Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11#include "ice_vsi_vlan_ops.h"
  12
  13/**
  14 * ice_vsi_type_str - maps VSI type enum to string equivalents
  15 * @vsi_type: VSI type enum
  16 */
  17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
  18{
  19	switch (vsi_type) {
  20	case ICE_VSI_PF:
  21		return "ICE_VSI_PF";
  22	case ICE_VSI_VF:
  23		return "ICE_VSI_VF";
  24	case ICE_VSI_CTRL:
  25		return "ICE_VSI_CTRL";
  26	case ICE_VSI_CHNL:
  27		return "ICE_VSI_CHNL";
  28	case ICE_VSI_LB:
  29		return "ICE_VSI_LB";
  30	case ICE_VSI_SWITCHDEV_CTRL:
  31		return "ICE_VSI_SWITCHDEV_CTRL";
  32	default:
  33		return "unknown";
  34	}
  35}
  36
  37/**
  38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  39 * @vsi: the VSI being configured
  40 * @ena: start or stop the Rx rings
  41 *
  42 * First enable/disable all of the Rx rings, flush any remaining writes, and
  43 * then verify that they have all been enabled/disabled successfully. This will
  44 * let all of the register writes complete when enabling/disabling the Rx rings
  45 * before waiting for the change in hardware to complete.
  46 */
  47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
  48{
  49	int ret = 0;
  50	u16 i;
  51
  52	ice_for_each_rxq(vsi, i)
  53		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  54
  55	ice_flush(&vsi->back->hw);
  56
  57	ice_for_each_rxq(vsi, i) {
  58		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  59		if (ret)
  60			break;
  61	}
  62
  63	return ret;
  64}
  65
  66/**
  67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  68 * @vsi: VSI pointer
  69 *
  70 * On error: returns error code (negative)
  71 * On success: returns 0
  72 */
  73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  74{
  75	struct ice_pf *pf = vsi->back;
  76	struct device *dev;
  77
  78	dev = ice_pf_to_dev(pf);
  79	if (vsi->type == ICE_VSI_CHNL)
  80		return 0;
  81
  82	/* allocate memory for both Tx and Rx ring pointers */
  83	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  84				     sizeof(*vsi->tx_rings), GFP_KERNEL);
  85	if (!vsi->tx_rings)
  86		return -ENOMEM;
  87
  88	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  89				     sizeof(*vsi->rx_rings), GFP_KERNEL);
  90	if (!vsi->rx_rings)
  91		goto err_rings;
  92
  93	/* txq_map needs to have enough space to track both Tx (stack) rings
  94	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
  95	 * so use num_possible_cpus() as we want to always provide XDP ring
  96	 * per CPU, regardless of queue count settings from user that might
  97	 * have come from ethtool's set_channels() callback;
  98	 */
  99	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
 100				    sizeof(*vsi->txq_map), GFP_KERNEL);
 101
 102	if (!vsi->txq_map)
 103		goto err_txq_map;
 104
 105	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
 106				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 107	if (!vsi->rxq_map)
 108		goto err_rxq_map;
 109
 110	/* There is no need to allocate q_vectors for a loopback VSI. */
 111	if (vsi->type == ICE_VSI_LB)
 112		return 0;
 113
 114	/* allocate memory for q_vector pointers */
 115	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 116				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 117	if (!vsi->q_vectors)
 118		goto err_vectors;
 119
 120	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 121	if (!vsi->af_xdp_zc_qps)
 122		goto err_zc_qps;
 123
 124	return 0;
 125
 126err_zc_qps:
 127	devm_kfree(dev, vsi->q_vectors);
 128err_vectors:
 129	devm_kfree(dev, vsi->rxq_map);
 130err_rxq_map:
 131	devm_kfree(dev, vsi->txq_map);
 132err_txq_map:
 133	devm_kfree(dev, vsi->rx_rings);
 134err_rings:
 135	devm_kfree(dev, vsi->tx_rings);
 136	return -ENOMEM;
 137}
 138
 139/**
 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 141 * @vsi: the VSI being configured
 142 */
 143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 144{
 145	switch (vsi->type) {
 146	case ICE_VSI_PF:
 147	case ICE_VSI_SWITCHDEV_CTRL:
 148	case ICE_VSI_CTRL:
 149	case ICE_VSI_LB:
 150		/* a user could change the values of num_[tr]x_desc using
 151		 * ethtool -G so we should keep those values instead of
 152		 * overwriting them with the defaults.
 153		 */
 154		if (!vsi->num_rx_desc)
 155			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 156		if (!vsi->num_tx_desc)
 157			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 158		break;
 159	default:
 160		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 161			vsi->type);
 162		break;
 163	}
 164}
 165
 166/**
 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 168 * @vsi: the VSI being configured
 
 169 *
 170 * Return 0 on success and a negative value on error
 171 */
 172static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
 173{
 174	enum ice_vsi_type vsi_type = vsi->type;
 175	struct ice_pf *pf = vsi->back;
 176	struct ice_vf *vf = vsi->vf;
 177
 178	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
 179		return;
 180
 181	switch (vsi_type) {
 182	case ICE_VSI_PF:
 183		if (vsi->req_txq) {
 184			vsi->alloc_txq = vsi->req_txq;
 185			vsi->num_txq = vsi->req_txq;
 186		} else {
 187			vsi->alloc_txq = min3(pf->num_lan_msix,
 188					      ice_get_avail_txq_count(pf),
 189					      (u16)num_online_cpus());
 190		}
 191
 192		pf->num_lan_tx = vsi->alloc_txq;
 193
 194		/* only 1 Rx queue unless RSS is enabled */
 195		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 196			vsi->alloc_rxq = 1;
 197		} else {
 198			if (vsi->req_rxq) {
 199				vsi->alloc_rxq = vsi->req_rxq;
 200				vsi->num_rxq = vsi->req_rxq;
 201			} else {
 202				vsi->alloc_rxq = min3(pf->num_lan_msix,
 203						      ice_get_avail_rxq_count(pf),
 204						      (u16)num_online_cpus());
 205			}
 206		}
 207
 208		pf->num_lan_rx = vsi->alloc_rxq;
 209
 210		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 211					   max_t(int, vsi->alloc_rxq,
 212						 vsi->alloc_txq));
 213		break;
 214	case ICE_VSI_SWITCHDEV_CTRL:
 215		/* The number of queues for ctrl VSI is equal to number of PRs
 216		 * Each ring is associated to the corresponding VF_PR netdev.
 217		 * Tx and Rx rings are always equal
 218		 */
 219		if (vsi->req_txq && vsi->req_rxq) {
 220			vsi->alloc_txq = vsi->req_txq;
 221			vsi->alloc_rxq = vsi->req_rxq;
 222		} else {
 223			vsi->alloc_txq = 1;
 224			vsi->alloc_rxq = 1;
 225		}
 226
 227		vsi->num_q_vectors = 1;
 228		break;
 229	case ICE_VSI_VF:
 230		if (vf->num_req_qs)
 231			vf->num_vf_qs = vf->num_req_qs;
 232		vsi->alloc_txq = vf->num_vf_qs;
 233		vsi->alloc_rxq = vf->num_vf_qs;
 234		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
 235		 * data queue interrupts). Since vsi->num_q_vectors is number
 236		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 237		 * original vector count
 238		 */
 239		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
 240		break;
 241	case ICE_VSI_CTRL:
 242		vsi->alloc_txq = 1;
 243		vsi->alloc_rxq = 1;
 244		vsi->num_q_vectors = 1;
 245		break;
 246	case ICE_VSI_CHNL:
 247		vsi->alloc_txq = 0;
 248		vsi->alloc_rxq = 0;
 249		break;
 250	case ICE_VSI_LB:
 251		vsi->alloc_txq = 1;
 252		vsi->alloc_rxq = 1;
 253		break;
 254	default:
 255		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
 256		break;
 257	}
 258
 259	ice_vsi_set_num_desc(vsi);
 260}
 261
 262/**
 263 * ice_get_free_slot - get the next non-NULL location index in array
 264 * @array: array to search
 265 * @size: size of the array
 266 * @curr: last known occupied index to be used as a search hint
 267 *
 268 * void * is being used to keep the functionality generic. This lets us use this
 269 * function on any array of pointers.
 270 */
 271static int ice_get_free_slot(void *array, int size, int curr)
 272{
 273	int **tmp_array = (int **)array;
 274	int next;
 275
 276	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 277		next = curr + 1;
 278	} else {
 279		int i = 0;
 280
 281		while ((i < size) && (tmp_array[i]))
 282			i++;
 283		if (i == size)
 284			next = ICE_NO_VSI;
 285		else
 286			next = i;
 287	}
 288	return next;
 289}
 290
 291/**
 292 * ice_vsi_delete_from_hw - delete a VSI from the switch
 293 * @vsi: pointer to VSI being removed
 294 */
 295static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
 296{
 297	struct ice_pf *pf = vsi->back;
 298	struct ice_vsi_ctx *ctxt;
 299	int status;
 300
 301	ice_fltr_remove_all(vsi);
 302	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 303	if (!ctxt)
 304		return;
 305
 306	if (vsi->type == ICE_VSI_VF)
 307		ctxt->vf_num = vsi->vf->vf_id;
 308	ctxt->vsi_num = vsi->vsi_num;
 309
 310	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 311
 312	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 313	if (status)
 314		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
 315			vsi->vsi_num, status);
 316
 317	kfree(ctxt);
 318}
 319
 320/**
 321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 322 * @vsi: pointer to VSI being cleared
 323 */
 324static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 325{
 326	struct ice_pf *pf = vsi->back;
 327	struct device *dev;
 328
 329	dev = ice_pf_to_dev(pf);
 330
 331	bitmap_free(vsi->af_xdp_zc_qps);
 332	vsi->af_xdp_zc_qps = NULL;
 
 
 333	/* free the ring and vector containers */
 334	devm_kfree(dev, vsi->q_vectors);
 335	vsi->q_vectors = NULL;
 336	devm_kfree(dev, vsi->tx_rings);
 337	vsi->tx_rings = NULL;
 338	devm_kfree(dev, vsi->rx_rings);
 339	vsi->rx_rings = NULL;
 340	devm_kfree(dev, vsi->txq_map);
 341	vsi->txq_map = NULL;
 342	devm_kfree(dev, vsi->rxq_map);
 343	vsi->rxq_map = NULL;
 344}
 345
 346/**
 347 * ice_vsi_free_stats - Free the ring statistics structures
 348 * @vsi: VSI pointer
 349 */
 350static void ice_vsi_free_stats(struct ice_vsi *vsi)
 351{
 352	struct ice_vsi_stats *vsi_stat;
 353	struct ice_pf *pf = vsi->back;
 354	int i;
 355
 356	if (vsi->type == ICE_VSI_CHNL)
 357		return;
 358	if (!pf->vsi_stats)
 359		return;
 360
 361	vsi_stat = pf->vsi_stats[vsi->idx];
 362	if (!vsi_stat)
 363		return;
 364
 365	ice_for_each_alloc_txq(vsi, i) {
 366		if (vsi_stat->tx_ring_stats[i]) {
 367			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
 368			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
 369		}
 370	}
 371
 372	ice_for_each_alloc_rxq(vsi, i) {
 373		if (vsi_stat->rx_ring_stats[i]) {
 374			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
 375			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
 376		}
 377	}
 378
 379	kfree(vsi_stat->tx_ring_stats);
 380	kfree(vsi_stat->rx_ring_stats);
 381	kfree(vsi_stat);
 382	pf->vsi_stats[vsi->idx] = NULL;
 383}
 384
 385/**
 386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
 387 * @vsi: VSI which is having stats allocated
 388 */
 389static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
 390{
 391	struct ice_ring_stats **tx_ring_stats;
 392	struct ice_ring_stats **rx_ring_stats;
 393	struct ice_vsi_stats *vsi_stats;
 394	struct ice_pf *pf = vsi->back;
 395	u16 i;
 396
 397	vsi_stats = pf->vsi_stats[vsi->idx];
 398	tx_ring_stats = vsi_stats->tx_ring_stats;
 399	rx_ring_stats = vsi_stats->rx_ring_stats;
 400
 401	/* Allocate Tx ring stats */
 402	ice_for_each_alloc_txq(vsi, i) {
 403		struct ice_ring_stats *ring_stats;
 404		struct ice_tx_ring *ring;
 405
 406		ring = vsi->tx_rings[i];
 407		ring_stats = tx_ring_stats[i];
 408
 409		if (!ring_stats) {
 410			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
 411			if (!ring_stats)
 412				goto err_out;
 413
 414			WRITE_ONCE(tx_ring_stats[i], ring_stats);
 415		}
 416
 417		ring->ring_stats = ring_stats;
 418	}
 419
 420	/* Allocate Rx ring stats */
 421	ice_for_each_alloc_rxq(vsi, i) {
 422		struct ice_ring_stats *ring_stats;
 423		struct ice_rx_ring *ring;
 424
 425		ring = vsi->rx_rings[i];
 426		ring_stats = rx_ring_stats[i];
 427
 428		if (!ring_stats) {
 429			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
 430			if (!ring_stats)
 431				goto err_out;
 432
 433			WRITE_ONCE(rx_ring_stats[i], ring_stats);
 434		}
 435
 436		ring->ring_stats = ring_stats;
 437	}
 438
 439	return 0;
 440
 441err_out:
 442	ice_vsi_free_stats(vsi);
 443	return -ENOMEM;
 444}
 445
 446/**
 447 * ice_vsi_free - clean up and deallocate the provided VSI
 448 * @vsi: pointer to VSI being cleared
 449 *
 450 * This deallocates the VSI's queue resources, removes it from the PF's
 451 * VSI array if necessary, and deallocates the VSI
 
 
 452 */
 453static void ice_vsi_free(struct ice_vsi *vsi)
 454{
 455	struct ice_pf *pf = NULL;
 456	struct device *dev;
 457
 458	if (!vsi || !vsi->back)
 459		return;
 
 
 
 460
 461	pf = vsi->back;
 462	dev = ice_pf_to_dev(pf);
 463
 464	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 465		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 466		return;
 467	}
 468
 469	mutex_lock(&pf->sw_mutex);
 470	/* updates the PF for this cleared VSI */
 471
 472	pf->vsi[vsi->idx] = NULL;
 473	pf->next_vsi = vsi->idx;
 
 
 
 474
 475	ice_vsi_free_stats(vsi);
 476	ice_vsi_free_arrays(vsi);
 477	mutex_unlock(&pf->sw_mutex);
 478	devm_kfree(dev, vsi);
 479}
 480
 481void ice_vsi_delete(struct ice_vsi *vsi)
 482{
 483	ice_vsi_delete_from_hw(vsi);
 484	ice_vsi_free(vsi);
 485}
 486
 487/**
 488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 489 * @irq: interrupt number
 490 * @data: pointer to a q_vector
 491 */
 492static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 493{
 494	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 495
 496	if (!q_vector->tx.tx_ring)
 497		return IRQ_HANDLED;
 498
 499#define FDIR_RX_DESC_CLEAN_BUDGET 64
 500	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
 501	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
 502
 503	return IRQ_HANDLED;
 504}
 505
 506/**
 507 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 508 * @irq: interrupt number
 509 * @data: pointer to a q_vector
 510 */
 511static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 512{
 513	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 514
 515	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 516		return IRQ_HANDLED;
 517
 518	q_vector->total_events++;
 519
 520	napi_schedule(&q_vector->napi);
 521
 522	return IRQ_HANDLED;
 523}
 524
 525static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
 526{
 527	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 528	struct ice_pf *pf = q_vector->vsi->back;
 529	struct ice_repr *repr;
 530	unsigned long id;
 531
 532	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 533		return IRQ_HANDLED;
 534
 535	xa_for_each(&pf->eswitch.reprs, id, repr)
 536		napi_schedule(&repr->q_vector->napi);
 
 
 537
 538	return IRQ_HANDLED;
 539}
 540
 541/**
 542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
 543 * @vsi: VSI pointer
 544 */
 545static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
 546{
 547	struct ice_vsi_stats *vsi_stat;
 548	struct ice_pf *pf = vsi->back;
 549
 550	if (vsi->type == ICE_VSI_CHNL)
 551		return 0;
 552	if (!pf->vsi_stats)
 553		return -ENOENT;
 554
 555	if (pf->vsi_stats[vsi->idx])
 556	/* realloc will happen in rebuild path */
 557		return 0;
 558
 559	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
 560	if (!vsi_stat)
 561		return -ENOMEM;
 562
 563	vsi_stat->tx_ring_stats =
 564		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
 565			GFP_KERNEL);
 566	if (!vsi_stat->tx_ring_stats)
 567		goto err_alloc_tx;
 568
 569	vsi_stat->rx_ring_stats =
 570		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
 571			GFP_KERNEL);
 572	if (!vsi_stat->rx_ring_stats)
 573		goto err_alloc_rx;
 574
 575	pf->vsi_stats[vsi->idx] = vsi_stat;
 576
 577	return 0;
 578
 579err_alloc_rx:
 580	kfree(vsi_stat->rx_ring_stats);
 581err_alloc_tx:
 582	kfree(vsi_stat->tx_ring_stats);
 583	kfree(vsi_stat);
 584	pf->vsi_stats[vsi->idx] = NULL;
 585	return -ENOMEM;
 586}
 587
 588/**
 589 * ice_vsi_alloc_def - set default values for already allocated VSI
 590 * @vsi: ptr to VSI
 
 591 * @ch: ptr to channel
 
 
 
 
 
 
 
 592 */
 593static int
 594ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
 
 595{
 596	if (vsi->type != ICE_VSI_CHNL) {
 597		ice_vsi_set_num_qs(vsi);
 598		if (ice_vsi_alloc_arrays(vsi))
 599			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 600	}
 601
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	switch (vsi->type) {
 603	case ICE_VSI_SWITCHDEV_CTRL:
 
 
 
 604		/* Setup eswitch MSIX irq handler for VSI */
 605		vsi->irq_handler = ice_eswitch_msix_clean_rings;
 606		break;
 607	case ICE_VSI_PF:
 
 
 
 608		/* Setup default MSIX irq handler for VSI */
 609		vsi->irq_handler = ice_msix_clean_rings;
 610		break;
 611	case ICE_VSI_CTRL:
 
 
 
 612		/* Setup ctrl VSI MSIX irq handler */
 613		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 
 
 
 
 
 
 
 
 
 
 614		break;
 615	case ICE_VSI_CHNL:
 616		if (!ch)
 617			return -EINVAL;
 618
 619		vsi->num_rxq = ch->num_rxq;
 620		vsi->num_txq = ch->num_txq;
 621		vsi->next_base_q = ch->base_q;
 622		break;
 623	case ICE_VSI_VF:
 624	case ICE_VSI_LB:
 
 
 625		break;
 626	default:
 627		ice_vsi_free_arrays(vsi);
 628		return -EINVAL;
 629	}
 630
 631	return 0;
 632}
 633
 634/**
 635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 636 * @pf: board private structure
 637 *
 638 * Reserves a VSI index from the PF and allocates an empty VSI structure
 639 * without a type. The VSI structure must later be initialized by calling
 640 * ice_vsi_cfg().
 641 *
 642 * returns a pointer to a VSI on success, NULL on failure.
 643 */
 644static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
 645{
 646	struct device *dev = ice_pf_to_dev(pf);
 647	struct ice_vsi *vsi = NULL;
 648
 649	/* Need to protect the allocation of the VSIs at the PF level */
 650	mutex_lock(&pf->sw_mutex);
 651
 652	/* If we have already allocated our maximum number of VSIs,
 653	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 654	 * is available to be populated
 655	 */
 656	if (pf->next_vsi == ICE_NO_VSI) {
 657		dev_dbg(dev, "out of VSI slots!\n");
 658		goto unlock_pf;
 659	}
 660
 661	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 662	if (!vsi)
 663		goto unlock_pf;
 664
 665	vsi->back = pf;
 666	set_bit(ICE_VSI_DOWN, vsi->state);
 
 667
 668	/* fill slot and make note of the index */
 669	vsi->idx = pf->next_vsi;
 670	pf->vsi[pf->next_vsi] = vsi;
 671
 672	/* prepare pf->next_vsi for next use */
 673	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 674					 pf->next_vsi);
 675
 
 
 
 676unlock_pf:
 677	mutex_unlock(&pf->sw_mutex);
 678	return vsi;
 679}
 680
 681/**
 682 * ice_alloc_fd_res - Allocate FD resource for a VSI
 683 * @vsi: pointer to the ice_vsi
 684 *
 685 * This allocates the FD resources
 686 *
 687 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 688 */
 689static int ice_alloc_fd_res(struct ice_vsi *vsi)
 690{
 691	struct ice_pf *pf = vsi->back;
 692	u32 g_val, b_val;
 693
 694	/* Flow Director filters are only allocated/assigned to the PF VSI or
 695	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
 696	 * add/delete filters so resources are not allocated to it
 697	 */
 698	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 699		return -EPERM;
 700
 701	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
 702	      vsi->type == ICE_VSI_CHNL))
 703		return -EPERM;
 704
 705	/* FD filters from guaranteed pool per VSI */
 706	g_val = pf->hw.func_caps.fd_fltr_guar;
 707	if (!g_val)
 708		return -EPERM;
 709
 710	/* FD filters from best effort pool */
 711	b_val = pf->hw.func_caps.fd_fltr_best_effort;
 712	if (!b_val)
 713		return -EPERM;
 714
 715	/* PF main VSI gets only 64 FD resources from guaranteed pool
 716	 * when ADQ is configured.
 717	 */
 718#define ICE_PF_VSI_GFLTR	64
 719
 720	/* determine FD filter resources per VSI from shared(best effort) and
 721	 * dedicated pool
 722	 */
 723	if (vsi->type == ICE_VSI_PF) {
 724		vsi->num_gfltr = g_val;
 725		/* if MQPRIO is configured, main VSI doesn't get all FD
 726		 * resources from guaranteed pool. PF VSI gets 64 FD resources
 727		 */
 728		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
 729			if (g_val < ICE_PF_VSI_GFLTR)
 730				return -EPERM;
 731			/* allow bare minimum entries for PF VSI */
 732			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
 733		}
 734
 735		/* each VSI gets same "best_effort" quota */
 736		vsi->num_bfltr = b_val;
 737	} else if (vsi->type == ICE_VSI_VF) {
 738		vsi->num_gfltr = 0;
 739
 740		/* each VSI gets same "best_effort" quota */
 741		vsi->num_bfltr = b_val;
 742	} else {
 743		struct ice_vsi *main_vsi;
 744		int numtc;
 745
 746		main_vsi = ice_get_main_vsi(pf);
 747		if (!main_vsi)
 748			return -EPERM;
 749
 750		if (!main_vsi->all_numtc)
 751			return -EINVAL;
 752
 753		/* figure out ADQ numtc */
 754		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
 755
 756		/* only one TC but still asking resources for channels,
 757		 * invalid config
 758		 */
 759		if (numtc < ICE_CHNL_START_TC)
 760			return -EPERM;
 761
 762		g_val -= ICE_PF_VSI_GFLTR;
 763		/* channel VSIs gets equal share from guaranteed pool */
 764		vsi->num_gfltr = g_val / numtc;
 765
 766		/* each VSI gets same "best_effort" quota */
 767		vsi->num_bfltr = b_val;
 768	}
 769
 770	return 0;
 771}
 772
 773/**
 774 * ice_vsi_get_qs - Assign queues from PF to VSI
 775 * @vsi: the VSI to assign queues to
 776 *
 777 * Returns 0 on success and a negative value on error
 778 */
 779static int ice_vsi_get_qs(struct ice_vsi *vsi)
 780{
 781	struct ice_pf *pf = vsi->back;
 782	struct ice_qs_cfg tx_qs_cfg = {
 783		.qs_mutex = &pf->avail_q_mutex,
 784		.pf_map = pf->avail_txqs,
 785		.pf_map_size = pf->max_pf_txqs,
 786		.q_count = vsi->alloc_txq,
 787		.scatter_count = ICE_MAX_SCATTER_TXQS,
 788		.vsi_map = vsi->txq_map,
 789		.vsi_map_offset = 0,
 790		.mapping_mode = ICE_VSI_MAP_CONTIG
 791	};
 792	struct ice_qs_cfg rx_qs_cfg = {
 793		.qs_mutex = &pf->avail_q_mutex,
 794		.pf_map = pf->avail_rxqs,
 795		.pf_map_size = pf->max_pf_rxqs,
 796		.q_count = vsi->alloc_rxq,
 797		.scatter_count = ICE_MAX_SCATTER_RXQS,
 798		.vsi_map = vsi->rxq_map,
 799		.vsi_map_offset = 0,
 800		.mapping_mode = ICE_VSI_MAP_CONTIG
 801	};
 802	int ret;
 803
 804	if (vsi->type == ICE_VSI_CHNL)
 805		return 0;
 806
 807	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 808	if (ret)
 809		return ret;
 810	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 811
 812	ret = __ice_vsi_get_qs(&rx_qs_cfg);
 813	if (ret)
 814		return ret;
 815	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 816
 817	return 0;
 818}
 819
 820/**
 821 * ice_vsi_put_qs - Release queues from VSI to PF
 822 * @vsi: the VSI that is going to release queues
 823 */
 824static void ice_vsi_put_qs(struct ice_vsi *vsi)
 825{
 826	struct ice_pf *pf = vsi->back;
 827	int i;
 828
 829	mutex_lock(&pf->avail_q_mutex);
 830
 831	ice_for_each_alloc_txq(vsi, i) {
 832		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 833		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 834	}
 835
 836	ice_for_each_alloc_rxq(vsi, i) {
 837		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 838		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 839	}
 840
 841	mutex_unlock(&pf->avail_q_mutex);
 842}
 843
 844/**
 845 * ice_is_safe_mode
 846 * @pf: pointer to the PF struct
 847 *
 848 * returns true if driver is in safe mode, false otherwise
 849 */
 850bool ice_is_safe_mode(struct ice_pf *pf)
 851{
 852	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 853}
 854
 855/**
 856 * ice_is_rdma_ena
 857 * @pf: pointer to the PF struct
 858 *
 859 * returns true if RDMA is currently supported, false otherwise
 860 */
 861bool ice_is_rdma_ena(struct ice_pf *pf)
 862{
 863	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
 864}
 865
 866/**
 867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 868 * @vsi: the VSI being cleaned up
 869 *
 870 * This function deletes RSS input set for all flows that were configured
 871 * for this VSI
 872 */
 873static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 874{
 875	struct ice_pf *pf = vsi->back;
 876	int status;
 877
 878	if (ice_is_safe_mode(pf))
 879		return;
 880
 881	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 882	if (status)
 883		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
 884			vsi->vsi_num, status);
 885}
 886
 887/**
 888 * ice_rss_clean - Delete RSS related VSI structures and configuration
 889 * @vsi: the VSI being removed
 890 */
 891static void ice_rss_clean(struct ice_vsi *vsi)
 892{
 893	struct ice_pf *pf = vsi->back;
 894	struct device *dev;
 895
 896	dev = ice_pf_to_dev(pf);
 897
 898	devm_kfree(dev, vsi->rss_hkey_user);
 899	devm_kfree(dev, vsi->rss_lut_user);
 
 
 900
 901	ice_vsi_clean_rss_flow_fld(vsi);
 902	/* remove RSS replay list */
 903	if (!ice_is_safe_mode(pf))
 904		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 905}
 906
 907/**
 908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 909 * @vsi: the VSI being configured
 910 */
 911static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 912{
 913	struct ice_hw_common_caps *cap;
 914	struct ice_pf *pf = vsi->back;
 915	u16 max_rss_size;
 916
 917	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 918		vsi->rss_size = 1;
 919		return;
 920	}
 921
 922	cap = &pf->hw.func_caps.common_cap;
 923	max_rss_size = BIT(cap->rss_table_entry_width);
 924	switch (vsi->type) {
 925	case ICE_VSI_CHNL:
 926	case ICE_VSI_PF:
 927		/* PF VSI will inherit RSS instance of PF */
 928		vsi->rss_table_size = (u16)cap->rss_table_size;
 929		if (vsi->type == ICE_VSI_CHNL)
 930			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
 
 931		else
 932			vsi->rss_size = min_t(u16, num_online_cpus(),
 933					      max_rss_size);
 934		vsi->rss_lut_type = ICE_LUT_PF;
 935		break;
 936	case ICE_VSI_SWITCHDEV_CTRL:
 937		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
 938		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
 939		vsi->rss_lut_type = ICE_LUT_VSI;
 
 940		break;
 941	case ICE_VSI_VF:
 942		/* VF VSI will get a small RSS table.
 943		 * For VSI_LUT, LUT size should be set to 64 bytes.
 944		 */
 945		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
 946		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 947		vsi->rss_lut_type = ICE_LUT_VSI;
 948		break;
 949	case ICE_VSI_LB:
 950		break;
 951	default:
 952		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 953			ice_vsi_type_str(vsi->type));
 954		break;
 955	}
 956}
 957
 958/**
 959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 960 * @hw: HW structure used to determine the VLAN mode of the device
 961 * @ctxt: the VSI context being set
 962 *
 963 * This initializes a default VSI context for all sections except the Queues.
 964 */
 965static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
 966{
 967	u32 table = 0;
 968
 969	memset(&ctxt->info, 0, sizeof(ctxt->info));
 970	/* VSI's should be allocated from shared pool */
 971	ctxt->alloc_from_pool = true;
 972	/* Src pruning enabled by default */
 973	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 974	/* Traffic from VSI can be sent to LAN */
 975	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 976	/* allow all untagged/tagged packets by default on Tx */
 977	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
 978						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
 
 979	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
 980	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
 981	 *
 982	 * DVM - leave inner VLAN in packet by default
 983	 */
 984	if (ice_is_dvm_ena(hw)) {
 985		ctxt->info.inner_vlan_flags |=
 986			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
 987				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
 988		ctxt->info.outer_vlan_flags =
 989			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
 990				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
 
 991		ctxt->info.outer_vlan_flags |=
 992			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
 993				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
 
 994		ctxt->info.outer_vlan_flags |=
 995			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
 996				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
 997	}
 998	/* Have 1:1 UP mapping for both ingress/egress tables */
 999	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007	ctxt->info.ingress_table = cpu_to_le32(table);
1008	ctxt->info.egress_table = cpu_to_le32(table);
1009	/* Have 1:1 UP mapping for outer to inner UP table */
1010	ctxt->info.outer_up_table = cpu_to_le32(table);
1011	/* No Outer tag support outer_tag_flags remains to zero */
1012}
1013
1014/**
1015 * ice_vsi_setup_q_map - Setup a VSI queue map
1016 * @vsi: the VSI being configured
1017 * @ctxt: VSI context structure
1018 */
1019static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020{
1021	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022	u16 num_txq_per_tc, num_rxq_per_tc;
1023	u16 qcount_tx = vsi->alloc_txq;
1024	u16 qcount_rx = vsi->alloc_rxq;
1025	u8 netdev_tc = 0;
1026	int i;
1027
1028	if (!vsi->tc_cfg.numtc) {
1029		/* at least TC0 should be enabled by default */
1030		vsi->tc_cfg.numtc = 1;
1031		vsi->tc_cfg.ena_tc = 1;
1032	}
1033
1034	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035	if (!num_rxq_per_tc)
1036		num_rxq_per_tc = 1;
1037	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038	if (!num_txq_per_tc)
1039		num_txq_per_tc = 1;
1040
1041	/* find the (rounded up) power-of-2 of qcount */
1042	pow = (u16)order_base_2(num_rxq_per_tc);
1043
1044	/* TC mapping is a function of the number of Rx queues assigned to the
1045	 * VSI for each traffic class and the offset of these queues.
1046	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047	 * queues allocated to TC0. No:of queues is a power-of-2.
1048	 *
1049	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050	 * queue, this way, traffic for the given TC will be sent to the default
1051	 * queue.
1052	 *
1053	 * Setup number and offset of Rx queues for all TCs for the VSI
1054	 */
1055	ice_for_each_traffic_class(i) {
1056		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057			/* TC is not enabled */
1058			vsi->tc_cfg.tc_info[i].qoffset = 0;
1059			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062			ctxt->info.tc_mapping[i] = 0;
1063			continue;
1064		}
1065
1066		/* TC is enabled */
1067		vsi->tc_cfg.tc_info[i].qoffset = offset;
1068		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071
1072		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
 
 
1074		offset += num_rxq_per_tc;
1075		tx_count += num_txq_per_tc;
1076		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077	}
1078
1079	/* if offset is non-zero, means it is calculated correctly based on
1080	 * enabled TCs for a given VSI otherwise qcount_rx will always
1081	 * be correct and non-zero because it is based off - VSI's
1082	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083	 * at least 1)
1084	 */
1085	if (offset)
1086		rx_count = offset;
1087	else
1088		rx_count = num_rxq_per_tc;
1089
1090	if (rx_count > vsi->alloc_rxq) {
1091		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092			rx_count, vsi->alloc_rxq);
1093		return -EINVAL;
1094	}
1095
1096	if (tx_count > vsi->alloc_txq) {
1097		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098			tx_count, vsi->alloc_txq);
1099		return -EINVAL;
1100	}
1101
1102	vsi->num_txq = tx_count;
1103	vsi->num_rxq = rx_count;
1104
1105	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107		/* since there is a chance that num_rxq could have been changed
1108		 * in the above for loop, make num_txq equal to num_rxq.
1109		 */
1110		vsi->num_txq = vsi->num_rxq;
1111	}
1112
1113	/* Rx queue mapping */
1114	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115	/* q_mapping buffer holds the info for the first queue allocated for
1116	 * this VSI in the PF space and also the number of queues associated
1117	 * with this VSI.
1118	 */
1119	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121
1122	return 0;
1123}
1124
1125/**
1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127 * @ctxt: the VSI context being set
1128 * @vsi: the VSI being configured
1129 */
1130static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131{
1132	u8 dflt_q_group, dflt_q_prio;
1133	u16 dflt_q, report_q, val;
1134
1135	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137		return;
1138
1139	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140	ctxt->info.valid_sections |= cpu_to_le16(val);
1141	dflt_q = 0;
1142	dflt_q_group = 0;
1143	report_q = 0;
1144	dflt_q_prio = 0;
1145
1146	/* enable flow director filtering/programming */
1147	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148	ctxt->info.fd_options = cpu_to_le16(val);
1149	/* max of allocated flow director filters */
1150	ctxt->info.max_fd_fltr_dedicated =
1151			cpu_to_le16(vsi->num_gfltr);
1152	/* max of shared flow director filters any VSI may program */
1153	ctxt->info.max_fd_fltr_shared =
1154			cpu_to_le16(vsi->num_bfltr);
1155	/* default queue index within the VSI of the default FD */
1156	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
 
1157	/* target queue or queue group to the FD filter */
1158	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
 
1159	ctxt->info.fd_def_q = cpu_to_le16(val);
1160	/* queue index on which FD filter completion is reported */
1161	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
 
1162	/* priority of the default qindex action */
1163	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
 
1164	ctxt->info.fd_report_opt = cpu_to_le16(val);
1165}
1166
1167/**
1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169 * @ctxt: the VSI context being set
1170 * @vsi: the VSI being configured
1171 */
1172static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173{
1174	u8 lut_type, hash_type;
1175	struct device *dev;
1176	struct ice_pf *pf;
1177
1178	pf = vsi->back;
1179	dev = ice_pf_to_dev(pf);
1180
1181	switch (vsi->type) {
1182	case ICE_VSI_CHNL:
1183	case ICE_VSI_PF:
1184		/* PF VSI will inherit RSS instance of PF */
1185		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 
1186		break;
1187	case ICE_VSI_VF:
1188		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1189		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 
1190		break;
1191	default:
1192		dev_dbg(dev, "Unsupported VSI type %s\n",
1193			ice_vsi_type_str(vsi->type));
1194		return;
1195	}
1196
1197	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198	vsi->rss_hfunc = hash_type;
1199
1200	ctxt->info.q_opt_rss =
1201		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203}
1204
1205static void
1206ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207{
1208	struct ice_pf *pf = vsi->back;
1209	u16 qcount, qmap;
1210	u8 offset = 0;
1211	int pow;
1212
1213	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214
1215	pow = order_base_2(qcount);
1216	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
 
 
1218
1219	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223}
1224
1225/**
1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228 *
1229 * returns true if Rx VLAN pruning is enabled and false otherwise.
1230 */
1231static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232{
1233	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234}
1235
1236/**
1237 * ice_vsi_init - Create and initialize a VSI
1238 * @vsi: the VSI being configured
1239 * @vsi_flags: VSI configuration flags
1240 *
1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242 * reconfigure an existing context.
1243 *
1244 * This initializes a VSI context depending on the VSI type to be added and
1245 * passes it down to the add_vsi aq command to create a new VSI.
1246 */
1247static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248{
1249	struct ice_pf *pf = vsi->back;
1250	struct ice_hw *hw = &pf->hw;
1251	struct ice_vsi_ctx *ctxt;
1252	struct device *dev;
1253	int ret = 0;
1254
1255	dev = ice_pf_to_dev(pf);
1256	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257	if (!ctxt)
1258		return -ENOMEM;
1259
1260	switch (vsi->type) {
1261	case ICE_VSI_CTRL:
1262	case ICE_VSI_LB:
1263	case ICE_VSI_PF:
1264		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265		break;
1266	case ICE_VSI_SWITCHDEV_CTRL:
1267	case ICE_VSI_CHNL:
1268		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269		break;
1270	case ICE_VSI_VF:
1271		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272		/* VF number here is the absolute VF number (0-255) */
1273		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274		break;
1275	default:
1276		ret = -ENODEV;
1277		goto out;
1278	}
1279
1280	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281	 * prune enabled
1282	 */
1283	if (vsi->type == ICE_VSI_CHNL) {
1284		struct ice_vsi *main_vsi;
1285
1286		main_vsi = ice_get_main_vsi(pf);
1287		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288			ctxt->info.sw_flags2 |=
1289				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290		else
1291			ctxt->info.sw_flags2 &=
1292				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293	}
1294
1295	ice_set_dflt_vsi_ctx(hw, ctxt);
1296	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297		ice_set_fd_vsi_ctx(ctxt, vsi);
1298	/* if the switch is in VEB mode, allow VSI loopback */
1299	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301
1302	/* Set LUT type and HASH type if RSS is enabled */
1303	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304	    vsi->type != ICE_VSI_CTRL) {
1305		ice_set_rss_vsi_ctx(ctxt, vsi);
1306		/* if updating VSI context, make sure to set valid_section:
1307		 * to indicate which section of VSI context being updated
1308		 */
1309		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310			ctxt->info.valid_sections |=
1311				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312	}
1313
1314	ctxt->info.sw_id = vsi->port_info->sw_id;
1315	if (vsi->type == ICE_VSI_CHNL) {
1316		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317	} else {
1318		ret = ice_vsi_setup_q_map(vsi, ctxt);
1319		if (ret)
1320			goto out;
1321
1322		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323			/* means VSI being updated */
1324			/* must to indicate which section of VSI context are
1325			 * being modified
1326			 */
1327			ctxt->info.valid_sections |=
1328				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329	}
1330
1331	/* Allow control frames out of main VSI */
1332	if (vsi->type == ICE_VSI_PF) {
1333		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334		ctxt->info.valid_sections |=
1335			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336	}
1337
1338	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340		if (ret) {
1341			dev_err(dev, "Add VSI failed, err %d\n", ret);
1342			ret = -EIO;
1343			goto out;
1344		}
1345	} else {
1346		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347		if (ret) {
1348			dev_err(dev, "Update VSI failed, err %d\n", ret);
1349			ret = -EIO;
1350			goto out;
1351		}
1352	}
1353
1354	/* keep context for update VSI operations */
1355	vsi->info = ctxt->info;
1356
1357	/* record VSI number returned */
1358	vsi->vsi_num = ctxt->vsi_num;
1359
1360out:
1361	kfree(ctxt);
1362	return ret;
1363}
1364
1365/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367 * @vsi: the VSI having rings deallocated
1368 */
1369static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370{
1371	int i;
1372
1373	/* Avoid stale references by clearing map from vector to ring */
1374	if (vsi->q_vectors) {
1375		ice_for_each_q_vector(vsi, i) {
1376			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377
1378			if (q_vector) {
1379				q_vector->tx.tx_ring = NULL;
1380				q_vector->rx.rx_ring = NULL;
1381			}
1382		}
1383	}
1384
1385	if (vsi->tx_rings) {
1386		ice_for_each_alloc_txq(vsi, i) {
1387			if (vsi->tx_rings[i]) {
1388				kfree_rcu(vsi->tx_rings[i], rcu);
1389				WRITE_ONCE(vsi->tx_rings[i], NULL);
1390			}
1391		}
1392	}
1393	if (vsi->rx_rings) {
1394		ice_for_each_alloc_rxq(vsi, i) {
1395			if (vsi->rx_rings[i]) {
1396				kfree_rcu(vsi->rx_rings[i], rcu);
1397				WRITE_ONCE(vsi->rx_rings[i], NULL);
1398			}
1399		}
1400	}
1401}
1402
1403/**
1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405 * @vsi: VSI which is having rings allocated
1406 */
1407static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408{
1409	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410	struct ice_pf *pf = vsi->back;
1411	struct device *dev;
1412	u16 i;
1413
1414	dev = ice_pf_to_dev(pf);
1415	/* Allocate Tx rings */
1416	ice_for_each_alloc_txq(vsi, i) {
1417		struct ice_tx_ring *ring;
1418
1419		/* allocate with kzalloc(), free with kfree_rcu() */
1420		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421
1422		if (!ring)
1423			goto err_out;
1424
1425		ring->q_index = i;
1426		ring->reg_idx = vsi->txq_map[i];
1427		ring->vsi = vsi;
1428		ring->tx_tstamps = &pf->ptp.port.tx;
1429		ring->dev = dev;
1430		ring->count = vsi->num_tx_desc;
1431		ring->txq_teid = ICE_INVAL_TEID;
1432		if (dvm_ena)
1433			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434		else
1435			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436		WRITE_ONCE(vsi->tx_rings[i], ring);
1437	}
1438
1439	/* Allocate Rx rings */
1440	ice_for_each_alloc_rxq(vsi, i) {
1441		struct ice_rx_ring *ring;
1442
1443		/* allocate with kzalloc(), free with kfree_rcu() */
1444		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445		if (!ring)
1446			goto err_out;
1447
1448		ring->q_index = i;
1449		ring->reg_idx = vsi->rxq_map[i];
1450		ring->vsi = vsi;
1451		ring->netdev = vsi->netdev;
1452		ring->dev = dev;
1453		ring->count = vsi->num_rx_desc;
1454		ring->cached_phctime = pf->ptp.cached_phc_time;
1455		WRITE_ONCE(vsi->rx_rings[i], ring);
1456	}
1457
1458	return 0;
1459
1460err_out:
1461	ice_vsi_clear_rings(vsi);
1462	return -ENOMEM;
1463}
1464
1465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466 * ice_vsi_manage_rss_lut - disable/enable RSS
1467 * @vsi: the VSI being changed
1468 * @ena: boolean value indicating if this is an enable or disable request
1469 *
1470 * In the event of disable request for RSS, this function will zero out RSS
1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472 * LUT.
1473 */
1474void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475{
1476	u8 *lut;
1477
1478	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479	if (!lut)
1480		return;
1481
1482	if (ena) {
1483		if (vsi->rss_lut_user)
1484			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485		else
1486			ice_fill_rss_lut(lut, vsi->rss_table_size,
1487					 vsi->rss_size);
1488	}
1489
1490	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491	kfree(lut);
1492}
1493
1494/**
1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496 * @vsi: VSI to be configured
1497 * @disable: set to true to have FCS / CRC in the frame data
1498 */
1499void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500{
1501	int i;
1502
1503	ice_for_each_rxq(vsi, i)
1504		if (disable)
1505			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506		else
1507			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508}
1509
1510/**
1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512 * @vsi: VSI to be configured
1513 */
1514int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515{
1516	struct ice_pf *pf = vsi->back;
1517	struct device *dev;
1518	u8 *lut, *key;
1519	int err;
1520
1521	dev = ice_pf_to_dev(pf);
1522	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525	} else {
1526		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527
1528		/* If orig_rss_size is valid and it is less than determined
1529		 * main VSI's rss_size, update main VSI's rss_size to be
1530		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531		 * RSS table gets programmed to be correct (whatever it was
1532		 * to begin with (prior to setup-tc for ADQ config)
1533		 */
1534		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535		    vsi->orig_rss_size <= vsi->num_rxq) {
1536			vsi->rss_size = vsi->orig_rss_size;
1537			/* now orig_rss_size is used, reset it to zero */
1538			vsi->orig_rss_size = 0;
1539		}
1540	}
1541
1542	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543	if (!lut)
1544		return -ENOMEM;
1545
1546	if (vsi->rss_lut_user)
1547		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548	else
1549		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550
1551	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552	if (err) {
1553		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554		goto ice_vsi_cfg_rss_exit;
1555	}
1556
1557	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558	if (!key) {
1559		err = -ENOMEM;
1560		goto ice_vsi_cfg_rss_exit;
1561	}
1562
1563	if (vsi->rss_hkey_user)
1564		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565	else
1566		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567
1568	err = ice_set_rss_key(vsi, key);
1569	if (err)
1570		dev_err(dev, "set_rss_key failed, error %d\n", err);
1571
1572	kfree(key);
1573ice_vsi_cfg_rss_exit:
1574	kfree(lut);
1575	return err;
1576}
1577
1578/**
1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580 * @vsi: VSI to be configured
1581 *
1582 * This function will only be called during the VF VSI setup. Upon successful
1583 * completion of package download, this function will configure default RSS
1584 * input sets for VF VSI.
1585 */
1586static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587{
1588	struct ice_pf *pf = vsi->back;
1589	struct device *dev;
1590	int status;
1591
1592	dev = ice_pf_to_dev(pf);
1593	if (ice_is_safe_mode(pf)) {
1594		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595			vsi->vsi_num);
1596		return;
1597	}
1598
1599	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600	if (status)
1601		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602			vsi->vsi_num, status);
1603}
1604
1605static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606	/* configure RSS for IPv4 with input set IP src/dst */
1607	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608	/* configure RSS for IPv6 with input set IPv6 src/dst */
1609	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1613	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1616	/* configure RSS for sctp4 with input set IP src/dst - only support
1617	 * RSS on SCTPv4 on outer headers (non-tunneled)
1618	 */
1619	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621	/* configure RSS for gtpc4 with input set IPv4 src/dst */
1622	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1623		ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1624	/* configure RSS for gtpc4t with input set IPv4 src/dst */
1625	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1626		ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1627	/* configure RSS for gtpu4 with input set IPv4 src/dst */
1628	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1629		ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1630	/* configure RSS for gtpu4e with input set IPv4 src/dst */
1631	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1632		ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1633	/* configure RSS for gtpu4u with input set IPv4 src/dst */
1634	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1635		ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1636	/* configure RSS for gtpu4d with input set IPv4 src/dst */
1637	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1638		ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1639
1640	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1641	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1642				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1643	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1644	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1645				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1646	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1647	 * RSS on SCTPv6 on outer headers (non-tunneled)
1648	 */
1649	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1650		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1651	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1652	{ICE_FLOW_SEG_HDR_ESP,
1653		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1654	/* configure RSS for gtpc6 with input set IPv6 src/dst */
1655	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1656		ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1657	/* configure RSS for gtpc6t with input set IPv6 src/dst */
1658	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1659		ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1660	/* configure RSS for gtpu6 with input set IPv6 src/dst */
1661	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1662		ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1663	/* configure RSS for gtpu6e with input set IPv6 src/dst */
1664	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1665		ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1666	/* configure RSS for gtpu6u with input set IPv6 src/dst */
1667	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1668		ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1669	/* configure RSS for gtpu6d with input set IPv6 src/dst */
1670	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1671		ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1672};
1673
1674/**
1675 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1676 * @vsi: VSI to be configured
1677 *
1678 * This function will only be called after successful download package call
1679 * during initialization of PF. Since the downloaded package will erase the
1680 * RSS section, this function will configure RSS input sets for different
1681 * flow types. The last profile added has the highest priority, therefore 2
1682 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1683 * (i.e. IPv4 src/dst TCP src/dst port).
1684 */
1685static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1686{
1687	u16 vsi_num = vsi->vsi_num;
1688	struct ice_pf *pf = vsi->back;
1689	struct ice_hw *hw = &pf->hw;
1690	struct device *dev;
1691	int status;
1692	u32 i;
1693
1694	dev = ice_pf_to_dev(pf);
1695	if (ice_is_safe_mode(pf)) {
1696		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1697			vsi_num);
1698		return;
1699	}
1700	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1701		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
 
 
 
 
1702
1703		status = ice_add_rss_cfg(hw, vsi, cfg);
1704		if (status)
1705			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1706				cfg->addl_hdrs, cfg->hash_flds,
1707				cfg->hdr_type, cfg->symm);
1708	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709}
1710
1711/**
1712 * ice_pf_state_is_nominal - checks the PF for nominal state
1713 * @pf: pointer to PF to check
1714 *
1715 * Check the PF's state for a collection of bits that would indicate
1716 * the PF is in a state that would inhibit normal operation for
1717 * driver functionality.
1718 *
1719 * Returns true if PF is in a nominal state, false otherwise
1720 */
1721bool ice_pf_state_is_nominal(struct ice_pf *pf)
1722{
1723	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1724
1725	if (!pf)
1726		return false;
1727
1728	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1729	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1730		return false;
1731
1732	return true;
1733}
1734
1735/**
1736 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1737 * @vsi: the VSI to be updated
1738 */
1739void ice_update_eth_stats(struct ice_vsi *vsi)
1740{
1741	struct ice_eth_stats *prev_es, *cur_es;
1742	struct ice_hw *hw = &vsi->back->hw;
1743	struct ice_pf *pf = vsi->back;
1744	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1745
1746	prev_es = &vsi->eth_stats_prev;
1747	cur_es = &vsi->eth_stats;
1748
1749	if (ice_is_reset_in_progress(pf->state))
1750		vsi->stat_offsets_loaded = false;
1751
1752	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1753			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1754
1755	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1756			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1757
1758	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1759			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1760
1761	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1762			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1763
1764	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1765			  &prev_es->rx_discards, &cur_es->rx_discards);
1766
1767	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1768			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1769
1770	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1771			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1772
1773	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1774			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1775
1776	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1777			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1778
1779	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1780			  &prev_es->tx_errors, &cur_es->tx_errors);
1781
1782	vsi->stat_offsets_loaded = true;
1783}
1784
1785/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1787 * @hw: HW pointer
1788 * @pf_q: index of the Rx queue in the PF's queue space
1789 * @rxdid: flexible descriptor RXDID
1790 * @prio: priority for the RXDID for this queue
1791 * @ena_ts: true to enable timestamp and false to disable timestamp
1792 */
1793void
1794ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1795			bool ena_ts)
1796{
1797	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1798
1799	/* clear any previous values */
1800	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1801		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1802		    QRXFLXP_CNTXT_TS_M);
1803
1804	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1805	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
 
 
 
1806
1807	if (ena_ts)
1808		/* Enable TimeSync on this queue */
1809		regval |= QRXFLXP_CNTXT_TS_M;
1810
1811	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1812}
1813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814/**
1815 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1816 * @intrl: interrupt rate limit in usecs
1817 * @gran: interrupt rate limit granularity in usecs
1818 *
1819 * This function converts a decimal interrupt rate limit in usecs to the format
1820 * expected by firmware.
1821 */
1822static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1823{
1824	u32 val = intrl / gran;
1825
1826	if (val)
1827		return val | GLINT_RATE_INTRL_ENA_M;
1828	return 0;
1829}
1830
1831/**
1832 * ice_write_intrl - write throttle rate limit to interrupt specific register
1833 * @q_vector: pointer to interrupt specific structure
1834 * @intrl: throttle rate limit in microseconds to write
1835 */
1836void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1837{
1838	struct ice_hw *hw = &q_vector->vsi->back->hw;
1839
1840	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1841	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1842}
1843
1844static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1845{
1846	switch (rc->type) {
1847	case ICE_RX_CONTAINER:
1848		if (rc->rx_ring)
1849			return rc->rx_ring->q_vector;
1850		break;
1851	case ICE_TX_CONTAINER:
1852		if (rc->tx_ring)
1853			return rc->tx_ring->q_vector;
1854		break;
1855	default:
1856		break;
1857	}
1858
1859	return NULL;
1860}
1861
1862/**
1863 * __ice_write_itr - write throttle rate to register
1864 * @q_vector: pointer to interrupt data structure
1865 * @rc: pointer to ring container
1866 * @itr: throttle rate in microseconds to write
1867 */
1868static void __ice_write_itr(struct ice_q_vector *q_vector,
1869			    struct ice_ring_container *rc, u16 itr)
1870{
1871	struct ice_hw *hw = &q_vector->vsi->back->hw;
1872
1873	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1874	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1875}
1876
1877/**
1878 * ice_write_itr - write throttle rate to queue specific register
1879 * @rc: pointer to ring container
1880 * @itr: throttle rate in microseconds to write
1881 */
1882void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1883{
1884	struct ice_q_vector *q_vector;
1885
1886	q_vector = ice_pull_qvec_from_rc(rc);
1887	if (!q_vector)
1888		return;
1889
1890	__ice_write_itr(q_vector, rc, itr);
1891}
1892
1893/**
1894 * ice_set_q_vector_intrl - set up interrupt rate limiting
1895 * @q_vector: the vector to be configured
1896 *
1897 * Interrupt rate limiting is local to the vector, not per-queue so we must
1898 * detect if either ring container has dynamic moderation enabled to decide
1899 * what to set the interrupt rate limit to via INTRL settings. In the case that
1900 * dynamic moderation is disabled on both, write the value with the cached
1901 * setting to make sure INTRL register matches the user visible value.
1902 */
1903void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1904{
1905	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1906		/* in the case of dynamic enabled, cap each vector to no more
1907		 * than (4 us) 250,000 ints/sec, which allows low latency
1908		 * but still less than 500,000 interrupts per second, which
1909		 * reduces CPU a bit in the case of the lowest latency
1910		 * setting. The 4 here is a value in microseconds.
1911		 */
1912		ice_write_intrl(q_vector, 4);
1913	} else {
1914		ice_write_intrl(q_vector, q_vector->intrl);
1915	}
1916}
1917
1918/**
1919 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1920 * @vsi: the VSI being configured
1921 *
1922 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1923 * for the VF VSI.
1924 */
1925void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1926{
1927	struct ice_pf *pf = vsi->back;
1928	struct ice_hw *hw = &pf->hw;
1929	u16 txq = 0, rxq = 0;
1930	int i, q;
1931
1932	ice_for_each_q_vector(vsi, i) {
1933		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1934		u16 reg_idx = q_vector->reg_idx;
1935
1936		ice_cfg_itr(hw, q_vector);
1937
1938		/* Both Transmit Queue Interrupt Cause Control register
1939		 * and Receive Queue Interrupt Cause control register
1940		 * expects MSIX_INDX field to be the vector index
1941		 * within the function space and not the absolute
1942		 * vector index across PF or across device.
1943		 * For SR-IOV VF VSIs queue vector index always starts
1944		 * with 1 since first vector index(0) is used for OICR
1945		 * in VF space. Since VMDq and other PF VSIs are within
1946		 * the PF function space, use the vector index that is
1947		 * tracked for this PF.
1948		 */
1949		for (q = 0; q < q_vector->num_ring_tx; q++) {
1950			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1951					      q_vector->tx.itr_idx);
1952			txq++;
1953		}
1954
1955		for (q = 0; q < q_vector->num_ring_rx; q++) {
1956			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1957					      q_vector->rx.itr_idx);
1958			rxq++;
1959		}
1960	}
1961}
1962
1963/**
1964 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1965 * @vsi: the VSI whose rings are to be enabled
1966 *
1967 * Returns 0 on success and a negative value on error
1968 */
1969int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1970{
1971	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1972}
1973
1974/**
1975 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1976 * @vsi: the VSI whose rings are to be disabled
1977 *
1978 * Returns 0 on success and a negative value on error
1979 */
1980int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1981{
1982	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1983}
1984
1985/**
1986 * ice_vsi_stop_tx_rings - Disable Tx rings
1987 * @vsi: the VSI being configured
1988 * @rst_src: reset source
1989 * @rel_vmvf_num: Relative ID of VF/VM
1990 * @rings: Tx ring array to be stopped
1991 * @count: number of Tx ring array elements
1992 */
1993static int
1994ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1995		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1996{
1997	u16 q_idx;
1998
1999	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2000		return -EINVAL;
2001
2002	for (q_idx = 0; q_idx < count; q_idx++) {
2003		struct ice_txq_meta txq_meta = { };
2004		int status;
2005
2006		if (!rings || !rings[q_idx])
2007			return -EINVAL;
2008
2009		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2010		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2011					      rings[q_idx], &txq_meta);
2012
2013		if (status)
2014			return status;
2015	}
2016
2017	return 0;
2018}
2019
2020/**
2021 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2022 * @vsi: the VSI being configured
2023 * @rst_src: reset source
2024 * @rel_vmvf_num: Relative ID of VF/VM
2025 */
2026int
2027ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2028			  u16 rel_vmvf_num)
2029{
2030	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2031}
2032
2033/**
2034 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2035 * @vsi: the VSI being configured
2036 */
2037int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2038{
2039	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2040}
2041
2042/**
2043 * ice_vsi_is_rx_queue_active
2044 * @vsi: the VSI being configured
2045 *
2046 * Return true if at least one queue is active.
2047 */
2048bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2049{
2050	struct ice_pf *pf = vsi->back;
2051	struct ice_hw *hw = &pf->hw;
2052	int i;
2053
2054	ice_for_each_rxq(vsi, i) {
2055		u32 rx_reg;
2056		int pf_q;
2057
2058		pf_q = vsi->rxq_map[i];
2059		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2060		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2061			return true;
2062	}
2063
2064	return false;
2065}
2066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2068{
2069	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2070		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2071		vsi->tc_cfg.numtc = 1;
2072		return;
2073	}
2074
2075	/* set VSI TC information based on DCB config */
2076	ice_vsi_set_dcb_tc_cfg(vsi);
2077}
2078
2079/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2081 * @vsi: the VSI being configured
2082 * @tx: bool to determine Tx or Rx rule
2083 * @create: bool to determine create or remove Rule
2084 */
2085void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2086{
2087	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2088			enum ice_sw_fwd_act_type act);
2089	struct ice_pf *pf = vsi->back;
2090	struct device *dev;
2091	int status;
2092
2093	dev = ice_pf_to_dev(pf);
2094	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2095
2096	if (tx) {
2097		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2098				  ICE_DROP_PACKET);
2099	} else {
2100		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2101			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2102							  create);
2103		} else {
2104			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2105					  ICE_FWD_TO_VSI);
2106		}
2107	}
2108
2109	if (status)
2110		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2111			create ? "adding" : "removing", tx ? "TX" : "RX",
2112			vsi->vsi_num, status);
2113}
2114
2115/**
2116 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2117 * @vsi: pointer to the VSI
2118 *
2119 * This function will allocate new scheduler aggregator now if needed and will
2120 * move specified VSI into it.
2121 */
2122static void ice_set_agg_vsi(struct ice_vsi *vsi)
2123{
2124	struct device *dev = ice_pf_to_dev(vsi->back);
2125	struct ice_agg_node *agg_node_iter = NULL;
2126	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2127	struct ice_agg_node *agg_node = NULL;
2128	int node_offset, max_agg_nodes = 0;
2129	struct ice_port_info *port_info;
2130	struct ice_pf *pf = vsi->back;
2131	u32 agg_node_id_start = 0;
2132	int status;
2133
2134	/* create (as needed) scheduler aggregator node and move VSI into
2135	 * corresponding aggregator node
2136	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2137	 * - VF aggregator nodes will contain VF VSI
2138	 */
2139	port_info = pf->hw.port_info;
2140	if (!port_info)
2141		return;
2142
2143	switch (vsi->type) {
2144	case ICE_VSI_CTRL:
2145	case ICE_VSI_CHNL:
2146	case ICE_VSI_LB:
2147	case ICE_VSI_PF:
2148	case ICE_VSI_SWITCHDEV_CTRL:
2149		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2150		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2151		agg_node_iter = &pf->pf_agg_node[0];
2152		break;
2153	case ICE_VSI_VF:
2154		/* user can create 'n' VFs on a given PF, but since max children
2155		 * per aggregator node can be only 64. Following code handles
2156		 * aggregator(s) for VF VSIs, either selects a agg_node which
2157		 * was already created provided num_vsis < 64, otherwise
2158		 * select next available node, which will be created
2159		 */
2160		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2161		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2162		agg_node_iter = &pf->vf_agg_node[0];
2163		break;
2164	default:
2165		/* other VSI type, handle later if needed */
2166		dev_dbg(dev, "unexpected VSI type %s\n",
2167			ice_vsi_type_str(vsi->type));
2168		return;
2169	}
2170
2171	/* find the appropriate aggregator node */
2172	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2173		/* see if we can find space in previously created
2174		 * node if num_vsis < 64, otherwise skip
2175		 */
2176		if (agg_node_iter->num_vsis &&
2177		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2178			agg_node_iter++;
2179			continue;
2180		}
2181
2182		if (agg_node_iter->valid &&
2183		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2184			agg_id = agg_node_iter->agg_id;
2185			agg_node = agg_node_iter;
2186			break;
2187		}
2188
2189		/* find unclaimed agg_id */
2190		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2191			agg_id = node_offset + agg_node_id_start;
2192			agg_node = agg_node_iter;
2193			break;
2194		}
2195		/* move to next agg_node */
2196		agg_node_iter++;
2197	}
2198
2199	if (!agg_node)
2200		return;
2201
2202	/* if selected aggregator node was not created, create it */
2203	if (!agg_node->valid) {
2204		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2205				     (u8)vsi->tc_cfg.ena_tc);
2206		if (status) {
2207			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2208				agg_id);
2209			return;
2210		}
2211		/* aggregator node is created, store the needed info */
2212		agg_node->valid = true;
2213		agg_node->agg_id = agg_id;
2214	}
2215
2216	/* move VSI to corresponding aggregator node */
2217	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2218				     (u8)vsi->tc_cfg.ena_tc);
2219	if (status) {
2220		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2221			vsi->idx, agg_id);
2222		return;
2223	}
2224
2225	/* keep active children count for aggregator node */
2226	agg_node->num_vsis++;
2227
2228	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2229	 * to aggregator node
2230	 */
2231	vsi->agg_node = agg_node;
2232	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2233		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2234		vsi->agg_node->num_vsis);
2235}
2236
2237static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238{
2239	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2240	struct device *dev = ice_pf_to_dev(pf);
 
2241	int ret, i;
2242
2243	/* configure VSI nodes based on number of queues and TC's */
2244	ice_for_each_traffic_class(i) {
2245		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2246			continue;
2247
2248		if (vsi->type == ICE_VSI_CHNL) {
2249			if (!vsi->alloc_txq && vsi->num_txq)
2250				max_txqs[i] = vsi->num_txq;
2251			else
2252				max_txqs[i] = pf->num_lan_tx;
2253		} else {
2254			max_txqs[i] = vsi->alloc_txq;
2255		}
2256
2257		if (vsi->type == ICE_VSI_PF)
2258			max_txqs[i] += vsi->num_xdp_txq;
2259	}
2260
2261	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2262	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2263			      max_txqs);
2264	if (ret) {
2265		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2266			vsi->vsi_num, ret);
2267		return ret;
2268	}
2269
2270	return 0;
2271}
2272
2273/**
2274 * ice_vsi_cfg_def - configure default VSI based on the type
2275 * @vsi: pointer to VSI
2276 * @params: the parameters to configure this VSI with
2277 */
2278static int
2279ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2280{
2281	struct device *dev = ice_pf_to_dev(vsi->back);
2282	struct ice_pf *pf = vsi->back;
2283	int ret;
2284
2285	vsi->vsw = pf->first_sw;
2286
2287	ret = ice_vsi_alloc_def(vsi, params->ch);
2288	if (ret)
2289		return ret;
2290
2291	/* allocate memory for Tx/Rx ring stat pointers */
2292	ret = ice_vsi_alloc_stat_arrays(vsi);
2293	if (ret)
2294		goto unroll_vsi_alloc;
2295
2296	ice_alloc_fd_res(vsi);
2297
2298	ret = ice_vsi_get_qs(vsi);
2299	if (ret) {
2300		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2301			vsi->idx);
2302		goto unroll_vsi_alloc_stat;
 
2303	}
2304
2305	/* set RSS capabilities */
2306	ice_vsi_set_rss_params(vsi);
2307
2308	/* set TC configuration */
2309	ice_vsi_set_tc_cfg(vsi);
2310
2311	/* create the VSI */
2312	ret = ice_vsi_init(vsi, params->flags);
2313	if (ret)
2314		goto unroll_get_qs;
2315
2316	ice_vsi_init_vlan_ops(vsi);
2317
2318	switch (vsi->type) {
2319	case ICE_VSI_CTRL:
2320	case ICE_VSI_SWITCHDEV_CTRL:
2321	case ICE_VSI_PF:
2322		ret = ice_vsi_alloc_q_vectors(vsi);
2323		if (ret)
2324			goto unroll_vsi_init;
2325
 
 
 
 
 
 
 
 
2326		ret = ice_vsi_alloc_rings(vsi);
2327		if (ret)
2328			goto unroll_vector_base;
2329
2330		ret = ice_vsi_alloc_ring_stats(vsi);
2331		if (ret)
2332			goto unroll_vector_base;
2333
2334		ice_vsi_map_rings_to_vectors(vsi);
2335
2336		/* Associate q_vector rings to napi */
2337		ice_vsi_set_napi_queues(vsi);
2338
2339		vsi->stat_offsets_loaded = false;
2340
2341		if (ice_is_xdp_ena_vsi(vsi)) {
2342			ret = ice_vsi_determine_xdp_res(vsi);
2343			if (ret)
2344				goto unroll_vector_base;
2345			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2346			if (ret)
2347				goto unroll_vector_base;
2348		}
2349
2350		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2351		if (vsi->type != ICE_VSI_CTRL)
2352			/* Do not exit if configuring RSS had an issue, at
2353			 * least receive traffic on first queue. Hence no
2354			 * need to capture return value
2355			 */
2356			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357				ice_vsi_cfg_rss_lut_key(vsi);
2358				ice_vsi_set_rss_flow_fld(vsi);
2359			}
2360		ice_init_arfs(vsi);
2361		break;
2362	case ICE_VSI_CHNL:
2363		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2364			ice_vsi_cfg_rss_lut_key(vsi);
2365			ice_vsi_set_rss_flow_fld(vsi);
2366		}
2367		break;
2368	case ICE_VSI_VF:
2369		/* VF driver will take care of creating netdev for this type and
2370		 * map queues to vectors through Virtchnl, PF driver only
2371		 * creates a VSI and corresponding structures for bookkeeping
2372		 * purpose
2373		 */
2374		ret = ice_vsi_alloc_q_vectors(vsi);
2375		if (ret)
2376			goto unroll_vsi_init;
2377
2378		ret = ice_vsi_alloc_rings(vsi);
2379		if (ret)
2380			goto unroll_alloc_q_vector;
2381
2382		ret = ice_vsi_alloc_ring_stats(vsi);
2383		if (ret)
2384			goto unroll_vector_base;
2385
2386		vsi->stat_offsets_loaded = false;
2387
 
2388		/* Do not exit if configuring RSS had an issue, at least
2389		 * receive traffic on first queue. Hence no need to capture
2390		 * return value
2391		 */
2392		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2393			ice_vsi_cfg_rss_lut_key(vsi);
2394			ice_vsi_set_vf_rss_flow_fld(vsi);
2395		}
2396		break;
2397	case ICE_VSI_LB:
2398		ret = ice_vsi_alloc_rings(vsi);
2399		if (ret)
2400			goto unroll_vsi_init;
2401
2402		ret = ice_vsi_alloc_ring_stats(vsi);
2403		if (ret)
2404			goto unroll_vector_base;
2405
2406		break;
2407	default:
2408		/* clean up the resources and exit */
2409		ret = -EINVAL;
2410		goto unroll_vsi_init;
2411	}
2412
2413	return 0;
2414
2415unroll_vector_base:
2416	/* reclaim SW interrupts back to the common pool */
2417unroll_alloc_q_vector:
2418	ice_vsi_free_q_vectors(vsi);
2419unroll_vsi_init:
2420	ice_vsi_delete_from_hw(vsi);
2421unroll_get_qs:
2422	ice_vsi_put_qs(vsi);
2423unroll_vsi_alloc_stat:
2424	ice_vsi_free_stats(vsi);
2425unroll_vsi_alloc:
2426	ice_vsi_free_arrays(vsi);
2427	return ret;
2428}
2429
2430/**
2431 * ice_vsi_cfg - configure a previously allocated VSI
2432 * @vsi: pointer to VSI
2433 * @params: parameters used to configure this VSI
2434 */
2435int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2436{
2437	struct ice_pf *pf = vsi->back;
2438	int ret;
2439
2440	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2441		return -EINVAL;
2442
2443	vsi->type = params->type;
2444	vsi->port_info = params->pi;
2445
2446	/* For VSIs which don't have a connected VF, this will be NULL */
2447	vsi->vf = params->vf;
2448
2449	ret = ice_vsi_cfg_def(vsi, params);
2450	if (ret)
2451		return ret;
2452
2453	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2454	if (ret)
2455		ice_vsi_decfg(vsi);
2456
2457	if (vsi->type == ICE_VSI_CTRL) {
2458		if (vsi->vf) {
2459			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2460			vsi->vf->ctrl_vsi_idx = vsi->idx;
 
2461		} else {
2462			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2463			pf->ctrl_vsi_idx = vsi->idx;
2464		}
2465	}
2466
2467	return ret;
2468}
2469
2470/**
2471 * ice_vsi_decfg - remove all VSI configuration
2472 * @vsi: pointer to VSI
2473 */
2474void ice_vsi_decfg(struct ice_vsi *vsi)
2475{
2476	struct ice_pf *pf = vsi->back;
2477	int err;
2478
2479	/* The Rx rule will only exist to remove if the LLDP FW
2480	 * engine is currently stopped
2481	 */
2482	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2483	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2484		ice_cfg_sw_lldp(vsi, false, false);
2485
2486	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2487	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2488	if (err)
2489		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2490			vsi->vsi_num, err);
2491
2492	if (ice_is_xdp_ena_vsi(vsi))
2493		/* return value check can be skipped here, it always returns
2494		 * 0 if reset is in progress
2495		 */
2496		ice_destroy_xdp_rings(vsi);
2497
2498	ice_vsi_clear_rings(vsi);
2499	ice_vsi_free_q_vectors(vsi);
2500	ice_vsi_put_qs(vsi);
2501	ice_vsi_free_arrays(vsi);
2502
2503	/* SR-IOV determines needed MSIX resources all at once instead of per
2504	 * VSI since when VFs are spawned we know how many VFs there are and how
2505	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2506	 * cleared in the same manner.
2507	 */
2508
2509	if (vsi->type == ICE_VSI_VF &&
2510	    vsi->agg_node && vsi->agg_node->valid)
2511		vsi->agg_node->num_vsis--;
2512}
2513
2514/**
2515 * ice_vsi_setup - Set up a VSI by a given type
2516 * @pf: board private structure
2517 * @params: parameters to use when creating the VSI
2518 *
2519 * This allocates the sw VSI structure and its queue resources.
2520 *
2521 * Returns pointer to the successfully allocated and configured VSI sw struct on
2522 * success, NULL on failure.
2523 */
2524struct ice_vsi *
2525ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2526{
2527	struct device *dev = ice_pf_to_dev(pf);
2528	struct ice_vsi *vsi;
2529	int ret;
2530
2531	/* ice_vsi_setup can only initialize a new VSI, and we must have
2532	 * a port_info structure for it.
2533	 */
2534	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2535	    WARN_ON(!params->pi))
2536		return NULL;
2537
2538	vsi = ice_vsi_alloc(pf);
2539	if (!vsi) {
2540		dev_err(dev, "could not allocate VSI\n");
2541		return NULL;
2542	}
2543
2544	ret = ice_vsi_cfg(vsi, params);
2545	if (ret)
2546		goto err_vsi_cfg;
2547
2548	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2549	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2550	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2551	 * The rule is added once for PF VSI in order to create appropriate
2552	 * recipe, since VSI/VSI list is ignored with drop action...
2553	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2554	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2555	 * settings in the HW.
2556	 */
2557	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2558		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2559				 ICE_DROP_PACKET);
2560		ice_cfg_sw_lldp(vsi, true, true);
2561	}
 
2562
2563	if (!vsi->agg_node)
2564		ice_set_agg_vsi(vsi);
2565
2566	return vsi;
2567
2568err_vsi_cfg:
2569	ice_vsi_free(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570
2571	return NULL;
2572}
2573
2574/**
2575 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2576 * @vsi: the VSI being cleaned up
2577 */
2578static void ice_vsi_release_msix(struct ice_vsi *vsi)
2579{
2580	struct ice_pf *pf = vsi->back;
2581	struct ice_hw *hw = &pf->hw;
2582	u32 txq = 0;
2583	u32 rxq = 0;
2584	int i, q;
2585
2586	ice_for_each_q_vector(vsi, i) {
2587		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2588
2589		ice_write_intrl(q_vector, 0);
2590		for (q = 0; q < q_vector->num_ring_tx; q++) {
2591			ice_write_itr(&q_vector->tx, 0);
2592			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593			if (ice_is_xdp_ena_vsi(vsi)) {
2594				u32 xdp_txq = txq + vsi->num_xdp_txq;
2595
2596				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2597			}
2598			txq++;
2599		}
2600
2601		for (q = 0; q < q_vector->num_ring_rx; q++) {
2602			ice_write_itr(&q_vector->rx, 0);
2603			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2604			rxq++;
2605		}
2606	}
2607
2608	ice_flush(hw);
2609}
2610
2611/**
2612 * ice_vsi_free_irq - Free the IRQ association with the OS
2613 * @vsi: the VSI being configured
2614 */
2615void ice_vsi_free_irq(struct ice_vsi *vsi)
2616{
2617	struct ice_pf *pf = vsi->back;
 
2618	int i;
2619
2620	if (!vsi->q_vectors || !vsi->irqs_ready)
2621		return;
2622
2623	ice_vsi_release_msix(vsi);
2624	if (vsi->type == ICE_VSI_VF)
2625		return;
2626
2627	vsi->irqs_ready = false;
2628	ice_free_cpu_rx_rmap(vsi);
2629
2630	ice_for_each_q_vector(vsi, i) {
 
2631		int irq_num;
2632
2633		irq_num = vsi->q_vectors[i]->irq.virq;
2634
2635		/* free only the irqs that were actually requested */
2636		if (!vsi->q_vectors[i] ||
2637		    !(vsi->q_vectors[i]->num_ring_tx ||
2638		      vsi->q_vectors[i]->num_ring_rx))
2639			continue;
2640
2641		/* clear the affinity notifier in the IRQ descriptor */
2642		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2643			irq_set_affinity_notifier(irq_num, NULL);
2644
2645		/* clear the affinity_mask in the IRQ descriptor */
2646		irq_set_affinity_hint(irq_num, NULL);
2647		synchronize_irq(irq_num);
2648		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2649	}
2650}
2651
2652/**
2653 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2654 * @vsi: the VSI having resources freed
2655 */
2656void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2657{
2658	int i;
2659
2660	if (!vsi->tx_rings)
2661		return;
2662
2663	ice_for_each_txq(vsi, i)
2664		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2665			ice_free_tx_ring(vsi->tx_rings[i]);
2666}
2667
2668/**
2669 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2670 * @vsi: the VSI having resources freed
2671 */
2672void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2673{
2674	int i;
2675
2676	if (!vsi->rx_rings)
2677		return;
2678
2679	ice_for_each_rxq(vsi, i)
2680		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2681			ice_free_rx_ring(vsi->rx_rings[i]);
2682}
2683
2684/**
2685 * ice_vsi_close - Shut down a VSI
2686 * @vsi: the VSI being shut down
2687 */
2688void ice_vsi_close(struct ice_vsi *vsi)
2689{
2690	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2691		ice_down(vsi);
2692
2693	ice_vsi_free_irq(vsi);
2694	ice_vsi_free_tx_rings(vsi);
2695	ice_vsi_free_rx_rings(vsi);
2696}
2697
2698/**
2699 * ice_ena_vsi - resume a VSI
2700 * @vsi: the VSI being resume
2701 * @locked: is the rtnl_lock already held
2702 */
2703int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2704{
2705	int err = 0;
2706
2707	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2708		return 0;
2709
2710	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2711
2712	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2713		if (netif_running(vsi->netdev)) {
2714			if (!locked)
2715				rtnl_lock();
2716
2717			err = ice_open_internal(vsi->netdev);
2718
2719			if (!locked)
2720				rtnl_unlock();
2721		}
2722	} else if (vsi->type == ICE_VSI_CTRL) {
2723		err = ice_vsi_open_ctrl(vsi);
2724	}
2725
2726	return err;
2727}
2728
2729/**
2730 * ice_dis_vsi - pause a VSI
2731 * @vsi: the VSI being paused
2732 * @locked: is the rtnl_lock already held
2733 */
2734void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2735{
2736	if (test_bit(ICE_VSI_DOWN, vsi->state))
2737		return;
2738
2739	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2740
2741	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2742		if (netif_running(vsi->netdev)) {
2743			if (!locked)
2744				rtnl_lock();
2745
2746			ice_vsi_close(vsi);
2747
2748			if (!locked)
2749				rtnl_unlock();
2750		} else {
2751			ice_vsi_close(vsi);
2752		}
2753	} else if (vsi->type == ICE_VSI_CTRL ||
2754		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2755		ice_vsi_close(vsi);
2756	}
2757}
2758
2759/**
2760 * __ice_queue_set_napi - Set the napi instance for the queue
2761 * @dev: device to which NAPI and queue belong
2762 * @queue_index: Index of queue
2763 * @type: queue type as RX or TX
2764 * @napi: NAPI context
2765 * @locked: is the rtnl_lock already held
2766 *
2767 * Set the napi instance for the queue. Caller indicates the lock status.
2768 */
2769static void
2770__ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2771		     enum netdev_queue_type type, struct napi_struct *napi,
2772		     bool locked)
2773{
2774	if (!locked)
2775		rtnl_lock();
2776	netif_queue_set_napi(dev, queue_index, type, napi);
2777	if (!locked)
2778		rtnl_unlock();
2779}
2780
2781/**
2782 * ice_queue_set_napi - Set the napi instance for the queue
2783 * @vsi: VSI being configured
2784 * @queue_index: Index of queue
2785 * @type: queue type as RX or TX
2786 * @napi: NAPI context
2787 *
2788 * Set the napi instance for the queue. The rtnl lock state is derived from the
2789 * execution path.
2790 */
2791void
2792ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2793		   enum netdev_queue_type type, struct napi_struct *napi)
2794{
 
2795	struct ice_pf *pf = vsi->back;
 
 
 
2796
2797	if (!vsi->netdev)
2798		return;
 
 
 
2799
2800	if (current_work() == &pf->serv_task ||
2801	    test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2802	    test_bit(ICE_DOWN, pf->state) ||
2803	    test_bit(ICE_SUSPENDED, pf->state))
2804		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2805				     false);
2806	else
2807		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2808				     true);
2809}
2810
2811/**
2812 * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2813 * @q_vector: q_vector pointer
2814 * @locked: is the rtnl_lock already held
2815 *
2816 * Associate the q_vector napi with all the queue[s] on the vector.
2817 * Caller indicates the lock status.
2818 */
2819void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2820{
2821	struct ice_rx_ring *rx_ring;
2822	struct ice_tx_ring *tx_ring;
 
 
 
 
 
 
 
2823
2824	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2825		__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2826				     NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2827				     locked);
2828
2829	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2830		__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2831				     NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2832				     locked);
2833	/* Also set the interrupt number for the NAPI */
2834	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2835}
2836
2837/**
2838 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2839 * @q_vector: q_vector pointer
2840 *
2841 * Associate the q_vector napi with all the queue[s] on the vector
2842 */
2843void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2844{
2845	struct ice_rx_ring *rx_ring;
2846	struct ice_tx_ring *tx_ring;
2847
2848	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2849		ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2850				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2851
2852	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2853		ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2854				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2855	/* Also set the interrupt number for the NAPI */
2856	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2857}
2858
2859/**
2860 * ice_vsi_set_napi_queues
2861 * @vsi: VSI pointer
 
2862 *
2863 * Associate queue[s] with napi for all vectors
 
 
2864 */
2865void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2866{
2867	int i;
 
2868
2869	if (!vsi->netdev)
2870		return;
 
 
 
 
 
 
2871
2872	ice_for_each_q_vector(vsi, i)
2873		ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
 
 
 
 
2874}
2875
2876/**
2877 * ice_vsi_release - Delete a VSI and free its resources
2878 * @vsi: the VSI being removed
2879 *
2880 * Returns 0 on success or < 0 on error
2881 */
2882int ice_vsi_release(struct ice_vsi *vsi)
2883{
2884	struct ice_pf *pf;
 
2885
2886	if (!vsi->back)
2887		return -ENODEV;
2888	pf = vsi->back;
2889
 
 
 
 
 
 
 
 
 
 
 
 
2890	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2891		ice_rss_clean(vsi);
2892
 
 
 
2893	ice_vsi_close(vsi);
2894	ice_vsi_decfg(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895
2896	/* retain SW VSI data structure since it is needed to unregister and
2897	 * free VSI netdev when PF is not in reset recovery pending state,\
2898	 * for ex: during rmmod.
2899	 */
2900	if (!ice_is_reset_in_progress(pf->state))
2901		ice_vsi_delete(vsi);
2902
2903	return 0;
2904}
2905
2906/**
2907 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2908 * @vsi: VSI connected with q_vectors
2909 * @coalesce: array of struct with stored coalesce
2910 *
2911 * Returns array size.
2912 */
2913static int
2914ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2915			     struct ice_coalesce_stored *coalesce)
2916{
2917	int i;
2918
2919	ice_for_each_q_vector(vsi, i) {
2920		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2921
2922		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2923		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2924		coalesce[i].intrl = q_vector->intrl;
2925
2926		if (i < vsi->num_txq)
2927			coalesce[i].tx_valid = true;
2928		if (i < vsi->num_rxq)
2929			coalesce[i].rx_valid = true;
2930	}
2931
2932	return vsi->num_q_vectors;
2933}
2934
2935/**
2936 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2937 * @vsi: VSI connected with q_vectors
2938 * @coalesce: pointer to array of struct with stored coalesce
2939 * @size: size of coalesce array
2940 *
2941 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2942 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2943 * to default value.
2944 */
2945static void
2946ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2947			     struct ice_coalesce_stored *coalesce, int size)
2948{
2949	struct ice_ring_container *rc;
2950	int i;
2951
2952	if ((size && !coalesce) || !vsi)
2953		return;
2954
2955	/* There are a couple of cases that have to be handled here:
2956	 *   1. The case where the number of queue vectors stays the same, but
2957	 *      the number of Tx or Rx rings changes (the first for loop)
2958	 *   2. The case where the number of queue vectors increased (the
2959	 *      second for loop)
2960	 */
2961	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2962		/* There are 2 cases to handle here and they are the same for
2963		 * both Tx and Rx:
2964		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2965		 *   and the loop variable is less than the number of rings
2966		 *   allocated, then write the previous values
2967		 *
2968		 *   if the entry was not valid previously, but the number of
2969		 *   rings is less than are allocated (this means the number of
2970		 *   rings increased from previously), then write out the
2971		 *   values in the first element
2972		 *
2973		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2974		 *   as there is no harm because the dynamic algorithm
2975		 *   will just overwrite.
2976		 */
2977		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2978			rc = &vsi->q_vectors[i]->rx;
2979			rc->itr_settings = coalesce[i].itr_rx;
2980			ice_write_itr(rc, rc->itr_setting);
2981		} else if (i < vsi->alloc_rxq) {
2982			rc = &vsi->q_vectors[i]->rx;
2983			rc->itr_settings = coalesce[0].itr_rx;
2984			ice_write_itr(rc, rc->itr_setting);
2985		}
2986
2987		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2988			rc = &vsi->q_vectors[i]->tx;
2989			rc->itr_settings = coalesce[i].itr_tx;
2990			ice_write_itr(rc, rc->itr_setting);
2991		} else if (i < vsi->alloc_txq) {
2992			rc = &vsi->q_vectors[i]->tx;
2993			rc->itr_settings = coalesce[0].itr_tx;
2994			ice_write_itr(rc, rc->itr_setting);
2995		}
2996
2997		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2998		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2999	}
3000
3001	/* the number of queue vectors increased so write whatever is in
3002	 * the first element
3003	 */
3004	for (; i < vsi->num_q_vectors; i++) {
3005		/* transmit */
3006		rc = &vsi->q_vectors[i]->tx;
3007		rc->itr_settings = coalesce[0].itr_tx;
3008		ice_write_itr(rc, rc->itr_setting);
3009
3010		/* receive */
3011		rc = &vsi->q_vectors[i]->rx;
3012		rc->itr_settings = coalesce[0].itr_rx;
3013		ice_write_itr(rc, rc->itr_setting);
3014
3015		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3016		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3017	}
3018}
3019
3020/**
3021 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3022 * @vsi: VSI pointer
 
 
3023 */
3024static int
3025ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3026{
3027	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3028	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3029	struct ice_ring_stats **tx_ring_stats;
3030	struct ice_ring_stats **rx_ring_stats;
3031	struct ice_vsi_stats *vsi_stat;
3032	struct ice_pf *pf = vsi->back;
3033	u16 prev_txq = vsi->alloc_txq;
3034	u16 prev_rxq = vsi->alloc_rxq;
3035	int i;
3036
 
 
 
 
 
3037	vsi_stat = pf->vsi_stats[vsi->idx];
3038
3039	if (req_txq < prev_txq) {
3040		for (i = req_txq; i < prev_txq; i++) {
3041			if (vsi_stat->tx_ring_stats[i]) {
3042				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3043				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3044			}
3045		}
3046	}
3047
3048	tx_ring_stats = vsi_stat->tx_ring_stats;
3049	vsi_stat->tx_ring_stats =
3050		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3051			       sizeof(*vsi_stat->tx_ring_stats),
3052			       GFP_KERNEL | __GFP_ZERO);
3053	if (!vsi_stat->tx_ring_stats) {
3054		vsi_stat->tx_ring_stats = tx_ring_stats;
3055		return -ENOMEM;
3056	}
3057
3058	if (req_rxq < prev_rxq) {
3059		for (i = req_rxq; i < prev_rxq; i++) {
3060			if (vsi_stat->rx_ring_stats[i]) {
3061				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3062				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3063			}
3064		}
3065	}
3066
3067	rx_ring_stats = vsi_stat->rx_ring_stats;
3068	vsi_stat->rx_ring_stats =
3069		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3070			       sizeof(*vsi_stat->rx_ring_stats),
3071			       GFP_KERNEL | __GFP_ZERO);
3072	if (!vsi_stat->rx_ring_stats) {
3073		vsi_stat->rx_ring_stats = rx_ring_stats;
3074		return -ENOMEM;
3075	}
3076
3077	return 0;
3078}
3079
3080/**
3081 * ice_vsi_rebuild - Rebuild VSI after reset
3082 * @vsi: VSI to be rebuild
3083 * @vsi_flags: flags used for VSI rebuild flow
3084 *
3085 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3086 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3087 *
3088 * Returns 0 on success and negative value on failure
3089 */
3090int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3091{
3092	struct ice_vsi_cfg_params params = {};
3093	struct ice_coalesce_stored *coalesce;
3094	int prev_num_q_vectors;
 
 
3095	struct ice_pf *pf;
3096	int ret;
3097
3098	if (!vsi)
3099		return -EINVAL;
3100
3101	params = ice_vsi_to_params(vsi);
3102	params.flags = vsi_flags;
3103
3104	pf = vsi->back;
3105	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
 
3106		return -EINVAL;
3107
3108	ret = ice_vsi_realloc_stat_arrays(vsi);
3109	if (ret)
3110		goto err_vsi_cfg;
3111
3112	ice_vsi_decfg(vsi);
3113	ret = ice_vsi_cfg_def(vsi, &params);
3114	if (ret)
3115		goto err_vsi_cfg;
3116
3117	coalesce = kcalloc(vsi->num_q_vectors,
3118			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3119	if (!coalesce)
3120		return -ENOMEM;
3121
3122	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3123
3124	ret = ice_vsi_cfg_tc_lan(pf, vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125	if (ret) {
3126		if (vsi_flags & ICE_VSI_FLAG_INIT) {
 
 
3127			ret = -EIO;
3128			goto err_vsi_cfg_tc_lan;
 
 
3129		}
3130
3131		kfree(coalesce);
3132		return ice_schedule_reset(pf, ICE_RESET_PFR);
3133	}
3134
 
 
 
3135	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3136	kfree(coalesce);
3137
3138	return 0;
3139
3140err_vsi_cfg_tc_lan:
3141	ice_vsi_decfg(vsi);
 
 
 
 
 
 
 
 
 
 
3142	kfree(coalesce);
3143err_vsi_cfg:
3144	return ret;
3145}
3146
3147/**
3148 * ice_is_reset_in_progress - check for a reset in progress
3149 * @state: PF state field
3150 */
3151bool ice_is_reset_in_progress(unsigned long *state)
3152{
3153	return test_bit(ICE_RESET_OICR_RECV, state) ||
3154	       test_bit(ICE_PFR_REQ, state) ||
3155	       test_bit(ICE_CORER_REQ, state) ||
3156	       test_bit(ICE_GLOBR_REQ, state);
3157}
3158
3159/**
3160 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3161 * @pf: pointer to the PF structure
3162 * @timeout: length of time to wait, in jiffies
3163 *
3164 * Wait (sleep) for a short time until the driver finishes cleaning up from
3165 * a device reset. The caller must be able to sleep. Use this to delay
3166 * operations that could fail while the driver is cleaning up after a device
3167 * reset.
3168 *
3169 * Returns 0 on success, -EBUSY if the reset is not finished within the
3170 * timeout, and -ERESTARTSYS if the thread was interrupted.
3171 */
3172int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3173{
3174	long ret;
3175
3176	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3177					       !ice_is_reset_in_progress(pf->state),
3178					       timeout);
3179	if (ret < 0)
3180		return ret;
3181	else if (!ret)
3182		return -EBUSY;
3183	else
3184		return 0;
3185}
3186
3187/**
3188 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3189 * @vsi: VSI being configured
3190 * @ctx: the context buffer returned from AQ VSI update command
3191 */
3192static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3193{
3194	vsi->info.mapping_flags = ctx->info.mapping_flags;
3195	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3196	       sizeof(vsi->info.q_mapping));
3197	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3198	       sizeof(vsi->info.tc_mapping));
3199}
3200
3201/**
3202 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3203 * @vsi: the VSI being configured
3204 * @ena_tc: TC map to be enabled
3205 */
3206void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3207{
3208	struct net_device *netdev = vsi->netdev;
3209	struct ice_pf *pf = vsi->back;
3210	int numtc = vsi->tc_cfg.numtc;
3211	struct ice_dcbx_cfg *dcbcfg;
3212	u8 netdev_tc;
3213	int i;
3214
3215	if (!netdev)
3216		return;
3217
3218	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3219	if (vsi->type == ICE_VSI_CHNL)
3220		return;
3221
3222	if (!ena_tc) {
3223		netdev_reset_tc(netdev);
3224		return;
3225	}
3226
3227	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3228		numtc = vsi->all_numtc;
3229
3230	if (netdev_set_num_tc(netdev, numtc))
3231		return;
3232
3233	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3234
3235	ice_for_each_traffic_class(i)
3236		if (vsi->tc_cfg.ena_tc & BIT(i))
3237			netdev_set_tc_queue(netdev,
3238					    vsi->tc_cfg.tc_info[i].netdev_tc,
3239					    vsi->tc_cfg.tc_info[i].qcount_tx,
3240					    vsi->tc_cfg.tc_info[i].qoffset);
3241	/* setup TC queue map for CHNL TCs */
3242	ice_for_each_chnl_tc(i) {
3243		if (!(vsi->all_enatc & BIT(i)))
3244			break;
3245		if (!vsi->mqprio_qopt.qopt.count[i])
3246			break;
3247		netdev_set_tc_queue(netdev, i,
3248				    vsi->mqprio_qopt.qopt.count[i],
3249				    vsi->mqprio_qopt.qopt.offset[i]);
3250	}
3251
3252	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3253		return;
3254
3255	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3256		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3257
3258		/* Get the mapped netdev TC# for the UP */
3259		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3260		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3261	}
3262}
3263
3264/**
3265 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3266 * @vsi: the VSI being configured,
3267 * @ctxt: VSI context structure
3268 * @ena_tc: number of traffic classes to enable
3269 *
3270 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3271 */
3272static int
3273ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3274			   u8 ena_tc)
3275{
3276	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3277	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3278	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3279	u16 new_txq, new_rxq;
3280	u8 netdev_tc = 0;
3281	int i;
3282
3283	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3284
3285	pow = order_base_2(tc0_qcount);
3286	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3287	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
 
3288
3289	ice_for_each_traffic_class(i) {
3290		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3291			/* TC is not enabled */
3292			vsi->tc_cfg.tc_info[i].qoffset = 0;
3293			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3294			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3295			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3296			ctxt->info.tc_mapping[i] = 0;
3297			continue;
3298		}
3299
3300		offset = vsi->mqprio_qopt.qopt.offset[i];
3301		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3302		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3303		vsi->tc_cfg.tc_info[i].qoffset = offset;
3304		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3305		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3306		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3307	}
3308
3309	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3310		ice_for_each_chnl_tc(i) {
3311			if (!(vsi->all_enatc & BIT(i)))
3312				continue;
3313			offset = vsi->mqprio_qopt.qopt.offset[i];
3314			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3315			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3316		}
3317	}
3318
3319	new_txq = offset + qcount_tx;
3320	if (new_txq > vsi->alloc_txq) {
3321		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3322			new_txq, vsi->alloc_txq);
3323		return -EINVAL;
3324	}
3325
3326	new_rxq = offset + qcount_rx;
3327	if (new_rxq > vsi->alloc_rxq) {
3328		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3329			new_rxq, vsi->alloc_rxq);
3330		return -EINVAL;
3331	}
3332
3333	/* Set actual Tx/Rx queue pairs */
3334	vsi->num_txq = new_txq;
3335	vsi->num_rxq = new_rxq;
3336
3337	/* Setup queue TC[0].qmap for given VSI context */
3338	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3339	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3340	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3341
3342	/* Find queue count available for channel VSIs and starting offset
3343	 * for channel VSIs
3344	 */
3345	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3346		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3347		vsi->next_base_q = tc0_qcount;
3348	}
3349	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3350	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3351	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3352		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3353
3354	return 0;
3355}
3356
3357/**
3358 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3359 * @vsi: VSI to be configured
3360 * @ena_tc: TC bitmap
3361 *
3362 * VSI queues expected to be quiesced before calling this function
3363 */
3364int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3365{
3366	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3367	struct ice_pf *pf = vsi->back;
3368	struct ice_tc_cfg old_tc_cfg;
3369	struct ice_vsi_ctx *ctx;
3370	struct device *dev;
3371	int i, ret = 0;
3372	u8 num_tc = 0;
3373
3374	dev = ice_pf_to_dev(pf);
3375	if (vsi->tc_cfg.ena_tc == ena_tc &&
3376	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3377		return 0;
3378
3379	ice_for_each_traffic_class(i) {
3380		/* build bitmap of enabled TCs */
3381		if (ena_tc & BIT(i))
3382			num_tc++;
3383		/* populate max_txqs per TC */
3384		max_txqs[i] = vsi->alloc_txq;
3385		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3386		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3387		 */
3388		if (vsi->type == ICE_VSI_CHNL &&
3389		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3390			max_txqs[i] = vsi->num_txq;
3391	}
3392
3393	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3394	vsi->tc_cfg.ena_tc = ena_tc;
3395	vsi->tc_cfg.numtc = num_tc;
3396
3397	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3398	if (!ctx)
3399		return -ENOMEM;
3400
3401	ctx->vf_num = 0;
3402	ctx->info = vsi->info;
3403
3404	if (vsi->type == ICE_VSI_PF &&
3405	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3406		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3407	else
3408		ret = ice_vsi_setup_q_map(vsi, ctx);
3409
3410	if (ret) {
3411		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3412		goto out;
3413	}
3414
3415	/* must to indicate which section of VSI context are being modified */
3416	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3417	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3418	if (ret) {
3419		dev_info(dev, "Failed VSI Update\n");
3420		goto out;
3421	}
3422
3423	if (vsi->type == ICE_VSI_PF &&
3424	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3425		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3426	else
3427		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3428				      vsi->tc_cfg.ena_tc, max_txqs);
3429
3430	if (ret) {
3431		dev_err(dev, "VSI %d failed TC config, error %d\n",
3432			vsi->vsi_num, ret);
3433		goto out;
3434	}
3435	ice_vsi_update_q_map(vsi, ctx);
3436	vsi->info.valid_sections = 0;
3437
3438	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3439out:
3440	kfree(ctx);
3441	return ret;
3442}
3443
3444/**
3445 * ice_update_ring_stats - Update ring statistics
3446 * @stats: stats to be updated
3447 * @pkts: number of processed packets
3448 * @bytes: number of processed bytes
3449 *
3450 * This function assumes that caller has acquired a u64_stats_sync lock.
3451 */
3452static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3453{
3454	stats->bytes += bytes;
3455	stats->pkts += pkts;
3456}
3457
3458/**
3459 * ice_update_tx_ring_stats - Update Tx ring specific counters
3460 * @tx_ring: ring to update
3461 * @pkts: number of processed packets
3462 * @bytes: number of processed bytes
3463 */
3464void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3465{
3466	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3467	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3468	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3469}
3470
3471/**
3472 * ice_update_rx_ring_stats - Update Rx ring specific counters
3473 * @rx_ring: ring to update
3474 * @pkts: number of processed packets
3475 * @bytes: number of processed bytes
3476 */
3477void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3478{
3479	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3480	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3481	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3482}
3483
3484/**
3485 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3486 * @pi: port info of the switch with default VSI
3487 *
3488 * Return true if the there is a single VSI in default forwarding VSI list
3489 */
3490bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3491{
3492	bool exists = false;
3493
3494	ice_check_if_dflt_vsi(pi, 0, &exists);
3495	return exists;
3496}
3497
3498/**
3499 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3500 * @vsi: VSI to compare against default forwarding VSI
3501 *
3502 * If this VSI passed in is the default forwarding VSI then return true, else
3503 * return false
3504 */
3505bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3506{
3507	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3508}
3509
3510/**
3511 * ice_set_dflt_vsi - set the default forwarding VSI
3512 * @vsi: VSI getting set as the default forwarding VSI on the switch
3513 *
3514 * If the VSI passed in is already the default VSI and it's enabled just return
3515 * success.
3516 *
3517 * Otherwise try to set the VSI passed in as the switch's default VSI and
3518 * return the result.
3519 */
3520int ice_set_dflt_vsi(struct ice_vsi *vsi)
3521{
3522	struct device *dev;
3523	int status;
3524
3525	if (!vsi)
3526		return -EINVAL;
3527
3528	dev = ice_pf_to_dev(vsi->back);
3529
3530	if (ice_lag_is_switchdev_running(vsi->back)) {
3531		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3532			vsi->vsi_num);
3533		return 0;
3534	}
3535
3536	/* the VSI passed in is already the default VSI */
3537	if (ice_is_vsi_dflt_vsi(vsi)) {
3538		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3539			vsi->vsi_num);
3540		return 0;
3541	}
3542
3543	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3544	if (status) {
3545		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3546			vsi->vsi_num, status);
3547		return status;
3548	}
3549
3550	return 0;
3551}
3552
3553/**
3554 * ice_clear_dflt_vsi - clear the default forwarding VSI
3555 * @vsi: VSI to remove from filter list
3556 *
3557 * If the switch has no default VSI or it's not enabled then return error.
3558 *
3559 * Otherwise try to clear the default VSI and return the result.
3560 */
3561int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3562{
3563	struct device *dev;
3564	int status;
3565
3566	if (!vsi)
3567		return -EINVAL;
3568
3569	dev = ice_pf_to_dev(vsi->back);
3570
3571	/* there is no default VSI configured */
3572	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3573		return -ENODEV;
3574
3575	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3576				  ICE_FLTR_RX);
3577	if (status) {
3578		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3579			vsi->vsi_num, status);
3580		return -EIO;
3581	}
3582
3583	return 0;
3584}
3585
3586/**
3587 * ice_get_link_speed_mbps - get link speed in Mbps
3588 * @vsi: the VSI whose link speed is being queried
3589 *
3590 * Return current VSI link speed and 0 if the speed is unknown.
3591 */
3592int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3593{
3594	unsigned int link_speed;
3595
3596	link_speed = vsi->port_info->phy.link_info.link_speed;
3597
3598	return (int)ice_get_link_speed(fls(link_speed) - 1);
3599}
3600
3601/**
3602 * ice_get_link_speed_kbps - get link speed in Kbps
3603 * @vsi: the VSI whose link speed is being queried
3604 *
3605 * Return current VSI link speed and 0 if the speed is unknown.
3606 */
3607int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3608{
3609	int speed_mbps;
3610
3611	speed_mbps = ice_get_link_speed_mbps(vsi);
3612
3613	return speed_mbps * 1000;
3614}
3615
3616/**
3617 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3618 * @vsi: VSI to be configured
3619 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3620 *
3621 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3622 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3623 * on TC 0.
3624 */
3625int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3626{
3627	struct ice_pf *pf = vsi->back;
3628	struct device *dev;
3629	int status;
3630	int speed;
3631
3632	dev = ice_pf_to_dev(pf);
3633	if (!vsi->port_info) {
3634		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3635			vsi->idx, vsi->type);
3636		return -EINVAL;
3637	}
3638
3639	speed = ice_get_link_speed_kbps(vsi);
3640	if (min_tx_rate > (u64)speed) {
3641		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3642			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3643			speed);
3644		return -EINVAL;
3645	}
3646
3647	/* Configure min BW for VSI limit */
3648	if (min_tx_rate) {
3649		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3650						   ICE_MIN_BW, min_tx_rate);
3651		if (status) {
3652			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3653				min_tx_rate, ice_vsi_type_str(vsi->type),
3654				vsi->idx);
3655			return status;
3656		}
3657
3658		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3659			min_tx_rate, ice_vsi_type_str(vsi->type));
3660	} else {
3661		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3662							vsi->idx, 0,
3663							ICE_MIN_BW);
3664		if (status) {
3665			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3666				ice_vsi_type_str(vsi->type), vsi->idx);
3667			return status;
3668		}
3669
3670		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3671			ice_vsi_type_str(vsi->type), vsi->idx);
3672	}
3673
3674	return 0;
3675}
3676
3677/**
3678 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3679 * @vsi: VSI to be configured
3680 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3681 *
3682 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3683 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3684 * on TC 0.
3685 */
3686int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3687{
3688	struct ice_pf *pf = vsi->back;
3689	struct device *dev;
3690	int status;
3691	int speed;
3692
3693	dev = ice_pf_to_dev(pf);
3694	if (!vsi->port_info) {
3695		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3696			vsi->idx, vsi->type);
3697		return -EINVAL;
3698	}
3699
3700	speed = ice_get_link_speed_kbps(vsi);
3701	if (max_tx_rate > (u64)speed) {
3702		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3703			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3704			speed);
3705		return -EINVAL;
3706	}
3707
3708	/* Configure max BW for VSI limit */
3709	if (max_tx_rate) {
3710		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3711						   ICE_MAX_BW, max_tx_rate);
3712		if (status) {
3713			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3714				max_tx_rate, ice_vsi_type_str(vsi->type),
3715				vsi->idx);
3716			return status;
3717		}
3718
3719		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3720			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3721	} else {
3722		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3723							vsi->idx, 0,
3724							ICE_MAX_BW);
3725		if (status) {
3726			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3727				ice_vsi_type_str(vsi->type), vsi->idx);
3728			return status;
3729		}
3730
3731		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3732			ice_vsi_type_str(vsi->type), vsi->idx);
3733	}
3734
3735	return 0;
3736}
3737
3738/**
3739 * ice_set_link - turn on/off physical link
3740 * @vsi: VSI to modify physical link on
3741 * @ena: turn on/off physical link
3742 */
3743int ice_set_link(struct ice_vsi *vsi, bool ena)
3744{
3745	struct device *dev = ice_pf_to_dev(vsi->back);
3746	struct ice_port_info *pi = vsi->port_info;
3747	struct ice_hw *hw = pi->hw;
3748	int status;
3749
3750	if (vsi->type != ICE_VSI_PF)
3751		return -EINVAL;
3752
3753	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3754
3755	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3756	 * this is not a fatal error, so print a warning message and return
3757	 * a success code. Return an error if FW returns an error code other
3758	 * than ICE_AQ_RC_EMODE
3759	 */
3760	if (status == -EIO) {
3761		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3762			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3763				(ena ? "ON" : "OFF"), status,
3764				ice_aq_str(hw->adminq.sq_last_status));
3765	} else if (status) {
3766		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3767			(ena ? "ON" : "OFF"), status,
3768			ice_aq_str(hw->adminq.sq_last_status));
3769		return status;
3770	}
3771
3772	return 0;
3773}
3774
3775/**
3776 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3777 * @vsi: VSI used to add VLAN filters
3778 *
3779 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3780 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3781 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3782 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3783 *
3784 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3785 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3786 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3787 *
3788 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3789 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3790 * part of filtering.
3791 */
3792int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3793{
3794	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3795	struct ice_vlan vlan;
3796	int err;
3797
3798	vlan = ICE_VLAN(0, 0, 0);
3799	err = vlan_ops->add_vlan(vsi, &vlan);
3800	if (err && err != -EEXIST)
3801		return err;
3802
3803	/* in SVM both VLAN 0 filters are identical */
3804	if (!ice_is_dvm_ena(&vsi->back->hw))
3805		return 0;
3806
3807	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3808	err = vlan_ops->add_vlan(vsi, &vlan);
3809	if (err && err != -EEXIST)
3810		return err;
3811
3812	return 0;
3813}
3814
3815/**
3816 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3817 * @vsi: VSI used to add VLAN filters
3818 *
3819 * Delete the VLAN 0 filters in the same manner that they were added in
3820 * ice_vsi_add_vlan_zero.
3821 */
3822int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3823{
3824	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3825	struct ice_vlan vlan;
3826	int err;
3827
3828	vlan = ICE_VLAN(0, 0, 0);
3829	err = vlan_ops->del_vlan(vsi, &vlan);
3830	if (err && err != -EEXIST)
3831		return err;
3832
3833	/* in SVM both VLAN 0 filters are identical */
3834	if (!ice_is_dvm_ena(&vsi->back->hw))
3835		return 0;
3836
3837	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3838	err = vlan_ops->del_vlan(vsi, &vlan);
3839	if (err && err != -EEXIST)
3840		return err;
3841
3842	/* when deleting the last VLAN filter, make sure to disable the VLAN
3843	 * promisc mode so the filter isn't left by accident
3844	 */
3845	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3846				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3847}
3848
3849/**
3850 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3851 * @vsi: VSI used to get the VLAN mode
3852 *
3853 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3854 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3855 */
3856static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3857{
3858#define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3859#define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3860	/* no VLAN 0 filter is created when a port VLAN is active */
3861	if (vsi->type == ICE_VSI_VF) {
3862		if (WARN_ON(!vsi->vf))
3863			return 0;
3864
3865		if (ice_vf_is_port_vlan_ena(vsi->vf))
3866			return 0;
3867	}
3868
3869	if (ice_is_dvm_ena(&vsi->back->hw))
3870		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3871	else
3872		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3873}
3874
3875/**
3876 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3877 * @vsi: VSI used to determine if any non-zero VLANs have been added
3878 */
3879bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3880{
3881	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3882}
3883
3884/**
3885 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3886 * @vsi: VSI used to get the number of non-zero VLANs added
3887 */
3888u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3889{
3890	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3891}
3892
3893/**
3894 * ice_is_feature_supported
3895 * @pf: pointer to the struct ice_pf instance
3896 * @f: feature enum to be checked
3897 *
3898 * returns true if feature is supported, false otherwise
3899 */
3900bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3901{
3902	if (f < 0 || f >= ICE_F_MAX)
3903		return false;
3904
3905	return test_bit(f, pf->features);
3906}
3907
3908/**
3909 * ice_set_feature_support
3910 * @pf: pointer to the struct ice_pf instance
3911 * @f: feature enum to set
3912 */
3913void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3914{
3915	if (f < 0 || f >= ICE_F_MAX)
3916		return;
3917
3918	set_bit(f, pf->features);
3919}
3920
3921/**
3922 * ice_clear_feature_support
3923 * @pf: pointer to the struct ice_pf instance
3924 * @f: feature enum to clear
3925 */
3926void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3927{
3928	if (f < 0 || f >= ICE_F_MAX)
3929		return;
3930
3931	clear_bit(f, pf->features);
3932}
3933
3934/**
3935 * ice_init_feature_support
3936 * @pf: pointer to the struct ice_pf instance
3937 *
3938 * called during init to setup supported feature
3939 */
3940void ice_init_feature_support(struct ice_pf *pf)
3941{
3942	switch (pf->hw.device_id) {
3943	case ICE_DEV_ID_E810C_BACKPLANE:
3944	case ICE_DEV_ID_E810C_QSFP:
3945	case ICE_DEV_ID_E810C_SFP:
3946	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3947	case ICE_DEV_ID_E810_XXV_QSFP:
3948	case ICE_DEV_ID_E810_XXV_SFP:
3949		ice_set_feature_support(pf, ICE_F_DSCP);
3950		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3951			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3952		/* If we don't own the timer - don't enable other caps */
3953		if (!ice_pf_src_tmr_owned(pf))
3954			break;
3955		if (ice_is_cgu_in_netlist(&pf->hw))
3956			ice_set_feature_support(pf, ICE_F_CGU);
3957		if (ice_is_clock_mux_in_netlist(&pf->hw))
3958			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3959		if (ice_gnss_is_gps_present(&pf->hw))
3960			ice_set_feature_support(pf, ICE_F_GNSS);
 
3961		break;
3962	default:
3963		break;
3964	}
3965}
3966
3967/**
3968 * ice_vsi_update_security - update security block in VSI
3969 * @vsi: pointer to VSI structure
3970 * @fill: function pointer to fill ctx
3971 */
3972int
3973ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3974{
3975	struct ice_vsi_ctx ctx = { 0 };
3976
3977	ctx.info = vsi->info;
3978	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3979	fill(&ctx);
3980
3981	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3982		return -ENODEV;
3983
3984	vsi->info = ctx.info;
3985	return 0;
3986}
3987
3988/**
3989 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3990 * @ctx: pointer to VSI ctx structure
3991 */
3992void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3993{
3994	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3995			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3996				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3997}
3998
3999/**
4000 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4001 * @ctx: pointer to VSI ctx structure
4002 */
4003void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4004{
4005	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4006			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4007				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4008}
4009
4010/**
4011 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4012 * @ctx: pointer to VSI ctx structure
4013 */
4014void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4015{
4016	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4017}
4018
4019/**
4020 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4021 * @ctx: pointer to VSI ctx structure
4022 */
4023void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4024{
4025	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4026}
4027
4028/**
4029 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4030 * @vsi: pointer to VSI structure
4031 * @set: set or unset the bit
4032 */
4033int
4034ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4035{
4036	struct ice_vsi_ctx ctx = {
4037		.info	= vsi->info,
4038	};
4039
4040	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4041	if (set)
4042		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4043	else
4044		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4045
4046	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4047		return -ENODEV;
4048
4049	vsi->info = ctx.info;
4050	return 0;
4051}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11#include "ice_vsi_vlan_ops.h"
  12
  13/**
  14 * ice_vsi_type_str - maps VSI type enum to string equivalents
  15 * @vsi_type: VSI type enum
  16 */
  17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
  18{
  19	switch (vsi_type) {
  20	case ICE_VSI_PF:
  21		return "ICE_VSI_PF";
  22	case ICE_VSI_VF:
  23		return "ICE_VSI_VF";
  24	case ICE_VSI_CTRL:
  25		return "ICE_VSI_CTRL";
  26	case ICE_VSI_CHNL:
  27		return "ICE_VSI_CHNL";
  28	case ICE_VSI_LB:
  29		return "ICE_VSI_LB";
  30	case ICE_VSI_SWITCHDEV_CTRL:
  31		return "ICE_VSI_SWITCHDEV_CTRL";
  32	default:
  33		return "unknown";
  34	}
  35}
  36
  37/**
  38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  39 * @vsi: the VSI being configured
  40 * @ena: start or stop the Rx rings
  41 *
  42 * First enable/disable all of the Rx rings, flush any remaining writes, and
  43 * then verify that they have all been enabled/disabled successfully. This will
  44 * let all of the register writes complete when enabling/disabling the Rx rings
  45 * before waiting for the change in hardware to complete.
  46 */
  47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
  48{
  49	int ret = 0;
  50	u16 i;
  51
  52	ice_for_each_rxq(vsi, i)
  53		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  54
  55	ice_flush(&vsi->back->hw);
  56
  57	ice_for_each_rxq(vsi, i) {
  58		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  59		if (ret)
  60			break;
  61	}
  62
  63	return ret;
  64}
  65
  66/**
  67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  68 * @vsi: VSI pointer
  69 *
  70 * On error: returns error code (negative)
  71 * On success: returns 0
  72 */
  73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  74{
  75	struct ice_pf *pf = vsi->back;
  76	struct device *dev;
  77
  78	dev = ice_pf_to_dev(pf);
  79	if (vsi->type == ICE_VSI_CHNL)
  80		return 0;
  81
  82	/* allocate memory for both Tx and Rx ring pointers */
  83	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  84				     sizeof(*vsi->tx_rings), GFP_KERNEL);
  85	if (!vsi->tx_rings)
  86		return -ENOMEM;
  87
  88	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  89				     sizeof(*vsi->rx_rings), GFP_KERNEL);
  90	if (!vsi->rx_rings)
  91		goto err_rings;
  92
  93	/* txq_map needs to have enough space to track both Tx (stack) rings
  94	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
  95	 * so use num_possible_cpus() as we want to always provide XDP ring
  96	 * per CPU, regardless of queue count settings from user that might
  97	 * have come from ethtool's set_channels() callback;
  98	 */
  99	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
 100				    sizeof(*vsi->txq_map), GFP_KERNEL);
 101
 102	if (!vsi->txq_map)
 103		goto err_txq_map;
 104
 105	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
 106				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 107	if (!vsi->rxq_map)
 108		goto err_rxq_map;
 109
 110	/* There is no need to allocate q_vectors for a loopback VSI. */
 111	if (vsi->type == ICE_VSI_LB)
 112		return 0;
 113
 114	/* allocate memory for q_vector pointers */
 115	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 116				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 117	if (!vsi->q_vectors)
 118		goto err_vectors;
 119
 120	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 121	if (!vsi->af_xdp_zc_qps)
 122		goto err_zc_qps;
 123
 124	return 0;
 125
 126err_zc_qps:
 127	devm_kfree(dev, vsi->q_vectors);
 128err_vectors:
 129	devm_kfree(dev, vsi->rxq_map);
 130err_rxq_map:
 131	devm_kfree(dev, vsi->txq_map);
 132err_txq_map:
 133	devm_kfree(dev, vsi->rx_rings);
 134err_rings:
 135	devm_kfree(dev, vsi->tx_rings);
 136	return -ENOMEM;
 137}
 138
 139/**
 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 141 * @vsi: the VSI being configured
 142 */
 143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 144{
 145	switch (vsi->type) {
 146	case ICE_VSI_PF:
 147	case ICE_VSI_SWITCHDEV_CTRL:
 148	case ICE_VSI_CTRL:
 149	case ICE_VSI_LB:
 150		/* a user could change the values of num_[tr]x_desc using
 151		 * ethtool -G so we should keep those values instead of
 152		 * overwriting them with the defaults.
 153		 */
 154		if (!vsi->num_rx_desc)
 155			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 156		if (!vsi->num_tx_desc)
 157			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 158		break;
 159	default:
 160		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 161			vsi->type);
 162		break;
 163	}
 164}
 165
 166/**
 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 168 * @vsi: the VSI being configured
 169 * @vf: the VF associated with this VSI, if any
 170 *
 171 * Return 0 on success and a negative value on error
 172 */
 173static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
 174{
 175	enum ice_vsi_type vsi_type = vsi->type;
 176	struct ice_pf *pf = vsi->back;
 
 177
 178	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
 179		return;
 180
 181	switch (vsi_type) {
 182	case ICE_VSI_PF:
 183		if (vsi->req_txq) {
 184			vsi->alloc_txq = vsi->req_txq;
 185			vsi->num_txq = vsi->req_txq;
 186		} else {
 187			vsi->alloc_txq = min3(pf->num_lan_msix,
 188					      ice_get_avail_txq_count(pf),
 189					      (u16)num_online_cpus());
 190		}
 191
 192		pf->num_lan_tx = vsi->alloc_txq;
 193
 194		/* only 1 Rx queue unless RSS is enabled */
 195		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 196			vsi->alloc_rxq = 1;
 197		} else {
 198			if (vsi->req_rxq) {
 199				vsi->alloc_rxq = vsi->req_rxq;
 200				vsi->num_rxq = vsi->req_rxq;
 201			} else {
 202				vsi->alloc_rxq = min3(pf->num_lan_msix,
 203						      ice_get_avail_rxq_count(pf),
 204						      (u16)num_online_cpus());
 205			}
 206		}
 207
 208		pf->num_lan_rx = vsi->alloc_rxq;
 209
 210		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 211					   max_t(int, vsi->alloc_rxq,
 212						 vsi->alloc_txq));
 213		break;
 214	case ICE_VSI_SWITCHDEV_CTRL:
 215		/* The number of queues for ctrl VSI is equal to number of VFs.
 216		 * Each ring is associated to the corresponding VF_PR netdev.
 
 217		 */
 218		vsi->alloc_txq = ice_get_num_vfs(pf);
 219		vsi->alloc_rxq = vsi->alloc_txq;
 
 
 
 
 
 
 220		vsi->num_q_vectors = 1;
 221		break;
 222	case ICE_VSI_VF:
 223		if (vf->num_req_qs)
 224			vf->num_vf_qs = vf->num_req_qs;
 225		vsi->alloc_txq = vf->num_vf_qs;
 226		vsi->alloc_rxq = vf->num_vf_qs;
 227		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
 228		 * data queue interrupts). Since vsi->num_q_vectors is number
 229		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 230		 * original vector count
 231		 */
 232		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
 233		break;
 234	case ICE_VSI_CTRL:
 235		vsi->alloc_txq = 1;
 236		vsi->alloc_rxq = 1;
 237		vsi->num_q_vectors = 1;
 238		break;
 239	case ICE_VSI_CHNL:
 240		vsi->alloc_txq = 0;
 241		vsi->alloc_rxq = 0;
 242		break;
 243	case ICE_VSI_LB:
 244		vsi->alloc_txq = 1;
 245		vsi->alloc_rxq = 1;
 246		break;
 247	default:
 248		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
 249		break;
 250	}
 251
 252	ice_vsi_set_num_desc(vsi);
 253}
 254
 255/**
 256 * ice_get_free_slot - get the next non-NULL location index in array
 257 * @array: array to search
 258 * @size: size of the array
 259 * @curr: last known occupied index to be used as a search hint
 260 *
 261 * void * is being used to keep the functionality generic. This lets us use this
 262 * function on any array of pointers.
 263 */
 264static int ice_get_free_slot(void *array, int size, int curr)
 265{
 266	int **tmp_array = (int **)array;
 267	int next;
 268
 269	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 270		next = curr + 1;
 271	} else {
 272		int i = 0;
 273
 274		while ((i < size) && (tmp_array[i]))
 275			i++;
 276		if (i == size)
 277			next = ICE_NO_VSI;
 278		else
 279			next = i;
 280	}
 281	return next;
 282}
 283
 284/**
 285 * ice_vsi_delete - delete a VSI from the switch
 286 * @vsi: pointer to VSI being removed
 287 */
 288void ice_vsi_delete(struct ice_vsi *vsi)
 289{
 290	struct ice_pf *pf = vsi->back;
 291	struct ice_vsi_ctx *ctxt;
 292	int status;
 293
 
 294	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 295	if (!ctxt)
 296		return;
 297
 298	if (vsi->type == ICE_VSI_VF)
 299		ctxt->vf_num = vsi->vf->vf_id;
 300	ctxt->vsi_num = vsi->vsi_num;
 301
 302	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 303
 304	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 305	if (status)
 306		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
 307			vsi->vsi_num, status);
 308
 309	kfree(ctxt);
 310}
 311
 312/**
 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 314 * @vsi: pointer to VSI being cleared
 315 */
 316static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 317{
 318	struct ice_pf *pf = vsi->back;
 319	struct device *dev;
 320
 321	dev = ice_pf_to_dev(pf);
 322
 323	if (vsi->af_xdp_zc_qps) {
 324		bitmap_free(vsi->af_xdp_zc_qps);
 325		vsi->af_xdp_zc_qps = NULL;
 326	}
 327	/* free the ring and vector containers */
 328	if (vsi->q_vectors) {
 329		devm_kfree(dev, vsi->q_vectors);
 330		vsi->q_vectors = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331	}
 332	if (vsi->tx_rings) {
 333		devm_kfree(dev, vsi->tx_rings);
 334		vsi->tx_rings = NULL;
 
 
 
 335	}
 336	if (vsi->rx_rings) {
 337		devm_kfree(dev, vsi->rx_rings);
 338		vsi->rx_rings = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	}
 340	if (vsi->txq_map) {
 341		devm_kfree(dev, vsi->txq_map);
 342		vsi->txq_map = NULL;
 343	}
 344	if (vsi->rxq_map) {
 345		devm_kfree(dev, vsi->rxq_map);
 346		vsi->rxq_map = NULL;
 
 
 
 
 
 
 
 
 
 
 
 347	}
 
 
 
 
 
 
 348}
 349
 350/**
 351 * ice_vsi_clear - clean up and deallocate the provided VSI
 352 * @vsi: pointer to VSI being cleared
 353 *
 354 * This deallocates the VSI's queue resources, removes it from the PF's
 355 * VSI array if necessary, and deallocates the VSI
 356 *
 357 * Returns 0 on success, negative on failure
 358 */
 359int ice_vsi_clear(struct ice_vsi *vsi)
 360{
 361	struct ice_pf *pf = NULL;
 362	struct device *dev;
 363
 364	if (!vsi)
 365		return 0;
 366
 367	if (!vsi->back)
 368		return -EINVAL;
 369
 370	pf = vsi->back;
 371	dev = ice_pf_to_dev(pf);
 372
 373	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 374		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 375		return -EINVAL;
 376	}
 377
 378	mutex_lock(&pf->sw_mutex);
 379	/* updates the PF for this cleared VSI */
 380
 381	pf->vsi[vsi->idx] = NULL;
 382	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
 383		pf->next_vsi = vsi->idx;
 384	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
 385		pf->next_vsi = vsi->idx;
 386
 
 387	ice_vsi_free_arrays(vsi);
 388	mutex_unlock(&pf->sw_mutex);
 389	devm_kfree(dev, vsi);
 
 390
 391	return 0;
 
 
 
 392}
 393
 394/**
 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 396 * @irq: interrupt number
 397 * @data: pointer to a q_vector
 398 */
 399static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 400{
 401	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 402
 403	if (!q_vector->tx.tx_ring)
 404		return IRQ_HANDLED;
 405
 406#define FDIR_RX_DESC_CLEAN_BUDGET 64
 407	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
 408	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
 409
 410	return IRQ_HANDLED;
 411}
 412
 413/**
 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 415 * @irq: interrupt number
 416 * @data: pointer to a q_vector
 417 */
 418static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 419{
 420	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 421
 422	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 423		return IRQ_HANDLED;
 424
 425	q_vector->total_events++;
 426
 427	napi_schedule(&q_vector->napi);
 428
 429	return IRQ_HANDLED;
 430}
 431
 432static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
 433{
 434	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 435	struct ice_pf *pf = q_vector->vsi->back;
 436	struct ice_vf *vf;
 437	unsigned int bkt;
 438
 439	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 440		return IRQ_HANDLED;
 441
 442	rcu_read_lock();
 443	ice_for_each_vf_rcu(pf, bkt, vf)
 444		napi_schedule(&vf->repr->q_vector->napi);
 445	rcu_read_unlock();
 446
 447	return IRQ_HANDLED;
 448}
 449
 450/**
 451 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
 452 * @vsi: VSI pointer
 453 */
 454static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
 455{
 456	struct ice_vsi_stats *vsi_stat;
 457	struct ice_pf *pf = vsi->back;
 458
 459	if (vsi->type == ICE_VSI_CHNL)
 460		return 0;
 461	if (!pf->vsi_stats)
 462		return -ENOENT;
 463
 
 
 
 
 464	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
 465	if (!vsi_stat)
 466		return -ENOMEM;
 467
 468	vsi_stat->tx_ring_stats =
 469		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
 470			GFP_KERNEL);
 471	if (!vsi_stat->tx_ring_stats)
 472		goto err_alloc_tx;
 473
 474	vsi_stat->rx_ring_stats =
 475		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
 476			GFP_KERNEL);
 477	if (!vsi_stat->rx_ring_stats)
 478		goto err_alloc_rx;
 479
 480	pf->vsi_stats[vsi->idx] = vsi_stat;
 481
 482	return 0;
 483
 484err_alloc_rx:
 485	kfree(vsi_stat->rx_ring_stats);
 486err_alloc_tx:
 487	kfree(vsi_stat->tx_ring_stats);
 488	kfree(vsi_stat);
 489	pf->vsi_stats[vsi->idx] = NULL;
 490	return -ENOMEM;
 491}
 492
 493/**
 494 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 495 * @pf: board private structure
 496 * @vsi_type: type of VSI
 497 * @ch: ptr to channel
 498 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
 499 *
 500 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
 501 * it may be NULL in the case there is no association with a VF. For
 502 * ICE_VSI_VF the VF pointer *must not* be NULL.
 503 *
 504 * returns a pointer to a VSI on success, NULL on failure.
 505 */
 506static struct ice_vsi *
 507ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
 508	      struct ice_channel *ch, struct ice_vf *vf)
 509{
 510	struct device *dev = ice_pf_to_dev(pf);
 511	struct ice_vsi *vsi = NULL;
 512
 513	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
 514		return NULL;
 515
 516	/* Need to protect the allocation of the VSIs at the PF level */
 517	mutex_lock(&pf->sw_mutex);
 518
 519	/* If we have already allocated our maximum number of VSIs,
 520	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 521	 * is available to be populated
 522	 */
 523	if (pf->next_vsi == ICE_NO_VSI) {
 524		dev_dbg(dev, "out of VSI slots!\n");
 525		goto unlock_pf;
 526	}
 527
 528	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 529	if (!vsi)
 530		goto unlock_pf;
 531
 532	vsi->type = vsi_type;
 533	vsi->back = pf;
 534	set_bit(ICE_VSI_DOWN, vsi->state);
 535
 536	if (vsi_type == ICE_VSI_VF)
 537		ice_vsi_set_num_qs(vsi, vf);
 538	else if (vsi_type != ICE_VSI_CHNL)
 539		ice_vsi_set_num_qs(vsi, NULL);
 540
 541	switch (vsi->type) {
 542	case ICE_VSI_SWITCHDEV_CTRL:
 543		if (ice_vsi_alloc_arrays(vsi))
 544			goto err_rings;
 545
 546		/* Setup eswitch MSIX irq handler for VSI */
 547		vsi->irq_handler = ice_eswitch_msix_clean_rings;
 548		break;
 549	case ICE_VSI_PF:
 550		if (ice_vsi_alloc_arrays(vsi))
 551			goto err_rings;
 552
 553		/* Setup default MSIX irq handler for VSI */
 554		vsi->irq_handler = ice_msix_clean_rings;
 555		break;
 556	case ICE_VSI_CTRL:
 557		if (ice_vsi_alloc_arrays(vsi))
 558			goto err_rings;
 559
 560		/* Setup ctrl VSI MSIX irq handler */
 561		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 562
 563		/* For the PF control VSI this is NULL, for the VF control VSI
 564		 * this will be the first VF to allocate it.
 565		 */
 566		vsi->vf = vf;
 567		break;
 568	case ICE_VSI_VF:
 569		if (ice_vsi_alloc_arrays(vsi))
 570			goto err_rings;
 571		vsi->vf = vf;
 572		break;
 573	case ICE_VSI_CHNL:
 574		if (!ch)
 575			goto err_rings;
 
 576		vsi->num_rxq = ch->num_rxq;
 577		vsi->num_txq = ch->num_txq;
 578		vsi->next_base_q = ch->base_q;
 579		break;
 
 580	case ICE_VSI_LB:
 581		if (ice_vsi_alloc_arrays(vsi))
 582			goto err_rings;
 583		break;
 584	default:
 585		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
 586		goto unlock_pf;
 587	}
 588
 589	if (vsi->type == ICE_VSI_CTRL && !vf) {
 590		/* Use the last VSI slot as the index for PF control VSI */
 591		vsi->idx = pf->num_alloc_vsi - 1;
 592		pf->ctrl_vsi_idx = vsi->idx;
 593		pf->vsi[vsi->idx] = vsi;
 594	} else {
 595		/* fill slot and make note of the index */
 596		vsi->idx = pf->next_vsi;
 597		pf->vsi[pf->next_vsi] = vsi;
 
 
 
 
 
 
 
 
 
 
 
 598
 599		/* prepare pf->next_vsi for next use */
 600		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 601						 pf->next_vsi);
 
 
 
 
 602	}
 603
 604	if (vsi->type == ICE_VSI_CTRL && vf)
 605		vf->ctrl_vsi_idx = vsi->idx;
 
 606
 607	/* allocate memory for Tx/Rx ring stat pointers */
 608	if (ice_vsi_alloc_stat_arrays(vsi))
 609		goto err_rings;
 610
 611	goto unlock_pf;
 
 
 
 
 
 
 612
 613err_rings:
 614	devm_kfree(dev, vsi);
 615	vsi = NULL;
 616unlock_pf:
 617	mutex_unlock(&pf->sw_mutex);
 618	return vsi;
 619}
 620
 621/**
 622 * ice_alloc_fd_res - Allocate FD resource for a VSI
 623 * @vsi: pointer to the ice_vsi
 624 *
 625 * This allocates the FD resources
 626 *
 627 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 628 */
 629static int ice_alloc_fd_res(struct ice_vsi *vsi)
 630{
 631	struct ice_pf *pf = vsi->back;
 632	u32 g_val, b_val;
 633
 634	/* Flow Director filters are only allocated/assigned to the PF VSI or
 635	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
 636	 * add/delete filters so resources are not allocated to it
 637	 */
 638	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 639		return -EPERM;
 640
 641	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
 642	      vsi->type == ICE_VSI_CHNL))
 643		return -EPERM;
 644
 645	/* FD filters from guaranteed pool per VSI */
 646	g_val = pf->hw.func_caps.fd_fltr_guar;
 647	if (!g_val)
 648		return -EPERM;
 649
 650	/* FD filters from best effort pool */
 651	b_val = pf->hw.func_caps.fd_fltr_best_effort;
 652	if (!b_val)
 653		return -EPERM;
 654
 655	/* PF main VSI gets only 64 FD resources from guaranteed pool
 656	 * when ADQ is configured.
 657	 */
 658#define ICE_PF_VSI_GFLTR	64
 659
 660	/* determine FD filter resources per VSI from shared(best effort) and
 661	 * dedicated pool
 662	 */
 663	if (vsi->type == ICE_VSI_PF) {
 664		vsi->num_gfltr = g_val;
 665		/* if MQPRIO is configured, main VSI doesn't get all FD
 666		 * resources from guaranteed pool. PF VSI gets 64 FD resources
 667		 */
 668		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
 669			if (g_val < ICE_PF_VSI_GFLTR)
 670				return -EPERM;
 671			/* allow bare minimum entries for PF VSI */
 672			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
 673		}
 674
 675		/* each VSI gets same "best_effort" quota */
 676		vsi->num_bfltr = b_val;
 677	} else if (vsi->type == ICE_VSI_VF) {
 678		vsi->num_gfltr = 0;
 679
 680		/* each VSI gets same "best_effort" quota */
 681		vsi->num_bfltr = b_val;
 682	} else {
 683		struct ice_vsi *main_vsi;
 684		int numtc;
 685
 686		main_vsi = ice_get_main_vsi(pf);
 687		if (!main_vsi)
 688			return -EPERM;
 689
 690		if (!main_vsi->all_numtc)
 691			return -EINVAL;
 692
 693		/* figure out ADQ numtc */
 694		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
 695
 696		/* only one TC but still asking resources for channels,
 697		 * invalid config
 698		 */
 699		if (numtc < ICE_CHNL_START_TC)
 700			return -EPERM;
 701
 702		g_val -= ICE_PF_VSI_GFLTR;
 703		/* channel VSIs gets equal share from guaranteed pool */
 704		vsi->num_gfltr = g_val / numtc;
 705
 706		/* each VSI gets same "best_effort" quota */
 707		vsi->num_bfltr = b_val;
 708	}
 709
 710	return 0;
 711}
 712
 713/**
 714 * ice_vsi_get_qs - Assign queues from PF to VSI
 715 * @vsi: the VSI to assign queues to
 716 *
 717 * Returns 0 on success and a negative value on error
 718 */
 719static int ice_vsi_get_qs(struct ice_vsi *vsi)
 720{
 721	struct ice_pf *pf = vsi->back;
 722	struct ice_qs_cfg tx_qs_cfg = {
 723		.qs_mutex = &pf->avail_q_mutex,
 724		.pf_map = pf->avail_txqs,
 725		.pf_map_size = pf->max_pf_txqs,
 726		.q_count = vsi->alloc_txq,
 727		.scatter_count = ICE_MAX_SCATTER_TXQS,
 728		.vsi_map = vsi->txq_map,
 729		.vsi_map_offset = 0,
 730		.mapping_mode = ICE_VSI_MAP_CONTIG
 731	};
 732	struct ice_qs_cfg rx_qs_cfg = {
 733		.qs_mutex = &pf->avail_q_mutex,
 734		.pf_map = pf->avail_rxqs,
 735		.pf_map_size = pf->max_pf_rxqs,
 736		.q_count = vsi->alloc_rxq,
 737		.scatter_count = ICE_MAX_SCATTER_RXQS,
 738		.vsi_map = vsi->rxq_map,
 739		.vsi_map_offset = 0,
 740		.mapping_mode = ICE_VSI_MAP_CONTIG
 741	};
 742	int ret;
 743
 744	if (vsi->type == ICE_VSI_CHNL)
 745		return 0;
 746
 747	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 748	if (ret)
 749		return ret;
 750	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 751
 752	ret = __ice_vsi_get_qs(&rx_qs_cfg);
 753	if (ret)
 754		return ret;
 755	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 756
 757	return 0;
 758}
 759
 760/**
 761 * ice_vsi_put_qs - Release queues from VSI to PF
 762 * @vsi: the VSI that is going to release queues
 763 */
 764static void ice_vsi_put_qs(struct ice_vsi *vsi)
 765{
 766	struct ice_pf *pf = vsi->back;
 767	int i;
 768
 769	mutex_lock(&pf->avail_q_mutex);
 770
 771	ice_for_each_alloc_txq(vsi, i) {
 772		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 773		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 774	}
 775
 776	ice_for_each_alloc_rxq(vsi, i) {
 777		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 778		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 779	}
 780
 781	mutex_unlock(&pf->avail_q_mutex);
 782}
 783
 784/**
 785 * ice_is_safe_mode
 786 * @pf: pointer to the PF struct
 787 *
 788 * returns true if driver is in safe mode, false otherwise
 789 */
 790bool ice_is_safe_mode(struct ice_pf *pf)
 791{
 792	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 793}
 794
 795/**
 796 * ice_is_rdma_ena
 797 * @pf: pointer to the PF struct
 798 *
 799 * returns true if RDMA is currently supported, false otherwise
 800 */
 801bool ice_is_rdma_ena(struct ice_pf *pf)
 802{
 803	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
 804}
 805
 806/**
 807 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 808 * @vsi: the VSI being cleaned up
 809 *
 810 * This function deletes RSS input set for all flows that were configured
 811 * for this VSI
 812 */
 813static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 814{
 815	struct ice_pf *pf = vsi->back;
 816	int status;
 817
 818	if (ice_is_safe_mode(pf))
 819		return;
 820
 821	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 822	if (status)
 823		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
 824			vsi->vsi_num, status);
 825}
 826
 827/**
 828 * ice_rss_clean - Delete RSS related VSI structures and configuration
 829 * @vsi: the VSI being removed
 830 */
 831static void ice_rss_clean(struct ice_vsi *vsi)
 832{
 833	struct ice_pf *pf = vsi->back;
 834	struct device *dev;
 835
 836	dev = ice_pf_to_dev(pf);
 837
 838	if (vsi->rss_hkey_user)
 839		devm_kfree(dev, vsi->rss_hkey_user);
 840	if (vsi->rss_lut_user)
 841		devm_kfree(dev, vsi->rss_lut_user);
 842
 843	ice_vsi_clean_rss_flow_fld(vsi);
 844	/* remove RSS replay list */
 845	if (!ice_is_safe_mode(pf))
 846		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 847}
 848
 849/**
 850 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 851 * @vsi: the VSI being configured
 852 */
 853static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 854{
 855	struct ice_hw_common_caps *cap;
 856	struct ice_pf *pf = vsi->back;
 
 857
 858	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 859		vsi->rss_size = 1;
 860		return;
 861	}
 862
 863	cap = &pf->hw.func_caps.common_cap;
 
 864	switch (vsi->type) {
 865	case ICE_VSI_CHNL:
 866	case ICE_VSI_PF:
 867		/* PF VSI will inherit RSS instance of PF */
 868		vsi->rss_table_size = (u16)cap->rss_table_size;
 869		if (vsi->type == ICE_VSI_CHNL)
 870			vsi->rss_size = min_t(u16, vsi->num_rxq,
 871					      BIT(cap->rss_table_entry_width));
 872		else
 873			vsi->rss_size = min_t(u16, num_online_cpus(),
 874					      BIT(cap->rss_table_entry_width));
 875		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 876		break;
 877	case ICE_VSI_SWITCHDEV_CTRL:
 878		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 879		vsi->rss_size = min_t(u16, num_online_cpus(),
 880				      BIT(cap->rss_table_entry_width));
 881		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 882		break;
 883	case ICE_VSI_VF:
 884		/* VF VSI will get a small RSS table.
 885		 * For VSI_LUT, LUT size should be set to 64 bytes.
 886		 */
 887		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 888		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 889		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 890		break;
 891	case ICE_VSI_LB:
 892		break;
 893	default:
 894		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 895			ice_vsi_type_str(vsi->type));
 896		break;
 897	}
 898}
 899
 900/**
 901 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 902 * @hw: HW structure used to determine the VLAN mode of the device
 903 * @ctxt: the VSI context being set
 904 *
 905 * This initializes a default VSI context for all sections except the Queues.
 906 */
 907static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
 908{
 909	u32 table = 0;
 910
 911	memset(&ctxt->info, 0, sizeof(ctxt->info));
 912	/* VSI's should be allocated from shared pool */
 913	ctxt->alloc_from_pool = true;
 914	/* Src pruning enabled by default */
 915	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 916	/* Traffic from VSI can be sent to LAN */
 917	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 918	/* allow all untagged/tagged packets by default on Tx */
 919	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
 920				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
 921				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
 922	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
 923	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
 924	 *
 925	 * DVM - leave inner VLAN in packet by default
 926	 */
 927	if (ice_is_dvm_ena(hw)) {
 928		ctxt->info.inner_vlan_flags |=
 929			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
 
 930		ctxt->info.outer_vlan_flags =
 931			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
 932			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
 933			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
 934		ctxt->info.outer_vlan_flags |=
 935			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
 936			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
 937			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
 938		ctxt->info.outer_vlan_flags |=
 939			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
 940				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
 941	}
 942	/* Have 1:1 UP mapping for both ingress/egress tables */
 943	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 944	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 945	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 946	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 947	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 948	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 949	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 950	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 951	ctxt->info.ingress_table = cpu_to_le32(table);
 952	ctxt->info.egress_table = cpu_to_le32(table);
 953	/* Have 1:1 UP mapping for outer to inner UP table */
 954	ctxt->info.outer_up_table = cpu_to_le32(table);
 955	/* No Outer tag support outer_tag_flags remains to zero */
 956}
 957
 958/**
 959 * ice_vsi_setup_q_map - Setup a VSI queue map
 960 * @vsi: the VSI being configured
 961 * @ctxt: VSI context structure
 962 */
 963static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 964{
 965	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
 966	u16 num_txq_per_tc, num_rxq_per_tc;
 967	u16 qcount_tx = vsi->alloc_txq;
 968	u16 qcount_rx = vsi->alloc_rxq;
 969	u8 netdev_tc = 0;
 970	int i;
 971
 972	if (!vsi->tc_cfg.numtc) {
 973		/* at least TC0 should be enabled by default */
 974		vsi->tc_cfg.numtc = 1;
 975		vsi->tc_cfg.ena_tc = 1;
 976	}
 977
 978	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
 979	if (!num_rxq_per_tc)
 980		num_rxq_per_tc = 1;
 981	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
 982	if (!num_txq_per_tc)
 983		num_txq_per_tc = 1;
 984
 985	/* find the (rounded up) power-of-2 of qcount */
 986	pow = (u16)order_base_2(num_rxq_per_tc);
 987
 988	/* TC mapping is a function of the number of Rx queues assigned to the
 989	 * VSI for each traffic class and the offset of these queues.
 990	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 991	 * queues allocated to TC0. No:of queues is a power-of-2.
 992	 *
 993	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 994	 * queue, this way, traffic for the given TC will be sent to the default
 995	 * queue.
 996	 *
 997	 * Setup number and offset of Rx queues for all TCs for the VSI
 998	 */
 999	ice_for_each_traffic_class(i) {
1000		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1001			/* TC is not enabled */
1002			vsi->tc_cfg.tc_info[i].qoffset = 0;
1003			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1004			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1005			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1006			ctxt->info.tc_mapping[i] = 0;
1007			continue;
1008		}
1009
1010		/* TC is enabled */
1011		vsi->tc_cfg.tc_info[i].qoffset = offset;
1012		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1013		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1014		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1015
1016		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1017			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1018			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1019			 ICE_AQ_VSI_TC_Q_NUM_M);
1020		offset += num_rxq_per_tc;
1021		tx_count += num_txq_per_tc;
1022		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1023	}
1024
1025	/* if offset is non-zero, means it is calculated correctly based on
1026	 * enabled TCs for a given VSI otherwise qcount_rx will always
1027	 * be correct and non-zero because it is based off - VSI's
1028	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1029	 * at least 1)
1030	 */
1031	if (offset)
1032		rx_count = offset;
1033	else
1034		rx_count = num_rxq_per_tc;
1035
1036	if (rx_count > vsi->alloc_rxq) {
1037		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1038			rx_count, vsi->alloc_rxq);
1039		return -EINVAL;
1040	}
1041
1042	if (tx_count > vsi->alloc_txq) {
1043		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1044			tx_count, vsi->alloc_txq);
1045		return -EINVAL;
1046	}
1047
1048	vsi->num_txq = tx_count;
1049	vsi->num_rxq = rx_count;
1050
1051	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1052		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1053		/* since there is a chance that num_rxq could have been changed
1054		 * in the above for loop, make num_txq equal to num_rxq.
1055		 */
1056		vsi->num_txq = vsi->num_rxq;
1057	}
1058
1059	/* Rx queue mapping */
1060	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1061	/* q_mapping buffer holds the info for the first queue allocated for
1062	 * this VSI in the PF space and also the number of queues associated
1063	 * with this VSI.
1064	 */
1065	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1066	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1067
1068	return 0;
1069}
1070
1071/**
1072 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1073 * @ctxt: the VSI context being set
1074 * @vsi: the VSI being configured
1075 */
1076static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1077{
1078	u8 dflt_q_group, dflt_q_prio;
1079	u16 dflt_q, report_q, val;
1080
1081	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1082	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1083		return;
1084
1085	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1086	ctxt->info.valid_sections |= cpu_to_le16(val);
1087	dflt_q = 0;
1088	dflt_q_group = 0;
1089	report_q = 0;
1090	dflt_q_prio = 0;
1091
1092	/* enable flow director filtering/programming */
1093	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1094	ctxt->info.fd_options = cpu_to_le16(val);
1095	/* max of allocated flow director filters */
1096	ctxt->info.max_fd_fltr_dedicated =
1097			cpu_to_le16(vsi->num_gfltr);
1098	/* max of shared flow director filters any VSI may program */
1099	ctxt->info.max_fd_fltr_shared =
1100			cpu_to_le16(vsi->num_bfltr);
1101	/* default queue index within the VSI of the default FD */
1102	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1103	       ICE_AQ_VSI_FD_DEF_Q_M);
1104	/* target queue or queue group to the FD filter */
1105	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1106		ICE_AQ_VSI_FD_DEF_GRP_M);
1107	ctxt->info.fd_def_q = cpu_to_le16(val);
1108	/* queue index on which FD filter completion is reported */
1109	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1110	       ICE_AQ_VSI_FD_REPORT_Q_M);
1111	/* priority of the default qindex action */
1112	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1113		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1114	ctxt->info.fd_report_opt = cpu_to_le16(val);
1115}
1116
1117/**
1118 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1119 * @ctxt: the VSI context being set
1120 * @vsi: the VSI being configured
1121 */
1122static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1123{
1124	u8 lut_type, hash_type;
1125	struct device *dev;
1126	struct ice_pf *pf;
1127
1128	pf = vsi->back;
1129	dev = ice_pf_to_dev(pf);
1130
1131	switch (vsi->type) {
1132	case ICE_VSI_CHNL:
1133	case ICE_VSI_PF:
1134		/* PF VSI will inherit RSS instance of PF */
1135		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1136		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1137		break;
1138	case ICE_VSI_VF:
1139		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1140		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1141		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1142		break;
1143	default:
1144		dev_dbg(dev, "Unsupported VSI type %s\n",
1145			ice_vsi_type_str(vsi->type));
1146		return;
1147	}
1148
1149	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1150				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1151				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1152				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 
 
1153}
1154
1155static void
1156ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1157{
1158	struct ice_pf *pf = vsi->back;
1159	u16 qcount, qmap;
1160	u8 offset = 0;
1161	int pow;
1162
1163	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1164
1165	pow = order_base_2(qcount);
1166	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1167		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1168		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1169		   ICE_AQ_VSI_TC_Q_NUM_M);
1170
1171	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1172	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1173	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1174	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1175}
1176
1177/**
 
 
 
 
 
 
 
 
 
 
 
1178 * ice_vsi_init - Create and initialize a VSI
1179 * @vsi: the VSI being configured
1180 * @init_vsi: is this call creating a VSI
 
 
 
1181 *
1182 * This initializes a VSI context depending on the VSI type to be added and
1183 * passes it down to the add_vsi aq command to create a new VSI.
1184 */
1185static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1186{
1187	struct ice_pf *pf = vsi->back;
1188	struct ice_hw *hw = &pf->hw;
1189	struct ice_vsi_ctx *ctxt;
1190	struct device *dev;
1191	int ret = 0;
1192
1193	dev = ice_pf_to_dev(pf);
1194	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1195	if (!ctxt)
1196		return -ENOMEM;
1197
1198	switch (vsi->type) {
1199	case ICE_VSI_CTRL:
1200	case ICE_VSI_LB:
1201	case ICE_VSI_PF:
1202		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1203		break;
1204	case ICE_VSI_SWITCHDEV_CTRL:
1205	case ICE_VSI_CHNL:
1206		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1207		break;
1208	case ICE_VSI_VF:
1209		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1210		/* VF number here is the absolute VF number (0-255) */
1211		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1212		break;
1213	default:
1214		ret = -ENODEV;
1215		goto out;
1216	}
1217
1218	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1219	 * prune enabled
1220	 */
1221	if (vsi->type == ICE_VSI_CHNL) {
1222		struct ice_vsi *main_vsi;
1223
1224		main_vsi = ice_get_main_vsi(pf);
1225		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1226			ctxt->info.sw_flags2 |=
1227				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1228		else
1229			ctxt->info.sw_flags2 &=
1230				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1231	}
1232
1233	ice_set_dflt_vsi_ctx(hw, ctxt);
1234	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1235		ice_set_fd_vsi_ctx(ctxt, vsi);
1236	/* if the switch is in VEB mode, allow VSI loopback */
1237	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1238		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1239
1240	/* Set LUT type and HASH type if RSS is enabled */
1241	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1242	    vsi->type != ICE_VSI_CTRL) {
1243		ice_set_rss_vsi_ctx(ctxt, vsi);
1244		/* if updating VSI context, make sure to set valid_section:
1245		 * to indicate which section of VSI context being updated
1246		 */
1247		if (!init_vsi)
1248			ctxt->info.valid_sections |=
1249				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1250	}
1251
1252	ctxt->info.sw_id = vsi->port_info->sw_id;
1253	if (vsi->type == ICE_VSI_CHNL) {
1254		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1255	} else {
1256		ret = ice_vsi_setup_q_map(vsi, ctxt);
1257		if (ret)
1258			goto out;
1259
1260		if (!init_vsi) /* means VSI being updated */
 
1261			/* must to indicate which section of VSI context are
1262			 * being modified
1263			 */
1264			ctxt->info.valid_sections |=
1265				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1266	}
1267
1268	/* Allow control frames out of main VSI */
1269	if (vsi->type == ICE_VSI_PF) {
1270		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1271		ctxt->info.valid_sections |=
1272			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1273	}
1274
1275	if (init_vsi) {
1276		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1277		if (ret) {
1278			dev_err(dev, "Add VSI failed, err %d\n", ret);
1279			ret = -EIO;
1280			goto out;
1281		}
1282	} else {
1283		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1284		if (ret) {
1285			dev_err(dev, "Update VSI failed, err %d\n", ret);
1286			ret = -EIO;
1287			goto out;
1288		}
1289	}
1290
1291	/* keep context for update VSI operations */
1292	vsi->info = ctxt->info;
1293
1294	/* record VSI number returned */
1295	vsi->vsi_num = ctxt->vsi_num;
1296
1297out:
1298	kfree(ctxt);
1299	return ret;
1300}
1301
1302/**
1303 * ice_free_res - free a block of resources
1304 * @res: pointer to the resource
1305 * @index: starting index previously returned by ice_get_res
1306 * @id: identifier to track owner
1307 *
1308 * Returns number of resources freed
1309 */
1310int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1311{
1312	int count = 0;
1313	int i;
1314
1315	if (!res || index >= res->end)
1316		return -EINVAL;
1317
1318	id |= ICE_RES_VALID_BIT;
1319	for (i = index; i < res->end && res->list[i] == id; i++) {
1320		res->list[i] = 0;
1321		count++;
1322	}
1323
1324	return count;
1325}
1326
1327/**
1328 * ice_search_res - Search the tracker for a block of resources
1329 * @res: pointer to the resource
1330 * @needed: size of the block needed
1331 * @id: identifier to track owner
1332 *
1333 * Returns the base item index of the block, or -ENOMEM for error
1334 */
1335static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1336{
1337	u16 start = 0, end = 0;
1338
1339	if (needed > res->end)
1340		return -ENOMEM;
1341
1342	id |= ICE_RES_VALID_BIT;
1343
1344	do {
1345		/* skip already allocated entries */
1346		if (res->list[end++] & ICE_RES_VALID_BIT) {
1347			start = end;
1348			if ((start + needed) > res->end)
1349				break;
1350		}
1351
1352		if (end == (start + needed)) {
1353			int i = start;
1354
1355			/* there was enough, so assign it to the requestor */
1356			while (i != end)
1357				res->list[i++] = id;
1358
1359			return start;
1360		}
1361	} while (end < res->end);
1362
1363	return -ENOMEM;
1364}
1365
1366/**
1367 * ice_get_free_res_count - Get free count from a resource tracker
1368 * @res: Resource tracker instance
1369 */
1370static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1371{
1372	u16 i, count = 0;
1373
1374	for (i = 0; i < res->end; i++)
1375		if (!(res->list[i] & ICE_RES_VALID_BIT))
1376			count++;
1377
1378	return count;
1379}
1380
1381/**
1382 * ice_get_res - get a block of resources
1383 * @pf: board private structure
1384 * @res: pointer to the resource
1385 * @needed: size of the block needed
1386 * @id: identifier to track owner
1387 *
1388 * Returns the base item index of the block, or negative for error
1389 */
1390int
1391ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1392{
1393	if (!res || !pf)
1394		return -EINVAL;
1395
1396	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1397		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1398			needed, res->num_entries, id);
1399		return -EINVAL;
1400	}
1401
1402	return ice_search_res(res, needed, id);
1403}
1404
1405/**
1406 * ice_get_vf_ctrl_res - Get VF control VSI resource
1407 * @pf: pointer to the PF structure
1408 * @vsi: the VSI to allocate a resource for
1409 *
1410 * Look up whether another VF has already allocated the control VSI resource.
1411 * If so, re-use this resource so that we share it among all VFs.
1412 *
1413 * Otherwise, allocate the resource and return it.
1414 */
1415static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1416{
1417	struct ice_vf *vf;
1418	unsigned int bkt;
1419	int base;
1420
1421	rcu_read_lock();
1422	ice_for_each_vf_rcu(pf, bkt, vf) {
1423		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1424			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1425			rcu_read_unlock();
1426			return base;
1427		}
1428	}
1429	rcu_read_unlock();
1430
1431	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1432			   ICE_RES_VF_CTRL_VEC_ID);
1433}
1434
1435/**
1436 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1437 * @vsi: ptr to the VSI
1438 *
1439 * This should only be called after ice_vsi_alloc() which allocates the
1440 * corresponding SW VSI structure and initializes num_queue_pairs for the
1441 * newly allocated VSI.
1442 *
1443 * Returns 0 on success or negative on failure
1444 */
1445static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1446{
1447	struct ice_pf *pf = vsi->back;
1448	struct device *dev;
1449	u16 num_q_vectors;
1450	int base;
1451
1452	dev = ice_pf_to_dev(pf);
1453	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1454	if (vsi->type == ICE_VSI_VF)
1455		return 0;
1456	if (vsi->type == ICE_VSI_CHNL)
1457		return 0;
1458
1459	if (vsi->base_vector) {
1460		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1461			vsi->vsi_num, vsi->base_vector);
1462		return -EEXIST;
1463	}
1464
1465	num_q_vectors = vsi->num_q_vectors;
1466	/* reserve slots from OS requested IRQs */
1467	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1468		base = ice_get_vf_ctrl_res(pf, vsi);
1469	} else {
1470		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1471				   vsi->idx);
1472	}
1473
1474	if (base < 0) {
1475		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1476			ice_get_free_res_count(pf->irq_tracker),
1477			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1478		return -ENOENT;
1479	}
1480	vsi->base_vector = (u16)base;
1481	pf->num_avail_sw_msix -= num_q_vectors;
1482
1483	return 0;
1484}
1485
1486/**
1487 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1488 * @vsi: the VSI having rings deallocated
1489 */
1490static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1491{
1492	int i;
1493
1494	/* Avoid stale references by clearing map from vector to ring */
1495	if (vsi->q_vectors) {
1496		ice_for_each_q_vector(vsi, i) {
1497			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1498
1499			if (q_vector) {
1500				q_vector->tx.tx_ring = NULL;
1501				q_vector->rx.rx_ring = NULL;
1502			}
1503		}
1504	}
1505
1506	if (vsi->tx_rings) {
1507		ice_for_each_alloc_txq(vsi, i) {
1508			if (vsi->tx_rings[i]) {
1509				kfree_rcu(vsi->tx_rings[i], rcu);
1510				WRITE_ONCE(vsi->tx_rings[i], NULL);
1511			}
1512		}
1513	}
1514	if (vsi->rx_rings) {
1515		ice_for_each_alloc_rxq(vsi, i) {
1516			if (vsi->rx_rings[i]) {
1517				kfree_rcu(vsi->rx_rings[i], rcu);
1518				WRITE_ONCE(vsi->rx_rings[i], NULL);
1519			}
1520		}
1521	}
1522}
1523
1524/**
1525 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1526 * @vsi: VSI which is having rings allocated
1527 */
1528static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1529{
1530	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1531	struct ice_pf *pf = vsi->back;
1532	struct device *dev;
1533	u16 i;
1534
1535	dev = ice_pf_to_dev(pf);
1536	/* Allocate Tx rings */
1537	ice_for_each_alloc_txq(vsi, i) {
1538		struct ice_tx_ring *ring;
1539
1540		/* allocate with kzalloc(), free with kfree_rcu() */
1541		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1542
1543		if (!ring)
1544			goto err_out;
1545
1546		ring->q_index = i;
1547		ring->reg_idx = vsi->txq_map[i];
1548		ring->vsi = vsi;
1549		ring->tx_tstamps = &pf->ptp.port.tx;
1550		ring->dev = dev;
1551		ring->count = vsi->num_tx_desc;
1552		ring->txq_teid = ICE_INVAL_TEID;
1553		if (dvm_ena)
1554			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1555		else
1556			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1557		WRITE_ONCE(vsi->tx_rings[i], ring);
1558	}
1559
1560	/* Allocate Rx rings */
1561	ice_for_each_alloc_rxq(vsi, i) {
1562		struct ice_rx_ring *ring;
1563
1564		/* allocate with kzalloc(), free with kfree_rcu() */
1565		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1566		if (!ring)
1567			goto err_out;
1568
1569		ring->q_index = i;
1570		ring->reg_idx = vsi->rxq_map[i];
1571		ring->vsi = vsi;
1572		ring->netdev = vsi->netdev;
1573		ring->dev = dev;
1574		ring->count = vsi->num_rx_desc;
1575		ring->cached_phctime = pf->ptp.cached_phc_time;
1576		WRITE_ONCE(vsi->rx_rings[i], ring);
1577	}
1578
1579	return 0;
1580
1581err_out:
1582	ice_vsi_clear_rings(vsi);
1583	return -ENOMEM;
1584}
1585
1586/**
1587 * ice_vsi_free_stats - Free the ring statistics structures
1588 * @vsi: VSI pointer
1589 */
1590static void ice_vsi_free_stats(struct ice_vsi *vsi)
1591{
1592	struct ice_vsi_stats *vsi_stat;
1593	struct ice_pf *pf = vsi->back;
1594	int i;
1595
1596	if (vsi->type == ICE_VSI_CHNL)
1597		return;
1598	if (!pf->vsi_stats)
1599		return;
1600
1601	vsi_stat = pf->vsi_stats[vsi->idx];
1602	if (!vsi_stat)
1603		return;
1604
1605	ice_for_each_alloc_txq(vsi, i) {
1606		if (vsi_stat->tx_ring_stats[i]) {
1607			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
1608			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
1609		}
1610	}
1611
1612	ice_for_each_alloc_rxq(vsi, i) {
1613		if (vsi_stat->rx_ring_stats[i]) {
1614			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
1615			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
1616		}
1617	}
1618
1619	kfree(vsi_stat->tx_ring_stats);
1620	kfree(vsi_stat->rx_ring_stats);
1621	kfree(vsi_stat);
1622	pf->vsi_stats[vsi->idx] = NULL;
1623}
1624
1625/**
1626 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
1627 * @vsi: VSI which is having stats allocated
1628 */
1629static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
1630{
1631	struct ice_ring_stats **tx_ring_stats;
1632	struct ice_ring_stats **rx_ring_stats;
1633	struct ice_vsi_stats *vsi_stats;
1634	struct ice_pf *pf = vsi->back;
1635	u16 i;
1636
1637	vsi_stats = pf->vsi_stats[vsi->idx];
1638	tx_ring_stats = vsi_stats->tx_ring_stats;
1639	rx_ring_stats = vsi_stats->rx_ring_stats;
1640
1641	/* Allocate Tx ring stats */
1642	ice_for_each_alloc_txq(vsi, i) {
1643		struct ice_ring_stats *ring_stats;
1644		struct ice_tx_ring *ring;
1645
1646		ring = vsi->tx_rings[i];
1647		ring_stats = tx_ring_stats[i];
1648
1649		if (!ring_stats) {
1650			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1651			if (!ring_stats)
1652				goto err_out;
1653
1654			WRITE_ONCE(tx_ring_stats[i], ring_stats);
1655		}
1656
1657		ring->ring_stats = ring_stats;
1658	}
1659
1660	/* Allocate Rx ring stats */
1661	ice_for_each_alloc_rxq(vsi, i) {
1662		struct ice_ring_stats *ring_stats;
1663		struct ice_rx_ring *ring;
1664
1665		ring = vsi->rx_rings[i];
1666		ring_stats = rx_ring_stats[i];
1667
1668		if (!ring_stats) {
1669			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1670			if (!ring_stats)
1671				goto err_out;
1672
1673			 WRITE_ONCE(rx_ring_stats[i], ring_stats);
1674		}
1675
1676		ring->ring_stats = ring_stats;
1677	}
1678
1679	return 0;
1680
1681err_out:
1682	ice_vsi_free_stats(vsi);
1683	return -ENOMEM;
1684}
1685
1686/**
1687 * ice_vsi_manage_rss_lut - disable/enable RSS
1688 * @vsi: the VSI being changed
1689 * @ena: boolean value indicating if this is an enable or disable request
1690 *
1691 * In the event of disable request for RSS, this function will zero out RSS
1692 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1693 * LUT.
1694 */
1695void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1696{
1697	u8 *lut;
1698
1699	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1700	if (!lut)
1701		return;
1702
1703	if (ena) {
1704		if (vsi->rss_lut_user)
1705			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1706		else
1707			ice_fill_rss_lut(lut, vsi->rss_table_size,
1708					 vsi->rss_size);
1709	}
1710
1711	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1712	kfree(lut);
1713}
1714
1715/**
1716 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1717 * @vsi: VSI to be configured
1718 * @disable: set to true to have FCS / CRC in the frame data
1719 */
1720void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1721{
1722	int i;
1723
1724	ice_for_each_rxq(vsi, i)
1725		if (disable)
1726			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1727		else
1728			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1729}
1730
1731/**
1732 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1733 * @vsi: VSI to be configured
1734 */
1735int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1736{
1737	struct ice_pf *pf = vsi->back;
1738	struct device *dev;
1739	u8 *lut, *key;
1740	int err;
1741
1742	dev = ice_pf_to_dev(pf);
1743	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1744	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1745		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1746	} else {
1747		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1748
1749		/* If orig_rss_size is valid and it is less than determined
1750		 * main VSI's rss_size, update main VSI's rss_size to be
1751		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1752		 * RSS table gets programmed to be correct (whatever it was
1753		 * to begin with (prior to setup-tc for ADQ config)
1754		 */
1755		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1756		    vsi->orig_rss_size <= vsi->num_rxq) {
1757			vsi->rss_size = vsi->orig_rss_size;
1758			/* now orig_rss_size is used, reset it to zero */
1759			vsi->orig_rss_size = 0;
1760		}
1761	}
1762
1763	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1764	if (!lut)
1765		return -ENOMEM;
1766
1767	if (vsi->rss_lut_user)
1768		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1769	else
1770		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1771
1772	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1773	if (err) {
1774		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1775		goto ice_vsi_cfg_rss_exit;
1776	}
1777
1778	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1779	if (!key) {
1780		err = -ENOMEM;
1781		goto ice_vsi_cfg_rss_exit;
1782	}
1783
1784	if (vsi->rss_hkey_user)
1785		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1786	else
1787		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1788
1789	err = ice_set_rss_key(vsi, key);
1790	if (err)
1791		dev_err(dev, "set_rss_key failed, error %d\n", err);
1792
1793	kfree(key);
1794ice_vsi_cfg_rss_exit:
1795	kfree(lut);
1796	return err;
1797}
1798
1799/**
1800 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1801 * @vsi: VSI to be configured
1802 *
1803 * This function will only be called during the VF VSI setup. Upon successful
1804 * completion of package download, this function will configure default RSS
1805 * input sets for VF VSI.
1806 */
1807static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1808{
1809	struct ice_pf *pf = vsi->back;
1810	struct device *dev;
1811	int status;
1812
1813	dev = ice_pf_to_dev(pf);
1814	if (ice_is_safe_mode(pf)) {
1815		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1816			vsi->vsi_num);
1817		return;
1818	}
1819
1820	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1821	if (status)
1822		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1823			vsi->vsi_num, status);
1824}
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826/**
1827 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1828 * @vsi: VSI to be configured
1829 *
1830 * This function will only be called after successful download package call
1831 * during initialization of PF. Since the downloaded package will erase the
1832 * RSS section, this function will configure RSS input sets for different
1833 * flow types. The last profile added has the highest priority, therefore 2
1834 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1835 * (i.e. IPv4 src/dst TCP src/dst port).
1836 */
1837static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1838{
1839	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1840	struct ice_pf *pf = vsi->back;
1841	struct ice_hw *hw = &pf->hw;
1842	struct device *dev;
1843	int status;
 
1844
1845	dev = ice_pf_to_dev(pf);
1846	if (ice_is_safe_mode(pf)) {
1847		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1848			vsi_num);
1849		return;
1850	}
1851	/* configure RSS for IPv4 with input set IP src/dst */
1852	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1853				 ICE_FLOW_SEG_HDR_IPV4);
1854	if (status)
1855		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1856			vsi_num, status);
1857
1858	/* configure RSS for IPv6 with input set IPv6 src/dst */
1859	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1860				 ICE_FLOW_SEG_HDR_IPV6);
1861	if (status)
1862		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1863			vsi_num, status);
1864
1865	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1866	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1867				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1868	if (status)
1869		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1870			vsi_num, status);
1871
1872	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1873	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1874				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1875	if (status)
1876		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1877			vsi_num, status);
1878
1879	/* configure RSS for sctp4 with input set IP src/dst */
1880	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1881				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1882	if (status)
1883		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1884			vsi_num, status);
1885
1886	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1887	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1888				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1889	if (status)
1890		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1891			vsi_num, status);
1892
1893	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1894	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1895				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1896	if (status)
1897		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1898			vsi_num, status);
1899
1900	/* configure RSS for sctp6 with input set IPv6 src/dst */
1901	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1902				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1903	if (status)
1904		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1905			vsi_num, status);
1906
1907	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1908				 ICE_FLOW_SEG_HDR_ESP);
1909	if (status)
1910		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1911			vsi_num, status);
1912}
1913
1914/**
1915 * ice_pf_state_is_nominal - checks the PF for nominal state
1916 * @pf: pointer to PF to check
1917 *
1918 * Check the PF's state for a collection of bits that would indicate
1919 * the PF is in a state that would inhibit normal operation for
1920 * driver functionality.
1921 *
1922 * Returns true if PF is in a nominal state, false otherwise
1923 */
1924bool ice_pf_state_is_nominal(struct ice_pf *pf)
1925{
1926	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1927
1928	if (!pf)
1929		return false;
1930
1931	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1932	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1933		return false;
1934
1935	return true;
1936}
1937
1938/**
1939 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1940 * @vsi: the VSI to be updated
1941 */
1942void ice_update_eth_stats(struct ice_vsi *vsi)
1943{
1944	struct ice_eth_stats *prev_es, *cur_es;
1945	struct ice_hw *hw = &vsi->back->hw;
1946	struct ice_pf *pf = vsi->back;
1947	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1948
1949	prev_es = &vsi->eth_stats_prev;
1950	cur_es = &vsi->eth_stats;
1951
1952	if (ice_is_reset_in_progress(pf->state))
1953		vsi->stat_offsets_loaded = false;
1954
1955	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1956			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1957
1958	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1959			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1960
1961	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1962			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1963
1964	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1965			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1966
1967	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1968			  &prev_es->rx_discards, &cur_es->rx_discards);
1969
1970	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1971			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1972
1973	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1974			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1975
1976	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1977			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1978
1979	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1980			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1981
1982	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1983			  &prev_es->tx_errors, &cur_es->tx_errors);
1984
1985	vsi->stat_offsets_loaded = true;
1986}
1987
1988/**
1989 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1990 * @vsi: VSI
1991 */
1992void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1993{
1994	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1995		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1996		vsi->rx_buf_len = ICE_RXBUF_2048;
1997#if (PAGE_SIZE < 8192)
1998	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1999		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
2000		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
2001		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
2002#endif
2003	} else {
2004		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
2005#if (PAGE_SIZE < 8192)
2006		vsi->rx_buf_len = ICE_RXBUF_3072;
2007#else
2008		vsi->rx_buf_len = ICE_RXBUF_2048;
2009#endif
2010	}
2011}
2012
2013/**
2014 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
2015 * @hw: HW pointer
2016 * @pf_q: index of the Rx queue in the PF's queue space
2017 * @rxdid: flexible descriptor RXDID
2018 * @prio: priority for the RXDID for this queue
2019 * @ena_ts: true to enable timestamp and false to disable timestamp
2020 */
2021void
2022ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
2023			bool ena_ts)
2024{
2025	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
2026
2027	/* clear any previous values */
2028	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
2029		    QRXFLXP_CNTXT_RXDID_PRIO_M |
2030		    QRXFLXP_CNTXT_TS_M);
2031
2032	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
2033		QRXFLXP_CNTXT_RXDID_IDX_M;
2034
2035	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
2036		QRXFLXP_CNTXT_RXDID_PRIO_M;
2037
2038	if (ena_ts)
2039		/* Enable TimeSync on this queue */
2040		regval |= QRXFLXP_CNTXT_TS_M;
2041
2042	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
2043}
2044
2045int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
2046{
2047	if (q_idx >= vsi->num_rxq)
2048		return -EINVAL;
2049
2050	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
2051}
2052
2053int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
2054{
2055	struct ice_aqc_add_tx_qgrp *qg_buf;
2056	int err;
2057
2058	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
2059		return -EINVAL;
2060
2061	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2062	if (!qg_buf)
2063		return -ENOMEM;
2064
2065	qg_buf->num_txqs = 1;
2066
2067	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
2068	kfree(qg_buf);
2069	return err;
2070}
2071
2072/**
2073 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
2074 * @vsi: the VSI being configured
2075 *
2076 * Return 0 on success and a negative value on error
2077 * Configure the Rx VSI for operation.
2078 */
2079int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
2080{
2081	u16 i;
2082
2083	if (vsi->type == ICE_VSI_VF)
2084		goto setup_rings;
2085
2086	ice_vsi_cfg_frame_size(vsi);
2087setup_rings:
2088	/* set up individual rings */
2089	ice_for_each_rxq(vsi, i) {
2090		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
2091
2092		if (err)
2093			return err;
2094	}
2095
2096	return 0;
2097}
2098
2099/**
2100 * ice_vsi_cfg_txqs - Configure the VSI for Tx
2101 * @vsi: the VSI being configured
2102 * @rings: Tx ring array to be configured
2103 * @count: number of Tx ring array elements
2104 *
2105 * Return 0 on success and a negative value on error
2106 * Configure the Tx VSI for operation.
2107 */
2108static int
2109ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
2110{
2111	struct ice_aqc_add_tx_qgrp *qg_buf;
2112	u16 q_idx = 0;
2113	int err = 0;
2114
2115	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2116	if (!qg_buf)
2117		return -ENOMEM;
2118
2119	qg_buf->num_txqs = 1;
2120
2121	for (q_idx = 0; q_idx < count; q_idx++) {
2122		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
2123		if (err)
2124			goto err_cfg_txqs;
2125	}
2126
2127err_cfg_txqs:
2128	kfree(qg_buf);
2129	return err;
2130}
2131
2132/**
2133 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
2134 * @vsi: the VSI being configured
2135 *
2136 * Return 0 on success and a negative value on error
2137 * Configure the Tx VSI for operation.
2138 */
2139int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
2140{
2141	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
2142}
2143
2144/**
2145 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
2146 * @vsi: the VSI being configured
2147 *
2148 * Return 0 on success and a negative value on error
2149 * Configure the Tx queues dedicated for XDP in given VSI for operation.
2150 */
2151int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
2152{
2153	int ret;
2154	int i;
2155
2156	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
2157	if (ret)
2158		return ret;
2159
2160	ice_for_each_rxq(vsi, i)
2161		ice_tx_xsk_pool(vsi, i);
2162
2163	return ret;
2164}
2165
2166/**
2167 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
2168 * @intrl: interrupt rate limit in usecs
2169 * @gran: interrupt rate limit granularity in usecs
2170 *
2171 * This function converts a decimal interrupt rate limit in usecs to the format
2172 * expected by firmware.
2173 */
2174static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2175{
2176	u32 val = intrl / gran;
2177
2178	if (val)
2179		return val | GLINT_RATE_INTRL_ENA_M;
2180	return 0;
2181}
2182
2183/**
2184 * ice_write_intrl - write throttle rate limit to interrupt specific register
2185 * @q_vector: pointer to interrupt specific structure
2186 * @intrl: throttle rate limit in microseconds to write
2187 */
2188void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2189{
2190	struct ice_hw *hw = &q_vector->vsi->back->hw;
2191
2192	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2193	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2194}
2195
2196static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2197{
2198	switch (rc->type) {
2199	case ICE_RX_CONTAINER:
2200		if (rc->rx_ring)
2201			return rc->rx_ring->q_vector;
2202		break;
2203	case ICE_TX_CONTAINER:
2204		if (rc->tx_ring)
2205			return rc->tx_ring->q_vector;
2206		break;
2207	default:
2208		break;
2209	}
2210
2211	return NULL;
2212}
2213
2214/**
2215 * __ice_write_itr - write throttle rate to register
2216 * @q_vector: pointer to interrupt data structure
2217 * @rc: pointer to ring container
2218 * @itr: throttle rate in microseconds to write
2219 */
2220static void __ice_write_itr(struct ice_q_vector *q_vector,
2221			    struct ice_ring_container *rc, u16 itr)
2222{
2223	struct ice_hw *hw = &q_vector->vsi->back->hw;
2224
2225	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2226	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2227}
2228
2229/**
2230 * ice_write_itr - write throttle rate to queue specific register
2231 * @rc: pointer to ring container
2232 * @itr: throttle rate in microseconds to write
2233 */
2234void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2235{
2236	struct ice_q_vector *q_vector;
2237
2238	q_vector = ice_pull_qvec_from_rc(rc);
2239	if (!q_vector)
2240		return;
2241
2242	__ice_write_itr(q_vector, rc, itr);
2243}
2244
2245/**
2246 * ice_set_q_vector_intrl - set up interrupt rate limiting
2247 * @q_vector: the vector to be configured
2248 *
2249 * Interrupt rate limiting is local to the vector, not per-queue so we must
2250 * detect if either ring container has dynamic moderation enabled to decide
2251 * what to set the interrupt rate limit to via INTRL settings. In the case that
2252 * dynamic moderation is disabled on both, write the value with the cached
2253 * setting to make sure INTRL register matches the user visible value.
2254 */
2255void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2256{
2257	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2258		/* in the case of dynamic enabled, cap each vector to no more
2259		 * than (4 us) 250,000 ints/sec, which allows low latency
2260		 * but still less than 500,000 interrupts per second, which
2261		 * reduces CPU a bit in the case of the lowest latency
2262		 * setting. The 4 here is a value in microseconds.
2263		 */
2264		ice_write_intrl(q_vector, 4);
2265	} else {
2266		ice_write_intrl(q_vector, q_vector->intrl);
2267	}
2268}
2269
2270/**
2271 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2272 * @vsi: the VSI being configured
2273 *
2274 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2275 * for the VF VSI.
2276 */
2277void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2278{
2279	struct ice_pf *pf = vsi->back;
2280	struct ice_hw *hw = &pf->hw;
2281	u16 txq = 0, rxq = 0;
2282	int i, q;
2283
2284	ice_for_each_q_vector(vsi, i) {
2285		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2286		u16 reg_idx = q_vector->reg_idx;
2287
2288		ice_cfg_itr(hw, q_vector);
2289
2290		/* Both Transmit Queue Interrupt Cause Control register
2291		 * and Receive Queue Interrupt Cause control register
2292		 * expects MSIX_INDX field to be the vector index
2293		 * within the function space and not the absolute
2294		 * vector index across PF or across device.
2295		 * For SR-IOV VF VSIs queue vector index always starts
2296		 * with 1 since first vector index(0) is used for OICR
2297		 * in VF space. Since VMDq and other PF VSIs are within
2298		 * the PF function space, use the vector index that is
2299		 * tracked for this PF.
2300		 */
2301		for (q = 0; q < q_vector->num_ring_tx; q++) {
2302			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2303					      q_vector->tx.itr_idx);
2304			txq++;
2305		}
2306
2307		for (q = 0; q < q_vector->num_ring_rx; q++) {
2308			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2309					      q_vector->rx.itr_idx);
2310			rxq++;
2311		}
2312	}
2313}
2314
2315/**
2316 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2317 * @vsi: the VSI whose rings are to be enabled
2318 *
2319 * Returns 0 on success and a negative value on error
2320 */
2321int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2322{
2323	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2324}
2325
2326/**
2327 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2328 * @vsi: the VSI whose rings are to be disabled
2329 *
2330 * Returns 0 on success and a negative value on error
2331 */
2332int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2333{
2334	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2335}
2336
2337/**
2338 * ice_vsi_stop_tx_rings - Disable Tx rings
2339 * @vsi: the VSI being configured
2340 * @rst_src: reset source
2341 * @rel_vmvf_num: Relative ID of VF/VM
2342 * @rings: Tx ring array to be stopped
2343 * @count: number of Tx ring array elements
2344 */
2345static int
2346ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2347		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2348{
2349	u16 q_idx;
2350
2351	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2352		return -EINVAL;
2353
2354	for (q_idx = 0; q_idx < count; q_idx++) {
2355		struct ice_txq_meta txq_meta = { };
2356		int status;
2357
2358		if (!rings || !rings[q_idx])
2359			return -EINVAL;
2360
2361		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2362		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2363					      rings[q_idx], &txq_meta);
2364
2365		if (status)
2366			return status;
2367	}
2368
2369	return 0;
2370}
2371
2372/**
2373 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2374 * @vsi: the VSI being configured
2375 * @rst_src: reset source
2376 * @rel_vmvf_num: Relative ID of VF/VM
2377 */
2378int
2379ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2380			  u16 rel_vmvf_num)
2381{
2382	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2383}
2384
2385/**
2386 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2387 * @vsi: the VSI being configured
2388 */
2389int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2390{
2391	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2392}
2393
2394/**
2395 * ice_vsi_is_rx_queue_active
2396 * @vsi: the VSI being configured
2397 *
2398 * Return true if at least one queue is active.
2399 */
2400bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2401{
2402	struct ice_pf *pf = vsi->back;
2403	struct ice_hw *hw = &pf->hw;
2404	int i;
2405
2406	ice_for_each_rxq(vsi, i) {
2407		u32 rx_reg;
2408		int pf_q;
2409
2410		pf_q = vsi->rxq_map[i];
2411		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2412		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2413			return true;
2414	}
2415
2416	return false;
2417}
2418
2419/**
2420 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2421 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2422 *
2423 * returns true if Rx VLAN pruning is enabled and false otherwise.
2424 */
2425bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2426{
2427	if (!vsi)
2428		return false;
2429
2430	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2431}
2432
2433static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2434{
2435	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2436		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2437		vsi->tc_cfg.numtc = 1;
2438		return;
2439	}
2440
2441	/* set VSI TC information based on DCB config */
2442	ice_vsi_set_dcb_tc_cfg(vsi);
2443}
2444
2445/**
2446 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2447 * @vsi: VSI to set the q_vectors register index on
2448 */
2449static int
2450ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2451{
2452	u16 i;
2453
2454	if (!vsi || !vsi->q_vectors)
2455		return -EINVAL;
2456
2457	ice_for_each_q_vector(vsi, i) {
2458		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2459
2460		if (!q_vector) {
2461			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2462				i, vsi->vsi_num);
2463			goto clear_reg_idx;
2464		}
2465
2466		if (vsi->type == ICE_VSI_VF) {
2467			struct ice_vf *vf = vsi->vf;
2468
2469			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2470		} else {
2471			q_vector->reg_idx =
2472				q_vector->v_idx + vsi->base_vector;
2473		}
2474	}
2475
2476	return 0;
2477
2478clear_reg_idx:
2479	ice_for_each_q_vector(vsi, i) {
2480		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2481
2482		if (q_vector)
2483			q_vector->reg_idx = 0;
2484	}
2485
2486	return -EINVAL;
2487}
2488
2489/**
2490 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2491 * @vsi: the VSI being configured
2492 * @tx: bool to determine Tx or Rx rule
2493 * @create: bool to determine create or remove Rule
2494 */
2495void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2496{
2497	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2498			enum ice_sw_fwd_act_type act);
2499	struct ice_pf *pf = vsi->back;
2500	struct device *dev;
2501	int status;
2502
2503	dev = ice_pf_to_dev(pf);
2504	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2505
2506	if (tx) {
2507		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2508				  ICE_DROP_PACKET);
2509	} else {
2510		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2511			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2512							  create);
2513		} else {
2514			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2515					  ICE_FWD_TO_VSI);
2516		}
2517	}
2518
2519	if (status)
2520		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2521			create ? "adding" : "removing", tx ? "TX" : "RX",
2522			vsi->vsi_num, status);
2523}
2524
2525/**
2526 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2527 * @vsi: pointer to the VSI
2528 *
2529 * This function will allocate new scheduler aggregator now if needed and will
2530 * move specified VSI into it.
2531 */
2532static void ice_set_agg_vsi(struct ice_vsi *vsi)
2533{
2534	struct device *dev = ice_pf_to_dev(vsi->back);
2535	struct ice_agg_node *agg_node_iter = NULL;
2536	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2537	struct ice_agg_node *agg_node = NULL;
2538	int node_offset, max_agg_nodes = 0;
2539	struct ice_port_info *port_info;
2540	struct ice_pf *pf = vsi->back;
2541	u32 agg_node_id_start = 0;
2542	int status;
2543
2544	/* create (as needed) scheduler aggregator node and move VSI into
2545	 * corresponding aggregator node
2546	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2547	 * - VF aggregator nodes will contain VF VSI
2548	 */
2549	port_info = pf->hw.port_info;
2550	if (!port_info)
2551		return;
2552
2553	switch (vsi->type) {
2554	case ICE_VSI_CTRL:
2555	case ICE_VSI_CHNL:
2556	case ICE_VSI_LB:
2557	case ICE_VSI_PF:
2558	case ICE_VSI_SWITCHDEV_CTRL:
2559		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2560		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2561		agg_node_iter = &pf->pf_agg_node[0];
2562		break;
2563	case ICE_VSI_VF:
2564		/* user can create 'n' VFs on a given PF, but since max children
2565		 * per aggregator node can be only 64. Following code handles
2566		 * aggregator(s) for VF VSIs, either selects a agg_node which
2567		 * was already created provided num_vsis < 64, otherwise
2568		 * select next available node, which will be created
2569		 */
2570		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2571		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2572		agg_node_iter = &pf->vf_agg_node[0];
2573		break;
2574	default:
2575		/* other VSI type, handle later if needed */
2576		dev_dbg(dev, "unexpected VSI type %s\n",
2577			ice_vsi_type_str(vsi->type));
2578		return;
2579	}
2580
2581	/* find the appropriate aggregator node */
2582	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2583		/* see if we can find space in previously created
2584		 * node if num_vsis < 64, otherwise skip
2585		 */
2586		if (agg_node_iter->num_vsis &&
2587		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2588			agg_node_iter++;
2589			continue;
2590		}
2591
2592		if (agg_node_iter->valid &&
2593		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2594			agg_id = agg_node_iter->agg_id;
2595			agg_node = agg_node_iter;
2596			break;
2597		}
2598
2599		/* find unclaimed agg_id */
2600		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2601			agg_id = node_offset + agg_node_id_start;
2602			agg_node = agg_node_iter;
2603			break;
2604		}
2605		/* move to next agg_node */
2606		agg_node_iter++;
2607	}
2608
2609	if (!agg_node)
2610		return;
2611
2612	/* if selected aggregator node was not created, create it */
2613	if (!agg_node->valid) {
2614		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2615				     (u8)vsi->tc_cfg.ena_tc);
2616		if (status) {
2617			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2618				agg_id);
2619			return;
2620		}
2621		/* aggregator node is created, store the needed info */
2622		agg_node->valid = true;
2623		agg_node->agg_id = agg_id;
2624	}
2625
2626	/* move VSI to corresponding aggregator node */
2627	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2628				     (u8)vsi->tc_cfg.ena_tc);
2629	if (status) {
2630		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2631			vsi->idx, agg_id);
2632		return;
2633	}
2634
2635	/* keep active children count for aggregator node */
2636	agg_node->num_vsis++;
2637
2638	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2639	 * to aggregator node
2640	 */
2641	vsi->agg_node = agg_node;
2642	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2643		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2644		vsi->agg_node->num_vsis);
2645}
2646
2647/**
2648 * ice_vsi_setup - Set up a VSI by a given type
2649 * @pf: board private structure
2650 * @pi: pointer to the port_info instance
2651 * @vsi_type: VSI type
2652 * @vf: pointer to VF to which this VSI connects. This field is used primarily
2653 *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2654 * @ch: ptr to channel
2655 *
2656 * This allocates the sw VSI structure and its queue resources.
2657 *
2658 * Returns pointer to the successfully allocated and configured VSI sw struct on
2659 * success, NULL on failure.
2660 */
2661struct ice_vsi *
2662ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2663	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2664	      struct ice_channel *ch)
2665{
2666	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2667	struct device *dev = ice_pf_to_dev(pf);
2668	struct ice_vsi *vsi;
2669	int ret, i;
2670
2671	if (vsi_type == ICE_VSI_CHNL)
2672		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2673	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2674		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2675	else
2676		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
2677
2678	if (!vsi) {
2679		dev_err(dev, "could not allocate VSI\n");
2680		return NULL;
 
 
 
 
2681	}
2682
2683	vsi->port_info = pi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2684	vsi->vsw = pf->first_sw;
2685	if (vsi->type == ICE_VSI_PF)
2686		vsi->ethtype = ETH_P_PAUSE;
 
 
 
 
 
 
 
2687
2688	ice_alloc_fd_res(vsi);
2689
2690	if (vsi_type != ICE_VSI_CHNL) {
2691		if (ice_vsi_get_qs(vsi)) {
2692			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2693				vsi->idx);
2694			goto unroll_vsi_alloc;
2695		}
2696	}
2697
2698	/* set RSS capabilities */
2699	ice_vsi_set_rss_params(vsi);
2700
2701	/* set TC configuration */
2702	ice_vsi_set_tc_cfg(vsi);
2703
2704	/* create the VSI */
2705	ret = ice_vsi_init(vsi, true);
2706	if (ret)
2707		goto unroll_get_qs;
2708
2709	ice_vsi_init_vlan_ops(vsi);
2710
2711	switch (vsi->type) {
2712	case ICE_VSI_CTRL:
2713	case ICE_VSI_SWITCHDEV_CTRL:
2714	case ICE_VSI_PF:
2715		ret = ice_vsi_alloc_q_vectors(vsi);
2716		if (ret)
2717			goto unroll_vsi_init;
2718
2719		ret = ice_vsi_setup_vector_base(vsi);
2720		if (ret)
2721			goto unroll_alloc_q_vector;
2722
2723		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2724		if (ret)
2725			goto unroll_vector_base;
2726
2727		ret = ice_vsi_alloc_rings(vsi);
2728		if (ret)
2729			goto unroll_vector_base;
2730
2731		ret = ice_vsi_alloc_ring_stats(vsi);
2732		if (ret)
2733			goto unroll_vector_base;
2734
2735		ice_vsi_map_rings_to_vectors(vsi);
2736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2738		if (vsi->type != ICE_VSI_CTRL)
2739			/* Do not exit if configuring RSS had an issue, at
2740			 * least receive traffic on first queue. Hence no
2741			 * need to capture return value
2742			 */
2743			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2744				ice_vsi_cfg_rss_lut_key(vsi);
2745				ice_vsi_set_rss_flow_fld(vsi);
2746			}
2747		ice_init_arfs(vsi);
2748		break;
2749	case ICE_VSI_CHNL:
2750		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2751			ice_vsi_cfg_rss_lut_key(vsi);
2752			ice_vsi_set_rss_flow_fld(vsi);
2753		}
2754		break;
2755	case ICE_VSI_VF:
2756		/* VF driver will take care of creating netdev for this type and
2757		 * map queues to vectors through Virtchnl, PF driver only
2758		 * creates a VSI and corresponding structures for bookkeeping
2759		 * purpose
2760		 */
2761		ret = ice_vsi_alloc_q_vectors(vsi);
2762		if (ret)
2763			goto unroll_vsi_init;
2764
2765		ret = ice_vsi_alloc_rings(vsi);
2766		if (ret)
2767			goto unroll_alloc_q_vector;
2768
2769		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2770		if (ret)
2771			goto unroll_vector_base;
2772
2773		ret = ice_vsi_alloc_ring_stats(vsi);
2774		if (ret)
2775			goto unroll_vector_base;
2776		/* Do not exit if configuring RSS had an issue, at least
2777		 * receive traffic on first queue. Hence no need to capture
2778		 * return value
2779		 */
2780		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2781			ice_vsi_cfg_rss_lut_key(vsi);
2782			ice_vsi_set_vf_rss_flow_fld(vsi);
2783		}
2784		break;
2785	case ICE_VSI_LB:
2786		ret = ice_vsi_alloc_rings(vsi);
2787		if (ret)
2788			goto unroll_vsi_init;
2789
2790		ret = ice_vsi_alloc_ring_stats(vsi);
2791		if (ret)
2792			goto unroll_vector_base;
2793
2794		break;
2795	default:
2796		/* clean up the resources and exit */
 
2797		goto unroll_vsi_init;
2798	}
2799
2800	/* configure VSI nodes based on number of queues and TC's */
2801	ice_for_each_traffic_class(i) {
2802		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2803			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804
2805		if (vsi->type == ICE_VSI_CHNL) {
2806			if (!vsi->alloc_txq && vsi->num_txq)
2807				max_txqs[i] = vsi->num_txq;
2808			else
2809				max_txqs[i] = pf->num_lan_tx;
2810		} else {
2811			max_txqs[i] = vsi->alloc_txq;
 
2812		}
2813	}
2814
2815	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2816	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2817			      max_txqs);
2818	if (ret) {
2819		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2820			vsi->vsi_num, ret);
2821		goto unroll_clear_rings;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822	}
2823
 
 
 
 
2824	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2825	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2826	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2827	 * The rule is added once for PF VSI in order to create appropriate
2828	 * recipe, since VSI/VSI list is ignored with drop action...
2829	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2830	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2831	 * settings in the HW.
2832	 */
2833	if (!ice_is_safe_mode(pf))
2834		if (vsi->type == ICE_VSI_PF) {
2835			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2836					 ICE_DROP_PACKET);
2837			ice_cfg_sw_lldp(vsi, true, true);
2838		}
2839
2840	if (!vsi->agg_node)
2841		ice_set_agg_vsi(vsi);
 
2842	return vsi;
2843
2844unroll_clear_rings:
2845	ice_vsi_clear_rings(vsi);
2846unroll_vector_base:
2847	/* reclaim SW interrupts back to the common pool */
2848	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2849	pf->num_avail_sw_msix += vsi->num_q_vectors;
2850unroll_alloc_q_vector:
2851	ice_vsi_free_q_vectors(vsi);
2852unroll_vsi_init:
2853	ice_vsi_free_stats(vsi);
2854	ice_vsi_delete(vsi);
2855unroll_get_qs:
2856	ice_vsi_put_qs(vsi);
2857unroll_vsi_alloc:
2858	if (vsi_type == ICE_VSI_VF)
2859		ice_enable_lag(pf->lag);
2860	ice_vsi_clear(vsi);
2861
2862	return NULL;
2863}
2864
2865/**
2866 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2867 * @vsi: the VSI being cleaned up
2868 */
2869static void ice_vsi_release_msix(struct ice_vsi *vsi)
2870{
2871	struct ice_pf *pf = vsi->back;
2872	struct ice_hw *hw = &pf->hw;
2873	u32 txq = 0;
2874	u32 rxq = 0;
2875	int i, q;
2876
2877	ice_for_each_q_vector(vsi, i) {
2878		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2879
2880		ice_write_intrl(q_vector, 0);
2881		for (q = 0; q < q_vector->num_ring_tx; q++) {
2882			ice_write_itr(&q_vector->tx, 0);
2883			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2884			if (ice_is_xdp_ena_vsi(vsi)) {
2885				u32 xdp_txq = txq + vsi->num_xdp_txq;
2886
2887				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2888			}
2889			txq++;
2890		}
2891
2892		for (q = 0; q < q_vector->num_ring_rx; q++) {
2893			ice_write_itr(&q_vector->rx, 0);
2894			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2895			rxq++;
2896		}
2897	}
2898
2899	ice_flush(hw);
2900}
2901
2902/**
2903 * ice_vsi_free_irq - Free the IRQ association with the OS
2904 * @vsi: the VSI being configured
2905 */
2906void ice_vsi_free_irq(struct ice_vsi *vsi)
2907{
2908	struct ice_pf *pf = vsi->back;
2909	int base = vsi->base_vector;
2910	int i;
2911
2912	if (!vsi->q_vectors || !vsi->irqs_ready)
2913		return;
2914
2915	ice_vsi_release_msix(vsi);
2916	if (vsi->type == ICE_VSI_VF)
2917		return;
2918
2919	vsi->irqs_ready = false;
2920	ice_free_cpu_rx_rmap(vsi);
2921
2922	ice_for_each_q_vector(vsi, i) {
2923		u16 vector = i + base;
2924		int irq_num;
2925
2926		irq_num = pf->msix_entries[vector].vector;
2927
2928		/* free only the irqs that were actually requested */
2929		if (!vsi->q_vectors[i] ||
2930		    !(vsi->q_vectors[i]->num_ring_tx ||
2931		      vsi->q_vectors[i]->num_ring_rx))
2932			continue;
2933
2934		/* clear the affinity notifier in the IRQ descriptor */
2935		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2936			irq_set_affinity_notifier(irq_num, NULL);
2937
2938		/* clear the affinity_mask in the IRQ descriptor */
2939		irq_set_affinity_hint(irq_num, NULL);
2940		synchronize_irq(irq_num);
2941		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2942	}
2943}
2944
2945/**
2946 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2947 * @vsi: the VSI having resources freed
2948 */
2949void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2950{
2951	int i;
2952
2953	if (!vsi->tx_rings)
2954		return;
2955
2956	ice_for_each_txq(vsi, i)
2957		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2958			ice_free_tx_ring(vsi->tx_rings[i]);
2959}
2960
2961/**
2962 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2963 * @vsi: the VSI having resources freed
2964 */
2965void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2966{
2967	int i;
2968
2969	if (!vsi->rx_rings)
2970		return;
2971
2972	ice_for_each_rxq(vsi, i)
2973		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2974			ice_free_rx_ring(vsi->rx_rings[i]);
2975}
2976
2977/**
2978 * ice_vsi_close - Shut down a VSI
2979 * @vsi: the VSI being shut down
2980 */
2981void ice_vsi_close(struct ice_vsi *vsi)
2982{
2983	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2984		ice_down(vsi);
2985
2986	ice_vsi_free_irq(vsi);
2987	ice_vsi_free_tx_rings(vsi);
2988	ice_vsi_free_rx_rings(vsi);
2989}
2990
2991/**
2992 * ice_ena_vsi - resume a VSI
2993 * @vsi: the VSI being resume
2994 * @locked: is the rtnl_lock already held
2995 */
2996int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2997{
2998	int err = 0;
2999
3000	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
3001		return 0;
3002
3003	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3004
3005	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3006		if (netif_running(vsi->netdev)) {
3007			if (!locked)
3008				rtnl_lock();
3009
3010			err = ice_open_internal(vsi->netdev);
3011
3012			if (!locked)
3013				rtnl_unlock();
3014		}
3015	} else if (vsi->type == ICE_VSI_CTRL) {
3016		err = ice_vsi_open_ctrl(vsi);
3017	}
3018
3019	return err;
3020}
3021
3022/**
3023 * ice_dis_vsi - pause a VSI
3024 * @vsi: the VSI being paused
3025 * @locked: is the rtnl_lock already held
3026 */
3027void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
3028{
3029	if (test_bit(ICE_VSI_DOWN, vsi->state))
3030		return;
3031
3032	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3033
3034	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
3035		if (netif_running(vsi->netdev)) {
3036			if (!locked)
3037				rtnl_lock();
3038
3039			ice_vsi_close(vsi);
3040
3041			if (!locked)
3042				rtnl_unlock();
3043		} else {
3044			ice_vsi_close(vsi);
3045		}
3046	} else if (vsi->type == ICE_VSI_CTRL ||
3047		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
3048		ice_vsi_close(vsi);
3049	}
3050}
3051
3052/**
3053 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
3054 * @vsi: the VSI being un-configured
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3055 */
3056void ice_vsi_dis_irq(struct ice_vsi *vsi)
 
 
3057{
3058	int base = vsi->base_vector;
3059	struct ice_pf *pf = vsi->back;
3060	struct ice_hw *hw = &pf->hw;
3061	u32 val;
3062	int i;
3063
3064	/* disable interrupt causation from each queue */
3065	if (vsi->tx_rings) {
3066		ice_for_each_txq(vsi, i) {
3067			if (vsi->tx_rings[i]) {
3068				u16 reg;
3069
3070				reg = vsi->tx_rings[i]->reg_idx;
3071				val = rd32(hw, QINT_TQCTL(reg));
3072				val &= ~QINT_TQCTL_CAUSE_ENA_M;
3073				wr32(hw, QINT_TQCTL(reg), val);
3074			}
3075		}
3076	}
 
 
 
3077
3078	if (vsi->rx_rings) {
3079		ice_for_each_rxq(vsi, i) {
3080			if (vsi->rx_rings[i]) {
3081				u16 reg;
3082
3083				reg = vsi->rx_rings[i]->reg_idx;
3084				val = rd32(hw, QINT_RQCTL(reg));
3085				val &= ~QINT_RQCTL_CAUSE_ENA_M;
3086				wr32(hw, QINT_RQCTL(reg), val);
3087			}
3088		}
3089	}
3090
3091	/* disable each interrupt */
3092	ice_for_each_q_vector(vsi, i) {
3093		if (!vsi->q_vectors[i])
3094			continue;
3095		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
3096	}
3097
3098	ice_flush(hw);
 
 
 
3099
3100	/* don't call synchronize_irq() for VF's from the host */
3101	if (vsi->type == ICE_VSI_VF)
3102		return;
3103
3104	ice_for_each_q_vector(vsi, i)
3105		synchronize_irq(pf->msix_entries[i + base].vector);
3106}
3107
3108/**
3109 * ice_napi_del - Remove NAPI handler for the VSI
3110 * @vsi: VSI for which NAPI handler is to be removed
 
 
3111 */
3112void ice_napi_del(struct ice_vsi *vsi)
3113{
3114	int v_idx;
 
3115
3116	if (!vsi->netdev)
3117		return;
 
3118
3119	ice_for_each_q_vector(vsi, v_idx)
3120		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
 
 
 
3121}
3122
3123/**
3124 * ice_free_vf_ctrl_res - Free the VF control VSI resource
3125 * @pf: pointer to PF structure
3126 * @vsi: the VSI to free resources for
3127 *
3128 * Check if the VF control VSI resource is still in use. If no VF is using it
3129 * any more, release the VSI resource. Otherwise, leave it to be cleaned up
3130 * once no other VF uses it.
3131 */
3132static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
3133{
3134	struct ice_vf *vf;
3135	unsigned int bkt;
3136
3137	rcu_read_lock();
3138	ice_for_each_vf_rcu(pf, bkt, vf) {
3139		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
3140			rcu_read_unlock();
3141			return;
3142		}
3143	}
3144	rcu_read_unlock();
3145
3146	/* No other VFs left that have control VSI. It is now safe to reclaim
3147	 * SW interrupts back to the common pool.
3148	 */
3149	ice_free_res(pf->irq_tracker, vsi->base_vector,
3150		     ICE_RES_VF_CTRL_VEC_ID);
3151	pf->num_avail_sw_msix += vsi->num_q_vectors;
3152}
3153
3154/**
3155 * ice_vsi_release - Delete a VSI and free its resources
3156 * @vsi: the VSI being removed
3157 *
3158 * Returns 0 on success or < 0 on error
3159 */
3160int ice_vsi_release(struct ice_vsi *vsi)
3161{
3162	struct ice_pf *pf;
3163	int err;
3164
3165	if (!vsi->back)
3166		return -ENODEV;
3167	pf = vsi->back;
3168
3169	/* do not unregister while driver is in the reset recovery pending
3170	 * state. Since reset/rebuild happens through PF service task workqueue,
3171	 * it's not a good idea to unregister netdev that is associated to the
3172	 * PF that is running the work queue items currently. This is done to
3173	 * avoid check_flush_dependency() warning on this wq
3174	 */
3175	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
3176	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
3177		unregister_netdev(vsi->netdev);
3178		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3179	}
3180
3181	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3182		ice_rss_clean(vsi);
3183
3184	/* Disable VSI and free resources */
3185	if (vsi->type != ICE_VSI_LB)
3186		ice_vsi_dis_irq(vsi);
3187	ice_vsi_close(vsi);
3188
3189	/* SR-IOV determines needed MSIX resources all at once instead of per
3190	 * VSI since when VFs are spawned we know how many VFs there are and how
3191	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3192	 * cleared in the same manner.
3193	 */
3194	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
3195		ice_free_vf_ctrl_res(pf, vsi);
3196	} else if (vsi->type != ICE_VSI_VF) {
3197		/* reclaim SW interrupts back to the common pool */
3198		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3199		pf->num_avail_sw_msix += vsi->num_q_vectors;
3200	}
3201
3202	if (!ice_is_safe_mode(pf)) {
3203		if (vsi->type == ICE_VSI_PF) {
3204			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3205					    ICE_DROP_PACKET);
3206			ice_cfg_sw_lldp(vsi, true, false);
3207			/* The Rx rule will only exist to remove if the LLDP FW
3208			 * engine is currently stopped
3209			 */
3210			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3211				ice_cfg_sw_lldp(vsi, false, false);
3212		}
3213	}
3214
3215	if (ice_is_vsi_dflt_vsi(vsi))
3216		ice_clear_dflt_vsi(vsi);
3217	ice_fltr_remove_all(vsi);
3218	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3219	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3220	if (err)
3221		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3222			vsi->vsi_num, err);
3223	ice_vsi_delete(vsi);
3224	ice_vsi_free_q_vectors(vsi);
3225
3226	if (vsi->netdev) {
3227		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3228			unregister_netdev(vsi->netdev);
3229			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3230		}
3231		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3232			free_netdev(vsi->netdev);
3233			vsi->netdev = NULL;
3234			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3235		}
3236	}
3237
3238	if (vsi->type == ICE_VSI_VF &&
3239	    vsi->agg_node && vsi->agg_node->valid)
3240		vsi->agg_node->num_vsis--;
3241	ice_vsi_clear_rings(vsi);
3242	ice_vsi_free_stats(vsi);
3243	ice_vsi_put_qs(vsi);
3244
3245	/* retain SW VSI data structure since it is needed to unregister and
3246	 * free VSI netdev when PF is not in reset recovery pending state,\
3247	 * for ex: during rmmod.
3248	 */
3249	if (!ice_is_reset_in_progress(pf->state))
3250		ice_vsi_clear(vsi);
3251
3252	return 0;
3253}
3254
3255/**
3256 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3257 * @vsi: VSI connected with q_vectors
3258 * @coalesce: array of struct with stored coalesce
3259 *
3260 * Returns array size.
3261 */
3262static int
3263ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3264			     struct ice_coalesce_stored *coalesce)
3265{
3266	int i;
3267
3268	ice_for_each_q_vector(vsi, i) {
3269		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3270
3271		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3272		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3273		coalesce[i].intrl = q_vector->intrl;
3274
3275		if (i < vsi->num_txq)
3276			coalesce[i].tx_valid = true;
3277		if (i < vsi->num_rxq)
3278			coalesce[i].rx_valid = true;
3279	}
3280
3281	return vsi->num_q_vectors;
3282}
3283
3284/**
3285 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3286 * @vsi: VSI connected with q_vectors
3287 * @coalesce: pointer to array of struct with stored coalesce
3288 * @size: size of coalesce array
3289 *
3290 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3291 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3292 * to default value.
3293 */
3294static void
3295ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3296			     struct ice_coalesce_stored *coalesce, int size)
3297{
3298	struct ice_ring_container *rc;
3299	int i;
3300
3301	if ((size && !coalesce) || !vsi)
3302		return;
3303
3304	/* There are a couple of cases that have to be handled here:
3305	 *   1. The case where the number of queue vectors stays the same, but
3306	 *      the number of Tx or Rx rings changes (the first for loop)
3307	 *   2. The case where the number of queue vectors increased (the
3308	 *      second for loop)
3309	 */
3310	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3311		/* There are 2 cases to handle here and they are the same for
3312		 * both Tx and Rx:
3313		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3314		 *   and the loop variable is less than the number of rings
3315		 *   allocated, then write the previous values
3316		 *
3317		 *   if the entry was not valid previously, but the number of
3318		 *   rings is less than are allocated (this means the number of
3319		 *   rings increased from previously), then write out the
3320		 *   values in the first element
3321		 *
3322		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3323		 *   as there is no harm because the dynamic algorithm
3324		 *   will just overwrite.
3325		 */
3326		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3327			rc = &vsi->q_vectors[i]->rx;
3328			rc->itr_settings = coalesce[i].itr_rx;
3329			ice_write_itr(rc, rc->itr_setting);
3330		} else if (i < vsi->alloc_rxq) {
3331			rc = &vsi->q_vectors[i]->rx;
3332			rc->itr_settings = coalesce[0].itr_rx;
3333			ice_write_itr(rc, rc->itr_setting);
3334		}
3335
3336		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3337			rc = &vsi->q_vectors[i]->tx;
3338			rc->itr_settings = coalesce[i].itr_tx;
3339			ice_write_itr(rc, rc->itr_setting);
3340		} else if (i < vsi->alloc_txq) {
3341			rc = &vsi->q_vectors[i]->tx;
3342			rc->itr_settings = coalesce[0].itr_tx;
3343			ice_write_itr(rc, rc->itr_setting);
3344		}
3345
3346		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3347		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3348	}
3349
3350	/* the number of queue vectors increased so write whatever is in
3351	 * the first element
3352	 */
3353	for (; i < vsi->num_q_vectors; i++) {
3354		/* transmit */
3355		rc = &vsi->q_vectors[i]->tx;
3356		rc->itr_settings = coalesce[0].itr_tx;
3357		ice_write_itr(rc, rc->itr_setting);
3358
3359		/* receive */
3360		rc = &vsi->q_vectors[i]->rx;
3361		rc->itr_settings = coalesce[0].itr_rx;
3362		ice_write_itr(rc, rc->itr_setting);
3363
3364		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3365		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3366	}
3367}
3368
3369/**
3370 * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3371 * @vsi: VSI pointer
3372 * @prev_txq: Number of Tx rings before ring reallocation
3373 * @prev_rxq: Number of Rx rings before ring reallocation
3374 */
3375static int
3376ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3377{
 
 
 
 
3378	struct ice_vsi_stats *vsi_stat;
3379	struct ice_pf *pf = vsi->back;
 
 
3380	int i;
3381
3382	if (!prev_txq || !prev_rxq)
3383		return 0;
3384	if (vsi->type == ICE_VSI_CHNL)
3385		return 0;
3386
3387	vsi_stat = pf->vsi_stats[vsi->idx];
3388
3389	if (vsi->num_txq < prev_txq) {
3390		for (i = vsi->num_txq; i < prev_txq; i++) {
3391			if (vsi_stat->tx_ring_stats[i]) {
3392				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3393				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3394			}
3395		}
3396	}
3397
3398	if (vsi->num_rxq < prev_rxq) {
3399		for (i = vsi->num_rxq; i < prev_rxq; i++) {
 
 
 
 
 
 
 
 
 
 
3400			if (vsi_stat->rx_ring_stats[i]) {
3401				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3402				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3403			}
3404		}
3405	}
3406
 
 
 
 
 
 
 
 
 
 
3407	return 0;
3408}
3409
3410/**
3411 * ice_vsi_rebuild - Rebuild VSI after reset
3412 * @vsi: VSI to be rebuild
3413 * @init_vsi: is this an initialization or a reconfigure of the VSI
 
 
 
3414 *
3415 * Returns 0 on success and negative value on failure
3416 */
3417int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3418{
3419	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3420	struct ice_coalesce_stored *coalesce;
3421	int ret, i, prev_txq, prev_rxq;
3422	int prev_num_q_vectors = 0;
3423	enum ice_vsi_type vtype;
3424	struct ice_pf *pf;
 
3425
3426	if (!vsi)
3427		return -EINVAL;
3428
 
 
 
3429	pf = vsi->back;
3430	vtype = vsi->type;
3431	if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3432		return -EINVAL;
3433
3434	ice_vsi_init_vlan_ops(vsi);
 
 
 
 
 
 
 
3435
3436	coalesce = kcalloc(vsi->num_q_vectors,
3437			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3438	if (!coalesce)
3439		return -ENOMEM;
3440
3441	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3442
3443	prev_txq = vsi->num_txq;
3444	prev_rxq = vsi->num_rxq;
3445
3446	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3447	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3448	if (ret)
3449		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3450			vsi->vsi_num, ret);
3451	ice_vsi_free_q_vectors(vsi);
3452
3453	/* SR-IOV determines needed MSIX resources all at once instead of per
3454	 * VSI since when VFs are spawned we know how many VFs there are and how
3455	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3456	 * cleared in the same manner.
3457	 */
3458	if (vtype != ICE_VSI_VF) {
3459		/* reclaim SW interrupts back to the common pool */
3460		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3461		pf->num_avail_sw_msix += vsi->num_q_vectors;
3462		vsi->base_vector = 0;
3463	}
3464
3465	if (ice_is_xdp_ena_vsi(vsi))
3466		/* return value check can be skipped here, it always returns
3467		 * 0 if reset is in progress
3468		 */
3469		ice_destroy_xdp_rings(vsi);
3470	ice_vsi_put_qs(vsi);
3471	ice_vsi_clear_rings(vsi);
3472	ice_vsi_free_arrays(vsi);
3473	if (vtype == ICE_VSI_VF)
3474		ice_vsi_set_num_qs(vsi, vsi->vf);
3475	else
3476		ice_vsi_set_num_qs(vsi, NULL);
3477
3478	ret = ice_vsi_alloc_arrays(vsi);
3479	if (ret < 0)
3480		goto err_vsi;
3481
3482	ice_vsi_get_qs(vsi);
3483
3484	ice_alloc_fd_res(vsi);
3485	ice_vsi_set_tc_cfg(vsi);
3486
3487	/* Initialize VSI struct elements and create VSI in FW */
3488	ret = ice_vsi_init(vsi, init_vsi);
3489	if (ret < 0)
3490		goto err_vsi;
3491
3492	switch (vtype) {
3493	case ICE_VSI_CTRL:
3494	case ICE_VSI_SWITCHDEV_CTRL:
3495	case ICE_VSI_PF:
3496		ret = ice_vsi_alloc_q_vectors(vsi);
3497		if (ret)
3498			goto err_rings;
3499
3500		ret = ice_vsi_setup_vector_base(vsi);
3501		if (ret)
3502			goto err_vectors;
3503
3504		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3505		if (ret)
3506			goto err_vectors;
3507
3508		ret = ice_vsi_alloc_rings(vsi);
3509		if (ret)
3510			goto err_vectors;
3511
3512		ret = ice_vsi_alloc_ring_stats(vsi);
3513		if (ret)
3514			goto err_vectors;
3515
3516		ice_vsi_map_rings_to_vectors(vsi);
3517
3518		vsi->stat_offsets_loaded = false;
3519		if (ice_is_xdp_ena_vsi(vsi)) {
3520			ret = ice_vsi_determine_xdp_res(vsi);
3521			if (ret)
3522				goto err_vectors;
3523			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3524			if (ret)
3525				goto err_vectors;
3526		}
3527		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3528		if (vtype != ICE_VSI_CTRL)
3529			/* Do not exit if configuring RSS had an issue, at
3530			 * least receive traffic on first queue. Hence no
3531			 * need to capture return value
3532			 */
3533			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3534				ice_vsi_cfg_rss_lut_key(vsi);
3535
3536		/* disable or enable CRC stripping */
3537		if (vsi->netdev)
3538			ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features &
3539					      NETIF_F_RXFCS));
3540
3541		break;
3542	case ICE_VSI_VF:
3543		ret = ice_vsi_alloc_q_vectors(vsi);
3544		if (ret)
3545			goto err_rings;
3546
3547		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3548		if (ret)
3549			goto err_vectors;
3550
3551		ret = ice_vsi_alloc_rings(vsi);
3552		if (ret)
3553			goto err_vectors;
3554
3555		ret = ice_vsi_alloc_ring_stats(vsi);
3556		if (ret)
3557			goto err_vectors;
3558
3559		vsi->stat_offsets_loaded = false;
3560		break;
3561	case ICE_VSI_CHNL:
3562		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3563			ice_vsi_cfg_rss_lut_key(vsi);
3564			ice_vsi_set_rss_flow_fld(vsi);
3565		}
3566		break;
3567	default:
3568		break;
3569	}
3570
3571	/* configure VSI nodes based on number of queues and TC's */
3572	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3573		/* configure VSI nodes based on number of queues and TC's.
3574		 * ADQ creates VSIs for each TC/Channel but doesn't
3575		 * allocate queues instead it reconfigures the PF queues
3576		 * as per the TC command. So max_txqs should point to the
3577		 * PF Tx queues.
3578		 */
3579		if (vtype == ICE_VSI_CHNL)
3580			max_txqs[i] = pf->num_lan_tx;
3581		else
3582			max_txqs[i] = vsi->alloc_txq;
3583
3584		if (ice_is_xdp_ena_vsi(vsi))
3585			max_txqs[i] += vsi->num_xdp_txq;
3586	}
3587
3588	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3589		/* If MQPRIO is set, means channel code path, hence for main
3590		 * VSI's, use TC as 1
3591		 */
3592		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3593	else
3594		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3595				      vsi->tc_cfg.ena_tc, max_txqs);
3596
3597	if (ret) {
3598		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3599			vsi->vsi_num, ret);
3600		if (init_vsi) {
3601			ret = -EIO;
3602			goto err_vectors;
3603		} else {
3604			return ice_schedule_reset(pf, ICE_RESET_PFR);
3605		}
 
 
 
3606	}
3607
3608	if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq))
3609		goto err_vectors;
3610
3611	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3612	kfree(coalesce);
3613
3614	return 0;
3615
3616err_vectors:
3617	ice_vsi_free_q_vectors(vsi);
3618err_rings:
3619	if (vsi->netdev) {
3620		vsi->current_netdev_flags = 0;
3621		unregister_netdev(vsi->netdev);
3622		free_netdev(vsi->netdev);
3623		vsi->netdev = NULL;
3624	}
3625err_vsi:
3626	ice_vsi_clear(vsi);
3627	set_bit(ICE_RESET_FAILED, pf->state);
3628	kfree(coalesce);
 
3629	return ret;
3630}
3631
3632/**
3633 * ice_is_reset_in_progress - check for a reset in progress
3634 * @state: PF state field
3635 */
3636bool ice_is_reset_in_progress(unsigned long *state)
3637{
3638	return test_bit(ICE_RESET_OICR_RECV, state) ||
3639	       test_bit(ICE_PFR_REQ, state) ||
3640	       test_bit(ICE_CORER_REQ, state) ||
3641	       test_bit(ICE_GLOBR_REQ, state);
3642}
3643
3644/**
3645 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3646 * @pf: pointer to the PF structure
3647 * @timeout: length of time to wait, in jiffies
3648 *
3649 * Wait (sleep) for a short time until the driver finishes cleaning up from
3650 * a device reset. The caller must be able to sleep. Use this to delay
3651 * operations that could fail while the driver is cleaning up after a device
3652 * reset.
3653 *
3654 * Returns 0 on success, -EBUSY if the reset is not finished within the
3655 * timeout, and -ERESTARTSYS if the thread was interrupted.
3656 */
3657int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3658{
3659	long ret;
3660
3661	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3662					       !ice_is_reset_in_progress(pf->state),
3663					       timeout);
3664	if (ret < 0)
3665		return ret;
3666	else if (!ret)
3667		return -EBUSY;
3668	else
3669		return 0;
3670}
3671
3672/**
3673 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3674 * @vsi: VSI being configured
3675 * @ctx: the context buffer returned from AQ VSI update command
3676 */
3677static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3678{
3679	vsi->info.mapping_flags = ctx->info.mapping_flags;
3680	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3681	       sizeof(vsi->info.q_mapping));
3682	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3683	       sizeof(vsi->info.tc_mapping));
3684}
3685
3686/**
3687 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3688 * @vsi: the VSI being configured
3689 * @ena_tc: TC map to be enabled
3690 */
3691void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3692{
3693	struct net_device *netdev = vsi->netdev;
3694	struct ice_pf *pf = vsi->back;
3695	int numtc = vsi->tc_cfg.numtc;
3696	struct ice_dcbx_cfg *dcbcfg;
3697	u8 netdev_tc;
3698	int i;
3699
3700	if (!netdev)
3701		return;
3702
3703	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3704	if (vsi->type == ICE_VSI_CHNL)
3705		return;
3706
3707	if (!ena_tc) {
3708		netdev_reset_tc(netdev);
3709		return;
3710	}
3711
3712	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3713		numtc = vsi->all_numtc;
3714
3715	if (netdev_set_num_tc(netdev, numtc))
3716		return;
3717
3718	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3719
3720	ice_for_each_traffic_class(i)
3721		if (vsi->tc_cfg.ena_tc & BIT(i))
3722			netdev_set_tc_queue(netdev,
3723					    vsi->tc_cfg.tc_info[i].netdev_tc,
3724					    vsi->tc_cfg.tc_info[i].qcount_tx,
3725					    vsi->tc_cfg.tc_info[i].qoffset);
3726	/* setup TC queue map for CHNL TCs */
3727	ice_for_each_chnl_tc(i) {
3728		if (!(vsi->all_enatc & BIT(i)))
3729			break;
3730		if (!vsi->mqprio_qopt.qopt.count[i])
3731			break;
3732		netdev_set_tc_queue(netdev, i,
3733				    vsi->mqprio_qopt.qopt.count[i],
3734				    vsi->mqprio_qopt.qopt.offset[i]);
3735	}
3736
3737	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3738		return;
3739
3740	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3741		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3742
3743		/* Get the mapped netdev TC# for the UP */
3744		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3745		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3746	}
3747}
3748
3749/**
3750 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3751 * @vsi: the VSI being configured,
3752 * @ctxt: VSI context structure
3753 * @ena_tc: number of traffic classes to enable
3754 *
3755 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3756 */
3757static int
3758ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3759			   u8 ena_tc)
3760{
3761	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3762	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3763	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3764	u16 new_txq, new_rxq;
3765	u8 netdev_tc = 0;
3766	int i;
3767
3768	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3769
3770	pow = order_base_2(tc0_qcount);
3771	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3772		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3773		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3774
3775	ice_for_each_traffic_class(i) {
3776		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3777			/* TC is not enabled */
3778			vsi->tc_cfg.tc_info[i].qoffset = 0;
3779			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3780			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3781			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3782			ctxt->info.tc_mapping[i] = 0;
3783			continue;
3784		}
3785
3786		offset = vsi->mqprio_qopt.qopt.offset[i];
3787		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3788		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3789		vsi->tc_cfg.tc_info[i].qoffset = offset;
3790		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3791		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3792		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3793	}
3794
3795	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3796		ice_for_each_chnl_tc(i) {
3797			if (!(vsi->all_enatc & BIT(i)))
3798				continue;
3799			offset = vsi->mqprio_qopt.qopt.offset[i];
3800			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3801			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3802		}
3803	}
3804
3805	new_txq = offset + qcount_tx;
3806	if (new_txq > vsi->alloc_txq) {
3807		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3808			new_txq, vsi->alloc_txq);
3809		return -EINVAL;
3810	}
3811
3812	new_rxq = offset + qcount_rx;
3813	if (new_rxq > vsi->alloc_rxq) {
3814		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3815			new_rxq, vsi->alloc_rxq);
3816		return -EINVAL;
3817	}
3818
3819	/* Set actual Tx/Rx queue pairs */
3820	vsi->num_txq = new_txq;
3821	vsi->num_rxq = new_rxq;
3822
3823	/* Setup queue TC[0].qmap for given VSI context */
3824	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3825	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3826	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3827
3828	/* Find queue count available for channel VSIs and starting offset
3829	 * for channel VSIs
3830	 */
3831	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3832		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3833		vsi->next_base_q = tc0_qcount;
3834	}
3835	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3836	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3837	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3838		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3839
3840	return 0;
3841}
3842
3843/**
3844 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3845 * @vsi: VSI to be configured
3846 * @ena_tc: TC bitmap
3847 *
3848 * VSI queues expected to be quiesced before calling this function
3849 */
3850int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3851{
3852	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3853	struct ice_pf *pf = vsi->back;
3854	struct ice_tc_cfg old_tc_cfg;
3855	struct ice_vsi_ctx *ctx;
3856	struct device *dev;
3857	int i, ret = 0;
3858	u8 num_tc = 0;
3859
3860	dev = ice_pf_to_dev(pf);
3861	if (vsi->tc_cfg.ena_tc == ena_tc &&
3862	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3863		return ret;
3864
3865	ice_for_each_traffic_class(i) {
3866		/* build bitmap of enabled TCs */
3867		if (ena_tc & BIT(i))
3868			num_tc++;
3869		/* populate max_txqs per TC */
3870		max_txqs[i] = vsi->alloc_txq;
3871		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3872		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3873		 */
3874		if (vsi->type == ICE_VSI_CHNL &&
3875		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3876			max_txqs[i] = vsi->num_txq;
3877	}
3878
3879	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3880	vsi->tc_cfg.ena_tc = ena_tc;
3881	vsi->tc_cfg.numtc = num_tc;
3882
3883	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3884	if (!ctx)
3885		return -ENOMEM;
3886
3887	ctx->vf_num = 0;
3888	ctx->info = vsi->info;
3889
3890	if (vsi->type == ICE_VSI_PF &&
3891	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3892		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3893	else
3894		ret = ice_vsi_setup_q_map(vsi, ctx);
3895
3896	if (ret) {
3897		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3898		goto out;
3899	}
3900
3901	/* must to indicate which section of VSI context are being modified */
3902	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3903	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3904	if (ret) {
3905		dev_info(dev, "Failed VSI Update\n");
3906		goto out;
3907	}
3908
3909	if (vsi->type == ICE_VSI_PF &&
3910	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3911		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3912	else
3913		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3914				      vsi->tc_cfg.ena_tc, max_txqs);
3915
3916	if (ret) {
3917		dev_err(dev, "VSI %d failed TC config, error %d\n",
3918			vsi->vsi_num, ret);
3919		goto out;
3920	}
3921	ice_vsi_update_q_map(vsi, ctx);
3922	vsi->info.valid_sections = 0;
3923
3924	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3925out:
3926	kfree(ctx);
3927	return ret;
3928}
3929
3930/**
3931 * ice_update_ring_stats - Update ring statistics
3932 * @stats: stats to be updated
3933 * @pkts: number of processed packets
3934 * @bytes: number of processed bytes
3935 *
3936 * This function assumes that caller has acquired a u64_stats_sync lock.
3937 */
3938static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3939{
3940	stats->bytes += bytes;
3941	stats->pkts += pkts;
3942}
3943
3944/**
3945 * ice_update_tx_ring_stats - Update Tx ring specific counters
3946 * @tx_ring: ring to update
3947 * @pkts: number of processed packets
3948 * @bytes: number of processed bytes
3949 */
3950void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3951{
3952	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3953	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3954	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3955}
3956
3957/**
3958 * ice_update_rx_ring_stats - Update Rx ring specific counters
3959 * @rx_ring: ring to update
3960 * @pkts: number of processed packets
3961 * @bytes: number of processed bytes
3962 */
3963void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3964{
3965	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3966	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3967	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3968}
3969
3970/**
3971 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3972 * @pi: port info of the switch with default VSI
3973 *
3974 * Return true if the there is a single VSI in default forwarding VSI list
3975 */
3976bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3977{
3978	bool exists = false;
3979
3980	ice_check_if_dflt_vsi(pi, 0, &exists);
3981	return exists;
3982}
3983
3984/**
3985 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3986 * @vsi: VSI to compare against default forwarding VSI
3987 *
3988 * If this VSI passed in is the default forwarding VSI then return true, else
3989 * return false
3990 */
3991bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3992{
3993	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3994}
3995
3996/**
3997 * ice_set_dflt_vsi - set the default forwarding VSI
3998 * @vsi: VSI getting set as the default forwarding VSI on the switch
3999 *
4000 * If the VSI passed in is already the default VSI and it's enabled just return
4001 * success.
4002 *
4003 * Otherwise try to set the VSI passed in as the switch's default VSI and
4004 * return the result.
4005 */
4006int ice_set_dflt_vsi(struct ice_vsi *vsi)
4007{
4008	struct device *dev;
4009	int status;
4010
4011	if (!vsi)
4012		return -EINVAL;
4013
4014	dev = ice_pf_to_dev(vsi->back);
4015
 
 
 
 
 
 
4016	/* the VSI passed in is already the default VSI */
4017	if (ice_is_vsi_dflt_vsi(vsi)) {
4018		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
4019			vsi->vsi_num);
4020		return 0;
4021	}
4022
4023	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
4024	if (status) {
4025		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
4026			vsi->vsi_num, status);
4027		return status;
4028	}
4029
4030	return 0;
4031}
4032
4033/**
4034 * ice_clear_dflt_vsi - clear the default forwarding VSI
4035 * @vsi: VSI to remove from filter list
4036 *
4037 * If the switch has no default VSI or it's not enabled then return error.
4038 *
4039 * Otherwise try to clear the default VSI and return the result.
4040 */
4041int ice_clear_dflt_vsi(struct ice_vsi *vsi)
4042{
4043	struct device *dev;
4044	int status;
4045
4046	if (!vsi)
4047		return -EINVAL;
4048
4049	dev = ice_pf_to_dev(vsi->back);
4050
4051	/* there is no default VSI configured */
4052	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
4053		return -ENODEV;
4054
4055	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
4056				  ICE_FLTR_RX);
4057	if (status) {
4058		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
4059			vsi->vsi_num, status);
4060		return -EIO;
4061	}
4062
4063	return 0;
4064}
4065
4066/**
4067 * ice_get_link_speed_mbps - get link speed in Mbps
4068 * @vsi: the VSI whose link speed is being queried
4069 *
4070 * Return current VSI link speed and 0 if the speed is unknown.
4071 */
4072int ice_get_link_speed_mbps(struct ice_vsi *vsi)
4073{
4074	unsigned int link_speed;
4075
4076	link_speed = vsi->port_info->phy.link_info.link_speed;
4077
4078	return (int)ice_get_link_speed(fls(link_speed) - 1);
4079}
4080
4081/**
4082 * ice_get_link_speed_kbps - get link speed in Kbps
4083 * @vsi: the VSI whose link speed is being queried
4084 *
4085 * Return current VSI link speed and 0 if the speed is unknown.
4086 */
4087int ice_get_link_speed_kbps(struct ice_vsi *vsi)
4088{
4089	int speed_mbps;
4090
4091	speed_mbps = ice_get_link_speed_mbps(vsi);
4092
4093	return speed_mbps * 1000;
4094}
4095
4096/**
4097 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
4098 * @vsi: VSI to be configured
4099 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
4100 *
4101 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
4102 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
4103 * on TC 0.
4104 */
4105int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
4106{
4107	struct ice_pf *pf = vsi->back;
4108	struct device *dev;
4109	int status;
4110	int speed;
4111
4112	dev = ice_pf_to_dev(pf);
4113	if (!vsi->port_info) {
4114		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4115			vsi->idx, vsi->type);
4116		return -EINVAL;
4117	}
4118
4119	speed = ice_get_link_speed_kbps(vsi);
4120	if (min_tx_rate > (u64)speed) {
4121		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4122			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4123			speed);
4124		return -EINVAL;
4125	}
4126
4127	/* Configure min BW for VSI limit */
4128	if (min_tx_rate) {
4129		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4130						   ICE_MIN_BW, min_tx_rate);
4131		if (status) {
4132			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
4133				min_tx_rate, ice_vsi_type_str(vsi->type),
4134				vsi->idx);
4135			return status;
4136		}
4137
4138		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
4139			min_tx_rate, ice_vsi_type_str(vsi->type));
4140	} else {
4141		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4142							vsi->idx, 0,
4143							ICE_MIN_BW);
4144		if (status) {
4145			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
4146				ice_vsi_type_str(vsi->type), vsi->idx);
4147			return status;
4148		}
4149
4150		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
4151			ice_vsi_type_str(vsi->type), vsi->idx);
4152	}
4153
4154	return 0;
4155}
4156
4157/**
4158 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
4159 * @vsi: VSI to be configured
4160 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
4161 *
4162 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
4163 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
4164 * on TC 0.
4165 */
4166int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
4167{
4168	struct ice_pf *pf = vsi->back;
4169	struct device *dev;
4170	int status;
4171	int speed;
4172
4173	dev = ice_pf_to_dev(pf);
4174	if (!vsi->port_info) {
4175		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4176			vsi->idx, vsi->type);
4177		return -EINVAL;
4178	}
4179
4180	speed = ice_get_link_speed_kbps(vsi);
4181	if (max_tx_rate > (u64)speed) {
4182		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4183			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4184			speed);
4185		return -EINVAL;
4186	}
4187
4188	/* Configure max BW for VSI limit */
4189	if (max_tx_rate) {
4190		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4191						   ICE_MAX_BW, max_tx_rate);
4192		if (status) {
4193			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
4194				max_tx_rate, ice_vsi_type_str(vsi->type),
4195				vsi->idx);
4196			return status;
4197		}
4198
4199		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
4200			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
4201	} else {
4202		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4203							vsi->idx, 0,
4204							ICE_MAX_BW);
4205		if (status) {
4206			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
4207				ice_vsi_type_str(vsi->type), vsi->idx);
4208			return status;
4209		}
4210
4211		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
4212			ice_vsi_type_str(vsi->type), vsi->idx);
4213	}
4214
4215	return 0;
4216}
4217
4218/**
4219 * ice_set_link - turn on/off physical link
4220 * @vsi: VSI to modify physical link on
4221 * @ena: turn on/off physical link
4222 */
4223int ice_set_link(struct ice_vsi *vsi, bool ena)
4224{
4225	struct device *dev = ice_pf_to_dev(vsi->back);
4226	struct ice_port_info *pi = vsi->port_info;
4227	struct ice_hw *hw = pi->hw;
4228	int status;
4229
4230	if (vsi->type != ICE_VSI_PF)
4231		return -EINVAL;
4232
4233	status = ice_aq_set_link_restart_an(pi, ena, NULL);
4234
4235	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
4236	 * this is not a fatal error, so print a warning message and return
4237	 * a success code. Return an error if FW returns an error code other
4238	 * than ICE_AQ_RC_EMODE
4239	 */
4240	if (status == -EIO) {
4241		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4242			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4243				(ena ? "ON" : "OFF"), status,
4244				ice_aq_str(hw->adminq.sq_last_status));
4245	} else if (status) {
4246		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4247			(ena ? "ON" : "OFF"), status,
4248			ice_aq_str(hw->adminq.sq_last_status));
4249		return status;
4250	}
4251
4252	return 0;
4253}
4254
4255/**
4256 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4257 * @vsi: VSI used to add VLAN filters
4258 *
4259 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4260 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4261 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4262 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4263 *
4264 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4265 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4266 * traffic in SVM, since the VLAN TPID isn't part of filtering.
4267 *
4268 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4269 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4270 * part of filtering.
4271 */
4272int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4273{
4274	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4275	struct ice_vlan vlan;
4276	int err;
4277
4278	vlan = ICE_VLAN(0, 0, 0);
4279	err = vlan_ops->add_vlan(vsi, &vlan);
4280	if (err && err != -EEXIST)
4281		return err;
4282
4283	/* in SVM both VLAN 0 filters are identical */
4284	if (!ice_is_dvm_ena(&vsi->back->hw))
4285		return 0;
4286
4287	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4288	err = vlan_ops->add_vlan(vsi, &vlan);
4289	if (err && err != -EEXIST)
4290		return err;
4291
4292	return 0;
4293}
4294
4295/**
4296 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4297 * @vsi: VSI used to add VLAN filters
4298 *
4299 * Delete the VLAN 0 filters in the same manner that they were added in
4300 * ice_vsi_add_vlan_zero.
4301 */
4302int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4303{
4304	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4305	struct ice_vlan vlan;
4306	int err;
4307
4308	vlan = ICE_VLAN(0, 0, 0);
4309	err = vlan_ops->del_vlan(vsi, &vlan);
4310	if (err && err != -EEXIST)
4311		return err;
4312
4313	/* in SVM both VLAN 0 filters are identical */
4314	if (!ice_is_dvm_ena(&vsi->back->hw))
4315		return 0;
4316
4317	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4318	err = vlan_ops->del_vlan(vsi, &vlan);
4319	if (err && err != -EEXIST)
4320		return err;
4321
4322	/* when deleting the last VLAN filter, make sure to disable the VLAN
4323	 * promisc mode so the filter isn't left by accident
4324	 */
4325	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4326				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
4327}
4328
4329/**
4330 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4331 * @vsi: VSI used to get the VLAN mode
4332 *
4333 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4334 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4335 */
4336static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4337{
4338#define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4339#define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4340	/* no VLAN 0 filter is created when a port VLAN is active */
4341	if (vsi->type == ICE_VSI_VF) {
4342		if (WARN_ON(!vsi->vf))
4343			return 0;
4344
4345		if (ice_vf_is_port_vlan_ena(vsi->vf))
4346			return 0;
4347	}
4348
4349	if (ice_is_dvm_ena(&vsi->back->hw))
4350		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4351	else
4352		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4353}
4354
4355/**
4356 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4357 * @vsi: VSI used to determine if any non-zero VLANs have been added
4358 */
4359bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4360{
4361	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4362}
4363
4364/**
4365 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4366 * @vsi: VSI used to get the number of non-zero VLANs added
4367 */
4368u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4369{
4370	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4371}
4372
4373/**
4374 * ice_is_feature_supported
4375 * @pf: pointer to the struct ice_pf instance
4376 * @f: feature enum to be checked
4377 *
4378 * returns true if feature is supported, false otherwise
4379 */
4380bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4381{
4382	if (f < 0 || f >= ICE_F_MAX)
4383		return false;
4384
4385	return test_bit(f, pf->features);
4386}
4387
4388/**
4389 * ice_set_feature_support
4390 * @pf: pointer to the struct ice_pf instance
4391 * @f: feature enum to set
4392 */
4393static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4394{
4395	if (f < 0 || f >= ICE_F_MAX)
4396		return;
4397
4398	set_bit(f, pf->features);
4399}
4400
4401/**
4402 * ice_clear_feature_support
4403 * @pf: pointer to the struct ice_pf instance
4404 * @f: feature enum to clear
4405 */
4406void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4407{
4408	if (f < 0 || f >= ICE_F_MAX)
4409		return;
4410
4411	clear_bit(f, pf->features);
4412}
4413
4414/**
4415 * ice_init_feature_support
4416 * @pf: pointer to the struct ice_pf instance
4417 *
4418 * called during init to setup supported feature
4419 */
4420void ice_init_feature_support(struct ice_pf *pf)
4421{
4422	switch (pf->hw.device_id) {
4423	case ICE_DEV_ID_E810C_BACKPLANE:
4424	case ICE_DEV_ID_E810C_QSFP:
4425	case ICE_DEV_ID_E810C_SFP:
 
 
 
4426		ice_set_feature_support(pf, ICE_F_DSCP);
4427		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4428		if (ice_is_e810t(&pf->hw)) {
 
 
 
 
 
 
4429			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4430			if (ice_gnss_is_gps_present(&pf->hw))
4431				ice_set_feature_support(pf, ICE_F_GNSS);
4432		}
4433		break;
4434	default:
4435		break;
4436	}
4437}
4438
4439/**
4440 * ice_vsi_update_security - update security block in VSI
4441 * @vsi: pointer to VSI structure
4442 * @fill: function pointer to fill ctx
4443 */
4444int
4445ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4446{
4447	struct ice_vsi_ctx ctx = { 0 };
4448
4449	ctx.info = vsi->info;
4450	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4451	fill(&ctx);
4452
4453	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4454		return -ENODEV;
4455
4456	vsi->info = ctx.info;
4457	return 0;
4458}
4459
4460/**
4461 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4462 * @ctx: pointer to VSI ctx structure
4463 */
4464void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4465{
4466	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4467			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4468				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4469}
4470
4471/**
4472 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4473 * @ctx: pointer to VSI ctx structure
4474 */
4475void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4476{
4477	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4478			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4479				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4480}
4481
4482/**
4483 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4484 * @ctx: pointer to VSI ctx structure
4485 */
4486void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4487{
4488	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4489}
4490
4491/**
4492 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4493 * @ctx: pointer to VSI ctx structure
4494 */
4495void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4496{
4497	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4498}