Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_devlink.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 if (!vsi->af_xdp_zc_qps)
122 goto err_zc_qps;
123
124 return 0;
125
126err_zc_qps:
127 devm_kfree(dev, vsi->q_vectors);
128err_vectors:
129 devm_kfree(dev, vsi->rxq_map);
130err_rxq_map:
131 devm_kfree(dev, vsi->txq_map);
132err_txq_map:
133 devm_kfree(dev, vsi->rx_rings);
134err_rings:
135 devm_kfree(dev, vsi->tx_rings);
136 return -ENOMEM;
137}
138
139/**
140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141 * @vsi: the VSI being configured
142 */
143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144{
145 switch (vsi->type) {
146 case ICE_VSI_PF:
147 case ICE_VSI_SWITCHDEV_CTRL:
148 case ICE_VSI_CTRL:
149 case ICE_VSI_LB:
150 /* a user could change the values of num_[tr]x_desc using
151 * ethtool -G so we should keep those values instead of
152 * overwriting them with the defaults.
153 */
154 if (!vsi->num_rx_desc)
155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 if (!vsi->num_tx_desc)
157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 break;
159 default:
160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 vsi->type);
162 break;
163 }
164}
165
166/**
167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168 * @vsi: the VSI being configured
169 *
170 * Return 0 on success and a negative value on error
171 */
172static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173{
174 enum ice_vsi_type vsi_type = vsi->type;
175 struct ice_pf *pf = vsi->back;
176 struct ice_vf *vf = vsi->vf;
177
178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 return;
180
181 switch (vsi_type) {
182 case ICE_VSI_PF:
183 if (vsi->req_txq) {
184 vsi->alloc_txq = vsi->req_txq;
185 vsi->num_txq = vsi->req_txq;
186 } else {
187 vsi->alloc_txq = min3(pf->num_lan_msix,
188 ice_get_avail_txq_count(pf),
189 (u16)num_online_cpus());
190 }
191
192 pf->num_lan_tx = vsi->alloc_txq;
193
194 /* only 1 Rx queue unless RSS is enabled */
195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 vsi->alloc_rxq = 1;
197 } else {
198 if (vsi->req_rxq) {
199 vsi->alloc_rxq = vsi->req_rxq;
200 vsi->num_rxq = vsi->req_rxq;
201 } else {
202 vsi->alloc_rxq = min3(pf->num_lan_msix,
203 ice_get_avail_rxq_count(pf),
204 (u16)num_online_cpus());
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 max_t(int, vsi->alloc_rxq,
212 vsi->alloc_txq));
213 break;
214 case ICE_VSI_SWITCHDEV_CTRL:
215 /* The number of queues for ctrl VSI is equal to number of PRs
216 * Each ring is associated to the corresponding VF_PR netdev.
217 * Tx and Rx rings are always equal
218 */
219 if (vsi->req_txq && vsi->req_rxq) {
220 vsi->alloc_txq = vsi->req_txq;
221 vsi->alloc_rxq = vsi->req_rxq;
222 } else {
223 vsi->alloc_txq = 1;
224 vsi->alloc_rxq = 1;
225 }
226
227 vsi->num_q_vectors = 1;
228 break;
229 case ICE_VSI_VF:
230 if (vf->num_req_qs)
231 vf->num_vf_qs = vf->num_req_qs;
232 vsi->alloc_txq = vf->num_vf_qs;
233 vsi->alloc_rxq = vf->num_vf_qs;
234 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
235 * data queue interrupts). Since vsi->num_q_vectors is number
236 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
237 * original vector count
238 */
239 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
240 break;
241 case ICE_VSI_CTRL:
242 vsi->alloc_txq = 1;
243 vsi->alloc_rxq = 1;
244 vsi->num_q_vectors = 1;
245 break;
246 case ICE_VSI_CHNL:
247 vsi->alloc_txq = 0;
248 vsi->alloc_rxq = 0;
249 break;
250 case ICE_VSI_LB:
251 vsi->alloc_txq = 1;
252 vsi->alloc_rxq = 1;
253 break;
254 default:
255 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
256 break;
257 }
258
259 ice_vsi_set_num_desc(vsi);
260}
261
262/**
263 * ice_get_free_slot - get the next non-NULL location index in array
264 * @array: array to search
265 * @size: size of the array
266 * @curr: last known occupied index to be used as a search hint
267 *
268 * void * is being used to keep the functionality generic. This lets us use this
269 * function on any array of pointers.
270 */
271static int ice_get_free_slot(void *array, int size, int curr)
272{
273 int **tmp_array = (int **)array;
274 int next;
275
276 if (curr < (size - 1) && !tmp_array[curr + 1]) {
277 next = curr + 1;
278 } else {
279 int i = 0;
280
281 while ((i < size) && (tmp_array[i]))
282 i++;
283 if (i == size)
284 next = ICE_NO_VSI;
285 else
286 next = i;
287 }
288 return next;
289}
290
291/**
292 * ice_vsi_delete_from_hw - delete a VSI from the switch
293 * @vsi: pointer to VSI being removed
294 */
295static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
296{
297 struct ice_pf *pf = vsi->back;
298 struct ice_vsi_ctx *ctxt;
299 int status;
300
301 ice_fltr_remove_all(vsi);
302 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
303 if (!ctxt)
304 return;
305
306 if (vsi->type == ICE_VSI_VF)
307 ctxt->vf_num = vsi->vf->vf_id;
308 ctxt->vsi_num = vsi->vsi_num;
309
310 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
311
312 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
313 if (status)
314 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
315 vsi->vsi_num, status);
316
317 kfree(ctxt);
318}
319
320/**
321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
322 * @vsi: pointer to VSI being cleared
323 */
324static void ice_vsi_free_arrays(struct ice_vsi *vsi)
325{
326 struct ice_pf *pf = vsi->back;
327 struct device *dev;
328
329 dev = ice_pf_to_dev(pf);
330
331 bitmap_free(vsi->af_xdp_zc_qps);
332 vsi->af_xdp_zc_qps = NULL;
333 /* free the ring and vector containers */
334 devm_kfree(dev, vsi->q_vectors);
335 vsi->q_vectors = NULL;
336 devm_kfree(dev, vsi->tx_rings);
337 vsi->tx_rings = NULL;
338 devm_kfree(dev, vsi->rx_rings);
339 vsi->rx_rings = NULL;
340 devm_kfree(dev, vsi->txq_map);
341 vsi->txq_map = NULL;
342 devm_kfree(dev, vsi->rxq_map);
343 vsi->rxq_map = NULL;
344}
345
346/**
347 * ice_vsi_free_stats - Free the ring statistics structures
348 * @vsi: VSI pointer
349 */
350static void ice_vsi_free_stats(struct ice_vsi *vsi)
351{
352 struct ice_vsi_stats *vsi_stat;
353 struct ice_pf *pf = vsi->back;
354 int i;
355
356 if (vsi->type == ICE_VSI_CHNL)
357 return;
358 if (!pf->vsi_stats)
359 return;
360
361 vsi_stat = pf->vsi_stats[vsi->idx];
362 if (!vsi_stat)
363 return;
364
365 ice_for_each_alloc_txq(vsi, i) {
366 if (vsi_stat->tx_ring_stats[i]) {
367 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
368 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
369 }
370 }
371
372 ice_for_each_alloc_rxq(vsi, i) {
373 if (vsi_stat->rx_ring_stats[i]) {
374 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
375 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
376 }
377 }
378
379 kfree(vsi_stat->tx_ring_stats);
380 kfree(vsi_stat->rx_ring_stats);
381 kfree(vsi_stat);
382 pf->vsi_stats[vsi->idx] = NULL;
383}
384
385/**
386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
387 * @vsi: VSI which is having stats allocated
388 */
389static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
390{
391 struct ice_ring_stats **tx_ring_stats;
392 struct ice_ring_stats **rx_ring_stats;
393 struct ice_vsi_stats *vsi_stats;
394 struct ice_pf *pf = vsi->back;
395 u16 i;
396
397 vsi_stats = pf->vsi_stats[vsi->idx];
398 tx_ring_stats = vsi_stats->tx_ring_stats;
399 rx_ring_stats = vsi_stats->rx_ring_stats;
400
401 /* Allocate Tx ring stats */
402 ice_for_each_alloc_txq(vsi, i) {
403 struct ice_ring_stats *ring_stats;
404 struct ice_tx_ring *ring;
405
406 ring = vsi->tx_rings[i];
407 ring_stats = tx_ring_stats[i];
408
409 if (!ring_stats) {
410 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
411 if (!ring_stats)
412 goto err_out;
413
414 WRITE_ONCE(tx_ring_stats[i], ring_stats);
415 }
416
417 ring->ring_stats = ring_stats;
418 }
419
420 /* Allocate Rx ring stats */
421 ice_for_each_alloc_rxq(vsi, i) {
422 struct ice_ring_stats *ring_stats;
423 struct ice_rx_ring *ring;
424
425 ring = vsi->rx_rings[i];
426 ring_stats = rx_ring_stats[i];
427
428 if (!ring_stats) {
429 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
430 if (!ring_stats)
431 goto err_out;
432
433 WRITE_ONCE(rx_ring_stats[i], ring_stats);
434 }
435
436 ring->ring_stats = ring_stats;
437 }
438
439 return 0;
440
441err_out:
442 ice_vsi_free_stats(vsi);
443 return -ENOMEM;
444}
445
446/**
447 * ice_vsi_free - clean up and deallocate the provided VSI
448 * @vsi: pointer to VSI being cleared
449 *
450 * This deallocates the VSI's queue resources, removes it from the PF's
451 * VSI array if necessary, and deallocates the VSI
452 */
453static void ice_vsi_free(struct ice_vsi *vsi)
454{
455 struct ice_pf *pf = NULL;
456 struct device *dev;
457
458 if (!vsi || !vsi->back)
459 return;
460
461 pf = vsi->back;
462 dev = ice_pf_to_dev(pf);
463
464 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
465 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
466 return;
467 }
468
469 mutex_lock(&pf->sw_mutex);
470 /* updates the PF for this cleared VSI */
471
472 pf->vsi[vsi->idx] = NULL;
473 pf->next_vsi = vsi->idx;
474
475 ice_vsi_free_stats(vsi);
476 ice_vsi_free_arrays(vsi);
477 mutex_unlock(&pf->sw_mutex);
478 devm_kfree(dev, vsi);
479}
480
481void ice_vsi_delete(struct ice_vsi *vsi)
482{
483 ice_vsi_delete_from_hw(vsi);
484 ice_vsi_free(vsi);
485}
486
487/**
488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
489 * @irq: interrupt number
490 * @data: pointer to a q_vector
491 */
492static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
493{
494 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
495
496 if (!q_vector->tx.tx_ring)
497 return IRQ_HANDLED;
498
499#define FDIR_RX_DESC_CLEAN_BUDGET 64
500 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
501 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
502
503 return IRQ_HANDLED;
504}
505
506/**
507 * ice_msix_clean_rings - MSIX mode Interrupt Handler
508 * @irq: interrupt number
509 * @data: pointer to a q_vector
510 */
511static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
512{
513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514
515 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
516 return IRQ_HANDLED;
517
518 q_vector->total_events++;
519
520 napi_schedule(&q_vector->napi);
521
522 return IRQ_HANDLED;
523}
524
525static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
526{
527 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
528 struct ice_pf *pf = q_vector->vsi->back;
529 struct ice_repr *repr;
530 unsigned long id;
531
532 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
533 return IRQ_HANDLED;
534
535 xa_for_each(&pf->eswitch.reprs, id, repr)
536 napi_schedule(&repr->q_vector->napi);
537
538 return IRQ_HANDLED;
539}
540
541/**
542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
543 * @vsi: VSI pointer
544 */
545static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
546{
547 struct ice_vsi_stats *vsi_stat;
548 struct ice_pf *pf = vsi->back;
549
550 if (vsi->type == ICE_VSI_CHNL)
551 return 0;
552 if (!pf->vsi_stats)
553 return -ENOENT;
554
555 if (pf->vsi_stats[vsi->idx])
556 /* realloc will happen in rebuild path */
557 return 0;
558
559 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
560 if (!vsi_stat)
561 return -ENOMEM;
562
563 vsi_stat->tx_ring_stats =
564 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
565 GFP_KERNEL);
566 if (!vsi_stat->tx_ring_stats)
567 goto err_alloc_tx;
568
569 vsi_stat->rx_ring_stats =
570 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
571 GFP_KERNEL);
572 if (!vsi_stat->rx_ring_stats)
573 goto err_alloc_rx;
574
575 pf->vsi_stats[vsi->idx] = vsi_stat;
576
577 return 0;
578
579err_alloc_rx:
580 kfree(vsi_stat->rx_ring_stats);
581err_alloc_tx:
582 kfree(vsi_stat->tx_ring_stats);
583 kfree(vsi_stat);
584 pf->vsi_stats[vsi->idx] = NULL;
585 return -ENOMEM;
586}
587
588/**
589 * ice_vsi_alloc_def - set default values for already allocated VSI
590 * @vsi: ptr to VSI
591 * @ch: ptr to channel
592 */
593static int
594ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
595{
596 if (vsi->type != ICE_VSI_CHNL) {
597 ice_vsi_set_num_qs(vsi);
598 if (ice_vsi_alloc_arrays(vsi))
599 return -ENOMEM;
600 }
601
602 switch (vsi->type) {
603 case ICE_VSI_SWITCHDEV_CTRL:
604 /* Setup eswitch MSIX irq handler for VSI */
605 vsi->irq_handler = ice_eswitch_msix_clean_rings;
606 break;
607 case ICE_VSI_PF:
608 /* Setup default MSIX irq handler for VSI */
609 vsi->irq_handler = ice_msix_clean_rings;
610 break;
611 case ICE_VSI_CTRL:
612 /* Setup ctrl VSI MSIX irq handler */
613 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
614 break;
615 case ICE_VSI_CHNL:
616 if (!ch)
617 return -EINVAL;
618
619 vsi->num_rxq = ch->num_rxq;
620 vsi->num_txq = ch->num_txq;
621 vsi->next_base_q = ch->base_q;
622 break;
623 case ICE_VSI_VF:
624 case ICE_VSI_LB:
625 break;
626 default:
627 ice_vsi_free_arrays(vsi);
628 return -EINVAL;
629 }
630
631 return 0;
632}
633
634/**
635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
636 * @pf: board private structure
637 *
638 * Reserves a VSI index from the PF and allocates an empty VSI structure
639 * without a type. The VSI structure must later be initialized by calling
640 * ice_vsi_cfg().
641 *
642 * returns a pointer to a VSI on success, NULL on failure.
643 */
644static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
645{
646 struct device *dev = ice_pf_to_dev(pf);
647 struct ice_vsi *vsi = NULL;
648
649 /* Need to protect the allocation of the VSIs at the PF level */
650 mutex_lock(&pf->sw_mutex);
651
652 /* If we have already allocated our maximum number of VSIs,
653 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
654 * is available to be populated
655 */
656 if (pf->next_vsi == ICE_NO_VSI) {
657 dev_dbg(dev, "out of VSI slots!\n");
658 goto unlock_pf;
659 }
660
661 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
662 if (!vsi)
663 goto unlock_pf;
664
665 vsi->back = pf;
666 set_bit(ICE_VSI_DOWN, vsi->state);
667
668 /* fill slot and make note of the index */
669 vsi->idx = pf->next_vsi;
670 pf->vsi[pf->next_vsi] = vsi;
671
672 /* prepare pf->next_vsi for next use */
673 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
674 pf->next_vsi);
675
676unlock_pf:
677 mutex_unlock(&pf->sw_mutex);
678 return vsi;
679}
680
681/**
682 * ice_alloc_fd_res - Allocate FD resource for a VSI
683 * @vsi: pointer to the ice_vsi
684 *
685 * This allocates the FD resources
686 *
687 * Returns 0 on success, -EPERM on no-op or -EIO on failure
688 */
689static int ice_alloc_fd_res(struct ice_vsi *vsi)
690{
691 struct ice_pf *pf = vsi->back;
692 u32 g_val, b_val;
693
694 /* Flow Director filters are only allocated/assigned to the PF VSI or
695 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
696 * add/delete filters so resources are not allocated to it
697 */
698 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
699 return -EPERM;
700
701 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
702 vsi->type == ICE_VSI_CHNL))
703 return -EPERM;
704
705 /* FD filters from guaranteed pool per VSI */
706 g_val = pf->hw.func_caps.fd_fltr_guar;
707 if (!g_val)
708 return -EPERM;
709
710 /* FD filters from best effort pool */
711 b_val = pf->hw.func_caps.fd_fltr_best_effort;
712 if (!b_val)
713 return -EPERM;
714
715 /* PF main VSI gets only 64 FD resources from guaranteed pool
716 * when ADQ is configured.
717 */
718#define ICE_PF_VSI_GFLTR 64
719
720 /* determine FD filter resources per VSI from shared(best effort) and
721 * dedicated pool
722 */
723 if (vsi->type == ICE_VSI_PF) {
724 vsi->num_gfltr = g_val;
725 /* if MQPRIO is configured, main VSI doesn't get all FD
726 * resources from guaranteed pool. PF VSI gets 64 FD resources
727 */
728 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
729 if (g_val < ICE_PF_VSI_GFLTR)
730 return -EPERM;
731 /* allow bare minimum entries for PF VSI */
732 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
733 }
734
735 /* each VSI gets same "best_effort" quota */
736 vsi->num_bfltr = b_val;
737 } else if (vsi->type == ICE_VSI_VF) {
738 vsi->num_gfltr = 0;
739
740 /* each VSI gets same "best_effort" quota */
741 vsi->num_bfltr = b_val;
742 } else {
743 struct ice_vsi *main_vsi;
744 int numtc;
745
746 main_vsi = ice_get_main_vsi(pf);
747 if (!main_vsi)
748 return -EPERM;
749
750 if (!main_vsi->all_numtc)
751 return -EINVAL;
752
753 /* figure out ADQ numtc */
754 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
755
756 /* only one TC but still asking resources for channels,
757 * invalid config
758 */
759 if (numtc < ICE_CHNL_START_TC)
760 return -EPERM;
761
762 g_val -= ICE_PF_VSI_GFLTR;
763 /* channel VSIs gets equal share from guaranteed pool */
764 vsi->num_gfltr = g_val / numtc;
765
766 /* each VSI gets same "best_effort" quota */
767 vsi->num_bfltr = b_val;
768 }
769
770 return 0;
771}
772
773/**
774 * ice_vsi_get_qs - Assign queues from PF to VSI
775 * @vsi: the VSI to assign queues to
776 *
777 * Returns 0 on success and a negative value on error
778 */
779static int ice_vsi_get_qs(struct ice_vsi *vsi)
780{
781 struct ice_pf *pf = vsi->back;
782 struct ice_qs_cfg tx_qs_cfg = {
783 .qs_mutex = &pf->avail_q_mutex,
784 .pf_map = pf->avail_txqs,
785 .pf_map_size = pf->max_pf_txqs,
786 .q_count = vsi->alloc_txq,
787 .scatter_count = ICE_MAX_SCATTER_TXQS,
788 .vsi_map = vsi->txq_map,
789 .vsi_map_offset = 0,
790 .mapping_mode = ICE_VSI_MAP_CONTIG
791 };
792 struct ice_qs_cfg rx_qs_cfg = {
793 .qs_mutex = &pf->avail_q_mutex,
794 .pf_map = pf->avail_rxqs,
795 .pf_map_size = pf->max_pf_rxqs,
796 .q_count = vsi->alloc_rxq,
797 .scatter_count = ICE_MAX_SCATTER_RXQS,
798 .vsi_map = vsi->rxq_map,
799 .vsi_map_offset = 0,
800 .mapping_mode = ICE_VSI_MAP_CONTIG
801 };
802 int ret;
803
804 if (vsi->type == ICE_VSI_CHNL)
805 return 0;
806
807 ret = __ice_vsi_get_qs(&tx_qs_cfg);
808 if (ret)
809 return ret;
810 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
811
812 ret = __ice_vsi_get_qs(&rx_qs_cfg);
813 if (ret)
814 return ret;
815 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
816
817 return 0;
818}
819
820/**
821 * ice_vsi_put_qs - Release queues from VSI to PF
822 * @vsi: the VSI that is going to release queues
823 */
824static void ice_vsi_put_qs(struct ice_vsi *vsi)
825{
826 struct ice_pf *pf = vsi->back;
827 int i;
828
829 mutex_lock(&pf->avail_q_mutex);
830
831 ice_for_each_alloc_txq(vsi, i) {
832 clear_bit(vsi->txq_map[i], pf->avail_txqs);
833 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
834 }
835
836 ice_for_each_alloc_rxq(vsi, i) {
837 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
838 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
839 }
840
841 mutex_unlock(&pf->avail_q_mutex);
842}
843
844/**
845 * ice_is_safe_mode
846 * @pf: pointer to the PF struct
847 *
848 * returns true if driver is in safe mode, false otherwise
849 */
850bool ice_is_safe_mode(struct ice_pf *pf)
851{
852 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
853}
854
855/**
856 * ice_is_rdma_ena
857 * @pf: pointer to the PF struct
858 *
859 * returns true if RDMA is currently supported, false otherwise
860 */
861bool ice_is_rdma_ena(struct ice_pf *pf)
862{
863 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
864}
865
866/**
867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
868 * @vsi: the VSI being cleaned up
869 *
870 * This function deletes RSS input set for all flows that were configured
871 * for this VSI
872 */
873static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
874{
875 struct ice_pf *pf = vsi->back;
876 int status;
877
878 if (ice_is_safe_mode(pf))
879 return;
880
881 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
882 if (status)
883 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
884 vsi->vsi_num, status);
885}
886
887/**
888 * ice_rss_clean - Delete RSS related VSI structures and configuration
889 * @vsi: the VSI being removed
890 */
891static void ice_rss_clean(struct ice_vsi *vsi)
892{
893 struct ice_pf *pf = vsi->back;
894 struct device *dev;
895
896 dev = ice_pf_to_dev(pf);
897
898 devm_kfree(dev, vsi->rss_hkey_user);
899 devm_kfree(dev, vsi->rss_lut_user);
900
901 ice_vsi_clean_rss_flow_fld(vsi);
902 /* remove RSS replay list */
903 if (!ice_is_safe_mode(pf))
904 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
905}
906
907/**
908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
909 * @vsi: the VSI being configured
910 */
911static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
912{
913 struct ice_hw_common_caps *cap;
914 struct ice_pf *pf = vsi->back;
915 u16 max_rss_size;
916
917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
918 vsi->rss_size = 1;
919 return;
920 }
921
922 cap = &pf->hw.func_caps.common_cap;
923 max_rss_size = BIT(cap->rss_table_entry_width);
924 switch (vsi->type) {
925 case ICE_VSI_CHNL:
926 case ICE_VSI_PF:
927 /* PF VSI will inherit RSS instance of PF */
928 vsi->rss_table_size = (u16)cap->rss_table_size;
929 if (vsi->type == ICE_VSI_CHNL)
930 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
931 else
932 vsi->rss_size = min_t(u16, num_online_cpus(),
933 max_rss_size);
934 vsi->rss_lut_type = ICE_LUT_PF;
935 break;
936 case ICE_VSI_SWITCHDEV_CTRL:
937 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
939 vsi->rss_lut_type = ICE_LUT_VSI;
940 break;
941 case ICE_VSI_VF:
942 /* VF VSI will get a small RSS table.
943 * For VSI_LUT, LUT size should be set to 64 bytes.
944 */
945 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
946 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
947 vsi->rss_lut_type = ICE_LUT_VSI;
948 break;
949 case ICE_VSI_LB:
950 break;
951 default:
952 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
953 ice_vsi_type_str(vsi->type));
954 break;
955 }
956}
957
958/**
959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
960 * @hw: HW structure used to determine the VLAN mode of the device
961 * @ctxt: the VSI context being set
962 *
963 * This initializes a default VSI context for all sections except the Queues.
964 */
965static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
966{
967 u32 table = 0;
968
969 memset(&ctxt->info, 0, sizeof(ctxt->info));
970 /* VSI's should be allocated from shared pool */
971 ctxt->alloc_from_pool = true;
972 /* Src pruning enabled by default */
973 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
974 /* Traffic from VSI can be sent to LAN */
975 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
976 /* allow all untagged/tagged packets by default on Tx */
977 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
978 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
979 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
980 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
981 *
982 * DVM - leave inner VLAN in packet by default
983 */
984 if (ice_is_dvm_ena(hw)) {
985 ctxt->info.inner_vlan_flags |=
986 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
987 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
988 ctxt->info.outer_vlan_flags =
989 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
990 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
991 ctxt->info.outer_vlan_flags |=
992 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
993 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
994 ctxt->info.outer_vlan_flags |=
995 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
996 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
997 }
998 /* Have 1:1 UP mapping for both ingress/egress tables */
999 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007 ctxt->info.ingress_table = cpu_to_le32(table);
1008 ctxt->info.egress_table = cpu_to_le32(table);
1009 /* Have 1:1 UP mapping for outer to inner UP table */
1010 ctxt->info.outer_up_table = cpu_to_le32(table);
1011 /* No Outer tag support outer_tag_flags remains to zero */
1012}
1013
1014/**
1015 * ice_vsi_setup_q_map - Setup a VSI queue map
1016 * @vsi: the VSI being configured
1017 * @ctxt: VSI context structure
1018 */
1019static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020{
1021 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022 u16 num_txq_per_tc, num_rxq_per_tc;
1023 u16 qcount_tx = vsi->alloc_txq;
1024 u16 qcount_rx = vsi->alloc_rxq;
1025 u8 netdev_tc = 0;
1026 int i;
1027
1028 if (!vsi->tc_cfg.numtc) {
1029 /* at least TC0 should be enabled by default */
1030 vsi->tc_cfg.numtc = 1;
1031 vsi->tc_cfg.ena_tc = 1;
1032 }
1033
1034 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035 if (!num_rxq_per_tc)
1036 num_rxq_per_tc = 1;
1037 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038 if (!num_txq_per_tc)
1039 num_txq_per_tc = 1;
1040
1041 /* find the (rounded up) power-of-2 of qcount */
1042 pow = (u16)order_base_2(num_rxq_per_tc);
1043
1044 /* TC mapping is a function of the number of Rx queues assigned to the
1045 * VSI for each traffic class and the offset of these queues.
1046 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047 * queues allocated to TC0. No:of queues is a power-of-2.
1048 *
1049 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050 * queue, this way, traffic for the given TC will be sent to the default
1051 * queue.
1052 *
1053 * Setup number and offset of Rx queues for all TCs for the VSI
1054 */
1055 ice_for_each_traffic_class(i) {
1056 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057 /* TC is not enabled */
1058 vsi->tc_cfg.tc_info[i].qoffset = 0;
1059 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062 ctxt->info.tc_mapping[i] = 0;
1063 continue;
1064 }
1065
1066 /* TC is enabled */
1067 vsi->tc_cfg.tc_info[i].qoffset = offset;
1068 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071
1072 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1074 offset += num_rxq_per_tc;
1075 tx_count += num_txq_per_tc;
1076 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077 }
1078
1079 /* if offset is non-zero, means it is calculated correctly based on
1080 * enabled TCs for a given VSI otherwise qcount_rx will always
1081 * be correct and non-zero because it is based off - VSI's
1082 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083 * at least 1)
1084 */
1085 if (offset)
1086 rx_count = offset;
1087 else
1088 rx_count = num_rxq_per_tc;
1089
1090 if (rx_count > vsi->alloc_rxq) {
1091 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092 rx_count, vsi->alloc_rxq);
1093 return -EINVAL;
1094 }
1095
1096 if (tx_count > vsi->alloc_txq) {
1097 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098 tx_count, vsi->alloc_txq);
1099 return -EINVAL;
1100 }
1101
1102 vsi->num_txq = tx_count;
1103 vsi->num_rxq = rx_count;
1104
1105 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107 /* since there is a chance that num_rxq could have been changed
1108 * in the above for loop, make num_txq equal to num_rxq.
1109 */
1110 vsi->num_txq = vsi->num_rxq;
1111 }
1112
1113 /* Rx queue mapping */
1114 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115 /* q_mapping buffer holds the info for the first queue allocated for
1116 * this VSI in the PF space and also the number of queues associated
1117 * with this VSI.
1118 */
1119 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121
1122 return 0;
1123}
1124
1125/**
1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127 * @ctxt: the VSI context being set
1128 * @vsi: the VSI being configured
1129 */
1130static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131{
1132 u8 dflt_q_group, dflt_q_prio;
1133 u16 dflt_q, report_q, val;
1134
1135 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137 return;
1138
1139 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140 ctxt->info.valid_sections |= cpu_to_le16(val);
1141 dflt_q = 0;
1142 dflt_q_group = 0;
1143 report_q = 0;
1144 dflt_q_prio = 0;
1145
1146 /* enable flow director filtering/programming */
1147 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148 ctxt->info.fd_options = cpu_to_le16(val);
1149 /* max of allocated flow director filters */
1150 ctxt->info.max_fd_fltr_dedicated =
1151 cpu_to_le16(vsi->num_gfltr);
1152 /* max of shared flow director filters any VSI may program */
1153 ctxt->info.max_fd_fltr_shared =
1154 cpu_to_le16(vsi->num_bfltr);
1155 /* default queue index within the VSI of the default FD */
1156 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1157 /* target queue or queue group to the FD filter */
1158 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1159 ctxt->info.fd_def_q = cpu_to_le16(val);
1160 /* queue index on which FD filter completion is reported */
1161 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1162 /* priority of the default qindex action */
1163 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1164 ctxt->info.fd_report_opt = cpu_to_le16(val);
1165}
1166
1167/**
1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169 * @ctxt: the VSI context being set
1170 * @vsi: the VSI being configured
1171 */
1172static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173{
1174 u8 lut_type, hash_type;
1175 struct device *dev;
1176 struct ice_pf *pf;
1177
1178 pf = vsi->back;
1179 dev = ice_pf_to_dev(pf);
1180
1181 switch (vsi->type) {
1182 case ICE_VSI_CHNL:
1183 case ICE_VSI_PF:
1184 /* PF VSI will inherit RSS instance of PF */
1185 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1186 break;
1187 case ICE_VSI_VF:
1188 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1190 break;
1191 default:
1192 dev_dbg(dev, "Unsupported VSI type %s\n",
1193 ice_vsi_type_str(vsi->type));
1194 return;
1195 }
1196
1197 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198 vsi->rss_hfunc = hash_type;
1199
1200 ctxt->info.q_opt_rss =
1201 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203}
1204
1205static void
1206ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207{
1208 struct ice_pf *pf = vsi->back;
1209 u16 qcount, qmap;
1210 u8 offset = 0;
1211 int pow;
1212
1213 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214
1215 pow = order_base_2(qcount);
1216 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1218
1219 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223}
1224
1225/**
1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228 *
1229 * returns true if Rx VLAN pruning is enabled and false otherwise.
1230 */
1231static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232{
1233 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234}
1235
1236/**
1237 * ice_vsi_init - Create and initialize a VSI
1238 * @vsi: the VSI being configured
1239 * @vsi_flags: VSI configuration flags
1240 *
1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242 * reconfigure an existing context.
1243 *
1244 * This initializes a VSI context depending on the VSI type to be added and
1245 * passes it down to the add_vsi aq command to create a new VSI.
1246 */
1247static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248{
1249 struct ice_pf *pf = vsi->back;
1250 struct ice_hw *hw = &pf->hw;
1251 struct ice_vsi_ctx *ctxt;
1252 struct device *dev;
1253 int ret = 0;
1254
1255 dev = ice_pf_to_dev(pf);
1256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257 if (!ctxt)
1258 return -ENOMEM;
1259
1260 switch (vsi->type) {
1261 case ICE_VSI_CTRL:
1262 case ICE_VSI_LB:
1263 case ICE_VSI_PF:
1264 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265 break;
1266 case ICE_VSI_SWITCHDEV_CTRL:
1267 case ICE_VSI_CHNL:
1268 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269 break;
1270 case ICE_VSI_VF:
1271 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272 /* VF number here is the absolute VF number (0-255) */
1273 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274 break;
1275 default:
1276 ret = -ENODEV;
1277 goto out;
1278 }
1279
1280 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281 * prune enabled
1282 */
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 struct ice_vsi *main_vsi;
1285
1286 main_vsi = ice_get_main_vsi(pf);
1287 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288 ctxt->info.sw_flags2 |=
1289 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290 else
1291 ctxt->info.sw_flags2 &=
1292 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293 }
1294
1295 ice_set_dflt_vsi_ctx(hw, ctxt);
1296 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297 ice_set_fd_vsi_ctx(ctxt, vsi);
1298 /* if the switch is in VEB mode, allow VSI loopback */
1299 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301
1302 /* Set LUT type and HASH type if RSS is enabled */
1303 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304 vsi->type != ICE_VSI_CTRL) {
1305 ice_set_rss_vsi_ctx(ctxt, vsi);
1306 /* if updating VSI context, make sure to set valid_section:
1307 * to indicate which section of VSI context being updated
1308 */
1309 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310 ctxt->info.valid_sections |=
1311 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312 }
1313
1314 ctxt->info.sw_id = vsi->port_info->sw_id;
1315 if (vsi->type == ICE_VSI_CHNL) {
1316 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317 } else {
1318 ret = ice_vsi_setup_q_map(vsi, ctxt);
1319 if (ret)
1320 goto out;
1321
1322 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323 /* means VSI being updated */
1324 /* must to indicate which section of VSI context are
1325 * being modified
1326 */
1327 ctxt->info.valid_sections |=
1328 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329 }
1330
1331 /* Allow control frames out of main VSI */
1332 if (vsi->type == ICE_VSI_PF) {
1333 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334 ctxt->info.valid_sections |=
1335 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336 }
1337
1338 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340 if (ret) {
1341 dev_err(dev, "Add VSI failed, err %d\n", ret);
1342 ret = -EIO;
1343 goto out;
1344 }
1345 } else {
1346 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347 if (ret) {
1348 dev_err(dev, "Update VSI failed, err %d\n", ret);
1349 ret = -EIO;
1350 goto out;
1351 }
1352 }
1353
1354 /* keep context for update VSI operations */
1355 vsi->info = ctxt->info;
1356
1357 /* record VSI number returned */
1358 vsi->vsi_num = ctxt->vsi_num;
1359
1360out:
1361 kfree(ctxt);
1362 return ret;
1363}
1364
1365/**
1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367 * @vsi: the VSI having rings deallocated
1368 */
1369static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370{
1371 int i;
1372
1373 /* Avoid stale references by clearing map from vector to ring */
1374 if (vsi->q_vectors) {
1375 ice_for_each_q_vector(vsi, i) {
1376 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377
1378 if (q_vector) {
1379 q_vector->tx.tx_ring = NULL;
1380 q_vector->rx.rx_ring = NULL;
1381 }
1382 }
1383 }
1384
1385 if (vsi->tx_rings) {
1386 ice_for_each_alloc_txq(vsi, i) {
1387 if (vsi->tx_rings[i]) {
1388 kfree_rcu(vsi->tx_rings[i], rcu);
1389 WRITE_ONCE(vsi->tx_rings[i], NULL);
1390 }
1391 }
1392 }
1393 if (vsi->rx_rings) {
1394 ice_for_each_alloc_rxq(vsi, i) {
1395 if (vsi->rx_rings[i]) {
1396 kfree_rcu(vsi->rx_rings[i], rcu);
1397 WRITE_ONCE(vsi->rx_rings[i], NULL);
1398 }
1399 }
1400 }
1401}
1402
1403/**
1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405 * @vsi: VSI which is having rings allocated
1406 */
1407static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408{
1409 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410 struct ice_pf *pf = vsi->back;
1411 struct device *dev;
1412 u16 i;
1413
1414 dev = ice_pf_to_dev(pf);
1415 /* Allocate Tx rings */
1416 ice_for_each_alloc_txq(vsi, i) {
1417 struct ice_tx_ring *ring;
1418
1419 /* allocate with kzalloc(), free with kfree_rcu() */
1420 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421
1422 if (!ring)
1423 goto err_out;
1424
1425 ring->q_index = i;
1426 ring->reg_idx = vsi->txq_map[i];
1427 ring->vsi = vsi;
1428 ring->tx_tstamps = &pf->ptp.port.tx;
1429 ring->dev = dev;
1430 ring->count = vsi->num_tx_desc;
1431 ring->txq_teid = ICE_INVAL_TEID;
1432 if (dvm_ena)
1433 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434 else
1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436 WRITE_ONCE(vsi->tx_rings[i], ring);
1437 }
1438
1439 /* Allocate Rx rings */
1440 ice_for_each_alloc_rxq(vsi, i) {
1441 struct ice_rx_ring *ring;
1442
1443 /* allocate with kzalloc(), free with kfree_rcu() */
1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445 if (!ring)
1446 goto err_out;
1447
1448 ring->q_index = i;
1449 ring->reg_idx = vsi->rxq_map[i];
1450 ring->vsi = vsi;
1451 ring->netdev = vsi->netdev;
1452 ring->dev = dev;
1453 ring->count = vsi->num_rx_desc;
1454 ring->cached_phctime = pf->ptp.cached_phc_time;
1455 WRITE_ONCE(vsi->rx_rings[i], ring);
1456 }
1457
1458 return 0;
1459
1460err_out:
1461 ice_vsi_clear_rings(vsi);
1462 return -ENOMEM;
1463}
1464
1465/**
1466 * ice_vsi_manage_rss_lut - disable/enable RSS
1467 * @vsi: the VSI being changed
1468 * @ena: boolean value indicating if this is an enable or disable request
1469 *
1470 * In the event of disable request for RSS, this function will zero out RSS
1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472 * LUT.
1473 */
1474void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475{
1476 u8 *lut;
1477
1478 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479 if (!lut)
1480 return;
1481
1482 if (ena) {
1483 if (vsi->rss_lut_user)
1484 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485 else
1486 ice_fill_rss_lut(lut, vsi->rss_table_size,
1487 vsi->rss_size);
1488 }
1489
1490 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491 kfree(lut);
1492}
1493
1494/**
1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496 * @vsi: VSI to be configured
1497 * @disable: set to true to have FCS / CRC in the frame data
1498 */
1499void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500{
1501 int i;
1502
1503 ice_for_each_rxq(vsi, i)
1504 if (disable)
1505 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506 else
1507 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508}
1509
1510/**
1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512 * @vsi: VSI to be configured
1513 */
1514int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515{
1516 struct ice_pf *pf = vsi->back;
1517 struct device *dev;
1518 u8 *lut, *key;
1519 int err;
1520
1521 dev = ice_pf_to_dev(pf);
1522 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525 } else {
1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527
1528 /* If orig_rss_size is valid and it is less than determined
1529 * main VSI's rss_size, update main VSI's rss_size to be
1530 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531 * RSS table gets programmed to be correct (whatever it was
1532 * to begin with (prior to setup-tc for ADQ config)
1533 */
1534 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535 vsi->orig_rss_size <= vsi->num_rxq) {
1536 vsi->rss_size = vsi->orig_rss_size;
1537 /* now orig_rss_size is used, reset it to zero */
1538 vsi->orig_rss_size = 0;
1539 }
1540 }
1541
1542 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543 if (!lut)
1544 return -ENOMEM;
1545
1546 if (vsi->rss_lut_user)
1547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548 else
1549 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550
1551 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552 if (err) {
1553 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554 goto ice_vsi_cfg_rss_exit;
1555 }
1556
1557 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558 if (!key) {
1559 err = -ENOMEM;
1560 goto ice_vsi_cfg_rss_exit;
1561 }
1562
1563 if (vsi->rss_hkey_user)
1564 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565 else
1566 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567
1568 err = ice_set_rss_key(vsi, key);
1569 if (err)
1570 dev_err(dev, "set_rss_key failed, error %d\n", err);
1571
1572 kfree(key);
1573ice_vsi_cfg_rss_exit:
1574 kfree(lut);
1575 return err;
1576}
1577
1578/**
1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580 * @vsi: VSI to be configured
1581 *
1582 * This function will only be called during the VF VSI setup. Upon successful
1583 * completion of package download, this function will configure default RSS
1584 * input sets for VF VSI.
1585 */
1586static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587{
1588 struct ice_pf *pf = vsi->back;
1589 struct device *dev;
1590 int status;
1591
1592 dev = ice_pf_to_dev(pf);
1593 if (ice_is_safe_mode(pf)) {
1594 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595 vsi->vsi_num);
1596 return;
1597 }
1598
1599 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600 if (status)
1601 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602 vsi->vsi_num, status);
1603}
1604
1605static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606 /* configure RSS for IPv4 with input set IP src/dst */
1607 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608 /* configure RSS for IPv6 with input set IPv6 src/dst */
1609 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1613 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1616 /* configure RSS for sctp4 with input set IP src/dst - only support
1617 * RSS on SCTPv4 on outer headers (non-tunneled)
1618 */
1619 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1622 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1623 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1624 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1625 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1626 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1627 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1628 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1629 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1630 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1631 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1632 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1633 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1634 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1635 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1636 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1637 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1638 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1639
1640 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1641 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1642 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1643 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1644 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1645 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1646 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1647 * RSS on SCTPv6 on outer headers (non-tunneled)
1648 */
1649 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1650 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1651 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1652 {ICE_FLOW_SEG_HDR_ESP,
1653 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1654 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1655 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1656 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1657 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1658 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1659 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1660 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1661 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1662 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1663 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1664 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1665 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1666 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1667 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1668 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1669 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1670 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1671 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1672};
1673
1674/**
1675 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1676 * @vsi: VSI to be configured
1677 *
1678 * This function will only be called after successful download package call
1679 * during initialization of PF. Since the downloaded package will erase the
1680 * RSS section, this function will configure RSS input sets for different
1681 * flow types. The last profile added has the highest priority, therefore 2
1682 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1683 * (i.e. IPv4 src/dst TCP src/dst port).
1684 */
1685static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1686{
1687 u16 vsi_num = vsi->vsi_num;
1688 struct ice_pf *pf = vsi->back;
1689 struct ice_hw *hw = &pf->hw;
1690 struct device *dev;
1691 int status;
1692 u32 i;
1693
1694 dev = ice_pf_to_dev(pf);
1695 if (ice_is_safe_mode(pf)) {
1696 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1697 vsi_num);
1698 return;
1699 }
1700 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1701 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1702
1703 status = ice_add_rss_cfg(hw, vsi, cfg);
1704 if (status)
1705 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1706 cfg->addl_hdrs, cfg->hash_flds,
1707 cfg->hdr_type, cfg->symm);
1708 }
1709}
1710
1711/**
1712 * ice_pf_state_is_nominal - checks the PF for nominal state
1713 * @pf: pointer to PF to check
1714 *
1715 * Check the PF's state for a collection of bits that would indicate
1716 * the PF is in a state that would inhibit normal operation for
1717 * driver functionality.
1718 *
1719 * Returns true if PF is in a nominal state, false otherwise
1720 */
1721bool ice_pf_state_is_nominal(struct ice_pf *pf)
1722{
1723 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1724
1725 if (!pf)
1726 return false;
1727
1728 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1729 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1730 return false;
1731
1732 return true;
1733}
1734
1735/**
1736 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1737 * @vsi: the VSI to be updated
1738 */
1739void ice_update_eth_stats(struct ice_vsi *vsi)
1740{
1741 struct ice_eth_stats *prev_es, *cur_es;
1742 struct ice_hw *hw = &vsi->back->hw;
1743 struct ice_pf *pf = vsi->back;
1744 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1745
1746 prev_es = &vsi->eth_stats_prev;
1747 cur_es = &vsi->eth_stats;
1748
1749 if (ice_is_reset_in_progress(pf->state))
1750 vsi->stat_offsets_loaded = false;
1751
1752 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1753 &prev_es->rx_bytes, &cur_es->rx_bytes);
1754
1755 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1756 &prev_es->rx_unicast, &cur_es->rx_unicast);
1757
1758 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1759 &prev_es->rx_multicast, &cur_es->rx_multicast);
1760
1761 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1762 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1763
1764 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1765 &prev_es->rx_discards, &cur_es->rx_discards);
1766
1767 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1768 &prev_es->tx_bytes, &cur_es->tx_bytes);
1769
1770 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1771 &prev_es->tx_unicast, &cur_es->tx_unicast);
1772
1773 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1774 &prev_es->tx_multicast, &cur_es->tx_multicast);
1775
1776 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1777 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1778
1779 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1780 &prev_es->tx_errors, &cur_es->tx_errors);
1781
1782 vsi->stat_offsets_loaded = true;
1783}
1784
1785/**
1786 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1787 * @hw: HW pointer
1788 * @pf_q: index of the Rx queue in the PF's queue space
1789 * @rxdid: flexible descriptor RXDID
1790 * @prio: priority for the RXDID for this queue
1791 * @ena_ts: true to enable timestamp and false to disable timestamp
1792 */
1793void
1794ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1795 bool ena_ts)
1796{
1797 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1798
1799 /* clear any previous values */
1800 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1801 QRXFLXP_CNTXT_RXDID_PRIO_M |
1802 QRXFLXP_CNTXT_TS_M);
1803
1804 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1805 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1806
1807 if (ena_ts)
1808 /* Enable TimeSync on this queue */
1809 regval |= QRXFLXP_CNTXT_TS_M;
1810
1811 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1812}
1813
1814/**
1815 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1816 * @intrl: interrupt rate limit in usecs
1817 * @gran: interrupt rate limit granularity in usecs
1818 *
1819 * This function converts a decimal interrupt rate limit in usecs to the format
1820 * expected by firmware.
1821 */
1822static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1823{
1824 u32 val = intrl / gran;
1825
1826 if (val)
1827 return val | GLINT_RATE_INTRL_ENA_M;
1828 return 0;
1829}
1830
1831/**
1832 * ice_write_intrl - write throttle rate limit to interrupt specific register
1833 * @q_vector: pointer to interrupt specific structure
1834 * @intrl: throttle rate limit in microseconds to write
1835 */
1836void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1837{
1838 struct ice_hw *hw = &q_vector->vsi->back->hw;
1839
1840 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1841 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1842}
1843
1844static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1845{
1846 switch (rc->type) {
1847 case ICE_RX_CONTAINER:
1848 if (rc->rx_ring)
1849 return rc->rx_ring->q_vector;
1850 break;
1851 case ICE_TX_CONTAINER:
1852 if (rc->tx_ring)
1853 return rc->tx_ring->q_vector;
1854 break;
1855 default:
1856 break;
1857 }
1858
1859 return NULL;
1860}
1861
1862/**
1863 * __ice_write_itr - write throttle rate to register
1864 * @q_vector: pointer to interrupt data structure
1865 * @rc: pointer to ring container
1866 * @itr: throttle rate in microseconds to write
1867 */
1868static void __ice_write_itr(struct ice_q_vector *q_vector,
1869 struct ice_ring_container *rc, u16 itr)
1870{
1871 struct ice_hw *hw = &q_vector->vsi->back->hw;
1872
1873 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1874 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1875}
1876
1877/**
1878 * ice_write_itr - write throttle rate to queue specific register
1879 * @rc: pointer to ring container
1880 * @itr: throttle rate in microseconds to write
1881 */
1882void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1883{
1884 struct ice_q_vector *q_vector;
1885
1886 q_vector = ice_pull_qvec_from_rc(rc);
1887 if (!q_vector)
1888 return;
1889
1890 __ice_write_itr(q_vector, rc, itr);
1891}
1892
1893/**
1894 * ice_set_q_vector_intrl - set up interrupt rate limiting
1895 * @q_vector: the vector to be configured
1896 *
1897 * Interrupt rate limiting is local to the vector, not per-queue so we must
1898 * detect if either ring container has dynamic moderation enabled to decide
1899 * what to set the interrupt rate limit to via INTRL settings. In the case that
1900 * dynamic moderation is disabled on both, write the value with the cached
1901 * setting to make sure INTRL register matches the user visible value.
1902 */
1903void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1904{
1905 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1906 /* in the case of dynamic enabled, cap each vector to no more
1907 * than (4 us) 250,000 ints/sec, which allows low latency
1908 * but still less than 500,000 interrupts per second, which
1909 * reduces CPU a bit in the case of the lowest latency
1910 * setting. The 4 here is a value in microseconds.
1911 */
1912 ice_write_intrl(q_vector, 4);
1913 } else {
1914 ice_write_intrl(q_vector, q_vector->intrl);
1915 }
1916}
1917
1918/**
1919 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1920 * @vsi: the VSI being configured
1921 *
1922 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1923 * for the VF VSI.
1924 */
1925void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1926{
1927 struct ice_pf *pf = vsi->back;
1928 struct ice_hw *hw = &pf->hw;
1929 u16 txq = 0, rxq = 0;
1930 int i, q;
1931
1932 ice_for_each_q_vector(vsi, i) {
1933 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1934 u16 reg_idx = q_vector->reg_idx;
1935
1936 ice_cfg_itr(hw, q_vector);
1937
1938 /* Both Transmit Queue Interrupt Cause Control register
1939 * and Receive Queue Interrupt Cause control register
1940 * expects MSIX_INDX field to be the vector index
1941 * within the function space and not the absolute
1942 * vector index across PF or across device.
1943 * For SR-IOV VF VSIs queue vector index always starts
1944 * with 1 since first vector index(0) is used for OICR
1945 * in VF space. Since VMDq and other PF VSIs are within
1946 * the PF function space, use the vector index that is
1947 * tracked for this PF.
1948 */
1949 for (q = 0; q < q_vector->num_ring_tx; q++) {
1950 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1951 q_vector->tx.itr_idx);
1952 txq++;
1953 }
1954
1955 for (q = 0; q < q_vector->num_ring_rx; q++) {
1956 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1957 q_vector->rx.itr_idx);
1958 rxq++;
1959 }
1960 }
1961}
1962
1963/**
1964 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1965 * @vsi: the VSI whose rings are to be enabled
1966 *
1967 * Returns 0 on success and a negative value on error
1968 */
1969int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1970{
1971 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1972}
1973
1974/**
1975 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1976 * @vsi: the VSI whose rings are to be disabled
1977 *
1978 * Returns 0 on success and a negative value on error
1979 */
1980int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1981{
1982 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1983}
1984
1985/**
1986 * ice_vsi_stop_tx_rings - Disable Tx rings
1987 * @vsi: the VSI being configured
1988 * @rst_src: reset source
1989 * @rel_vmvf_num: Relative ID of VF/VM
1990 * @rings: Tx ring array to be stopped
1991 * @count: number of Tx ring array elements
1992 */
1993static int
1994ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1995 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1996{
1997 u16 q_idx;
1998
1999 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2000 return -EINVAL;
2001
2002 for (q_idx = 0; q_idx < count; q_idx++) {
2003 struct ice_txq_meta txq_meta = { };
2004 int status;
2005
2006 if (!rings || !rings[q_idx])
2007 return -EINVAL;
2008
2009 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2010 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2011 rings[q_idx], &txq_meta);
2012
2013 if (status)
2014 return status;
2015 }
2016
2017 return 0;
2018}
2019
2020/**
2021 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2022 * @vsi: the VSI being configured
2023 * @rst_src: reset source
2024 * @rel_vmvf_num: Relative ID of VF/VM
2025 */
2026int
2027ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2028 u16 rel_vmvf_num)
2029{
2030 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2031}
2032
2033/**
2034 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2035 * @vsi: the VSI being configured
2036 */
2037int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2038{
2039 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2040}
2041
2042/**
2043 * ice_vsi_is_rx_queue_active
2044 * @vsi: the VSI being configured
2045 *
2046 * Return true if at least one queue is active.
2047 */
2048bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2049{
2050 struct ice_pf *pf = vsi->back;
2051 struct ice_hw *hw = &pf->hw;
2052 int i;
2053
2054 ice_for_each_rxq(vsi, i) {
2055 u32 rx_reg;
2056 int pf_q;
2057
2058 pf_q = vsi->rxq_map[i];
2059 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2060 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2061 return true;
2062 }
2063
2064 return false;
2065}
2066
2067static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2068{
2069 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2070 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2071 vsi->tc_cfg.numtc = 1;
2072 return;
2073 }
2074
2075 /* set VSI TC information based on DCB config */
2076 ice_vsi_set_dcb_tc_cfg(vsi);
2077}
2078
2079/**
2080 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2081 * @vsi: the VSI being configured
2082 * @tx: bool to determine Tx or Rx rule
2083 * @create: bool to determine create or remove Rule
2084 */
2085void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2086{
2087 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2088 enum ice_sw_fwd_act_type act);
2089 struct ice_pf *pf = vsi->back;
2090 struct device *dev;
2091 int status;
2092
2093 dev = ice_pf_to_dev(pf);
2094 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2095
2096 if (tx) {
2097 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2098 ICE_DROP_PACKET);
2099 } else {
2100 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2101 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2102 create);
2103 } else {
2104 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2105 ICE_FWD_TO_VSI);
2106 }
2107 }
2108
2109 if (status)
2110 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2111 create ? "adding" : "removing", tx ? "TX" : "RX",
2112 vsi->vsi_num, status);
2113}
2114
2115/**
2116 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2117 * @vsi: pointer to the VSI
2118 *
2119 * This function will allocate new scheduler aggregator now if needed and will
2120 * move specified VSI into it.
2121 */
2122static void ice_set_agg_vsi(struct ice_vsi *vsi)
2123{
2124 struct device *dev = ice_pf_to_dev(vsi->back);
2125 struct ice_agg_node *agg_node_iter = NULL;
2126 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2127 struct ice_agg_node *agg_node = NULL;
2128 int node_offset, max_agg_nodes = 0;
2129 struct ice_port_info *port_info;
2130 struct ice_pf *pf = vsi->back;
2131 u32 agg_node_id_start = 0;
2132 int status;
2133
2134 /* create (as needed) scheduler aggregator node and move VSI into
2135 * corresponding aggregator node
2136 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2137 * - VF aggregator nodes will contain VF VSI
2138 */
2139 port_info = pf->hw.port_info;
2140 if (!port_info)
2141 return;
2142
2143 switch (vsi->type) {
2144 case ICE_VSI_CTRL:
2145 case ICE_VSI_CHNL:
2146 case ICE_VSI_LB:
2147 case ICE_VSI_PF:
2148 case ICE_VSI_SWITCHDEV_CTRL:
2149 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2150 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2151 agg_node_iter = &pf->pf_agg_node[0];
2152 break;
2153 case ICE_VSI_VF:
2154 /* user can create 'n' VFs on a given PF, but since max children
2155 * per aggregator node can be only 64. Following code handles
2156 * aggregator(s) for VF VSIs, either selects a agg_node which
2157 * was already created provided num_vsis < 64, otherwise
2158 * select next available node, which will be created
2159 */
2160 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2161 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2162 agg_node_iter = &pf->vf_agg_node[0];
2163 break;
2164 default:
2165 /* other VSI type, handle later if needed */
2166 dev_dbg(dev, "unexpected VSI type %s\n",
2167 ice_vsi_type_str(vsi->type));
2168 return;
2169 }
2170
2171 /* find the appropriate aggregator node */
2172 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2173 /* see if we can find space in previously created
2174 * node if num_vsis < 64, otherwise skip
2175 */
2176 if (agg_node_iter->num_vsis &&
2177 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2178 agg_node_iter++;
2179 continue;
2180 }
2181
2182 if (agg_node_iter->valid &&
2183 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2184 agg_id = agg_node_iter->agg_id;
2185 agg_node = agg_node_iter;
2186 break;
2187 }
2188
2189 /* find unclaimed agg_id */
2190 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2191 agg_id = node_offset + agg_node_id_start;
2192 agg_node = agg_node_iter;
2193 break;
2194 }
2195 /* move to next agg_node */
2196 agg_node_iter++;
2197 }
2198
2199 if (!agg_node)
2200 return;
2201
2202 /* if selected aggregator node was not created, create it */
2203 if (!agg_node->valid) {
2204 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2205 (u8)vsi->tc_cfg.ena_tc);
2206 if (status) {
2207 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2208 agg_id);
2209 return;
2210 }
2211 /* aggregator node is created, store the needed info */
2212 agg_node->valid = true;
2213 agg_node->agg_id = agg_id;
2214 }
2215
2216 /* move VSI to corresponding aggregator node */
2217 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2218 (u8)vsi->tc_cfg.ena_tc);
2219 if (status) {
2220 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2221 vsi->idx, agg_id);
2222 return;
2223 }
2224
2225 /* keep active children count for aggregator node */
2226 agg_node->num_vsis++;
2227
2228 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2229 * to aggregator node
2230 */
2231 vsi->agg_node = agg_node;
2232 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2233 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2234 vsi->agg_node->num_vsis);
2235}
2236
2237static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2238{
2239 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2240 struct device *dev = ice_pf_to_dev(pf);
2241 int ret, i;
2242
2243 /* configure VSI nodes based on number of queues and TC's */
2244 ice_for_each_traffic_class(i) {
2245 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2246 continue;
2247
2248 if (vsi->type == ICE_VSI_CHNL) {
2249 if (!vsi->alloc_txq && vsi->num_txq)
2250 max_txqs[i] = vsi->num_txq;
2251 else
2252 max_txqs[i] = pf->num_lan_tx;
2253 } else {
2254 max_txqs[i] = vsi->alloc_txq;
2255 }
2256
2257 if (vsi->type == ICE_VSI_PF)
2258 max_txqs[i] += vsi->num_xdp_txq;
2259 }
2260
2261 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2262 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2263 max_txqs);
2264 if (ret) {
2265 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2266 vsi->vsi_num, ret);
2267 return ret;
2268 }
2269
2270 return 0;
2271}
2272
2273/**
2274 * ice_vsi_cfg_def - configure default VSI based on the type
2275 * @vsi: pointer to VSI
2276 * @params: the parameters to configure this VSI with
2277 */
2278static int
2279ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2280{
2281 struct device *dev = ice_pf_to_dev(vsi->back);
2282 struct ice_pf *pf = vsi->back;
2283 int ret;
2284
2285 vsi->vsw = pf->first_sw;
2286
2287 ret = ice_vsi_alloc_def(vsi, params->ch);
2288 if (ret)
2289 return ret;
2290
2291 /* allocate memory for Tx/Rx ring stat pointers */
2292 ret = ice_vsi_alloc_stat_arrays(vsi);
2293 if (ret)
2294 goto unroll_vsi_alloc;
2295
2296 ice_alloc_fd_res(vsi);
2297
2298 ret = ice_vsi_get_qs(vsi);
2299 if (ret) {
2300 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2301 vsi->idx);
2302 goto unroll_vsi_alloc_stat;
2303 }
2304
2305 /* set RSS capabilities */
2306 ice_vsi_set_rss_params(vsi);
2307
2308 /* set TC configuration */
2309 ice_vsi_set_tc_cfg(vsi);
2310
2311 /* create the VSI */
2312 ret = ice_vsi_init(vsi, params->flags);
2313 if (ret)
2314 goto unroll_get_qs;
2315
2316 ice_vsi_init_vlan_ops(vsi);
2317
2318 switch (vsi->type) {
2319 case ICE_VSI_CTRL:
2320 case ICE_VSI_SWITCHDEV_CTRL:
2321 case ICE_VSI_PF:
2322 ret = ice_vsi_alloc_q_vectors(vsi);
2323 if (ret)
2324 goto unroll_vsi_init;
2325
2326 ret = ice_vsi_alloc_rings(vsi);
2327 if (ret)
2328 goto unroll_vector_base;
2329
2330 ret = ice_vsi_alloc_ring_stats(vsi);
2331 if (ret)
2332 goto unroll_vector_base;
2333
2334 ice_vsi_map_rings_to_vectors(vsi);
2335
2336 /* Associate q_vector rings to napi */
2337 ice_vsi_set_napi_queues(vsi);
2338
2339 vsi->stat_offsets_loaded = false;
2340
2341 if (ice_is_xdp_ena_vsi(vsi)) {
2342 ret = ice_vsi_determine_xdp_res(vsi);
2343 if (ret)
2344 goto unroll_vector_base;
2345 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2346 if (ret)
2347 goto unroll_vector_base;
2348 }
2349
2350 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2351 if (vsi->type != ICE_VSI_CTRL)
2352 /* Do not exit if configuring RSS had an issue, at
2353 * least receive traffic on first queue. Hence no
2354 * need to capture return value
2355 */
2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357 ice_vsi_cfg_rss_lut_key(vsi);
2358 ice_vsi_set_rss_flow_fld(vsi);
2359 }
2360 ice_init_arfs(vsi);
2361 break;
2362 case ICE_VSI_CHNL:
2363 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2364 ice_vsi_cfg_rss_lut_key(vsi);
2365 ice_vsi_set_rss_flow_fld(vsi);
2366 }
2367 break;
2368 case ICE_VSI_VF:
2369 /* VF driver will take care of creating netdev for this type and
2370 * map queues to vectors through Virtchnl, PF driver only
2371 * creates a VSI and corresponding structures for bookkeeping
2372 * purpose
2373 */
2374 ret = ice_vsi_alloc_q_vectors(vsi);
2375 if (ret)
2376 goto unroll_vsi_init;
2377
2378 ret = ice_vsi_alloc_rings(vsi);
2379 if (ret)
2380 goto unroll_alloc_q_vector;
2381
2382 ret = ice_vsi_alloc_ring_stats(vsi);
2383 if (ret)
2384 goto unroll_vector_base;
2385
2386 vsi->stat_offsets_loaded = false;
2387
2388 /* Do not exit if configuring RSS had an issue, at least
2389 * receive traffic on first queue. Hence no need to capture
2390 * return value
2391 */
2392 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2393 ice_vsi_cfg_rss_lut_key(vsi);
2394 ice_vsi_set_vf_rss_flow_fld(vsi);
2395 }
2396 break;
2397 case ICE_VSI_LB:
2398 ret = ice_vsi_alloc_rings(vsi);
2399 if (ret)
2400 goto unroll_vsi_init;
2401
2402 ret = ice_vsi_alloc_ring_stats(vsi);
2403 if (ret)
2404 goto unroll_vector_base;
2405
2406 break;
2407 default:
2408 /* clean up the resources and exit */
2409 ret = -EINVAL;
2410 goto unroll_vsi_init;
2411 }
2412
2413 return 0;
2414
2415unroll_vector_base:
2416 /* reclaim SW interrupts back to the common pool */
2417unroll_alloc_q_vector:
2418 ice_vsi_free_q_vectors(vsi);
2419unroll_vsi_init:
2420 ice_vsi_delete_from_hw(vsi);
2421unroll_get_qs:
2422 ice_vsi_put_qs(vsi);
2423unroll_vsi_alloc_stat:
2424 ice_vsi_free_stats(vsi);
2425unroll_vsi_alloc:
2426 ice_vsi_free_arrays(vsi);
2427 return ret;
2428}
2429
2430/**
2431 * ice_vsi_cfg - configure a previously allocated VSI
2432 * @vsi: pointer to VSI
2433 * @params: parameters used to configure this VSI
2434 */
2435int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2436{
2437 struct ice_pf *pf = vsi->back;
2438 int ret;
2439
2440 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2441 return -EINVAL;
2442
2443 vsi->type = params->type;
2444 vsi->port_info = params->pi;
2445
2446 /* For VSIs which don't have a connected VF, this will be NULL */
2447 vsi->vf = params->vf;
2448
2449 ret = ice_vsi_cfg_def(vsi, params);
2450 if (ret)
2451 return ret;
2452
2453 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2454 if (ret)
2455 ice_vsi_decfg(vsi);
2456
2457 if (vsi->type == ICE_VSI_CTRL) {
2458 if (vsi->vf) {
2459 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2460 vsi->vf->ctrl_vsi_idx = vsi->idx;
2461 } else {
2462 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2463 pf->ctrl_vsi_idx = vsi->idx;
2464 }
2465 }
2466
2467 return ret;
2468}
2469
2470/**
2471 * ice_vsi_decfg - remove all VSI configuration
2472 * @vsi: pointer to VSI
2473 */
2474void ice_vsi_decfg(struct ice_vsi *vsi)
2475{
2476 struct ice_pf *pf = vsi->back;
2477 int err;
2478
2479 /* The Rx rule will only exist to remove if the LLDP FW
2480 * engine is currently stopped
2481 */
2482 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2483 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2484 ice_cfg_sw_lldp(vsi, false, false);
2485
2486 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2487 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2488 if (err)
2489 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2490 vsi->vsi_num, err);
2491
2492 if (ice_is_xdp_ena_vsi(vsi))
2493 /* return value check can be skipped here, it always returns
2494 * 0 if reset is in progress
2495 */
2496 ice_destroy_xdp_rings(vsi);
2497
2498 ice_vsi_clear_rings(vsi);
2499 ice_vsi_free_q_vectors(vsi);
2500 ice_vsi_put_qs(vsi);
2501 ice_vsi_free_arrays(vsi);
2502
2503 /* SR-IOV determines needed MSIX resources all at once instead of per
2504 * VSI since when VFs are spawned we know how many VFs there are and how
2505 * many interrupts each VF needs. SR-IOV MSIX resources are also
2506 * cleared in the same manner.
2507 */
2508
2509 if (vsi->type == ICE_VSI_VF &&
2510 vsi->agg_node && vsi->agg_node->valid)
2511 vsi->agg_node->num_vsis--;
2512}
2513
2514/**
2515 * ice_vsi_setup - Set up a VSI by a given type
2516 * @pf: board private structure
2517 * @params: parameters to use when creating the VSI
2518 *
2519 * This allocates the sw VSI structure and its queue resources.
2520 *
2521 * Returns pointer to the successfully allocated and configured VSI sw struct on
2522 * success, NULL on failure.
2523 */
2524struct ice_vsi *
2525ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2526{
2527 struct device *dev = ice_pf_to_dev(pf);
2528 struct ice_vsi *vsi;
2529 int ret;
2530
2531 /* ice_vsi_setup can only initialize a new VSI, and we must have
2532 * a port_info structure for it.
2533 */
2534 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2535 WARN_ON(!params->pi))
2536 return NULL;
2537
2538 vsi = ice_vsi_alloc(pf);
2539 if (!vsi) {
2540 dev_err(dev, "could not allocate VSI\n");
2541 return NULL;
2542 }
2543
2544 ret = ice_vsi_cfg(vsi, params);
2545 if (ret)
2546 goto err_vsi_cfg;
2547
2548 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2549 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2550 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2551 * The rule is added once for PF VSI in order to create appropriate
2552 * recipe, since VSI/VSI list is ignored with drop action...
2553 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2554 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2555 * settings in the HW.
2556 */
2557 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2558 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2559 ICE_DROP_PACKET);
2560 ice_cfg_sw_lldp(vsi, true, true);
2561 }
2562
2563 if (!vsi->agg_node)
2564 ice_set_agg_vsi(vsi);
2565
2566 return vsi;
2567
2568err_vsi_cfg:
2569 ice_vsi_free(vsi);
2570
2571 return NULL;
2572}
2573
2574/**
2575 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2576 * @vsi: the VSI being cleaned up
2577 */
2578static void ice_vsi_release_msix(struct ice_vsi *vsi)
2579{
2580 struct ice_pf *pf = vsi->back;
2581 struct ice_hw *hw = &pf->hw;
2582 u32 txq = 0;
2583 u32 rxq = 0;
2584 int i, q;
2585
2586 ice_for_each_q_vector(vsi, i) {
2587 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2588
2589 ice_write_intrl(q_vector, 0);
2590 for (q = 0; q < q_vector->num_ring_tx; q++) {
2591 ice_write_itr(&q_vector->tx, 0);
2592 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593 if (ice_is_xdp_ena_vsi(vsi)) {
2594 u32 xdp_txq = txq + vsi->num_xdp_txq;
2595
2596 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2597 }
2598 txq++;
2599 }
2600
2601 for (q = 0; q < q_vector->num_ring_rx; q++) {
2602 ice_write_itr(&q_vector->rx, 0);
2603 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2604 rxq++;
2605 }
2606 }
2607
2608 ice_flush(hw);
2609}
2610
2611/**
2612 * ice_vsi_free_irq - Free the IRQ association with the OS
2613 * @vsi: the VSI being configured
2614 */
2615void ice_vsi_free_irq(struct ice_vsi *vsi)
2616{
2617 struct ice_pf *pf = vsi->back;
2618 int i;
2619
2620 if (!vsi->q_vectors || !vsi->irqs_ready)
2621 return;
2622
2623 ice_vsi_release_msix(vsi);
2624 if (vsi->type == ICE_VSI_VF)
2625 return;
2626
2627 vsi->irqs_ready = false;
2628 ice_free_cpu_rx_rmap(vsi);
2629
2630 ice_for_each_q_vector(vsi, i) {
2631 int irq_num;
2632
2633 irq_num = vsi->q_vectors[i]->irq.virq;
2634
2635 /* free only the irqs that were actually requested */
2636 if (!vsi->q_vectors[i] ||
2637 !(vsi->q_vectors[i]->num_ring_tx ||
2638 vsi->q_vectors[i]->num_ring_rx))
2639 continue;
2640
2641 /* clear the affinity notifier in the IRQ descriptor */
2642 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2643 irq_set_affinity_notifier(irq_num, NULL);
2644
2645 /* clear the affinity_mask in the IRQ descriptor */
2646 irq_set_affinity_hint(irq_num, NULL);
2647 synchronize_irq(irq_num);
2648 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2649 }
2650}
2651
2652/**
2653 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2654 * @vsi: the VSI having resources freed
2655 */
2656void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2657{
2658 int i;
2659
2660 if (!vsi->tx_rings)
2661 return;
2662
2663 ice_for_each_txq(vsi, i)
2664 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2665 ice_free_tx_ring(vsi->tx_rings[i]);
2666}
2667
2668/**
2669 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2670 * @vsi: the VSI having resources freed
2671 */
2672void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2673{
2674 int i;
2675
2676 if (!vsi->rx_rings)
2677 return;
2678
2679 ice_for_each_rxq(vsi, i)
2680 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2681 ice_free_rx_ring(vsi->rx_rings[i]);
2682}
2683
2684/**
2685 * ice_vsi_close - Shut down a VSI
2686 * @vsi: the VSI being shut down
2687 */
2688void ice_vsi_close(struct ice_vsi *vsi)
2689{
2690 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2691 ice_down(vsi);
2692
2693 ice_vsi_free_irq(vsi);
2694 ice_vsi_free_tx_rings(vsi);
2695 ice_vsi_free_rx_rings(vsi);
2696}
2697
2698/**
2699 * ice_ena_vsi - resume a VSI
2700 * @vsi: the VSI being resume
2701 * @locked: is the rtnl_lock already held
2702 */
2703int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2704{
2705 int err = 0;
2706
2707 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2708 return 0;
2709
2710 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2711
2712 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2713 if (netif_running(vsi->netdev)) {
2714 if (!locked)
2715 rtnl_lock();
2716
2717 err = ice_open_internal(vsi->netdev);
2718
2719 if (!locked)
2720 rtnl_unlock();
2721 }
2722 } else if (vsi->type == ICE_VSI_CTRL) {
2723 err = ice_vsi_open_ctrl(vsi);
2724 }
2725
2726 return err;
2727}
2728
2729/**
2730 * ice_dis_vsi - pause a VSI
2731 * @vsi: the VSI being paused
2732 * @locked: is the rtnl_lock already held
2733 */
2734void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2735{
2736 if (test_bit(ICE_VSI_DOWN, vsi->state))
2737 return;
2738
2739 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2740
2741 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2742 if (netif_running(vsi->netdev)) {
2743 if (!locked)
2744 rtnl_lock();
2745
2746 ice_vsi_close(vsi);
2747
2748 if (!locked)
2749 rtnl_unlock();
2750 } else {
2751 ice_vsi_close(vsi);
2752 }
2753 } else if (vsi->type == ICE_VSI_CTRL ||
2754 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2755 ice_vsi_close(vsi);
2756 }
2757}
2758
2759/**
2760 * __ice_queue_set_napi - Set the napi instance for the queue
2761 * @dev: device to which NAPI and queue belong
2762 * @queue_index: Index of queue
2763 * @type: queue type as RX or TX
2764 * @napi: NAPI context
2765 * @locked: is the rtnl_lock already held
2766 *
2767 * Set the napi instance for the queue. Caller indicates the lock status.
2768 */
2769static void
2770__ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2771 enum netdev_queue_type type, struct napi_struct *napi,
2772 bool locked)
2773{
2774 if (!locked)
2775 rtnl_lock();
2776 netif_queue_set_napi(dev, queue_index, type, napi);
2777 if (!locked)
2778 rtnl_unlock();
2779}
2780
2781/**
2782 * ice_queue_set_napi - Set the napi instance for the queue
2783 * @vsi: VSI being configured
2784 * @queue_index: Index of queue
2785 * @type: queue type as RX or TX
2786 * @napi: NAPI context
2787 *
2788 * Set the napi instance for the queue. The rtnl lock state is derived from the
2789 * execution path.
2790 */
2791void
2792ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2793 enum netdev_queue_type type, struct napi_struct *napi)
2794{
2795 struct ice_pf *pf = vsi->back;
2796
2797 if (!vsi->netdev)
2798 return;
2799
2800 if (current_work() == &pf->serv_task ||
2801 test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2802 test_bit(ICE_DOWN, pf->state) ||
2803 test_bit(ICE_SUSPENDED, pf->state))
2804 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2805 false);
2806 else
2807 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2808 true);
2809}
2810
2811/**
2812 * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2813 * @q_vector: q_vector pointer
2814 * @locked: is the rtnl_lock already held
2815 *
2816 * Associate the q_vector napi with all the queue[s] on the vector.
2817 * Caller indicates the lock status.
2818 */
2819void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2820{
2821 struct ice_rx_ring *rx_ring;
2822 struct ice_tx_ring *tx_ring;
2823
2824 ice_for_each_rx_ring(rx_ring, q_vector->rx)
2825 __ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2826 NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2827 locked);
2828
2829 ice_for_each_tx_ring(tx_ring, q_vector->tx)
2830 __ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2831 NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2832 locked);
2833 /* Also set the interrupt number for the NAPI */
2834 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2835}
2836
2837/**
2838 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2839 * @q_vector: q_vector pointer
2840 *
2841 * Associate the q_vector napi with all the queue[s] on the vector
2842 */
2843void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2844{
2845 struct ice_rx_ring *rx_ring;
2846 struct ice_tx_ring *tx_ring;
2847
2848 ice_for_each_rx_ring(rx_ring, q_vector->rx)
2849 ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2850 NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2851
2852 ice_for_each_tx_ring(tx_ring, q_vector->tx)
2853 ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2854 NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2855 /* Also set the interrupt number for the NAPI */
2856 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2857}
2858
2859/**
2860 * ice_vsi_set_napi_queues
2861 * @vsi: VSI pointer
2862 *
2863 * Associate queue[s] with napi for all vectors
2864 */
2865void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2866{
2867 int i;
2868
2869 if (!vsi->netdev)
2870 return;
2871
2872 ice_for_each_q_vector(vsi, i)
2873 ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
2874}
2875
2876/**
2877 * ice_vsi_release - Delete a VSI and free its resources
2878 * @vsi: the VSI being removed
2879 *
2880 * Returns 0 on success or < 0 on error
2881 */
2882int ice_vsi_release(struct ice_vsi *vsi)
2883{
2884 struct ice_pf *pf;
2885
2886 if (!vsi->back)
2887 return -ENODEV;
2888 pf = vsi->back;
2889
2890 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2891 ice_rss_clean(vsi);
2892
2893 ice_vsi_close(vsi);
2894 ice_vsi_decfg(vsi);
2895
2896 /* retain SW VSI data structure since it is needed to unregister and
2897 * free VSI netdev when PF is not in reset recovery pending state,\
2898 * for ex: during rmmod.
2899 */
2900 if (!ice_is_reset_in_progress(pf->state))
2901 ice_vsi_delete(vsi);
2902
2903 return 0;
2904}
2905
2906/**
2907 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2908 * @vsi: VSI connected with q_vectors
2909 * @coalesce: array of struct with stored coalesce
2910 *
2911 * Returns array size.
2912 */
2913static int
2914ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2915 struct ice_coalesce_stored *coalesce)
2916{
2917 int i;
2918
2919 ice_for_each_q_vector(vsi, i) {
2920 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2921
2922 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2923 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2924 coalesce[i].intrl = q_vector->intrl;
2925
2926 if (i < vsi->num_txq)
2927 coalesce[i].tx_valid = true;
2928 if (i < vsi->num_rxq)
2929 coalesce[i].rx_valid = true;
2930 }
2931
2932 return vsi->num_q_vectors;
2933}
2934
2935/**
2936 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2937 * @vsi: VSI connected with q_vectors
2938 * @coalesce: pointer to array of struct with stored coalesce
2939 * @size: size of coalesce array
2940 *
2941 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2942 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2943 * to default value.
2944 */
2945static void
2946ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2947 struct ice_coalesce_stored *coalesce, int size)
2948{
2949 struct ice_ring_container *rc;
2950 int i;
2951
2952 if ((size && !coalesce) || !vsi)
2953 return;
2954
2955 /* There are a couple of cases that have to be handled here:
2956 * 1. The case where the number of queue vectors stays the same, but
2957 * the number of Tx or Rx rings changes (the first for loop)
2958 * 2. The case where the number of queue vectors increased (the
2959 * second for loop)
2960 */
2961 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2962 /* There are 2 cases to handle here and they are the same for
2963 * both Tx and Rx:
2964 * if the entry was valid previously (coalesce[i].[tr]x_valid
2965 * and the loop variable is less than the number of rings
2966 * allocated, then write the previous values
2967 *
2968 * if the entry was not valid previously, but the number of
2969 * rings is less than are allocated (this means the number of
2970 * rings increased from previously), then write out the
2971 * values in the first element
2972 *
2973 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2974 * as there is no harm because the dynamic algorithm
2975 * will just overwrite.
2976 */
2977 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2978 rc = &vsi->q_vectors[i]->rx;
2979 rc->itr_settings = coalesce[i].itr_rx;
2980 ice_write_itr(rc, rc->itr_setting);
2981 } else if (i < vsi->alloc_rxq) {
2982 rc = &vsi->q_vectors[i]->rx;
2983 rc->itr_settings = coalesce[0].itr_rx;
2984 ice_write_itr(rc, rc->itr_setting);
2985 }
2986
2987 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2988 rc = &vsi->q_vectors[i]->tx;
2989 rc->itr_settings = coalesce[i].itr_tx;
2990 ice_write_itr(rc, rc->itr_setting);
2991 } else if (i < vsi->alloc_txq) {
2992 rc = &vsi->q_vectors[i]->tx;
2993 rc->itr_settings = coalesce[0].itr_tx;
2994 ice_write_itr(rc, rc->itr_setting);
2995 }
2996
2997 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2998 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2999 }
3000
3001 /* the number of queue vectors increased so write whatever is in
3002 * the first element
3003 */
3004 for (; i < vsi->num_q_vectors; i++) {
3005 /* transmit */
3006 rc = &vsi->q_vectors[i]->tx;
3007 rc->itr_settings = coalesce[0].itr_tx;
3008 ice_write_itr(rc, rc->itr_setting);
3009
3010 /* receive */
3011 rc = &vsi->q_vectors[i]->rx;
3012 rc->itr_settings = coalesce[0].itr_rx;
3013 ice_write_itr(rc, rc->itr_setting);
3014
3015 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3016 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3017 }
3018}
3019
3020/**
3021 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3022 * @vsi: VSI pointer
3023 */
3024static int
3025ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3026{
3027 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3028 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3029 struct ice_ring_stats **tx_ring_stats;
3030 struct ice_ring_stats **rx_ring_stats;
3031 struct ice_vsi_stats *vsi_stat;
3032 struct ice_pf *pf = vsi->back;
3033 u16 prev_txq = vsi->alloc_txq;
3034 u16 prev_rxq = vsi->alloc_rxq;
3035 int i;
3036
3037 vsi_stat = pf->vsi_stats[vsi->idx];
3038
3039 if (req_txq < prev_txq) {
3040 for (i = req_txq; i < prev_txq; i++) {
3041 if (vsi_stat->tx_ring_stats[i]) {
3042 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3043 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3044 }
3045 }
3046 }
3047
3048 tx_ring_stats = vsi_stat->tx_ring_stats;
3049 vsi_stat->tx_ring_stats =
3050 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3051 sizeof(*vsi_stat->tx_ring_stats),
3052 GFP_KERNEL | __GFP_ZERO);
3053 if (!vsi_stat->tx_ring_stats) {
3054 vsi_stat->tx_ring_stats = tx_ring_stats;
3055 return -ENOMEM;
3056 }
3057
3058 if (req_rxq < prev_rxq) {
3059 for (i = req_rxq; i < prev_rxq; i++) {
3060 if (vsi_stat->rx_ring_stats[i]) {
3061 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3062 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3063 }
3064 }
3065 }
3066
3067 rx_ring_stats = vsi_stat->rx_ring_stats;
3068 vsi_stat->rx_ring_stats =
3069 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3070 sizeof(*vsi_stat->rx_ring_stats),
3071 GFP_KERNEL | __GFP_ZERO);
3072 if (!vsi_stat->rx_ring_stats) {
3073 vsi_stat->rx_ring_stats = rx_ring_stats;
3074 return -ENOMEM;
3075 }
3076
3077 return 0;
3078}
3079
3080/**
3081 * ice_vsi_rebuild - Rebuild VSI after reset
3082 * @vsi: VSI to be rebuild
3083 * @vsi_flags: flags used for VSI rebuild flow
3084 *
3085 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3086 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3087 *
3088 * Returns 0 on success and negative value on failure
3089 */
3090int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3091{
3092 struct ice_vsi_cfg_params params = {};
3093 struct ice_coalesce_stored *coalesce;
3094 int prev_num_q_vectors;
3095 struct ice_pf *pf;
3096 int ret;
3097
3098 if (!vsi)
3099 return -EINVAL;
3100
3101 params = ice_vsi_to_params(vsi);
3102 params.flags = vsi_flags;
3103
3104 pf = vsi->back;
3105 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3106 return -EINVAL;
3107
3108 ret = ice_vsi_realloc_stat_arrays(vsi);
3109 if (ret)
3110 goto err_vsi_cfg;
3111
3112 ice_vsi_decfg(vsi);
3113 ret = ice_vsi_cfg_def(vsi, ¶ms);
3114 if (ret)
3115 goto err_vsi_cfg;
3116
3117 coalesce = kcalloc(vsi->num_q_vectors,
3118 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3119 if (!coalesce)
3120 return -ENOMEM;
3121
3122 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3123
3124 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3125 if (ret) {
3126 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3127 ret = -EIO;
3128 goto err_vsi_cfg_tc_lan;
3129 }
3130
3131 kfree(coalesce);
3132 return ice_schedule_reset(pf, ICE_RESET_PFR);
3133 }
3134
3135 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3136 kfree(coalesce);
3137
3138 return 0;
3139
3140err_vsi_cfg_tc_lan:
3141 ice_vsi_decfg(vsi);
3142 kfree(coalesce);
3143err_vsi_cfg:
3144 return ret;
3145}
3146
3147/**
3148 * ice_is_reset_in_progress - check for a reset in progress
3149 * @state: PF state field
3150 */
3151bool ice_is_reset_in_progress(unsigned long *state)
3152{
3153 return test_bit(ICE_RESET_OICR_RECV, state) ||
3154 test_bit(ICE_PFR_REQ, state) ||
3155 test_bit(ICE_CORER_REQ, state) ||
3156 test_bit(ICE_GLOBR_REQ, state);
3157}
3158
3159/**
3160 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3161 * @pf: pointer to the PF structure
3162 * @timeout: length of time to wait, in jiffies
3163 *
3164 * Wait (sleep) for a short time until the driver finishes cleaning up from
3165 * a device reset. The caller must be able to sleep. Use this to delay
3166 * operations that could fail while the driver is cleaning up after a device
3167 * reset.
3168 *
3169 * Returns 0 on success, -EBUSY if the reset is not finished within the
3170 * timeout, and -ERESTARTSYS if the thread was interrupted.
3171 */
3172int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3173{
3174 long ret;
3175
3176 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3177 !ice_is_reset_in_progress(pf->state),
3178 timeout);
3179 if (ret < 0)
3180 return ret;
3181 else if (!ret)
3182 return -EBUSY;
3183 else
3184 return 0;
3185}
3186
3187/**
3188 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3189 * @vsi: VSI being configured
3190 * @ctx: the context buffer returned from AQ VSI update command
3191 */
3192static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3193{
3194 vsi->info.mapping_flags = ctx->info.mapping_flags;
3195 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3196 sizeof(vsi->info.q_mapping));
3197 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3198 sizeof(vsi->info.tc_mapping));
3199}
3200
3201/**
3202 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3203 * @vsi: the VSI being configured
3204 * @ena_tc: TC map to be enabled
3205 */
3206void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3207{
3208 struct net_device *netdev = vsi->netdev;
3209 struct ice_pf *pf = vsi->back;
3210 int numtc = vsi->tc_cfg.numtc;
3211 struct ice_dcbx_cfg *dcbcfg;
3212 u8 netdev_tc;
3213 int i;
3214
3215 if (!netdev)
3216 return;
3217
3218 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3219 if (vsi->type == ICE_VSI_CHNL)
3220 return;
3221
3222 if (!ena_tc) {
3223 netdev_reset_tc(netdev);
3224 return;
3225 }
3226
3227 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3228 numtc = vsi->all_numtc;
3229
3230 if (netdev_set_num_tc(netdev, numtc))
3231 return;
3232
3233 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3234
3235 ice_for_each_traffic_class(i)
3236 if (vsi->tc_cfg.ena_tc & BIT(i))
3237 netdev_set_tc_queue(netdev,
3238 vsi->tc_cfg.tc_info[i].netdev_tc,
3239 vsi->tc_cfg.tc_info[i].qcount_tx,
3240 vsi->tc_cfg.tc_info[i].qoffset);
3241 /* setup TC queue map for CHNL TCs */
3242 ice_for_each_chnl_tc(i) {
3243 if (!(vsi->all_enatc & BIT(i)))
3244 break;
3245 if (!vsi->mqprio_qopt.qopt.count[i])
3246 break;
3247 netdev_set_tc_queue(netdev, i,
3248 vsi->mqprio_qopt.qopt.count[i],
3249 vsi->mqprio_qopt.qopt.offset[i]);
3250 }
3251
3252 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3253 return;
3254
3255 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3256 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3257
3258 /* Get the mapped netdev TC# for the UP */
3259 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3260 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3261 }
3262}
3263
3264/**
3265 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3266 * @vsi: the VSI being configured,
3267 * @ctxt: VSI context structure
3268 * @ena_tc: number of traffic classes to enable
3269 *
3270 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3271 */
3272static int
3273ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3274 u8 ena_tc)
3275{
3276 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3277 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3278 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3279 u16 new_txq, new_rxq;
3280 u8 netdev_tc = 0;
3281 int i;
3282
3283 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3284
3285 pow = order_base_2(tc0_qcount);
3286 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3287 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3288
3289 ice_for_each_traffic_class(i) {
3290 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3291 /* TC is not enabled */
3292 vsi->tc_cfg.tc_info[i].qoffset = 0;
3293 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3294 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3295 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3296 ctxt->info.tc_mapping[i] = 0;
3297 continue;
3298 }
3299
3300 offset = vsi->mqprio_qopt.qopt.offset[i];
3301 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3302 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3303 vsi->tc_cfg.tc_info[i].qoffset = offset;
3304 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3305 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3306 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3307 }
3308
3309 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3310 ice_for_each_chnl_tc(i) {
3311 if (!(vsi->all_enatc & BIT(i)))
3312 continue;
3313 offset = vsi->mqprio_qopt.qopt.offset[i];
3314 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3315 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3316 }
3317 }
3318
3319 new_txq = offset + qcount_tx;
3320 if (new_txq > vsi->alloc_txq) {
3321 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3322 new_txq, vsi->alloc_txq);
3323 return -EINVAL;
3324 }
3325
3326 new_rxq = offset + qcount_rx;
3327 if (new_rxq > vsi->alloc_rxq) {
3328 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3329 new_rxq, vsi->alloc_rxq);
3330 return -EINVAL;
3331 }
3332
3333 /* Set actual Tx/Rx queue pairs */
3334 vsi->num_txq = new_txq;
3335 vsi->num_rxq = new_rxq;
3336
3337 /* Setup queue TC[0].qmap for given VSI context */
3338 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3339 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3340 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3341
3342 /* Find queue count available for channel VSIs and starting offset
3343 * for channel VSIs
3344 */
3345 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3346 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3347 vsi->next_base_q = tc0_qcount;
3348 }
3349 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3350 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3351 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3352 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3353
3354 return 0;
3355}
3356
3357/**
3358 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3359 * @vsi: VSI to be configured
3360 * @ena_tc: TC bitmap
3361 *
3362 * VSI queues expected to be quiesced before calling this function
3363 */
3364int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3365{
3366 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3367 struct ice_pf *pf = vsi->back;
3368 struct ice_tc_cfg old_tc_cfg;
3369 struct ice_vsi_ctx *ctx;
3370 struct device *dev;
3371 int i, ret = 0;
3372 u8 num_tc = 0;
3373
3374 dev = ice_pf_to_dev(pf);
3375 if (vsi->tc_cfg.ena_tc == ena_tc &&
3376 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3377 return 0;
3378
3379 ice_for_each_traffic_class(i) {
3380 /* build bitmap of enabled TCs */
3381 if (ena_tc & BIT(i))
3382 num_tc++;
3383 /* populate max_txqs per TC */
3384 max_txqs[i] = vsi->alloc_txq;
3385 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3386 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3387 */
3388 if (vsi->type == ICE_VSI_CHNL &&
3389 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3390 max_txqs[i] = vsi->num_txq;
3391 }
3392
3393 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3394 vsi->tc_cfg.ena_tc = ena_tc;
3395 vsi->tc_cfg.numtc = num_tc;
3396
3397 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3398 if (!ctx)
3399 return -ENOMEM;
3400
3401 ctx->vf_num = 0;
3402 ctx->info = vsi->info;
3403
3404 if (vsi->type == ICE_VSI_PF &&
3405 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3406 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3407 else
3408 ret = ice_vsi_setup_q_map(vsi, ctx);
3409
3410 if (ret) {
3411 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3412 goto out;
3413 }
3414
3415 /* must to indicate which section of VSI context are being modified */
3416 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3417 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3418 if (ret) {
3419 dev_info(dev, "Failed VSI Update\n");
3420 goto out;
3421 }
3422
3423 if (vsi->type == ICE_VSI_PF &&
3424 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3425 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3426 else
3427 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3428 vsi->tc_cfg.ena_tc, max_txqs);
3429
3430 if (ret) {
3431 dev_err(dev, "VSI %d failed TC config, error %d\n",
3432 vsi->vsi_num, ret);
3433 goto out;
3434 }
3435 ice_vsi_update_q_map(vsi, ctx);
3436 vsi->info.valid_sections = 0;
3437
3438 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3439out:
3440 kfree(ctx);
3441 return ret;
3442}
3443
3444/**
3445 * ice_update_ring_stats - Update ring statistics
3446 * @stats: stats to be updated
3447 * @pkts: number of processed packets
3448 * @bytes: number of processed bytes
3449 *
3450 * This function assumes that caller has acquired a u64_stats_sync lock.
3451 */
3452static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3453{
3454 stats->bytes += bytes;
3455 stats->pkts += pkts;
3456}
3457
3458/**
3459 * ice_update_tx_ring_stats - Update Tx ring specific counters
3460 * @tx_ring: ring to update
3461 * @pkts: number of processed packets
3462 * @bytes: number of processed bytes
3463 */
3464void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3465{
3466 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3467 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3468 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3469}
3470
3471/**
3472 * ice_update_rx_ring_stats - Update Rx ring specific counters
3473 * @rx_ring: ring to update
3474 * @pkts: number of processed packets
3475 * @bytes: number of processed bytes
3476 */
3477void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3478{
3479 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3480 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3481 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3482}
3483
3484/**
3485 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3486 * @pi: port info of the switch with default VSI
3487 *
3488 * Return true if the there is a single VSI in default forwarding VSI list
3489 */
3490bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3491{
3492 bool exists = false;
3493
3494 ice_check_if_dflt_vsi(pi, 0, &exists);
3495 return exists;
3496}
3497
3498/**
3499 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3500 * @vsi: VSI to compare against default forwarding VSI
3501 *
3502 * If this VSI passed in is the default forwarding VSI then return true, else
3503 * return false
3504 */
3505bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3506{
3507 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3508}
3509
3510/**
3511 * ice_set_dflt_vsi - set the default forwarding VSI
3512 * @vsi: VSI getting set as the default forwarding VSI on the switch
3513 *
3514 * If the VSI passed in is already the default VSI and it's enabled just return
3515 * success.
3516 *
3517 * Otherwise try to set the VSI passed in as the switch's default VSI and
3518 * return the result.
3519 */
3520int ice_set_dflt_vsi(struct ice_vsi *vsi)
3521{
3522 struct device *dev;
3523 int status;
3524
3525 if (!vsi)
3526 return -EINVAL;
3527
3528 dev = ice_pf_to_dev(vsi->back);
3529
3530 if (ice_lag_is_switchdev_running(vsi->back)) {
3531 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3532 vsi->vsi_num);
3533 return 0;
3534 }
3535
3536 /* the VSI passed in is already the default VSI */
3537 if (ice_is_vsi_dflt_vsi(vsi)) {
3538 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3539 vsi->vsi_num);
3540 return 0;
3541 }
3542
3543 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3544 if (status) {
3545 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3546 vsi->vsi_num, status);
3547 return status;
3548 }
3549
3550 return 0;
3551}
3552
3553/**
3554 * ice_clear_dflt_vsi - clear the default forwarding VSI
3555 * @vsi: VSI to remove from filter list
3556 *
3557 * If the switch has no default VSI or it's not enabled then return error.
3558 *
3559 * Otherwise try to clear the default VSI and return the result.
3560 */
3561int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3562{
3563 struct device *dev;
3564 int status;
3565
3566 if (!vsi)
3567 return -EINVAL;
3568
3569 dev = ice_pf_to_dev(vsi->back);
3570
3571 /* there is no default VSI configured */
3572 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3573 return -ENODEV;
3574
3575 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3576 ICE_FLTR_RX);
3577 if (status) {
3578 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3579 vsi->vsi_num, status);
3580 return -EIO;
3581 }
3582
3583 return 0;
3584}
3585
3586/**
3587 * ice_get_link_speed_mbps - get link speed in Mbps
3588 * @vsi: the VSI whose link speed is being queried
3589 *
3590 * Return current VSI link speed and 0 if the speed is unknown.
3591 */
3592int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3593{
3594 unsigned int link_speed;
3595
3596 link_speed = vsi->port_info->phy.link_info.link_speed;
3597
3598 return (int)ice_get_link_speed(fls(link_speed) - 1);
3599}
3600
3601/**
3602 * ice_get_link_speed_kbps - get link speed in Kbps
3603 * @vsi: the VSI whose link speed is being queried
3604 *
3605 * Return current VSI link speed and 0 if the speed is unknown.
3606 */
3607int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3608{
3609 int speed_mbps;
3610
3611 speed_mbps = ice_get_link_speed_mbps(vsi);
3612
3613 return speed_mbps * 1000;
3614}
3615
3616/**
3617 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3618 * @vsi: VSI to be configured
3619 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3620 *
3621 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3622 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3623 * on TC 0.
3624 */
3625int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3626{
3627 struct ice_pf *pf = vsi->back;
3628 struct device *dev;
3629 int status;
3630 int speed;
3631
3632 dev = ice_pf_to_dev(pf);
3633 if (!vsi->port_info) {
3634 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3635 vsi->idx, vsi->type);
3636 return -EINVAL;
3637 }
3638
3639 speed = ice_get_link_speed_kbps(vsi);
3640 if (min_tx_rate > (u64)speed) {
3641 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3642 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3643 speed);
3644 return -EINVAL;
3645 }
3646
3647 /* Configure min BW for VSI limit */
3648 if (min_tx_rate) {
3649 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3650 ICE_MIN_BW, min_tx_rate);
3651 if (status) {
3652 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3653 min_tx_rate, ice_vsi_type_str(vsi->type),
3654 vsi->idx);
3655 return status;
3656 }
3657
3658 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3659 min_tx_rate, ice_vsi_type_str(vsi->type));
3660 } else {
3661 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3662 vsi->idx, 0,
3663 ICE_MIN_BW);
3664 if (status) {
3665 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3666 ice_vsi_type_str(vsi->type), vsi->idx);
3667 return status;
3668 }
3669
3670 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3671 ice_vsi_type_str(vsi->type), vsi->idx);
3672 }
3673
3674 return 0;
3675}
3676
3677/**
3678 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3679 * @vsi: VSI to be configured
3680 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3681 *
3682 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3683 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3684 * on TC 0.
3685 */
3686int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3687{
3688 struct ice_pf *pf = vsi->back;
3689 struct device *dev;
3690 int status;
3691 int speed;
3692
3693 dev = ice_pf_to_dev(pf);
3694 if (!vsi->port_info) {
3695 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3696 vsi->idx, vsi->type);
3697 return -EINVAL;
3698 }
3699
3700 speed = ice_get_link_speed_kbps(vsi);
3701 if (max_tx_rate > (u64)speed) {
3702 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3703 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3704 speed);
3705 return -EINVAL;
3706 }
3707
3708 /* Configure max BW for VSI limit */
3709 if (max_tx_rate) {
3710 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3711 ICE_MAX_BW, max_tx_rate);
3712 if (status) {
3713 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3714 max_tx_rate, ice_vsi_type_str(vsi->type),
3715 vsi->idx);
3716 return status;
3717 }
3718
3719 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3720 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3721 } else {
3722 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3723 vsi->idx, 0,
3724 ICE_MAX_BW);
3725 if (status) {
3726 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3727 ice_vsi_type_str(vsi->type), vsi->idx);
3728 return status;
3729 }
3730
3731 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3732 ice_vsi_type_str(vsi->type), vsi->idx);
3733 }
3734
3735 return 0;
3736}
3737
3738/**
3739 * ice_set_link - turn on/off physical link
3740 * @vsi: VSI to modify physical link on
3741 * @ena: turn on/off physical link
3742 */
3743int ice_set_link(struct ice_vsi *vsi, bool ena)
3744{
3745 struct device *dev = ice_pf_to_dev(vsi->back);
3746 struct ice_port_info *pi = vsi->port_info;
3747 struct ice_hw *hw = pi->hw;
3748 int status;
3749
3750 if (vsi->type != ICE_VSI_PF)
3751 return -EINVAL;
3752
3753 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3754
3755 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3756 * this is not a fatal error, so print a warning message and return
3757 * a success code. Return an error if FW returns an error code other
3758 * than ICE_AQ_RC_EMODE
3759 */
3760 if (status == -EIO) {
3761 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3762 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3763 (ena ? "ON" : "OFF"), status,
3764 ice_aq_str(hw->adminq.sq_last_status));
3765 } else if (status) {
3766 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3767 (ena ? "ON" : "OFF"), status,
3768 ice_aq_str(hw->adminq.sq_last_status));
3769 return status;
3770 }
3771
3772 return 0;
3773}
3774
3775/**
3776 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3777 * @vsi: VSI used to add VLAN filters
3778 *
3779 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3780 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3781 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3782 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3783 *
3784 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3785 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3786 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3787 *
3788 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3789 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3790 * part of filtering.
3791 */
3792int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3793{
3794 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3795 struct ice_vlan vlan;
3796 int err;
3797
3798 vlan = ICE_VLAN(0, 0, 0);
3799 err = vlan_ops->add_vlan(vsi, &vlan);
3800 if (err && err != -EEXIST)
3801 return err;
3802
3803 /* in SVM both VLAN 0 filters are identical */
3804 if (!ice_is_dvm_ena(&vsi->back->hw))
3805 return 0;
3806
3807 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3808 err = vlan_ops->add_vlan(vsi, &vlan);
3809 if (err && err != -EEXIST)
3810 return err;
3811
3812 return 0;
3813}
3814
3815/**
3816 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3817 * @vsi: VSI used to add VLAN filters
3818 *
3819 * Delete the VLAN 0 filters in the same manner that they were added in
3820 * ice_vsi_add_vlan_zero.
3821 */
3822int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3823{
3824 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3825 struct ice_vlan vlan;
3826 int err;
3827
3828 vlan = ICE_VLAN(0, 0, 0);
3829 err = vlan_ops->del_vlan(vsi, &vlan);
3830 if (err && err != -EEXIST)
3831 return err;
3832
3833 /* in SVM both VLAN 0 filters are identical */
3834 if (!ice_is_dvm_ena(&vsi->back->hw))
3835 return 0;
3836
3837 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3838 err = vlan_ops->del_vlan(vsi, &vlan);
3839 if (err && err != -EEXIST)
3840 return err;
3841
3842 /* when deleting the last VLAN filter, make sure to disable the VLAN
3843 * promisc mode so the filter isn't left by accident
3844 */
3845 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3846 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3847}
3848
3849/**
3850 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3851 * @vsi: VSI used to get the VLAN mode
3852 *
3853 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3854 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3855 */
3856static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3857{
3858#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3859#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3860 /* no VLAN 0 filter is created when a port VLAN is active */
3861 if (vsi->type == ICE_VSI_VF) {
3862 if (WARN_ON(!vsi->vf))
3863 return 0;
3864
3865 if (ice_vf_is_port_vlan_ena(vsi->vf))
3866 return 0;
3867 }
3868
3869 if (ice_is_dvm_ena(&vsi->back->hw))
3870 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3871 else
3872 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3873}
3874
3875/**
3876 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3877 * @vsi: VSI used to determine if any non-zero VLANs have been added
3878 */
3879bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3880{
3881 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3882}
3883
3884/**
3885 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3886 * @vsi: VSI used to get the number of non-zero VLANs added
3887 */
3888u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3889{
3890 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3891}
3892
3893/**
3894 * ice_is_feature_supported
3895 * @pf: pointer to the struct ice_pf instance
3896 * @f: feature enum to be checked
3897 *
3898 * returns true if feature is supported, false otherwise
3899 */
3900bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3901{
3902 if (f < 0 || f >= ICE_F_MAX)
3903 return false;
3904
3905 return test_bit(f, pf->features);
3906}
3907
3908/**
3909 * ice_set_feature_support
3910 * @pf: pointer to the struct ice_pf instance
3911 * @f: feature enum to set
3912 */
3913void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3914{
3915 if (f < 0 || f >= ICE_F_MAX)
3916 return;
3917
3918 set_bit(f, pf->features);
3919}
3920
3921/**
3922 * ice_clear_feature_support
3923 * @pf: pointer to the struct ice_pf instance
3924 * @f: feature enum to clear
3925 */
3926void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3927{
3928 if (f < 0 || f >= ICE_F_MAX)
3929 return;
3930
3931 clear_bit(f, pf->features);
3932}
3933
3934/**
3935 * ice_init_feature_support
3936 * @pf: pointer to the struct ice_pf instance
3937 *
3938 * called during init to setup supported feature
3939 */
3940void ice_init_feature_support(struct ice_pf *pf)
3941{
3942 switch (pf->hw.device_id) {
3943 case ICE_DEV_ID_E810C_BACKPLANE:
3944 case ICE_DEV_ID_E810C_QSFP:
3945 case ICE_DEV_ID_E810C_SFP:
3946 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3947 case ICE_DEV_ID_E810_XXV_QSFP:
3948 case ICE_DEV_ID_E810_XXV_SFP:
3949 ice_set_feature_support(pf, ICE_F_DSCP);
3950 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3951 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3952 /* If we don't own the timer - don't enable other caps */
3953 if (!ice_pf_src_tmr_owned(pf))
3954 break;
3955 if (ice_is_cgu_in_netlist(&pf->hw))
3956 ice_set_feature_support(pf, ICE_F_CGU);
3957 if (ice_is_clock_mux_in_netlist(&pf->hw))
3958 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3959 if (ice_gnss_is_gps_present(&pf->hw))
3960 ice_set_feature_support(pf, ICE_F_GNSS);
3961 break;
3962 default:
3963 break;
3964 }
3965}
3966
3967/**
3968 * ice_vsi_update_security - update security block in VSI
3969 * @vsi: pointer to VSI structure
3970 * @fill: function pointer to fill ctx
3971 */
3972int
3973ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3974{
3975 struct ice_vsi_ctx ctx = { 0 };
3976
3977 ctx.info = vsi->info;
3978 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3979 fill(&ctx);
3980
3981 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3982 return -ENODEV;
3983
3984 vsi->info = ctx.info;
3985 return 0;
3986}
3987
3988/**
3989 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3990 * @ctx: pointer to VSI ctx structure
3991 */
3992void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3993{
3994 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3995 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3996 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3997}
3998
3999/**
4000 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4001 * @ctx: pointer to VSI ctx structure
4002 */
4003void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4004{
4005 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4006 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4008}
4009
4010/**
4011 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4012 * @ctx: pointer to VSI ctx structure
4013 */
4014void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4015{
4016 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4017}
4018
4019/**
4020 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4021 * @ctx: pointer to VSI ctx structure
4022 */
4023void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4024{
4025 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4026}
4027
4028/**
4029 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4030 * @vsi: pointer to VSI structure
4031 * @set: set or unset the bit
4032 */
4033int
4034ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4035{
4036 struct ice_vsi_ctx ctx = {
4037 .info = vsi->info,
4038 };
4039
4040 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4041 if (set)
4042 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4043 else
4044 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4045
4046 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4047 return -ENODEV;
4048
4049 vsi->info = ctx.info;
4050 return 0;
4051}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_devlink.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 if (!vsi->af_xdp_zc_qps)
122 goto err_zc_qps;
123
124 return 0;
125
126err_zc_qps:
127 devm_kfree(dev, vsi->q_vectors);
128err_vectors:
129 devm_kfree(dev, vsi->rxq_map);
130err_rxq_map:
131 devm_kfree(dev, vsi->txq_map);
132err_txq_map:
133 devm_kfree(dev, vsi->rx_rings);
134err_rings:
135 devm_kfree(dev, vsi->tx_rings);
136 return -ENOMEM;
137}
138
139/**
140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141 * @vsi: the VSI being configured
142 */
143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144{
145 switch (vsi->type) {
146 case ICE_VSI_PF:
147 case ICE_VSI_SWITCHDEV_CTRL:
148 case ICE_VSI_CTRL:
149 case ICE_VSI_LB:
150 /* a user could change the values of num_[tr]x_desc using
151 * ethtool -G so we should keep those values instead of
152 * overwriting them with the defaults.
153 */
154 if (!vsi->num_rx_desc)
155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 if (!vsi->num_tx_desc)
157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 break;
159 default:
160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 vsi->type);
162 break;
163 }
164}
165
166/**
167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168 * @vsi: the VSI being configured
169 * @vf: the VF associated with this VSI, if any
170 *
171 * Return 0 on success and a negative value on error
172 */
173static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174{
175 enum ice_vsi_type vsi_type = vsi->type;
176 struct ice_pf *pf = vsi->back;
177
178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 return;
180
181 switch (vsi_type) {
182 case ICE_VSI_PF:
183 if (vsi->req_txq) {
184 vsi->alloc_txq = vsi->req_txq;
185 vsi->num_txq = vsi->req_txq;
186 } else {
187 vsi->alloc_txq = min3(pf->num_lan_msix,
188 ice_get_avail_txq_count(pf),
189 (u16)num_online_cpus());
190 }
191
192 pf->num_lan_tx = vsi->alloc_txq;
193
194 /* only 1 Rx queue unless RSS is enabled */
195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 vsi->alloc_rxq = 1;
197 } else {
198 if (vsi->req_rxq) {
199 vsi->alloc_rxq = vsi->req_rxq;
200 vsi->num_rxq = vsi->req_rxq;
201 } else {
202 vsi->alloc_rxq = min3(pf->num_lan_msix,
203 ice_get_avail_rxq_count(pf),
204 (u16)num_online_cpus());
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 max_t(int, vsi->alloc_rxq,
212 vsi->alloc_txq));
213 break;
214 case ICE_VSI_SWITCHDEV_CTRL:
215 /* The number of queues for ctrl VSI is equal to number of VFs.
216 * Each ring is associated to the corresponding VF_PR netdev.
217 */
218 vsi->alloc_txq = ice_get_num_vfs(pf);
219 vsi->alloc_rxq = vsi->alloc_txq;
220 vsi->num_q_vectors = 1;
221 break;
222 case ICE_VSI_VF:
223 if (vf->num_req_qs)
224 vf->num_vf_qs = vf->num_req_qs;
225 vsi->alloc_txq = vf->num_vf_qs;
226 vsi->alloc_rxq = vf->num_vf_qs;
227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 * data queue interrupts). Since vsi->num_q_vectors is number
229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 * original vector count
231 */
232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 break;
234 case ICE_VSI_CTRL:
235 vsi->alloc_txq = 1;
236 vsi->alloc_rxq = 1;
237 vsi->num_q_vectors = 1;
238 break;
239 case ICE_VSI_CHNL:
240 vsi->alloc_txq = 0;
241 vsi->alloc_rxq = 0;
242 break;
243 case ICE_VSI_LB:
244 vsi->alloc_txq = 1;
245 vsi->alloc_rxq = 1;
246 break;
247 default:
248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 break;
250 }
251
252 ice_vsi_set_num_desc(vsi);
253}
254
255/**
256 * ice_get_free_slot - get the next non-NULL location index in array
257 * @array: array to search
258 * @size: size of the array
259 * @curr: last known occupied index to be used as a search hint
260 *
261 * void * is being used to keep the functionality generic. This lets us use this
262 * function on any array of pointers.
263 */
264static int ice_get_free_slot(void *array, int size, int curr)
265{
266 int **tmp_array = (int **)array;
267 int next;
268
269 if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 next = curr + 1;
271 } else {
272 int i = 0;
273
274 while ((i < size) && (tmp_array[i]))
275 i++;
276 if (i == size)
277 next = ICE_NO_VSI;
278 else
279 next = i;
280 }
281 return next;
282}
283
284/**
285 * ice_vsi_delete - delete a VSI from the switch
286 * @vsi: pointer to VSI being removed
287 */
288void ice_vsi_delete(struct ice_vsi *vsi)
289{
290 struct ice_pf *pf = vsi->back;
291 struct ice_vsi_ctx *ctxt;
292 int status;
293
294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 if (!ctxt)
296 return;
297
298 if (vsi->type == ICE_VSI_VF)
299 ctxt->vf_num = vsi->vf->vf_id;
300 ctxt->vsi_num = vsi->vsi_num;
301
302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303
304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 if (status)
306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 vsi->vsi_num, status);
308
309 kfree(ctxt);
310}
311
312/**
313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314 * @vsi: pointer to VSI being cleared
315 */
316static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317{
318 struct ice_pf *pf = vsi->back;
319 struct device *dev;
320
321 dev = ice_pf_to_dev(pf);
322
323 if (vsi->af_xdp_zc_qps) {
324 bitmap_free(vsi->af_xdp_zc_qps);
325 vsi->af_xdp_zc_qps = NULL;
326 }
327 /* free the ring and vector containers */
328 if (vsi->q_vectors) {
329 devm_kfree(dev, vsi->q_vectors);
330 vsi->q_vectors = NULL;
331 }
332 if (vsi->tx_rings) {
333 devm_kfree(dev, vsi->tx_rings);
334 vsi->tx_rings = NULL;
335 }
336 if (vsi->rx_rings) {
337 devm_kfree(dev, vsi->rx_rings);
338 vsi->rx_rings = NULL;
339 }
340 if (vsi->txq_map) {
341 devm_kfree(dev, vsi->txq_map);
342 vsi->txq_map = NULL;
343 }
344 if (vsi->rxq_map) {
345 devm_kfree(dev, vsi->rxq_map);
346 vsi->rxq_map = NULL;
347 }
348}
349
350/**
351 * ice_vsi_clear - clean up and deallocate the provided VSI
352 * @vsi: pointer to VSI being cleared
353 *
354 * This deallocates the VSI's queue resources, removes it from the PF's
355 * VSI array if necessary, and deallocates the VSI
356 *
357 * Returns 0 on success, negative on failure
358 */
359int ice_vsi_clear(struct ice_vsi *vsi)
360{
361 struct ice_pf *pf = NULL;
362 struct device *dev;
363
364 if (!vsi)
365 return 0;
366
367 if (!vsi->back)
368 return -EINVAL;
369
370 pf = vsi->back;
371 dev = ice_pf_to_dev(pf);
372
373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 return -EINVAL;
376 }
377
378 mutex_lock(&pf->sw_mutex);
379 /* updates the PF for this cleared VSI */
380
381 pf->vsi[vsi->idx] = NULL;
382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 pf->next_vsi = vsi->idx;
384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 pf->next_vsi = vsi->idx;
386
387 ice_vsi_free_arrays(vsi);
388 mutex_unlock(&pf->sw_mutex);
389 devm_kfree(dev, vsi);
390
391 return 0;
392}
393
394/**
395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396 * @irq: interrupt number
397 * @data: pointer to a q_vector
398 */
399static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400{
401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402
403 if (!q_vector->tx.tx_ring)
404 return IRQ_HANDLED;
405
406#define FDIR_RX_DESC_CLEAN_BUDGET 64
407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409
410 return IRQ_HANDLED;
411}
412
413/**
414 * ice_msix_clean_rings - MSIX mode Interrupt Handler
415 * @irq: interrupt number
416 * @data: pointer to a q_vector
417 */
418static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419{
420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421
422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 return IRQ_HANDLED;
424
425 q_vector->total_events++;
426
427 napi_schedule(&q_vector->napi);
428
429 return IRQ_HANDLED;
430}
431
432static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433{
434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 struct ice_pf *pf = q_vector->vsi->back;
436 struct ice_vf *vf;
437 unsigned int bkt;
438
439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 return IRQ_HANDLED;
441
442 rcu_read_lock();
443 ice_for_each_vf_rcu(pf, bkt, vf)
444 napi_schedule(&vf->repr->q_vector->napi);
445 rcu_read_unlock();
446
447 return IRQ_HANDLED;
448}
449
450/**
451 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
452 * @vsi: VSI pointer
453 */
454static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
455{
456 struct ice_vsi_stats *vsi_stat;
457 struct ice_pf *pf = vsi->back;
458
459 if (vsi->type == ICE_VSI_CHNL)
460 return 0;
461 if (!pf->vsi_stats)
462 return -ENOENT;
463
464 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
465 if (!vsi_stat)
466 return -ENOMEM;
467
468 vsi_stat->tx_ring_stats =
469 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
470 GFP_KERNEL);
471 if (!vsi_stat->tx_ring_stats)
472 goto err_alloc_tx;
473
474 vsi_stat->rx_ring_stats =
475 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
476 GFP_KERNEL);
477 if (!vsi_stat->rx_ring_stats)
478 goto err_alloc_rx;
479
480 pf->vsi_stats[vsi->idx] = vsi_stat;
481
482 return 0;
483
484err_alloc_rx:
485 kfree(vsi_stat->rx_ring_stats);
486err_alloc_tx:
487 kfree(vsi_stat->tx_ring_stats);
488 kfree(vsi_stat);
489 pf->vsi_stats[vsi->idx] = NULL;
490 return -ENOMEM;
491}
492
493/**
494 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
495 * @pf: board private structure
496 * @vsi_type: type of VSI
497 * @ch: ptr to channel
498 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
499 *
500 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
501 * it may be NULL in the case there is no association with a VF. For
502 * ICE_VSI_VF the VF pointer *must not* be NULL.
503 *
504 * returns a pointer to a VSI on success, NULL on failure.
505 */
506static struct ice_vsi *
507ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
508 struct ice_channel *ch, struct ice_vf *vf)
509{
510 struct device *dev = ice_pf_to_dev(pf);
511 struct ice_vsi *vsi = NULL;
512
513 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
514 return NULL;
515
516 /* Need to protect the allocation of the VSIs at the PF level */
517 mutex_lock(&pf->sw_mutex);
518
519 /* If we have already allocated our maximum number of VSIs,
520 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
521 * is available to be populated
522 */
523 if (pf->next_vsi == ICE_NO_VSI) {
524 dev_dbg(dev, "out of VSI slots!\n");
525 goto unlock_pf;
526 }
527
528 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
529 if (!vsi)
530 goto unlock_pf;
531
532 vsi->type = vsi_type;
533 vsi->back = pf;
534 set_bit(ICE_VSI_DOWN, vsi->state);
535
536 if (vsi_type == ICE_VSI_VF)
537 ice_vsi_set_num_qs(vsi, vf);
538 else if (vsi_type != ICE_VSI_CHNL)
539 ice_vsi_set_num_qs(vsi, NULL);
540
541 switch (vsi->type) {
542 case ICE_VSI_SWITCHDEV_CTRL:
543 if (ice_vsi_alloc_arrays(vsi))
544 goto err_rings;
545
546 /* Setup eswitch MSIX irq handler for VSI */
547 vsi->irq_handler = ice_eswitch_msix_clean_rings;
548 break;
549 case ICE_VSI_PF:
550 if (ice_vsi_alloc_arrays(vsi))
551 goto err_rings;
552
553 /* Setup default MSIX irq handler for VSI */
554 vsi->irq_handler = ice_msix_clean_rings;
555 break;
556 case ICE_VSI_CTRL:
557 if (ice_vsi_alloc_arrays(vsi))
558 goto err_rings;
559
560 /* Setup ctrl VSI MSIX irq handler */
561 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
562
563 /* For the PF control VSI this is NULL, for the VF control VSI
564 * this will be the first VF to allocate it.
565 */
566 vsi->vf = vf;
567 break;
568 case ICE_VSI_VF:
569 if (ice_vsi_alloc_arrays(vsi))
570 goto err_rings;
571 vsi->vf = vf;
572 break;
573 case ICE_VSI_CHNL:
574 if (!ch)
575 goto err_rings;
576 vsi->num_rxq = ch->num_rxq;
577 vsi->num_txq = ch->num_txq;
578 vsi->next_base_q = ch->base_q;
579 break;
580 case ICE_VSI_LB:
581 if (ice_vsi_alloc_arrays(vsi))
582 goto err_rings;
583 break;
584 default:
585 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
586 goto unlock_pf;
587 }
588
589 if (vsi->type == ICE_VSI_CTRL && !vf) {
590 /* Use the last VSI slot as the index for PF control VSI */
591 vsi->idx = pf->num_alloc_vsi - 1;
592 pf->ctrl_vsi_idx = vsi->idx;
593 pf->vsi[vsi->idx] = vsi;
594 } else {
595 /* fill slot and make note of the index */
596 vsi->idx = pf->next_vsi;
597 pf->vsi[pf->next_vsi] = vsi;
598
599 /* prepare pf->next_vsi for next use */
600 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
601 pf->next_vsi);
602 }
603
604 if (vsi->type == ICE_VSI_CTRL && vf)
605 vf->ctrl_vsi_idx = vsi->idx;
606
607 /* allocate memory for Tx/Rx ring stat pointers */
608 if (ice_vsi_alloc_stat_arrays(vsi))
609 goto err_rings;
610
611 goto unlock_pf;
612
613err_rings:
614 devm_kfree(dev, vsi);
615 vsi = NULL;
616unlock_pf:
617 mutex_unlock(&pf->sw_mutex);
618 return vsi;
619}
620
621/**
622 * ice_alloc_fd_res - Allocate FD resource for a VSI
623 * @vsi: pointer to the ice_vsi
624 *
625 * This allocates the FD resources
626 *
627 * Returns 0 on success, -EPERM on no-op or -EIO on failure
628 */
629static int ice_alloc_fd_res(struct ice_vsi *vsi)
630{
631 struct ice_pf *pf = vsi->back;
632 u32 g_val, b_val;
633
634 /* Flow Director filters are only allocated/assigned to the PF VSI or
635 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
636 * add/delete filters so resources are not allocated to it
637 */
638 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
639 return -EPERM;
640
641 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
642 vsi->type == ICE_VSI_CHNL))
643 return -EPERM;
644
645 /* FD filters from guaranteed pool per VSI */
646 g_val = pf->hw.func_caps.fd_fltr_guar;
647 if (!g_val)
648 return -EPERM;
649
650 /* FD filters from best effort pool */
651 b_val = pf->hw.func_caps.fd_fltr_best_effort;
652 if (!b_val)
653 return -EPERM;
654
655 /* PF main VSI gets only 64 FD resources from guaranteed pool
656 * when ADQ is configured.
657 */
658#define ICE_PF_VSI_GFLTR 64
659
660 /* determine FD filter resources per VSI from shared(best effort) and
661 * dedicated pool
662 */
663 if (vsi->type == ICE_VSI_PF) {
664 vsi->num_gfltr = g_val;
665 /* if MQPRIO is configured, main VSI doesn't get all FD
666 * resources from guaranteed pool. PF VSI gets 64 FD resources
667 */
668 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
669 if (g_val < ICE_PF_VSI_GFLTR)
670 return -EPERM;
671 /* allow bare minimum entries for PF VSI */
672 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
673 }
674
675 /* each VSI gets same "best_effort" quota */
676 vsi->num_bfltr = b_val;
677 } else if (vsi->type == ICE_VSI_VF) {
678 vsi->num_gfltr = 0;
679
680 /* each VSI gets same "best_effort" quota */
681 vsi->num_bfltr = b_val;
682 } else {
683 struct ice_vsi *main_vsi;
684 int numtc;
685
686 main_vsi = ice_get_main_vsi(pf);
687 if (!main_vsi)
688 return -EPERM;
689
690 if (!main_vsi->all_numtc)
691 return -EINVAL;
692
693 /* figure out ADQ numtc */
694 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
695
696 /* only one TC but still asking resources for channels,
697 * invalid config
698 */
699 if (numtc < ICE_CHNL_START_TC)
700 return -EPERM;
701
702 g_val -= ICE_PF_VSI_GFLTR;
703 /* channel VSIs gets equal share from guaranteed pool */
704 vsi->num_gfltr = g_val / numtc;
705
706 /* each VSI gets same "best_effort" quota */
707 vsi->num_bfltr = b_val;
708 }
709
710 return 0;
711}
712
713/**
714 * ice_vsi_get_qs - Assign queues from PF to VSI
715 * @vsi: the VSI to assign queues to
716 *
717 * Returns 0 on success and a negative value on error
718 */
719static int ice_vsi_get_qs(struct ice_vsi *vsi)
720{
721 struct ice_pf *pf = vsi->back;
722 struct ice_qs_cfg tx_qs_cfg = {
723 .qs_mutex = &pf->avail_q_mutex,
724 .pf_map = pf->avail_txqs,
725 .pf_map_size = pf->max_pf_txqs,
726 .q_count = vsi->alloc_txq,
727 .scatter_count = ICE_MAX_SCATTER_TXQS,
728 .vsi_map = vsi->txq_map,
729 .vsi_map_offset = 0,
730 .mapping_mode = ICE_VSI_MAP_CONTIG
731 };
732 struct ice_qs_cfg rx_qs_cfg = {
733 .qs_mutex = &pf->avail_q_mutex,
734 .pf_map = pf->avail_rxqs,
735 .pf_map_size = pf->max_pf_rxqs,
736 .q_count = vsi->alloc_rxq,
737 .scatter_count = ICE_MAX_SCATTER_RXQS,
738 .vsi_map = vsi->rxq_map,
739 .vsi_map_offset = 0,
740 .mapping_mode = ICE_VSI_MAP_CONTIG
741 };
742 int ret;
743
744 if (vsi->type == ICE_VSI_CHNL)
745 return 0;
746
747 ret = __ice_vsi_get_qs(&tx_qs_cfg);
748 if (ret)
749 return ret;
750 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
751
752 ret = __ice_vsi_get_qs(&rx_qs_cfg);
753 if (ret)
754 return ret;
755 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
756
757 return 0;
758}
759
760/**
761 * ice_vsi_put_qs - Release queues from VSI to PF
762 * @vsi: the VSI that is going to release queues
763 */
764static void ice_vsi_put_qs(struct ice_vsi *vsi)
765{
766 struct ice_pf *pf = vsi->back;
767 int i;
768
769 mutex_lock(&pf->avail_q_mutex);
770
771 ice_for_each_alloc_txq(vsi, i) {
772 clear_bit(vsi->txq_map[i], pf->avail_txqs);
773 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
774 }
775
776 ice_for_each_alloc_rxq(vsi, i) {
777 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
778 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
779 }
780
781 mutex_unlock(&pf->avail_q_mutex);
782}
783
784/**
785 * ice_is_safe_mode
786 * @pf: pointer to the PF struct
787 *
788 * returns true if driver is in safe mode, false otherwise
789 */
790bool ice_is_safe_mode(struct ice_pf *pf)
791{
792 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
793}
794
795/**
796 * ice_is_rdma_ena
797 * @pf: pointer to the PF struct
798 *
799 * returns true if RDMA is currently supported, false otherwise
800 */
801bool ice_is_rdma_ena(struct ice_pf *pf)
802{
803 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
804}
805
806/**
807 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
808 * @vsi: the VSI being cleaned up
809 *
810 * This function deletes RSS input set for all flows that were configured
811 * for this VSI
812 */
813static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
814{
815 struct ice_pf *pf = vsi->back;
816 int status;
817
818 if (ice_is_safe_mode(pf))
819 return;
820
821 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
822 if (status)
823 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
824 vsi->vsi_num, status);
825}
826
827/**
828 * ice_rss_clean - Delete RSS related VSI structures and configuration
829 * @vsi: the VSI being removed
830 */
831static void ice_rss_clean(struct ice_vsi *vsi)
832{
833 struct ice_pf *pf = vsi->back;
834 struct device *dev;
835
836 dev = ice_pf_to_dev(pf);
837
838 if (vsi->rss_hkey_user)
839 devm_kfree(dev, vsi->rss_hkey_user);
840 if (vsi->rss_lut_user)
841 devm_kfree(dev, vsi->rss_lut_user);
842
843 ice_vsi_clean_rss_flow_fld(vsi);
844 /* remove RSS replay list */
845 if (!ice_is_safe_mode(pf))
846 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
847}
848
849/**
850 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
851 * @vsi: the VSI being configured
852 */
853static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
854{
855 struct ice_hw_common_caps *cap;
856 struct ice_pf *pf = vsi->back;
857
858 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
859 vsi->rss_size = 1;
860 return;
861 }
862
863 cap = &pf->hw.func_caps.common_cap;
864 switch (vsi->type) {
865 case ICE_VSI_CHNL:
866 case ICE_VSI_PF:
867 /* PF VSI will inherit RSS instance of PF */
868 vsi->rss_table_size = (u16)cap->rss_table_size;
869 if (vsi->type == ICE_VSI_CHNL)
870 vsi->rss_size = min_t(u16, vsi->num_rxq,
871 BIT(cap->rss_table_entry_width));
872 else
873 vsi->rss_size = min_t(u16, num_online_cpus(),
874 BIT(cap->rss_table_entry_width));
875 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
876 break;
877 case ICE_VSI_SWITCHDEV_CTRL:
878 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
879 vsi->rss_size = min_t(u16, num_online_cpus(),
880 BIT(cap->rss_table_entry_width));
881 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
882 break;
883 case ICE_VSI_VF:
884 /* VF VSI will get a small RSS table.
885 * For VSI_LUT, LUT size should be set to 64 bytes.
886 */
887 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
888 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
889 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
890 break;
891 case ICE_VSI_LB:
892 break;
893 default:
894 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
895 ice_vsi_type_str(vsi->type));
896 break;
897 }
898}
899
900/**
901 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
902 * @hw: HW structure used to determine the VLAN mode of the device
903 * @ctxt: the VSI context being set
904 *
905 * This initializes a default VSI context for all sections except the Queues.
906 */
907static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
908{
909 u32 table = 0;
910
911 memset(&ctxt->info, 0, sizeof(ctxt->info));
912 /* VSI's should be allocated from shared pool */
913 ctxt->alloc_from_pool = true;
914 /* Src pruning enabled by default */
915 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
916 /* Traffic from VSI can be sent to LAN */
917 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
918 /* allow all untagged/tagged packets by default on Tx */
919 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
920 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
921 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
922 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
923 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
924 *
925 * DVM - leave inner VLAN in packet by default
926 */
927 if (ice_is_dvm_ena(hw)) {
928 ctxt->info.inner_vlan_flags |=
929 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
930 ctxt->info.outer_vlan_flags =
931 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
932 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
933 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
934 ctxt->info.outer_vlan_flags |=
935 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
936 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
937 ICE_AQ_VSI_OUTER_TAG_TYPE_M;
938 ctxt->info.outer_vlan_flags |=
939 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
940 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
941 }
942 /* Have 1:1 UP mapping for both ingress/egress tables */
943 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
944 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
945 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
946 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
947 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
948 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
949 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
950 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
951 ctxt->info.ingress_table = cpu_to_le32(table);
952 ctxt->info.egress_table = cpu_to_le32(table);
953 /* Have 1:1 UP mapping for outer to inner UP table */
954 ctxt->info.outer_up_table = cpu_to_le32(table);
955 /* No Outer tag support outer_tag_flags remains to zero */
956}
957
958/**
959 * ice_vsi_setup_q_map - Setup a VSI queue map
960 * @vsi: the VSI being configured
961 * @ctxt: VSI context structure
962 */
963static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
964{
965 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
966 u16 num_txq_per_tc, num_rxq_per_tc;
967 u16 qcount_tx = vsi->alloc_txq;
968 u16 qcount_rx = vsi->alloc_rxq;
969 u8 netdev_tc = 0;
970 int i;
971
972 if (!vsi->tc_cfg.numtc) {
973 /* at least TC0 should be enabled by default */
974 vsi->tc_cfg.numtc = 1;
975 vsi->tc_cfg.ena_tc = 1;
976 }
977
978 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
979 if (!num_rxq_per_tc)
980 num_rxq_per_tc = 1;
981 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
982 if (!num_txq_per_tc)
983 num_txq_per_tc = 1;
984
985 /* find the (rounded up) power-of-2 of qcount */
986 pow = (u16)order_base_2(num_rxq_per_tc);
987
988 /* TC mapping is a function of the number of Rx queues assigned to the
989 * VSI for each traffic class and the offset of these queues.
990 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
991 * queues allocated to TC0. No:of queues is a power-of-2.
992 *
993 * If TC is not enabled, the queue offset is set to 0, and allocate one
994 * queue, this way, traffic for the given TC will be sent to the default
995 * queue.
996 *
997 * Setup number and offset of Rx queues for all TCs for the VSI
998 */
999 ice_for_each_traffic_class(i) {
1000 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1001 /* TC is not enabled */
1002 vsi->tc_cfg.tc_info[i].qoffset = 0;
1003 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1004 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1005 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1006 ctxt->info.tc_mapping[i] = 0;
1007 continue;
1008 }
1009
1010 /* TC is enabled */
1011 vsi->tc_cfg.tc_info[i].qoffset = offset;
1012 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1013 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1014 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1015
1016 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1017 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1018 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1019 ICE_AQ_VSI_TC_Q_NUM_M);
1020 offset += num_rxq_per_tc;
1021 tx_count += num_txq_per_tc;
1022 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1023 }
1024
1025 /* if offset is non-zero, means it is calculated correctly based on
1026 * enabled TCs for a given VSI otherwise qcount_rx will always
1027 * be correct and non-zero because it is based off - VSI's
1028 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1029 * at least 1)
1030 */
1031 if (offset)
1032 rx_count = offset;
1033 else
1034 rx_count = num_rxq_per_tc;
1035
1036 if (rx_count > vsi->alloc_rxq) {
1037 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1038 rx_count, vsi->alloc_rxq);
1039 return -EINVAL;
1040 }
1041
1042 if (tx_count > vsi->alloc_txq) {
1043 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1044 tx_count, vsi->alloc_txq);
1045 return -EINVAL;
1046 }
1047
1048 vsi->num_txq = tx_count;
1049 vsi->num_rxq = rx_count;
1050
1051 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1052 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1053 /* since there is a chance that num_rxq could have been changed
1054 * in the above for loop, make num_txq equal to num_rxq.
1055 */
1056 vsi->num_txq = vsi->num_rxq;
1057 }
1058
1059 /* Rx queue mapping */
1060 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1061 /* q_mapping buffer holds the info for the first queue allocated for
1062 * this VSI in the PF space and also the number of queues associated
1063 * with this VSI.
1064 */
1065 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1066 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1067
1068 return 0;
1069}
1070
1071/**
1072 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1073 * @ctxt: the VSI context being set
1074 * @vsi: the VSI being configured
1075 */
1076static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1077{
1078 u8 dflt_q_group, dflt_q_prio;
1079 u16 dflt_q, report_q, val;
1080
1081 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1082 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1083 return;
1084
1085 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1086 ctxt->info.valid_sections |= cpu_to_le16(val);
1087 dflt_q = 0;
1088 dflt_q_group = 0;
1089 report_q = 0;
1090 dflt_q_prio = 0;
1091
1092 /* enable flow director filtering/programming */
1093 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1094 ctxt->info.fd_options = cpu_to_le16(val);
1095 /* max of allocated flow director filters */
1096 ctxt->info.max_fd_fltr_dedicated =
1097 cpu_to_le16(vsi->num_gfltr);
1098 /* max of shared flow director filters any VSI may program */
1099 ctxt->info.max_fd_fltr_shared =
1100 cpu_to_le16(vsi->num_bfltr);
1101 /* default queue index within the VSI of the default FD */
1102 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1103 ICE_AQ_VSI_FD_DEF_Q_M);
1104 /* target queue or queue group to the FD filter */
1105 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1106 ICE_AQ_VSI_FD_DEF_GRP_M);
1107 ctxt->info.fd_def_q = cpu_to_le16(val);
1108 /* queue index on which FD filter completion is reported */
1109 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1110 ICE_AQ_VSI_FD_REPORT_Q_M);
1111 /* priority of the default qindex action */
1112 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1113 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1114 ctxt->info.fd_report_opt = cpu_to_le16(val);
1115}
1116
1117/**
1118 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1119 * @ctxt: the VSI context being set
1120 * @vsi: the VSI being configured
1121 */
1122static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1123{
1124 u8 lut_type, hash_type;
1125 struct device *dev;
1126 struct ice_pf *pf;
1127
1128 pf = vsi->back;
1129 dev = ice_pf_to_dev(pf);
1130
1131 switch (vsi->type) {
1132 case ICE_VSI_CHNL:
1133 case ICE_VSI_PF:
1134 /* PF VSI will inherit RSS instance of PF */
1135 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1136 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1137 break;
1138 case ICE_VSI_VF:
1139 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1140 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1141 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1142 break;
1143 default:
1144 dev_dbg(dev, "Unsupported VSI type %s\n",
1145 ice_vsi_type_str(vsi->type));
1146 return;
1147 }
1148
1149 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1150 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1151 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1152 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1153}
1154
1155static void
1156ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1157{
1158 struct ice_pf *pf = vsi->back;
1159 u16 qcount, qmap;
1160 u8 offset = 0;
1161 int pow;
1162
1163 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1164
1165 pow = order_base_2(qcount);
1166 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1167 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1168 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1169 ICE_AQ_VSI_TC_Q_NUM_M);
1170
1171 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1172 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1173 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1174 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1175}
1176
1177/**
1178 * ice_vsi_init - Create and initialize a VSI
1179 * @vsi: the VSI being configured
1180 * @init_vsi: is this call creating a VSI
1181 *
1182 * This initializes a VSI context depending on the VSI type to be added and
1183 * passes it down to the add_vsi aq command to create a new VSI.
1184 */
1185static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1186{
1187 struct ice_pf *pf = vsi->back;
1188 struct ice_hw *hw = &pf->hw;
1189 struct ice_vsi_ctx *ctxt;
1190 struct device *dev;
1191 int ret = 0;
1192
1193 dev = ice_pf_to_dev(pf);
1194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1195 if (!ctxt)
1196 return -ENOMEM;
1197
1198 switch (vsi->type) {
1199 case ICE_VSI_CTRL:
1200 case ICE_VSI_LB:
1201 case ICE_VSI_PF:
1202 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1203 break;
1204 case ICE_VSI_SWITCHDEV_CTRL:
1205 case ICE_VSI_CHNL:
1206 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1207 break;
1208 case ICE_VSI_VF:
1209 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1210 /* VF number here is the absolute VF number (0-255) */
1211 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1212 break;
1213 default:
1214 ret = -ENODEV;
1215 goto out;
1216 }
1217
1218 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1219 * prune enabled
1220 */
1221 if (vsi->type == ICE_VSI_CHNL) {
1222 struct ice_vsi *main_vsi;
1223
1224 main_vsi = ice_get_main_vsi(pf);
1225 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1226 ctxt->info.sw_flags2 |=
1227 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1228 else
1229 ctxt->info.sw_flags2 &=
1230 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1231 }
1232
1233 ice_set_dflt_vsi_ctx(hw, ctxt);
1234 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1235 ice_set_fd_vsi_ctx(ctxt, vsi);
1236 /* if the switch is in VEB mode, allow VSI loopback */
1237 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1238 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1239
1240 /* Set LUT type and HASH type if RSS is enabled */
1241 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1242 vsi->type != ICE_VSI_CTRL) {
1243 ice_set_rss_vsi_ctx(ctxt, vsi);
1244 /* if updating VSI context, make sure to set valid_section:
1245 * to indicate which section of VSI context being updated
1246 */
1247 if (!init_vsi)
1248 ctxt->info.valid_sections |=
1249 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1250 }
1251
1252 ctxt->info.sw_id = vsi->port_info->sw_id;
1253 if (vsi->type == ICE_VSI_CHNL) {
1254 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1255 } else {
1256 ret = ice_vsi_setup_q_map(vsi, ctxt);
1257 if (ret)
1258 goto out;
1259
1260 if (!init_vsi) /* means VSI being updated */
1261 /* must to indicate which section of VSI context are
1262 * being modified
1263 */
1264 ctxt->info.valid_sections |=
1265 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1266 }
1267
1268 /* Allow control frames out of main VSI */
1269 if (vsi->type == ICE_VSI_PF) {
1270 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1271 ctxt->info.valid_sections |=
1272 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1273 }
1274
1275 if (init_vsi) {
1276 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1277 if (ret) {
1278 dev_err(dev, "Add VSI failed, err %d\n", ret);
1279 ret = -EIO;
1280 goto out;
1281 }
1282 } else {
1283 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1284 if (ret) {
1285 dev_err(dev, "Update VSI failed, err %d\n", ret);
1286 ret = -EIO;
1287 goto out;
1288 }
1289 }
1290
1291 /* keep context for update VSI operations */
1292 vsi->info = ctxt->info;
1293
1294 /* record VSI number returned */
1295 vsi->vsi_num = ctxt->vsi_num;
1296
1297out:
1298 kfree(ctxt);
1299 return ret;
1300}
1301
1302/**
1303 * ice_free_res - free a block of resources
1304 * @res: pointer to the resource
1305 * @index: starting index previously returned by ice_get_res
1306 * @id: identifier to track owner
1307 *
1308 * Returns number of resources freed
1309 */
1310int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1311{
1312 int count = 0;
1313 int i;
1314
1315 if (!res || index >= res->end)
1316 return -EINVAL;
1317
1318 id |= ICE_RES_VALID_BIT;
1319 for (i = index; i < res->end && res->list[i] == id; i++) {
1320 res->list[i] = 0;
1321 count++;
1322 }
1323
1324 return count;
1325}
1326
1327/**
1328 * ice_search_res - Search the tracker for a block of resources
1329 * @res: pointer to the resource
1330 * @needed: size of the block needed
1331 * @id: identifier to track owner
1332 *
1333 * Returns the base item index of the block, or -ENOMEM for error
1334 */
1335static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1336{
1337 u16 start = 0, end = 0;
1338
1339 if (needed > res->end)
1340 return -ENOMEM;
1341
1342 id |= ICE_RES_VALID_BIT;
1343
1344 do {
1345 /* skip already allocated entries */
1346 if (res->list[end++] & ICE_RES_VALID_BIT) {
1347 start = end;
1348 if ((start + needed) > res->end)
1349 break;
1350 }
1351
1352 if (end == (start + needed)) {
1353 int i = start;
1354
1355 /* there was enough, so assign it to the requestor */
1356 while (i != end)
1357 res->list[i++] = id;
1358
1359 return start;
1360 }
1361 } while (end < res->end);
1362
1363 return -ENOMEM;
1364}
1365
1366/**
1367 * ice_get_free_res_count - Get free count from a resource tracker
1368 * @res: Resource tracker instance
1369 */
1370static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1371{
1372 u16 i, count = 0;
1373
1374 for (i = 0; i < res->end; i++)
1375 if (!(res->list[i] & ICE_RES_VALID_BIT))
1376 count++;
1377
1378 return count;
1379}
1380
1381/**
1382 * ice_get_res - get a block of resources
1383 * @pf: board private structure
1384 * @res: pointer to the resource
1385 * @needed: size of the block needed
1386 * @id: identifier to track owner
1387 *
1388 * Returns the base item index of the block, or negative for error
1389 */
1390int
1391ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1392{
1393 if (!res || !pf)
1394 return -EINVAL;
1395
1396 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1397 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1398 needed, res->num_entries, id);
1399 return -EINVAL;
1400 }
1401
1402 return ice_search_res(res, needed, id);
1403}
1404
1405/**
1406 * ice_get_vf_ctrl_res - Get VF control VSI resource
1407 * @pf: pointer to the PF structure
1408 * @vsi: the VSI to allocate a resource for
1409 *
1410 * Look up whether another VF has already allocated the control VSI resource.
1411 * If so, re-use this resource so that we share it among all VFs.
1412 *
1413 * Otherwise, allocate the resource and return it.
1414 */
1415static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1416{
1417 struct ice_vf *vf;
1418 unsigned int bkt;
1419 int base;
1420
1421 rcu_read_lock();
1422 ice_for_each_vf_rcu(pf, bkt, vf) {
1423 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1424 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1425 rcu_read_unlock();
1426 return base;
1427 }
1428 }
1429 rcu_read_unlock();
1430
1431 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1432 ICE_RES_VF_CTRL_VEC_ID);
1433}
1434
1435/**
1436 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1437 * @vsi: ptr to the VSI
1438 *
1439 * This should only be called after ice_vsi_alloc() which allocates the
1440 * corresponding SW VSI structure and initializes num_queue_pairs for the
1441 * newly allocated VSI.
1442 *
1443 * Returns 0 on success or negative on failure
1444 */
1445static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1446{
1447 struct ice_pf *pf = vsi->back;
1448 struct device *dev;
1449 u16 num_q_vectors;
1450 int base;
1451
1452 dev = ice_pf_to_dev(pf);
1453 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1454 if (vsi->type == ICE_VSI_VF)
1455 return 0;
1456 if (vsi->type == ICE_VSI_CHNL)
1457 return 0;
1458
1459 if (vsi->base_vector) {
1460 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1461 vsi->vsi_num, vsi->base_vector);
1462 return -EEXIST;
1463 }
1464
1465 num_q_vectors = vsi->num_q_vectors;
1466 /* reserve slots from OS requested IRQs */
1467 if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1468 base = ice_get_vf_ctrl_res(pf, vsi);
1469 } else {
1470 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1471 vsi->idx);
1472 }
1473
1474 if (base < 0) {
1475 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1476 ice_get_free_res_count(pf->irq_tracker),
1477 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1478 return -ENOENT;
1479 }
1480 vsi->base_vector = (u16)base;
1481 pf->num_avail_sw_msix -= num_q_vectors;
1482
1483 return 0;
1484}
1485
1486/**
1487 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1488 * @vsi: the VSI having rings deallocated
1489 */
1490static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1491{
1492 int i;
1493
1494 /* Avoid stale references by clearing map from vector to ring */
1495 if (vsi->q_vectors) {
1496 ice_for_each_q_vector(vsi, i) {
1497 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1498
1499 if (q_vector) {
1500 q_vector->tx.tx_ring = NULL;
1501 q_vector->rx.rx_ring = NULL;
1502 }
1503 }
1504 }
1505
1506 if (vsi->tx_rings) {
1507 ice_for_each_alloc_txq(vsi, i) {
1508 if (vsi->tx_rings[i]) {
1509 kfree_rcu(vsi->tx_rings[i], rcu);
1510 WRITE_ONCE(vsi->tx_rings[i], NULL);
1511 }
1512 }
1513 }
1514 if (vsi->rx_rings) {
1515 ice_for_each_alloc_rxq(vsi, i) {
1516 if (vsi->rx_rings[i]) {
1517 kfree_rcu(vsi->rx_rings[i], rcu);
1518 WRITE_ONCE(vsi->rx_rings[i], NULL);
1519 }
1520 }
1521 }
1522}
1523
1524/**
1525 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1526 * @vsi: VSI which is having rings allocated
1527 */
1528static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1529{
1530 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1531 struct ice_pf *pf = vsi->back;
1532 struct device *dev;
1533 u16 i;
1534
1535 dev = ice_pf_to_dev(pf);
1536 /* Allocate Tx rings */
1537 ice_for_each_alloc_txq(vsi, i) {
1538 struct ice_tx_ring *ring;
1539
1540 /* allocate with kzalloc(), free with kfree_rcu() */
1541 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1542
1543 if (!ring)
1544 goto err_out;
1545
1546 ring->q_index = i;
1547 ring->reg_idx = vsi->txq_map[i];
1548 ring->vsi = vsi;
1549 ring->tx_tstamps = &pf->ptp.port.tx;
1550 ring->dev = dev;
1551 ring->count = vsi->num_tx_desc;
1552 ring->txq_teid = ICE_INVAL_TEID;
1553 if (dvm_ena)
1554 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1555 else
1556 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1557 WRITE_ONCE(vsi->tx_rings[i], ring);
1558 }
1559
1560 /* Allocate Rx rings */
1561 ice_for_each_alloc_rxq(vsi, i) {
1562 struct ice_rx_ring *ring;
1563
1564 /* allocate with kzalloc(), free with kfree_rcu() */
1565 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1566 if (!ring)
1567 goto err_out;
1568
1569 ring->q_index = i;
1570 ring->reg_idx = vsi->rxq_map[i];
1571 ring->vsi = vsi;
1572 ring->netdev = vsi->netdev;
1573 ring->dev = dev;
1574 ring->count = vsi->num_rx_desc;
1575 ring->cached_phctime = pf->ptp.cached_phc_time;
1576 WRITE_ONCE(vsi->rx_rings[i], ring);
1577 }
1578
1579 return 0;
1580
1581err_out:
1582 ice_vsi_clear_rings(vsi);
1583 return -ENOMEM;
1584}
1585
1586/**
1587 * ice_vsi_free_stats - Free the ring statistics structures
1588 * @vsi: VSI pointer
1589 */
1590static void ice_vsi_free_stats(struct ice_vsi *vsi)
1591{
1592 struct ice_vsi_stats *vsi_stat;
1593 struct ice_pf *pf = vsi->back;
1594 int i;
1595
1596 if (vsi->type == ICE_VSI_CHNL)
1597 return;
1598 if (!pf->vsi_stats)
1599 return;
1600
1601 vsi_stat = pf->vsi_stats[vsi->idx];
1602 if (!vsi_stat)
1603 return;
1604
1605 ice_for_each_alloc_txq(vsi, i) {
1606 if (vsi_stat->tx_ring_stats[i]) {
1607 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
1608 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
1609 }
1610 }
1611
1612 ice_for_each_alloc_rxq(vsi, i) {
1613 if (vsi_stat->rx_ring_stats[i]) {
1614 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
1615 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
1616 }
1617 }
1618
1619 kfree(vsi_stat->tx_ring_stats);
1620 kfree(vsi_stat->rx_ring_stats);
1621 kfree(vsi_stat);
1622 pf->vsi_stats[vsi->idx] = NULL;
1623}
1624
1625/**
1626 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
1627 * @vsi: VSI which is having stats allocated
1628 */
1629static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
1630{
1631 struct ice_ring_stats **tx_ring_stats;
1632 struct ice_ring_stats **rx_ring_stats;
1633 struct ice_vsi_stats *vsi_stats;
1634 struct ice_pf *pf = vsi->back;
1635 u16 i;
1636
1637 vsi_stats = pf->vsi_stats[vsi->idx];
1638 tx_ring_stats = vsi_stats->tx_ring_stats;
1639 rx_ring_stats = vsi_stats->rx_ring_stats;
1640
1641 /* Allocate Tx ring stats */
1642 ice_for_each_alloc_txq(vsi, i) {
1643 struct ice_ring_stats *ring_stats;
1644 struct ice_tx_ring *ring;
1645
1646 ring = vsi->tx_rings[i];
1647 ring_stats = tx_ring_stats[i];
1648
1649 if (!ring_stats) {
1650 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1651 if (!ring_stats)
1652 goto err_out;
1653
1654 WRITE_ONCE(tx_ring_stats[i], ring_stats);
1655 }
1656
1657 ring->ring_stats = ring_stats;
1658 }
1659
1660 /* Allocate Rx ring stats */
1661 ice_for_each_alloc_rxq(vsi, i) {
1662 struct ice_ring_stats *ring_stats;
1663 struct ice_rx_ring *ring;
1664
1665 ring = vsi->rx_rings[i];
1666 ring_stats = rx_ring_stats[i];
1667
1668 if (!ring_stats) {
1669 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1670 if (!ring_stats)
1671 goto err_out;
1672
1673 WRITE_ONCE(rx_ring_stats[i], ring_stats);
1674 }
1675
1676 ring->ring_stats = ring_stats;
1677 }
1678
1679 return 0;
1680
1681err_out:
1682 ice_vsi_free_stats(vsi);
1683 return -ENOMEM;
1684}
1685
1686/**
1687 * ice_vsi_manage_rss_lut - disable/enable RSS
1688 * @vsi: the VSI being changed
1689 * @ena: boolean value indicating if this is an enable or disable request
1690 *
1691 * In the event of disable request for RSS, this function will zero out RSS
1692 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1693 * LUT.
1694 */
1695void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1696{
1697 u8 *lut;
1698
1699 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1700 if (!lut)
1701 return;
1702
1703 if (ena) {
1704 if (vsi->rss_lut_user)
1705 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1706 else
1707 ice_fill_rss_lut(lut, vsi->rss_table_size,
1708 vsi->rss_size);
1709 }
1710
1711 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1712 kfree(lut);
1713}
1714
1715/**
1716 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1717 * @vsi: VSI to be configured
1718 * @disable: set to true to have FCS / CRC in the frame data
1719 */
1720void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1721{
1722 int i;
1723
1724 ice_for_each_rxq(vsi, i)
1725 if (disable)
1726 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1727 else
1728 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1729}
1730
1731/**
1732 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1733 * @vsi: VSI to be configured
1734 */
1735int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1736{
1737 struct ice_pf *pf = vsi->back;
1738 struct device *dev;
1739 u8 *lut, *key;
1740 int err;
1741
1742 dev = ice_pf_to_dev(pf);
1743 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1744 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1745 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1746 } else {
1747 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1748
1749 /* If orig_rss_size is valid and it is less than determined
1750 * main VSI's rss_size, update main VSI's rss_size to be
1751 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1752 * RSS table gets programmed to be correct (whatever it was
1753 * to begin with (prior to setup-tc for ADQ config)
1754 */
1755 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1756 vsi->orig_rss_size <= vsi->num_rxq) {
1757 vsi->rss_size = vsi->orig_rss_size;
1758 /* now orig_rss_size is used, reset it to zero */
1759 vsi->orig_rss_size = 0;
1760 }
1761 }
1762
1763 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1764 if (!lut)
1765 return -ENOMEM;
1766
1767 if (vsi->rss_lut_user)
1768 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1769 else
1770 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1771
1772 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1773 if (err) {
1774 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1775 goto ice_vsi_cfg_rss_exit;
1776 }
1777
1778 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1779 if (!key) {
1780 err = -ENOMEM;
1781 goto ice_vsi_cfg_rss_exit;
1782 }
1783
1784 if (vsi->rss_hkey_user)
1785 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1786 else
1787 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1788
1789 err = ice_set_rss_key(vsi, key);
1790 if (err)
1791 dev_err(dev, "set_rss_key failed, error %d\n", err);
1792
1793 kfree(key);
1794ice_vsi_cfg_rss_exit:
1795 kfree(lut);
1796 return err;
1797}
1798
1799/**
1800 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1801 * @vsi: VSI to be configured
1802 *
1803 * This function will only be called during the VF VSI setup. Upon successful
1804 * completion of package download, this function will configure default RSS
1805 * input sets for VF VSI.
1806 */
1807static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1808{
1809 struct ice_pf *pf = vsi->back;
1810 struct device *dev;
1811 int status;
1812
1813 dev = ice_pf_to_dev(pf);
1814 if (ice_is_safe_mode(pf)) {
1815 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1816 vsi->vsi_num);
1817 return;
1818 }
1819
1820 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1821 if (status)
1822 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1823 vsi->vsi_num, status);
1824}
1825
1826/**
1827 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1828 * @vsi: VSI to be configured
1829 *
1830 * This function will only be called after successful download package call
1831 * during initialization of PF. Since the downloaded package will erase the
1832 * RSS section, this function will configure RSS input sets for different
1833 * flow types. The last profile added has the highest priority, therefore 2
1834 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1835 * (i.e. IPv4 src/dst TCP src/dst port).
1836 */
1837static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1838{
1839 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1840 struct ice_pf *pf = vsi->back;
1841 struct ice_hw *hw = &pf->hw;
1842 struct device *dev;
1843 int status;
1844
1845 dev = ice_pf_to_dev(pf);
1846 if (ice_is_safe_mode(pf)) {
1847 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1848 vsi_num);
1849 return;
1850 }
1851 /* configure RSS for IPv4 with input set IP src/dst */
1852 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1853 ICE_FLOW_SEG_HDR_IPV4);
1854 if (status)
1855 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1856 vsi_num, status);
1857
1858 /* configure RSS for IPv6 with input set IPv6 src/dst */
1859 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1860 ICE_FLOW_SEG_HDR_IPV6);
1861 if (status)
1862 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1863 vsi_num, status);
1864
1865 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1866 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1867 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1868 if (status)
1869 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1870 vsi_num, status);
1871
1872 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1873 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1874 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1875 if (status)
1876 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1877 vsi_num, status);
1878
1879 /* configure RSS for sctp4 with input set IP src/dst */
1880 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1881 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1882 if (status)
1883 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1884 vsi_num, status);
1885
1886 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1887 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1888 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1889 if (status)
1890 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1891 vsi_num, status);
1892
1893 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1894 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1895 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1896 if (status)
1897 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1898 vsi_num, status);
1899
1900 /* configure RSS for sctp6 with input set IPv6 src/dst */
1901 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1902 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1903 if (status)
1904 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1905 vsi_num, status);
1906
1907 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1908 ICE_FLOW_SEG_HDR_ESP);
1909 if (status)
1910 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1911 vsi_num, status);
1912}
1913
1914/**
1915 * ice_pf_state_is_nominal - checks the PF for nominal state
1916 * @pf: pointer to PF to check
1917 *
1918 * Check the PF's state for a collection of bits that would indicate
1919 * the PF is in a state that would inhibit normal operation for
1920 * driver functionality.
1921 *
1922 * Returns true if PF is in a nominal state, false otherwise
1923 */
1924bool ice_pf_state_is_nominal(struct ice_pf *pf)
1925{
1926 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1927
1928 if (!pf)
1929 return false;
1930
1931 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1932 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1933 return false;
1934
1935 return true;
1936}
1937
1938/**
1939 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1940 * @vsi: the VSI to be updated
1941 */
1942void ice_update_eth_stats(struct ice_vsi *vsi)
1943{
1944 struct ice_eth_stats *prev_es, *cur_es;
1945 struct ice_hw *hw = &vsi->back->hw;
1946 struct ice_pf *pf = vsi->back;
1947 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1948
1949 prev_es = &vsi->eth_stats_prev;
1950 cur_es = &vsi->eth_stats;
1951
1952 if (ice_is_reset_in_progress(pf->state))
1953 vsi->stat_offsets_loaded = false;
1954
1955 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1956 &prev_es->rx_bytes, &cur_es->rx_bytes);
1957
1958 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1959 &prev_es->rx_unicast, &cur_es->rx_unicast);
1960
1961 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1962 &prev_es->rx_multicast, &cur_es->rx_multicast);
1963
1964 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1965 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1966
1967 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1968 &prev_es->rx_discards, &cur_es->rx_discards);
1969
1970 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1971 &prev_es->tx_bytes, &cur_es->tx_bytes);
1972
1973 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1974 &prev_es->tx_unicast, &cur_es->tx_unicast);
1975
1976 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1977 &prev_es->tx_multicast, &cur_es->tx_multicast);
1978
1979 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1980 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1981
1982 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1983 &prev_es->tx_errors, &cur_es->tx_errors);
1984
1985 vsi->stat_offsets_loaded = true;
1986}
1987
1988/**
1989 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1990 * @vsi: VSI
1991 */
1992void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1993{
1994 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1995 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1996 vsi->rx_buf_len = ICE_RXBUF_2048;
1997#if (PAGE_SIZE < 8192)
1998 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1999 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
2000 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
2001 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
2002#endif
2003 } else {
2004 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
2005#if (PAGE_SIZE < 8192)
2006 vsi->rx_buf_len = ICE_RXBUF_3072;
2007#else
2008 vsi->rx_buf_len = ICE_RXBUF_2048;
2009#endif
2010 }
2011}
2012
2013/**
2014 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
2015 * @hw: HW pointer
2016 * @pf_q: index of the Rx queue in the PF's queue space
2017 * @rxdid: flexible descriptor RXDID
2018 * @prio: priority for the RXDID for this queue
2019 * @ena_ts: true to enable timestamp and false to disable timestamp
2020 */
2021void
2022ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
2023 bool ena_ts)
2024{
2025 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
2026
2027 /* clear any previous values */
2028 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
2029 QRXFLXP_CNTXT_RXDID_PRIO_M |
2030 QRXFLXP_CNTXT_TS_M);
2031
2032 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
2033 QRXFLXP_CNTXT_RXDID_IDX_M;
2034
2035 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
2036 QRXFLXP_CNTXT_RXDID_PRIO_M;
2037
2038 if (ena_ts)
2039 /* Enable TimeSync on this queue */
2040 regval |= QRXFLXP_CNTXT_TS_M;
2041
2042 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
2043}
2044
2045int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
2046{
2047 if (q_idx >= vsi->num_rxq)
2048 return -EINVAL;
2049
2050 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
2051}
2052
2053int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
2054{
2055 struct ice_aqc_add_tx_qgrp *qg_buf;
2056 int err;
2057
2058 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
2059 return -EINVAL;
2060
2061 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2062 if (!qg_buf)
2063 return -ENOMEM;
2064
2065 qg_buf->num_txqs = 1;
2066
2067 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
2068 kfree(qg_buf);
2069 return err;
2070}
2071
2072/**
2073 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
2074 * @vsi: the VSI being configured
2075 *
2076 * Return 0 on success and a negative value on error
2077 * Configure the Rx VSI for operation.
2078 */
2079int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
2080{
2081 u16 i;
2082
2083 if (vsi->type == ICE_VSI_VF)
2084 goto setup_rings;
2085
2086 ice_vsi_cfg_frame_size(vsi);
2087setup_rings:
2088 /* set up individual rings */
2089 ice_for_each_rxq(vsi, i) {
2090 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
2091
2092 if (err)
2093 return err;
2094 }
2095
2096 return 0;
2097}
2098
2099/**
2100 * ice_vsi_cfg_txqs - Configure the VSI for Tx
2101 * @vsi: the VSI being configured
2102 * @rings: Tx ring array to be configured
2103 * @count: number of Tx ring array elements
2104 *
2105 * Return 0 on success and a negative value on error
2106 * Configure the Tx VSI for operation.
2107 */
2108static int
2109ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
2110{
2111 struct ice_aqc_add_tx_qgrp *qg_buf;
2112 u16 q_idx = 0;
2113 int err = 0;
2114
2115 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2116 if (!qg_buf)
2117 return -ENOMEM;
2118
2119 qg_buf->num_txqs = 1;
2120
2121 for (q_idx = 0; q_idx < count; q_idx++) {
2122 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
2123 if (err)
2124 goto err_cfg_txqs;
2125 }
2126
2127err_cfg_txqs:
2128 kfree(qg_buf);
2129 return err;
2130}
2131
2132/**
2133 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
2134 * @vsi: the VSI being configured
2135 *
2136 * Return 0 on success and a negative value on error
2137 * Configure the Tx VSI for operation.
2138 */
2139int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
2140{
2141 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
2142}
2143
2144/**
2145 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
2146 * @vsi: the VSI being configured
2147 *
2148 * Return 0 on success and a negative value on error
2149 * Configure the Tx queues dedicated for XDP in given VSI for operation.
2150 */
2151int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
2152{
2153 int ret;
2154 int i;
2155
2156 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
2157 if (ret)
2158 return ret;
2159
2160 ice_for_each_rxq(vsi, i)
2161 ice_tx_xsk_pool(vsi, i);
2162
2163 return ret;
2164}
2165
2166/**
2167 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
2168 * @intrl: interrupt rate limit in usecs
2169 * @gran: interrupt rate limit granularity in usecs
2170 *
2171 * This function converts a decimal interrupt rate limit in usecs to the format
2172 * expected by firmware.
2173 */
2174static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2175{
2176 u32 val = intrl / gran;
2177
2178 if (val)
2179 return val | GLINT_RATE_INTRL_ENA_M;
2180 return 0;
2181}
2182
2183/**
2184 * ice_write_intrl - write throttle rate limit to interrupt specific register
2185 * @q_vector: pointer to interrupt specific structure
2186 * @intrl: throttle rate limit in microseconds to write
2187 */
2188void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2189{
2190 struct ice_hw *hw = &q_vector->vsi->back->hw;
2191
2192 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2193 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2194}
2195
2196static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2197{
2198 switch (rc->type) {
2199 case ICE_RX_CONTAINER:
2200 if (rc->rx_ring)
2201 return rc->rx_ring->q_vector;
2202 break;
2203 case ICE_TX_CONTAINER:
2204 if (rc->tx_ring)
2205 return rc->tx_ring->q_vector;
2206 break;
2207 default:
2208 break;
2209 }
2210
2211 return NULL;
2212}
2213
2214/**
2215 * __ice_write_itr - write throttle rate to register
2216 * @q_vector: pointer to interrupt data structure
2217 * @rc: pointer to ring container
2218 * @itr: throttle rate in microseconds to write
2219 */
2220static void __ice_write_itr(struct ice_q_vector *q_vector,
2221 struct ice_ring_container *rc, u16 itr)
2222{
2223 struct ice_hw *hw = &q_vector->vsi->back->hw;
2224
2225 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2226 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2227}
2228
2229/**
2230 * ice_write_itr - write throttle rate to queue specific register
2231 * @rc: pointer to ring container
2232 * @itr: throttle rate in microseconds to write
2233 */
2234void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2235{
2236 struct ice_q_vector *q_vector;
2237
2238 q_vector = ice_pull_qvec_from_rc(rc);
2239 if (!q_vector)
2240 return;
2241
2242 __ice_write_itr(q_vector, rc, itr);
2243}
2244
2245/**
2246 * ice_set_q_vector_intrl - set up interrupt rate limiting
2247 * @q_vector: the vector to be configured
2248 *
2249 * Interrupt rate limiting is local to the vector, not per-queue so we must
2250 * detect if either ring container has dynamic moderation enabled to decide
2251 * what to set the interrupt rate limit to via INTRL settings. In the case that
2252 * dynamic moderation is disabled on both, write the value with the cached
2253 * setting to make sure INTRL register matches the user visible value.
2254 */
2255void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2256{
2257 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2258 /* in the case of dynamic enabled, cap each vector to no more
2259 * than (4 us) 250,000 ints/sec, which allows low latency
2260 * but still less than 500,000 interrupts per second, which
2261 * reduces CPU a bit in the case of the lowest latency
2262 * setting. The 4 here is a value in microseconds.
2263 */
2264 ice_write_intrl(q_vector, 4);
2265 } else {
2266 ice_write_intrl(q_vector, q_vector->intrl);
2267 }
2268}
2269
2270/**
2271 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2272 * @vsi: the VSI being configured
2273 *
2274 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2275 * for the VF VSI.
2276 */
2277void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2278{
2279 struct ice_pf *pf = vsi->back;
2280 struct ice_hw *hw = &pf->hw;
2281 u16 txq = 0, rxq = 0;
2282 int i, q;
2283
2284 ice_for_each_q_vector(vsi, i) {
2285 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2286 u16 reg_idx = q_vector->reg_idx;
2287
2288 ice_cfg_itr(hw, q_vector);
2289
2290 /* Both Transmit Queue Interrupt Cause Control register
2291 * and Receive Queue Interrupt Cause control register
2292 * expects MSIX_INDX field to be the vector index
2293 * within the function space and not the absolute
2294 * vector index across PF or across device.
2295 * For SR-IOV VF VSIs queue vector index always starts
2296 * with 1 since first vector index(0) is used for OICR
2297 * in VF space. Since VMDq and other PF VSIs are within
2298 * the PF function space, use the vector index that is
2299 * tracked for this PF.
2300 */
2301 for (q = 0; q < q_vector->num_ring_tx; q++) {
2302 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2303 q_vector->tx.itr_idx);
2304 txq++;
2305 }
2306
2307 for (q = 0; q < q_vector->num_ring_rx; q++) {
2308 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2309 q_vector->rx.itr_idx);
2310 rxq++;
2311 }
2312 }
2313}
2314
2315/**
2316 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2317 * @vsi: the VSI whose rings are to be enabled
2318 *
2319 * Returns 0 on success and a negative value on error
2320 */
2321int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2322{
2323 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2324}
2325
2326/**
2327 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2328 * @vsi: the VSI whose rings are to be disabled
2329 *
2330 * Returns 0 on success and a negative value on error
2331 */
2332int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2333{
2334 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2335}
2336
2337/**
2338 * ice_vsi_stop_tx_rings - Disable Tx rings
2339 * @vsi: the VSI being configured
2340 * @rst_src: reset source
2341 * @rel_vmvf_num: Relative ID of VF/VM
2342 * @rings: Tx ring array to be stopped
2343 * @count: number of Tx ring array elements
2344 */
2345static int
2346ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2347 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2348{
2349 u16 q_idx;
2350
2351 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2352 return -EINVAL;
2353
2354 for (q_idx = 0; q_idx < count; q_idx++) {
2355 struct ice_txq_meta txq_meta = { };
2356 int status;
2357
2358 if (!rings || !rings[q_idx])
2359 return -EINVAL;
2360
2361 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2362 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2363 rings[q_idx], &txq_meta);
2364
2365 if (status)
2366 return status;
2367 }
2368
2369 return 0;
2370}
2371
2372/**
2373 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2374 * @vsi: the VSI being configured
2375 * @rst_src: reset source
2376 * @rel_vmvf_num: Relative ID of VF/VM
2377 */
2378int
2379ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2380 u16 rel_vmvf_num)
2381{
2382 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2383}
2384
2385/**
2386 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2387 * @vsi: the VSI being configured
2388 */
2389int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2390{
2391 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2392}
2393
2394/**
2395 * ice_vsi_is_rx_queue_active
2396 * @vsi: the VSI being configured
2397 *
2398 * Return true if at least one queue is active.
2399 */
2400bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2401{
2402 struct ice_pf *pf = vsi->back;
2403 struct ice_hw *hw = &pf->hw;
2404 int i;
2405
2406 ice_for_each_rxq(vsi, i) {
2407 u32 rx_reg;
2408 int pf_q;
2409
2410 pf_q = vsi->rxq_map[i];
2411 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2412 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2413 return true;
2414 }
2415
2416 return false;
2417}
2418
2419/**
2420 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2421 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2422 *
2423 * returns true if Rx VLAN pruning is enabled and false otherwise.
2424 */
2425bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2426{
2427 if (!vsi)
2428 return false;
2429
2430 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2431}
2432
2433static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2434{
2435 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2436 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2437 vsi->tc_cfg.numtc = 1;
2438 return;
2439 }
2440
2441 /* set VSI TC information based on DCB config */
2442 ice_vsi_set_dcb_tc_cfg(vsi);
2443}
2444
2445/**
2446 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2447 * @vsi: VSI to set the q_vectors register index on
2448 */
2449static int
2450ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2451{
2452 u16 i;
2453
2454 if (!vsi || !vsi->q_vectors)
2455 return -EINVAL;
2456
2457 ice_for_each_q_vector(vsi, i) {
2458 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2459
2460 if (!q_vector) {
2461 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2462 i, vsi->vsi_num);
2463 goto clear_reg_idx;
2464 }
2465
2466 if (vsi->type == ICE_VSI_VF) {
2467 struct ice_vf *vf = vsi->vf;
2468
2469 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2470 } else {
2471 q_vector->reg_idx =
2472 q_vector->v_idx + vsi->base_vector;
2473 }
2474 }
2475
2476 return 0;
2477
2478clear_reg_idx:
2479 ice_for_each_q_vector(vsi, i) {
2480 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2481
2482 if (q_vector)
2483 q_vector->reg_idx = 0;
2484 }
2485
2486 return -EINVAL;
2487}
2488
2489/**
2490 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2491 * @vsi: the VSI being configured
2492 * @tx: bool to determine Tx or Rx rule
2493 * @create: bool to determine create or remove Rule
2494 */
2495void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2496{
2497 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2498 enum ice_sw_fwd_act_type act);
2499 struct ice_pf *pf = vsi->back;
2500 struct device *dev;
2501 int status;
2502
2503 dev = ice_pf_to_dev(pf);
2504 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2505
2506 if (tx) {
2507 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2508 ICE_DROP_PACKET);
2509 } else {
2510 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2511 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2512 create);
2513 } else {
2514 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2515 ICE_FWD_TO_VSI);
2516 }
2517 }
2518
2519 if (status)
2520 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2521 create ? "adding" : "removing", tx ? "TX" : "RX",
2522 vsi->vsi_num, status);
2523}
2524
2525/**
2526 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2527 * @vsi: pointer to the VSI
2528 *
2529 * This function will allocate new scheduler aggregator now if needed and will
2530 * move specified VSI into it.
2531 */
2532static void ice_set_agg_vsi(struct ice_vsi *vsi)
2533{
2534 struct device *dev = ice_pf_to_dev(vsi->back);
2535 struct ice_agg_node *agg_node_iter = NULL;
2536 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2537 struct ice_agg_node *agg_node = NULL;
2538 int node_offset, max_agg_nodes = 0;
2539 struct ice_port_info *port_info;
2540 struct ice_pf *pf = vsi->back;
2541 u32 agg_node_id_start = 0;
2542 int status;
2543
2544 /* create (as needed) scheduler aggregator node and move VSI into
2545 * corresponding aggregator node
2546 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2547 * - VF aggregator nodes will contain VF VSI
2548 */
2549 port_info = pf->hw.port_info;
2550 if (!port_info)
2551 return;
2552
2553 switch (vsi->type) {
2554 case ICE_VSI_CTRL:
2555 case ICE_VSI_CHNL:
2556 case ICE_VSI_LB:
2557 case ICE_VSI_PF:
2558 case ICE_VSI_SWITCHDEV_CTRL:
2559 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2560 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2561 agg_node_iter = &pf->pf_agg_node[0];
2562 break;
2563 case ICE_VSI_VF:
2564 /* user can create 'n' VFs on a given PF, but since max children
2565 * per aggregator node can be only 64. Following code handles
2566 * aggregator(s) for VF VSIs, either selects a agg_node which
2567 * was already created provided num_vsis < 64, otherwise
2568 * select next available node, which will be created
2569 */
2570 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2571 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2572 agg_node_iter = &pf->vf_agg_node[0];
2573 break;
2574 default:
2575 /* other VSI type, handle later if needed */
2576 dev_dbg(dev, "unexpected VSI type %s\n",
2577 ice_vsi_type_str(vsi->type));
2578 return;
2579 }
2580
2581 /* find the appropriate aggregator node */
2582 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2583 /* see if we can find space in previously created
2584 * node if num_vsis < 64, otherwise skip
2585 */
2586 if (agg_node_iter->num_vsis &&
2587 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2588 agg_node_iter++;
2589 continue;
2590 }
2591
2592 if (agg_node_iter->valid &&
2593 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2594 agg_id = agg_node_iter->agg_id;
2595 agg_node = agg_node_iter;
2596 break;
2597 }
2598
2599 /* find unclaimed agg_id */
2600 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2601 agg_id = node_offset + agg_node_id_start;
2602 agg_node = agg_node_iter;
2603 break;
2604 }
2605 /* move to next agg_node */
2606 agg_node_iter++;
2607 }
2608
2609 if (!agg_node)
2610 return;
2611
2612 /* if selected aggregator node was not created, create it */
2613 if (!agg_node->valid) {
2614 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2615 (u8)vsi->tc_cfg.ena_tc);
2616 if (status) {
2617 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2618 agg_id);
2619 return;
2620 }
2621 /* aggregator node is created, store the needed info */
2622 agg_node->valid = true;
2623 agg_node->agg_id = agg_id;
2624 }
2625
2626 /* move VSI to corresponding aggregator node */
2627 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2628 (u8)vsi->tc_cfg.ena_tc);
2629 if (status) {
2630 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2631 vsi->idx, agg_id);
2632 return;
2633 }
2634
2635 /* keep active children count for aggregator node */
2636 agg_node->num_vsis++;
2637
2638 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2639 * to aggregator node
2640 */
2641 vsi->agg_node = agg_node;
2642 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2643 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2644 vsi->agg_node->num_vsis);
2645}
2646
2647/**
2648 * ice_vsi_setup - Set up a VSI by a given type
2649 * @pf: board private structure
2650 * @pi: pointer to the port_info instance
2651 * @vsi_type: VSI type
2652 * @vf: pointer to VF to which this VSI connects. This field is used primarily
2653 * for the ICE_VSI_VF type. Other VSI types should pass NULL.
2654 * @ch: ptr to channel
2655 *
2656 * This allocates the sw VSI structure and its queue resources.
2657 *
2658 * Returns pointer to the successfully allocated and configured VSI sw struct on
2659 * success, NULL on failure.
2660 */
2661struct ice_vsi *
2662ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2663 enum ice_vsi_type vsi_type, struct ice_vf *vf,
2664 struct ice_channel *ch)
2665{
2666 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2667 struct device *dev = ice_pf_to_dev(pf);
2668 struct ice_vsi *vsi;
2669 int ret, i;
2670
2671 if (vsi_type == ICE_VSI_CHNL)
2672 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2673 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2674 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2675 else
2676 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2677
2678 if (!vsi) {
2679 dev_err(dev, "could not allocate VSI\n");
2680 return NULL;
2681 }
2682
2683 vsi->port_info = pi;
2684 vsi->vsw = pf->first_sw;
2685 if (vsi->type == ICE_VSI_PF)
2686 vsi->ethtype = ETH_P_PAUSE;
2687
2688 ice_alloc_fd_res(vsi);
2689
2690 if (vsi_type != ICE_VSI_CHNL) {
2691 if (ice_vsi_get_qs(vsi)) {
2692 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2693 vsi->idx);
2694 goto unroll_vsi_alloc;
2695 }
2696 }
2697
2698 /* set RSS capabilities */
2699 ice_vsi_set_rss_params(vsi);
2700
2701 /* set TC configuration */
2702 ice_vsi_set_tc_cfg(vsi);
2703
2704 /* create the VSI */
2705 ret = ice_vsi_init(vsi, true);
2706 if (ret)
2707 goto unroll_get_qs;
2708
2709 ice_vsi_init_vlan_ops(vsi);
2710
2711 switch (vsi->type) {
2712 case ICE_VSI_CTRL:
2713 case ICE_VSI_SWITCHDEV_CTRL:
2714 case ICE_VSI_PF:
2715 ret = ice_vsi_alloc_q_vectors(vsi);
2716 if (ret)
2717 goto unroll_vsi_init;
2718
2719 ret = ice_vsi_setup_vector_base(vsi);
2720 if (ret)
2721 goto unroll_alloc_q_vector;
2722
2723 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2724 if (ret)
2725 goto unroll_vector_base;
2726
2727 ret = ice_vsi_alloc_rings(vsi);
2728 if (ret)
2729 goto unroll_vector_base;
2730
2731 ret = ice_vsi_alloc_ring_stats(vsi);
2732 if (ret)
2733 goto unroll_vector_base;
2734
2735 ice_vsi_map_rings_to_vectors(vsi);
2736
2737 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2738 if (vsi->type != ICE_VSI_CTRL)
2739 /* Do not exit if configuring RSS had an issue, at
2740 * least receive traffic on first queue. Hence no
2741 * need to capture return value
2742 */
2743 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2744 ice_vsi_cfg_rss_lut_key(vsi);
2745 ice_vsi_set_rss_flow_fld(vsi);
2746 }
2747 ice_init_arfs(vsi);
2748 break;
2749 case ICE_VSI_CHNL:
2750 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2751 ice_vsi_cfg_rss_lut_key(vsi);
2752 ice_vsi_set_rss_flow_fld(vsi);
2753 }
2754 break;
2755 case ICE_VSI_VF:
2756 /* VF driver will take care of creating netdev for this type and
2757 * map queues to vectors through Virtchnl, PF driver only
2758 * creates a VSI and corresponding structures for bookkeeping
2759 * purpose
2760 */
2761 ret = ice_vsi_alloc_q_vectors(vsi);
2762 if (ret)
2763 goto unroll_vsi_init;
2764
2765 ret = ice_vsi_alloc_rings(vsi);
2766 if (ret)
2767 goto unroll_alloc_q_vector;
2768
2769 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2770 if (ret)
2771 goto unroll_vector_base;
2772
2773 ret = ice_vsi_alloc_ring_stats(vsi);
2774 if (ret)
2775 goto unroll_vector_base;
2776 /* Do not exit if configuring RSS had an issue, at least
2777 * receive traffic on first queue. Hence no need to capture
2778 * return value
2779 */
2780 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2781 ice_vsi_cfg_rss_lut_key(vsi);
2782 ice_vsi_set_vf_rss_flow_fld(vsi);
2783 }
2784 break;
2785 case ICE_VSI_LB:
2786 ret = ice_vsi_alloc_rings(vsi);
2787 if (ret)
2788 goto unroll_vsi_init;
2789
2790 ret = ice_vsi_alloc_ring_stats(vsi);
2791 if (ret)
2792 goto unroll_vector_base;
2793
2794 break;
2795 default:
2796 /* clean up the resources and exit */
2797 goto unroll_vsi_init;
2798 }
2799
2800 /* configure VSI nodes based on number of queues and TC's */
2801 ice_for_each_traffic_class(i) {
2802 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2803 continue;
2804
2805 if (vsi->type == ICE_VSI_CHNL) {
2806 if (!vsi->alloc_txq && vsi->num_txq)
2807 max_txqs[i] = vsi->num_txq;
2808 else
2809 max_txqs[i] = pf->num_lan_tx;
2810 } else {
2811 max_txqs[i] = vsi->alloc_txq;
2812 }
2813 }
2814
2815 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2816 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2817 max_txqs);
2818 if (ret) {
2819 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2820 vsi->vsi_num, ret);
2821 goto unroll_clear_rings;
2822 }
2823
2824 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2825 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2826 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2827 * The rule is added once for PF VSI in order to create appropriate
2828 * recipe, since VSI/VSI list is ignored with drop action...
2829 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2830 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2831 * settings in the HW.
2832 */
2833 if (!ice_is_safe_mode(pf))
2834 if (vsi->type == ICE_VSI_PF) {
2835 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2836 ICE_DROP_PACKET);
2837 ice_cfg_sw_lldp(vsi, true, true);
2838 }
2839
2840 if (!vsi->agg_node)
2841 ice_set_agg_vsi(vsi);
2842 return vsi;
2843
2844unroll_clear_rings:
2845 ice_vsi_clear_rings(vsi);
2846unroll_vector_base:
2847 /* reclaim SW interrupts back to the common pool */
2848 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2849 pf->num_avail_sw_msix += vsi->num_q_vectors;
2850unroll_alloc_q_vector:
2851 ice_vsi_free_q_vectors(vsi);
2852unroll_vsi_init:
2853 ice_vsi_free_stats(vsi);
2854 ice_vsi_delete(vsi);
2855unroll_get_qs:
2856 ice_vsi_put_qs(vsi);
2857unroll_vsi_alloc:
2858 if (vsi_type == ICE_VSI_VF)
2859 ice_enable_lag(pf->lag);
2860 ice_vsi_clear(vsi);
2861
2862 return NULL;
2863}
2864
2865/**
2866 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2867 * @vsi: the VSI being cleaned up
2868 */
2869static void ice_vsi_release_msix(struct ice_vsi *vsi)
2870{
2871 struct ice_pf *pf = vsi->back;
2872 struct ice_hw *hw = &pf->hw;
2873 u32 txq = 0;
2874 u32 rxq = 0;
2875 int i, q;
2876
2877 ice_for_each_q_vector(vsi, i) {
2878 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2879
2880 ice_write_intrl(q_vector, 0);
2881 for (q = 0; q < q_vector->num_ring_tx; q++) {
2882 ice_write_itr(&q_vector->tx, 0);
2883 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2884 if (ice_is_xdp_ena_vsi(vsi)) {
2885 u32 xdp_txq = txq + vsi->num_xdp_txq;
2886
2887 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2888 }
2889 txq++;
2890 }
2891
2892 for (q = 0; q < q_vector->num_ring_rx; q++) {
2893 ice_write_itr(&q_vector->rx, 0);
2894 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2895 rxq++;
2896 }
2897 }
2898
2899 ice_flush(hw);
2900}
2901
2902/**
2903 * ice_vsi_free_irq - Free the IRQ association with the OS
2904 * @vsi: the VSI being configured
2905 */
2906void ice_vsi_free_irq(struct ice_vsi *vsi)
2907{
2908 struct ice_pf *pf = vsi->back;
2909 int base = vsi->base_vector;
2910 int i;
2911
2912 if (!vsi->q_vectors || !vsi->irqs_ready)
2913 return;
2914
2915 ice_vsi_release_msix(vsi);
2916 if (vsi->type == ICE_VSI_VF)
2917 return;
2918
2919 vsi->irqs_ready = false;
2920 ice_free_cpu_rx_rmap(vsi);
2921
2922 ice_for_each_q_vector(vsi, i) {
2923 u16 vector = i + base;
2924 int irq_num;
2925
2926 irq_num = pf->msix_entries[vector].vector;
2927
2928 /* free only the irqs that were actually requested */
2929 if (!vsi->q_vectors[i] ||
2930 !(vsi->q_vectors[i]->num_ring_tx ||
2931 vsi->q_vectors[i]->num_ring_rx))
2932 continue;
2933
2934 /* clear the affinity notifier in the IRQ descriptor */
2935 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2936 irq_set_affinity_notifier(irq_num, NULL);
2937
2938 /* clear the affinity_mask in the IRQ descriptor */
2939 irq_set_affinity_hint(irq_num, NULL);
2940 synchronize_irq(irq_num);
2941 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2942 }
2943}
2944
2945/**
2946 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2947 * @vsi: the VSI having resources freed
2948 */
2949void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2950{
2951 int i;
2952
2953 if (!vsi->tx_rings)
2954 return;
2955
2956 ice_for_each_txq(vsi, i)
2957 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2958 ice_free_tx_ring(vsi->tx_rings[i]);
2959}
2960
2961/**
2962 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2963 * @vsi: the VSI having resources freed
2964 */
2965void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2966{
2967 int i;
2968
2969 if (!vsi->rx_rings)
2970 return;
2971
2972 ice_for_each_rxq(vsi, i)
2973 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2974 ice_free_rx_ring(vsi->rx_rings[i]);
2975}
2976
2977/**
2978 * ice_vsi_close - Shut down a VSI
2979 * @vsi: the VSI being shut down
2980 */
2981void ice_vsi_close(struct ice_vsi *vsi)
2982{
2983 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2984 ice_down(vsi);
2985
2986 ice_vsi_free_irq(vsi);
2987 ice_vsi_free_tx_rings(vsi);
2988 ice_vsi_free_rx_rings(vsi);
2989}
2990
2991/**
2992 * ice_ena_vsi - resume a VSI
2993 * @vsi: the VSI being resume
2994 * @locked: is the rtnl_lock already held
2995 */
2996int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2997{
2998 int err = 0;
2999
3000 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
3001 return 0;
3002
3003 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3004
3005 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3006 if (netif_running(vsi->netdev)) {
3007 if (!locked)
3008 rtnl_lock();
3009
3010 err = ice_open_internal(vsi->netdev);
3011
3012 if (!locked)
3013 rtnl_unlock();
3014 }
3015 } else if (vsi->type == ICE_VSI_CTRL) {
3016 err = ice_vsi_open_ctrl(vsi);
3017 }
3018
3019 return err;
3020}
3021
3022/**
3023 * ice_dis_vsi - pause a VSI
3024 * @vsi: the VSI being paused
3025 * @locked: is the rtnl_lock already held
3026 */
3027void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
3028{
3029 if (test_bit(ICE_VSI_DOWN, vsi->state))
3030 return;
3031
3032 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3033
3034 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
3035 if (netif_running(vsi->netdev)) {
3036 if (!locked)
3037 rtnl_lock();
3038
3039 ice_vsi_close(vsi);
3040
3041 if (!locked)
3042 rtnl_unlock();
3043 } else {
3044 ice_vsi_close(vsi);
3045 }
3046 } else if (vsi->type == ICE_VSI_CTRL ||
3047 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
3048 ice_vsi_close(vsi);
3049 }
3050}
3051
3052/**
3053 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
3054 * @vsi: the VSI being un-configured
3055 */
3056void ice_vsi_dis_irq(struct ice_vsi *vsi)
3057{
3058 int base = vsi->base_vector;
3059 struct ice_pf *pf = vsi->back;
3060 struct ice_hw *hw = &pf->hw;
3061 u32 val;
3062 int i;
3063
3064 /* disable interrupt causation from each queue */
3065 if (vsi->tx_rings) {
3066 ice_for_each_txq(vsi, i) {
3067 if (vsi->tx_rings[i]) {
3068 u16 reg;
3069
3070 reg = vsi->tx_rings[i]->reg_idx;
3071 val = rd32(hw, QINT_TQCTL(reg));
3072 val &= ~QINT_TQCTL_CAUSE_ENA_M;
3073 wr32(hw, QINT_TQCTL(reg), val);
3074 }
3075 }
3076 }
3077
3078 if (vsi->rx_rings) {
3079 ice_for_each_rxq(vsi, i) {
3080 if (vsi->rx_rings[i]) {
3081 u16 reg;
3082
3083 reg = vsi->rx_rings[i]->reg_idx;
3084 val = rd32(hw, QINT_RQCTL(reg));
3085 val &= ~QINT_RQCTL_CAUSE_ENA_M;
3086 wr32(hw, QINT_RQCTL(reg), val);
3087 }
3088 }
3089 }
3090
3091 /* disable each interrupt */
3092 ice_for_each_q_vector(vsi, i) {
3093 if (!vsi->q_vectors[i])
3094 continue;
3095 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
3096 }
3097
3098 ice_flush(hw);
3099
3100 /* don't call synchronize_irq() for VF's from the host */
3101 if (vsi->type == ICE_VSI_VF)
3102 return;
3103
3104 ice_for_each_q_vector(vsi, i)
3105 synchronize_irq(pf->msix_entries[i + base].vector);
3106}
3107
3108/**
3109 * ice_napi_del - Remove NAPI handler for the VSI
3110 * @vsi: VSI for which NAPI handler is to be removed
3111 */
3112void ice_napi_del(struct ice_vsi *vsi)
3113{
3114 int v_idx;
3115
3116 if (!vsi->netdev)
3117 return;
3118
3119 ice_for_each_q_vector(vsi, v_idx)
3120 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
3121}
3122
3123/**
3124 * ice_free_vf_ctrl_res - Free the VF control VSI resource
3125 * @pf: pointer to PF structure
3126 * @vsi: the VSI to free resources for
3127 *
3128 * Check if the VF control VSI resource is still in use. If no VF is using it
3129 * any more, release the VSI resource. Otherwise, leave it to be cleaned up
3130 * once no other VF uses it.
3131 */
3132static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
3133{
3134 struct ice_vf *vf;
3135 unsigned int bkt;
3136
3137 rcu_read_lock();
3138 ice_for_each_vf_rcu(pf, bkt, vf) {
3139 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
3140 rcu_read_unlock();
3141 return;
3142 }
3143 }
3144 rcu_read_unlock();
3145
3146 /* No other VFs left that have control VSI. It is now safe to reclaim
3147 * SW interrupts back to the common pool.
3148 */
3149 ice_free_res(pf->irq_tracker, vsi->base_vector,
3150 ICE_RES_VF_CTRL_VEC_ID);
3151 pf->num_avail_sw_msix += vsi->num_q_vectors;
3152}
3153
3154/**
3155 * ice_vsi_release - Delete a VSI and free its resources
3156 * @vsi: the VSI being removed
3157 *
3158 * Returns 0 on success or < 0 on error
3159 */
3160int ice_vsi_release(struct ice_vsi *vsi)
3161{
3162 struct ice_pf *pf;
3163 int err;
3164
3165 if (!vsi->back)
3166 return -ENODEV;
3167 pf = vsi->back;
3168
3169 /* do not unregister while driver is in the reset recovery pending
3170 * state. Since reset/rebuild happens through PF service task workqueue,
3171 * it's not a good idea to unregister netdev that is associated to the
3172 * PF that is running the work queue items currently. This is done to
3173 * avoid check_flush_dependency() warning on this wq
3174 */
3175 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
3176 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
3177 unregister_netdev(vsi->netdev);
3178 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3179 }
3180
3181 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3182 ice_rss_clean(vsi);
3183
3184 /* Disable VSI and free resources */
3185 if (vsi->type != ICE_VSI_LB)
3186 ice_vsi_dis_irq(vsi);
3187 ice_vsi_close(vsi);
3188
3189 /* SR-IOV determines needed MSIX resources all at once instead of per
3190 * VSI since when VFs are spawned we know how many VFs there are and how
3191 * many interrupts each VF needs. SR-IOV MSIX resources are also
3192 * cleared in the same manner.
3193 */
3194 if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
3195 ice_free_vf_ctrl_res(pf, vsi);
3196 } else if (vsi->type != ICE_VSI_VF) {
3197 /* reclaim SW interrupts back to the common pool */
3198 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3199 pf->num_avail_sw_msix += vsi->num_q_vectors;
3200 }
3201
3202 if (!ice_is_safe_mode(pf)) {
3203 if (vsi->type == ICE_VSI_PF) {
3204 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3205 ICE_DROP_PACKET);
3206 ice_cfg_sw_lldp(vsi, true, false);
3207 /* The Rx rule will only exist to remove if the LLDP FW
3208 * engine is currently stopped
3209 */
3210 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3211 ice_cfg_sw_lldp(vsi, false, false);
3212 }
3213 }
3214
3215 if (ice_is_vsi_dflt_vsi(vsi))
3216 ice_clear_dflt_vsi(vsi);
3217 ice_fltr_remove_all(vsi);
3218 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3219 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3220 if (err)
3221 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3222 vsi->vsi_num, err);
3223 ice_vsi_delete(vsi);
3224 ice_vsi_free_q_vectors(vsi);
3225
3226 if (vsi->netdev) {
3227 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3228 unregister_netdev(vsi->netdev);
3229 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3230 }
3231 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3232 free_netdev(vsi->netdev);
3233 vsi->netdev = NULL;
3234 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3235 }
3236 }
3237
3238 if (vsi->type == ICE_VSI_VF &&
3239 vsi->agg_node && vsi->agg_node->valid)
3240 vsi->agg_node->num_vsis--;
3241 ice_vsi_clear_rings(vsi);
3242 ice_vsi_free_stats(vsi);
3243 ice_vsi_put_qs(vsi);
3244
3245 /* retain SW VSI data structure since it is needed to unregister and
3246 * free VSI netdev when PF is not in reset recovery pending state,\
3247 * for ex: during rmmod.
3248 */
3249 if (!ice_is_reset_in_progress(pf->state))
3250 ice_vsi_clear(vsi);
3251
3252 return 0;
3253}
3254
3255/**
3256 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3257 * @vsi: VSI connected with q_vectors
3258 * @coalesce: array of struct with stored coalesce
3259 *
3260 * Returns array size.
3261 */
3262static int
3263ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3264 struct ice_coalesce_stored *coalesce)
3265{
3266 int i;
3267
3268 ice_for_each_q_vector(vsi, i) {
3269 struct ice_q_vector *q_vector = vsi->q_vectors[i];
3270
3271 coalesce[i].itr_tx = q_vector->tx.itr_settings;
3272 coalesce[i].itr_rx = q_vector->rx.itr_settings;
3273 coalesce[i].intrl = q_vector->intrl;
3274
3275 if (i < vsi->num_txq)
3276 coalesce[i].tx_valid = true;
3277 if (i < vsi->num_rxq)
3278 coalesce[i].rx_valid = true;
3279 }
3280
3281 return vsi->num_q_vectors;
3282}
3283
3284/**
3285 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3286 * @vsi: VSI connected with q_vectors
3287 * @coalesce: pointer to array of struct with stored coalesce
3288 * @size: size of coalesce array
3289 *
3290 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3291 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3292 * to default value.
3293 */
3294static void
3295ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3296 struct ice_coalesce_stored *coalesce, int size)
3297{
3298 struct ice_ring_container *rc;
3299 int i;
3300
3301 if ((size && !coalesce) || !vsi)
3302 return;
3303
3304 /* There are a couple of cases that have to be handled here:
3305 * 1. The case where the number of queue vectors stays the same, but
3306 * the number of Tx or Rx rings changes (the first for loop)
3307 * 2. The case where the number of queue vectors increased (the
3308 * second for loop)
3309 */
3310 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3311 /* There are 2 cases to handle here and they are the same for
3312 * both Tx and Rx:
3313 * if the entry was valid previously (coalesce[i].[tr]x_valid
3314 * and the loop variable is less than the number of rings
3315 * allocated, then write the previous values
3316 *
3317 * if the entry was not valid previously, but the number of
3318 * rings is less than are allocated (this means the number of
3319 * rings increased from previously), then write out the
3320 * values in the first element
3321 *
3322 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3323 * as there is no harm because the dynamic algorithm
3324 * will just overwrite.
3325 */
3326 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3327 rc = &vsi->q_vectors[i]->rx;
3328 rc->itr_settings = coalesce[i].itr_rx;
3329 ice_write_itr(rc, rc->itr_setting);
3330 } else if (i < vsi->alloc_rxq) {
3331 rc = &vsi->q_vectors[i]->rx;
3332 rc->itr_settings = coalesce[0].itr_rx;
3333 ice_write_itr(rc, rc->itr_setting);
3334 }
3335
3336 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3337 rc = &vsi->q_vectors[i]->tx;
3338 rc->itr_settings = coalesce[i].itr_tx;
3339 ice_write_itr(rc, rc->itr_setting);
3340 } else if (i < vsi->alloc_txq) {
3341 rc = &vsi->q_vectors[i]->tx;
3342 rc->itr_settings = coalesce[0].itr_tx;
3343 ice_write_itr(rc, rc->itr_setting);
3344 }
3345
3346 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3347 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3348 }
3349
3350 /* the number of queue vectors increased so write whatever is in
3351 * the first element
3352 */
3353 for (; i < vsi->num_q_vectors; i++) {
3354 /* transmit */
3355 rc = &vsi->q_vectors[i]->tx;
3356 rc->itr_settings = coalesce[0].itr_tx;
3357 ice_write_itr(rc, rc->itr_setting);
3358
3359 /* receive */
3360 rc = &vsi->q_vectors[i]->rx;
3361 rc->itr_settings = coalesce[0].itr_rx;
3362 ice_write_itr(rc, rc->itr_setting);
3363
3364 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3365 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3366 }
3367}
3368
3369/**
3370 * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3371 * @vsi: VSI pointer
3372 * @prev_txq: Number of Tx rings before ring reallocation
3373 * @prev_rxq: Number of Rx rings before ring reallocation
3374 */
3375static int
3376ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3377{
3378 struct ice_vsi_stats *vsi_stat;
3379 struct ice_pf *pf = vsi->back;
3380 int i;
3381
3382 if (!prev_txq || !prev_rxq)
3383 return 0;
3384 if (vsi->type == ICE_VSI_CHNL)
3385 return 0;
3386
3387 vsi_stat = pf->vsi_stats[vsi->idx];
3388
3389 if (vsi->num_txq < prev_txq) {
3390 for (i = vsi->num_txq; i < prev_txq; i++) {
3391 if (vsi_stat->tx_ring_stats[i]) {
3392 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3393 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3394 }
3395 }
3396 }
3397
3398 if (vsi->num_rxq < prev_rxq) {
3399 for (i = vsi->num_rxq; i < prev_rxq; i++) {
3400 if (vsi_stat->rx_ring_stats[i]) {
3401 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3402 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3403 }
3404 }
3405 }
3406
3407 return 0;
3408}
3409
3410/**
3411 * ice_vsi_rebuild - Rebuild VSI after reset
3412 * @vsi: VSI to be rebuild
3413 * @init_vsi: is this an initialization or a reconfigure of the VSI
3414 *
3415 * Returns 0 on success and negative value on failure
3416 */
3417int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3418{
3419 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3420 struct ice_coalesce_stored *coalesce;
3421 int ret, i, prev_txq, prev_rxq;
3422 int prev_num_q_vectors = 0;
3423 enum ice_vsi_type vtype;
3424 struct ice_pf *pf;
3425
3426 if (!vsi)
3427 return -EINVAL;
3428
3429 pf = vsi->back;
3430 vtype = vsi->type;
3431 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3432 return -EINVAL;
3433
3434 ice_vsi_init_vlan_ops(vsi);
3435
3436 coalesce = kcalloc(vsi->num_q_vectors,
3437 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3438 if (!coalesce)
3439 return -ENOMEM;
3440
3441 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3442
3443 prev_txq = vsi->num_txq;
3444 prev_rxq = vsi->num_rxq;
3445
3446 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3447 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3448 if (ret)
3449 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3450 vsi->vsi_num, ret);
3451 ice_vsi_free_q_vectors(vsi);
3452
3453 /* SR-IOV determines needed MSIX resources all at once instead of per
3454 * VSI since when VFs are spawned we know how many VFs there are and how
3455 * many interrupts each VF needs. SR-IOV MSIX resources are also
3456 * cleared in the same manner.
3457 */
3458 if (vtype != ICE_VSI_VF) {
3459 /* reclaim SW interrupts back to the common pool */
3460 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3461 pf->num_avail_sw_msix += vsi->num_q_vectors;
3462 vsi->base_vector = 0;
3463 }
3464
3465 if (ice_is_xdp_ena_vsi(vsi))
3466 /* return value check can be skipped here, it always returns
3467 * 0 if reset is in progress
3468 */
3469 ice_destroy_xdp_rings(vsi);
3470 ice_vsi_put_qs(vsi);
3471 ice_vsi_clear_rings(vsi);
3472 ice_vsi_free_arrays(vsi);
3473 if (vtype == ICE_VSI_VF)
3474 ice_vsi_set_num_qs(vsi, vsi->vf);
3475 else
3476 ice_vsi_set_num_qs(vsi, NULL);
3477
3478 ret = ice_vsi_alloc_arrays(vsi);
3479 if (ret < 0)
3480 goto err_vsi;
3481
3482 ice_vsi_get_qs(vsi);
3483
3484 ice_alloc_fd_res(vsi);
3485 ice_vsi_set_tc_cfg(vsi);
3486
3487 /* Initialize VSI struct elements and create VSI in FW */
3488 ret = ice_vsi_init(vsi, init_vsi);
3489 if (ret < 0)
3490 goto err_vsi;
3491
3492 switch (vtype) {
3493 case ICE_VSI_CTRL:
3494 case ICE_VSI_SWITCHDEV_CTRL:
3495 case ICE_VSI_PF:
3496 ret = ice_vsi_alloc_q_vectors(vsi);
3497 if (ret)
3498 goto err_rings;
3499
3500 ret = ice_vsi_setup_vector_base(vsi);
3501 if (ret)
3502 goto err_vectors;
3503
3504 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3505 if (ret)
3506 goto err_vectors;
3507
3508 ret = ice_vsi_alloc_rings(vsi);
3509 if (ret)
3510 goto err_vectors;
3511
3512 ret = ice_vsi_alloc_ring_stats(vsi);
3513 if (ret)
3514 goto err_vectors;
3515
3516 ice_vsi_map_rings_to_vectors(vsi);
3517
3518 vsi->stat_offsets_loaded = false;
3519 if (ice_is_xdp_ena_vsi(vsi)) {
3520 ret = ice_vsi_determine_xdp_res(vsi);
3521 if (ret)
3522 goto err_vectors;
3523 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3524 if (ret)
3525 goto err_vectors;
3526 }
3527 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3528 if (vtype != ICE_VSI_CTRL)
3529 /* Do not exit if configuring RSS had an issue, at
3530 * least receive traffic on first queue. Hence no
3531 * need to capture return value
3532 */
3533 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3534 ice_vsi_cfg_rss_lut_key(vsi);
3535
3536 /* disable or enable CRC stripping */
3537 if (vsi->netdev)
3538 ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features &
3539 NETIF_F_RXFCS));
3540
3541 break;
3542 case ICE_VSI_VF:
3543 ret = ice_vsi_alloc_q_vectors(vsi);
3544 if (ret)
3545 goto err_rings;
3546
3547 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3548 if (ret)
3549 goto err_vectors;
3550
3551 ret = ice_vsi_alloc_rings(vsi);
3552 if (ret)
3553 goto err_vectors;
3554
3555 ret = ice_vsi_alloc_ring_stats(vsi);
3556 if (ret)
3557 goto err_vectors;
3558
3559 vsi->stat_offsets_loaded = false;
3560 break;
3561 case ICE_VSI_CHNL:
3562 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3563 ice_vsi_cfg_rss_lut_key(vsi);
3564 ice_vsi_set_rss_flow_fld(vsi);
3565 }
3566 break;
3567 default:
3568 break;
3569 }
3570
3571 /* configure VSI nodes based on number of queues and TC's */
3572 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3573 /* configure VSI nodes based on number of queues and TC's.
3574 * ADQ creates VSIs for each TC/Channel but doesn't
3575 * allocate queues instead it reconfigures the PF queues
3576 * as per the TC command. So max_txqs should point to the
3577 * PF Tx queues.
3578 */
3579 if (vtype == ICE_VSI_CHNL)
3580 max_txqs[i] = pf->num_lan_tx;
3581 else
3582 max_txqs[i] = vsi->alloc_txq;
3583
3584 if (ice_is_xdp_ena_vsi(vsi))
3585 max_txqs[i] += vsi->num_xdp_txq;
3586 }
3587
3588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3589 /* If MQPRIO is set, means channel code path, hence for main
3590 * VSI's, use TC as 1
3591 */
3592 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3593 else
3594 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3595 vsi->tc_cfg.ena_tc, max_txqs);
3596
3597 if (ret) {
3598 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3599 vsi->vsi_num, ret);
3600 if (init_vsi) {
3601 ret = -EIO;
3602 goto err_vectors;
3603 } else {
3604 return ice_schedule_reset(pf, ICE_RESET_PFR);
3605 }
3606 }
3607
3608 if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq))
3609 goto err_vectors;
3610
3611 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3612 kfree(coalesce);
3613
3614 return 0;
3615
3616err_vectors:
3617 ice_vsi_free_q_vectors(vsi);
3618err_rings:
3619 if (vsi->netdev) {
3620 vsi->current_netdev_flags = 0;
3621 unregister_netdev(vsi->netdev);
3622 free_netdev(vsi->netdev);
3623 vsi->netdev = NULL;
3624 }
3625err_vsi:
3626 ice_vsi_clear(vsi);
3627 set_bit(ICE_RESET_FAILED, pf->state);
3628 kfree(coalesce);
3629 return ret;
3630}
3631
3632/**
3633 * ice_is_reset_in_progress - check for a reset in progress
3634 * @state: PF state field
3635 */
3636bool ice_is_reset_in_progress(unsigned long *state)
3637{
3638 return test_bit(ICE_RESET_OICR_RECV, state) ||
3639 test_bit(ICE_PFR_REQ, state) ||
3640 test_bit(ICE_CORER_REQ, state) ||
3641 test_bit(ICE_GLOBR_REQ, state);
3642}
3643
3644/**
3645 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3646 * @pf: pointer to the PF structure
3647 * @timeout: length of time to wait, in jiffies
3648 *
3649 * Wait (sleep) for a short time until the driver finishes cleaning up from
3650 * a device reset. The caller must be able to sleep. Use this to delay
3651 * operations that could fail while the driver is cleaning up after a device
3652 * reset.
3653 *
3654 * Returns 0 on success, -EBUSY if the reset is not finished within the
3655 * timeout, and -ERESTARTSYS if the thread was interrupted.
3656 */
3657int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3658{
3659 long ret;
3660
3661 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3662 !ice_is_reset_in_progress(pf->state),
3663 timeout);
3664 if (ret < 0)
3665 return ret;
3666 else if (!ret)
3667 return -EBUSY;
3668 else
3669 return 0;
3670}
3671
3672/**
3673 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3674 * @vsi: VSI being configured
3675 * @ctx: the context buffer returned from AQ VSI update command
3676 */
3677static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3678{
3679 vsi->info.mapping_flags = ctx->info.mapping_flags;
3680 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3681 sizeof(vsi->info.q_mapping));
3682 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3683 sizeof(vsi->info.tc_mapping));
3684}
3685
3686/**
3687 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3688 * @vsi: the VSI being configured
3689 * @ena_tc: TC map to be enabled
3690 */
3691void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3692{
3693 struct net_device *netdev = vsi->netdev;
3694 struct ice_pf *pf = vsi->back;
3695 int numtc = vsi->tc_cfg.numtc;
3696 struct ice_dcbx_cfg *dcbcfg;
3697 u8 netdev_tc;
3698 int i;
3699
3700 if (!netdev)
3701 return;
3702
3703 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3704 if (vsi->type == ICE_VSI_CHNL)
3705 return;
3706
3707 if (!ena_tc) {
3708 netdev_reset_tc(netdev);
3709 return;
3710 }
3711
3712 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3713 numtc = vsi->all_numtc;
3714
3715 if (netdev_set_num_tc(netdev, numtc))
3716 return;
3717
3718 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3719
3720 ice_for_each_traffic_class(i)
3721 if (vsi->tc_cfg.ena_tc & BIT(i))
3722 netdev_set_tc_queue(netdev,
3723 vsi->tc_cfg.tc_info[i].netdev_tc,
3724 vsi->tc_cfg.tc_info[i].qcount_tx,
3725 vsi->tc_cfg.tc_info[i].qoffset);
3726 /* setup TC queue map for CHNL TCs */
3727 ice_for_each_chnl_tc(i) {
3728 if (!(vsi->all_enatc & BIT(i)))
3729 break;
3730 if (!vsi->mqprio_qopt.qopt.count[i])
3731 break;
3732 netdev_set_tc_queue(netdev, i,
3733 vsi->mqprio_qopt.qopt.count[i],
3734 vsi->mqprio_qopt.qopt.offset[i]);
3735 }
3736
3737 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3738 return;
3739
3740 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3741 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3742
3743 /* Get the mapped netdev TC# for the UP */
3744 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3745 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3746 }
3747}
3748
3749/**
3750 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3751 * @vsi: the VSI being configured,
3752 * @ctxt: VSI context structure
3753 * @ena_tc: number of traffic classes to enable
3754 *
3755 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3756 */
3757static int
3758ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3759 u8 ena_tc)
3760{
3761 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3762 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3763 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3764 u16 new_txq, new_rxq;
3765 u8 netdev_tc = 0;
3766 int i;
3767
3768 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3769
3770 pow = order_base_2(tc0_qcount);
3771 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3772 ICE_AQ_VSI_TC_Q_OFFSET_M) |
3773 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3774
3775 ice_for_each_traffic_class(i) {
3776 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3777 /* TC is not enabled */
3778 vsi->tc_cfg.tc_info[i].qoffset = 0;
3779 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3780 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3781 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3782 ctxt->info.tc_mapping[i] = 0;
3783 continue;
3784 }
3785
3786 offset = vsi->mqprio_qopt.qopt.offset[i];
3787 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3788 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3789 vsi->tc_cfg.tc_info[i].qoffset = offset;
3790 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3791 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3792 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3793 }
3794
3795 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3796 ice_for_each_chnl_tc(i) {
3797 if (!(vsi->all_enatc & BIT(i)))
3798 continue;
3799 offset = vsi->mqprio_qopt.qopt.offset[i];
3800 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3801 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3802 }
3803 }
3804
3805 new_txq = offset + qcount_tx;
3806 if (new_txq > vsi->alloc_txq) {
3807 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3808 new_txq, vsi->alloc_txq);
3809 return -EINVAL;
3810 }
3811
3812 new_rxq = offset + qcount_rx;
3813 if (new_rxq > vsi->alloc_rxq) {
3814 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3815 new_rxq, vsi->alloc_rxq);
3816 return -EINVAL;
3817 }
3818
3819 /* Set actual Tx/Rx queue pairs */
3820 vsi->num_txq = new_txq;
3821 vsi->num_rxq = new_rxq;
3822
3823 /* Setup queue TC[0].qmap for given VSI context */
3824 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3825 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3826 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3827
3828 /* Find queue count available for channel VSIs and starting offset
3829 * for channel VSIs
3830 */
3831 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3832 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3833 vsi->next_base_q = tc0_qcount;
3834 }
3835 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3836 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3837 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3838 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3839
3840 return 0;
3841}
3842
3843/**
3844 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3845 * @vsi: VSI to be configured
3846 * @ena_tc: TC bitmap
3847 *
3848 * VSI queues expected to be quiesced before calling this function
3849 */
3850int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3851{
3852 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3853 struct ice_pf *pf = vsi->back;
3854 struct ice_tc_cfg old_tc_cfg;
3855 struct ice_vsi_ctx *ctx;
3856 struct device *dev;
3857 int i, ret = 0;
3858 u8 num_tc = 0;
3859
3860 dev = ice_pf_to_dev(pf);
3861 if (vsi->tc_cfg.ena_tc == ena_tc &&
3862 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3863 return ret;
3864
3865 ice_for_each_traffic_class(i) {
3866 /* build bitmap of enabled TCs */
3867 if (ena_tc & BIT(i))
3868 num_tc++;
3869 /* populate max_txqs per TC */
3870 max_txqs[i] = vsi->alloc_txq;
3871 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3872 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3873 */
3874 if (vsi->type == ICE_VSI_CHNL &&
3875 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3876 max_txqs[i] = vsi->num_txq;
3877 }
3878
3879 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3880 vsi->tc_cfg.ena_tc = ena_tc;
3881 vsi->tc_cfg.numtc = num_tc;
3882
3883 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3884 if (!ctx)
3885 return -ENOMEM;
3886
3887 ctx->vf_num = 0;
3888 ctx->info = vsi->info;
3889
3890 if (vsi->type == ICE_VSI_PF &&
3891 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3892 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3893 else
3894 ret = ice_vsi_setup_q_map(vsi, ctx);
3895
3896 if (ret) {
3897 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3898 goto out;
3899 }
3900
3901 /* must to indicate which section of VSI context are being modified */
3902 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3903 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3904 if (ret) {
3905 dev_info(dev, "Failed VSI Update\n");
3906 goto out;
3907 }
3908
3909 if (vsi->type == ICE_VSI_PF &&
3910 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3911 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3912 else
3913 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3914 vsi->tc_cfg.ena_tc, max_txqs);
3915
3916 if (ret) {
3917 dev_err(dev, "VSI %d failed TC config, error %d\n",
3918 vsi->vsi_num, ret);
3919 goto out;
3920 }
3921 ice_vsi_update_q_map(vsi, ctx);
3922 vsi->info.valid_sections = 0;
3923
3924 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3925out:
3926 kfree(ctx);
3927 return ret;
3928}
3929
3930/**
3931 * ice_update_ring_stats - Update ring statistics
3932 * @stats: stats to be updated
3933 * @pkts: number of processed packets
3934 * @bytes: number of processed bytes
3935 *
3936 * This function assumes that caller has acquired a u64_stats_sync lock.
3937 */
3938static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3939{
3940 stats->bytes += bytes;
3941 stats->pkts += pkts;
3942}
3943
3944/**
3945 * ice_update_tx_ring_stats - Update Tx ring specific counters
3946 * @tx_ring: ring to update
3947 * @pkts: number of processed packets
3948 * @bytes: number of processed bytes
3949 */
3950void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3951{
3952 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3953 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3954 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3955}
3956
3957/**
3958 * ice_update_rx_ring_stats - Update Rx ring specific counters
3959 * @rx_ring: ring to update
3960 * @pkts: number of processed packets
3961 * @bytes: number of processed bytes
3962 */
3963void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3964{
3965 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3966 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3967 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3968}
3969
3970/**
3971 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3972 * @pi: port info of the switch with default VSI
3973 *
3974 * Return true if the there is a single VSI in default forwarding VSI list
3975 */
3976bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3977{
3978 bool exists = false;
3979
3980 ice_check_if_dflt_vsi(pi, 0, &exists);
3981 return exists;
3982}
3983
3984/**
3985 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3986 * @vsi: VSI to compare against default forwarding VSI
3987 *
3988 * If this VSI passed in is the default forwarding VSI then return true, else
3989 * return false
3990 */
3991bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3992{
3993 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3994}
3995
3996/**
3997 * ice_set_dflt_vsi - set the default forwarding VSI
3998 * @vsi: VSI getting set as the default forwarding VSI on the switch
3999 *
4000 * If the VSI passed in is already the default VSI and it's enabled just return
4001 * success.
4002 *
4003 * Otherwise try to set the VSI passed in as the switch's default VSI and
4004 * return the result.
4005 */
4006int ice_set_dflt_vsi(struct ice_vsi *vsi)
4007{
4008 struct device *dev;
4009 int status;
4010
4011 if (!vsi)
4012 return -EINVAL;
4013
4014 dev = ice_pf_to_dev(vsi->back);
4015
4016 /* the VSI passed in is already the default VSI */
4017 if (ice_is_vsi_dflt_vsi(vsi)) {
4018 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
4019 vsi->vsi_num);
4020 return 0;
4021 }
4022
4023 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
4024 if (status) {
4025 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
4026 vsi->vsi_num, status);
4027 return status;
4028 }
4029
4030 return 0;
4031}
4032
4033/**
4034 * ice_clear_dflt_vsi - clear the default forwarding VSI
4035 * @vsi: VSI to remove from filter list
4036 *
4037 * If the switch has no default VSI or it's not enabled then return error.
4038 *
4039 * Otherwise try to clear the default VSI and return the result.
4040 */
4041int ice_clear_dflt_vsi(struct ice_vsi *vsi)
4042{
4043 struct device *dev;
4044 int status;
4045
4046 if (!vsi)
4047 return -EINVAL;
4048
4049 dev = ice_pf_to_dev(vsi->back);
4050
4051 /* there is no default VSI configured */
4052 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
4053 return -ENODEV;
4054
4055 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
4056 ICE_FLTR_RX);
4057 if (status) {
4058 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
4059 vsi->vsi_num, status);
4060 return -EIO;
4061 }
4062
4063 return 0;
4064}
4065
4066/**
4067 * ice_get_link_speed_mbps - get link speed in Mbps
4068 * @vsi: the VSI whose link speed is being queried
4069 *
4070 * Return current VSI link speed and 0 if the speed is unknown.
4071 */
4072int ice_get_link_speed_mbps(struct ice_vsi *vsi)
4073{
4074 unsigned int link_speed;
4075
4076 link_speed = vsi->port_info->phy.link_info.link_speed;
4077
4078 return (int)ice_get_link_speed(fls(link_speed) - 1);
4079}
4080
4081/**
4082 * ice_get_link_speed_kbps - get link speed in Kbps
4083 * @vsi: the VSI whose link speed is being queried
4084 *
4085 * Return current VSI link speed and 0 if the speed is unknown.
4086 */
4087int ice_get_link_speed_kbps(struct ice_vsi *vsi)
4088{
4089 int speed_mbps;
4090
4091 speed_mbps = ice_get_link_speed_mbps(vsi);
4092
4093 return speed_mbps * 1000;
4094}
4095
4096/**
4097 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
4098 * @vsi: VSI to be configured
4099 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
4100 *
4101 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
4102 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
4103 * on TC 0.
4104 */
4105int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
4106{
4107 struct ice_pf *pf = vsi->back;
4108 struct device *dev;
4109 int status;
4110 int speed;
4111
4112 dev = ice_pf_to_dev(pf);
4113 if (!vsi->port_info) {
4114 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4115 vsi->idx, vsi->type);
4116 return -EINVAL;
4117 }
4118
4119 speed = ice_get_link_speed_kbps(vsi);
4120 if (min_tx_rate > (u64)speed) {
4121 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4122 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4123 speed);
4124 return -EINVAL;
4125 }
4126
4127 /* Configure min BW for VSI limit */
4128 if (min_tx_rate) {
4129 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4130 ICE_MIN_BW, min_tx_rate);
4131 if (status) {
4132 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
4133 min_tx_rate, ice_vsi_type_str(vsi->type),
4134 vsi->idx);
4135 return status;
4136 }
4137
4138 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
4139 min_tx_rate, ice_vsi_type_str(vsi->type));
4140 } else {
4141 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4142 vsi->idx, 0,
4143 ICE_MIN_BW);
4144 if (status) {
4145 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
4146 ice_vsi_type_str(vsi->type), vsi->idx);
4147 return status;
4148 }
4149
4150 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
4151 ice_vsi_type_str(vsi->type), vsi->idx);
4152 }
4153
4154 return 0;
4155}
4156
4157/**
4158 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
4159 * @vsi: VSI to be configured
4160 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
4161 *
4162 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
4163 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
4164 * on TC 0.
4165 */
4166int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
4167{
4168 struct ice_pf *pf = vsi->back;
4169 struct device *dev;
4170 int status;
4171 int speed;
4172
4173 dev = ice_pf_to_dev(pf);
4174 if (!vsi->port_info) {
4175 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4176 vsi->idx, vsi->type);
4177 return -EINVAL;
4178 }
4179
4180 speed = ice_get_link_speed_kbps(vsi);
4181 if (max_tx_rate > (u64)speed) {
4182 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4183 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4184 speed);
4185 return -EINVAL;
4186 }
4187
4188 /* Configure max BW for VSI limit */
4189 if (max_tx_rate) {
4190 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4191 ICE_MAX_BW, max_tx_rate);
4192 if (status) {
4193 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
4194 max_tx_rate, ice_vsi_type_str(vsi->type),
4195 vsi->idx);
4196 return status;
4197 }
4198
4199 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
4200 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
4201 } else {
4202 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4203 vsi->idx, 0,
4204 ICE_MAX_BW);
4205 if (status) {
4206 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
4207 ice_vsi_type_str(vsi->type), vsi->idx);
4208 return status;
4209 }
4210
4211 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
4212 ice_vsi_type_str(vsi->type), vsi->idx);
4213 }
4214
4215 return 0;
4216}
4217
4218/**
4219 * ice_set_link - turn on/off physical link
4220 * @vsi: VSI to modify physical link on
4221 * @ena: turn on/off physical link
4222 */
4223int ice_set_link(struct ice_vsi *vsi, bool ena)
4224{
4225 struct device *dev = ice_pf_to_dev(vsi->back);
4226 struct ice_port_info *pi = vsi->port_info;
4227 struct ice_hw *hw = pi->hw;
4228 int status;
4229
4230 if (vsi->type != ICE_VSI_PF)
4231 return -EINVAL;
4232
4233 status = ice_aq_set_link_restart_an(pi, ena, NULL);
4234
4235 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
4236 * this is not a fatal error, so print a warning message and return
4237 * a success code. Return an error if FW returns an error code other
4238 * than ICE_AQ_RC_EMODE
4239 */
4240 if (status == -EIO) {
4241 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4242 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4243 (ena ? "ON" : "OFF"), status,
4244 ice_aq_str(hw->adminq.sq_last_status));
4245 } else if (status) {
4246 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4247 (ena ? "ON" : "OFF"), status,
4248 ice_aq_str(hw->adminq.sq_last_status));
4249 return status;
4250 }
4251
4252 return 0;
4253}
4254
4255/**
4256 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4257 * @vsi: VSI used to add VLAN filters
4258 *
4259 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4260 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4261 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4262 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4263 *
4264 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4265 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4266 * traffic in SVM, since the VLAN TPID isn't part of filtering.
4267 *
4268 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4269 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4270 * part of filtering.
4271 */
4272int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4273{
4274 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4275 struct ice_vlan vlan;
4276 int err;
4277
4278 vlan = ICE_VLAN(0, 0, 0);
4279 err = vlan_ops->add_vlan(vsi, &vlan);
4280 if (err && err != -EEXIST)
4281 return err;
4282
4283 /* in SVM both VLAN 0 filters are identical */
4284 if (!ice_is_dvm_ena(&vsi->back->hw))
4285 return 0;
4286
4287 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4288 err = vlan_ops->add_vlan(vsi, &vlan);
4289 if (err && err != -EEXIST)
4290 return err;
4291
4292 return 0;
4293}
4294
4295/**
4296 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4297 * @vsi: VSI used to add VLAN filters
4298 *
4299 * Delete the VLAN 0 filters in the same manner that they were added in
4300 * ice_vsi_add_vlan_zero.
4301 */
4302int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4303{
4304 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4305 struct ice_vlan vlan;
4306 int err;
4307
4308 vlan = ICE_VLAN(0, 0, 0);
4309 err = vlan_ops->del_vlan(vsi, &vlan);
4310 if (err && err != -EEXIST)
4311 return err;
4312
4313 /* in SVM both VLAN 0 filters are identical */
4314 if (!ice_is_dvm_ena(&vsi->back->hw))
4315 return 0;
4316
4317 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4318 err = vlan_ops->del_vlan(vsi, &vlan);
4319 if (err && err != -EEXIST)
4320 return err;
4321
4322 /* when deleting the last VLAN filter, make sure to disable the VLAN
4323 * promisc mode so the filter isn't left by accident
4324 */
4325 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4326 ICE_MCAST_VLAN_PROMISC_BITS, 0);
4327}
4328
4329/**
4330 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4331 * @vsi: VSI used to get the VLAN mode
4332 *
4333 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4334 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4335 */
4336static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4337{
4338#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
4339#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
4340 /* no VLAN 0 filter is created when a port VLAN is active */
4341 if (vsi->type == ICE_VSI_VF) {
4342 if (WARN_ON(!vsi->vf))
4343 return 0;
4344
4345 if (ice_vf_is_port_vlan_ena(vsi->vf))
4346 return 0;
4347 }
4348
4349 if (ice_is_dvm_ena(&vsi->back->hw))
4350 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4351 else
4352 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4353}
4354
4355/**
4356 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4357 * @vsi: VSI used to determine if any non-zero VLANs have been added
4358 */
4359bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4360{
4361 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4362}
4363
4364/**
4365 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4366 * @vsi: VSI used to get the number of non-zero VLANs added
4367 */
4368u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4369{
4370 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4371}
4372
4373/**
4374 * ice_is_feature_supported
4375 * @pf: pointer to the struct ice_pf instance
4376 * @f: feature enum to be checked
4377 *
4378 * returns true if feature is supported, false otherwise
4379 */
4380bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4381{
4382 if (f < 0 || f >= ICE_F_MAX)
4383 return false;
4384
4385 return test_bit(f, pf->features);
4386}
4387
4388/**
4389 * ice_set_feature_support
4390 * @pf: pointer to the struct ice_pf instance
4391 * @f: feature enum to set
4392 */
4393static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4394{
4395 if (f < 0 || f >= ICE_F_MAX)
4396 return;
4397
4398 set_bit(f, pf->features);
4399}
4400
4401/**
4402 * ice_clear_feature_support
4403 * @pf: pointer to the struct ice_pf instance
4404 * @f: feature enum to clear
4405 */
4406void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4407{
4408 if (f < 0 || f >= ICE_F_MAX)
4409 return;
4410
4411 clear_bit(f, pf->features);
4412}
4413
4414/**
4415 * ice_init_feature_support
4416 * @pf: pointer to the struct ice_pf instance
4417 *
4418 * called during init to setup supported feature
4419 */
4420void ice_init_feature_support(struct ice_pf *pf)
4421{
4422 switch (pf->hw.device_id) {
4423 case ICE_DEV_ID_E810C_BACKPLANE:
4424 case ICE_DEV_ID_E810C_QSFP:
4425 case ICE_DEV_ID_E810C_SFP:
4426 ice_set_feature_support(pf, ICE_F_DSCP);
4427 ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4428 if (ice_is_e810t(&pf->hw)) {
4429 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4430 if (ice_gnss_is_gps_present(&pf->hw))
4431 ice_set_feature_support(pf, ICE_F_GNSS);
4432 }
4433 break;
4434 default:
4435 break;
4436 }
4437}
4438
4439/**
4440 * ice_vsi_update_security - update security block in VSI
4441 * @vsi: pointer to VSI structure
4442 * @fill: function pointer to fill ctx
4443 */
4444int
4445ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4446{
4447 struct ice_vsi_ctx ctx = { 0 };
4448
4449 ctx.info = vsi->info;
4450 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4451 fill(&ctx);
4452
4453 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4454 return -ENODEV;
4455
4456 vsi->info = ctx.info;
4457 return 0;
4458}
4459
4460/**
4461 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4462 * @ctx: pointer to VSI ctx structure
4463 */
4464void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4465{
4466 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4467 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4468 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4469}
4470
4471/**
4472 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4473 * @ctx: pointer to VSI ctx structure
4474 */
4475void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4476{
4477 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4478 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4479 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4480}
4481
4482/**
4483 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4484 * @ctx: pointer to VSI ctx structure
4485 */
4486void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4487{
4488 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4489}
4490
4491/**
4492 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4493 * @ctx: pointer to VSI ctx structure
4494 */
4495void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4496{
4497 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4498}