry->vsi_list_info &&
3889		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3890}
3891
3892/**
3893 * ice_check_if_dflt_vsi - check if VSI is default VSI
3894 * @pi: pointer to the port_info structure
3895 * @vsi_handle: vsi handle to check for in filter list
3896 * @rule_exists: indicates if there are any VSI's in the rule list
3897 *
3898 * checks if the VSI is in a default VSI list, and also indicates
3899 * if the default VSI list is empty
3900 */
3901bool
3902ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3903		      bool *rule_exists)
3904{
3905	struct ice_fltr_mgmt_list_entry *fm_entry;
3906	struct ice_sw_recipe *recp_list;
3907	struct list_head *rule_head;
3908	struct mutex *rule_lock; /* Lock to protect filter rule list */
3909	bool ret = false;
3910
3911	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3912	rule_lock = &recp_list->filt_rule_lock;
3913	rule_head = &recp_list->filt_rules;
3914
3915	mutex_lock(rule_lock);
3916
3917	if (rule_exists && !list_empty(rule_head))
3918		*rule_exists = true;
3919
3920	list_for_each_entry(fm_entry, rule_head, list_entry) {
3921		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3922			ret = true;
3923			break;
3924		}
3925	}
3926
3927	mutex_unlock(rule_lock);
3928
3929	return ret;
3930}
3931
3932/**
3933 * ice_remove_mac - remove a MAC address based filter rule
3934 * @hw: pointer to the hardware structure
3935 * @m_list: list of MAC addresses and forwarding information
3936 *
3937 * This function removes either a MAC filter rule or a specific VSI from a
3938 * VSI list for a multicast MAC address.
3939 *
3940 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3941 * be aware that this call will only work if all the entries passed into m_list
3942 * were added previously. It will not attempt to do a partial remove of entries
3943 * that were found.
3944 */
3945int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3946{
3947	struct ice_fltr_list_entry *list_itr, *tmp;
3948
3949	if (!m_list)
3950		return -EINVAL;
3951
3952	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3953		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3954		u16 vsi_handle;
3955
3956		if (l_type != ICE_SW_LKUP_MAC)
3957			return -EINVAL;
3958
3959		vsi_handle = list_itr->fltr_info.vsi_handle;
3960		if (!ice_is_vsi_valid(hw, vsi_handle))
3961			return -EINVAL;
3962
3963		list_itr->fltr_info.fwd_id.hw_vsi_id =
3964					ice_get_hw_vsi_num(hw, vsi_handle);
3965
3966		list_itr->status = ice_remove_rule_internal(hw,
3967							    ICE_SW_LKUP_MAC,
3968							    list_itr);
3969		if (list_itr->status)
3970			return list_itr->status;
3971	}
3972	return 0;
3973}
3974
3975/**
3976 * ice_remove_vlan - Remove VLAN based filter rule
3977 * @hw: pointer to the hardware structure
3978 * @v_list: list of VLAN entries and forwarding information
3979 */
3980int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3981{
3982	struct ice_fltr_list_entry *v_list_itr, *tmp;
3983
3984	if (!v_list || !hw)
3985		return -EINVAL;
3986
3987	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3988		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3989
3990		if (l_type != ICE_SW_LKUP_VLAN)
3991			return -EINVAL;
3992		v_list_itr->status = ice_remove_rule_internal(hw,
3993							      ICE_SW_LKUP_VLAN,
3994							      v_list_itr);
3995		if (v_list_itr->status)
3996			return v_list_itr->status;
3997	}
3998	return 0;
3999}
4000
4001/**
4002 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4003 * @hw: pointer to the hardware structure
4004 * @vsi_handle: VSI handle to remove filters from
4005 * @vsi_list_head: pointer to the list to add entry to
4006 * @fi: pointer to fltr_info of filter entry to copy & add
4007 *
4008 * Helper function, used when creating a list of filters to remove from
4009 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4010 * original filter entry, with the exception of fltr_info.fltr_act and
4011 * fltr_info.fwd_id fields. These are set such that later logic can
4012 * extract which VSI to remove the fltr from, and pass on that information.
4013 */
4014static int
4015ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4016			       struct list_head *vsi_list_head,
4017			       struct ice_fltr_info *fi)
4018{
4019	struct ice_fltr_list_entry *tmp;
4020
4021	/* this memory is freed up in the caller function
4022	 * once filters for this VSI are removed
4023	 */
4024	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4025	if (!tmp)
4026		return -ENOMEM;
4027
4028	tmp->fltr_info = *fi;
4029
4030	/* Overwrite these fields to indicate which VSI to remove filter from,
4031	 * so find and remove logic can extract the information from the
4032	 * list entries. Note that original entries will still have proper
4033	 * values.
4034	 */
4035	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4036	tmp->fltr_info.vsi_handle = vsi_handle;
4037	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4038
4039	list_add(&tmp->list_entry, vsi_list_head);
4040
4041	return 0;
4042}
4043
4044/**
4045 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4046 * @hw: pointer to the hardware structure
4047 * @vsi_handle: VSI handle to remove filters from
4048 * @lkup_list_head: pointer to the list that has certain lookup type filters
4049 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4050 *
4051 * Locates all filters in lkup_list_head that are used by the given VSI,
4052 * and adds COPIES of those entries to vsi_list_head (intended to be used
4053 * to remove the listed filters).
4054 * Note that this means all entries in vsi_list_head must be explicitly
4055 * deallocated by the caller when done with list.
4056 */
4057static int
4058ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4059			 struct list_head *lkup_list_head,
4060			 struct list_head *vsi_list_head)
4061{
4062	struct ice_fltr_mgmt_list_entry *fm_entry;
4063	int status = 0;
4064
4065	/* check to make sure VSI ID is valid and within boundary */
4066	if (!ice_is_vsi_valid(hw, vsi_handle))
4067		return -EINVAL;
4068
4069	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4070		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4071			continue;
4072
4073		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4074							vsi_list_head,
4075							&fm_entry->fltr_info);
4076		if (status)
4077			return status;
4078	}
4079	return status;
4080}
4081
4082/**
4083 * ice_determine_promisc_mask
4084 * @fi: filter info to parse
4085 *
4086 * Helper function to determine which ICE_PROMISC_ mask corresponds
4087 * to given filter into.
4088 */
4089static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4090{
4091	u16 vid = fi->l_data.mac_vlan.vlan_id;
4092	u8 *macaddr = fi->l_data.mac.mac_addr;
4093	bool is_tx_fltr = false;
4094	u8 promisc_mask = 0;
4095
4096	if (fi->flag == ICE_FLTR_TX)
4097		is_tx_fltr = true;
4098
4099	if (is_broadcast_ether_addr(macaddr))
4100		promisc_mask |= is_tx_fltr ?
4101			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4102	else if (is_multicast_ether_addr(macaddr))
4103		promisc_mask |= is_tx_fltr ?
4104			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4105	else if (is_unicast_ether_addr(macaddr))
4106		promisc_mask |= is_tx_fltr ?
4107			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4108	if (vid)
4109		promisc_mask |= is_tx_fltr ?
4110			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4111
4112	return promisc_mask;
4113}
4114
4115/**
4116 * ice_remove_promisc - Remove promisc based filter rules
4117 * @hw: pointer to the hardware structure
4118 * @recp_id: recipe ID for which the rule needs to removed
4119 * @v_list: list of promisc entries
4120 */
4121static int
4122ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4123{
4124	struct ice_fltr_list_entry *v_list_itr, *tmp;
4125
4126	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4127		v_list_itr->status =
4128			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4129		if (v_list_itr->status)
4130			return v_list_itr->status;
4131	}
4132	return 0;
4133}
4134
4135/**
4136 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4137 * @hw: pointer to the hardware structure
4138 * @vsi_handle: VSI handle to clear mode
4139 * @promisc_mask: mask of promiscuous config bits to clear
4140 * @vid: VLAN ID to clear VLAN promiscuous
4141 */
4142int
4143ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4144		      u16 vid)
4145{
4146	struct ice_switch_info *sw = hw->switch_info;
4147	struct ice_fltr_list_entry *fm_entry, *tmp;
4148	struct list_head remove_list_head;
4149	struct ice_fltr_mgmt_list_entry *itr;
4150	struct list_head *rule_head;
4151	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4152	int status = 0;
4153	u8 recipe_id;
4154
4155	if (!ice_is_vsi_valid(hw, vsi_handle))
4156		return -EINVAL;
4157
4158	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4159		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4160	else
4161		recipe_id = ICE_SW_LKUP_PROMISC;
4162
4163	rule_head = &sw->recp_list[recipe_id].filt_rules;
4164	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4165
4166	INIT_LIST_HEAD(&remove_list_head);
4167
4168	mutex_lock(rule_lock);
4169	list_for_each_entry(itr, rule_head, list_entry) {
4170		struct ice_fltr_info *fltr_info;
4171		u8 fltr_promisc_mask = 0;
4172
4173		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4174			continue;
4175		fltr_info = &itr->fltr_info;
4176
4177		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4178		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4179			continue;
4180
4181		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4182
4183		/* Skip if filter is not completely specified by given mask */
4184		if (fltr_promisc_mask & ~promisc_mask)
4185			continue;
4186
4187		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4188							&remove_list_head,
4189							fltr_info);
4190		if (status) {
4191			mutex_unlock(rule_lock);
4192			goto free_fltr_list;
4193		}
4194	}
4195	mutex_unlock(rule_lock);
4196
4197	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4198
4199free_fltr_list:
4200	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4201		list_del(&fm_entry->list_entry);
4202		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4203	}
4204
4205	return status;
4206}
4207
4208/**
4209 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4210 * @hw: pointer to the hardware structure
4211 * @vsi_handle: VSI handle to configure
4212 * @promisc_mask: mask of promiscuous config bits
4213 * @vid: VLAN ID to set VLAN promiscuous
4214 */
4215int
4216ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4217{
4218	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4219	struct ice_fltr_list_entry f_list_entry;
4220	struct ice_fltr_info new_fltr;
4221	bool is_tx_fltr;
4222	int status = 0;
4223	u16 hw_vsi_id;
4224	int pkt_type;
4225	u8 recipe_id;
4226
4227	if (!ice_is_vsi_valid(hw, vsi_handle))
4228		return -EINVAL;
4229	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4230
4231	memset(&new_fltr, 0, sizeof(new_fltr));
4232
4233	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4234		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4235		new_fltr.l_data.mac_vlan.vlan_id = vid;
4236		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4237	} else {
4238		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4239		recipe_id = ICE_SW_LKUP_PROMISC;
4240	}
4241
4242	/* Separate filters must be set for each direction/packet type
4243	 * combination, so we will loop over the mask value, store the
4244	 * individual type, and clear it out in the input mask as it
4245	 * is found.
4246	 */
4247	while (promisc_mask) {
4248		u8 *mac_addr;
4249
4250		pkt_type = 0;
4251		is_tx_fltr = false;
4252
4253		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4254			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4255			pkt_type = UCAST_FLTR;
4256		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4257			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4258			pkt_type = UCAST_FLTR;
4259			is_tx_fltr = true;
4260		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4261			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4262			pkt_type = MCAST_FLTR;
4263		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4264			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4265			pkt_type = MCAST_FLTR;
4266			is_tx_fltr = true;
4267		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4268			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4269			pkt_type = BCAST_FLTR;
4270		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4271			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4272			pkt_type = BCAST_FLTR;
4273			is_tx_fltr = true;
4274		}
4275
4276		/* Check for VLAN promiscuous flag */
4277		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4278			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4279		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4280			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4281			is_tx_fltr = true;
4282		}
4283
4284		/* Set filter DA based on packet type */
4285		mac_addr = new_fltr.l_data.mac.mac_addr;
4286		if (pkt_type == BCAST_FLTR) {
4287			eth_broadcast_addr(mac_addr);
4288		} else if (pkt_type == MCAST_FLTR ||
4289			   pkt_type == UCAST_FLTR) {
4290			/* Use the dummy ether header DA */
4291			ether_addr_copy(mac_addr, dummy_eth_header);
4292			if (pkt_type == MCAST_FLTR)
4293				mac_addr[0] |= 0x1;	/* Set multicast bit */
4294		}
4295
4296		/* Need to reset this to zero for all iterations */
4297		new_fltr.flag = 0;
4298		if (is_tx_fltr) {
4299			new_fltr.flag |= ICE_FLTR_TX;
4300			new_fltr.src = hw_vsi_id;
4301		} else {
4302			new_fltr.flag |= ICE_FLTR_RX;
4303			new_fltr.src = hw->port_info->lport;
4304		}
4305
4306		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4307		new_fltr.vsi_handle = vsi_handle;
4308		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4309		f_list_entry.fltr_info = new_fltr;
4310
4311		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4312		if (status)
4313			goto set_promisc_exit;
4314	}
4315
4316set_promisc_exit:
4317	return status;
4318}
4319
4320/**
4321 * ice_set_vlan_vsi_promisc
4322 * @hw: pointer to the hardware structure
4323 * @vsi_handle: VSI handle to configure
4324 * @promisc_mask: mask of promiscuous config bits
4325 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4326 *
4327 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4328 */
4329int
4330ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4331			 bool rm_vlan_promisc)
4332{
4333	struct ice_switch_info *sw = hw->switch_info;
4334	struct ice_fltr_list_entry *list_itr, *tmp;
4335	struct list_head vsi_list_head;
4336	struct list_head *vlan_head;
4337	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4338	u16 vlan_id;
4339	int status;
4340
4341	INIT_LIST_HEAD(&vsi_list_head);
4342	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4343	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4344	mutex_lock(vlan_lock);
4345	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4346					  &vsi_list_head);
4347	mutex_unlock(vlan_lock);
4348	if (status)
4349		goto free_fltr_list;
4350
4351	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4352		/* Avoid enabling or disabling VLAN zero twice when in double
4353		 * VLAN mode
4354		 */
4355		if (ice_is_dvm_ena(hw) &&
4356		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4357			continue;
4358
4359		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4360		if (rm_vlan_promisc)
4361			status = ice_clear_vsi_promisc(hw, vsi_handle,
4362						       promisc_mask, vlan_id);
4363		else
4364			status = ice_set_vsi_promisc(hw, vsi_handle,
4365						     promisc_mask, vlan_id);
4366		if (status && status != -EEXIST)
4367			break;
4368	}
4369
4370free_fltr_list:
4371	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4372		list_del(&list_itr->list_entry);
4373		devm_kfree(ice_hw_to_dev(hw), list_itr);
4374	}
4375	return status;
4376}
4377
4378/**
4379 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4380 * @hw: pointer to the hardware structure
4381 * @vsi_handle: VSI handle to remove filters from
4382 * @lkup: switch rule filter lookup type
4383 */
4384static void
4385ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4386			 enum ice_sw_lkup_type lkup)
4387{
4388	struct ice_switch_info *sw = hw->switch_info;
4389	struct ice_fltr_list_entry *fm_entry;
4390	struct list_head remove_list_head;
4391	struct list_head *rule_head;
4392	struct ice_fltr_list_entry *tmp;
4393	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4394	int status;
4395
4396	INIT_LIST_HEAD(&remove_list_head);
4397	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4398	rule_head = &sw->recp_list[lkup].filt_rules;
4399	mutex_lock(rule_lock);
4400	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4401					  &remove_list_head);
4402	mutex_unlock(rule_lock);
4403	if (status)
4404		goto free_fltr_list;
4405
4406	switch (lkup) {
4407	case ICE_SW_LKUP_MAC:
4408		ice_remove_mac(hw, &remove_list_head);
4409		break;
4410	case ICE_SW_LKUP_VLAN:
4411		ice_remove_vlan(hw, &remove_list_head);
4412		break;
4413	case ICE_SW_LKUP_PROMISC:
4414	case ICE_SW_LKUP_PROMISC_VLAN:
4415		ice_remove_promisc(hw, lkup, &remove_list_head);
4416		break;
4417	case ICE_SW_LKUP_MAC_VLAN:
4418	case ICE_SW_LKUP_ETHERTYPE:
4419	case ICE_SW_LKUP_ETHERTYPE_MAC:
4420	case ICE_SW_LKUP_DFLT:
4421	case ICE_SW_LKUP_LAST:
4422	default:
4423		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4424		break;
4425	}
4426
4427free_fltr_list:
4428	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4429		list_del(&fm_entry->list_entry);
4430		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4431	}
4432}
4433
4434/**
4435 * ice_remove_vsi_fltr - Remove all filters for a VSI
4436 * @hw: pointer to the hardware structure
4437 * @vsi_handle: VSI handle to remove filters from
4438 */
4439void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4440{
4441	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4442	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4443	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4444	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4445	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4446	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4447	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4448	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4449}
4450
4451/**
4452 * ice_alloc_res_cntr - allocating resource counter
4453 * @hw: pointer to the hardware structure
4454 * @type: type of resource
4455 * @alloc_shared: if set it is shared else dedicated
4456 * @num_items: number of entries requested for FD resource type
4457 * @counter_id: counter index returned by AQ call
4458 */
4459int
4460ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4461		   u16 *counter_id)
4462{
4463	struct ice_aqc_alloc_free_res_elem *buf;
4464	u16 buf_len;
4465	int status;
4466
4467	/* Allocate resource */
4468	buf_len = struct_size(buf, elem, 1);
4469	buf = kzalloc(buf_len, GFP_KERNEL);
4470	if (!buf)
4471		return -ENOMEM;
4472
4473	buf->num_elems = cpu_to_le16(num_items);
4474	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4475				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4476
4477	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4478				       ice_aqc_opc_alloc_res, NULL);
4479	if (status)
4480		goto exit;
4481
4482	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4483
4484exit:
4485	kfree(buf);
4486	return status;
4487}
4488
4489/**
4490 * ice_free_res_cntr - free resource counter
4491 * @hw: pointer to the hardware structure
4492 * @type: type of resource
4493 * @alloc_shared: if set it is shared else dedicated
4494 * @num_items: number of entries to be freed for FD resource type
4495 * @counter_id: counter ID resource which needs to be freed
4496 */
4497int
4498ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4499		  u16 counter_id)
4500{
4501	struct ice_aqc_alloc_free_res_elem *buf;
4502	u16 buf_len;
4503	int status;
4504
4505	/* Free resource */
4506	buf_len = struct_size(buf, elem, 1);
4507	buf = kzalloc(buf_len, GFP_KERNEL);
4508	if (!buf)
4509		return -ENOMEM;
4510
4511	buf->num_elems = cpu_to_le16(num_items);
4512	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4513				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4514	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4515
4516	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4517				       ice_aqc_opc_free_res, NULL);
4518	if (status)
4519		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4520
4521	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522	return status;
4523}
4524
4525/* This is mapping table entry that maps every word within a given protocol
4526 * structure to the real byte offset as per the specification of that
4527 * protocol header.
4528 * for example dst address is 3 words in ethertype header and corresponding
4529 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4530 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4531 * matching entry describing its field. This needs to be updated if new
4532 * structure is added to that union.
4533 */
4534static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4535	{ ICE_MAC_OFOS,		{ 0, 2, 4, 6, 8, 10, 12 } },
4536	{ ICE_MAC_IL,		{ 0, 2, 4, 6, 8, 10, 12 } },
4537	{ ICE_ETYPE_OL,		{ 0 } },
4538	{ ICE_ETYPE_IL,		{ 0 } },
4539	{ ICE_VLAN_OFOS,	{ 2, 0 } },
4540	{ ICE_IPV4_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4541	{ ICE_IPV4_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4542	{ ICE_IPV6_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4543				 26, 28, 30, 32, 34, 36, 38 } },
4544	{ ICE_IPV6_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4545				 26, 28, 30, 32, 34, 36, 38 } },
4546	{ ICE_TCP_IL,		{ 0, 2 } },
4547	{ ICE_UDP_OF,		{ 0, 2 } },
4548	{ ICE_UDP_ILOS,		{ 0, 2 } },
4549	{ ICE_VXLAN,		{ 8, 10, 12, 14 } },
4550	{ ICE_GENEVE,		{ 8, 10, 12, 14 } },
4551	{ ICE_NVGRE,		{ 0, 2, 4, 6 } },
4552	{ ICE_GTP,		{ 8, 10, 12, 14, 16, 18, 20, 22 } },
4553	{ ICE_GTP_NO_PAY,	{ 8, 10, 12, 14 } },
4554	{ ICE_PPPOE,		{ 0, 2, 4, 6 } },
4555	{ ICE_L2TPV3,		{ 0, 2, 4, 6, 8, 10 } },
4556	{ ICE_VLAN_EX,          { 2, 0 } },
4557	{ ICE_VLAN_IN,          { 2, 0 } },
 
 
 
 
 
 
 
 
 
4558};
4559
4560static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4561	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4562	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4563	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4564	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4565	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4566	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4567	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4568	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4569	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4570	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4571	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4572	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4573	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4574	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4575	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4576	{ ICE_GTP,		ICE_UDP_OF_HW },
4577	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4578	{ ICE_PPPOE,		ICE_PPPOE_HW },
4579	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4580	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4581	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
 
4582};
4583
4584/**
4585 * ice_find_recp - find a recipe
4586 * @hw: pointer to the hardware structure
4587 * @lkup_exts: extension sequence to match
4588 * @tun_type: type of recipe tunnel
4589 *
4590 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4591 */
4592static u16
4593ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4594	      enum ice_sw_tunnel_type tun_type)
4595{
4596	bool refresh_required = true;
4597	struct ice_sw_recipe *recp;
4598	u8 i;
4599
4600	/* Walk through existing recipes to find a match */
4601	recp = hw->switch_info->recp_list;
4602	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4603		/* If recipe was not created for this ID, in SW bookkeeping,
4604		 * check if FW has an entry for this recipe. If the FW has an
4605		 * entry update it in our SW bookkeeping and continue with the
4606		 * matching.
4607		 */
4608		if (!recp[i].recp_created)
4609			if (ice_get_recp_frm_fw(hw,
4610						hw->switch_info->recp_list, i,
4611						&refresh_required))
4612				continue;
4613
4614		/* Skip inverse action recipes */
4615		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4616		    ICE_AQ_RECIPE_ACT_INV_ACT)
4617			continue;
4618
4619		/* if number of words we are looking for match */
4620		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4621			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4622			struct ice_fv_word *be = lkup_exts->fv_words;
4623			u16 *cr = recp[i].lkup_exts.field_mask;
4624			u16 *de = lkup_exts->field_mask;
4625			bool found = true;
4626			u8 pe, qr;
4627
4628			/* ar, cr, and qr are related to the recipe words, while
4629			 * be, de, and pe are related to the lookup words
4630			 */
4631			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4632				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4633				     qr++) {
4634					if (ar[qr].off == be[pe].off &&
4635					    ar[qr].prot_id == be[pe].prot_id &&
4636					    cr[qr] == de[pe])
4637						/* Found the "pe"th word in the
4638						 * given recipe
4639						 */
4640						break;
4641				}
4642				/* After walking through all the words in the
4643				 * "i"th recipe if "p"th word was not found then
4644				 * this recipe is not what we are looking for.
4645				 * So break out from this loop and try the next
4646				 * recipe
4647				 */
4648				if (qr >= recp[i].lkup_exts.n_val_words) {
4649					found = false;
4650					break;
4651				}
4652			}
4653			/* If for "i"th recipe the found was never set to false
4654			 * then it means we found our match
4655			 * Also tun type of recipe needs to be checked
 
4656			 */
4657			if (found && recp[i].tun_type == tun_type)
 
 
4658				return i; /* Return the recipe ID */
4659		}
4660	}
4661	return ICE_MAX_NUM_RECIPES;
4662}
4663
4664/**
4665 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4666 *
4667 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4668 * supported protocol array record for outer vlan has to be modified to
4669 * reflect the value proper for DVM.
4670 */
4671void ice_change_proto_id_to_dvm(void)
4672{
4673	u8 i;
4674
4675	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4676		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4677		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4678			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4679}
4680
4681/**
4682 * ice_prot_type_to_id - get protocol ID from protocol type
4683 * @type: protocol type
4684 * @id: pointer to variable that will receive the ID
4685 *
4686 * Returns true if found, false otherwise
4687 */
4688static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4689{
4690	u8 i;
4691
4692	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4693		if (ice_prot_id_tbl[i].type == type) {
4694			*id = ice_prot_id_tbl[i].protocol_id;
4695			return true;
4696		}
4697	return false;
4698}
4699
4700/**
4701 * ice_fill_valid_words - count valid words
4702 * @rule: advanced rule with lookup information
4703 * @lkup_exts: byte offset extractions of the words that are valid
4704 *
4705 * calculate valid words in a lookup rule using mask value
4706 */
4707static u8
4708ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4709		     struct ice_prot_lkup_ext *lkup_exts)
4710{
4711	u8 j, word, prot_id, ret_val;
4712
4713	if (!ice_prot_type_to_id(rule->type, &prot_id))
4714		return 0;
4715
4716	word = lkup_exts->n_val_words;
4717
4718	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4719		if (((u16 *)&rule->m_u)[j] &&
4720		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4721			/* No more space to accommodate */
4722			if (word >= ICE_MAX_CHAIN_WORDS)
4723				return 0;
4724			lkup_exts->fv_words[word].off =
4725				ice_prot_ext[rule->type].offs[j];
4726			lkup_exts->fv_words[word].prot_id =
4727				ice_prot_id_tbl[rule->type].protocol_id;
4728			lkup_exts->field_mask[word] =
4729				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4730			word++;
4731		}
4732
4733	ret_val = word - lkup_exts->n_val_words;
4734	lkup_exts->n_val_words = word;
4735
4736	return ret_val;
4737}
4738
4739/**
4740 * ice_create_first_fit_recp_def - Create a recipe grouping
4741 * @hw: pointer to the hardware structure
4742 * @lkup_exts: an array of protocol header extractions
4743 * @rg_list: pointer to a list that stores new recipe groups
4744 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4745 *
4746 * Using first fit algorithm, take all the words that are still not done
4747 * and start grouping them in 4-word groups. Each group makes up one
4748 * recipe.
4749 */
4750static int
4751ice_create_first_fit_recp_def(struct ice_hw *hw,
4752			      struct ice_prot_lkup_ext *lkup_exts,
4753			      struct list_head *rg_list,
4754			      u8 *recp_cnt)
4755{
4756	struct ice_pref_recipe_group *grp = NULL;
4757	u8 j;
4758
4759	*recp_cnt = 0;
4760
4761	/* Walk through every word in the rule to check if it is not done. If so
4762	 * then this word needs to be part of a new recipe.
4763	 */
4764	for (j = 0; j < lkup_exts->n_val_words; j++)
4765		if (!test_bit(j, lkup_exts->done)) {
4766			if (!grp ||
4767			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4768				struct ice_recp_grp_entry *entry;
4769
4770				entry = devm_kzalloc(ice_hw_to_dev(hw),
4771						     sizeof(*entry),
4772						     GFP_KERNEL);
4773				if (!entry)
4774					return -ENOMEM;
4775				list_add(&entry->l_entry, rg_list);
4776				grp = &entry->r_group;
4777				(*recp_cnt)++;
4778			}
4779
4780			grp->pairs[grp->n_val_pairs].prot_id =
4781				lkup_exts->fv_words[j].prot_id;
4782			grp->pairs[grp->n_val_pairs].off =
4783				lkup_exts->fv_words[j].off;
4784			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4785			grp->n_val_pairs++;
4786		}
4787
4788	return 0;
4789}
4790
4791/**
4792 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4793 * @hw: pointer to the hardware structure
4794 * @fv_list: field vector with the extraction sequence information
4795 * @rg_list: recipe groupings with protocol-offset pairs
4796 *
4797 * Helper function to fill in the field vector indices for protocol-offset
4798 * pairs. These indexes are then ultimately programmed into a recipe.
4799 */
4800static int
4801ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4802		       struct list_head *rg_list)
4803{
4804	struct ice_sw_fv_list_entry *fv;
4805	struct ice_recp_grp_entry *rg;
4806	struct ice_fv_word *fv_ext;
4807
4808	if (list_empty(fv_list))
4809		return 0;
4810
4811	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4812			      list_entry);
4813	fv_ext = fv->fv_ptr->ew;
4814
4815	list_for_each_entry(rg, rg_list, l_entry) {
4816		u8 i;
4817
4818		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4819			struct ice_fv_word *pr;
4820			bool found = false;
4821			u16 mask;
4822			u8 j;
4823
4824			pr = &rg->r_group.pairs[i];
4825			mask = rg->r_group.mask[i];
4826
4827			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4828				if (fv_ext[j].prot_id == pr->prot_id &&
4829				    fv_ext[j].off == pr->off) {
4830					found = true;
4831
4832					/* Store index of field vector */
4833					rg->fv_idx[i] = j;
4834					rg->fv_mask[i] = mask;
4835					break;
4836				}
4837
4838			/* Protocol/offset could not be found, caller gave an
4839			 * invalid pair
4840			 */
4841			if (!found)
4842				return -EINVAL;
4843		}
4844	}
4845
4846	return 0;
4847}
4848
4849/**
4850 * ice_find_free_recp_res_idx - find free result indexes for recipe
4851 * @hw: pointer to hardware structure
4852 * @profiles: bitmap of profiles that will be associated with the new recipe
4853 * @free_idx: pointer to variable to receive the free index bitmap
4854 *
4855 * The algorithm used here is:
4856 *	1. When creating a new recipe, create a set P which contains all
4857 *	   Profiles that will be associated with our new recipe
4858 *
4859 *	2. For each Profile p in set P:
4860 *	    a. Add all recipes associated with Profile p into set R
4861 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4862 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4863 *		i. Or just assume they all have the same possible indexes:
4864 *			44, 45, 46, 47
4865 *			i.e., PossibleIndexes = 0x0000F00000000000
4866 *
4867 *	3. For each Recipe r in set R:
4868 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4869 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4870 *
4871 *	FreeIndexes will contain the bits indicating the indexes free for use,
4872 *      then the code needs to update the recipe[r].used_result_idx_bits to
4873 *      indicate which indexes were selected for use by this recipe.
4874 */
4875static u16
4876ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4877			   unsigned long *free_idx)
4878{
4879	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4880	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4881	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4882	u16 bit;
4883
4884	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4885	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4886
4887	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4888
4889	/* For each profile we are going to associate the recipe with, add the
4890	 * recipes that are associated with that profile. This will give us
4891	 * the set of recipes that our recipe may collide with. Also, determine
4892	 * what possible result indexes are usable given this set of profiles.
4893	 */
4894	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4895		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4896			  ICE_MAX_NUM_RECIPES);
4897		bitmap_and(possible_idx, possible_idx,
4898			   hw->switch_info->prof_res_bm[bit],
4899			   ICE_MAX_FV_WORDS);
4900	}
4901
4902	/* For each recipe that our new recipe may collide with, determine
4903	 * which indexes have been used.
4904	 */
4905	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4906		bitmap_or(used_idx, used_idx,
4907			  hw->switch_info->recp_list[bit].res_idxs,
4908			  ICE_MAX_FV_WORDS);
4909
4910	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4911
4912	/* return number of free indexes */
4913	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4914}
4915
4916/**
4917 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4918 * @hw: pointer to hardware structure
4919 * @rm: recipe management list entry
4920 * @profiles: bitmap of profiles that will be associated.
4921 */
4922static int
4923ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4924		  unsigned long *profiles)
4925{
4926	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
 
4927	struct ice_aqc_recipe_data_elem *tmp;
4928	struct ice_aqc_recipe_data_elem *buf;
4929	struct ice_recp_grp_entry *entry;
4930	u16 free_res_idx;
4931	u16 recipe_count;
4932	u8 chain_idx;
4933	u8 recps = 0;
4934	int status;
4935
4936	/* When more than one recipe are required, another recipe is needed to
4937	 * chain them together. Matching a tunnel metadata ID takes up one of
4938	 * the match fields in the chaining recipe reducing the number of
4939	 * chained recipes by one.
4940	 */
4941	 /* check number of free result indices */
4942	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4943	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4944
4945	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4946		  free_res_idx, rm->n_grp_count);
4947
4948	if (rm->n_grp_count > 1) {
4949		if (rm->n_grp_count > free_res_idx)
4950			return -ENOSPC;
4951
4952		rm->n_grp_count++;
4953	}
4954
4955	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4956		return -ENOSPC;
4957
4958	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4959	if (!tmp)
4960		return -ENOMEM;
4961
4962	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4963			   GFP_KERNEL);
4964	if (!buf) {
4965		status = -ENOMEM;
4966		goto err_mem;
4967	}
4968
4969	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4970	recipe_count = ICE_MAX_NUM_RECIPES;
4971	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4972				   NULL);
4973	if (status || recipe_count == 0)
4974		goto err_unroll;
4975
4976	/* Allocate the recipe resources, and configure them according to the
4977	 * match fields from protocol headers and extracted field vectors.
4978	 */
4979	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4980	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4981		u8 i;
4982
4983		status = ice_alloc_recipe(hw, &entry->rid);
4984		if (status)
4985			goto err_unroll;
4986
 
 
4987		/* Clear the result index of the located recipe, as this will be
4988		 * updated, if needed, later in the recipe creation process.
4989		 */
4990		tmp[0].content.result_indx = 0;
4991
4992		buf[recps] = tmp[0];
4993		buf[recps].recipe_indx = (u8)entry->rid;
4994		/* if the recipe is a non-root recipe RID should be programmed
4995		 * as 0 for the rules to be applied correctly.
4996		 */
4997		buf[recps].content.rid = 0;
4998		memset(&buf[recps].content.lkup_indx, 0,
4999		       sizeof(buf[recps].content.lkup_indx));
5000
5001		/* All recipes use look-up index 0 to match switch ID. */
5002		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5003		buf[recps].content.mask[0] =
5004			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5005		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5006		 * to be 0
5007		 */
5008		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5009			buf[recps].content.lkup_indx[i] = 0x80;
5010			buf[recps].content.mask[i] = 0;
5011		}
5012
5013		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5014			buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
5015			buf[recps].content.mask[i + 1] =
5016				cpu_to_le16(entry->fv_mask[i]);
5017		}
5018
5019		if (rm->n_grp_count > 1) {
5020			/* Checks to see if there really is a valid result index
5021			 * that can be used.
5022			 */
5023			if (chain_idx >= ICE_MAX_FV_WORDS) {
5024				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5025				status = -ENOSPC;
5026				goto err_unroll;
5027			}
5028
5029			entry->chain_idx = chain_idx;
5030			buf[recps].content.result_indx =
5031				ICE_AQ_RECIPE_RESULT_EN |
5032				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5033				 ICE_AQ_RECIPE_RESULT_DATA_M);
5034			clear_bit(chain_idx, result_idx_bm);
5035			chain_idx = find_first_bit(result_idx_bm,
5036						   ICE_MAX_FV_WORDS);
5037		}
5038
5039		/* fill recipe dependencies */
5040		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5041			    ICE_MAX_NUM_RECIPES);
5042		set_bit(buf[recps].recipe_indx,
5043			(unsigned long *)buf[recps].recipe_bitmap);
5044		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
 
 
 
 
 
 
5045		recps++;
5046	}
5047
5048	if (rm->n_grp_count == 1) {
5049		rm->root_rid = buf[0].recipe_indx;
5050		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5051		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5052		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5053			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5054			       sizeof(buf[0].recipe_bitmap));
5055		} else {
5056			status = -EINVAL;
5057			goto err_unroll;
5058		}
5059		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5060		 * the recipe which is getting created if specified
5061		 * by user. Usually any advanced switch filter, which results
5062		 * into new extraction sequence, ended up creating a new recipe
5063		 * of type ROOT and usually recipes are associated with profiles
5064		 * Switch rule referreing newly created recipe, needs to have
5065		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5066		 * evaluation will not happen correctly. In other words, if
5067		 * switch rule to be evaluated on priority basis, then recipe
5068		 * needs to have priority, otherwise it will be evaluated last.
5069		 */
5070		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5071	} else {
5072		struct ice_recp_grp_entry *last_chain_entry;
5073		u16 rid, i;
5074
5075		/* Allocate the last recipe that will chain the outcomes of the
5076		 * other recipes together
5077		 */
5078		status = ice_alloc_recipe(hw, &rid);
5079		if (status)
5080			goto err_unroll;
5081
 
 
5082		buf[recps].recipe_indx = (u8)rid;
5083		buf[recps].content.rid = (u8)rid;
5084		buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5085		/* the new entry created should also be part of rg_list to
5086		 * make sure we have complete recipe
5087		 */
5088		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5089						sizeof(*last_chain_entry),
5090						GFP_KERNEL);
5091		if (!last_chain_entry) {
5092			status = -ENOMEM;
5093			goto err_unroll;
5094		}
5095		last_chain_entry->rid = rid;
5096		memset(&buf[recps].content.lkup_indx, 0,
5097		       sizeof(buf[recps].content.lkup_indx));
5098		/* All recipes use look-up index 0 to match switch ID. */
5099		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5100		buf[recps].content.mask[0] =
5101			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5102		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5103			buf[recps].content.lkup_indx[i] =
5104				ICE_AQ_RECIPE_LKUP_IGNORE;
5105			buf[recps].content.mask[i] = 0;
5106		}
5107
5108		i = 1;
5109		/* update r_bitmap with the recp that is used for chaining */
5110		set_bit(rid, rm->r_bitmap);
5111		/* this is the recipe that chains all the other recipes so it
5112		 * should not have a chaining ID to indicate the same
5113		 */
5114		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5115		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5116			last_chain_entry->fv_idx[i] = entry->chain_idx;
5117			buf[recps].content.lkup_indx[i] = entry->chain_idx;
5118			buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5119			set_bit(entry->rid, rm->r_bitmap);
5120		}
5121		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5122		if (sizeof(buf[recps].recipe_bitmap) >=
5123		    sizeof(rm->r_bitmap)) {
5124			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5125			       sizeof(buf[recps].recipe_bitmap));
5126		} else {
5127			status = -EINVAL;
5128			goto err_unroll;
5129		}
5130		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5131
5132		recps++;
5133		rm->root_rid = (u8)rid;
5134	}
5135	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5136	if (status)
5137		goto err_unroll;
5138
5139	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5140	ice_release_change_lock(hw);
5141	if (status)
5142		goto err_unroll;
5143
5144	/* Every recipe that just got created add it to the recipe
5145	 * book keeping list
5146	 */
5147	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5148		struct ice_switch_info *sw = hw->switch_info;
5149		bool is_root, idx_found = false;
5150		struct ice_sw_recipe *recp;
5151		u16 idx, buf_idx = 0;
5152
5153		/* find buffer index for copying some data */
5154		for (idx = 0; idx < rm->n_grp_count; idx++)
5155			if (buf[idx].recipe_indx == entry->rid) {
5156				buf_idx = idx;
5157				idx_found = true;
5158			}
5159
5160		if (!idx_found) {
5161			status = -EIO;
5162			goto err_unroll;
5163		}
5164
5165		recp = &sw->recp_list[entry->rid];
5166		is_root = (rm->root_rid == entry->rid);
5167		recp->is_root = is_root;
5168
5169		recp->root_rid = entry->rid;
5170		recp->big_recp = (is_root && rm->n_grp_count > 1);
5171
5172		memcpy(&recp->ext_words, entry->r_group.pairs,
5173		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5174
5175		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5176		       sizeof(recp->r_bitmap));
5177
5178		/* Copy non-result fv index values and masks to recipe. This
5179		 * call will also update the result recipe bitmask.
5180		 */
5181		ice_collect_result_idx(&buf[buf_idx], recp);
5182
5183		/* for non-root recipes, also copy to the root, this allows
5184		 * easier matching of a complete chained recipe
5185		 */
5186		if (!is_root)
5187			ice_collect_result_idx(&buf[buf_idx],
5188					       &sw->recp_list[rm->root_rid]);
5189
5190		recp->n_ext_words = entry->r_group.n_val_pairs;
5191		recp->chain_idx = entry->chain_idx;
5192		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5193		recp->n_grp_count = rm->n_grp_count;
5194		recp->tun_type = rm->tun_type;
 
 
5195		recp->recp_created = true;
5196	}
5197	rm->root_buf = buf;
5198	kfree(tmp);
5199	return status;
5200
5201err_unroll:
5202err_mem:
5203	kfree(tmp);
5204	devm_kfree(ice_hw_to_dev(hw), buf);
5205	return status;
5206}
5207
5208/**
5209 * ice_create_recipe_group - creates recipe group
5210 * @hw: pointer to hardware structure
5211 * @rm: recipe management list entry
5212 * @lkup_exts: lookup elements
5213 */
5214static int
5215ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5216			struct ice_prot_lkup_ext *lkup_exts)
5217{
5218	u8 recp_count = 0;
5219	int status;
5220
5221	rm->n_grp_count = 0;
5222
5223	/* Create recipes for words that are marked not done by packing them
5224	 * as best fit.
5225	 */
5226	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5227					       &rm->rg_list, &recp_count);
5228	if (!status) {
5229		rm->n_grp_count += recp_count;
5230		rm->n_ext_words = lkup_exts->n_val_words;
5231		memcpy(&rm->ext_words, lkup_exts->fv_words,
5232		       sizeof(rm->ext_words));
5233		memcpy(rm->word_masks, lkup_exts->field_mask,
5234		       sizeof(rm->word_masks));
5235	}
5236
5237	return status;
5238}
5239
5240/**
5241 * ice_tun_type_match_word - determine if tun type needs a match mask
5242 * @tun_type: tunnel type
5243 * @mask: mask to be used for the tunnel
5244 */
5245static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5246{
5247	switch (tun_type) {
5248	case ICE_SW_TUN_GENEVE:
5249	case ICE_SW_TUN_VXLAN:
5250	case ICE_SW_TUN_NVGRE:
5251	case ICE_SW_TUN_GTPU:
5252	case ICE_SW_TUN_GTPC:
5253		*mask = ICE_TUN_FLAG_MASK;
5254		return true;
5255
5256	default:
5257		*mask = 0;
5258		return false;
5259	}
5260}
5261
5262/**
5263 * ice_add_special_words - Add words that are not protocols, such as metadata
5264 * @rinfo: other information regarding the rule e.g. priority and action info
5265 * @lkup_exts: lookup word structure
5266 * @dvm_ena: is double VLAN mode enabled
5267 */
5268static int
5269ice_add_special_words(struct ice_adv_rule_info *rinfo,
5270		      struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5271{
5272	u16 mask;
5273
5274	/* If this is a tunneled packet, then add recipe index to match the
5275	 * tunnel bit in the packet metadata flags.
5276	 */
5277	if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5278		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5279			u8 word = lkup_exts->n_val_words++;
5280
5281			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5282			lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5283			lkup_exts->field_mask[word] = mask;
5284		} else {
5285			return -ENOSPC;
5286		}
5287	}
5288
5289	if (rinfo->vlan_type != 0 && dvm_ena) {
5290		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5291			u8 word = lkup_exts->n_val_words++;
5292
5293			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5294			lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5295			lkup_exts->field_mask[word] =
5296					ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5297		} else {
5298			return -ENOSPC;
5299		}
5300	}
5301
5302	return 0;
5303}
5304
5305/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5306 * @hw: pointer to hardware structure
5307 * @rinfo: other information regarding the rule e.g. priority and action info
5308 * @bm: pointer to memory for returning the bitmap of field vectors
5309 */
5310static void
5311ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5312			 unsigned long *bm)
5313{
5314	enum ice_prof_type prof_type;
5315
5316	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5317
5318	switch (rinfo->tun_type) {
5319	case ICE_NON_TUN:
5320		prof_type = ICE_PROF_NON_TUN;
5321		break;
5322	case ICE_ALL_TUNNELS:
5323		prof_type = ICE_PROF_TUN_ALL;
5324		break;
5325	case ICE_SW_TUN_GENEVE:
5326	case ICE_SW_TUN_VXLAN:
5327		prof_type = ICE_PROF_TUN_UDP;
5328		break;
5329	case ICE_SW_TUN_NVGRE:
5330		prof_type = ICE_PROF_TUN_GRE;
5331		break;
5332	case ICE_SW_TUN_GTPU:
5333		prof_type = ICE_PROF_TUN_GTPU;
5334		break;
5335	case ICE_SW_TUN_GTPC:
5336		prof_type = ICE_PROF_TUN_GTPC;
5337		break;
5338	case ICE_SW_TUN_AND_NON_TUN:
5339	default:
5340		prof_type = ICE_PROF_ALL;
5341		break;
5342	}
5343
5344	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5345}
5346
5347/**
5348 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5349 * @hw: pointer to hardware structure
5350 * @lkups: lookup elements or match criteria for the advanced recipe, one
5351 *  structure per protocol header
5352 * @lkups_cnt: number of protocols
5353 * @rinfo: other information regarding the rule e.g. priority and action info
5354 * @rid: return the recipe ID of the recipe created
5355 */
5356static int
5357ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5358		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5359{
5360	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5361	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5362	struct ice_prot_lkup_ext *lkup_exts;
5363	struct ice_recp_grp_entry *r_entry;
5364	struct ice_sw_fv_list_entry *fvit;
5365	struct ice_recp_grp_entry *r_tmp;
5366	struct ice_sw_fv_list_entry *tmp;
5367	struct ice_sw_recipe *rm;
5368	int status = 0;
5369	u8 i;
5370
5371	if (!lkups_cnt)
5372		return -EINVAL;
5373
5374	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5375	if (!lkup_exts)
5376		return -ENOMEM;
5377
5378	/* Determine the number of words to be matched and if it exceeds a
5379	 * recipe's restrictions
5380	 */
5381	for (i = 0; i < lkups_cnt; i++) {
5382		u16 count;
5383
5384		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5385			status = -EIO;
5386			goto err_free_lkup_exts;
5387		}
5388
5389		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5390		if (!count) {
5391			status = -EIO;
5392			goto err_free_lkup_exts;
5393		}
5394	}
5395
5396	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5397	if (!rm) {
5398		status = -ENOMEM;
5399		goto err_free_lkup_exts;
5400	}
5401
5402	/* Get field vectors that contain fields extracted from all the protocol
5403	 * headers being programmed.
5404	 */
5405	INIT_LIST_HEAD(&rm->fv_list);
5406	INIT_LIST_HEAD(&rm->rg_list);
5407
5408	/* Get bitmap of field vectors (profiles) that are compatible with the
5409	 * rule request; only these will be searched in the subsequent call to
5410	 * ice_get_sw_fv_list.
5411	 */
5412	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5413
5414	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5415	if (status)
5416		goto err_unroll;
5417
5418	/* Create any special protocol/offset pairs, such as looking at tunnel
5419	 * bits by extracting metadata
5420	 */
5421	status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5422	if (status)
5423		goto err_unroll;
5424
5425	/* Group match words into recipes using preferred recipe grouping
5426	 * criteria.
5427	 */
5428	status = ice_create_recipe_group(hw, rm, lkup_exts);
5429	if (status)
5430		goto err_unroll;
5431
5432	/* set the recipe priority if specified */
5433	rm->priority = (u8)rinfo->priority;
5434
 
 
 
5435	/* Find offsets from the field vector. Pick the first one for all the
5436	 * recipes.
5437	 */
5438	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5439	if (status)
5440		goto err_unroll;
5441
5442	/* get bitmap of all profiles the recipe will be associated with */
5443	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5444	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5445		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5446		set_bit((u16)fvit->profile_id, profiles);
5447	}
5448
5449	/* Look for a recipe which matches our requested fv / mask list */
5450	*rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5451	if (*rid < ICE_MAX_NUM_RECIPES)
5452		/* Success if found a recipe that match the existing criteria */
5453		goto err_unroll;
5454
5455	rm->tun_type = rinfo->tun_type;
5456	/* Recipe we need does not exist, add a recipe */
5457	status = ice_add_sw_recipe(hw, rm, profiles);
5458	if (status)
5459		goto err_unroll;
5460
5461	/* Associate all the recipes created with all the profiles in the
5462	 * common field vector.
5463	 */
5464	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5465		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
 
5466		u16 j;
5467
5468		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5469						      (u8 *)r_bitmap, NULL);
5470		if (status)
5471			goto err_unroll;
5472
 
5473		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5474			  ICE_MAX_NUM_RECIPES);
5475		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5476		if (status)
5477			goto err_unroll;
5478
 
5479		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5480						      (u8 *)r_bitmap,
5481						      NULL);
5482		ice_release_change_lock(hw);
5483
5484		if (status)
5485			goto err_unroll;
5486
5487		/* Update profile to recipe bitmap array */
5488		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5489			    ICE_MAX_NUM_RECIPES);
5490
5491		/* Update recipe to profile bitmap array */
5492		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5493			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5494	}
5495
5496	*rid = rm->root_rid;
5497	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5498	       sizeof(*lkup_exts));
5499err_unroll:
5500	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5501		list_del(&r_entry->l_entry);
5502		devm_kfree(ice_hw_to_dev(hw), r_entry);
5503	}
5504
5505	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5506		list_del(&fvit->list_entry);
5507		devm_kfree(ice_hw_to_dev(hw), fvit);
5508	}
5509
5510	if (rm->root_buf)
5511		devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5512
5513	kfree(rm);
5514
5515err_free_lkup_exts:
5516	kfree(lkup_exts);
5517
5518	return status;
5519}
5520
5521/**
5522 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5523 *
5524 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5525 * @num_vlan: number of VLAN tags
5526 */
5527static struct ice_dummy_pkt_profile *
5528ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5529			  u32 num_vlan)
5530{
5531	struct ice_dummy_pkt_profile *profile;
5532	struct ice_dummy_pkt_offsets *offsets;
5533	u32 buf_len, off, etype_off, i;
5534	u8 *pkt;
5535
5536	if (num_vlan < 1 || num_vlan > 2)
5537		return ERR_PTR(-EINVAL);
5538
5539	off = num_vlan * VLAN_HLEN;
5540
5541	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5542		  dummy_pkt->offsets_len;
5543	offsets = kzalloc(buf_len, GFP_KERNEL);
5544	if (!offsets)
5545		return ERR_PTR(-ENOMEM);
5546
5547	offsets[0] = dummy_pkt->offsets[0];
5548	if (num_vlan == 2) {
5549		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5550		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5551	} else if (num_vlan == 1) {
5552		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5553	}
5554
5555	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5556		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5557		offsets[i + num_vlan].offset =
5558			dummy_pkt->offsets[i].offset + off;
5559	}
5560	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5561
5562	etype_off = dummy_pkt->offsets[1].offset;
5563
5564	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5565		  dummy_pkt->pkt_len;
5566	pkt = kzalloc(buf_len, GFP_KERNEL);
5567	if (!pkt) {
5568		kfree(offsets);
5569		return ERR_PTR(-ENOMEM);
5570	}
5571
5572	memcpy(pkt, dummy_pkt->pkt, etype_off);
5573	memcpy(pkt + etype_off,
5574	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5575	       off);
5576	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5577	       dummy_pkt->pkt_len - etype_off);
5578
5579	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5580	if (!profile) {
5581		kfree(offsets);
5582		kfree(pkt);
5583		return ERR_PTR(-ENOMEM);
5584	}
5585
5586	profile->offsets = offsets;
5587	profile->pkt = pkt;
5588	profile->pkt_len = buf_len;
5589	profile->match |= ICE_PKT_KMALLOC;
5590
5591	return profile;
5592}
5593
5594/**
5595 * ice_find_dummy_packet - find dummy packet
5596 *
5597 * @lkups: lookup elements or match criteria for the advanced recipe, one
5598 *	   structure per protocol header
5599 * @lkups_cnt: number of protocols
5600 * @tun_type: tunnel type
5601 *
5602 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5603 */
5604static const struct ice_dummy_pkt_profile *
5605ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5606		      enum ice_sw_tunnel_type tun_type)
5607{
5608	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5609	u32 match = 0, vlan_count = 0;
5610	u16 i;
5611
5612	switch (tun_type) {
5613	case ICE_SW_TUN_GTPC:
5614		match |= ICE_PKT_TUN_GTPC;
5615		break;
5616	case ICE_SW_TUN_GTPU:
5617		match |= ICE_PKT_TUN_GTPU;
5618		break;
5619	case ICE_SW_TUN_NVGRE:
5620		match |= ICE_PKT_TUN_NVGRE;
5621		break;
5622	case ICE_SW_TUN_GENEVE:
5623	case ICE_SW_TUN_VXLAN:
5624		match |= ICE_PKT_TUN_UDP;
5625		break;
5626	default:
5627		break;
5628	}
5629
5630	for (i = 0; i < lkups_cnt; i++) {
5631		if (lkups[i].type == ICE_UDP_ILOS)
5632			match |= ICE_PKT_INNER_UDP;
5633		else if (lkups[i].type == ICE_TCP_IL)
5634			match |= ICE_PKT_INNER_TCP;
5635		else if (lkups[i].type == ICE_IPV6_OFOS)
5636			match |= ICE_PKT_OUTER_IPV6;
5637		else if (lkups[i].type == ICE_VLAN_OFOS ||
5638			 lkups[i].type == ICE_VLAN_EX)
5639			vlan_count++;
5640		else if (lkups[i].type == ICE_VLAN_IN)
5641			vlan_count++;
5642		else if (lkups[i].type == ICE_ETYPE_OL &&
5643			 lkups[i].h_u.ethertype.ethtype_id ==
5644				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5645			 lkups[i].m_u.ethertype.ethtype_id ==
5646				cpu_to_be16(0xFFFF))
5647			match |= ICE_PKT_OUTER_IPV6;
5648		else if (lkups[i].type == ICE_ETYPE_IL &&
5649			 lkups[i].h_u.ethertype.ethtype_id ==
5650				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5651			 lkups[i].m_u.ethertype.ethtype_id ==
5652				cpu_to_be16(0xFFFF))
5653			match |= ICE_PKT_INNER_IPV6;
5654		else if (lkups[i].type == ICE_IPV6_IL)
5655			match |= ICE_PKT_INNER_IPV6;
5656		else if (lkups[i].type == ICE_GTP_NO_PAY)
5657			match |= ICE_PKT_GTP_NOPAY;
5658		else if (lkups[i].type == ICE_PPPOE) {
5659			match |= ICE_PKT_PPPOE;
5660			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5661			    htons(PPP_IPV6))
5662				match |= ICE_PKT_OUTER_IPV6;
5663		} else if (lkups[i].type == ICE_L2TPV3)
5664			match |= ICE_PKT_L2TPV3;
5665	}
5666
5667	while (ret->match && (match & ret->match) != ret->match)
5668		ret++;
5669
5670	if (vlan_count != 0)
5671		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5672
5673	return ret;
5674}
5675
5676/**
5677 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5678 *
5679 * @lkups: lookup elements or match criteria for the advanced recipe, one
5680 *	   structure per protocol header
5681 * @lkups_cnt: number of protocols
5682 * @s_rule: stores rule information from the match criteria
5683 * @profile: dummy packet profile (the template, its size and header offsets)
5684 */
5685static int
5686ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5687			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5688			  const struct ice_dummy_pkt_profile *profile)
5689{
5690	u8 *pkt;
5691	u16 i;
5692
5693	/* Start with a packet with a pre-defined/dummy content. Then, fill
5694	 * in the header values to be looked up or matched.
5695	 */
5696	pkt = s_rule->hdr_data;
5697
5698	memcpy(pkt, profile->pkt, profile->pkt_len);
5699
5700	for (i = 0; i < lkups_cnt; i++) {
5701		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5702		enum ice_protocol_type type;
5703		u16 offset = 0, len = 0, j;
5704		bool found = false;
5705
5706		/* find the start of this layer; it should be found since this
5707		 * was already checked when search for the dummy packet
5708		 */
5709		type = lkups[i].type;
 
 
 
 
5710		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5711			if (type == offsets[j].type) {
5712				offset = offsets[j].offset;
5713				found = true;
5714				break;
5715			}
5716		}
5717		/* this should never happen in a correct calling sequence */
5718		if (!found)
5719			return -EINVAL;
5720
5721		switch (lkups[i].type) {
5722		case ICE_MAC_OFOS:
5723		case ICE_MAC_IL:
5724			len = sizeof(struct ice_ether_hdr);
5725			break;
5726		case ICE_ETYPE_OL:
5727		case ICE_ETYPE_IL:
5728			len = sizeof(struct ice_ethtype_hdr);
5729			break;
5730		case ICE_VLAN_OFOS:
5731		case ICE_VLAN_EX:
5732		case ICE_VLAN_IN:
5733			len = sizeof(struct ice_vlan_hdr);
5734			break;
5735		case ICE_IPV4_OFOS:
5736		case ICE_IPV4_IL:
5737			len = sizeof(struct ice_ipv4_hdr);
5738			break;
5739		case ICE_IPV6_OFOS:
5740		case ICE_IPV6_IL:
5741			len = sizeof(struct ice_ipv6_hdr);
5742			break;
5743		case ICE_TCP_IL:
5744		case ICE_UDP_OF:
5745		case ICE_UDP_ILOS:
5746			len = sizeof(struct ice_l4_hdr);
5747			break;
5748		case ICE_SCTP_IL:
5749			len = sizeof(struct ice_sctp_hdr);
5750			break;
5751		case ICE_NVGRE:
5752			len = sizeof(struct ice_nvgre_hdr);
5753			break;
5754		case ICE_VXLAN:
5755		case ICE_GENEVE:
5756			len = sizeof(struct ice_udp_tnl_hdr);
5757			break;
5758		case ICE_GTP_NO_PAY:
5759		case ICE_GTP:
5760			len = sizeof(struct ice_udp_gtp_hdr);
5761			break;
5762		case ICE_PPPOE:
5763			len = sizeof(struct ice_pppoe_hdr);
5764			break;
5765		case ICE_L2TPV3:
5766			len = sizeof(struct ice_l2tpv3_sess_hdr);
5767			break;
5768		default:
5769			return -EINVAL;
5770		}
5771
5772		/* the length should be a word multiple */
5773		if (len % ICE_BYTES_PER_WORD)
5774			return -EIO;
5775
5776		/* We have the offset to the header start, the length, the
5777		 * caller's header values and mask. Use this information to
5778		 * copy the data into the dummy packet appropriately based on
5779		 * the mask. Note that we need to only write the bits as
5780		 * indicated by the mask to make sure we don't improperly write
5781		 * over any significant packet data.
5782		 */
5783		for (j = 0; j < len / sizeof(u16); j++) {
5784			u16 *ptr = (u16 *)(pkt + offset);
5785			u16 mask = lkups[i].m_raw[j];
5786
5787			if (!mask)
5788				continue;
5789
5790			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5791		}
5792	}
5793
5794	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5795
5796	return 0;
5797}
5798
5799/**
5800 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5801 * @hw: pointer to the hardware structure
5802 * @tun_type: tunnel type
5803 * @pkt: dummy packet to fill in
5804 * @offsets: offset info for the dummy packet
5805 */
5806static int
5807ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5808			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5809{
5810	u16 open_port, i;
5811
5812	switch (tun_type) {
5813	case ICE_SW_TUN_VXLAN:
5814		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5815			return -EIO;
5816		break;
5817	case ICE_SW_TUN_GENEVE:
5818		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5819			return -EIO;
5820		break;
5821	default:
5822		/* Nothing needs to be done for this tunnel type */
5823		return 0;
5824	}
5825
5826	/* Find the outer UDP protocol header and insert the port number */
5827	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5828		if (offsets[i].type == ICE_UDP_OF) {
5829			struct ice_l4_hdr *hdr;
5830			u16 offset;
5831
5832			offset = offsets[i].offset;
5833			hdr = (struct ice_l4_hdr *)&pkt[offset];
5834			hdr->dst_port = cpu_to_be16(open_port);
5835
5836			return 0;
5837		}
5838	}
5839
5840	return -EIO;
5841}
5842
5843/**
5844 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
 
5845 * @vlan_type: VLAN tag type
5846 * @pkt: dummy packet to fill in
5847 * @offsets: offset info for the dummy packet
5848 */
5849static int
5850ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5851			 const struct ice_dummy_pkt_offsets *offsets)
5852{
5853	u16 i;
5854
 
 
 
 
5855	/* Find VLAN header and insert VLAN TPID */
5856	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5857		if (offsets[i].type == ICE_VLAN_OFOS ||
5858		    offsets[i].type == ICE_VLAN_EX) {
5859			struct ice_vlan_hdr *hdr;
5860			u16 offset;
5861
5862			offset = offsets[i].offset;
5863			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5864			hdr->type = cpu_to_be16(vlan_type);
5865
5866			return 0;
5867		}
5868	}
5869
5870	return -EIO;
5871}
5872
 
 
 
 
 
 
 
 
 
 
 
5873/**
5874 * ice_find_adv_rule_entry - Search a rule entry
5875 * @hw: pointer to the hardware structure
5876 * @lkups: lookup elements or match criteria for the advanced recipe, one
5877 *	   structure per protocol header
5878 * @lkups_cnt: number of protocols
5879 * @recp_id: recipe ID for which we are finding the rule
5880 * @rinfo: other information regarding the rule e.g. priority and action info
5881 *
5882 * Helper function to search for a given advance rule entry
5883 * Returns pointer to entry storing the rule if found
5884 */
5885static struct ice_adv_fltr_mgmt_list_entry *
5886ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5887			u16 lkups_cnt, u16 recp_id,
5888			struct ice_adv_rule_info *rinfo)
5889{
5890	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5891	struct ice_switch_info *sw = hw->switch_info;
5892	int i;
5893
5894	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5895			    list_entry) {
5896		bool lkups_matched = true;
5897
5898		if (lkups_cnt != list_itr->lkups_cnt)
5899			continue;
5900		for (i = 0; i < list_itr->lkups_cnt; i++)
5901			if (memcmp(&list_itr->lkups[i], &lkups[i],
5902				   sizeof(*lkups))) {
5903				lkups_matched = false;
5904				break;
5905			}
5906		if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5907		    rinfo->tun_type == list_itr->rule_info.tun_type &&
5908		    rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5909		    lkups_matched)
5910			return list_itr;
5911	}
5912	return NULL;
5913}
5914
5915/**
5916 * ice_adv_add_update_vsi_list
5917 * @hw: pointer to the hardware structure
5918 * @m_entry: pointer to current adv filter management list entry
5919 * @cur_fltr: filter information from the book keeping entry
5920 * @new_fltr: filter information with the new VSI to be added
5921 *
5922 * Call AQ command to add or update previously created VSI list with new VSI.
5923 *
5924 * Helper function to do book keeping associated with adding filter information
5925 * The algorithm to do the booking keeping is described below :
5926 * When a VSI needs to subscribe to a given advanced filter
5927 *	if only one VSI has been added till now
5928 *		Allocate a new VSI list and add two VSIs
5929 *		to this list using switch rule command
5930 *		Update the previously created switch rule with the
5931 *		newly created VSI list ID
5932 *	if a VSI list was previously created
5933 *		Add the new VSI to the previously created VSI list set
5934 *		using the update switch rule command
5935 */
5936static int
5937ice_adv_add_update_vsi_list(struct ice_hw *hw,
5938			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5939			    struct ice_adv_rule_info *cur_fltr,
5940			    struct ice_adv_rule_info *new_fltr)
5941{
5942	u16 vsi_list_id = 0;
5943	int status;
5944
5945	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5946	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5947	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5948		return -EOPNOTSUPP;
5949
5950	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5951	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5952	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5953	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5954		return -EOPNOTSUPP;
5955
5956	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5957		 /* Only one entry existed in the mapping and it was not already
5958		  * a part of a VSI list. So, create a VSI list with the old and
5959		  * new VSIs.
5960		  */
5961		struct ice_fltr_info tmp_fltr;
5962		u16 vsi_handle_arr[2];
5963
5964		/* A rule already exists with the new VSI being added */
5965		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5966		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5967			return -EEXIST;
5968
5969		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5970		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5971		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5972						  &vsi_list_id,
5973						  ICE_SW_LKUP_LAST);
5974		if (status)
5975			return status;
5976
5977		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5978		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5979		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5980		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5981		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5982		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5983
5984		/* Update the previous switch rule of "forward to VSI" to
5985		 * "fwd to VSI list"
5986		 */
5987		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5988		if (status)
5989			return status;
5990
5991		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5992		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5993		m_entry->vsi_list_info =
5994			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5995						vsi_list_id);
5996	} else {
5997		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5998
5999		if (!m_entry->vsi_list_info)
6000			return -EIO;
6001
6002		/* A rule already exists with the new VSI being added */
6003		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
6004			return 0;
6005
6006		/* Update the previously created VSI list set with
6007		 * the new VSI ID passed in
6008		 */
6009		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6010
6011		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6012						  vsi_list_id, false,
6013						  ice_aqc_opc_update_sw_rules,
6014						  ICE_SW_LKUP_LAST);
6015		/* update VSI list mapping info with new VSI ID */
6016		if (!status)
6017			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6018	}
6019	if (!status)
6020		m_entry->vsi_count++;
6021	return status;
6022}
6023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6024/**
6025 * ice_add_adv_rule - helper function to create an advanced switch rule
6026 * @hw: pointer to the hardware structure
6027 * @lkups: information on the words that needs to be looked up. All words
6028 * together makes one recipe
6029 * @lkups_cnt: num of entries in the lkups array
6030 * @rinfo: other information related to the rule that needs to be programmed
6031 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6032 *               ignored is case of error.
6033 *
6034 * This function can program only 1 rule at a time. The lkups is used to
6035 * describe the all the words that forms the "lookup" portion of the recipe.
6036 * These words can span multiple protocols. Callers to this function need to
6037 * pass in a list of protocol headers with lookup information along and mask
6038 * that determines which words are valid from the given protocol header.
6039 * rinfo describes other information related to this rule such as forwarding
6040 * IDs, priority of this rule, etc.
6041 */
6042int
6043ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6044		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6045		 struct ice_rule_query_data *added_entry)
6046{
6047	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6048	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6049	const struct ice_dummy_pkt_profile *profile;
6050	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6051	struct list_head *rule_head;
6052	struct ice_switch_info *sw;
6053	u16 word_cnt;
6054	u32 act = 0;
6055	int status;
6056	u8 q_rgn;
6057
6058	/* Initialize profile to result index bitmap */
6059	if (!hw->switch_info->prof_res_bm_init) {
6060		hw->switch_info->prof_res_bm_init = 1;
6061		ice_init_prof_result_bm(hw);
6062	}
6063
6064	if (!lkups_cnt)
6065		return -EINVAL;
6066
6067	/* get # of words we need to match */
6068	word_cnt = 0;
6069	for (i = 0; i < lkups_cnt; i++) {
6070		u16 j;
6071
6072		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6073			if (lkups[i].m_raw[j])
6074				word_cnt++;
6075	}
6076
6077	if (!word_cnt)
6078		return -EINVAL;
6079
6080	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6081		return -ENOSPC;
6082
6083	/* locate a dummy packet */
6084	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6085	if (IS_ERR(profile))
6086		return PTR_ERR(profile);
6087
6088	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6089	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6090	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6091	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
 
 
6092		status = -EIO;
6093		goto free_pkt_profile;
6094	}
6095
6096	vsi_handle = rinfo->sw_act.vsi_handle;
6097	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6098		status =  -EINVAL;
6099		goto free_pkt_profile;
6100	}
6101
6102	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
 
 
6103		rinfo->sw_act.fwd_id.hw_vsi_id =
6104			ice_get_hw_vsi_num(hw, vsi_handle);
6105	if (rinfo->sw_act.flag & ICE_FLTR_TX)
 
 
 
 
6106		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6107
6108	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6109	if (status)
6110		goto free_pkt_profile;
6111	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6112	if (m_entry) {
6113		/* we have to add VSI to VSI_LIST and increment vsi_count.
6114		 * Also Update VSI list so that we can change forwarding rule
6115		 * if the rule already exists, we will check if it exists with
6116		 * same vsi_id, if not then add it to the VSI list if it already
6117		 * exists if not then create a VSI list and add the existing VSI
6118		 * ID and the new VSI ID to the list
6119		 * We will add that VSI to the list
6120		 */
6121		status = ice_adv_add_update_vsi_list(hw, m_entry,
6122						     &m_entry->rule_info,
6123						     rinfo);
6124		if (added_entry) {
6125			added_entry->rid = rid;
6126			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6127			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6128		}
6129		goto free_pkt_profile;
6130	}
6131	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6132	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6133	if (!s_rule) {
6134		status = -ENOMEM;
6135		goto free_pkt_profile;
6136	}
6137	if (!rinfo->flags_info.act_valid) {
6138		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6139		act |= ICE_SINGLE_ACT_LB_ENABLE;
6140	} else {
6141		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6142						ICE_SINGLE_ACT_LB_ENABLE);
 
 
 
6143	}
6144
6145	switch (rinfo->sw_act.fltr_act) {
6146	case ICE_FWD_TO_VSI:
6147		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6148			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6149		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6150		break;
6151	case ICE_FWD_TO_Q:
6152		act |= ICE_SINGLE_ACT_TO_Q;
6153		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6154		       ICE_SINGLE_ACT_Q_INDEX_M;
6155		break;
6156	case ICE_FWD_TO_QGRP:
6157		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6158			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6159		act |= ICE_SINGLE_ACT_TO_Q;
6160		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6161		       ICE_SINGLE_ACT_Q_INDEX_M;
6162		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6163		       ICE_SINGLE_ACT_Q_REGION_M;
6164		break;
6165	case ICE_DROP_PACKET:
6166		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6167		       ICE_SINGLE_ACT_VALID_BIT;
6168		break;
 
 
 
 
 
 
 
 
 
 
6169	default:
6170		status = -EIO;
6171		goto err_ice_add_adv_rule;
6172	}
6173
6174	/* set the rule LOOKUP type based on caller specified 'Rx'
6175	 * instead of hardcoding it to be either LOOKUP_TX/RX
 
 
6176	 *
6177	 * for 'Rx' set the source to be the port number
6178	 * for 'Tx' set the source to be the source HW VSI number (determined
6179	 * by caller)
6180	 */
6181	if (rinfo->rx) {
 
 
 
6182		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6183		s_rule->src = cpu_to_le16(hw->port_info->lport);
6184	} else {
6185		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6186		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6187	}
6188
6189	s_rule->recipe_id = cpu_to_le16(rid);
6190	s_rule->act = cpu_to_le32(act);
6191
6192	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6193	if (status)
6194		goto err_ice_add_adv_rule;
6195
6196	if (rinfo->tun_type != ICE_NON_TUN &&
6197	    rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6198		status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6199						 s_rule->hdr_data,
6200						 profile->offsets);
6201		if (status)
6202			goto err_ice_add_adv_rule;
6203	}
6204
6205	if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6206		status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6207						  s_rule->hdr_data,
6208						  profile->offsets);
6209		if (status)
6210			goto err_ice_add_adv_rule;
6211	}
6212
6213	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6214				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6215				 NULL);
6216	if (status)
6217		goto err_ice_add_adv_rule;
6218	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6219				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6220				GFP_KERNEL);
6221	if (!adv_fltr) {
6222		status = -ENOMEM;
6223		goto err_ice_add_adv_rule;
6224	}
6225
6226	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6227				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6228	if (!adv_fltr->lkups) {
6229		status = -ENOMEM;
6230		goto err_ice_add_adv_rule;
6231	}
6232
6233	adv_fltr->lkups_cnt = lkups_cnt;
6234	adv_fltr->rule_info = *rinfo;
6235	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6236	sw = hw->switch_info;
6237	sw->recp_list[rid].adv_rule = true;
6238	rule_head = &sw->recp_list[rid].filt_rules;
6239
6240	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6241		adv_fltr->vsi_count = 1;
6242
6243	/* Add rule entry to book keeping list */
6244	list_add(&adv_fltr->list_entry, rule_head);
6245	if (added_entry) {
6246		added_entry->rid = rid;
6247		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6248		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6249	}
6250err_ice_add_adv_rule:
6251	if (status && adv_fltr) {
6252		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6253		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6254	}
6255
6256	kfree(s_rule);
6257
6258free_pkt_profile:
6259	if (profile->match & ICE_PKT_KMALLOC) {
6260		kfree(profile->offsets);
6261		kfree(profile->pkt);
6262		kfree(profile);
6263	}
6264
6265	return status;
6266}
6267
6268/**
6269 * ice_replay_vsi_fltr - Replay filters for requested VSI
6270 * @hw: pointer to the hardware structure
6271 * @vsi_handle: driver VSI handle
6272 * @recp_id: Recipe ID for which rules need to be replayed
6273 * @list_head: list for which filters need to be replayed
6274 *
6275 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6276 * It is required to pass valid VSI handle.
6277 */
6278static int
6279ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6280		    struct list_head *list_head)
6281{
6282	struct ice_fltr_mgmt_list_entry *itr;
6283	int status = 0;
6284	u16 hw_vsi_id;
6285
6286	if (list_empty(list_head))
6287		return status;
6288	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6289
6290	list_for_each_entry(itr, list_head, list_entry) {
6291		struct ice_fltr_list_entry f_entry;
6292
6293		f_entry.fltr_info = itr->fltr_info;
6294		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6295		    itr->fltr_info.vsi_handle == vsi_handle) {
6296			/* update the src in case it is VSI num */
6297			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298				f_entry.fltr_info.src = hw_vsi_id;
6299			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6300			if (status)
6301				goto end;
6302			continue;
6303		}
6304		if (!itr->vsi_list_info ||
6305		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6306			continue;
6307		/* Clearing it so that the logic can add it back */
6308		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6309		f_entry.fltr_info.vsi_handle = vsi_handle;
6310		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6311		/* update the src in case it is VSI num */
6312		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6313			f_entry.fltr_info.src = hw_vsi_id;
6314		if (recp_id == ICE_SW_LKUP_VLAN)
6315			status = ice_add_vlan_internal(hw, &f_entry);
6316		else
6317			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318		if (status)
6319			goto end;
6320	}
6321end:
6322	return status;
6323}
6324
6325/**
6326 * ice_adv_rem_update_vsi_list
6327 * @hw: pointer to the hardware structure
6328 * @vsi_handle: VSI handle of the VSI to remove
6329 * @fm_list: filter management entry for which the VSI list management needs to
6330 *	     be done
6331 */
6332static int
6333ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6334			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6335{
6336	struct ice_vsi_list_map_info *vsi_list_info;
6337	enum ice_sw_lkup_type lkup_type;
6338	u16 vsi_list_id;
6339	int status;
6340
6341	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6342	    fm_list->vsi_count == 0)
6343		return -EINVAL;
6344
6345	/* A rule with the VSI being removed does not exist */
6346	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6347		return -ENOENT;
6348
6349	lkup_type = ICE_SW_LKUP_LAST;
6350	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6351	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6352					  ice_aqc_opc_update_sw_rules,
6353					  lkup_type);
6354	if (status)
6355		return status;
6356
6357	fm_list->vsi_count--;
6358	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6359	vsi_list_info = fm_list->vsi_list_info;
6360	if (fm_list->vsi_count == 1) {
6361		struct ice_fltr_info tmp_fltr;
6362		u16 rem_vsi_handle;
6363
6364		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6365						ICE_MAX_VSI);
6366		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6367			return -EIO;
6368
6369		/* Make sure VSI list is empty before removing it below */
6370		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6371						  vsi_list_id, true,
6372						  ice_aqc_opc_update_sw_rules,
6373						  lkup_type);
6374		if (status)
6375			return status;
6376
6377		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6378		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6379		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6380		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6381		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6382		tmp_fltr.fwd_id.hw_vsi_id =
6383			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6384		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6385			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6386		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6387
6388		/* Update the previous switch rule of "MAC forward to VSI" to
6389		 * "MAC fwd to VSI list"
6390		 */
6391		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6392		if (status) {
6393			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6394				  tmp_fltr.fwd_id.hw_vsi_id, status);
6395			return status;
6396		}
6397		fm_list->vsi_list_info->ref_cnt--;
6398
6399		/* Remove the VSI list since it is no longer used */
6400		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6401		if (status) {
6402			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6403				  vsi_list_id, status);
6404			return status;
6405		}
6406
6407		list_del(&vsi_list_info->list_entry);
6408		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6409		fm_list->vsi_list_info = NULL;
6410	}
6411
6412	return status;
6413}
6414
6415/**
6416 * ice_rem_adv_rule - removes existing advanced switch rule
6417 * @hw: pointer to the hardware structure
6418 * @lkups: information on the words that needs to be looked up. All words
6419 *         together makes one recipe
6420 * @lkups_cnt: num of entries in the lkups array
6421 * @rinfo: Its the pointer to the rule information for the rule
6422 *
6423 * This function can be used to remove 1 rule at a time. The lkups is
6424 * used to describe all the words that forms the "lookup" portion of the
6425 * rule. These words can span multiple protocols. Callers to this function
6426 * need to pass in a list of protocol headers with lookup information along
6427 * and mask that determines which words are valid from the given protocol
6428 * header. rinfo describes other information related to this rule such as
6429 * forwarding IDs, priority of this rule, etc.
6430 */
6431static int
6432ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6433		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6434{
6435	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6436	struct ice_prot_lkup_ext lkup_exts;
6437	bool remove_rule = false;
6438	struct mutex *rule_lock; /* Lock to protect filter rule list */
6439	u16 i, rid, vsi_handle;
6440	int status = 0;
6441
6442	memset(&lkup_exts, 0, sizeof(lkup_exts));
6443	for (i = 0; i < lkups_cnt; i++) {
6444		u16 count;
6445
6446		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6447			return -EIO;
6448
6449		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6450		if (!count)
6451			return -EIO;
6452	}
6453
6454	/* Create any special protocol/offset pairs, such as looking at tunnel
6455	 * bits by extracting metadata
6456	 */
6457	status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6458	if (status)
6459		return status;
6460
6461	rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6462	/* If did not find a recipe that match the existing criteria */
6463	if (rid == ICE_MAX_NUM_RECIPES)
6464		return -EINVAL;
6465
6466	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6467	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6468	/* the rule is already removed */
6469	if (!list_elem)
6470		return 0;
6471	mutex_lock(rule_lock);
6472	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6473		remove_rule = true;
6474	} else if (list_elem->vsi_count > 1) {
6475		remove_rule = false;
6476		vsi_handle = rinfo->sw_act.vsi_handle;
6477		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6478	} else {
6479		vsi_handle = rinfo->sw_act.vsi_handle;
6480		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6481		if (status) {
6482			mutex_unlock(rule_lock);
6483			return status;
6484		}
6485		if (list_elem->vsi_count == 0)
6486			remove_rule = true;
6487	}
6488	mutex_unlock(rule_lock);
6489	if (remove_rule) {
6490		struct ice_sw_rule_lkup_rx_tx *s_rule;
6491		u16 rule_buf_sz;
6492
6493		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6494		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6495		if (!s_rule)
6496			return -ENOMEM;
6497		s_rule->act = 0;
6498		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6499		s_rule->hdr_len = 0;
6500		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6501					 rule_buf_sz, 1,
6502					 ice_aqc_opc_remove_sw_rules, NULL);
6503		if (!status || status == -ENOENT) {
6504			struct ice_switch_info *sw = hw->switch_info;
6505
6506			mutex_lock(rule_lock);
6507			list_del(&list_elem->list_entry);
6508			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6509			devm_kfree(ice_hw_to_dev(hw), list_elem);
6510			mutex_unlock(rule_lock);
6511			if (list_empty(&sw->recp_list[rid].filt_rules))
6512				sw->recp_list[rid].adv_rule = false;
6513		}
6514		kfree(s_rule);
6515	}
6516	return status;
6517}
6518
6519/**
6520 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6521 * @hw: pointer to the hardware structure
6522 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6523 *
6524 * This function is used to remove 1 rule at a time. The removal is based on
6525 * the remove_entry parameter. This function will remove rule for a given
6526 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6527 */
6528int
6529ice_rem_adv_rule_by_id(struct ice_hw *hw,
6530		       struct ice_rule_query_data *remove_entry)
6531{
6532	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6533	struct list_head *list_head;
6534	struct ice_adv_rule_info rinfo;
6535	struct ice_switch_info *sw;
6536
6537	sw = hw->switch_info;
6538	if (!sw->recp_list[remove_entry->rid].recp_created)
6539		return -EINVAL;
6540	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6541	list_for_each_entry(list_itr, list_head, list_entry) {
6542		if (list_itr->rule_info.fltr_rule_id ==
6543		    remove_entry->rule_id) {
6544			rinfo = list_itr->rule_info;
6545			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6546			return ice_rem_adv_rule(hw, list_itr->lkups,
6547						list_itr->lkups_cnt, &rinfo);
6548		}
6549	}
6550	/* either list is empty or unable to find rule */
6551	return -ENOENT;
6552}
6553
6554/**
6555 * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6556 *                            given VSI handle
6557 * @hw: pointer to the hardware structure
6558 * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6559 *
6560 * This function is used to remove all the rules for a given VSI and as soon
6561 * as removing a rule fails, it will return immediately with the error code,
6562 * else it will return success.
6563 */
6564int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6565{
6566	struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6567	struct ice_vsi_list_map_info *map_info;
6568	struct ice_adv_rule_info rinfo;
6569	struct list_head *list_head;
6570	struct ice_switch_info *sw;
6571	int status;
6572	u8 rid;
6573
6574	sw = hw->switch_info;
6575	for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6576		if (!sw->recp_list[rid].recp_created)
6577			continue;
6578		if (!sw->recp_list[rid].adv_rule)
6579			continue;
6580
6581		list_head = &sw->recp_list[rid].filt_rules;
6582		list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6583					 list_entry) {
6584			rinfo = list_itr->rule_info;
6585
6586			if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6587				map_info = list_itr->vsi_list_info;
6588				if (!map_info)
6589					continue;
6590
6591				if (!test_bit(vsi_handle, map_info->vsi_map))
6592					continue;
6593			} else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6594				continue;
6595			}
6596
6597			rinfo.sw_act.vsi_handle = vsi_handle;
6598			status = ice_rem_adv_rule(hw, list_itr->lkups,
6599						  list_itr->lkups_cnt, &rinfo);
6600			if (status)
6601				return status;
6602		}
6603	}
6604	return 0;
6605}
6606
6607/**
6608 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6609 * @hw: pointer to the hardware structure
6610 * @vsi_handle: driver VSI handle
6611 * @list_head: list for which filters need to be replayed
6612 *
6613 * Replay the advanced rule for the given VSI.
6614 */
6615static int
6616ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6617			struct list_head *list_head)
6618{
6619	struct ice_rule_query_data added_entry = { 0 };
6620	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6621	int status = 0;
6622
6623	if (list_empty(list_head))
6624		return status;
6625	list_for_each_entry(adv_fltr, list_head, list_entry) {
6626		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6627		u16 lk_cnt = adv_fltr->lkups_cnt;
6628
6629		if (vsi_handle != rinfo->sw_act.vsi_handle)
6630			continue;
6631		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6632					  &added_entry);
6633		if (status)
6634			break;
6635	}
6636	return status;
6637}
6638
6639/**
6640 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6641 * @hw: pointer to the hardware structure
6642 * @vsi_handle: driver VSI handle
6643 *
6644 * Replays filters for requested VSI via vsi_handle.
6645 */
6646int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6647{
6648	struct ice_switch_info *sw = hw->switch_info;
6649	int status;
6650	u8 i;
6651
6652	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6653		struct list_head *head;
6654
6655		head = &sw->recp_list[i].filt_replay_rules;
6656		if (!sw->recp_list[i].adv_rule)
6657			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6658		else
6659			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6660		if (status)
6661			return status;
6662	}
6663	return status;
6664}
6665
6666/**
6667 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6668 * @hw: pointer to the HW struct
6669 *
6670 * Deletes the filter replay rules.
6671 */
6672void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6673{
6674	struct ice_switch_info *sw = hw->switch_info;
6675	u8 i;
6676
6677	if (!sw)
6678		return;
6679
6680	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6681		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6682			struct list_head *l_head;
6683
6684			l_head = &sw->recp_list[i].filt_replay_rules;
6685			if (!sw->recp_list[i].adv_rule)
6686				ice_rem_sw_rule_info(hw, l_head);
6687			else
6688				ice_rem_adv_rule_info(hw, l_head);
6689		}
6690	}
6691}