Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/errno.h>
  28#include <linux/acpi.h>
  29#include <linux/hash.h>
  30#include <linux/cpufreq.h>
  31#include <linux/log2.h>
  32#include <linux/dmi.h>
  33#include <linux/atomic.h>
  34
  35#include "kfd_priv.h"
  36#include "kfd_crat.h"
  37#include "kfd_topology.h"
  38#include "kfd_device_queue_manager.h"
 
  39#include "kfd_svm.h"
  40#include "kfd_debug.h"
  41#include "amdgpu_amdkfd.h"
  42#include "amdgpu_ras.h"
  43#include "amdgpu.h"
  44
  45/* topology_device_list - Master list of all topology devices */
  46static struct list_head topology_device_list;
  47static struct kfd_system_properties sys_props;
  48
  49static DECLARE_RWSEM(topology_lock);
  50static uint32_t topology_crat_proximity_domain;
  51
  52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
  53						uint32_t proximity_domain)
  54{
  55	struct kfd_topology_device *top_dev;
  56	struct kfd_topology_device *device = NULL;
  57
  58	list_for_each_entry(top_dev, &topology_device_list, list)
  59		if (top_dev->proximity_domain == proximity_domain) {
  60			device = top_dev;
  61			break;
  62		}
  63
  64	return device;
  65}
  66
  67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  68						uint32_t proximity_domain)
  69{
  70	struct kfd_topology_device *device = NULL;
  71
  72	down_read(&topology_lock);
  73
  74	device = kfd_topology_device_by_proximity_domain_no_lock(
  75							proximity_domain);
  76	up_read(&topology_lock);
  77
  78	return device;
  79}
  80
  81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
  82{
  83	struct kfd_topology_device *top_dev = NULL;
  84	struct kfd_topology_device *ret = NULL;
  85
  86	down_read(&topology_lock);
  87
  88	list_for_each_entry(top_dev, &topology_device_list, list)
  89		if (top_dev->gpu_id == gpu_id) {
  90			ret = top_dev;
  91			break;
  92		}
  93
  94	up_read(&topology_lock);
  95
  96	return ret;
  97}
  98
  99struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
 100{
 101	struct kfd_topology_device *top_dev;
 102
 103	top_dev = kfd_topology_device_by_id(gpu_id);
 104	if (!top_dev)
 105		return NULL;
 106
 107	return top_dev->gpu;
 108}
 109
 110struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
 111{
 112	struct kfd_topology_device *top_dev;
 113	struct kfd_node *device = NULL;
 114
 115	down_read(&topology_lock);
 116
 117	list_for_each_entry(top_dev, &topology_device_list, list)
 118		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
 119			device = top_dev->gpu;
 120			break;
 121		}
 122
 123	up_read(&topology_lock);
 124
 125	return device;
 126}
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128/* Called with write topology_lock acquired */
 129static void kfd_release_topology_device(struct kfd_topology_device *dev)
 130{
 131	struct kfd_mem_properties *mem;
 132	struct kfd_cache_properties *cache;
 133	struct kfd_iolink_properties *iolink;
 134	struct kfd_iolink_properties *p2plink;
 135	struct kfd_perf_properties *perf;
 136
 137	list_del(&dev->list);
 138
 139	while (dev->mem_props.next != &dev->mem_props) {
 140		mem = container_of(dev->mem_props.next,
 141				struct kfd_mem_properties, list);
 142		list_del(&mem->list);
 143		kfree(mem);
 144	}
 145
 146	while (dev->cache_props.next != &dev->cache_props) {
 147		cache = container_of(dev->cache_props.next,
 148				struct kfd_cache_properties, list);
 149		list_del(&cache->list);
 150		kfree(cache);
 151	}
 152
 153	while (dev->io_link_props.next != &dev->io_link_props) {
 154		iolink = container_of(dev->io_link_props.next,
 155				struct kfd_iolink_properties, list);
 156		list_del(&iolink->list);
 157		kfree(iolink);
 158	}
 159
 160	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
 161		p2plink = container_of(dev->p2p_link_props.next,
 162				struct kfd_iolink_properties, list);
 163		list_del(&p2plink->list);
 164		kfree(p2plink);
 165	}
 166
 167	while (dev->perf_props.next != &dev->perf_props) {
 168		perf = container_of(dev->perf_props.next,
 169				struct kfd_perf_properties, list);
 170		list_del(&perf->list);
 171		kfree(perf);
 172	}
 173
 174	kfree(dev);
 175}
 176
 177void kfd_release_topology_device_list(struct list_head *device_list)
 178{
 179	struct kfd_topology_device *dev;
 180
 181	while (!list_empty(device_list)) {
 182		dev = list_first_entry(device_list,
 183				       struct kfd_topology_device, list);
 184		kfd_release_topology_device(dev);
 185	}
 186}
 187
 188static void kfd_release_live_view(void)
 189{
 190	kfd_release_topology_device_list(&topology_device_list);
 191	memset(&sys_props, 0, sizeof(sys_props));
 192}
 193
 194struct kfd_topology_device *kfd_create_topology_device(
 195				struct list_head *device_list)
 196{
 197	struct kfd_topology_device *dev;
 198
 199	dev = kfd_alloc_struct(dev);
 200	if (!dev) {
 201		pr_err("No memory to allocate a topology device");
 202		return NULL;
 203	}
 204
 205	INIT_LIST_HEAD(&dev->mem_props);
 206	INIT_LIST_HEAD(&dev->cache_props);
 207	INIT_LIST_HEAD(&dev->io_link_props);
 208	INIT_LIST_HEAD(&dev->p2p_link_props);
 209	INIT_LIST_HEAD(&dev->perf_props);
 210
 211	list_add_tail(&dev->list, device_list);
 212
 213	return dev;
 214}
 215
 216
 217#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
 218		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
 219				  fmt, __VA_ARGS__))
 220#define sysfs_show_32bit_prop(buffer, offs, name, value) \
 221		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
 222#define sysfs_show_64bit_prop(buffer, offs, name, value) \
 223		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
 224#define sysfs_show_32bit_val(buffer, offs, value) \
 225		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
 226#define sysfs_show_str_val(buffer, offs, value) \
 227		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
 228
 229static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 230		char *buffer)
 231{
 232	int offs = 0;
 233
 234	/* Making sure that the buffer is an empty string */
 235	buffer[0] = 0;
 236
 237	if (attr == &sys_props.attr_genid) {
 238		sysfs_show_32bit_val(buffer, offs,
 239				     sys_props.generation_count);
 240	} else if (attr == &sys_props.attr_props) {
 241		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
 242				      sys_props.platform_oem);
 243		sysfs_show_64bit_prop(buffer, offs, "platform_id",
 244				      sys_props.platform_id);
 245		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
 246				      sys_props.platform_rev);
 247	} else {
 248		offs = -EINVAL;
 249	}
 250
 251	return offs;
 252}
 253
 254static void kfd_topology_kobj_release(struct kobject *kobj)
 255{
 256	kfree(kobj);
 257}
 258
 259static const struct sysfs_ops sysprops_ops = {
 260	.show = sysprops_show,
 261};
 262
 263static const struct kobj_type sysprops_type = {
 264	.release = kfd_topology_kobj_release,
 265	.sysfs_ops = &sysprops_ops,
 266};
 267
 268static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 269		char *buffer)
 270{
 271	int offs = 0;
 272	struct kfd_iolink_properties *iolink;
 273
 274	/* Making sure that the buffer is an empty string */
 275	buffer[0] = 0;
 276
 277	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 278	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
 279		return -EPERM;
 280	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
 281	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
 282	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
 283	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
 284	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
 285	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
 286	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
 287	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
 288	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
 289			      iolink->min_bandwidth);
 290	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
 291			      iolink->max_bandwidth);
 292	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
 293			      iolink->rec_transfer_size);
 294	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
 295
 296	return offs;
 297}
 298
 299static const struct sysfs_ops iolink_ops = {
 300	.show = iolink_show,
 301};
 302
 303static const struct kobj_type iolink_type = {
 304	.release = kfd_topology_kobj_release,
 305	.sysfs_ops = &iolink_ops,
 306};
 307
 308static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 309		char *buffer)
 310{
 311	int offs = 0;
 312	struct kfd_mem_properties *mem;
 313
 314	/* Making sure that the buffer is an empty string */
 315	buffer[0] = 0;
 316
 317	mem = container_of(attr, struct kfd_mem_properties, attr);
 318	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
 319		return -EPERM;
 320	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
 321	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
 322			      mem->size_in_bytes);
 323	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
 324	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
 325	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
 326			      mem->mem_clk_max);
 327
 328	return offs;
 329}
 330
 331static const struct sysfs_ops mem_ops = {
 332	.show = mem_show,
 333};
 334
 335static const struct kobj_type mem_type = {
 336	.release = kfd_topology_kobj_release,
 337	.sysfs_ops = &mem_ops,
 338};
 339
 340static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 341		char *buffer)
 342{
 343	int offs = 0;
 344	uint32_t i, j;
 345	struct kfd_cache_properties *cache;
 346
 347	/* Making sure that the buffer is an empty string */
 348	buffer[0] = 0;
 349	cache = container_of(attr, struct kfd_cache_properties, attr);
 350	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
 351		return -EPERM;
 352	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
 353			cache->processor_id_low);
 354	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
 355	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
 356	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
 357			      cache->cacheline_size);
 358	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
 359			      cache->cachelines_per_tag);
 360	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
 361	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
 362	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
 363
 364	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
 365	for (i = 0; i < cache->sibling_map_size; i++)
 366		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
 367			/* Check each bit */
 368			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
 369						(cache->sibling_map[i] >> j) & 1);
 370
 371	/* Replace the last "," with end of line */
 372	buffer[offs-1] = '\n';
 373	return offs;
 374}
 375
 376static const struct sysfs_ops cache_ops = {
 377	.show = kfd_cache_show,
 378};
 379
 380static const struct kobj_type cache_type = {
 381	.release = kfd_topology_kobj_release,
 382	.sysfs_ops = &cache_ops,
 383};
 384
 385/****** Sysfs of Performance Counters ******/
 386
 387struct kfd_perf_attr {
 388	struct kobj_attribute attr;
 389	uint32_t data;
 390};
 391
 392static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 393			char *buf)
 394{
 395	int offs = 0;
 396	struct kfd_perf_attr *attr;
 397
 398	buf[0] = 0;
 399	attr = container_of(attrs, struct kfd_perf_attr, attr);
 400	if (!attr->data) /* invalid data for PMC */
 401		return 0;
 402	else
 403		return sysfs_show_32bit_val(buf, offs, attr->data);
 404}
 405
 406#define KFD_PERF_DESC(_name, _data)			\
 407{							\
 408	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 409	.data = _data,					\
 410}
 411
 412static struct kfd_perf_attr perf_attr_iommu[] = {
 413	KFD_PERF_DESC(max_concurrent, 0),
 414	KFD_PERF_DESC(num_counters, 0),
 415	KFD_PERF_DESC(counter_ids, 0),
 416};
 417/****************************************/
 418
 419static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 420		char *buffer)
 421{
 422	int offs = 0;
 423	struct kfd_topology_device *dev;
 424	uint32_t log_max_watch_addr;
 425
 426	/* Making sure that the buffer is an empty string */
 427	buffer[0] = 0;
 428
 429	if (strcmp(attr->name, "gpu_id") == 0) {
 430		dev = container_of(attr, struct kfd_topology_device,
 431				attr_gpuid);
 432		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 433			return -EPERM;
 434		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
 435	}
 436
 437	if (strcmp(attr->name, "name") == 0) {
 438		dev = container_of(attr, struct kfd_topology_device,
 439				attr_name);
 440
 441		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 442			return -EPERM;
 443		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
 444	}
 445
 446	dev = container_of(attr, struct kfd_topology_device,
 447			attr_props);
 448	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 449		return -EPERM;
 450	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
 451			      dev->node_props.cpu_cores_count);
 452	sysfs_show_32bit_prop(buffer, offs, "simd_count",
 453			      dev->gpu ? dev->node_props.simd_count : 0);
 454	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
 455			      dev->node_props.mem_banks_count);
 456	sysfs_show_32bit_prop(buffer, offs, "caches_count",
 457			      dev->node_props.caches_count);
 458	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
 459			      dev->node_props.io_links_count);
 460	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
 461			      dev->node_props.p2p_links_count);
 462	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
 463			      dev->node_props.cpu_core_id_base);
 464	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
 465			      dev->node_props.simd_id_base);
 466	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
 467			      dev->node_props.max_waves_per_simd);
 468	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
 469			      dev->node_props.lds_size_in_kb);
 470	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
 471			      dev->node_props.gds_size_in_kb);
 472	sysfs_show_32bit_prop(buffer, offs, "num_gws",
 473			      dev->node_props.num_gws);
 474	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
 475			      dev->node_props.wave_front_size);
 476	sysfs_show_32bit_prop(buffer, offs, "array_count",
 477			      dev->gpu ? (dev->node_props.array_count *
 478					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
 479	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
 480			      dev->node_props.simd_arrays_per_engine);
 481	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
 482			      dev->node_props.cu_per_simd_array);
 483	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
 484			      dev->node_props.simd_per_cu);
 485	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
 486			      dev->node_props.max_slots_scratch_cu);
 487	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
 488			      dev->node_props.gfx_target_version);
 489	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
 490			      dev->node_props.vendor_id);
 491	sysfs_show_32bit_prop(buffer, offs, "device_id",
 492			      dev->node_props.device_id);
 493	sysfs_show_32bit_prop(buffer, offs, "location_id",
 494			      dev->node_props.location_id);
 495	sysfs_show_32bit_prop(buffer, offs, "domain",
 496			      dev->node_props.domain);
 497	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
 498			      dev->node_props.drm_render_minor);
 499	sysfs_show_64bit_prop(buffer, offs, "hive_id",
 500			      dev->node_props.hive_id);
 501	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
 502			      dev->node_props.num_sdma_engines);
 503	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
 504			      dev->node_props.num_sdma_xgmi_engines);
 505	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
 506			      dev->node_props.num_sdma_queues_per_engine);
 507	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
 508			      dev->node_props.num_cp_queues);
 509
 510	if (dev->gpu) {
 511		log_max_watch_addr =
 512			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
 513
 514		if (log_max_watch_addr) {
 515			dev->node_props.capability |=
 516					HSA_CAP_WATCH_POINTS_SUPPORTED;
 517
 518			dev->node_props.capability |=
 519				((log_max_watch_addr <<
 520					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 521				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 522		}
 523
 524		if (dev->gpu->adev->asic_type == CHIP_TONGA)
 525			dev->node_props.capability |=
 526					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 527
 528		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
 529			dev->node_props.max_engine_clk_fcompute);
 530
 531		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
 532
 533		sysfs_show_32bit_prop(buffer, offs, "fw_version",
 534				      dev->gpu->kfd->mec_fw_version);
 535		sysfs_show_32bit_prop(buffer, offs, "capability",
 536				      dev->node_props.capability);
 537		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
 538				      dev->node_props.debug_prop);
 539		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
 540				      dev->gpu->kfd->sdma_fw_version);
 541		sysfs_show_64bit_prop(buffer, offs, "unique_id",
 542				      dev->gpu->adev->unique_id);
 543		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
 544				      NUM_XCC(dev->gpu->xcc_mask));
 545	}
 546
 547	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
 548				     cpufreq_quick_get_max(0)/1000);
 549}
 550
 551static const struct sysfs_ops node_ops = {
 552	.show = node_show,
 553};
 554
 555static const struct kobj_type node_type = {
 556	.release = kfd_topology_kobj_release,
 557	.sysfs_ops = &node_ops,
 558};
 559
 560static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 561{
 562	sysfs_remove_file(kobj, attr);
 563	kobject_del(kobj);
 564	kobject_put(kobj);
 565}
 566
 567static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 568{
 569	struct kfd_iolink_properties *p2plink;
 570	struct kfd_iolink_properties *iolink;
 571	struct kfd_cache_properties *cache;
 572	struct kfd_mem_properties *mem;
 573	struct kfd_perf_properties *perf;
 574
 575	if (dev->kobj_iolink) {
 576		list_for_each_entry(iolink, &dev->io_link_props, list)
 577			if (iolink->kobj) {
 578				kfd_remove_sysfs_file(iolink->kobj,
 579							&iolink->attr);
 580				iolink->kobj = NULL;
 581			}
 582		kobject_del(dev->kobj_iolink);
 583		kobject_put(dev->kobj_iolink);
 584		dev->kobj_iolink = NULL;
 585	}
 586
 587	if (dev->kobj_p2plink) {
 588		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
 589			if (p2plink->kobj) {
 590				kfd_remove_sysfs_file(p2plink->kobj,
 591							&p2plink->attr);
 592				p2plink->kobj = NULL;
 593			}
 594		kobject_del(dev->kobj_p2plink);
 595		kobject_put(dev->kobj_p2plink);
 596		dev->kobj_p2plink = NULL;
 597	}
 598
 599	if (dev->kobj_cache) {
 600		list_for_each_entry(cache, &dev->cache_props, list)
 601			if (cache->kobj) {
 602				kfd_remove_sysfs_file(cache->kobj,
 603							&cache->attr);
 604				cache->kobj = NULL;
 605			}
 606		kobject_del(dev->kobj_cache);
 607		kobject_put(dev->kobj_cache);
 608		dev->kobj_cache = NULL;
 609	}
 610
 611	if (dev->kobj_mem) {
 612		list_for_each_entry(mem, &dev->mem_props, list)
 613			if (mem->kobj) {
 614				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 615				mem->kobj = NULL;
 616			}
 617		kobject_del(dev->kobj_mem);
 618		kobject_put(dev->kobj_mem);
 619		dev->kobj_mem = NULL;
 620	}
 621
 622	if (dev->kobj_perf) {
 623		list_for_each_entry(perf, &dev->perf_props, list) {
 624			kfree(perf->attr_group);
 625			perf->attr_group = NULL;
 626		}
 627		kobject_del(dev->kobj_perf);
 628		kobject_put(dev->kobj_perf);
 629		dev->kobj_perf = NULL;
 630	}
 631
 632	if (dev->kobj_node) {
 633		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 634		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 635		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 636		kobject_del(dev->kobj_node);
 637		kobject_put(dev->kobj_node);
 638		dev->kobj_node = NULL;
 639	}
 640}
 641
 642static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 643		uint32_t id)
 644{
 645	struct kfd_iolink_properties *p2plink;
 646	struct kfd_iolink_properties *iolink;
 647	struct kfd_cache_properties *cache;
 648	struct kfd_mem_properties *mem;
 649	struct kfd_perf_properties *perf;
 650	int ret;
 651	uint32_t i, num_attrs;
 652	struct attribute **attrs;
 653
 654	if (WARN_ON(dev->kobj_node))
 655		return -EEXIST;
 656
 657	/*
 658	 * Creating the sysfs folders
 659	 */
 660	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 661	if (!dev->kobj_node)
 662		return -ENOMEM;
 663
 664	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 665			sys_props.kobj_nodes, "%d", id);
 666	if (ret < 0) {
 667		kobject_put(dev->kobj_node);
 668		return ret;
 669	}
 670
 671	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 672	if (!dev->kobj_mem)
 673		return -ENOMEM;
 674
 675	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 676	if (!dev->kobj_cache)
 677		return -ENOMEM;
 678
 679	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 680	if (!dev->kobj_iolink)
 681		return -ENOMEM;
 682
 683	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
 684	if (!dev->kobj_p2plink)
 685		return -ENOMEM;
 686
 687	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 688	if (!dev->kobj_perf)
 689		return -ENOMEM;
 690
 691	/*
 692	 * Creating sysfs files for node properties
 693	 */
 694	dev->attr_gpuid.name = "gpu_id";
 695	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 696	sysfs_attr_init(&dev->attr_gpuid);
 697	dev->attr_name.name = "name";
 698	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 699	sysfs_attr_init(&dev->attr_name);
 700	dev->attr_props.name = "properties";
 701	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 702	sysfs_attr_init(&dev->attr_props);
 703	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 704	if (ret < 0)
 705		return ret;
 706	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 707	if (ret < 0)
 708		return ret;
 709	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 710	if (ret < 0)
 711		return ret;
 712
 713	i = 0;
 714	list_for_each_entry(mem, &dev->mem_props, list) {
 715		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 716		if (!mem->kobj)
 717			return -ENOMEM;
 718		ret = kobject_init_and_add(mem->kobj, &mem_type,
 719				dev->kobj_mem, "%d", i);
 720		if (ret < 0) {
 721			kobject_put(mem->kobj);
 722			return ret;
 723		}
 724
 725		mem->attr.name = "properties";
 726		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 727		sysfs_attr_init(&mem->attr);
 728		ret = sysfs_create_file(mem->kobj, &mem->attr);
 729		if (ret < 0)
 730			return ret;
 731		i++;
 732	}
 733
 734	i = 0;
 735	list_for_each_entry(cache, &dev->cache_props, list) {
 736		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 737		if (!cache->kobj)
 738			return -ENOMEM;
 739		ret = kobject_init_and_add(cache->kobj, &cache_type,
 740				dev->kobj_cache, "%d", i);
 741		if (ret < 0) {
 742			kobject_put(cache->kobj);
 743			return ret;
 744		}
 745
 746		cache->attr.name = "properties";
 747		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 748		sysfs_attr_init(&cache->attr);
 749		ret = sysfs_create_file(cache->kobj, &cache->attr);
 750		if (ret < 0)
 751			return ret;
 752		i++;
 753	}
 754
 755	i = 0;
 756	list_for_each_entry(iolink, &dev->io_link_props, list) {
 757		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 758		if (!iolink->kobj)
 759			return -ENOMEM;
 760		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 761				dev->kobj_iolink, "%d", i);
 762		if (ret < 0) {
 763			kobject_put(iolink->kobj);
 764			return ret;
 765		}
 766
 767		iolink->attr.name = "properties";
 768		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 769		sysfs_attr_init(&iolink->attr);
 770		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 771		if (ret < 0)
 772			return ret;
 773		i++;
 774	}
 775
 776	i = 0;
 777	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
 778		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 779		if (!p2plink->kobj)
 780			return -ENOMEM;
 781		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
 782				dev->kobj_p2plink, "%d", i);
 783		if (ret < 0) {
 784			kobject_put(p2plink->kobj);
 785			return ret;
 786		}
 787
 788		p2plink->attr.name = "properties";
 789		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
 790		sysfs_attr_init(&p2plink->attr);
 791		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
 792		if (ret < 0)
 793			return ret;
 794		i++;
 795	}
 796
 797	/* All hardware blocks have the same number of attributes. */
 798	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 799	list_for_each_entry(perf, &dev->perf_props, list) {
 800		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 801			* num_attrs + sizeof(struct attribute_group),
 802			GFP_KERNEL);
 803		if (!perf->attr_group)
 804			return -ENOMEM;
 805
 806		attrs = (struct attribute **)(perf->attr_group + 1);
 807		if (!strcmp(perf->block_name, "iommu")) {
 808		/* Information of IOMMU's num_counters and counter_ids is shown
 809		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 810		 * duplicate here.
 811		 */
 812			perf_attr_iommu[0].data = perf->max_concurrent;
 813			for (i = 0; i < num_attrs; i++)
 814				attrs[i] = &perf_attr_iommu[i].attr.attr;
 815		}
 816		perf->attr_group->name = perf->block_name;
 817		perf->attr_group->attrs = attrs;
 818		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 819		if (ret < 0)
 820			return ret;
 821	}
 822
 823	return 0;
 824}
 825
 826/* Called with write topology lock acquired */
 827static int kfd_build_sysfs_node_tree(void)
 828{
 829	struct kfd_topology_device *dev;
 830	int ret;
 831	uint32_t i = 0;
 832
 833	list_for_each_entry(dev, &topology_device_list, list) {
 834		ret = kfd_build_sysfs_node_entry(dev, i);
 835		if (ret < 0)
 836			return ret;
 837		i++;
 838	}
 839
 840	return 0;
 841}
 842
 843/* Called with write topology lock acquired */
 844static void kfd_remove_sysfs_node_tree(void)
 845{
 846	struct kfd_topology_device *dev;
 847
 848	list_for_each_entry(dev, &topology_device_list, list)
 849		kfd_remove_sysfs_node_entry(dev);
 850}
 851
 852static int kfd_topology_update_sysfs(void)
 853{
 854	int ret;
 855
 856	if (!sys_props.kobj_topology) {
 857		sys_props.kobj_topology =
 858				kfd_alloc_struct(sys_props.kobj_topology);
 859		if (!sys_props.kobj_topology)
 860			return -ENOMEM;
 861
 862		ret = kobject_init_and_add(sys_props.kobj_topology,
 863				&sysprops_type,  &kfd_device->kobj,
 864				"topology");
 865		if (ret < 0) {
 866			kobject_put(sys_props.kobj_topology);
 867			return ret;
 868		}
 869
 870		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 871				sys_props.kobj_topology);
 872		if (!sys_props.kobj_nodes)
 873			return -ENOMEM;
 874
 875		sys_props.attr_genid.name = "generation_id";
 876		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 877		sysfs_attr_init(&sys_props.attr_genid);
 878		ret = sysfs_create_file(sys_props.kobj_topology,
 879				&sys_props.attr_genid);
 880		if (ret < 0)
 881			return ret;
 882
 883		sys_props.attr_props.name = "system_properties";
 884		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 885		sysfs_attr_init(&sys_props.attr_props);
 886		ret = sysfs_create_file(sys_props.kobj_topology,
 887				&sys_props.attr_props);
 888		if (ret < 0)
 889			return ret;
 890	}
 891
 892	kfd_remove_sysfs_node_tree();
 893
 894	return kfd_build_sysfs_node_tree();
 895}
 896
 897static void kfd_topology_release_sysfs(void)
 898{
 899	kfd_remove_sysfs_node_tree();
 900	if (sys_props.kobj_topology) {
 901		sysfs_remove_file(sys_props.kobj_topology,
 902				&sys_props.attr_genid);
 903		sysfs_remove_file(sys_props.kobj_topology,
 904				&sys_props.attr_props);
 905		if (sys_props.kobj_nodes) {
 906			kobject_del(sys_props.kobj_nodes);
 907			kobject_put(sys_props.kobj_nodes);
 908			sys_props.kobj_nodes = NULL;
 909		}
 910		kobject_del(sys_props.kobj_topology);
 911		kobject_put(sys_props.kobj_topology);
 912		sys_props.kobj_topology = NULL;
 913	}
 914}
 915
 916/* Called with write topology_lock acquired */
 917static void kfd_topology_update_device_list(struct list_head *temp_list,
 918					struct list_head *master_list)
 919{
 920	while (!list_empty(temp_list)) {
 921		list_move_tail(temp_list->next, master_list);
 922		sys_props.num_devices++;
 923	}
 924}
 925
 926static void kfd_debug_print_topology(void)
 927{
 928	struct kfd_topology_device *dev;
 929
 930	down_read(&topology_lock);
 931
 932	dev = list_last_entry(&topology_device_list,
 933			struct kfd_topology_device, list);
 934	if (dev) {
 935		if (dev->node_props.cpu_cores_count &&
 936				dev->node_props.simd_count) {
 937			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 938				dev->node_props.device_id,
 939				dev->node_props.vendor_id);
 940		} else if (dev->node_props.cpu_cores_count)
 941			pr_info("Topology: Add CPU node\n");
 942		else if (dev->node_props.simd_count)
 943			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 944				dev->node_props.device_id,
 945				dev->node_props.vendor_id);
 946	}
 947	up_read(&topology_lock);
 948}
 949
 950/* Helper function for intializing platform_xx members of
 951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 952 */
 953static void kfd_update_system_properties(void)
 954{
 955	struct kfd_topology_device *dev;
 956
 957	down_read(&topology_lock);
 958	dev = list_last_entry(&topology_device_list,
 959			struct kfd_topology_device, list);
 960	if (dev) {
 961		sys_props.platform_id =
 962			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
 963		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 964		sys_props.platform_rev = dev->oem_revision;
 965	}
 966	up_read(&topology_lock);
 967}
 968
 969static void find_system_memory(const struct dmi_header *dm,
 970	void *private)
 971{
 972	struct kfd_mem_properties *mem;
 973	u16 mem_width, mem_clock;
 974	struct kfd_topology_device *kdev =
 975		(struct kfd_topology_device *)private;
 976	const u8 *dmi_data = (const u8 *)(dm + 1);
 977
 978	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 979		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 980		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 981		list_for_each_entry(mem, &kdev->mem_props, list) {
 982			if (mem_width != 0xFFFF && mem_width != 0)
 983				mem->width = mem_width;
 984			if (mem_clock != 0)
 985				mem->mem_clk_max = mem_clock;
 986		}
 987	}
 988}
 989
 
 
 
 
 
 
 
 
 
 
 
 990/* kfd_add_non_crat_information - Add information that is not currently
 991 *	defined in CRAT but is necessary for KFD topology
 992 * @dev - topology device to which addition info is added
 993 */
 994static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
 995{
 996	/* Check if CPU only node. */
 997	if (!kdev->gpu) {
 998		/* Add system memory information */
 999		dmi_walk(find_system_memory, kdev);
1000	}
1001	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002}
1003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004int kfd_topology_init(void)
1005{
1006	void *crat_image = NULL;
1007	size_t image_size = 0;
1008	int ret;
1009	struct list_head temp_topology_device_list;
1010	int cpu_only_node = 0;
1011	struct kfd_topology_device *kdev;
1012	int proximity_domain;
1013
1014	/* topology_device_list - Master list of all topology devices
1015	 * temp_topology_device_list - temporary list created while parsing CRAT
1016	 * or VCRAT. Once parsing is complete the contents of list is moved to
1017	 * topology_device_list
1018	 */
1019
1020	/* Initialize the head for the both the lists */
1021	INIT_LIST_HEAD(&topology_device_list);
1022	INIT_LIST_HEAD(&temp_topology_device_list);
1023	init_rwsem(&topology_lock);
1024
1025	memset(&sys_props, 0, sizeof(sys_props));
1026
1027	/* Proximity domains in ACPI CRAT tables start counting at
1028	 * 0. The same should be true for virtual CRAT tables created
1029	 * at this stage. GPUs added later in kfd_topology_add_device
1030	 * use a counter.
1031	 */
1032	proximity_domain = 0;
1033
1034	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035					    COMPUTE_UNIT_CPU, NULL,
1036					    proximity_domain);
1037	cpu_only_node = 1;
1038	if (ret) {
1039		pr_err("Error creating VCRAT table for CPU\n");
1040		return ret;
 
 
 
 
 
 
 
 
 
 
 
1041	}
1042
1043	ret = kfd_parse_crat_table(crat_image,
1044				   &temp_topology_device_list,
1045				   proximity_domain);
1046	if (ret) {
1047		pr_err("Error parsing VCRAT table for CPU\n");
1048		goto err;
 
 
 
 
 
 
 
 
 
 
 
1049	}
1050
1051	kdev = list_first_entry(&temp_topology_device_list,
1052				struct kfd_topology_device, list);
 
1053
1054	down_write(&topology_lock);
1055	kfd_topology_update_device_list(&temp_topology_device_list,
1056					&topology_device_list);
1057	topology_crat_proximity_domain = sys_props.num_devices-1;
1058	ret = kfd_topology_update_sysfs();
1059	up_write(&topology_lock);
1060
1061	if (!ret) {
1062		sys_props.generation_count++;
1063		kfd_update_system_properties();
1064		kfd_debug_print_topology();
1065	} else
1066		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068	/* For nodes with GPU, this information gets added
1069	 * when GPU is detected (kfd_topology_add_device).
1070	 */
1071	if (cpu_only_node) {
1072		/* Add additional information to CPU only node created above */
1073		down_write(&topology_lock);
1074		kdev = list_first_entry(&topology_device_list,
1075				struct kfd_topology_device, list);
1076		up_write(&topology_lock);
1077		kfd_add_non_crat_information(kdev);
1078	}
1079
1080err:
1081	kfd_destroy_crat_image(crat_image);
1082	return ret;
1083}
1084
1085void kfd_topology_shutdown(void)
1086{
1087	down_write(&topology_lock);
1088	kfd_topology_release_sysfs();
1089	kfd_release_live_view();
1090	up_write(&topology_lock);
1091}
1092
1093static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094{
1095	uint32_t hashout;
1096	uint32_t buf[8];
1097	uint64_t local_mem_size;
1098	int i;
1099
1100	if (!gpu)
1101		return 0;
1102
1103	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104			gpu->local_mem_info.local_mem_size_public;
1105	buf[0] = gpu->adev->pdev->devfn;
1106	buf[1] = gpu->adev->pdev->subsystem_vendor |
1107		(gpu->adev->pdev->subsystem_device << 16);
1108	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109	buf[3] = gpu->adev->pdev->device;
1110	buf[4] = gpu->adev->pdev->bus->number;
1111	buf[5] = lower_32_bits(local_mem_size);
1112	buf[6] = upper_32_bits(local_mem_size);
1113	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115	for (i = 0, hashout = 0; i < 8; i++)
1116		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118	return hashout;
1119}
1120/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121 *		the GPU device is not already present in the topology device
1122 *		list then return NULL. This means a new topology device has to
1123 *		be created for this GPU.
1124 */
1125static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126{
1127	struct kfd_topology_device *dev;
1128	struct kfd_topology_device *out_dev = NULL;
1129	struct kfd_mem_properties *mem;
1130	struct kfd_cache_properties *cache;
1131	struct kfd_iolink_properties *iolink;
1132	struct kfd_iolink_properties *p2plink;
1133
1134	list_for_each_entry(dev, &topology_device_list, list) {
1135		/* Discrete GPUs need their own topology device list
1136		 * entries. Don't assign them to CPU/APU nodes.
1137		 */
1138		if (dev->node_props.cpu_cores_count)
 
1139			continue;
1140
1141		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142			dev->gpu = gpu;
1143			out_dev = dev;
1144
1145			list_for_each_entry(mem, &dev->mem_props, list)
1146				mem->gpu = dev->gpu;
1147			list_for_each_entry(cache, &dev->cache_props, list)
1148				cache->gpu = dev->gpu;
1149			list_for_each_entry(iolink, &dev->io_link_props, list)
1150				iolink->gpu = dev->gpu;
1151			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152				p2plink->gpu = dev->gpu;
1153			break;
1154		}
1155	}
1156	return out_dev;
1157}
1158
1159static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160{
1161	/*
1162	 * TODO: Generate an event for thunk about the arrival/removal
1163	 * of the GPU
1164	 */
1165}
1166
1167/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168 *		patch this after CRAT parsing.
1169 */
1170static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171{
1172	struct kfd_mem_properties *mem;
1173	struct kfd_local_mem_info local_mem_info;
1174
1175	if (!dev)
1176		return;
1177
1178	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179	 * single bank of VRAM local memory.
1180	 * for dGPUs - VCRAT reports only one bank of Local Memory
1181	 * for APUs - If CRAT from ACPI reports more than one bank, then
1182	 *	all the banks will report the same mem_clk_max information
1183	 */
1184	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185					 dev->gpu->xcp);
1186
1187	list_for_each_entry(mem, &dev->mem_props, list)
1188		mem->mem_clk_max = local_mem_info.mem_clk_max;
1189}
1190
1191static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192					struct kfd_topology_device *target_gpu_dev,
1193					struct kfd_iolink_properties *link)
1194{
1195	/* xgmi always supports atomics between links. */
1196	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197		return;
1198
1199	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200	if (target_gpu_dev) {
1201		uint32_t cap;
1202
1203		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204				PCI_EXP_DEVCAP2, &cap);
1205
1206		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210	/* set gpu (dev) flags. */
1211	} else {
1212		if (!dev->gpu->kfd->pci_atomic_requested ||
1213				dev->gpu->adev->asic_type == CHIP_HAWAII)
1214			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216	}
1217}
1218
1219static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220		struct kfd_iolink_properties *outbound_link,
1221		struct kfd_iolink_properties *inbound_link)
1222{
1223	/* CPU -> GPU with PCIe */
1224	if (!to_dev->gpu &&
1225	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228	if (to_dev->gpu) {
1229		/* GPU <-> GPU with PCIe and
1230		 * Vega20 with XGMI
1231		 */
1232		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237		}
1238	}
1239}
1240
1241static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242{
1243	struct kfd_iolink_properties *link, *inbound_link;
1244	struct kfd_topology_device *peer_dev;
1245
1246	if (!dev || !dev->gpu)
1247		return;
1248
1249	/* GPU only creates direct links so apply flags setting to all */
1250	list_for_each_entry(link, &dev->io_link_props, list) {
1251		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252		kfd_set_iolink_no_atomics(dev, NULL, link);
1253		peer_dev = kfd_topology_device_by_proximity_domain(
1254				link->node_to);
1255
1256		if (!peer_dev)
1257			continue;
1258
1259		/* Include the CPU peer in GPU hive if connected over xGMI. */
1260		if (!peer_dev->gpu &&
1261		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262			/*
1263			 * If the GPU is not part of a GPU hive, use its pci
1264			 * device location as the hive ID to bind with the CPU.
1265			 */
1266			if (!dev->node_props.hive_id)
1267				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269		}
1270
1271		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272									list) {
1273			if (inbound_link->node_to != link->node_from)
1274				continue;
1275
1276			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1279		}
1280	}
1281
1282	/* Create indirect links so apply flags setting to all */
1283	list_for_each_entry(link, &dev->p2p_link_props, list) {
1284		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285		kfd_set_iolink_no_atomics(dev, NULL, link);
1286		peer_dev = kfd_topology_device_by_proximity_domain(
1287				link->node_to);
1288
1289		if (!peer_dev)
1290			continue;
1291
1292		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293									list) {
1294			if (inbound_link->node_to != link->node_from)
1295				continue;
1296
1297			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300		}
1301	}
1302}
1303
1304static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305				struct kfd_iolink_properties *p2plink)
1306{
1307	int ret;
1308
1309	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310	if (!p2plink->kobj)
1311		return -ENOMEM;
1312
1313	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315	if (ret < 0) {
1316		kobject_put(p2plink->kobj);
1317		return ret;
1318	}
1319
1320	p2plink->attr.name = "properties";
1321	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322	sysfs_attr_init(&p2plink->attr);
1323	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324	if (ret < 0)
1325		return ret;
1326
1327	return 0;
1328}
1329
1330static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331{
1332	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334	struct kfd_topology_device *cpu_dev;
1335	int ret = 0;
1336	int i, num_cpu;
1337
1338	num_cpu = 0;
1339	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340		if (cpu_dev->gpu)
1341			break;
1342		num_cpu++;
1343	}
1344
1345	if (list_empty(&kdev->io_link_props))
1346		return -ENODATA;
1347
1348	gpu_link = list_first_entry(&kdev->io_link_props,
1349				    struct kfd_iolink_properties, list);
 
 
1350
1351	for (i = 0; i < num_cpu; i++) {
1352		/* CPU <--> GPU */
1353		if (gpu_link->node_to == i)
1354			continue;
1355
1356		/* find CPU <-->  CPU links */
1357		cpu_link = NULL;
1358		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359		if (cpu_dev) {
1360			list_for_each_entry(tmp_link,
1361					&cpu_dev->io_link_props, list) {
1362				if (tmp_link->node_to == gpu_link->node_to) {
1363					cpu_link = tmp_link;
1364					break;
1365				}
1366			}
1367		}
1368
1369		if (!cpu_link)
1370			return -ENOMEM;
1371
1372		/* CPU <--> CPU <--> GPU, GPU node*/
1373		props = kfd_alloc_struct(props);
1374		if (!props)
1375			return -ENOMEM;
1376
1377		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378		props->weight = gpu_link->weight + cpu_link->weight;
1379		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384		props->node_from = gpu_node;
1385		props->node_to = i;
1386		kdev->node_props.p2p_links_count++;
1387		list_add_tail(&props->list, &kdev->p2p_link_props);
1388		ret = kfd_build_p2p_node_entry(kdev, props);
1389		if (ret < 0)
1390			return ret;
1391
1392		/* for small Bar, no CPU --> GPU in-direct links */
1393		if (kfd_dev_is_large_bar(kdev->gpu)) {
1394			/* CPU <--> CPU <--> GPU, CPU node*/
1395			props2 = kfd_alloc_struct(props2);
1396			if (!props2)
1397				return -ENOMEM;
1398
1399			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400			props2->node_from = i;
1401			props2->node_to = gpu_node;
1402			props2->kobj = NULL;
1403			cpu_dev->node_props.p2p_links_count++;
1404			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406			if (ret < 0)
1407				return ret;
1408		}
1409	}
1410	return ret;
1411}
1412
1413#if defined(CONFIG_HSA_AMD_P2P)
1414static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415		struct kfd_topology_device *peer, int from, int to)
1416{
1417	struct kfd_iolink_properties *props = NULL;
1418	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419	struct kfd_topology_device *cpu_dev;
1420	int ret = 0;
1421
1422	if (!amdgpu_device_is_peer_accessible(
1423				kdev->gpu->adev,
1424				peer->gpu->adev))
1425		return ret;
1426
1427	if (list_empty(&kdev->io_link_props))
1428		return -ENODATA;
1429
1430	iolink1 = list_first_entry(&kdev->io_link_props,
1431				   struct kfd_iolink_properties, list);
1432
1433	if (list_empty(&peer->io_link_props))
1434		return -ENODATA;
1435
1436	iolink2 = list_first_entry(&peer->io_link_props,
1437				   struct kfd_iolink_properties, list);
 
 
1438
1439	props = kfd_alloc_struct(props);
1440	if (!props)
1441		return -ENOMEM;
1442
1443	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445	props->weight = iolink1->weight + iolink2->weight;
1446	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451	if (iolink1->node_to != iolink2->node_to) {
1452		/* CPU->CPU  link*/
1453		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454		if (cpu_dev) {
1455			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1456				if (iolink3->node_to != iolink2->node_to)
1457					continue;
1458
1459				props->weight += iolink3->weight;
1460				props->min_latency += iolink3->min_latency;
1461				props->max_latency += iolink3->max_latency;
1462				props->min_bandwidth = min(props->min_bandwidth,
1463							   iolink3->min_bandwidth);
1464				props->max_bandwidth = min(props->max_bandwidth,
1465							   iolink3->max_bandwidth);
1466				break;
1467			}
1468		} else {
1469			WARN(1, "CPU node not found");
1470		}
1471	}
1472
1473	props->node_from = from;
1474	props->node_to = to;
1475	peer->node_props.p2p_links_count++;
1476	list_add_tail(&props->list, &peer->p2p_link_props);
1477	ret = kfd_build_p2p_node_entry(peer, props);
1478
1479	return ret;
1480}
1481#endif
1482
1483static int kfd_dev_create_p2p_links(void)
1484{
1485	struct kfd_topology_device *dev;
1486	struct kfd_topology_device *new_dev;
1487#if defined(CONFIG_HSA_AMD_P2P)
1488	uint32_t i;
1489#endif
1490	uint32_t k;
1491	int ret = 0;
1492
1493	k = 0;
1494	list_for_each_entry(dev, &topology_device_list, list)
1495		k++;
1496	if (k < 2)
1497		return 0;
1498
1499	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1500	if (WARN_ON(!new_dev->gpu))
1501		return 0;
1502
1503	k--;
1504
1505	/* create in-direct links */
1506	ret = kfd_create_indirect_link_prop(new_dev, k);
1507	if (ret < 0)
1508		goto out;
1509
1510	/* create p2p links */
1511#if defined(CONFIG_HSA_AMD_P2P)
1512	i = 0;
1513	list_for_each_entry(dev, &topology_device_list, list) {
1514		if (dev == new_dev)
1515			break;
1516		if (!dev->gpu || !dev->gpu->adev ||
1517		    (dev->gpu->kfd->hive_id &&
1518		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1519			goto next;
1520
1521		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1522		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1523		if (ret < 0)
1524			goto out;
1525
1526		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1527		if (ret < 0)
1528			goto out;
1529next:
1530		i++;
1531	}
1532#endif
1533
1534out:
1535	return ret;
1536}
1537
 
1538/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1539static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1540				struct kfd_gpu_cache_info *pcache_info,
 
1541				int cu_bitmask,
1542				int cache_type, unsigned int cu_processor_id,
1543				int cu_block)
1544{
1545	unsigned int cu_sibling_map_mask;
1546	int first_active_cu;
1547	struct kfd_cache_properties *pcache = NULL;
1548
1549	cu_sibling_map_mask = cu_bitmask;
1550	cu_sibling_map_mask >>= cu_block;
1551	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1552	first_active_cu = ffs(cu_sibling_map_mask);
1553
1554	/* CU could be inactive. In case of shared cache find the first active
1555	 * CU. and incase of non-shared cache check if the CU is inactive. If
1556	 * inactive active skip it
1557	 */
1558	if (first_active_cu) {
1559		pcache = kfd_alloc_struct(pcache);
1560		if (!pcache)
1561			return -ENOMEM;
1562
1563		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1564		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1565		pcache->cache_level = pcache_info[cache_type].cache_level;
1566		pcache->cache_size = pcache_info[cache_type].cache_size;
1567		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1568
1569		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1570			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1571		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1572			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1573		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1574			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1575		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1576			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1577
1578		/* Sibling map is w.r.t processor_id_low, so shift out
1579		 * inactive CU
1580		 */
1581		cu_sibling_map_mask =
1582			cu_sibling_map_mask >> (first_active_cu - 1);
1583
1584		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1585		pcache->sibling_map[1] =
1586				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1587		pcache->sibling_map[2] =
1588				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1589		pcache->sibling_map[3] =
1590				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1591
1592		pcache->sibling_map_size = 4;
1593		*props_ext = pcache;
1594
1595		return 0;
1596	}
1597	return 1;
1598}
1599
1600/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1601static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1602				struct kfd_gpu_cache_info *pcache_info,
1603				struct amdgpu_cu_info *cu_info,
1604				struct amdgpu_gfx_config *gfx_info,
1605				int cache_type, unsigned int cu_processor_id,
1606				struct kfd_node *knode)
1607{
1608	unsigned int cu_sibling_map_mask;
1609	int first_active_cu;
1610	int i, j, k, xcc, start, end;
1611	int num_xcc = NUM_XCC(knode->xcc_mask);
1612	struct kfd_cache_properties *pcache = NULL;
1613	enum amdgpu_memory_partition mode;
1614	struct amdgpu_device *adev = knode->adev;
1615
1616	start = ffs(knode->xcc_mask) - 1;
1617	end = start + num_xcc;
1618	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1619	cu_sibling_map_mask &=
1620		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1621	first_active_cu = ffs(cu_sibling_map_mask);
1622
1623	/* CU could be inactive. In case of shared cache find the first active
1624	 * CU. and incase of non-shared cache check if the CU is inactive. If
1625	 * inactive active skip it
1626	 */
1627	if (first_active_cu) {
1628		pcache = kfd_alloc_struct(pcache);
1629		if (!pcache)
1630			return -ENOMEM;
1631
1632		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1633		pcache->processor_id_low = cu_processor_id
1634					+ (first_active_cu - 1);
1635		pcache->cache_level = pcache_info[cache_type].cache_level;
1636		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1637
1638		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3))
1639			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1640		else
1641			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1642
1643		pcache->cache_size = pcache_info[cache_type].cache_size;
1644		/* Partition mode only affects L3 cache size */
1645		if (mode && pcache->cache_level == 3)
1646			pcache->cache_size /= mode;
1647
1648		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1649			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1650		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1651			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1652		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1653			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1654		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1655			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1656
1657		/* Sibling map is w.r.t processor_id_low, so shift out
1658		 * inactive CU
1659		 */
1660		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1661		k = 0;
1662
1663		for (xcc = start; xcc < end; xcc++) {
1664			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1665				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1666					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1667					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1668					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1669					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1670					k += 4;
1671
1672					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1673					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1674				}
1675			}
1676		}
1677		pcache->sibling_map_size = k;
1678		*props_ext = pcache;
1679		return 0;
1680	}
1681	return 1;
1682}
1683
1684#define KFD_MAX_CACHE_TYPES 6
1685
1686/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1687 * tables
1688 */
1689static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1690{
1691	struct kfd_gpu_cache_info *pcache_info = NULL;
1692	int i, j, k, xcc, start, end;
1693	int ct = 0;
1694	unsigned int cu_processor_id;
1695	int ret;
1696	unsigned int num_cu_shared;
1697	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1698	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1699	int gpu_processor_id;
1700	struct kfd_cache_properties *props_ext;
1701	int num_of_entries = 0;
1702	int num_of_cache_types = 0;
1703	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1704
 
 
1705
1706	gpu_processor_id = dev->node_props.simd_id_base;
1707
1708	memset(cache_info, 0, sizeof(cache_info));
1709	pcache_info = cache_info;
1710	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1711	if (!num_of_cache_types) {
1712		pr_warn("no cache info found\n");
1713		return;
1714	}
1715
1716	/* For each type of cache listed in the kfd_gpu_cache_info table,
1717	 * go through all available Compute Units.
1718	 * The [i,j,k] loop will
1719	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1720	 *			will parse through all available CU
1721	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1722	 *			then it will consider only one CU from
1723	 *			the shared unit
1724	 */
1725	start = ffs(kdev->xcc_mask) - 1;
1726	end = start + NUM_XCC(kdev->xcc_mask);
1727
1728	for (ct = 0; ct < num_of_cache_types; ct++) {
1729		cu_processor_id = gpu_processor_id;
1730		if (pcache_info[ct].cache_level == 1) {
1731			for (xcc = start; xcc < end; xcc++) {
1732				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1733					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1734						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1735
1736							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1737										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1738										cu_processor_id, k);
1739
1740							if (ret < 0)
1741								break;
1742
1743							if (!ret) {
1744								num_of_entries++;
1745								list_add_tail(&props_ext->list, &dev->cache_props);
1746							}
1747
1748							/* Move to next CU block */
1749							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1750								gfx_info->max_cu_per_sh) ?
1751								pcache_info[ct].num_cu_shared :
1752								(gfx_info->max_cu_per_sh - k);
1753							cu_processor_id += num_cu_shared;
1754						}
 
 
 
 
 
 
 
1755					}
1756				}
1757			}
1758		} else {
1759			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1760						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1761
1762			if (ret < 0)
1763				break;
1764
1765			if (!ret) {
1766				num_of_entries++;
1767				list_add_tail(&props_ext->list, &dev->cache_props);
1768			}
1769		}
1770	}
1771	dev->node_props.caches_count += num_of_entries;
1772	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1773}
1774
1775static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1776					  struct kfd_topology_device **dev)
1777{
1778	int proximity_domain = ++topology_crat_proximity_domain;
1779	struct list_head temp_topology_device_list;
1780	void *crat_image = NULL;
1781	size_t image_size = 0;
1782	int res;
1783
1784	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1785					    COMPUTE_UNIT_GPU, gpu,
1786					    proximity_domain);
1787	if (res) {
1788		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1789		       gpu_id);
1790		topology_crat_proximity_domain--;
1791		goto err;
1792	}
1793
1794	INIT_LIST_HEAD(&temp_topology_device_list);
1795
1796	res = kfd_parse_crat_table(crat_image,
1797				   &temp_topology_device_list,
1798				   proximity_domain);
1799	if (res) {
1800		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1801		       gpu_id);
1802		topology_crat_proximity_domain--;
1803		goto err;
1804	}
1805
1806	kfd_topology_update_device_list(&temp_topology_device_list,
1807					&topology_device_list);
1808
1809	*dev = kfd_assign_gpu(gpu);
1810	if (WARN_ON(!*dev)) {
1811		res = -ENODEV;
1812		goto err;
1813	}
1814
1815	/* Fill the cache affinity information here for the GPUs
1816	 * using VCRAT
1817	 */
1818	kfd_fill_cache_non_crat_info(*dev, gpu);
1819
1820	/* Update the SYSFS tree, since we added another topology
1821	 * device
1822	 */
1823	res = kfd_topology_update_sysfs();
1824	if (!res)
1825		sys_props.generation_count++;
1826	else
1827		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1828		       gpu_id, res);
1829
1830err:
1831	kfd_destroy_crat_image(crat_image);
1832	return res;
1833}
1834
1835static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1836{
1837	bool firmware_supported = true;
1838
1839	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1840			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1841		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1842						AMDGPU_MES_API_VERSION_MASK) >>
1843						AMDGPU_MES_API_VERSION_SHIFT;
1844		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1845						AMDGPU_MES_VERSION_MASK;
1846
1847		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1848		goto out;
1849	}
1850
1851	/*
1852	 * Note: Any unlisted devices here are assumed to support exception handling.
1853	 * Add additional checks here as needed.
1854	 */
1855	switch (KFD_GC_VERSION(dev->gpu)) {
1856	case IP_VERSION(9, 0, 1):
1857		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1858		break;
1859	case IP_VERSION(9, 1, 0):
1860	case IP_VERSION(9, 2, 1):
1861	case IP_VERSION(9, 2, 2):
1862	case IP_VERSION(9, 3, 0):
1863	case IP_VERSION(9, 4, 0):
1864		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1865		break;
1866	case IP_VERSION(9, 4, 1):
1867		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1868		break;
1869	case IP_VERSION(9, 4, 2):
1870		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1871		break;
1872	case IP_VERSION(10, 1, 10):
1873	case IP_VERSION(10, 1, 2):
1874	case IP_VERSION(10, 1, 1):
1875		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1876		break;
1877	case IP_VERSION(10, 3, 0):
1878	case IP_VERSION(10, 3, 2):
1879	case IP_VERSION(10, 3, 1):
1880	case IP_VERSION(10, 3, 4):
1881	case IP_VERSION(10, 3, 5):
1882		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1883		break;
1884	case IP_VERSION(10, 1, 3):
1885	case IP_VERSION(10, 3, 3):
1886		firmware_supported = false;
1887		break;
1888	default:
1889		break;
1890	}
1891
1892out:
1893	if (firmware_supported)
1894		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1895}
1896
1897static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1898{
1899	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1900				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1901				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1902
1903	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1904			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1905			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1906
1907	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1908		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1909
1910	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1911		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1912			dev->node_props.debug_prop |=
1913				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1914				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1915		else
1916			dev->node_props.debug_prop |=
1917				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1918				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1919
1920		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1921			dev->node_props.capability |=
1922				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1923	} else {
1924		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1925					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1926
1927		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1928			dev->node_props.capability |=
1929				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1930	}
1931
1932	kfd_topology_set_dbg_firmware_support(dev);
1933}
1934
1935int kfd_topology_add_device(struct kfd_node *gpu)
1936{
1937	uint32_t gpu_id;
1938	struct kfd_topology_device *dev;
 
1939	int res = 0;
1940	int i;
1941	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1942	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
1943	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
1944
1945	gpu_id = kfd_generate_gpu_id(gpu);
1946	if (gpu->xcp && !gpu->xcp->ddev) {
1947		dev_warn(gpu->adev->dev,
1948		"Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1949		gpu_id);
1950		return 0;
1951	} else {
1952		pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1953	}
1954
1955	/* Check to see if this gpu device exists in the topology_device_list.
1956	 * If so, assign the gpu to that device,
1957	 * else create a Virtual CRAT for this gpu device and then parse that
1958	 * CRAT to create a new topology device. Once created assign the gpu to
1959	 * that topology device
1960	 */
1961	down_write(&topology_lock);
1962	dev = kfd_assign_gpu(gpu);
1963	if (!dev)
1964		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1965	up_write(&topology_lock);
1966	if (res)
1967		return res;
1968
1969	dev->gpu_id = gpu_id;
1970	gpu->id = gpu_id;
1971
1972	kfd_dev_create_p2p_links();
1973
1974	/* TODO: Move the following lines to function
1975	 *	kfd_add_non_crat_information
1976	 */
1977
1978	/* Fill-in additional information that is not available in CRAT but
1979	 * needed for the topology
1980	 */
 
 
 
1981	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1982		dev->node_props.name[i] = __tolower(asic_name[i]);
1983		if (asic_name[i] == '\0')
1984			break;
1985	}
1986	dev->node_props.name[i] = '\0';
1987
1988	dev->node_props.simd_arrays_per_engine =
1989		gfx_info->max_sh_per_se;
1990
1991	dev->node_props.gfx_target_version =
1992				gpu->kfd->device_info.gfx_target_version;
1993	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1994	dev->node_props.device_id = gpu->adev->pdev->device;
1995	dev->node_props.capability |=
1996		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1997			HSA_CAP_ASIC_REVISION_MASK);
1998
1999	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2000	if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
2001		dev->node_props.location_id |= dev->gpu->node_id;
2002
2003	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2004	dev->node_props.max_engine_clk_fcompute =
2005		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2006	dev->node_props.max_engine_clk_ccompute =
2007		cpufreq_quick_get_max(0) / 1000;
 
 
2008
2009	if (gpu->xcp)
2010		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2011	else
2012		dev->node_props.drm_render_minor =
2013				gpu->kfd->shared_resources.drm_render_minor;
2014
2015	dev->node_props.hive_id = gpu->kfd->hive_id;
2016	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2017	dev->node_props.num_sdma_xgmi_engines =
2018					kfd_get_num_xgmi_sdma_engines(gpu);
2019	dev->node_props.num_sdma_queues_per_engine =
2020				gpu->kfd->device_info.num_sdma_queues_per_engine -
2021				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2022	dev->node_props.num_gws = (dev->gpu->gws &&
2023		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2024		dev->gpu->adev->gds.gws_size : 0;
2025	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2026
2027	kfd_fill_mem_clk_max_info(dev);
2028	kfd_fill_iolink_non_crat_info(dev);
2029
2030	switch (dev->gpu->adev->asic_type) {
2031	case CHIP_KAVERI:
2032	case CHIP_HAWAII:
2033	case CHIP_TONGA:
2034		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2035			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2036			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2037		break;
2038	case CHIP_CARRIZO:
2039	case CHIP_FIJI:
2040	case CHIP_POLARIS10:
2041	case CHIP_POLARIS11:
2042	case CHIP_POLARIS12:
2043	case CHIP_VEGAM:
2044		pr_debug("Adding doorbell packet type capability\n");
2045		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2046			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2047			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2048		break;
2049	default:
2050		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
 
 
 
 
2051			WARN(1, "Unexpected ASIC family %u",
2052			     dev->gpu->adev->asic_type);
2053		else
2054			kfd_topology_set_capabilities(dev);
2055	}
2056
2057	/*
2058	 * Overwrite ATS capability according to needs_iommu_device to fix
2059	 * potential missing corresponding bit in CRAT of BIOS.
2060	 */
2061	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
 
 
 
2062
2063	/* Fix errors in CZ CRAT.
2064	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2065	 *		because it doesn't consider masked out CUs
2066	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2067	 */
2068	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2069		dev->node_props.simd_count =
2070			cu_info->simd_per_cu * cu_info->number;
2071		dev->node_props.max_waves_per_simd = 10;
2072	}
2073
2074	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2075	dev->node_props.capability |=
2076		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2077		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2078	dev->node_props.capability |=
2079		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2080		HSA_CAP_MEM_EDCSUPPORTED : 0;
2081
2082	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2083		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2084			HSA_CAP_RASEVENTNOTIFY : 0;
2085
2086	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2087		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2088
2089	if (dev->gpu->adev->gmc.is_app_apu ||
2090		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2091		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2092
2093	kfd_debug_print_topology();
2094
2095	kfd_notify_gpu_change(gpu_id, 1);
2096
2097	return 0;
2098}
2099
2100/**
2101 * kfd_topology_update_io_links() - Update IO links after device removal.
2102 * @proximity_domain: Proximity domain value of the dev being removed.
2103 *
2104 * The topology list currently is arranged in increasing order of
2105 * proximity domain.
2106 *
2107 * Two things need to be done when a device is removed:
2108 * 1. All the IO links to this device need to be removed.
2109 * 2. All nodes after the current device node need to move
2110 *    up once this device node is removed from the topology
2111 *    list. As a result, the proximity domain values for
2112 *    all nodes after the node being deleted reduce by 1.
2113 *    This would also cause the proximity domain values for
2114 *    io links to be updated based on new proximity domain
2115 *    values.
2116 *
2117 * Context: The caller must hold write topology_lock.
2118 */
2119static void kfd_topology_update_io_links(int proximity_domain)
2120{
2121	struct kfd_topology_device *dev;
2122	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2123
2124	list_for_each_entry(dev, &topology_device_list, list) {
2125		if (dev->proximity_domain > proximity_domain)
2126			dev->proximity_domain--;
2127
2128		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2129			/*
2130			 * If there is an io link to the dev being deleted
2131			 * then remove that IO link also.
2132			 */
2133			if (iolink->node_to == proximity_domain) {
2134				list_del(&iolink->list);
2135				dev->node_props.io_links_count--;
2136			} else {
2137				if (iolink->node_from > proximity_domain)
2138					iolink->node_from--;
2139				if (iolink->node_to > proximity_domain)
2140					iolink->node_to--;
2141			}
2142		}
2143
2144		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2145			/*
2146			 * If there is a p2p link to the dev being deleted
2147			 * then remove that p2p link also.
2148			 */
2149			if (p2plink->node_to == proximity_domain) {
2150				list_del(&p2plink->list);
2151				dev->node_props.p2p_links_count--;
2152			} else {
2153				if (p2plink->node_from > proximity_domain)
2154					p2plink->node_from--;
2155				if (p2plink->node_to > proximity_domain)
2156					p2plink->node_to--;
2157			}
2158		}
2159	}
2160}
2161
2162int kfd_topology_remove_device(struct kfd_node *gpu)
2163{
2164	struct kfd_topology_device *dev, *tmp;
2165	uint32_t gpu_id;
2166	int res = -ENODEV;
2167	int i = 0;
2168
2169	down_write(&topology_lock);
2170
2171	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2172		if (dev->gpu == gpu) {
2173			gpu_id = dev->gpu_id;
2174			kfd_remove_sysfs_node_entry(dev);
2175			kfd_release_topology_device(dev);
2176			sys_props.num_devices--;
2177			kfd_topology_update_io_links(i);
2178			topology_crat_proximity_domain = sys_props.num_devices-1;
2179			sys_props.generation_count++;
2180			res = 0;
2181			if (kfd_topology_update_sysfs() < 0)
2182				kfd_topology_release_sysfs();
2183			break;
2184		}
2185		i++;
2186	}
2187
2188	up_write(&topology_lock);
2189
2190	if (!res)
2191		kfd_notify_gpu_change(gpu_id, 0);
2192
2193	return res;
2194}
2195
2196/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2197 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2198 *	returned through @kdev
2199 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2200 *		-1: If end of list
2201 */
2202int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2203{
2204
2205	struct kfd_topology_device *top_dev;
2206	uint8_t device_idx = 0;
2207
2208	*kdev = NULL;
2209	down_read(&topology_lock);
2210
2211	list_for_each_entry(top_dev, &topology_device_list, list) {
2212		if (device_idx == idx) {
2213			*kdev = top_dev->gpu;
2214			up_read(&topology_lock);
2215			return 0;
2216		}
2217
2218		device_idx++;
2219	}
2220
2221	up_read(&topology_lock);
2222
2223	return -1;
2224
2225}
2226
2227static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2228{
2229	int first_cpu_of_numa_node;
2230
2231	if (!cpumask || cpumask == cpu_none_mask)
2232		return -1;
2233	first_cpu_of_numa_node = cpumask_first(cpumask);
2234	if (first_cpu_of_numa_node >= nr_cpu_ids)
2235		return -1;
2236#ifdef CONFIG_X86_64
2237	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2238#else
2239	return first_cpu_of_numa_node;
2240#endif
2241}
2242
2243/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2244 *	of the given NUMA node (numa_node_id)
2245 * Return -1 on failure
2246 */
2247int kfd_numa_node_to_apic_id(int numa_node_id)
2248{
2249	if (numa_node_id == -1) {
2250		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2251		return kfd_cpumask_to_apic_id(cpu_online_mask);
2252	}
2253	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254}
2255
2256#if defined(CONFIG_DEBUG_FS)
2257
2258int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2259{
2260	struct kfd_topology_device *dev;
2261	unsigned int i = 0;
2262	int r = 0;
2263
2264	down_read(&topology_lock);
2265
2266	list_for_each_entry(dev, &topology_device_list, list) {
2267		if (!dev->gpu) {
2268			i++;
2269			continue;
2270		}
2271
2272		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2273		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2274		if (r)
2275			break;
2276	}
2277
2278	up_read(&topology_lock);
2279
2280	return r;
2281}
2282
2283int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2284{
2285	struct kfd_topology_device *dev;
2286	unsigned int i = 0;
2287	int r = 0;
2288
2289	down_read(&topology_lock);
2290
2291	list_for_each_entry(dev, &topology_device_list, list) {
2292		if (!dev->gpu) {
2293			i++;
2294			continue;
2295		}
2296
2297		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2298		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2299		if (r)
2300			break;
2301	}
2302
2303	up_read(&topology_lock);
2304
2305	return r;
2306}
2307
2308#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/errno.h>
  28#include <linux/acpi.h>
  29#include <linux/hash.h>
  30#include <linux/cpufreq.h>
  31#include <linux/log2.h>
  32#include <linux/dmi.h>
  33#include <linux/atomic.h>
  34
  35#include "kfd_priv.h"
  36#include "kfd_crat.h"
  37#include "kfd_topology.h"
  38#include "kfd_device_queue_manager.h"
  39#include "kfd_iommu.h"
  40#include "kfd_svm.h"
 
  41#include "amdgpu_amdkfd.h"
  42#include "amdgpu_ras.h"
  43#include "amdgpu.h"
  44
  45/* topology_device_list - Master list of all topology devices */
  46static struct list_head topology_device_list;
  47static struct kfd_system_properties sys_props;
  48
  49static DECLARE_RWSEM(topology_lock);
  50static uint32_t topology_crat_proximity_domain;
  51
  52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
  53						uint32_t proximity_domain)
  54{
  55	struct kfd_topology_device *top_dev;
  56	struct kfd_topology_device *device = NULL;
  57
  58	list_for_each_entry(top_dev, &topology_device_list, list)
  59		if (top_dev->proximity_domain == proximity_domain) {
  60			device = top_dev;
  61			break;
  62		}
  63
  64	return device;
  65}
  66
  67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  68						uint32_t proximity_domain)
  69{
  70	struct kfd_topology_device *device = NULL;
  71
  72	down_read(&topology_lock);
  73
  74	device = kfd_topology_device_by_proximity_domain_no_lock(
  75							proximity_domain);
  76	up_read(&topology_lock);
  77
  78	return device;
  79}
  80
  81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
  82{
  83	struct kfd_topology_device *top_dev = NULL;
  84	struct kfd_topology_device *ret = NULL;
  85
  86	down_read(&topology_lock);
  87
  88	list_for_each_entry(top_dev, &topology_device_list, list)
  89		if (top_dev->gpu_id == gpu_id) {
  90			ret = top_dev;
  91			break;
  92		}
  93
  94	up_read(&topology_lock);
  95
  96	return ret;
  97}
  98
  99struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
 100{
 101	struct kfd_topology_device *top_dev;
 102
 103	top_dev = kfd_topology_device_by_id(gpu_id);
 104	if (!top_dev)
 105		return NULL;
 106
 107	return top_dev->gpu;
 108}
 109
 110struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
 111{
 112	struct kfd_topology_device *top_dev;
 113	struct kfd_dev *device = NULL;
 114
 115	down_read(&topology_lock);
 116
 117	list_for_each_entry(top_dev, &topology_device_list, list)
 118		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
 119			device = top_dev->gpu;
 120			break;
 121		}
 122
 123	up_read(&topology_lock);
 124
 125	return device;
 126}
 127
 128struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev)
 129{
 130	struct kfd_topology_device *top_dev;
 131	struct kfd_dev *device = NULL;
 132
 133	down_read(&topology_lock);
 134
 135	list_for_each_entry(top_dev, &topology_device_list, list)
 136		if (top_dev->gpu && top_dev->gpu->adev == adev) {
 137			device = top_dev->gpu;
 138			break;
 139		}
 140
 141	up_read(&topology_lock);
 142
 143	return device;
 144}
 145
 146/* Called with write topology_lock acquired */
 147static void kfd_release_topology_device(struct kfd_topology_device *dev)
 148{
 149	struct kfd_mem_properties *mem;
 150	struct kfd_cache_properties *cache;
 151	struct kfd_iolink_properties *iolink;
 152	struct kfd_iolink_properties *p2plink;
 153	struct kfd_perf_properties *perf;
 154
 155	list_del(&dev->list);
 156
 157	while (dev->mem_props.next != &dev->mem_props) {
 158		mem = container_of(dev->mem_props.next,
 159				struct kfd_mem_properties, list);
 160		list_del(&mem->list);
 161		kfree(mem);
 162	}
 163
 164	while (dev->cache_props.next != &dev->cache_props) {
 165		cache = container_of(dev->cache_props.next,
 166				struct kfd_cache_properties, list);
 167		list_del(&cache->list);
 168		kfree(cache);
 169	}
 170
 171	while (dev->io_link_props.next != &dev->io_link_props) {
 172		iolink = container_of(dev->io_link_props.next,
 173				struct kfd_iolink_properties, list);
 174		list_del(&iolink->list);
 175		kfree(iolink);
 176	}
 177
 178	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
 179		p2plink = container_of(dev->p2p_link_props.next,
 180				struct kfd_iolink_properties, list);
 181		list_del(&p2plink->list);
 182		kfree(p2plink);
 183	}
 184
 185	while (dev->perf_props.next != &dev->perf_props) {
 186		perf = container_of(dev->perf_props.next,
 187				struct kfd_perf_properties, list);
 188		list_del(&perf->list);
 189		kfree(perf);
 190	}
 191
 192	kfree(dev);
 193}
 194
 195void kfd_release_topology_device_list(struct list_head *device_list)
 196{
 197	struct kfd_topology_device *dev;
 198
 199	while (!list_empty(device_list)) {
 200		dev = list_first_entry(device_list,
 201				       struct kfd_topology_device, list);
 202		kfd_release_topology_device(dev);
 203	}
 204}
 205
 206static void kfd_release_live_view(void)
 207{
 208	kfd_release_topology_device_list(&topology_device_list);
 209	memset(&sys_props, 0, sizeof(sys_props));
 210}
 211
 212struct kfd_topology_device *kfd_create_topology_device(
 213				struct list_head *device_list)
 214{
 215	struct kfd_topology_device *dev;
 216
 217	dev = kfd_alloc_struct(dev);
 218	if (!dev) {
 219		pr_err("No memory to allocate a topology device");
 220		return NULL;
 221	}
 222
 223	INIT_LIST_HEAD(&dev->mem_props);
 224	INIT_LIST_HEAD(&dev->cache_props);
 225	INIT_LIST_HEAD(&dev->io_link_props);
 226	INIT_LIST_HEAD(&dev->p2p_link_props);
 227	INIT_LIST_HEAD(&dev->perf_props);
 228
 229	list_add_tail(&dev->list, device_list);
 230
 231	return dev;
 232}
 233
 234
 235#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
 236		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
 237				  fmt, __VA_ARGS__))
 238#define sysfs_show_32bit_prop(buffer, offs, name, value) \
 239		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
 240#define sysfs_show_64bit_prop(buffer, offs, name, value) \
 241		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
 242#define sysfs_show_32bit_val(buffer, offs, value) \
 243		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
 244#define sysfs_show_str_val(buffer, offs, value) \
 245		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
 246
 247static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 248		char *buffer)
 249{
 250	int offs = 0;
 251
 252	/* Making sure that the buffer is an empty string */
 253	buffer[0] = 0;
 254
 255	if (attr == &sys_props.attr_genid) {
 256		sysfs_show_32bit_val(buffer, offs,
 257				     sys_props.generation_count);
 258	} else if (attr == &sys_props.attr_props) {
 259		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
 260				      sys_props.platform_oem);
 261		sysfs_show_64bit_prop(buffer, offs, "platform_id",
 262				      sys_props.platform_id);
 263		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
 264				      sys_props.platform_rev);
 265	} else {
 266		offs = -EINVAL;
 267	}
 268
 269	return offs;
 270}
 271
 272static void kfd_topology_kobj_release(struct kobject *kobj)
 273{
 274	kfree(kobj);
 275}
 276
 277static const struct sysfs_ops sysprops_ops = {
 278	.show = sysprops_show,
 279};
 280
 281static struct kobj_type sysprops_type = {
 282	.release = kfd_topology_kobj_release,
 283	.sysfs_ops = &sysprops_ops,
 284};
 285
 286static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 287		char *buffer)
 288{
 289	int offs = 0;
 290	struct kfd_iolink_properties *iolink;
 291
 292	/* Making sure that the buffer is an empty string */
 293	buffer[0] = 0;
 294
 295	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 296	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
 297		return -EPERM;
 298	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
 299	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
 300	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
 301	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
 302	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
 303	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
 304	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
 305	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
 306	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
 307			      iolink->min_bandwidth);
 308	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
 309			      iolink->max_bandwidth);
 310	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
 311			      iolink->rec_transfer_size);
 312	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
 313
 314	return offs;
 315}
 316
 317static const struct sysfs_ops iolink_ops = {
 318	.show = iolink_show,
 319};
 320
 321static struct kobj_type iolink_type = {
 322	.release = kfd_topology_kobj_release,
 323	.sysfs_ops = &iolink_ops,
 324};
 325
 326static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 327		char *buffer)
 328{
 329	int offs = 0;
 330	struct kfd_mem_properties *mem;
 331
 332	/* Making sure that the buffer is an empty string */
 333	buffer[0] = 0;
 334
 335	mem = container_of(attr, struct kfd_mem_properties, attr);
 336	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
 337		return -EPERM;
 338	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
 339	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
 340			      mem->size_in_bytes);
 341	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
 342	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
 343	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
 344			      mem->mem_clk_max);
 345
 346	return offs;
 347}
 348
 349static const struct sysfs_ops mem_ops = {
 350	.show = mem_show,
 351};
 352
 353static struct kobj_type mem_type = {
 354	.release = kfd_topology_kobj_release,
 355	.sysfs_ops = &mem_ops,
 356};
 357
 358static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 359		char *buffer)
 360{
 361	int offs = 0;
 362	uint32_t i, j;
 363	struct kfd_cache_properties *cache;
 364
 365	/* Making sure that the buffer is an empty string */
 366	buffer[0] = 0;
 367	cache = container_of(attr, struct kfd_cache_properties, attr);
 368	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
 369		return -EPERM;
 370	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
 371			cache->processor_id_low);
 372	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
 373	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
 374	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
 375			      cache->cacheline_size);
 376	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
 377			      cache->cachelines_per_tag);
 378	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
 379	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
 380	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
 381
 382	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
 383	for (i = 0; i < cache->sibling_map_size; i++)
 384		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
 385			/* Check each bit */
 386			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
 387						(cache->sibling_map[i] >> j) & 1);
 388
 389	/* Replace the last "," with end of line */
 390	buffer[offs-1] = '\n';
 391	return offs;
 392}
 393
 394static const struct sysfs_ops cache_ops = {
 395	.show = kfd_cache_show,
 396};
 397
 398static struct kobj_type cache_type = {
 399	.release = kfd_topology_kobj_release,
 400	.sysfs_ops = &cache_ops,
 401};
 402
 403/****** Sysfs of Performance Counters ******/
 404
 405struct kfd_perf_attr {
 406	struct kobj_attribute attr;
 407	uint32_t data;
 408};
 409
 410static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 411			char *buf)
 412{
 413	int offs = 0;
 414	struct kfd_perf_attr *attr;
 415
 416	buf[0] = 0;
 417	attr = container_of(attrs, struct kfd_perf_attr, attr);
 418	if (!attr->data) /* invalid data for PMC */
 419		return 0;
 420	else
 421		return sysfs_show_32bit_val(buf, offs, attr->data);
 422}
 423
 424#define KFD_PERF_DESC(_name, _data)			\
 425{							\
 426	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 427	.data = _data,					\
 428}
 429
 430static struct kfd_perf_attr perf_attr_iommu[] = {
 431	KFD_PERF_DESC(max_concurrent, 0),
 432	KFD_PERF_DESC(num_counters, 0),
 433	KFD_PERF_DESC(counter_ids, 0),
 434};
 435/****************************************/
 436
 437static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 438		char *buffer)
 439{
 440	int offs = 0;
 441	struct kfd_topology_device *dev;
 442	uint32_t log_max_watch_addr;
 443
 444	/* Making sure that the buffer is an empty string */
 445	buffer[0] = 0;
 446
 447	if (strcmp(attr->name, "gpu_id") == 0) {
 448		dev = container_of(attr, struct kfd_topology_device,
 449				attr_gpuid);
 450		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 451			return -EPERM;
 452		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
 453	}
 454
 455	if (strcmp(attr->name, "name") == 0) {
 456		dev = container_of(attr, struct kfd_topology_device,
 457				attr_name);
 458
 459		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 460			return -EPERM;
 461		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
 462	}
 463
 464	dev = container_of(attr, struct kfd_topology_device,
 465			attr_props);
 466	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 467		return -EPERM;
 468	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
 469			      dev->node_props.cpu_cores_count);
 470	sysfs_show_32bit_prop(buffer, offs, "simd_count",
 471			      dev->gpu ? dev->node_props.simd_count : 0);
 472	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
 473			      dev->node_props.mem_banks_count);
 474	sysfs_show_32bit_prop(buffer, offs, "caches_count",
 475			      dev->node_props.caches_count);
 476	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
 477			      dev->node_props.io_links_count);
 478	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
 479			      dev->node_props.p2p_links_count);
 480	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
 481			      dev->node_props.cpu_core_id_base);
 482	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
 483			      dev->node_props.simd_id_base);
 484	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
 485			      dev->node_props.max_waves_per_simd);
 486	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
 487			      dev->node_props.lds_size_in_kb);
 488	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
 489			      dev->node_props.gds_size_in_kb);
 490	sysfs_show_32bit_prop(buffer, offs, "num_gws",
 491			      dev->node_props.num_gws);
 492	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
 493			      dev->node_props.wave_front_size);
 494	sysfs_show_32bit_prop(buffer, offs, "array_count",
 495			      dev->node_props.array_count);
 
 496	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
 497			      dev->node_props.simd_arrays_per_engine);
 498	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
 499			      dev->node_props.cu_per_simd_array);
 500	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
 501			      dev->node_props.simd_per_cu);
 502	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
 503			      dev->node_props.max_slots_scratch_cu);
 504	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
 505			      dev->node_props.gfx_target_version);
 506	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
 507			      dev->node_props.vendor_id);
 508	sysfs_show_32bit_prop(buffer, offs, "device_id",
 509			      dev->node_props.device_id);
 510	sysfs_show_32bit_prop(buffer, offs, "location_id",
 511			      dev->node_props.location_id);
 512	sysfs_show_32bit_prop(buffer, offs, "domain",
 513			      dev->node_props.domain);
 514	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
 515			      dev->node_props.drm_render_minor);
 516	sysfs_show_64bit_prop(buffer, offs, "hive_id",
 517			      dev->node_props.hive_id);
 518	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
 519			      dev->node_props.num_sdma_engines);
 520	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
 521			      dev->node_props.num_sdma_xgmi_engines);
 522	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
 523			      dev->node_props.num_sdma_queues_per_engine);
 524	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
 525			      dev->node_props.num_cp_queues);
 526
 527	if (dev->gpu) {
 528		log_max_watch_addr =
 529			__ilog2_u32(dev->gpu->device_info.num_of_watch_points);
 530
 531		if (log_max_watch_addr) {
 532			dev->node_props.capability |=
 533					HSA_CAP_WATCH_POINTS_SUPPORTED;
 534
 535			dev->node_props.capability |=
 536				((log_max_watch_addr <<
 537					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 538				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 539		}
 540
 541		if (dev->gpu->adev->asic_type == CHIP_TONGA)
 542			dev->node_props.capability |=
 543					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 544
 545		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
 546			dev->node_props.max_engine_clk_fcompute);
 547
 548		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
 549
 550		sysfs_show_32bit_prop(buffer, offs, "fw_version",
 551				      dev->gpu->mec_fw_version);
 552		sysfs_show_32bit_prop(buffer, offs, "capability",
 553				      dev->node_props.capability);
 
 
 554		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
 555				      dev->gpu->sdma_fw_version);
 556		sysfs_show_64bit_prop(buffer, offs, "unique_id",
 557				      dev->gpu->adev->unique_id);
 558
 
 559	}
 560
 561	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
 562				     cpufreq_quick_get_max(0)/1000);
 563}
 564
 565static const struct sysfs_ops node_ops = {
 566	.show = node_show,
 567};
 568
 569static struct kobj_type node_type = {
 570	.release = kfd_topology_kobj_release,
 571	.sysfs_ops = &node_ops,
 572};
 573
 574static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 575{
 576	sysfs_remove_file(kobj, attr);
 577	kobject_del(kobj);
 578	kobject_put(kobj);
 579}
 580
 581static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 582{
 583	struct kfd_iolink_properties *p2plink;
 584	struct kfd_iolink_properties *iolink;
 585	struct kfd_cache_properties *cache;
 586	struct kfd_mem_properties *mem;
 587	struct kfd_perf_properties *perf;
 588
 589	if (dev->kobj_iolink) {
 590		list_for_each_entry(iolink, &dev->io_link_props, list)
 591			if (iolink->kobj) {
 592				kfd_remove_sysfs_file(iolink->kobj,
 593							&iolink->attr);
 594				iolink->kobj = NULL;
 595			}
 596		kobject_del(dev->kobj_iolink);
 597		kobject_put(dev->kobj_iolink);
 598		dev->kobj_iolink = NULL;
 599	}
 600
 601	if (dev->kobj_p2plink) {
 602		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
 603			if (p2plink->kobj) {
 604				kfd_remove_sysfs_file(p2plink->kobj,
 605							&p2plink->attr);
 606				p2plink->kobj = NULL;
 607			}
 608		kobject_del(dev->kobj_p2plink);
 609		kobject_put(dev->kobj_p2plink);
 610		dev->kobj_p2plink = NULL;
 611	}
 612
 613	if (dev->kobj_cache) {
 614		list_for_each_entry(cache, &dev->cache_props, list)
 615			if (cache->kobj) {
 616				kfd_remove_sysfs_file(cache->kobj,
 617							&cache->attr);
 618				cache->kobj = NULL;
 619			}
 620		kobject_del(dev->kobj_cache);
 621		kobject_put(dev->kobj_cache);
 622		dev->kobj_cache = NULL;
 623	}
 624
 625	if (dev->kobj_mem) {
 626		list_for_each_entry(mem, &dev->mem_props, list)
 627			if (mem->kobj) {
 628				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 629				mem->kobj = NULL;
 630			}
 631		kobject_del(dev->kobj_mem);
 632		kobject_put(dev->kobj_mem);
 633		dev->kobj_mem = NULL;
 634	}
 635
 636	if (dev->kobj_perf) {
 637		list_for_each_entry(perf, &dev->perf_props, list) {
 638			kfree(perf->attr_group);
 639			perf->attr_group = NULL;
 640		}
 641		kobject_del(dev->kobj_perf);
 642		kobject_put(dev->kobj_perf);
 643		dev->kobj_perf = NULL;
 644	}
 645
 646	if (dev->kobj_node) {
 647		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 648		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 649		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 650		kobject_del(dev->kobj_node);
 651		kobject_put(dev->kobj_node);
 652		dev->kobj_node = NULL;
 653	}
 654}
 655
 656static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 657		uint32_t id)
 658{
 659	struct kfd_iolink_properties *p2plink;
 660	struct kfd_iolink_properties *iolink;
 661	struct kfd_cache_properties *cache;
 662	struct kfd_mem_properties *mem;
 663	struct kfd_perf_properties *perf;
 664	int ret;
 665	uint32_t i, num_attrs;
 666	struct attribute **attrs;
 667
 668	if (WARN_ON(dev->kobj_node))
 669		return -EEXIST;
 670
 671	/*
 672	 * Creating the sysfs folders
 673	 */
 674	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 675	if (!dev->kobj_node)
 676		return -ENOMEM;
 677
 678	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 679			sys_props.kobj_nodes, "%d", id);
 680	if (ret < 0) {
 681		kobject_put(dev->kobj_node);
 682		return ret;
 683	}
 684
 685	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 686	if (!dev->kobj_mem)
 687		return -ENOMEM;
 688
 689	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 690	if (!dev->kobj_cache)
 691		return -ENOMEM;
 692
 693	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 694	if (!dev->kobj_iolink)
 695		return -ENOMEM;
 696
 697	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
 698	if (!dev->kobj_p2plink)
 699		return -ENOMEM;
 700
 701	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 702	if (!dev->kobj_perf)
 703		return -ENOMEM;
 704
 705	/*
 706	 * Creating sysfs files for node properties
 707	 */
 708	dev->attr_gpuid.name = "gpu_id";
 709	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 710	sysfs_attr_init(&dev->attr_gpuid);
 711	dev->attr_name.name = "name";
 712	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 713	sysfs_attr_init(&dev->attr_name);
 714	dev->attr_props.name = "properties";
 715	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 716	sysfs_attr_init(&dev->attr_props);
 717	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 718	if (ret < 0)
 719		return ret;
 720	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 721	if (ret < 0)
 722		return ret;
 723	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 724	if (ret < 0)
 725		return ret;
 726
 727	i = 0;
 728	list_for_each_entry(mem, &dev->mem_props, list) {
 729		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 730		if (!mem->kobj)
 731			return -ENOMEM;
 732		ret = kobject_init_and_add(mem->kobj, &mem_type,
 733				dev->kobj_mem, "%d", i);
 734		if (ret < 0) {
 735			kobject_put(mem->kobj);
 736			return ret;
 737		}
 738
 739		mem->attr.name = "properties";
 740		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 741		sysfs_attr_init(&mem->attr);
 742		ret = sysfs_create_file(mem->kobj, &mem->attr);
 743		if (ret < 0)
 744			return ret;
 745		i++;
 746	}
 747
 748	i = 0;
 749	list_for_each_entry(cache, &dev->cache_props, list) {
 750		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 751		if (!cache->kobj)
 752			return -ENOMEM;
 753		ret = kobject_init_and_add(cache->kobj, &cache_type,
 754				dev->kobj_cache, "%d", i);
 755		if (ret < 0) {
 756			kobject_put(cache->kobj);
 757			return ret;
 758		}
 759
 760		cache->attr.name = "properties";
 761		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 762		sysfs_attr_init(&cache->attr);
 763		ret = sysfs_create_file(cache->kobj, &cache->attr);
 764		if (ret < 0)
 765			return ret;
 766		i++;
 767	}
 768
 769	i = 0;
 770	list_for_each_entry(iolink, &dev->io_link_props, list) {
 771		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 772		if (!iolink->kobj)
 773			return -ENOMEM;
 774		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 775				dev->kobj_iolink, "%d", i);
 776		if (ret < 0) {
 777			kobject_put(iolink->kobj);
 778			return ret;
 779		}
 780
 781		iolink->attr.name = "properties";
 782		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 783		sysfs_attr_init(&iolink->attr);
 784		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 785		if (ret < 0)
 786			return ret;
 787		i++;
 788	}
 789
 790	i = 0;
 791	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
 792		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 793		if (!p2plink->kobj)
 794			return -ENOMEM;
 795		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
 796				dev->kobj_p2plink, "%d", i);
 797		if (ret < 0) {
 798			kobject_put(p2plink->kobj);
 799			return ret;
 800		}
 801
 802		p2plink->attr.name = "properties";
 803		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
 804		sysfs_attr_init(&p2plink->attr);
 805		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
 806		if (ret < 0)
 807			return ret;
 808		i++;
 809	}
 810
 811	/* All hardware blocks have the same number of attributes. */
 812	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 813	list_for_each_entry(perf, &dev->perf_props, list) {
 814		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 815			* num_attrs + sizeof(struct attribute_group),
 816			GFP_KERNEL);
 817		if (!perf->attr_group)
 818			return -ENOMEM;
 819
 820		attrs = (struct attribute **)(perf->attr_group + 1);
 821		if (!strcmp(perf->block_name, "iommu")) {
 822		/* Information of IOMMU's num_counters and counter_ids is shown
 823		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 824		 * duplicate here.
 825		 */
 826			perf_attr_iommu[0].data = perf->max_concurrent;
 827			for (i = 0; i < num_attrs; i++)
 828				attrs[i] = &perf_attr_iommu[i].attr.attr;
 829		}
 830		perf->attr_group->name = perf->block_name;
 831		perf->attr_group->attrs = attrs;
 832		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 833		if (ret < 0)
 834			return ret;
 835	}
 836
 837	return 0;
 838}
 839
 840/* Called with write topology lock acquired */
 841static int kfd_build_sysfs_node_tree(void)
 842{
 843	struct kfd_topology_device *dev;
 844	int ret;
 845	uint32_t i = 0;
 846
 847	list_for_each_entry(dev, &topology_device_list, list) {
 848		ret = kfd_build_sysfs_node_entry(dev, i);
 849		if (ret < 0)
 850			return ret;
 851		i++;
 852	}
 853
 854	return 0;
 855}
 856
 857/* Called with write topology lock acquired */
 858static void kfd_remove_sysfs_node_tree(void)
 859{
 860	struct kfd_topology_device *dev;
 861
 862	list_for_each_entry(dev, &topology_device_list, list)
 863		kfd_remove_sysfs_node_entry(dev);
 864}
 865
 866static int kfd_topology_update_sysfs(void)
 867{
 868	int ret;
 869
 870	if (!sys_props.kobj_topology) {
 871		sys_props.kobj_topology =
 872				kfd_alloc_struct(sys_props.kobj_topology);
 873		if (!sys_props.kobj_topology)
 874			return -ENOMEM;
 875
 876		ret = kobject_init_and_add(sys_props.kobj_topology,
 877				&sysprops_type,  &kfd_device->kobj,
 878				"topology");
 879		if (ret < 0) {
 880			kobject_put(sys_props.kobj_topology);
 881			return ret;
 882		}
 883
 884		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 885				sys_props.kobj_topology);
 886		if (!sys_props.kobj_nodes)
 887			return -ENOMEM;
 888
 889		sys_props.attr_genid.name = "generation_id";
 890		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 891		sysfs_attr_init(&sys_props.attr_genid);
 892		ret = sysfs_create_file(sys_props.kobj_topology,
 893				&sys_props.attr_genid);
 894		if (ret < 0)
 895			return ret;
 896
 897		sys_props.attr_props.name = "system_properties";
 898		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 899		sysfs_attr_init(&sys_props.attr_props);
 900		ret = sysfs_create_file(sys_props.kobj_topology,
 901				&sys_props.attr_props);
 902		if (ret < 0)
 903			return ret;
 904	}
 905
 906	kfd_remove_sysfs_node_tree();
 907
 908	return kfd_build_sysfs_node_tree();
 909}
 910
 911static void kfd_topology_release_sysfs(void)
 912{
 913	kfd_remove_sysfs_node_tree();
 914	if (sys_props.kobj_topology) {
 915		sysfs_remove_file(sys_props.kobj_topology,
 916				&sys_props.attr_genid);
 917		sysfs_remove_file(sys_props.kobj_topology,
 918				&sys_props.attr_props);
 919		if (sys_props.kobj_nodes) {
 920			kobject_del(sys_props.kobj_nodes);
 921			kobject_put(sys_props.kobj_nodes);
 922			sys_props.kobj_nodes = NULL;
 923		}
 924		kobject_del(sys_props.kobj_topology);
 925		kobject_put(sys_props.kobj_topology);
 926		sys_props.kobj_topology = NULL;
 927	}
 928}
 929
 930/* Called with write topology_lock acquired */
 931static void kfd_topology_update_device_list(struct list_head *temp_list,
 932					struct list_head *master_list)
 933{
 934	while (!list_empty(temp_list)) {
 935		list_move_tail(temp_list->next, master_list);
 936		sys_props.num_devices++;
 937	}
 938}
 939
 940static void kfd_debug_print_topology(void)
 941{
 942	struct kfd_topology_device *dev;
 943
 944	down_read(&topology_lock);
 945
 946	dev = list_last_entry(&topology_device_list,
 947			struct kfd_topology_device, list);
 948	if (dev) {
 949		if (dev->node_props.cpu_cores_count &&
 950				dev->node_props.simd_count) {
 951			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 952				dev->node_props.device_id,
 953				dev->node_props.vendor_id);
 954		} else if (dev->node_props.cpu_cores_count)
 955			pr_info("Topology: Add CPU node\n");
 956		else if (dev->node_props.simd_count)
 957			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 958				dev->node_props.device_id,
 959				dev->node_props.vendor_id);
 960	}
 961	up_read(&topology_lock);
 962}
 963
 964/* Helper function for intializing platform_xx members of
 965 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 966 */
 967static void kfd_update_system_properties(void)
 968{
 969	struct kfd_topology_device *dev;
 970
 971	down_read(&topology_lock);
 972	dev = list_last_entry(&topology_device_list,
 973			struct kfd_topology_device, list);
 974	if (dev) {
 975		sys_props.platform_id =
 976			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
 977		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 978		sys_props.platform_rev = dev->oem_revision;
 979	}
 980	up_read(&topology_lock);
 981}
 982
 983static void find_system_memory(const struct dmi_header *dm,
 984	void *private)
 985{
 986	struct kfd_mem_properties *mem;
 987	u16 mem_width, mem_clock;
 988	struct kfd_topology_device *kdev =
 989		(struct kfd_topology_device *)private;
 990	const u8 *dmi_data = (const u8 *)(dm + 1);
 991
 992	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 993		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 994		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 995		list_for_each_entry(mem, &kdev->mem_props, list) {
 996			if (mem_width != 0xFFFF && mem_width != 0)
 997				mem->width = mem_width;
 998			if (mem_clock != 0)
 999				mem->mem_clk_max = mem_clock;
1000		}
1001	}
1002}
1003
1004/*
1005 * Performance counters information is not part of CRAT but we would like to
1006 * put them in the sysfs under topology directory for Thunk to get the data.
1007 * This function is called before updating the sysfs.
1008 */
1009static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
1010{
1011	/* These are the only counters supported so far */
1012	return kfd_iommu_add_perf_counters(kdev);
1013}
1014
1015/* kfd_add_non_crat_information - Add information that is not currently
1016 *	defined in CRAT but is necessary for KFD topology
1017 * @dev - topology device to which addition info is added
1018 */
1019static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
1020{
1021	/* Check if CPU only node. */
1022	if (!kdev->gpu) {
1023		/* Add system memory information */
1024		dmi_walk(find_system_memory, kdev);
1025	}
1026	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1027}
1028
1029/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
1030 *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
1031 *	and GPU cores are present.
1032 * @device_list - topology device list created by parsing ACPI CRAT table.
1033 * @return - TRUE if invalid, FALSE is valid.
1034 */
1035static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
1036{
1037	struct kfd_topology_device *dev;
1038
1039	list_for_each_entry(dev, device_list, list) {
1040		if (dev->node_props.cpu_cores_count &&
1041			dev->node_props.simd_count)
1042			return false;
1043	}
1044	pr_info("Ignoring ACPI CRAT on non-APU system\n");
1045	return true;
1046}
1047
1048int kfd_topology_init(void)
1049{
1050	void *crat_image = NULL;
1051	size_t image_size = 0;
1052	int ret;
1053	struct list_head temp_topology_device_list;
1054	int cpu_only_node = 0;
1055	struct kfd_topology_device *kdev;
1056	int proximity_domain;
1057
1058	/* topology_device_list - Master list of all topology devices
1059	 * temp_topology_device_list - temporary list created while parsing CRAT
1060	 * or VCRAT. Once parsing is complete the contents of list is moved to
1061	 * topology_device_list
1062	 */
1063
1064	/* Initialize the head for the both the lists */
1065	INIT_LIST_HEAD(&topology_device_list);
1066	INIT_LIST_HEAD(&temp_topology_device_list);
1067	init_rwsem(&topology_lock);
1068
1069	memset(&sys_props, 0, sizeof(sys_props));
1070
1071	/* Proximity domains in ACPI CRAT tables start counting at
1072	 * 0. The same should be true for virtual CRAT tables created
1073	 * at this stage. GPUs added later in kfd_topology_add_device
1074	 * use a counter.
1075	 */
1076	proximity_domain = 0;
1077
1078	/*
1079	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
1080	 * or if ACPI CRAT is invalid create a virtual CRAT.
1081	 * NOTE: The current implementation expects all AMD APUs to have
1082	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
1083	 */
1084	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
1085	if (!ret) {
1086		ret = kfd_parse_crat_table(crat_image,
1087					   &temp_topology_device_list,
1088					   proximity_domain);
1089		if (ret ||
1090		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1091			kfd_release_topology_device_list(
1092				&temp_topology_device_list);
1093			kfd_destroy_crat_image(crat_image);
1094			crat_image = NULL;
1095		}
1096	}
1097
1098	if (!crat_image) {
1099		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1100						    COMPUTE_UNIT_CPU, NULL,
1101						    proximity_domain);
1102		cpu_only_node = 1;
1103		if (ret) {
1104			pr_err("Error creating VCRAT table for CPU\n");
1105			return ret;
1106		}
1107
1108		ret = kfd_parse_crat_table(crat_image,
1109					   &temp_topology_device_list,
1110					   proximity_domain);
1111		if (ret) {
1112			pr_err("Error parsing VCRAT table for CPU\n");
1113			goto err;
1114		}
1115	}
1116
1117	kdev = list_first_entry(&temp_topology_device_list,
1118				struct kfd_topology_device, list);
1119	kfd_add_perf_to_topology(kdev);
1120
1121	down_write(&topology_lock);
1122	kfd_topology_update_device_list(&temp_topology_device_list,
1123					&topology_device_list);
1124	topology_crat_proximity_domain = sys_props.num_devices-1;
1125	ret = kfd_topology_update_sysfs();
1126	up_write(&topology_lock);
1127
1128	if (!ret) {
1129		sys_props.generation_count++;
1130		kfd_update_system_properties();
1131		kfd_debug_print_topology();
1132	} else
1133		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1134
1135	/* For nodes with GPU, this information gets added
1136	 * when GPU is detected (kfd_topology_add_device).
1137	 */
1138	if (cpu_only_node) {
1139		/* Add additional information to CPU only node created above */
1140		down_write(&topology_lock);
1141		kdev = list_first_entry(&topology_device_list,
1142				struct kfd_topology_device, list);
1143		up_write(&topology_lock);
1144		kfd_add_non_crat_information(kdev);
1145	}
1146
1147err:
1148	kfd_destroy_crat_image(crat_image);
1149	return ret;
1150}
1151
1152void kfd_topology_shutdown(void)
1153{
1154	down_write(&topology_lock);
1155	kfd_topology_release_sysfs();
1156	kfd_release_live_view();
1157	up_write(&topology_lock);
1158}
1159
1160static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1161{
1162	uint32_t hashout;
1163	uint32_t buf[7];
1164	uint64_t local_mem_size;
1165	int i;
1166
1167	if (!gpu)
1168		return 0;
1169
1170	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1171			gpu->local_mem_info.local_mem_size_public;
1172	buf[0] = gpu->adev->pdev->devfn;
1173	buf[1] = gpu->adev->pdev->subsystem_vendor |
1174		(gpu->adev->pdev->subsystem_device << 16);
1175	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1176	buf[3] = gpu->adev->pdev->device;
1177	buf[4] = gpu->adev->pdev->bus->number;
1178	buf[5] = lower_32_bits(local_mem_size);
1179	buf[6] = upper_32_bits(local_mem_size);
 
1180
1181	for (i = 0, hashout = 0; i < 7; i++)
1182		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1183
1184	return hashout;
1185}
1186/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1187 *		the GPU device is not already present in the topology device
1188 *		list then return NULL. This means a new topology device has to
1189 *		be created for this GPU.
1190 */
1191static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1192{
1193	struct kfd_topology_device *dev;
1194	struct kfd_topology_device *out_dev = NULL;
1195	struct kfd_mem_properties *mem;
1196	struct kfd_cache_properties *cache;
1197	struct kfd_iolink_properties *iolink;
1198	struct kfd_iolink_properties *p2plink;
1199
1200	list_for_each_entry(dev, &topology_device_list, list) {
1201		/* Discrete GPUs need their own topology device list
1202		 * entries. Don't assign them to CPU/APU nodes.
1203		 */
1204		if (!gpu->use_iommu_v2 &&
1205		    dev->node_props.cpu_cores_count)
1206			continue;
1207
1208		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1209			dev->gpu = gpu;
1210			out_dev = dev;
1211
1212			list_for_each_entry(mem, &dev->mem_props, list)
1213				mem->gpu = dev->gpu;
1214			list_for_each_entry(cache, &dev->cache_props, list)
1215				cache->gpu = dev->gpu;
1216			list_for_each_entry(iolink, &dev->io_link_props, list)
1217				iolink->gpu = dev->gpu;
1218			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1219				p2plink->gpu = dev->gpu;
1220			break;
1221		}
1222	}
1223	return out_dev;
1224}
1225
1226static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1227{
1228	/*
1229	 * TODO: Generate an event for thunk about the arrival/removal
1230	 * of the GPU
1231	 */
1232}
1233
1234/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1235 *		patch this after CRAT parsing.
1236 */
1237static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1238{
1239	struct kfd_mem_properties *mem;
1240	struct kfd_local_mem_info local_mem_info;
1241
1242	if (!dev)
1243		return;
1244
1245	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1246	 * single bank of VRAM local memory.
1247	 * for dGPUs - VCRAT reports only one bank of Local Memory
1248	 * for APUs - If CRAT from ACPI reports more than one bank, then
1249	 *	all the banks will report the same mem_clk_max information
1250	 */
1251	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info);
 
1252
1253	list_for_each_entry(mem, &dev->mem_props, list)
1254		mem->mem_clk_max = local_mem_info.mem_clk_max;
1255}
1256
1257static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1258					struct kfd_topology_device *target_gpu_dev,
1259					struct kfd_iolink_properties *link)
1260{
1261	/* xgmi always supports atomics between links. */
1262	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1263		return;
1264
1265	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1266	if (target_gpu_dev) {
1267		uint32_t cap;
1268
1269		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1270				PCI_EXP_DEVCAP2, &cap);
1271
1272		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1273			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1274			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1275				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1276	/* set gpu (dev) flags. */
1277	} else {
1278		if (!dev->gpu->pci_atomic_requested ||
1279				dev->gpu->adev->asic_type == CHIP_HAWAII)
1280			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1281				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1282	}
1283}
1284
1285static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1286		struct kfd_iolink_properties *outbound_link,
1287		struct kfd_iolink_properties *inbound_link)
1288{
1289	/* CPU -> GPU with PCIe */
1290	if (!to_dev->gpu &&
1291	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1292		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1293
1294	if (to_dev->gpu) {
1295		/* GPU <-> GPU with PCIe and
1296		 * Vega20 with XGMI
1297		 */
1298		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1299		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1300		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1301			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1302			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1303		}
1304	}
1305}
1306
1307static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1308{
1309	struct kfd_iolink_properties *link, *inbound_link;
1310	struct kfd_topology_device *peer_dev;
1311
1312	if (!dev || !dev->gpu)
1313		return;
1314
1315	/* GPU only creates direct links so apply flags setting to all */
1316	list_for_each_entry(link, &dev->io_link_props, list) {
1317		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1318		kfd_set_iolink_no_atomics(dev, NULL, link);
1319		peer_dev = kfd_topology_device_by_proximity_domain(
1320				link->node_to);
1321
1322		if (!peer_dev)
1323			continue;
1324
1325		/* Include the CPU peer in GPU hive if connected over xGMI. */
1326		if (!peer_dev->gpu && !peer_dev->node_props.hive_id &&
1327				dev->node_props.hive_id &&
1328				dev->gpu->adev->gmc.xgmi.connected_to_cpu)
 
 
 
 
 
1329			peer_dev->node_props.hive_id = dev->node_props.hive_id;
 
1330
1331		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1332									list) {
1333			if (inbound_link->node_to != link->node_from)
1334				continue;
1335
1336			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1337			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1338			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1339		}
1340	}
1341
1342	/* Create indirect links so apply flags setting to all */
1343	list_for_each_entry(link, &dev->p2p_link_props, list) {
1344		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1345		kfd_set_iolink_no_atomics(dev, NULL, link);
1346		peer_dev = kfd_topology_device_by_proximity_domain(
1347				link->node_to);
1348
1349		if (!peer_dev)
1350			continue;
1351
1352		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1353									list) {
1354			if (inbound_link->node_to != link->node_from)
1355				continue;
1356
1357			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1358			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1359			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1360		}
1361	}
1362}
1363
1364static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1365				struct kfd_iolink_properties *p2plink)
1366{
1367	int ret;
1368
1369	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1370	if (!p2plink->kobj)
1371		return -ENOMEM;
1372
1373	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1374			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1375	if (ret < 0) {
1376		kobject_put(p2plink->kobj);
1377		return ret;
1378	}
1379
1380	p2plink->attr.name = "properties";
1381	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1382	sysfs_attr_init(&p2plink->attr);
1383	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1384	if (ret < 0)
1385		return ret;
1386
1387	return 0;
1388}
1389
1390static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1391{
1392	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1393	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1394	struct kfd_topology_device *cpu_dev;
1395	int ret = 0;
1396	int i, num_cpu;
1397
1398	num_cpu = 0;
1399	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1400		if (cpu_dev->gpu)
1401			break;
1402		num_cpu++;
1403	}
1404
 
 
 
1405	gpu_link = list_first_entry(&kdev->io_link_props,
1406					struct kfd_iolink_properties, list);
1407	if (!gpu_link)
1408		return -ENOMEM;
1409
1410	for (i = 0; i < num_cpu; i++) {
1411		/* CPU <--> GPU */
1412		if (gpu_link->node_to == i)
1413			continue;
1414
1415		/* find CPU <-->  CPU links */
1416		cpu_link = NULL;
1417		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1418		if (cpu_dev) {
1419			list_for_each_entry(tmp_link,
1420					&cpu_dev->io_link_props, list) {
1421				if (tmp_link->node_to == gpu_link->node_to) {
1422					cpu_link = tmp_link;
1423					break;
1424				}
1425			}
1426		}
1427
1428		if (!cpu_link)
1429			return -ENOMEM;
1430
1431		/* CPU <--> CPU <--> GPU, GPU node*/
1432		props = kfd_alloc_struct(props);
1433		if (!props)
1434			return -ENOMEM;
1435
1436		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1437		props->weight = gpu_link->weight + cpu_link->weight;
1438		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1439		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1440		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1441		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1442
1443		props->node_from = gpu_node;
1444		props->node_to = i;
1445		kdev->node_props.p2p_links_count++;
1446		list_add_tail(&props->list, &kdev->p2p_link_props);
1447		ret = kfd_build_p2p_node_entry(kdev, props);
1448		if (ret < 0)
1449			return ret;
1450
1451		/* for small Bar, no CPU --> GPU in-direct links */
1452		if (kfd_dev_is_large_bar(kdev->gpu)) {
1453			/* CPU <--> CPU <--> GPU, CPU node*/
1454			props2 = kfd_alloc_struct(props2);
1455			if (!props2)
1456				return -ENOMEM;
1457
1458			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1459			props2->node_from = i;
1460			props2->node_to = gpu_node;
1461			props2->kobj = NULL;
1462			cpu_dev->node_props.p2p_links_count++;
1463			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1464			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1465			if (ret < 0)
1466				return ret;
1467		}
1468	}
1469	return ret;
1470}
1471
1472#if defined(CONFIG_HSA_AMD_P2P)
1473static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1474		struct kfd_topology_device *peer, int from, int to)
1475{
1476	struct kfd_iolink_properties *props = NULL;
1477	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1478	struct kfd_topology_device *cpu_dev;
1479	int ret = 0;
1480
1481	if (!amdgpu_device_is_peer_accessible(
1482				kdev->gpu->adev,
1483				peer->gpu->adev))
1484		return ret;
1485
 
 
 
1486	iolink1 = list_first_entry(&kdev->io_link_props,
1487							struct kfd_iolink_properties, list);
1488	if (!iolink1)
1489		return -ENOMEM;
 
1490
1491	iolink2 = list_first_entry(&peer->io_link_props,
1492							struct kfd_iolink_properties, list);
1493	if (!iolink2)
1494		return -ENOMEM;
1495
1496	props = kfd_alloc_struct(props);
1497	if (!props)
1498		return -ENOMEM;
1499
1500	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1501
1502	props->weight = iolink1->weight + iolink2->weight;
1503	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1504	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1505	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1506	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1507
1508	if (iolink1->node_to != iolink2->node_to) {
1509		/* CPU->CPU  link*/
1510		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1511		if (cpu_dev) {
1512			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1513				if (iolink3->node_to == iolink2->node_to)
1514					break;
1515
1516			props->weight += iolink3->weight;
1517			props->min_latency += iolink3->min_latency;
1518			props->max_latency += iolink3->max_latency;
1519			props->min_bandwidth = min(props->min_bandwidth,
1520							iolink3->min_bandwidth);
1521			props->max_bandwidth = min(props->max_bandwidth,
1522							iolink3->max_bandwidth);
 
 
1523		} else {
1524			WARN(1, "CPU node not found");
1525		}
1526	}
1527
1528	props->node_from = from;
1529	props->node_to = to;
1530	peer->node_props.p2p_links_count++;
1531	list_add_tail(&props->list, &peer->p2p_link_props);
1532	ret = kfd_build_p2p_node_entry(peer, props);
1533
1534	return ret;
1535}
1536#endif
1537
1538static int kfd_dev_create_p2p_links(void)
1539{
1540	struct kfd_topology_device *dev;
1541	struct kfd_topology_device *new_dev;
1542#if defined(CONFIG_HSA_AMD_P2P)
1543	uint32_t i;
1544#endif
1545	uint32_t k;
1546	int ret = 0;
1547
1548	k = 0;
1549	list_for_each_entry(dev, &topology_device_list, list)
1550		k++;
1551	if (k < 2)
1552		return 0;
1553
1554	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1555	if (WARN_ON(!new_dev->gpu))
1556		return 0;
1557
1558	k--;
1559
1560	/* create in-direct links */
1561	ret = kfd_create_indirect_link_prop(new_dev, k);
1562	if (ret < 0)
1563		goto out;
1564
1565	/* create p2p links */
1566#if defined(CONFIG_HSA_AMD_P2P)
1567	i = 0;
1568	list_for_each_entry(dev, &topology_device_list, list) {
1569		if (dev == new_dev)
1570			break;
1571		if (!dev->gpu || !dev->gpu->adev ||
1572		    (dev->gpu->hive_id &&
1573		     dev->gpu->hive_id == new_dev->gpu->hive_id))
1574			goto next;
1575
1576		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1577		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1578		if (ret < 0)
1579			goto out;
1580
1581		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1582		if (ret < 0)
1583			goto out;
1584next:
1585		i++;
1586	}
1587#endif
1588
1589out:
1590	return ret;
1591}
1592
1593
1594/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1595static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1596				struct kfd_gpu_cache_info *pcache_info,
1597				struct kfd_cu_info *cu_info,
1598				int cu_bitmask,
1599				int cache_type, unsigned int cu_processor_id,
1600				int cu_block)
1601{
1602	unsigned int cu_sibling_map_mask;
1603	int first_active_cu;
1604	struct kfd_cache_properties *pcache = NULL;
1605
1606	cu_sibling_map_mask = cu_bitmask;
1607	cu_sibling_map_mask >>= cu_block;
1608	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1609	first_active_cu = ffs(cu_sibling_map_mask);
1610
1611	/* CU could be inactive. In case of shared cache find the first active
1612	 * CU. and incase of non-shared cache check if the CU is inactive. If
1613	 * inactive active skip it
1614	 */
1615	if (first_active_cu) {
1616		pcache = kfd_alloc_struct(pcache);
1617		if (!pcache)
1618			return -ENOMEM;
1619
1620		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1621		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1622		pcache->cache_level = pcache_info[cache_type].cache_level;
1623		pcache->cache_size = pcache_info[cache_type].cache_size;
 
1624
1625		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1626			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1627		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1628			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1629		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1630			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1631		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1632			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1633
1634		/* Sibling map is w.r.t processor_id_low, so shift out
1635		 * inactive CU
1636		 */
1637		cu_sibling_map_mask =
1638			cu_sibling_map_mask >> (first_active_cu - 1);
1639
1640		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1641		pcache->sibling_map[1] =
1642				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1643		pcache->sibling_map[2] =
1644				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1645		pcache->sibling_map[3] =
1646				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1647
1648		pcache->sibling_map_size = 4;
1649		*props_ext = pcache;
1650
1651		return 0;
1652	}
1653	return 1;
1654}
1655
1656/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1657static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1658				struct kfd_gpu_cache_info *pcache_info,
1659				struct kfd_cu_info *cu_info,
1660				int cache_type, unsigned int cu_processor_id)
 
 
1661{
1662	unsigned int cu_sibling_map_mask;
1663	int first_active_cu;
1664	int i, j, k;
 
1665	struct kfd_cache_properties *pcache = NULL;
 
 
1666
1667	cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
 
 
1668	cu_sibling_map_mask &=
1669		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1670	first_active_cu = ffs(cu_sibling_map_mask);
1671
1672	/* CU could be inactive. In case of shared cache find the first active
1673	 * CU. and incase of non-shared cache check if the CU is inactive. If
1674	 * inactive active skip it
1675	 */
1676	if (first_active_cu) {
1677		pcache = kfd_alloc_struct(pcache);
1678		if (!pcache)
1679			return -ENOMEM;
1680
1681		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1682		pcache->processor_id_low = cu_processor_id
1683					+ (first_active_cu - 1);
1684		pcache->cache_level = pcache_info[cache_type].cache_level;
 
 
 
 
 
 
 
1685		pcache->cache_size = pcache_info[cache_type].cache_size;
 
 
 
1686
1687		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1688			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1689		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1690			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1691		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1692			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1693		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1694			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1695
1696		/* Sibling map is w.r.t processor_id_low, so shift out
1697		 * inactive CU
1698		 */
1699		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1700		k = 0;
1701
1702		for (i = 0; i < cu_info->num_shader_engines; i++) {
1703			for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1704				pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1705				pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1706				pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1707				pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1708				k += 4;
 
1709
1710				cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1711				cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
 
1712			}
1713		}
1714		pcache->sibling_map_size = k;
1715		*props_ext = pcache;
1716		return 0;
1717	}
1718	return 1;
1719}
1720
1721#define KFD_MAX_CACHE_TYPES 6
1722
1723/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1724 * tables
1725 */
1726static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev)
1727{
1728	struct kfd_gpu_cache_info *pcache_info = NULL;
1729	int i, j, k;
1730	int ct = 0;
1731	unsigned int cu_processor_id;
1732	int ret;
1733	unsigned int num_cu_shared;
1734	struct kfd_cu_info cu_info;
1735	struct kfd_cu_info *pcu_info;
1736	int gpu_processor_id;
1737	struct kfd_cache_properties *props_ext;
1738	int num_of_entries = 0;
1739	int num_of_cache_types = 0;
1740	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1741
1742	amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1743	pcu_info = &cu_info;
1744
1745	gpu_processor_id = dev->node_props.simd_id_base;
1746
 
1747	pcache_info = cache_info;
1748	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1749	if (!num_of_cache_types) {
1750		pr_warn("no cache info found\n");
1751		return;
1752	}
1753
1754	/* For each type of cache listed in the kfd_gpu_cache_info table,
1755	 * go through all available Compute Units.
1756	 * The [i,j,k] loop will
1757	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1758	 *			will parse through all available CU
1759	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1760	 *			then it will consider only one CU from
1761	 *			the shared unit
1762	 */
 
 
 
1763	for (ct = 0; ct < num_of_cache_types; ct++) {
1764		cu_processor_id = gpu_processor_id;
1765		if (pcache_info[ct].cache_level == 1) {
1766			for (i = 0; i < pcu_info->num_shader_engines; i++) {
1767				for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1768					for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
 
1769
1770						ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1771										pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1772										cu_processor_id, k);
1773
1774						if (ret < 0)
1775							break;
1776
1777						if (!ret) {
1778							num_of_entries++;
1779							list_add_tail(&props_ext->list, &dev->cache_props);
 
 
 
 
 
 
 
 
1780						}
1781
1782						/* Move to next CU block */
1783						num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1784							pcu_info->num_cu_per_sh) ?
1785							pcache_info[ct].num_cu_shared :
1786							(pcu_info->num_cu_per_sh - k);
1787						cu_processor_id += num_cu_shared;
1788					}
1789				}
1790			}
1791		} else {
1792			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1793								pcu_info, ct, cu_processor_id);
1794
1795			if (ret < 0)
1796				break;
1797
1798			if (!ret) {
1799				num_of_entries++;
1800				list_add_tail(&props_ext->list, &dev->cache_props);
1801			}
1802		}
1803	}
1804	dev->node_props.caches_count += num_of_entries;
1805	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1806}
1807
1808static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id,
1809					  struct kfd_topology_device **dev)
1810{
1811	int proximity_domain = ++topology_crat_proximity_domain;
1812	struct list_head temp_topology_device_list;
1813	void *crat_image = NULL;
1814	size_t image_size = 0;
1815	int res;
1816
1817	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1818					    COMPUTE_UNIT_GPU, gpu,
1819					    proximity_domain);
1820	if (res) {
1821		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1822		       gpu_id);
1823		topology_crat_proximity_domain--;
1824		goto err;
1825	}
1826
1827	INIT_LIST_HEAD(&temp_topology_device_list);
1828
1829	res = kfd_parse_crat_table(crat_image,
1830				   &temp_topology_device_list,
1831				   proximity_domain);
1832	if (res) {
1833		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1834		       gpu_id);
1835		topology_crat_proximity_domain--;
1836		goto err;
1837	}
1838
1839	kfd_topology_update_device_list(&temp_topology_device_list,
1840					&topology_device_list);
1841
1842	*dev = kfd_assign_gpu(gpu);
1843	if (WARN_ON(!*dev)) {
1844		res = -ENODEV;
1845		goto err;
1846	}
1847
1848	/* Fill the cache affinity information here for the GPUs
1849	 * using VCRAT
1850	 */
1851	kfd_fill_cache_non_crat_info(*dev, gpu);
1852
1853	/* Update the SYSFS tree, since we added another topology
1854	 * device
1855	 */
1856	res = kfd_topology_update_sysfs();
1857	if (!res)
1858		sys_props.generation_count++;
1859	else
1860		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1861		       gpu_id, res);
1862
1863err:
1864	kfd_destroy_crat_image(crat_image);
1865	return res;
1866}
1867
1868int kfd_topology_add_device(struct kfd_dev *gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869{
1870	uint32_t gpu_id;
1871	struct kfd_topology_device *dev;
1872	struct kfd_cu_info cu_info;
1873	int res = 0;
1874	int i;
1875	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
 
 
1876
1877	gpu_id = kfd_generate_gpu_id(gpu);
1878	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
 
 
 
 
 
 
 
1879
1880	/* Check to see if this gpu device exists in the topology_device_list.
1881	 * If so, assign the gpu to that device,
1882	 * else create a Virtual CRAT for this gpu device and then parse that
1883	 * CRAT to create a new topology device. Once created assign the gpu to
1884	 * that topology device
1885	 */
1886	down_write(&topology_lock);
1887	dev = kfd_assign_gpu(gpu);
1888	if (!dev)
1889		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1890	up_write(&topology_lock);
1891	if (res)
1892		return res;
1893
1894	dev->gpu_id = gpu_id;
1895	gpu->id = gpu_id;
1896
1897	kfd_dev_create_p2p_links();
1898
1899	/* TODO: Move the following lines to function
1900	 *	kfd_add_non_crat_information
1901	 */
1902
1903	/* Fill-in additional information that is not available in CRAT but
1904	 * needed for the topology
1905	 */
1906
1907	amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1908
1909	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1910		dev->node_props.name[i] = __tolower(asic_name[i]);
1911		if (asic_name[i] == '\0')
1912			break;
1913	}
1914	dev->node_props.name[i] = '\0';
1915
1916	dev->node_props.simd_arrays_per_engine =
1917		cu_info.num_shader_arrays_per_engine;
1918
1919	dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version;
 
1920	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1921	dev->node_props.device_id = gpu->adev->pdev->device;
1922	dev->node_props.capability |=
1923		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1924			HSA_CAP_ASIC_REVISION_MASK);
 
1925	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
 
 
 
1926	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1927	dev->node_props.max_engine_clk_fcompute =
1928		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1929	dev->node_props.max_engine_clk_ccompute =
1930		cpufreq_quick_get_max(0) / 1000;
1931	dev->node_props.drm_render_minor =
1932		gpu->shared_resources.drm_render_minor;
1933
1934	dev->node_props.hive_id = gpu->hive_id;
 
 
 
 
 
 
1935	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1936	dev->node_props.num_sdma_xgmi_engines =
1937					kfd_get_num_xgmi_sdma_engines(gpu);
1938	dev->node_props.num_sdma_queues_per_engine =
1939				gpu->device_info.num_sdma_queues_per_engine -
1940				gpu->device_info.num_reserved_sdma_queues_per_engine;
1941	dev->node_props.num_gws = (dev->gpu->gws &&
1942		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
1943		dev->gpu->adev->gds.gws_size : 0;
1944	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
1945
1946	kfd_fill_mem_clk_max_info(dev);
1947	kfd_fill_iolink_non_crat_info(dev);
1948
1949	switch (dev->gpu->adev->asic_type) {
1950	case CHIP_KAVERI:
1951	case CHIP_HAWAII:
1952	case CHIP_TONGA:
1953		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1954			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1955			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1956		break;
1957	case CHIP_CARRIZO:
1958	case CHIP_FIJI:
1959	case CHIP_POLARIS10:
1960	case CHIP_POLARIS11:
1961	case CHIP_POLARIS12:
1962	case CHIP_VEGAM:
1963		pr_debug("Adding doorbell packet type capability\n");
1964		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1965			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1966			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1967		break;
1968	default:
1969		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1))
1970			dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1971				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1972				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1973		else
1974			WARN(1, "Unexpected ASIC family %u",
1975			     dev->gpu->adev->asic_type);
 
 
1976	}
1977
1978	/*
1979	 * Overwrite ATS capability according to needs_iommu_device to fix
1980	 * potential missing corresponding bit in CRAT of BIOS.
1981	 */
1982	if (dev->gpu->use_iommu_v2)
1983		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1984	else
1985		dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
1986
1987	/* Fix errors in CZ CRAT.
1988	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
1989	 *		because it doesn't consider masked out CUs
1990	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1991	 */
1992	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
1993		dev->node_props.simd_count =
1994			cu_info.simd_per_cu * cu_info.cu_active_number;
1995		dev->node_props.max_waves_per_simd = 10;
1996	}
1997
1998	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
1999	dev->node_props.capability |=
2000		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2001		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2002	dev->node_props.capability |=
2003		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2004		HSA_CAP_MEM_EDCSUPPORTED : 0;
2005
2006	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2007		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2008			HSA_CAP_RASEVENTNOTIFY : 0;
2009
2010	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev))
2011		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2012
 
 
 
 
2013	kfd_debug_print_topology();
2014
2015	kfd_notify_gpu_change(gpu_id, 1);
2016
2017	return 0;
2018}
2019
2020/**
2021 * kfd_topology_update_io_links() - Update IO links after device removal.
2022 * @proximity_domain: Proximity domain value of the dev being removed.
2023 *
2024 * The topology list currently is arranged in increasing order of
2025 * proximity domain.
2026 *
2027 * Two things need to be done when a device is removed:
2028 * 1. All the IO links to this device need to be removed.
2029 * 2. All nodes after the current device node need to move
2030 *    up once this device node is removed from the topology
2031 *    list. As a result, the proximity domain values for
2032 *    all nodes after the node being deleted reduce by 1.
2033 *    This would also cause the proximity domain values for
2034 *    io links to be updated based on new proximity domain
2035 *    values.
2036 *
2037 * Context: The caller must hold write topology_lock.
2038 */
2039static void kfd_topology_update_io_links(int proximity_domain)
2040{
2041	struct kfd_topology_device *dev;
2042	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2043
2044	list_for_each_entry(dev, &topology_device_list, list) {
2045		if (dev->proximity_domain > proximity_domain)
2046			dev->proximity_domain--;
2047
2048		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2049			/*
2050			 * If there is an io link to the dev being deleted
2051			 * then remove that IO link also.
2052			 */
2053			if (iolink->node_to == proximity_domain) {
2054				list_del(&iolink->list);
2055				dev->node_props.io_links_count--;
2056			} else {
2057				if (iolink->node_from > proximity_domain)
2058					iolink->node_from--;
2059				if (iolink->node_to > proximity_domain)
2060					iolink->node_to--;
2061			}
2062		}
2063
2064		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2065			/*
2066			 * If there is a p2p link to the dev being deleted
2067			 * then remove that p2p link also.
2068			 */
2069			if (p2plink->node_to == proximity_domain) {
2070				list_del(&p2plink->list);
2071				dev->node_props.p2p_links_count--;
2072			} else {
2073				if (p2plink->node_from > proximity_domain)
2074					p2plink->node_from--;
2075				if (p2plink->node_to > proximity_domain)
2076					p2plink->node_to--;
2077			}
2078		}
2079	}
2080}
2081
2082int kfd_topology_remove_device(struct kfd_dev *gpu)
2083{
2084	struct kfd_topology_device *dev, *tmp;
2085	uint32_t gpu_id;
2086	int res = -ENODEV;
2087	int i = 0;
2088
2089	down_write(&topology_lock);
2090
2091	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2092		if (dev->gpu == gpu) {
2093			gpu_id = dev->gpu_id;
2094			kfd_remove_sysfs_node_entry(dev);
2095			kfd_release_topology_device(dev);
2096			sys_props.num_devices--;
2097			kfd_topology_update_io_links(i);
2098			topology_crat_proximity_domain = sys_props.num_devices-1;
2099			sys_props.generation_count++;
2100			res = 0;
2101			if (kfd_topology_update_sysfs() < 0)
2102				kfd_topology_release_sysfs();
2103			break;
2104		}
2105		i++;
2106	}
2107
2108	up_write(&topology_lock);
2109
2110	if (!res)
2111		kfd_notify_gpu_change(gpu_id, 0);
2112
2113	return res;
2114}
2115
2116/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2117 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2118 *	returned through @kdev
2119 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2120 *		-1: If end of list
2121 */
2122int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
2123{
2124
2125	struct kfd_topology_device *top_dev;
2126	uint8_t device_idx = 0;
2127
2128	*kdev = NULL;
2129	down_read(&topology_lock);
2130
2131	list_for_each_entry(top_dev, &topology_device_list, list) {
2132		if (device_idx == idx) {
2133			*kdev = top_dev->gpu;
2134			up_read(&topology_lock);
2135			return 0;
2136		}
2137
2138		device_idx++;
2139	}
2140
2141	up_read(&topology_lock);
2142
2143	return -1;
2144
2145}
2146
2147static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2148{
2149	int first_cpu_of_numa_node;
2150
2151	if (!cpumask || cpumask == cpu_none_mask)
2152		return -1;
2153	first_cpu_of_numa_node = cpumask_first(cpumask);
2154	if (first_cpu_of_numa_node >= nr_cpu_ids)
2155		return -1;
2156#ifdef CONFIG_X86_64
2157	return cpu_data(first_cpu_of_numa_node).apicid;
2158#else
2159	return first_cpu_of_numa_node;
2160#endif
2161}
2162
2163/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2164 *	of the given NUMA node (numa_node_id)
2165 * Return -1 on failure
2166 */
2167int kfd_numa_node_to_apic_id(int numa_node_id)
2168{
2169	if (numa_node_id == -1) {
2170		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2171		return kfd_cpumask_to_apic_id(cpu_online_mask);
2172	}
2173	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2174}
2175
2176void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
2177{
2178	struct kfd_topology_device *dev;
2179
2180	gpu->use_iommu_v2 = false;
2181
2182	if (!gpu->device_info.needs_iommu_device)
2183		return;
2184
2185	down_read(&topology_lock);
2186
2187	/* Only use IOMMUv2 if there is an APU topology node with no GPU
2188	 * assigned yet. This GPU will be assigned to it.
2189	 */
2190	list_for_each_entry(dev, &topology_device_list, list)
2191		if (dev->node_props.cpu_cores_count &&
2192		    dev->node_props.simd_count &&
2193		    !dev->gpu)
2194			gpu->use_iommu_v2 = true;
2195
2196	up_read(&topology_lock);
2197}
2198
2199#if defined(CONFIG_DEBUG_FS)
2200
2201int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2202{
2203	struct kfd_topology_device *dev;
2204	unsigned int i = 0;
2205	int r = 0;
2206
2207	down_read(&topology_lock);
2208
2209	list_for_each_entry(dev, &topology_device_list, list) {
2210		if (!dev->gpu) {
2211			i++;
2212			continue;
2213		}
2214
2215		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2216		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2217		if (r)
2218			break;
2219	}
2220
2221	up_read(&topology_lock);
2222
2223	return r;
2224}
2225
2226int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2227{
2228	struct kfd_topology_device *dev;
2229	unsigned int i = 0;
2230	int r = 0;
2231
2232	down_read(&topology_lock);
2233
2234	list_for_each_entry(dev, &topology_device_list, list) {
2235		if (!dev->gpu) {
2236			i++;
2237			continue;
2238		}
2239
2240		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2241		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2242		if (r)
2243			break;
2244	}
2245
2246	up_read(&topology_lock);
2247
2248	return r;
2249}
2250
2251#endif