Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/pci.h>
27#include <linux/errno.h>
28#include <linux/acpi.h>
29#include <linux/hash.h>
30#include <linux/cpufreq.h>
31#include <linux/log2.h>
32#include <linux/dmi.h>
33#include <linux/atomic.h>
34
35#include "kfd_priv.h"
36#include "kfd_crat.h"
37#include "kfd_topology.h"
38#include "kfd_device_queue_manager.h"
39#include "kfd_svm.h"
40#include "kfd_debug.h"
41#include "amdgpu_amdkfd.h"
42#include "amdgpu_ras.h"
43#include "amdgpu.h"
44
45/* topology_device_list - Master list of all topology devices */
46static struct list_head topology_device_list;
47static struct kfd_system_properties sys_props;
48
49static DECLARE_RWSEM(topology_lock);
50static uint32_t topology_crat_proximity_domain;
51
52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 uint32_t proximity_domain)
54{
55 struct kfd_topology_device *top_dev;
56 struct kfd_topology_device *device = NULL;
57
58 list_for_each_entry(top_dev, &topology_device_list, list)
59 if (top_dev->proximity_domain == proximity_domain) {
60 device = top_dev;
61 break;
62 }
63
64 return device;
65}
66
67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 uint32_t proximity_domain)
69{
70 struct kfd_topology_device *device = NULL;
71
72 down_read(&topology_lock);
73
74 device = kfd_topology_device_by_proximity_domain_no_lock(
75 proximity_domain);
76 up_read(&topology_lock);
77
78 return device;
79}
80
81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82{
83 struct kfd_topology_device *top_dev = NULL;
84 struct kfd_topology_device *ret = NULL;
85
86 down_read(&topology_lock);
87
88 list_for_each_entry(top_dev, &topology_device_list, list)
89 if (top_dev->gpu_id == gpu_id) {
90 ret = top_dev;
91 break;
92 }
93
94 up_read(&topology_lock);
95
96 return ret;
97}
98
99struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100{
101 struct kfd_topology_device *top_dev;
102
103 top_dev = kfd_topology_device_by_id(gpu_id);
104 if (!top_dev)
105 return NULL;
106
107 return top_dev->gpu;
108}
109
110struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111{
112 struct kfd_topology_device *top_dev;
113 struct kfd_node *device = NULL;
114
115 down_read(&topology_lock);
116
117 list_for_each_entry(top_dev, &topology_device_list, list)
118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 device = top_dev->gpu;
120 break;
121 }
122
123 up_read(&topology_lock);
124
125 return device;
126}
127
128/* Called with write topology_lock acquired */
129static void kfd_release_topology_device(struct kfd_topology_device *dev)
130{
131 struct kfd_mem_properties *mem;
132 struct kfd_cache_properties *cache;
133 struct kfd_iolink_properties *iolink;
134 struct kfd_iolink_properties *p2plink;
135 struct kfd_perf_properties *perf;
136
137 list_del(&dev->list);
138
139 while (dev->mem_props.next != &dev->mem_props) {
140 mem = container_of(dev->mem_props.next,
141 struct kfd_mem_properties, list);
142 list_del(&mem->list);
143 kfree(mem);
144 }
145
146 while (dev->cache_props.next != &dev->cache_props) {
147 cache = container_of(dev->cache_props.next,
148 struct kfd_cache_properties, list);
149 list_del(&cache->list);
150 kfree(cache);
151 }
152
153 while (dev->io_link_props.next != &dev->io_link_props) {
154 iolink = container_of(dev->io_link_props.next,
155 struct kfd_iolink_properties, list);
156 list_del(&iolink->list);
157 kfree(iolink);
158 }
159
160 while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161 p2plink = container_of(dev->p2p_link_props.next,
162 struct kfd_iolink_properties, list);
163 list_del(&p2plink->list);
164 kfree(p2plink);
165 }
166
167 while (dev->perf_props.next != &dev->perf_props) {
168 perf = container_of(dev->perf_props.next,
169 struct kfd_perf_properties, list);
170 list_del(&perf->list);
171 kfree(perf);
172 }
173
174 kfree(dev);
175}
176
177void kfd_release_topology_device_list(struct list_head *device_list)
178{
179 struct kfd_topology_device *dev;
180
181 while (!list_empty(device_list)) {
182 dev = list_first_entry(device_list,
183 struct kfd_topology_device, list);
184 kfd_release_topology_device(dev);
185 }
186}
187
188static void kfd_release_live_view(void)
189{
190 kfd_release_topology_device_list(&topology_device_list);
191 memset(&sys_props, 0, sizeof(sys_props));
192}
193
194struct kfd_topology_device *kfd_create_topology_device(
195 struct list_head *device_list)
196{
197 struct kfd_topology_device *dev;
198
199 dev = kfd_alloc_struct(dev);
200 if (!dev) {
201 pr_err("No memory to allocate a topology device");
202 return NULL;
203 }
204
205 INIT_LIST_HEAD(&dev->mem_props);
206 INIT_LIST_HEAD(&dev->cache_props);
207 INIT_LIST_HEAD(&dev->io_link_props);
208 INIT_LIST_HEAD(&dev->p2p_link_props);
209 INIT_LIST_HEAD(&dev->perf_props);
210
211 list_add_tail(&dev->list, device_list);
212
213 return dev;
214}
215
216
217#define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
218 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
219 fmt, __VA_ARGS__))
220#define sysfs_show_32bit_prop(buffer, offs, name, value) \
221 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222#define sysfs_show_64bit_prop(buffer, offs, name, value) \
223 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224#define sysfs_show_32bit_val(buffer, offs, value) \
225 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226#define sysfs_show_str_val(buffer, offs, value) \
227 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228
229static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230 char *buffer)
231{
232 int offs = 0;
233
234 /* Making sure that the buffer is an empty string */
235 buffer[0] = 0;
236
237 if (attr == &sys_props.attr_genid) {
238 sysfs_show_32bit_val(buffer, offs,
239 sys_props.generation_count);
240 } else if (attr == &sys_props.attr_props) {
241 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242 sys_props.platform_oem);
243 sysfs_show_64bit_prop(buffer, offs, "platform_id",
244 sys_props.platform_id);
245 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246 sys_props.platform_rev);
247 } else {
248 offs = -EINVAL;
249 }
250
251 return offs;
252}
253
254static void kfd_topology_kobj_release(struct kobject *kobj)
255{
256 kfree(kobj);
257}
258
259static const struct sysfs_ops sysprops_ops = {
260 .show = sysprops_show,
261};
262
263static const struct kobj_type sysprops_type = {
264 .release = kfd_topology_kobj_release,
265 .sysfs_ops = &sysprops_ops,
266};
267
268static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269 char *buffer)
270{
271 int offs = 0;
272 struct kfd_iolink_properties *iolink;
273
274 /* Making sure that the buffer is an empty string */
275 buffer[0] = 0;
276
277 iolink = container_of(attr, struct kfd_iolink_properties, attr);
278 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279 return -EPERM;
280 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289 iolink->min_bandwidth);
290 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291 iolink->max_bandwidth);
292 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293 iolink->rec_transfer_size);
294 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295
296 return offs;
297}
298
299static const struct sysfs_ops iolink_ops = {
300 .show = iolink_show,
301};
302
303static const struct kobj_type iolink_type = {
304 .release = kfd_topology_kobj_release,
305 .sysfs_ops = &iolink_ops,
306};
307
308static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309 char *buffer)
310{
311 int offs = 0;
312 struct kfd_mem_properties *mem;
313
314 /* Making sure that the buffer is an empty string */
315 buffer[0] = 0;
316
317 mem = container_of(attr, struct kfd_mem_properties, attr);
318 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319 return -EPERM;
320 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322 mem->size_in_bytes);
323 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324 sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326 mem->mem_clk_max);
327
328 return offs;
329}
330
331static const struct sysfs_ops mem_ops = {
332 .show = mem_show,
333};
334
335static const struct kobj_type mem_type = {
336 .release = kfd_topology_kobj_release,
337 .sysfs_ops = &mem_ops,
338};
339
340static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341 char *buffer)
342{
343 int offs = 0;
344 uint32_t i, j;
345 struct kfd_cache_properties *cache;
346
347 /* Making sure that the buffer is an empty string */
348 buffer[0] = 0;
349 cache = container_of(attr, struct kfd_cache_properties, attr);
350 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351 return -EPERM;
352 sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353 cache->processor_id_low);
354 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356 sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357 cache->cacheline_size);
358 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359 cache->cachelines_per_tag);
360 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363
364 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365 for (i = 0; i < cache->sibling_map_size; i++)
366 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367 /* Check each bit */
368 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369 (cache->sibling_map[i] >> j) & 1);
370
371 /* Replace the last "," with end of line */
372 buffer[offs-1] = '\n';
373 return offs;
374}
375
376static const struct sysfs_ops cache_ops = {
377 .show = kfd_cache_show,
378};
379
380static const struct kobj_type cache_type = {
381 .release = kfd_topology_kobj_release,
382 .sysfs_ops = &cache_ops,
383};
384
385/****** Sysfs of Performance Counters ******/
386
387struct kfd_perf_attr {
388 struct kobj_attribute attr;
389 uint32_t data;
390};
391
392static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393 char *buf)
394{
395 int offs = 0;
396 struct kfd_perf_attr *attr;
397
398 buf[0] = 0;
399 attr = container_of(attrs, struct kfd_perf_attr, attr);
400 if (!attr->data) /* invalid data for PMC */
401 return 0;
402 else
403 return sysfs_show_32bit_val(buf, offs, attr->data);
404}
405
406#define KFD_PERF_DESC(_name, _data) \
407{ \
408 .attr = __ATTR(_name, 0444, perf_show, NULL), \
409 .data = _data, \
410}
411
412static struct kfd_perf_attr perf_attr_iommu[] = {
413 KFD_PERF_DESC(max_concurrent, 0),
414 KFD_PERF_DESC(num_counters, 0),
415 KFD_PERF_DESC(counter_ids, 0),
416};
417/****************************************/
418
419static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420 char *buffer)
421{
422 int offs = 0;
423 struct kfd_topology_device *dev;
424 uint32_t log_max_watch_addr;
425
426 /* Making sure that the buffer is an empty string */
427 buffer[0] = 0;
428
429 if (strcmp(attr->name, "gpu_id") == 0) {
430 dev = container_of(attr, struct kfd_topology_device,
431 attr_gpuid);
432 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433 return -EPERM;
434 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435 }
436
437 if (strcmp(attr->name, "name") == 0) {
438 dev = container_of(attr, struct kfd_topology_device,
439 attr_name);
440
441 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442 return -EPERM;
443 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444 }
445
446 dev = container_of(attr, struct kfd_topology_device,
447 attr_props);
448 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449 return -EPERM;
450 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451 dev->node_props.cpu_cores_count);
452 sysfs_show_32bit_prop(buffer, offs, "simd_count",
453 dev->gpu ? dev->node_props.simd_count : 0);
454 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
455 dev->node_props.mem_banks_count);
456 sysfs_show_32bit_prop(buffer, offs, "caches_count",
457 dev->node_props.caches_count);
458 sysfs_show_32bit_prop(buffer, offs, "io_links_count",
459 dev->node_props.io_links_count);
460 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
461 dev->node_props.p2p_links_count);
462 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
463 dev->node_props.cpu_core_id_base);
464 sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
465 dev->node_props.simd_id_base);
466 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
467 dev->node_props.max_waves_per_simd);
468 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
469 dev->node_props.lds_size_in_kb);
470 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
471 dev->node_props.gds_size_in_kb);
472 sysfs_show_32bit_prop(buffer, offs, "num_gws",
473 dev->node_props.num_gws);
474 sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
475 dev->node_props.wave_front_size);
476 sysfs_show_32bit_prop(buffer, offs, "array_count",
477 dev->gpu ? (dev->node_props.array_count *
478 NUM_XCC(dev->gpu->xcc_mask)) : 0);
479 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
480 dev->node_props.simd_arrays_per_engine);
481 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
482 dev->node_props.cu_per_simd_array);
483 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
484 dev->node_props.simd_per_cu);
485 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
486 dev->node_props.max_slots_scratch_cu);
487 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
488 dev->node_props.gfx_target_version);
489 sysfs_show_32bit_prop(buffer, offs, "vendor_id",
490 dev->node_props.vendor_id);
491 sysfs_show_32bit_prop(buffer, offs, "device_id",
492 dev->node_props.device_id);
493 sysfs_show_32bit_prop(buffer, offs, "location_id",
494 dev->node_props.location_id);
495 sysfs_show_32bit_prop(buffer, offs, "domain",
496 dev->node_props.domain);
497 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
498 dev->node_props.drm_render_minor);
499 sysfs_show_64bit_prop(buffer, offs, "hive_id",
500 dev->node_props.hive_id);
501 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
502 dev->node_props.num_sdma_engines);
503 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
504 dev->node_props.num_sdma_xgmi_engines);
505 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
506 dev->node_props.num_sdma_queues_per_engine);
507 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
508 dev->node_props.num_cp_queues);
509
510 if (dev->gpu) {
511 log_max_watch_addr =
512 __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
513
514 if (log_max_watch_addr) {
515 dev->node_props.capability |=
516 HSA_CAP_WATCH_POINTS_SUPPORTED;
517
518 dev->node_props.capability |=
519 ((log_max_watch_addr <<
520 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
521 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
522 }
523
524 if (dev->gpu->adev->asic_type == CHIP_TONGA)
525 dev->node_props.capability |=
526 HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
527
528 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
529 dev->node_props.max_engine_clk_fcompute);
530
531 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
532
533 sysfs_show_32bit_prop(buffer, offs, "fw_version",
534 dev->gpu->kfd->mec_fw_version);
535 sysfs_show_32bit_prop(buffer, offs, "capability",
536 dev->node_props.capability);
537 sysfs_show_64bit_prop(buffer, offs, "debug_prop",
538 dev->node_props.debug_prop);
539 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
540 dev->gpu->kfd->sdma_fw_version);
541 sysfs_show_64bit_prop(buffer, offs, "unique_id",
542 dev->gpu->adev->unique_id);
543 sysfs_show_32bit_prop(buffer, offs, "num_xcc",
544 NUM_XCC(dev->gpu->xcc_mask));
545 }
546
547 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
548 cpufreq_quick_get_max(0)/1000);
549}
550
551static const struct sysfs_ops node_ops = {
552 .show = node_show,
553};
554
555static const struct kobj_type node_type = {
556 .release = kfd_topology_kobj_release,
557 .sysfs_ops = &node_ops,
558};
559
560static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
561{
562 sysfs_remove_file(kobj, attr);
563 kobject_del(kobj);
564 kobject_put(kobj);
565}
566
567static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
568{
569 struct kfd_iolink_properties *p2plink;
570 struct kfd_iolink_properties *iolink;
571 struct kfd_cache_properties *cache;
572 struct kfd_mem_properties *mem;
573 struct kfd_perf_properties *perf;
574
575 if (dev->kobj_iolink) {
576 list_for_each_entry(iolink, &dev->io_link_props, list)
577 if (iolink->kobj) {
578 kfd_remove_sysfs_file(iolink->kobj,
579 &iolink->attr);
580 iolink->kobj = NULL;
581 }
582 kobject_del(dev->kobj_iolink);
583 kobject_put(dev->kobj_iolink);
584 dev->kobj_iolink = NULL;
585 }
586
587 if (dev->kobj_p2plink) {
588 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
589 if (p2plink->kobj) {
590 kfd_remove_sysfs_file(p2plink->kobj,
591 &p2plink->attr);
592 p2plink->kobj = NULL;
593 }
594 kobject_del(dev->kobj_p2plink);
595 kobject_put(dev->kobj_p2plink);
596 dev->kobj_p2plink = NULL;
597 }
598
599 if (dev->kobj_cache) {
600 list_for_each_entry(cache, &dev->cache_props, list)
601 if (cache->kobj) {
602 kfd_remove_sysfs_file(cache->kobj,
603 &cache->attr);
604 cache->kobj = NULL;
605 }
606 kobject_del(dev->kobj_cache);
607 kobject_put(dev->kobj_cache);
608 dev->kobj_cache = NULL;
609 }
610
611 if (dev->kobj_mem) {
612 list_for_each_entry(mem, &dev->mem_props, list)
613 if (mem->kobj) {
614 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
615 mem->kobj = NULL;
616 }
617 kobject_del(dev->kobj_mem);
618 kobject_put(dev->kobj_mem);
619 dev->kobj_mem = NULL;
620 }
621
622 if (dev->kobj_perf) {
623 list_for_each_entry(perf, &dev->perf_props, list) {
624 kfree(perf->attr_group);
625 perf->attr_group = NULL;
626 }
627 kobject_del(dev->kobj_perf);
628 kobject_put(dev->kobj_perf);
629 dev->kobj_perf = NULL;
630 }
631
632 if (dev->kobj_node) {
633 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
634 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
635 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
636 kobject_del(dev->kobj_node);
637 kobject_put(dev->kobj_node);
638 dev->kobj_node = NULL;
639 }
640}
641
642static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
643 uint32_t id)
644{
645 struct kfd_iolink_properties *p2plink;
646 struct kfd_iolink_properties *iolink;
647 struct kfd_cache_properties *cache;
648 struct kfd_mem_properties *mem;
649 struct kfd_perf_properties *perf;
650 int ret;
651 uint32_t i, num_attrs;
652 struct attribute **attrs;
653
654 if (WARN_ON(dev->kobj_node))
655 return -EEXIST;
656
657 /*
658 * Creating the sysfs folders
659 */
660 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
661 if (!dev->kobj_node)
662 return -ENOMEM;
663
664 ret = kobject_init_and_add(dev->kobj_node, &node_type,
665 sys_props.kobj_nodes, "%d", id);
666 if (ret < 0) {
667 kobject_put(dev->kobj_node);
668 return ret;
669 }
670
671 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
672 if (!dev->kobj_mem)
673 return -ENOMEM;
674
675 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
676 if (!dev->kobj_cache)
677 return -ENOMEM;
678
679 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
680 if (!dev->kobj_iolink)
681 return -ENOMEM;
682
683 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
684 if (!dev->kobj_p2plink)
685 return -ENOMEM;
686
687 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
688 if (!dev->kobj_perf)
689 return -ENOMEM;
690
691 /*
692 * Creating sysfs files for node properties
693 */
694 dev->attr_gpuid.name = "gpu_id";
695 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
696 sysfs_attr_init(&dev->attr_gpuid);
697 dev->attr_name.name = "name";
698 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
699 sysfs_attr_init(&dev->attr_name);
700 dev->attr_props.name = "properties";
701 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
702 sysfs_attr_init(&dev->attr_props);
703 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
704 if (ret < 0)
705 return ret;
706 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
707 if (ret < 0)
708 return ret;
709 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
710 if (ret < 0)
711 return ret;
712
713 i = 0;
714 list_for_each_entry(mem, &dev->mem_props, list) {
715 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
716 if (!mem->kobj)
717 return -ENOMEM;
718 ret = kobject_init_and_add(mem->kobj, &mem_type,
719 dev->kobj_mem, "%d", i);
720 if (ret < 0) {
721 kobject_put(mem->kobj);
722 return ret;
723 }
724
725 mem->attr.name = "properties";
726 mem->attr.mode = KFD_SYSFS_FILE_MODE;
727 sysfs_attr_init(&mem->attr);
728 ret = sysfs_create_file(mem->kobj, &mem->attr);
729 if (ret < 0)
730 return ret;
731 i++;
732 }
733
734 i = 0;
735 list_for_each_entry(cache, &dev->cache_props, list) {
736 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
737 if (!cache->kobj)
738 return -ENOMEM;
739 ret = kobject_init_and_add(cache->kobj, &cache_type,
740 dev->kobj_cache, "%d", i);
741 if (ret < 0) {
742 kobject_put(cache->kobj);
743 return ret;
744 }
745
746 cache->attr.name = "properties";
747 cache->attr.mode = KFD_SYSFS_FILE_MODE;
748 sysfs_attr_init(&cache->attr);
749 ret = sysfs_create_file(cache->kobj, &cache->attr);
750 if (ret < 0)
751 return ret;
752 i++;
753 }
754
755 i = 0;
756 list_for_each_entry(iolink, &dev->io_link_props, list) {
757 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
758 if (!iolink->kobj)
759 return -ENOMEM;
760 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
761 dev->kobj_iolink, "%d", i);
762 if (ret < 0) {
763 kobject_put(iolink->kobj);
764 return ret;
765 }
766
767 iolink->attr.name = "properties";
768 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
769 sysfs_attr_init(&iolink->attr);
770 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
771 if (ret < 0)
772 return ret;
773 i++;
774 }
775
776 i = 0;
777 list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
778 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
779 if (!p2plink->kobj)
780 return -ENOMEM;
781 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
782 dev->kobj_p2plink, "%d", i);
783 if (ret < 0) {
784 kobject_put(p2plink->kobj);
785 return ret;
786 }
787
788 p2plink->attr.name = "properties";
789 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
790 sysfs_attr_init(&p2plink->attr);
791 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
792 if (ret < 0)
793 return ret;
794 i++;
795 }
796
797 /* All hardware blocks have the same number of attributes. */
798 num_attrs = ARRAY_SIZE(perf_attr_iommu);
799 list_for_each_entry(perf, &dev->perf_props, list) {
800 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
801 * num_attrs + sizeof(struct attribute_group),
802 GFP_KERNEL);
803 if (!perf->attr_group)
804 return -ENOMEM;
805
806 attrs = (struct attribute **)(perf->attr_group + 1);
807 if (!strcmp(perf->block_name, "iommu")) {
808 /* Information of IOMMU's num_counters and counter_ids is shown
809 * under /sys/bus/event_source/devices/amd_iommu. We don't
810 * duplicate here.
811 */
812 perf_attr_iommu[0].data = perf->max_concurrent;
813 for (i = 0; i < num_attrs; i++)
814 attrs[i] = &perf_attr_iommu[i].attr.attr;
815 }
816 perf->attr_group->name = perf->block_name;
817 perf->attr_group->attrs = attrs;
818 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
819 if (ret < 0)
820 return ret;
821 }
822
823 return 0;
824}
825
826/* Called with write topology lock acquired */
827static int kfd_build_sysfs_node_tree(void)
828{
829 struct kfd_topology_device *dev;
830 int ret;
831 uint32_t i = 0;
832
833 list_for_each_entry(dev, &topology_device_list, list) {
834 ret = kfd_build_sysfs_node_entry(dev, i);
835 if (ret < 0)
836 return ret;
837 i++;
838 }
839
840 return 0;
841}
842
843/* Called with write topology lock acquired */
844static void kfd_remove_sysfs_node_tree(void)
845{
846 struct kfd_topology_device *dev;
847
848 list_for_each_entry(dev, &topology_device_list, list)
849 kfd_remove_sysfs_node_entry(dev);
850}
851
852static int kfd_topology_update_sysfs(void)
853{
854 int ret;
855
856 if (!sys_props.kobj_topology) {
857 sys_props.kobj_topology =
858 kfd_alloc_struct(sys_props.kobj_topology);
859 if (!sys_props.kobj_topology)
860 return -ENOMEM;
861
862 ret = kobject_init_and_add(sys_props.kobj_topology,
863 &sysprops_type, &kfd_device->kobj,
864 "topology");
865 if (ret < 0) {
866 kobject_put(sys_props.kobj_topology);
867 return ret;
868 }
869
870 sys_props.kobj_nodes = kobject_create_and_add("nodes",
871 sys_props.kobj_topology);
872 if (!sys_props.kobj_nodes)
873 return -ENOMEM;
874
875 sys_props.attr_genid.name = "generation_id";
876 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
877 sysfs_attr_init(&sys_props.attr_genid);
878 ret = sysfs_create_file(sys_props.kobj_topology,
879 &sys_props.attr_genid);
880 if (ret < 0)
881 return ret;
882
883 sys_props.attr_props.name = "system_properties";
884 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
885 sysfs_attr_init(&sys_props.attr_props);
886 ret = sysfs_create_file(sys_props.kobj_topology,
887 &sys_props.attr_props);
888 if (ret < 0)
889 return ret;
890 }
891
892 kfd_remove_sysfs_node_tree();
893
894 return kfd_build_sysfs_node_tree();
895}
896
897static void kfd_topology_release_sysfs(void)
898{
899 kfd_remove_sysfs_node_tree();
900 if (sys_props.kobj_topology) {
901 sysfs_remove_file(sys_props.kobj_topology,
902 &sys_props.attr_genid);
903 sysfs_remove_file(sys_props.kobj_topology,
904 &sys_props.attr_props);
905 if (sys_props.kobj_nodes) {
906 kobject_del(sys_props.kobj_nodes);
907 kobject_put(sys_props.kobj_nodes);
908 sys_props.kobj_nodes = NULL;
909 }
910 kobject_del(sys_props.kobj_topology);
911 kobject_put(sys_props.kobj_topology);
912 sys_props.kobj_topology = NULL;
913 }
914}
915
916/* Called with write topology_lock acquired */
917static void kfd_topology_update_device_list(struct list_head *temp_list,
918 struct list_head *master_list)
919{
920 while (!list_empty(temp_list)) {
921 list_move_tail(temp_list->next, master_list);
922 sys_props.num_devices++;
923 }
924}
925
926static void kfd_debug_print_topology(void)
927{
928 struct kfd_topology_device *dev;
929
930 down_read(&topology_lock);
931
932 dev = list_last_entry(&topology_device_list,
933 struct kfd_topology_device, list);
934 if (dev) {
935 if (dev->node_props.cpu_cores_count &&
936 dev->node_props.simd_count) {
937 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
938 dev->node_props.device_id,
939 dev->node_props.vendor_id);
940 } else if (dev->node_props.cpu_cores_count)
941 pr_info("Topology: Add CPU node\n");
942 else if (dev->node_props.simd_count)
943 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
944 dev->node_props.device_id,
945 dev->node_props.vendor_id);
946 }
947 up_read(&topology_lock);
948}
949
950/* Helper function for intializing platform_xx members of
951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
952 */
953static void kfd_update_system_properties(void)
954{
955 struct kfd_topology_device *dev;
956
957 down_read(&topology_lock);
958 dev = list_last_entry(&topology_device_list,
959 struct kfd_topology_device, list);
960 if (dev) {
961 sys_props.platform_id =
962 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
963 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
964 sys_props.platform_rev = dev->oem_revision;
965 }
966 up_read(&topology_lock);
967}
968
969static void find_system_memory(const struct dmi_header *dm,
970 void *private)
971{
972 struct kfd_mem_properties *mem;
973 u16 mem_width, mem_clock;
974 struct kfd_topology_device *kdev =
975 (struct kfd_topology_device *)private;
976 const u8 *dmi_data = (const u8 *)(dm + 1);
977
978 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
979 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
980 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
981 list_for_each_entry(mem, &kdev->mem_props, list) {
982 if (mem_width != 0xFFFF && mem_width != 0)
983 mem->width = mem_width;
984 if (mem_clock != 0)
985 mem->mem_clk_max = mem_clock;
986 }
987 }
988}
989
990/* kfd_add_non_crat_information - Add information that is not currently
991 * defined in CRAT but is necessary for KFD topology
992 * @dev - topology device to which addition info is added
993 */
994static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
995{
996 /* Check if CPU only node. */
997 if (!kdev->gpu) {
998 /* Add system memory information */
999 dmi_walk(find_system_memory, kdev);
1000 }
1001 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002}
1003
1004int kfd_topology_init(void)
1005{
1006 void *crat_image = NULL;
1007 size_t image_size = 0;
1008 int ret;
1009 struct list_head temp_topology_device_list;
1010 int cpu_only_node = 0;
1011 struct kfd_topology_device *kdev;
1012 int proximity_domain;
1013
1014 /* topology_device_list - Master list of all topology devices
1015 * temp_topology_device_list - temporary list created while parsing CRAT
1016 * or VCRAT. Once parsing is complete the contents of list is moved to
1017 * topology_device_list
1018 */
1019
1020 /* Initialize the head for the both the lists */
1021 INIT_LIST_HEAD(&topology_device_list);
1022 INIT_LIST_HEAD(&temp_topology_device_list);
1023 init_rwsem(&topology_lock);
1024
1025 memset(&sys_props, 0, sizeof(sys_props));
1026
1027 /* Proximity domains in ACPI CRAT tables start counting at
1028 * 0. The same should be true for virtual CRAT tables created
1029 * at this stage. GPUs added later in kfd_topology_add_device
1030 * use a counter.
1031 */
1032 proximity_domain = 0;
1033
1034 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035 COMPUTE_UNIT_CPU, NULL,
1036 proximity_domain);
1037 cpu_only_node = 1;
1038 if (ret) {
1039 pr_err("Error creating VCRAT table for CPU\n");
1040 return ret;
1041 }
1042
1043 ret = kfd_parse_crat_table(crat_image,
1044 &temp_topology_device_list,
1045 proximity_domain);
1046 if (ret) {
1047 pr_err("Error parsing VCRAT table for CPU\n");
1048 goto err;
1049 }
1050
1051 kdev = list_first_entry(&temp_topology_device_list,
1052 struct kfd_topology_device, list);
1053
1054 down_write(&topology_lock);
1055 kfd_topology_update_device_list(&temp_topology_device_list,
1056 &topology_device_list);
1057 topology_crat_proximity_domain = sys_props.num_devices-1;
1058 ret = kfd_topology_update_sysfs();
1059 up_write(&topology_lock);
1060
1061 if (!ret) {
1062 sys_props.generation_count++;
1063 kfd_update_system_properties();
1064 kfd_debug_print_topology();
1065 } else
1066 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068 /* For nodes with GPU, this information gets added
1069 * when GPU is detected (kfd_topology_add_device).
1070 */
1071 if (cpu_only_node) {
1072 /* Add additional information to CPU only node created above */
1073 down_write(&topology_lock);
1074 kdev = list_first_entry(&topology_device_list,
1075 struct kfd_topology_device, list);
1076 up_write(&topology_lock);
1077 kfd_add_non_crat_information(kdev);
1078 }
1079
1080err:
1081 kfd_destroy_crat_image(crat_image);
1082 return ret;
1083}
1084
1085void kfd_topology_shutdown(void)
1086{
1087 down_write(&topology_lock);
1088 kfd_topology_release_sysfs();
1089 kfd_release_live_view();
1090 up_write(&topology_lock);
1091}
1092
1093static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094{
1095 uint32_t hashout;
1096 uint32_t buf[8];
1097 uint64_t local_mem_size;
1098 int i;
1099
1100 if (!gpu)
1101 return 0;
1102
1103 local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104 gpu->local_mem_info.local_mem_size_public;
1105 buf[0] = gpu->adev->pdev->devfn;
1106 buf[1] = gpu->adev->pdev->subsystem_vendor |
1107 (gpu->adev->pdev->subsystem_device << 16);
1108 buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109 buf[3] = gpu->adev->pdev->device;
1110 buf[4] = gpu->adev->pdev->bus->number;
1111 buf[5] = lower_32_bits(local_mem_size);
1112 buf[6] = upper_32_bits(local_mem_size);
1113 buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115 for (i = 0, hashout = 0; i < 8; i++)
1116 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118 return hashout;
1119}
1120/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121 * the GPU device is not already present in the topology device
1122 * list then return NULL. This means a new topology device has to
1123 * be created for this GPU.
1124 */
1125static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126{
1127 struct kfd_topology_device *dev;
1128 struct kfd_topology_device *out_dev = NULL;
1129 struct kfd_mem_properties *mem;
1130 struct kfd_cache_properties *cache;
1131 struct kfd_iolink_properties *iolink;
1132 struct kfd_iolink_properties *p2plink;
1133
1134 list_for_each_entry(dev, &topology_device_list, list) {
1135 /* Discrete GPUs need their own topology device list
1136 * entries. Don't assign them to CPU/APU nodes.
1137 */
1138 if (dev->node_props.cpu_cores_count)
1139 continue;
1140
1141 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142 dev->gpu = gpu;
1143 out_dev = dev;
1144
1145 list_for_each_entry(mem, &dev->mem_props, list)
1146 mem->gpu = dev->gpu;
1147 list_for_each_entry(cache, &dev->cache_props, list)
1148 cache->gpu = dev->gpu;
1149 list_for_each_entry(iolink, &dev->io_link_props, list)
1150 iolink->gpu = dev->gpu;
1151 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152 p2plink->gpu = dev->gpu;
1153 break;
1154 }
1155 }
1156 return out_dev;
1157}
1158
1159static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160{
1161 /*
1162 * TODO: Generate an event for thunk about the arrival/removal
1163 * of the GPU
1164 */
1165}
1166
1167/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168 * patch this after CRAT parsing.
1169 */
1170static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171{
1172 struct kfd_mem_properties *mem;
1173 struct kfd_local_mem_info local_mem_info;
1174
1175 if (!dev)
1176 return;
1177
1178 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179 * single bank of VRAM local memory.
1180 * for dGPUs - VCRAT reports only one bank of Local Memory
1181 * for APUs - If CRAT from ACPI reports more than one bank, then
1182 * all the banks will report the same mem_clk_max information
1183 */
1184 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185 dev->gpu->xcp);
1186
1187 list_for_each_entry(mem, &dev->mem_props, list)
1188 mem->mem_clk_max = local_mem_info.mem_clk_max;
1189}
1190
1191static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192 struct kfd_topology_device *target_gpu_dev,
1193 struct kfd_iolink_properties *link)
1194{
1195 /* xgmi always supports atomics between links. */
1196 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197 return;
1198
1199 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200 if (target_gpu_dev) {
1201 uint32_t cap;
1202
1203 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204 PCI_EXP_DEVCAP2, &cap);
1205
1206 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207 PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210 /* set gpu (dev) flags. */
1211 } else {
1212 if (!dev->gpu->kfd->pci_atomic_requested ||
1213 dev->gpu->adev->asic_type == CHIP_HAWAII)
1214 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216 }
1217}
1218
1219static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220 struct kfd_iolink_properties *outbound_link,
1221 struct kfd_iolink_properties *inbound_link)
1222{
1223 /* CPU -> GPU with PCIe */
1224 if (!to_dev->gpu &&
1225 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228 if (to_dev->gpu) {
1229 /* GPU <-> GPU with PCIe and
1230 * Vega20 with XGMI
1231 */
1232 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237 }
1238 }
1239}
1240
1241static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242{
1243 struct kfd_iolink_properties *link, *inbound_link;
1244 struct kfd_topology_device *peer_dev;
1245
1246 if (!dev || !dev->gpu)
1247 return;
1248
1249 /* GPU only creates direct links so apply flags setting to all */
1250 list_for_each_entry(link, &dev->io_link_props, list) {
1251 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252 kfd_set_iolink_no_atomics(dev, NULL, link);
1253 peer_dev = kfd_topology_device_by_proximity_domain(
1254 link->node_to);
1255
1256 if (!peer_dev)
1257 continue;
1258
1259 /* Include the CPU peer in GPU hive if connected over xGMI. */
1260 if (!peer_dev->gpu &&
1261 link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262 /*
1263 * If the GPU is not part of a GPU hive, use its pci
1264 * device location as the hive ID to bind with the CPU.
1265 */
1266 if (!dev->node_props.hive_id)
1267 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268 peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269 }
1270
1271 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272 list) {
1273 if (inbound_link->node_to != link->node_from)
1274 continue;
1275
1276 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1279 }
1280 }
1281
1282 /* Create indirect links so apply flags setting to all */
1283 list_for_each_entry(link, &dev->p2p_link_props, list) {
1284 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285 kfd_set_iolink_no_atomics(dev, NULL, link);
1286 peer_dev = kfd_topology_device_by_proximity_domain(
1287 link->node_to);
1288
1289 if (!peer_dev)
1290 continue;
1291
1292 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293 list) {
1294 if (inbound_link->node_to != link->node_from)
1295 continue;
1296
1297 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300 }
1301 }
1302}
1303
1304static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305 struct kfd_iolink_properties *p2plink)
1306{
1307 int ret;
1308
1309 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310 if (!p2plink->kobj)
1311 return -ENOMEM;
1312
1313 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315 if (ret < 0) {
1316 kobject_put(p2plink->kobj);
1317 return ret;
1318 }
1319
1320 p2plink->attr.name = "properties";
1321 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322 sysfs_attr_init(&p2plink->attr);
1323 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324 if (ret < 0)
1325 return ret;
1326
1327 return 0;
1328}
1329
1330static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331{
1332 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333 struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334 struct kfd_topology_device *cpu_dev;
1335 int ret = 0;
1336 int i, num_cpu;
1337
1338 num_cpu = 0;
1339 list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340 if (cpu_dev->gpu)
1341 break;
1342 num_cpu++;
1343 }
1344
1345 if (list_empty(&kdev->io_link_props))
1346 return -ENODATA;
1347
1348 gpu_link = list_first_entry(&kdev->io_link_props,
1349 struct kfd_iolink_properties, list);
1350
1351 for (i = 0; i < num_cpu; i++) {
1352 /* CPU <--> GPU */
1353 if (gpu_link->node_to == i)
1354 continue;
1355
1356 /* find CPU <--> CPU links */
1357 cpu_link = NULL;
1358 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359 if (cpu_dev) {
1360 list_for_each_entry(tmp_link,
1361 &cpu_dev->io_link_props, list) {
1362 if (tmp_link->node_to == gpu_link->node_to) {
1363 cpu_link = tmp_link;
1364 break;
1365 }
1366 }
1367 }
1368
1369 if (!cpu_link)
1370 return -ENOMEM;
1371
1372 /* CPU <--> CPU <--> GPU, GPU node*/
1373 props = kfd_alloc_struct(props);
1374 if (!props)
1375 return -ENOMEM;
1376
1377 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378 props->weight = gpu_link->weight + cpu_link->weight;
1379 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384 props->node_from = gpu_node;
1385 props->node_to = i;
1386 kdev->node_props.p2p_links_count++;
1387 list_add_tail(&props->list, &kdev->p2p_link_props);
1388 ret = kfd_build_p2p_node_entry(kdev, props);
1389 if (ret < 0)
1390 return ret;
1391
1392 /* for small Bar, no CPU --> GPU in-direct links */
1393 if (kfd_dev_is_large_bar(kdev->gpu)) {
1394 /* CPU <--> CPU <--> GPU, CPU node*/
1395 props2 = kfd_alloc_struct(props2);
1396 if (!props2)
1397 return -ENOMEM;
1398
1399 memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400 props2->node_from = i;
1401 props2->node_to = gpu_node;
1402 props2->kobj = NULL;
1403 cpu_dev->node_props.p2p_links_count++;
1404 list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405 ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406 if (ret < 0)
1407 return ret;
1408 }
1409 }
1410 return ret;
1411}
1412
1413#if defined(CONFIG_HSA_AMD_P2P)
1414static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415 struct kfd_topology_device *peer, int from, int to)
1416{
1417 struct kfd_iolink_properties *props = NULL;
1418 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419 struct kfd_topology_device *cpu_dev;
1420 int ret = 0;
1421
1422 if (!amdgpu_device_is_peer_accessible(
1423 kdev->gpu->adev,
1424 peer->gpu->adev))
1425 return ret;
1426
1427 if (list_empty(&kdev->io_link_props))
1428 return -ENODATA;
1429
1430 iolink1 = list_first_entry(&kdev->io_link_props,
1431 struct kfd_iolink_properties, list);
1432
1433 if (list_empty(&peer->io_link_props))
1434 return -ENODATA;
1435
1436 iolink2 = list_first_entry(&peer->io_link_props,
1437 struct kfd_iolink_properties, list);
1438
1439 props = kfd_alloc_struct(props);
1440 if (!props)
1441 return -ENOMEM;
1442
1443 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445 props->weight = iolink1->weight + iolink2->weight;
1446 props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447 props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451 if (iolink1->node_to != iolink2->node_to) {
1452 /* CPU->CPU link*/
1453 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454 if (cpu_dev) {
1455 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1456 if (iolink3->node_to != iolink2->node_to)
1457 continue;
1458
1459 props->weight += iolink3->weight;
1460 props->min_latency += iolink3->min_latency;
1461 props->max_latency += iolink3->max_latency;
1462 props->min_bandwidth = min(props->min_bandwidth,
1463 iolink3->min_bandwidth);
1464 props->max_bandwidth = min(props->max_bandwidth,
1465 iolink3->max_bandwidth);
1466 break;
1467 }
1468 } else {
1469 WARN(1, "CPU node not found");
1470 }
1471 }
1472
1473 props->node_from = from;
1474 props->node_to = to;
1475 peer->node_props.p2p_links_count++;
1476 list_add_tail(&props->list, &peer->p2p_link_props);
1477 ret = kfd_build_p2p_node_entry(peer, props);
1478
1479 return ret;
1480}
1481#endif
1482
1483static int kfd_dev_create_p2p_links(void)
1484{
1485 struct kfd_topology_device *dev;
1486 struct kfd_topology_device *new_dev;
1487#if defined(CONFIG_HSA_AMD_P2P)
1488 uint32_t i;
1489#endif
1490 uint32_t k;
1491 int ret = 0;
1492
1493 k = 0;
1494 list_for_each_entry(dev, &topology_device_list, list)
1495 k++;
1496 if (k < 2)
1497 return 0;
1498
1499 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1500 if (WARN_ON(!new_dev->gpu))
1501 return 0;
1502
1503 k--;
1504
1505 /* create in-direct links */
1506 ret = kfd_create_indirect_link_prop(new_dev, k);
1507 if (ret < 0)
1508 goto out;
1509
1510 /* create p2p links */
1511#if defined(CONFIG_HSA_AMD_P2P)
1512 i = 0;
1513 list_for_each_entry(dev, &topology_device_list, list) {
1514 if (dev == new_dev)
1515 break;
1516 if (!dev->gpu || !dev->gpu->adev ||
1517 (dev->gpu->kfd->hive_id &&
1518 dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1519 goto next;
1520
1521 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1522 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1523 if (ret < 0)
1524 goto out;
1525
1526 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1527 if (ret < 0)
1528 goto out;
1529next:
1530 i++;
1531 }
1532#endif
1533
1534out:
1535 return ret;
1536}
1537
1538/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1539static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1540 struct kfd_gpu_cache_info *pcache_info,
1541 int cu_bitmask,
1542 int cache_type, unsigned int cu_processor_id,
1543 int cu_block)
1544{
1545 unsigned int cu_sibling_map_mask;
1546 int first_active_cu;
1547 struct kfd_cache_properties *pcache = NULL;
1548
1549 cu_sibling_map_mask = cu_bitmask;
1550 cu_sibling_map_mask >>= cu_block;
1551 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1552 first_active_cu = ffs(cu_sibling_map_mask);
1553
1554 /* CU could be inactive. In case of shared cache find the first active
1555 * CU. and incase of non-shared cache check if the CU is inactive. If
1556 * inactive active skip it
1557 */
1558 if (first_active_cu) {
1559 pcache = kfd_alloc_struct(pcache);
1560 if (!pcache)
1561 return -ENOMEM;
1562
1563 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1564 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1565 pcache->cache_level = pcache_info[cache_type].cache_level;
1566 pcache->cache_size = pcache_info[cache_type].cache_size;
1567 pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1568
1569 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1570 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1571 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1572 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1573 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1574 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1575 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1576 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1577
1578 /* Sibling map is w.r.t processor_id_low, so shift out
1579 * inactive CU
1580 */
1581 cu_sibling_map_mask =
1582 cu_sibling_map_mask >> (first_active_cu - 1);
1583
1584 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1585 pcache->sibling_map[1] =
1586 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1587 pcache->sibling_map[2] =
1588 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1589 pcache->sibling_map[3] =
1590 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1591
1592 pcache->sibling_map_size = 4;
1593 *props_ext = pcache;
1594
1595 return 0;
1596 }
1597 return 1;
1598}
1599
1600/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1601static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1602 struct kfd_gpu_cache_info *pcache_info,
1603 struct amdgpu_cu_info *cu_info,
1604 struct amdgpu_gfx_config *gfx_info,
1605 int cache_type, unsigned int cu_processor_id,
1606 struct kfd_node *knode)
1607{
1608 unsigned int cu_sibling_map_mask;
1609 int first_active_cu;
1610 int i, j, k, xcc, start, end;
1611 int num_xcc = NUM_XCC(knode->xcc_mask);
1612 struct kfd_cache_properties *pcache = NULL;
1613 enum amdgpu_memory_partition mode;
1614 struct amdgpu_device *adev = knode->adev;
1615
1616 start = ffs(knode->xcc_mask) - 1;
1617 end = start + num_xcc;
1618 cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1619 cu_sibling_map_mask &=
1620 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1621 first_active_cu = ffs(cu_sibling_map_mask);
1622
1623 /* CU could be inactive. In case of shared cache find the first active
1624 * CU. and incase of non-shared cache check if the CU is inactive. If
1625 * inactive active skip it
1626 */
1627 if (first_active_cu) {
1628 pcache = kfd_alloc_struct(pcache);
1629 if (!pcache)
1630 return -ENOMEM;
1631
1632 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1633 pcache->processor_id_low = cu_processor_id
1634 + (first_active_cu - 1);
1635 pcache->cache_level = pcache_info[cache_type].cache_level;
1636 pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1637
1638 if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3))
1639 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1640 else
1641 mode = UNKNOWN_MEMORY_PARTITION_MODE;
1642
1643 pcache->cache_size = pcache_info[cache_type].cache_size;
1644 /* Partition mode only affects L3 cache size */
1645 if (mode && pcache->cache_level == 3)
1646 pcache->cache_size /= mode;
1647
1648 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1649 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1650 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1651 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1652 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1653 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1654 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1655 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1656
1657 /* Sibling map is w.r.t processor_id_low, so shift out
1658 * inactive CU
1659 */
1660 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1661 k = 0;
1662
1663 for (xcc = start; xcc < end; xcc++) {
1664 for (i = 0; i < gfx_info->max_shader_engines; i++) {
1665 for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1666 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1667 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1668 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1669 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1670 k += 4;
1671
1672 cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1673 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1674 }
1675 }
1676 }
1677 pcache->sibling_map_size = k;
1678 *props_ext = pcache;
1679 return 0;
1680 }
1681 return 1;
1682}
1683
1684#define KFD_MAX_CACHE_TYPES 6
1685
1686/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1687 * tables
1688 */
1689static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1690{
1691 struct kfd_gpu_cache_info *pcache_info = NULL;
1692 int i, j, k, xcc, start, end;
1693 int ct = 0;
1694 unsigned int cu_processor_id;
1695 int ret;
1696 unsigned int num_cu_shared;
1697 struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1698 struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1699 int gpu_processor_id;
1700 struct kfd_cache_properties *props_ext;
1701 int num_of_entries = 0;
1702 int num_of_cache_types = 0;
1703 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1704
1705
1706 gpu_processor_id = dev->node_props.simd_id_base;
1707
1708 memset(cache_info, 0, sizeof(cache_info));
1709 pcache_info = cache_info;
1710 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1711 if (!num_of_cache_types) {
1712 pr_warn("no cache info found\n");
1713 return;
1714 }
1715
1716 /* For each type of cache listed in the kfd_gpu_cache_info table,
1717 * go through all available Compute Units.
1718 * The [i,j,k] loop will
1719 * if kfd_gpu_cache_info.num_cu_shared = 1
1720 * will parse through all available CU
1721 * If (kfd_gpu_cache_info.num_cu_shared != 1)
1722 * then it will consider only one CU from
1723 * the shared unit
1724 */
1725 start = ffs(kdev->xcc_mask) - 1;
1726 end = start + NUM_XCC(kdev->xcc_mask);
1727
1728 for (ct = 0; ct < num_of_cache_types; ct++) {
1729 cu_processor_id = gpu_processor_id;
1730 if (pcache_info[ct].cache_level == 1) {
1731 for (xcc = start; xcc < end; xcc++) {
1732 for (i = 0; i < gfx_info->max_shader_engines; i++) {
1733 for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1734 for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1735
1736 ret = fill_in_l1_pcache(&props_ext, pcache_info,
1737 cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1738 cu_processor_id, k);
1739
1740 if (ret < 0)
1741 break;
1742
1743 if (!ret) {
1744 num_of_entries++;
1745 list_add_tail(&props_ext->list, &dev->cache_props);
1746 }
1747
1748 /* Move to next CU block */
1749 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1750 gfx_info->max_cu_per_sh) ?
1751 pcache_info[ct].num_cu_shared :
1752 (gfx_info->max_cu_per_sh - k);
1753 cu_processor_id += num_cu_shared;
1754 }
1755 }
1756 }
1757 }
1758 } else {
1759 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1760 cu_info, gfx_info, ct, cu_processor_id, kdev);
1761
1762 if (ret < 0)
1763 break;
1764
1765 if (!ret) {
1766 num_of_entries++;
1767 list_add_tail(&props_ext->list, &dev->cache_props);
1768 }
1769 }
1770 }
1771 dev->node_props.caches_count += num_of_entries;
1772 pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1773}
1774
1775static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1776 struct kfd_topology_device **dev)
1777{
1778 int proximity_domain = ++topology_crat_proximity_domain;
1779 struct list_head temp_topology_device_list;
1780 void *crat_image = NULL;
1781 size_t image_size = 0;
1782 int res;
1783
1784 res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1785 COMPUTE_UNIT_GPU, gpu,
1786 proximity_domain);
1787 if (res) {
1788 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1789 gpu_id);
1790 topology_crat_proximity_domain--;
1791 goto err;
1792 }
1793
1794 INIT_LIST_HEAD(&temp_topology_device_list);
1795
1796 res = kfd_parse_crat_table(crat_image,
1797 &temp_topology_device_list,
1798 proximity_domain);
1799 if (res) {
1800 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1801 gpu_id);
1802 topology_crat_proximity_domain--;
1803 goto err;
1804 }
1805
1806 kfd_topology_update_device_list(&temp_topology_device_list,
1807 &topology_device_list);
1808
1809 *dev = kfd_assign_gpu(gpu);
1810 if (WARN_ON(!*dev)) {
1811 res = -ENODEV;
1812 goto err;
1813 }
1814
1815 /* Fill the cache affinity information here for the GPUs
1816 * using VCRAT
1817 */
1818 kfd_fill_cache_non_crat_info(*dev, gpu);
1819
1820 /* Update the SYSFS tree, since we added another topology
1821 * device
1822 */
1823 res = kfd_topology_update_sysfs();
1824 if (!res)
1825 sys_props.generation_count++;
1826 else
1827 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1828 gpu_id, res);
1829
1830err:
1831 kfd_destroy_crat_image(crat_image);
1832 return res;
1833}
1834
1835static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1836{
1837 bool firmware_supported = true;
1838
1839 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1840 KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1841 uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1842 AMDGPU_MES_API_VERSION_MASK) >>
1843 AMDGPU_MES_API_VERSION_SHIFT;
1844 uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1845 AMDGPU_MES_VERSION_MASK;
1846
1847 firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1848 goto out;
1849 }
1850
1851 /*
1852 * Note: Any unlisted devices here are assumed to support exception handling.
1853 * Add additional checks here as needed.
1854 */
1855 switch (KFD_GC_VERSION(dev->gpu)) {
1856 case IP_VERSION(9, 0, 1):
1857 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1858 break;
1859 case IP_VERSION(9, 1, 0):
1860 case IP_VERSION(9, 2, 1):
1861 case IP_VERSION(9, 2, 2):
1862 case IP_VERSION(9, 3, 0):
1863 case IP_VERSION(9, 4, 0):
1864 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1865 break;
1866 case IP_VERSION(9, 4, 1):
1867 firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1868 break;
1869 case IP_VERSION(9, 4, 2):
1870 firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1871 break;
1872 case IP_VERSION(10, 1, 10):
1873 case IP_VERSION(10, 1, 2):
1874 case IP_VERSION(10, 1, 1):
1875 firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1876 break;
1877 case IP_VERSION(10, 3, 0):
1878 case IP_VERSION(10, 3, 2):
1879 case IP_VERSION(10, 3, 1):
1880 case IP_VERSION(10, 3, 4):
1881 case IP_VERSION(10, 3, 5):
1882 firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1883 break;
1884 case IP_VERSION(10, 1, 3):
1885 case IP_VERSION(10, 3, 3):
1886 firmware_supported = false;
1887 break;
1888 default:
1889 break;
1890 }
1891
1892out:
1893 if (firmware_supported)
1894 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1895}
1896
1897static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1898{
1899 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1900 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1901 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1902
1903 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1904 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1905 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1906
1907 if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1908 dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1909
1910 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1911 if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1912 dev->node_props.debug_prop |=
1913 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1914 HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1915 else
1916 dev->node_props.debug_prop |=
1917 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1918 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1919
1920 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1921 dev->node_props.capability |=
1922 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1923 } else {
1924 dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1925 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1926
1927 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1928 dev->node_props.capability |=
1929 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1930 }
1931
1932 kfd_topology_set_dbg_firmware_support(dev);
1933}
1934
1935int kfd_topology_add_device(struct kfd_node *gpu)
1936{
1937 uint32_t gpu_id;
1938 struct kfd_topology_device *dev;
1939 int res = 0;
1940 int i;
1941 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1942 struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
1943 struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
1944
1945 gpu_id = kfd_generate_gpu_id(gpu);
1946 if (gpu->xcp && !gpu->xcp->ddev) {
1947 dev_warn(gpu->adev->dev,
1948 "Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1949 gpu_id);
1950 return 0;
1951 } else {
1952 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1953 }
1954
1955 /* Check to see if this gpu device exists in the topology_device_list.
1956 * If so, assign the gpu to that device,
1957 * else create a Virtual CRAT for this gpu device and then parse that
1958 * CRAT to create a new topology device. Once created assign the gpu to
1959 * that topology device
1960 */
1961 down_write(&topology_lock);
1962 dev = kfd_assign_gpu(gpu);
1963 if (!dev)
1964 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1965 up_write(&topology_lock);
1966 if (res)
1967 return res;
1968
1969 dev->gpu_id = gpu_id;
1970 gpu->id = gpu_id;
1971
1972 kfd_dev_create_p2p_links();
1973
1974 /* TODO: Move the following lines to function
1975 * kfd_add_non_crat_information
1976 */
1977
1978 /* Fill-in additional information that is not available in CRAT but
1979 * needed for the topology
1980 */
1981 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1982 dev->node_props.name[i] = __tolower(asic_name[i]);
1983 if (asic_name[i] == '\0')
1984 break;
1985 }
1986 dev->node_props.name[i] = '\0';
1987
1988 dev->node_props.simd_arrays_per_engine =
1989 gfx_info->max_sh_per_se;
1990
1991 dev->node_props.gfx_target_version =
1992 gpu->kfd->device_info.gfx_target_version;
1993 dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1994 dev->node_props.device_id = gpu->adev->pdev->device;
1995 dev->node_props.capability |=
1996 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1997 HSA_CAP_ASIC_REVISION_MASK);
1998
1999 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2000 if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
2001 dev->node_props.location_id |= dev->gpu->node_id;
2002
2003 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2004 dev->node_props.max_engine_clk_fcompute =
2005 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2006 dev->node_props.max_engine_clk_ccompute =
2007 cpufreq_quick_get_max(0) / 1000;
2008
2009 if (gpu->xcp)
2010 dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2011 else
2012 dev->node_props.drm_render_minor =
2013 gpu->kfd->shared_resources.drm_render_minor;
2014
2015 dev->node_props.hive_id = gpu->kfd->hive_id;
2016 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2017 dev->node_props.num_sdma_xgmi_engines =
2018 kfd_get_num_xgmi_sdma_engines(gpu);
2019 dev->node_props.num_sdma_queues_per_engine =
2020 gpu->kfd->device_info.num_sdma_queues_per_engine -
2021 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2022 dev->node_props.num_gws = (dev->gpu->gws &&
2023 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2024 dev->gpu->adev->gds.gws_size : 0;
2025 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2026
2027 kfd_fill_mem_clk_max_info(dev);
2028 kfd_fill_iolink_non_crat_info(dev);
2029
2030 switch (dev->gpu->adev->asic_type) {
2031 case CHIP_KAVERI:
2032 case CHIP_HAWAII:
2033 case CHIP_TONGA:
2034 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2035 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2036 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2037 break;
2038 case CHIP_CARRIZO:
2039 case CHIP_FIJI:
2040 case CHIP_POLARIS10:
2041 case CHIP_POLARIS11:
2042 case CHIP_POLARIS12:
2043 case CHIP_VEGAM:
2044 pr_debug("Adding doorbell packet type capability\n");
2045 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2046 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2047 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2048 break;
2049 default:
2050 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2051 WARN(1, "Unexpected ASIC family %u",
2052 dev->gpu->adev->asic_type);
2053 else
2054 kfd_topology_set_capabilities(dev);
2055 }
2056
2057 /*
2058 * Overwrite ATS capability according to needs_iommu_device to fix
2059 * potential missing corresponding bit in CRAT of BIOS.
2060 */
2061 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2062
2063 /* Fix errors in CZ CRAT.
2064 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2065 * because it doesn't consider masked out CUs
2066 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2067 */
2068 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2069 dev->node_props.simd_count =
2070 cu_info->simd_per_cu * cu_info->number;
2071 dev->node_props.max_waves_per_simd = 10;
2072 }
2073
2074 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2075 dev->node_props.capability |=
2076 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2077 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2078 dev->node_props.capability |=
2079 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2080 HSA_CAP_MEM_EDCSUPPORTED : 0;
2081
2082 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2083 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2084 HSA_CAP_RASEVENTNOTIFY : 0;
2085
2086 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2087 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2088
2089 if (dev->gpu->adev->gmc.is_app_apu ||
2090 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2091 dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2092
2093 kfd_debug_print_topology();
2094
2095 kfd_notify_gpu_change(gpu_id, 1);
2096
2097 return 0;
2098}
2099
2100/**
2101 * kfd_topology_update_io_links() - Update IO links after device removal.
2102 * @proximity_domain: Proximity domain value of the dev being removed.
2103 *
2104 * The topology list currently is arranged in increasing order of
2105 * proximity domain.
2106 *
2107 * Two things need to be done when a device is removed:
2108 * 1. All the IO links to this device need to be removed.
2109 * 2. All nodes after the current device node need to move
2110 * up once this device node is removed from the topology
2111 * list. As a result, the proximity domain values for
2112 * all nodes after the node being deleted reduce by 1.
2113 * This would also cause the proximity domain values for
2114 * io links to be updated based on new proximity domain
2115 * values.
2116 *
2117 * Context: The caller must hold write topology_lock.
2118 */
2119static void kfd_topology_update_io_links(int proximity_domain)
2120{
2121 struct kfd_topology_device *dev;
2122 struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2123
2124 list_for_each_entry(dev, &topology_device_list, list) {
2125 if (dev->proximity_domain > proximity_domain)
2126 dev->proximity_domain--;
2127
2128 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2129 /*
2130 * If there is an io link to the dev being deleted
2131 * then remove that IO link also.
2132 */
2133 if (iolink->node_to == proximity_domain) {
2134 list_del(&iolink->list);
2135 dev->node_props.io_links_count--;
2136 } else {
2137 if (iolink->node_from > proximity_domain)
2138 iolink->node_from--;
2139 if (iolink->node_to > proximity_domain)
2140 iolink->node_to--;
2141 }
2142 }
2143
2144 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2145 /*
2146 * If there is a p2p link to the dev being deleted
2147 * then remove that p2p link also.
2148 */
2149 if (p2plink->node_to == proximity_domain) {
2150 list_del(&p2plink->list);
2151 dev->node_props.p2p_links_count--;
2152 } else {
2153 if (p2plink->node_from > proximity_domain)
2154 p2plink->node_from--;
2155 if (p2plink->node_to > proximity_domain)
2156 p2plink->node_to--;
2157 }
2158 }
2159 }
2160}
2161
2162int kfd_topology_remove_device(struct kfd_node *gpu)
2163{
2164 struct kfd_topology_device *dev, *tmp;
2165 uint32_t gpu_id;
2166 int res = -ENODEV;
2167 int i = 0;
2168
2169 down_write(&topology_lock);
2170
2171 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2172 if (dev->gpu == gpu) {
2173 gpu_id = dev->gpu_id;
2174 kfd_remove_sysfs_node_entry(dev);
2175 kfd_release_topology_device(dev);
2176 sys_props.num_devices--;
2177 kfd_topology_update_io_links(i);
2178 topology_crat_proximity_domain = sys_props.num_devices-1;
2179 sys_props.generation_count++;
2180 res = 0;
2181 if (kfd_topology_update_sysfs() < 0)
2182 kfd_topology_release_sysfs();
2183 break;
2184 }
2185 i++;
2186 }
2187
2188 up_write(&topology_lock);
2189
2190 if (!res)
2191 kfd_notify_gpu_change(gpu_id, 0);
2192
2193 return res;
2194}
2195
2196/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2197 * topology. If GPU device is found @idx, then valid kfd_dev pointer is
2198 * returned through @kdev
2199 * Return - 0: On success (@kdev will be NULL for non GPU nodes)
2200 * -1: If end of list
2201 */
2202int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2203{
2204
2205 struct kfd_topology_device *top_dev;
2206 uint8_t device_idx = 0;
2207
2208 *kdev = NULL;
2209 down_read(&topology_lock);
2210
2211 list_for_each_entry(top_dev, &topology_device_list, list) {
2212 if (device_idx == idx) {
2213 *kdev = top_dev->gpu;
2214 up_read(&topology_lock);
2215 return 0;
2216 }
2217
2218 device_idx++;
2219 }
2220
2221 up_read(&topology_lock);
2222
2223 return -1;
2224
2225}
2226
2227static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2228{
2229 int first_cpu_of_numa_node;
2230
2231 if (!cpumask || cpumask == cpu_none_mask)
2232 return -1;
2233 first_cpu_of_numa_node = cpumask_first(cpumask);
2234 if (first_cpu_of_numa_node >= nr_cpu_ids)
2235 return -1;
2236#ifdef CONFIG_X86_64
2237 return cpu_data(first_cpu_of_numa_node).topo.apicid;
2238#else
2239 return first_cpu_of_numa_node;
2240#endif
2241}
2242
2243/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2244 * of the given NUMA node (numa_node_id)
2245 * Return -1 on failure
2246 */
2247int kfd_numa_node_to_apic_id(int numa_node_id)
2248{
2249 if (numa_node_id == -1) {
2250 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2251 return kfd_cpumask_to_apic_id(cpu_online_mask);
2252 }
2253 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2254}
2255
2256#if defined(CONFIG_DEBUG_FS)
2257
2258int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2259{
2260 struct kfd_topology_device *dev;
2261 unsigned int i = 0;
2262 int r = 0;
2263
2264 down_read(&topology_lock);
2265
2266 list_for_each_entry(dev, &topology_device_list, list) {
2267 if (!dev->gpu) {
2268 i++;
2269 continue;
2270 }
2271
2272 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2273 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2274 if (r)
2275 break;
2276 }
2277
2278 up_read(&topology_lock);
2279
2280 return r;
2281}
2282
2283int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2284{
2285 struct kfd_topology_device *dev;
2286 unsigned int i = 0;
2287 int r = 0;
2288
2289 down_read(&topology_lock);
2290
2291 list_for_each_entry(dev, &topology_device_list, list) {
2292 if (!dev->gpu) {
2293 i++;
2294 continue;
2295 }
2296
2297 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2298 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2299 if (r)
2300 break;
2301 }
2302
2303 up_read(&topology_lock);
2304
2305 return r;
2306}
2307
2308#endif
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/pci.h>
27#include <linux/errno.h>
28#include <linux/acpi.h>
29#include <linux/hash.h>
30#include <linux/cpufreq.h>
31#include <linux/log2.h>
32#include <linux/dmi.h>
33#include <linux/atomic.h>
34
35#include "kfd_priv.h"
36#include "kfd_crat.h"
37#include "kfd_topology.h"
38#include "kfd_device_queue_manager.h"
39#include "kfd_iommu.h"
40#include "kfd_svm.h"
41#include "amdgpu_amdkfd.h"
42#include "amdgpu_ras.h"
43#include "amdgpu.h"
44
45/* topology_device_list - Master list of all topology devices */
46static struct list_head topology_device_list;
47static struct kfd_system_properties sys_props;
48
49static DECLARE_RWSEM(topology_lock);
50static uint32_t topology_crat_proximity_domain;
51
52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 uint32_t proximity_domain)
54{
55 struct kfd_topology_device *top_dev;
56 struct kfd_topology_device *device = NULL;
57
58 list_for_each_entry(top_dev, &topology_device_list, list)
59 if (top_dev->proximity_domain == proximity_domain) {
60 device = top_dev;
61 break;
62 }
63
64 return device;
65}
66
67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 uint32_t proximity_domain)
69{
70 struct kfd_topology_device *device = NULL;
71
72 down_read(&topology_lock);
73
74 device = kfd_topology_device_by_proximity_domain_no_lock(
75 proximity_domain);
76 up_read(&topology_lock);
77
78 return device;
79}
80
81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82{
83 struct kfd_topology_device *top_dev = NULL;
84 struct kfd_topology_device *ret = NULL;
85
86 down_read(&topology_lock);
87
88 list_for_each_entry(top_dev, &topology_device_list, list)
89 if (top_dev->gpu_id == gpu_id) {
90 ret = top_dev;
91 break;
92 }
93
94 up_read(&topology_lock);
95
96 return ret;
97}
98
99struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
100{
101 struct kfd_topology_device *top_dev;
102
103 top_dev = kfd_topology_device_by_id(gpu_id);
104 if (!top_dev)
105 return NULL;
106
107 return top_dev->gpu;
108}
109
110struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111{
112 struct kfd_topology_device *top_dev;
113 struct kfd_dev *device = NULL;
114
115 down_read(&topology_lock);
116
117 list_for_each_entry(top_dev, &topology_device_list, list)
118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 device = top_dev->gpu;
120 break;
121 }
122
123 up_read(&topology_lock);
124
125 return device;
126}
127
128struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev)
129{
130 struct kfd_topology_device *top_dev;
131 struct kfd_dev *device = NULL;
132
133 down_read(&topology_lock);
134
135 list_for_each_entry(top_dev, &topology_device_list, list)
136 if (top_dev->gpu && top_dev->gpu->adev == adev) {
137 device = top_dev->gpu;
138 break;
139 }
140
141 up_read(&topology_lock);
142
143 return device;
144}
145
146/* Called with write topology_lock acquired */
147static void kfd_release_topology_device(struct kfd_topology_device *dev)
148{
149 struct kfd_mem_properties *mem;
150 struct kfd_cache_properties *cache;
151 struct kfd_iolink_properties *iolink;
152 struct kfd_iolink_properties *p2plink;
153 struct kfd_perf_properties *perf;
154
155 list_del(&dev->list);
156
157 while (dev->mem_props.next != &dev->mem_props) {
158 mem = container_of(dev->mem_props.next,
159 struct kfd_mem_properties, list);
160 list_del(&mem->list);
161 kfree(mem);
162 }
163
164 while (dev->cache_props.next != &dev->cache_props) {
165 cache = container_of(dev->cache_props.next,
166 struct kfd_cache_properties, list);
167 list_del(&cache->list);
168 kfree(cache);
169 }
170
171 while (dev->io_link_props.next != &dev->io_link_props) {
172 iolink = container_of(dev->io_link_props.next,
173 struct kfd_iolink_properties, list);
174 list_del(&iolink->list);
175 kfree(iolink);
176 }
177
178 while (dev->p2p_link_props.next != &dev->p2p_link_props) {
179 p2plink = container_of(dev->p2p_link_props.next,
180 struct kfd_iolink_properties, list);
181 list_del(&p2plink->list);
182 kfree(p2plink);
183 }
184
185 while (dev->perf_props.next != &dev->perf_props) {
186 perf = container_of(dev->perf_props.next,
187 struct kfd_perf_properties, list);
188 list_del(&perf->list);
189 kfree(perf);
190 }
191
192 kfree(dev);
193}
194
195void kfd_release_topology_device_list(struct list_head *device_list)
196{
197 struct kfd_topology_device *dev;
198
199 while (!list_empty(device_list)) {
200 dev = list_first_entry(device_list,
201 struct kfd_topology_device, list);
202 kfd_release_topology_device(dev);
203 }
204}
205
206static void kfd_release_live_view(void)
207{
208 kfd_release_topology_device_list(&topology_device_list);
209 memset(&sys_props, 0, sizeof(sys_props));
210}
211
212struct kfd_topology_device *kfd_create_topology_device(
213 struct list_head *device_list)
214{
215 struct kfd_topology_device *dev;
216
217 dev = kfd_alloc_struct(dev);
218 if (!dev) {
219 pr_err("No memory to allocate a topology device");
220 return NULL;
221 }
222
223 INIT_LIST_HEAD(&dev->mem_props);
224 INIT_LIST_HEAD(&dev->cache_props);
225 INIT_LIST_HEAD(&dev->io_link_props);
226 INIT_LIST_HEAD(&dev->p2p_link_props);
227 INIT_LIST_HEAD(&dev->perf_props);
228
229 list_add_tail(&dev->list, device_list);
230
231 return dev;
232}
233
234
235#define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
236 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
237 fmt, __VA_ARGS__))
238#define sysfs_show_32bit_prop(buffer, offs, name, value) \
239 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
240#define sysfs_show_64bit_prop(buffer, offs, name, value) \
241 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
242#define sysfs_show_32bit_val(buffer, offs, value) \
243 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
244#define sysfs_show_str_val(buffer, offs, value) \
245 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
246
247static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
248 char *buffer)
249{
250 int offs = 0;
251
252 /* Making sure that the buffer is an empty string */
253 buffer[0] = 0;
254
255 if (attr == &sys_props.attr_genid) {
256 sysfs_show_32bit_val(buffer, offs,
257 sys_props.generation_count);
258 } else if (attr == &sys_props.attr_props) {
259 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
260 sys_props.platform_oem);
261 sysfs_show_64bit_prop(buffer, offs, "platform_id",
262 sys_props.platform_id);
263 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
264 sys_props.platform_rev);
265 } else {
266 offs = -EINVAL;
267 }
268
269 return offs;
270}
271
272static void kfd_topology_kobj_release(struct kobject *kobj)
273{
274 kfree(kobj);
275}
276
277static const struct sysfs_ops sysprops_ops = {
278 .show = sysprops_show,
279};
280
281static struct kobj_type sysprops_type = {
282 .release = kfd_topology_kobj_release,
283 .sysfs_ops = &sysprops_ops,
284};
285
286static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
287 char *buffer)
288{
289 int offs = 0;
290 struct kfd_iolink_properties *iolink;
291
292 /* Making sure that the buffer is an empty string */
293 buffer[0] = 0;
294
295 iolink = container_of(attr, struct kfd_iolink_properties, attr);
296 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
297 return -EPERM;
298 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
299 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
300 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
301 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
302 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
303 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
304 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
305 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
306 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
307 iolink->min_bandwidth);
308 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
309 iolink->max_bandwidth);
310 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
311 iolink->rec_transfer_size);
312 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
313
314 return offs;
315}
316
317static const struct sysfs_ops iolink_ops = {
318 .show = iolink_show,
319};
320
321static struct kobj_type iolink_type = {
322 .release = kfd_topology_kobj_release,
323 .sysfs_ops = &iolink_ops,
324};
325
326static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
327 char *buffer)
328{
329 int offs = 0;
330 struct kfd_mem_properties *mem;
331
332 /* Making sure that the buffer is an empty string */
333 buffer[0] = 0;
334
335 mem = container_of(attr, struct kfd_mem_properties, attr);
336 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
337 return -EPERM;
338 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
339 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
340 mem->size_in_bytes);
341 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
342 sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
343 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
344 mem->mem_clk_max);
345
346 return offs;
347}
348
349static const struct sysfs_ops mem_ops = {
350 .show = mem_show,
351};
352
353static struct kobj_type mem_type = {
354 .release = kfd_topology_kobj_release,
355 .sysfs_ops = &mem_ops,
356};
357
358static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
359 char *buffer)
360{
361 int offs = 0;
362 uint32_t i, j;
363 struct kfd_cache_properties *cache;
364
365 /* Making sure that the buffer is an empty string */
366 buffer[0] = 0;
367 cache = container_of(attr, struct kfd_cache_properties, attr);
368 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
369 return -EPERM;
370 sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
371 cache->processor_id_low);
372 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
373 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
374 sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
375 cache->cacheline_size);
376 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
377 cache->cachelines_per_tag);
378 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
379 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
380 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
381
382 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
383 for (i = 0; i < cache->sibling_map_size; i++)
384 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
385 /* Check each bit */
386 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
387 (cache->sibling_map[i] >> j) & 1);
388
389 /* Replace the last "," with end of line */
390 buffer[offs-1] = '\n';
391 return offs;
392}
393
394static const struct sysfs_ops cache_ops = {
395 .show = kfd_cache_show,
396};
397
398static struct kobj_type cache_type = {
399 .release = kfd_topology_kobj_release,
400 .sysfs_ops = &cache_ops,
401};
402
403/****** Sysfs of Performance Counters ******/
404
405struct kfd_perf_attr {
406 struct kobj_attribute attr;
407 uint32_t data;
408};
409
410static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
411 char *buf)
412{
413 int offs = 0;
414 struct kfd_perf_attr *attr;
415
416 buf[0] = 0;
417 attr = container_of(attrs, struct kfd_perf_attr, attr);
418 if (!attr->data) /* invalid data for PMC */
419 return 0;
420 else
421 return sysfs_show_32bit_val(buf, offs, attr->data);
422}
423
424#define KFD_PERF_DESC(_name, _data) \
425{ \
426 .attr = __ATTR(_name, 0444, perf_show, NULL), \
427 .data = _data, \
428}
429
430static struct kfd_perf_attr perf_attr_iommu[] = {
431 KFD_PERF_DESC(max_concurrent, 0),
432 KFD_PERF_DESC(num_counters, 0),
433 KFD_PERF_DESC(counter_ids, 0),
434};
435/****************************************/
436
437static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
438 char *buffer)
439{
440 int offs = 0;
441 struct kfd_topology_device *dev;
442 uint32_t log_max_watch_addr;
443
444 /* Making sure that the buffer is an empty string */
445 buffer[0] = 0;
446
447 if (strcmp(attr->name, "gpu_id") == 0) {
448 dev = container_of(attr, struct kfd_topology_device,
449 attr_gpuid);
450 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
451 return -EPERM;
452 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
453 }
454
455 if (strcmp(attr->name, "name") == 0) {
456 dev = container_of(attr, struct kfd_topology_device,
457 attr_name);
458
459 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
460 return -EPERM;
461 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
462 }
463
464 dev = container_of(attr, struct kfd_topology_device,
465 attr_props);
466 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
467 return -EPERM;
468 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
469 dev->node_props.cpu_cores_count);
470 sysfs_show_32bit_prop(buffer, offs, "simd_count",
471 dev->gpu ? dev->node_props.simd_count : 0);
472 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
473 dev->node_props.mem_banks_count);
474 sysfs_show_32bit_prop(buffer, offs, "caches_count",
475 dev->node_props.caches_count);
476 sysfs_show_32bit_prop(buffer, offs, "io_links_count",
477 dev->node_props.io_links_count);
478 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
479 dev->node_props.p2p_links_count);
480 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
481 dev->node_props.cpu_core_id_base);
482 sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
483 dev->node_props.simd_id_base);
484 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
485 dev->node_props.max_waves_per_simd);
486 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
487 dev->node_props.lds_size_in_kb);
488 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
489 dev->node_props.gds_size_in_kb);
490 sysfs_show_32bit_prop(buffer, offs, "num_gws",
491 dev->node_props.num_gws);
492 sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
493 dev->node_props.wave_front_size);
494 sysfs_show_32bit_prop(buffer, offs, "array_count",
495 dev->node_props.array_count);
496 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
497 dev->node_props.simd_arrays_per_engine);
498 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
499 dev->node_props.cu_per_simd_array);
500 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
501 dev->node_props.simd_per_cu);
502 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
503 dev->node_props.max_slots_scratch_cu);
504 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
505 dev->node_props.gfx_target_version);
506 sysfs_show_32bit_prop(buffer, offs, "vendor_id",
507 dev->node_props.vendor_id);
508 sysfs_show_32bit_prop(buffer, offs, "device_id",
509 dev->node_props.device_id);
510 sysfs_show_32bit_prop(buffer, offs, "location_id",
511 dev->node_props.location_id);
512 sysfs_show_32bit_prop(buffer, offs, "domain",
513 dev->node_props.domain);
514 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
515 dev->node_props.drm_render_minor);
516 sysfs_show_64bit_prop(buffer, offs, "hive_id",
517 dev->node_props.hive_id);
518 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
519 dev->node_props.num_sdma_engines);
520 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
521 dev->node_props.num_sdma_xgmi_engines);
522 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
523 dev->node_props.num_sdma_queues_per_engine);
524 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
525 dev->node_props.num_cp_queues);
526
527 if (dev->gpu) {
528 log_max_watch_addr =
529 __ilog2_u32(dev->gpu->device_info.num_of_watch_points);
530
531 if (log_max_watch_addr) {
532 dev->node_props.capability |=
533 HSA_CAP_WATCH_POINTS_SUPPORTED;
534
535 dev->node_props.capability |=
536 ((log_max_watch_addr <<
537 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
538 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
539 }
540
541 if (dev->gpu->adev->asic_type == CHIP_TONGA)
542 dev->node_props.capability |=
543 HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
544
545 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
546 dev->node_props.max_engine_clk_fcompute);
547
548 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
549
550 sysfs_show_32bit_prop(buffer, offs, "fw_version",
551 dev->gpu->mec_fw_version);
552 sysfs_show_32bit_prop(buffer, offs, "capability",
553 dev->node_props.capability);
554 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
555 dev->gpu->sdma_fw_version);
556 sysfs_show_64bit_prop(buffer, offs, "unique_id",
557 dev->gpu->adev->unique_id);
558
559 }
560
561 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
562 cpufreq_quick_get_max(0)/1000);
563}
564
565static const struct sysfs_ops node_ops = {
566 .show = node_show,
567};
568
569static struct kobj_type node_type = {
570 .release = kfd_topology_kobj_release,
571 .sysfs_ops = &node_ops,
572};
573
574static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
575{
576 sysfs_remove_file(kobj, attr);
577 kobject_del(kobj);
578 kobject_put(kobj);
579}
580
581static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
582{
583 struct kfd_iolink_properties *p2plink;
584 struct kfd_iolink_properties *iolink;
585 struct kfd_cache_properties *cache;
586 struct kfd_mem_properties *mem;
587 struct kfd_perf_properties *perf;
588
589 if (dev->kobj_iolink) {
590 list_for_each_entry(iolink, &dev->io_link_props, list)
591 if (iolink->kobj) {
592 kfd_remove_sysfs_file(iolink->kobj,
593 &iolink->attr);
594 iolink->kobj = NULL;
595 }
596 kobject_del(dev->kobj_iolink);
597 kobject_put(dev->kobj_iolink);
598 dev->kobj_iolink = NULL;
599 }
600
601 if (dev->kobj_p2plink) {
602 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
603 if (p2plink->kobj) {
604 kfd_remove_sysfs_file(p2plink->kobj,
605 &p2plink->attr);
606 p2plink->kobj = NULL;
607 }
608 kobject_del(dev->kobj_p2plink);
609 kobject_put(dev->kobj_p2plink);
610 dev->kobj_p2plink = NULL;
611 }
612
613 if (dev->kobj_cache) {
614 list_for_each_entry(cache, &dev->cache_props, list)
615 if (cache->kobj) {
616 kfd_remove_sysfs_file(cache->kobj,
617 &cache->attr);
618 cache->kobj = NULL;
619 }
620 kobject_del(dev->kobj_cache);
621 kobject_put(dev->kobj_cache);
622 dev->kobj_cache = NULL;
623 }
624
625 if (dev->kobj_mem) {
626 list_for_each_entry(mem, &dev->mem_props, list)
627 if (mem->kobj) {
628 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
629 mem->kobj = NULL;
630 }
631 kobject_del(dev->kobj_mem);
632 kobject_put(dev->kobj_mem);
633 dev->kobj_mem = NULL;
634 }
635
636 if (dev->kobj_perf) {
637 list_for_each_entry(perf, &dev->perf_props, list) {
638 kfree(perf->attr_group);
639 perf->attr_group = NULL;
640 }
641 kobject_del(dev->kobj_perf);
642 kobject_put(dev->kobj_perf);
643 dev->kobj_perf = NULL;
644 }
645
646 if (dev->kobj_node) {
647 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
648 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
649 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
650 kobject_del(dev->kobj_node);
651 kobject_put(dev->kobj_node);
652 dev->kobj_node = NULL;
653 }
654}
655
656static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
657 uint32_t id)
658{
659 struct kfd_iolink_properties *p2plink;
660 struct kfd_iolink_properties *iolink;
661 struct kfd_cache_properties *cache;
662 struct kfd_mem_properties *mem;
663 struct kfd_perf_properties *perf;
664 int ret;
665 uint32_t i, num_attrs;
666 struct attribute **attrs;
667
668 if (WARN_ON(dev->kobj_node))
669 return -EEXIST;
670
671 /*
672 * Creating the sysfs folders
673 */
674 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
675 if (!dev->kobj_node)
676 return -ENOMEM;
677
678 ret = kobject_init_and_add(dev->kobj_node, &node_type,
679 sys_props.kobj_nodes, "%d", id);
680 if (ret < 0) {
681 kobject_put(dev->kobj_node);
682 return ret;
683 }
684
685 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
686 if (!dev->kobj_mem)
687 return -ENOMEM;
688
689 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
690 if (!dev->kobj_cache)
691 return -ENOMEM;
692
693 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
694 if (!dev->kobj_iolink)
695 return -ENOMEM;
696
697 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
698 if (!dev->kobj_p2plink)
699 return -ENOMEM;
700
701 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
702 if (!dev->kobj_perf)
703 return -ENOMEM;
704
705 /*
706 * Creating sysfs files for node properties
707 */
708 dev->attr_gpuid.name = "gpu_id";
709 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
710 sysfs_attr_init(&dev->attr_gpuid);
711 dev->attr_name.name = "name";
712 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
713 sysfs_attr_init(&dev->attr_name);
714 dev->attr_props.name = "properties";
715 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
716 sysfs_attr_init(&dev->attr_props);
717 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
718 if (ret < 0)
719 return ret;
720 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
721 if (ret < 0)
722 return ret;
723 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
724 if (ret < 0)
725 return ret;
726
727 i = 0;
728 list_for_each_entry(mem, &dev->mem_props, list) {
729 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
730 if (!mem->kobj)
731 return -ENOMEM;
732 ret = kobject_init_and_add(mem->kobj, &mem_type,
733 dev->kobj_mem, "%d", i);
734 if (ret < 0) {
735 kobject_put(mem->kobj);
736 return ret;
737 }
738
739 mem->attr.name = "properties";
740 mem->attr.mode = KFD_SYSFS_FILE_MODE;
741 sysfs_attr_init(&mem->attr);
742 ret = sysfs_create_file(mem->kobj, &mem->attr);
743 if (ret < 0)
744 return ret;
745 i++;
746 }
747
748 i = 0;
749 list_for_each_entry(cache, &dev->cache_props, list) {
750 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
751 if (!cache->kobj)
752 return -ENOMEM;
753 ret = kobject_init_and_add(cache->kobj, &cache_type,
754 dev->kobj_cache, "%d", i);
755 if (ret < 0) {
756 kobject_put(cache->kobj);
757 return ret;
758 }
759
760 cache->attr.name = "properties";
761 cache->attr.mode = KFD_SYSFS_FILE_MODE;
762 sysfs_attr_init(&cache->attr);
763 ret = sysfs_create_file(cache->kobj, &cache->attr);
764 if (ret < 0)
765 return ret;
766 i++;
767 }
768
769 i = 0;
770 list_for_each_entry(iolink, &dev->io_link_props, list) {
771 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
772 if (!iolink->kobj)
773 return -ENOMEM;
774 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
775 dev->kobj_iolink, "%d", i);
776 if (ret < 0) {
777 kobject_put(iolink->kobj);
778 return ret;
779 }
780
781 iolink->attr.name = "properties";
782 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
783 sysfs_attr_init(&iolink->attr);
784 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
785 if (ret < 0)
786 return ret;
787 i++;
788 }
789
790 i = 0;
791 list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
792 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
793 if (!p2plink->kobj)
794 return -ENOMEM;
795 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
796 dev->kobj_p2plink, "%d", i);
797 if (ret < 0) {
798 kobject_put(p2plink->kobj);
799 return ret;
800 }
801
802 p2plink->attr.name = "properties";
803 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
804 sysfs_attr_init(&p2plink->attr);
805 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
806 if (ret < 0)
807 return ret;
808 i++;
809 }
810
811 /* All hardware blocks have the same number of attributes. */
812 num_attrs = ARRAY_SIZE(perf_attr_iommu);
813 list_for_each_entry(perf, &dev->perf_props, list) {
814 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
815 * num_attrs + sizeof(struct attribute_group),
816 GFP_KERNEL);
817 if (!perf->attr_group)
818 return -ENOMEM;
819
820 attrs = (struct attribute **)(perf->attr_group + 1);
821 if (!strcmp(perf->block_name, "iommu")) {
822 /* Information of IOMMU's num_counters and counter_ids is shown
823 * under /sys/bus/event_source/devices/amd_iommu. We don't
824 * duplicate here.
825 */
826 perf_attr_iommu[0].data = perf->max_concurrent;
827 for (i = 0; i < num_attrs; i++)
828 attrs[i] = &perf_attr_iommu[i].attr.attr;
829 }
830 perf->attr_group->name = perf->block_name;
831 perf->attr_group->attrs = attrs;
832 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
833 if (ret < 0)
834 return ret;
835 }
836
837 return 0;
838}
839
840/* Called with write topology lock acquired */
841static int kfd_build_sysfs_node_tree(void)
842{
843 struct kfd_topology_device *dev;
844 int ret;
845 uint32_t i = 0;
846
847 list_for_each_entry(dev, &topology_device_list, list) {
848 ret = kfd_build_sysfs_node_entry(dev, i);
849 if (ret < 0)
850 return ret;
851 i++;
852 }
853
854 return 0;
855}
856
857/* Called with write topology lock acquired */
858static void kfd_remove_sysfs_node_tree(void)
859{
860 struct kfd_topology_device *dev;
861
862 list_for_each_entry(dev, &topology_device_list, list)
863 kfd_remove_sysfs_node_entry(dev);
864}
865
866static int kfd_topology_update_sysfs(void)
867{
868 int ret;
869
870 if (!sys_props.kobj_topology) {
871 sys_props.kobj_topology =
872 kfd_alloc_struct(sys_props.kobj_topology);
873 if (!sys_props.kobj_topology)
874 return -ENOMEM;
875
876 ret = kobject_init_and_add(sys_props.kobj_topology,
877 &sysprops_type, &kfd_device->kobj,
878 "topology");
879 if (ret < 0) {
880 kobject_put(sys_props.kobj_topology);
881 return ret;
882 }
883
884 sys_props.kobj_nodes = kobject_create_and_add("nodes",
885 sys_props.kobj_topology);
886 if (!sys_props.kobj_nodes)
887 return -ENOMEM;
888
889 sys_props.attr_genid.name = "generation_id";
890 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
891 sysfs_attr_init(&sys_props.attr_genid);
892 ret = sysfs_create_file(sys_props.kobj_topology,
893 &sys_props.attr_genid);
894 if (ret < 0)
895 return ret;
896
897 sys_props.attr_props.name = "system_properties";
898 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
899 sysfs_attr_init(&sys_props.attr_props);
900 ret = sysfs_create_file(sys_props.kobj_topology,
901 &sys_props.attr_props);
902 if (ret < 0)
903 return ret;
904 }
905
906 kfd_remove_sysfs_node_tree();
907
908 return kfd_build_sysfs_node_tree();
909}
910
911static void kfd_topology_release_sysfs(void)
912{
913 kfd_remove_sysfs_node_tree();
914 if (sys_props.kobj_topology) {
915 sysfs_remove_file(sys_props.kobj_topology,
916 &sys_props.attr_genid);
917 sysfs_remove_file(sys_props.kobj_topology,
918 &sys_props.attr_props);
919 if (sys_props.kobj_nodes) {
920 kobject_del(sys_props.kobj_nodes);
921 kobject_put(sys_props.kobj_nodes);
922 sys_props.kobj_nodes = NULL;
923 }
924 kobject_del(sys_props.kobj_topology);
925 kobject_put(sys_props.kobj_topology);
926 sys_props.kobj_topology = NULL;
927 }
928}
929
930/* Called with write topology_lock acquired */
931static void kfd_topology_update_device_list(struct list_head *temp_list,
932 struct list_head *master_list)
933{
934 while (!list_empty(temp_list)) {
935 list_move_tail(temp_list->next, master_list);
936 sys_props.num_devices++;
937 }
938}
939
940static void kfd_debug_print_topology(void)
941{
942 struct kfd_topology_device *dev;
943
944 down_read(&topology_lock);
945
946 dev = list_last_entry(&topology_device_list,
947 struct kfd_topology_device, list);
948 if (dev) {
949 if (dev->node_props.cpu_cores_count &&
950 dev->node_props.simd_count) {
951 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
952 dev->node_props.device_id,
953 dev->node_props.vendor_id);
954 } else if (dev->node_props.cpu_cores_count)
955 pr_info("Topology: Add CPU node\n");
956 else if (dev->node_props.simd_count)
957 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
958 dev->node_props.device_id,
959 dev->node_props.vendor_id);
960 }
961 up_read(&topology_lock);
962}
963
964/* Helper function for intializing platform_xx members of
965 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
966 */
967static void kfd_update_system_properties(void)
968{
969 struct kfd_topology_device *dev;
970
971 down_read(&topology_lock);
972 dev = list_last_entry(&topology_device_list,
973 struct kfd_topology_device, list);
974 if (dev) {
975 sys_props.platform_id =
976 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
977 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
978 sys_props.platform_rev = dev->oem_revision;
979 }
980 up_read(&topology_lock);
981}
982
983static void find_system_memory(const struct dmi_header *dm,
984 void *private)
985{
986 struct kfd_mem_properties *mem;
987 u16 mem_width, mem_clock;
988 struct kfd_topology_device *kdev =
989 (struct kfd_topology_device *)private;
990 const u8 *dmi_data = (const u8 *)(dm + 1);
991
992 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
993 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
994 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
995 list_for_each_entry(mem, &kdev->mem_props, list) {
996 if (mem_width != 0xFFFF && mem_width != 0)
997 mem->width = mem_width;
998 if (mem_clock != 0)
999 mem->mem_clk_max = mem_clock;
1000 }
1001 }
1002}
1003
1004/*
1005 * Performance counters information is not part of CRAT but we would like to
1006 * put them in the sysfs under topology directory for Thunk to get the data.
1007 * This function is called before updating the sysfs.
1008 */
1009static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
1010{
1011 /* These are the only counters supported so far */
1012 return kfd_iommu_add_perf_counters(kdev);
1013}
1014
1015/* kfd_add_non_crat_information - Add information that is not currently
1016 * defined in CRAT but is necessary for KFD topology
1017 * @dev - topology device to which addition info is added
1018 */
1019static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
1020{
1021 /* Check if CPU only node. */
1022 if (!kdev->gpu) {
1023 /* Add system memory information */
1024 dmi_walk(find_system_memory, kdev);
1025 }
1026 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1027}
1028
1029/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
1030 * Ignore CRAT for all other devices. AMD APU is identified if both CPU
1031 * and GPU cores are present.
1032 * @device_list - topology device list created by parsing ACPI CRAT table.
1033 * @return - TRUE if invalid, FALSE is valid.
1034 */
1035static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
1036{
1037 struct kfd_topology_device *dev;
1038
1039 list_for_each_entry(dev, device_list, list) {
1040 if (dev->node_props.cpu_cores_count &&
1041 dev->node_props.simd_count)
1042 return false;
1043 }
1044 pr_info("Ignoring ACPI CRAT on non-APU system\n");
1045 return true;
1046}
1047
1048int kfd_topology_init(void)
1049{
1050 void *crat_image = NULL;
1051 size_t image_size = 0;
1052 int ret;
1053 struct list_head temp_topology_device_list;
1054 int cpu_only_node = 0;
1055 struct kfd_topology_device *kdev;
1056 int proximity_domain;
1057
1058 /* topology_device_list - Master list of all topology devices
1059 * temp_topology_device_list - temporary list created while parsing CRAT
1060 * or VCRAT. Once parsing is complete the contents of list is moved to
1061 * topology_device_list
1062 */
1063
1064 /* Initialize the head for the both the lists */
1065 INIT_LIST_HEAD(&topology_device_list);
1066 INIT_LIST_HEAD(&temp_topology_device_list);
1067 init_rwsem(&topology_lock);
1068
1069 memset(&sys_props, 0, sizeof(sys_props));
1070
1071 /* Proximity domains in ACPI CRAT tables start counting at
1072 * 0. The same should be true for virtual CRAT tables created
1073 * at this stage. GPUs added later in kfd_topology_add_device
1074 * use a counter.
1075 */
1076 proximity_domain = 0;
1077
1078 /*
1079 * Get the CRAT image from the ACPI. If ACPI doesn't have one
1080 * or if ACPI CRAT is invalid create a virtual CRAT.
1081 * NOTE: The current implementation expects all AMD APUs to have
1082 * CRAT. If no CRAT is available, it is assumed to be a CPU
1083 */
1084 ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
1085 if (!ret) {
1086 ret = kfd_parse_crat_table(crat_image,
1087 &temp_topology_device_list,
1088 proximity_domain);
1089 if (ret ||
1090 kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1091 kfd_release_topology_device_list(
1092 &temp_topology_device_list);
1093 kfd_destroy_crat_image(crat_image);
1094 crat_image = NULL;
1095 }
1096 }
1097
1098 if (!crat_image) {
1099 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1100 COMPUTE_UNIT_CPU, NULL,
1101 proximity_domain);
1102 cpu_only_node = 1;
1103 if (ret) {
1104 pr_err("Error creating VCRAT table for CPU\n");
1105 return ret;
1106 }
1107
1108 ret = kfd_parse_crat_table(crat_image,
1109 &temp_topology_device_list,
1110 proximity_domain);
1111 if (ret) {
1112 pr_err("Error parsing VCRAT table for CPU\n");
1113 goto err;
1114 }
1115 }
1116
1117 kdev = list_first_entry(&temp_topology_device_list,
1118 struct kfd_topology_device, list);
1119 kfd_add_perf_to_topology(kdev);
1120
1121 down_write(&topology_lock);
1122 kfd_topology_update_device_list(&temp_topology_device_list,
1123 &topology_device_list);
1124 topology_crat_proximity_domain = sys_props.num_devices-1;
1125 ret = kfd_topology_update_sysfs();
1126 up_write(&topology_lock);
1127
1128 if (!ret) {
1129 sys_props.generation_count++;
1130 kfd_update_system_properties();
1131 kfd_debug_print_topology();
1132 } else
1133 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1134
1135 /* For nodes with GPU, this information gets added
1136 * when GPU is detected (kfd_topology_add_device).
1137 */
1138 if (cpu_only_node) {
1139 /* Add additional information to CPU only node created above */
1140 down_write(&topology_lock);
1141 kdev = list_first_entry(&topology_device_list,
1142 struct kfd_topology_device, list);
1143 up_write(&topology_lock);
1144 kfd_add_non_crat_information(kdev);
1145 }
1146
1147err:
1148 kfd_destroy_crat_image(crat_image);
1149 return ret;
1150}
1151
1152void kfd_topology_shutdown(void)
1153{
1154 down_write(&topology_lock);
1155 kfd_topology_release_sysfs();
1156 kfd_release_live_view();
1157 up_write(&topology_lock);
1158}
1159
1160static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1161{
1162 uint32_t hashout;
1163 uint32_t buf[7];
1164 uint64_t local_mem_size;
1165 int i;
1166
1167 if (!gpu)
1168 return 0;
1169
1170 local_mem_size = gpu->local_mem_info.local_mem_size_private +
1171 gpu->local_mem_info.local_mem_size_public;
1172 buf[0] = gpu->adev->pdev->devfn;
1173 buf[1] = gpu->adev->pdev->subsystem_vendor |
1174 (gpu->adev->pdev->subsystem_device << 16);
1175 buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1176 buf[3] = gpu->adev->pdev->device;
1177 buf[4] = gpu->adev->pdev->bus->number;
1178 buf[5] = lower_32_bits(local_mem_size);
1179 buf[6] = upper_32_bits(local_mem_size);
1180
1181 for (i = 0, hashout = 0; i < 7; i++)
1182 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1183
1184 return hashout;
1185}
1186/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1187 * the GPU device is not already present in the topology device
1188 * list then return NULL. This means a new topology device has to
1189 * be created for this GPU.
1190 */
1191static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1192{
1193 struct kfd_topology_device *dev;
1194 struct kfd_topology_device *out_dev = NULL;
1195 struct kfd_mem_properties *mem;
1196 struct kfd_cache_properties *cache;
1197 struct kfd_iolink_properties *iolink;
1198 struct kfd_iolink_properties *p2plink;
1199
1200 list_for_each_entry(dev, &topology_device_list, list) {
1201 /* Discrete GPUs need their own topology device list
1202 * entries. Don't assign them to CPU/APU nodes.
1203 */
1204 if (!gpu->use_iommu_v2 &&
1205 dev->node_props.cpu_cores_count)
1206 continue;
1207
1208 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1209 dev->gpu = gpu;
1210 out_dev = dev;
1211
1212 list_for_each_entry(mem, &dev->mem_props, list)
1213 mem->gpu = dev->gpu;
1214 list_for_each_entry(cache, &dev->cache_props, list)
1215 cache->gpu = dev->gpu;
1216 list_for_each_entry(iolink, &dev->io_link_props, list)
1217 iolink->gpu = dev->gpu;
1218 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1219 p2plink->gpu = dev->gpu;
1220 break;
1221 }
1222 }
1223 return out_dev;
1224}
1225
1226static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1227{
1228 /*
1229 * TODO: Generate an event for thunk about the arrival/removal
1230 * of the GPU
1231 */
1232}
1233
1234/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1235 * patch this after CRAT parsing.
1236 */
1237static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1238{
1239 struct kfd_mem_properties *mem;
1240 struct kfd_local_mem_info local_mem_info;
1241
1242 if (!dev)
1243 return;
1244
1245 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1246 * single bank of VRAM local memory.
1247 * for dGPUs - VCRAT reports only one bank of Local Memory
1248 * for APUs - If CRAT from ACPI reports more than one bank, then
1249 * all the banks will report the same mem_clk_max information
1250 */
1251 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info);
1252
1253 list_for_each_entry(mem, &dev->mem_props, list)
1254 mem->mem_clk_max = local_mem_info.mem_clk_max;
1255}
1256
1257static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1258 struct kfd_topology_device *target_gpu_dev,
1259 struct kfd_iolink_properties *link)
1260{
1261 /* xgmi always supports atomics between links. */
1262 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1263 return;
1264
1265 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1266 if (target_gpu_dev) {
1267 uint32_t cap;
1268
1269 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1270 PCI_EXP_DEVCAP2, &cap);
1271
1272 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1273 PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1274 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1275 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1276 /* set gpu (dev) flags. */
1277 } else {
1278 if (!dev->gpu->pci_atomic_requested ||
1279 dev->gpu->adev->asic_type == CHIP_HAWAII)
1280 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1281 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1282 }
1283}
1284
1285static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1286 struct kfd_iolink_properties *outbound_link,
1287 struct kfd_iolink_properties *inbound_link)
1288{
1289 /* CPU -> GPU with PCIe */
1290 if (!to_dev->gpu &&
1291 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1292 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1293
1294 if (to_dev->gpu) {
1295 /* GPU <-> GPU with PCIe and
1296 * Vega20 with XGMI
1297 */
1298 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1299 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1300 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1301 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1302 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1303 }
1304 }
1305}
1306
1307static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1308{
1309 struct kfd_iolink_properties *link, *inbound_link;
1310 struct kfd_topology_device *peer_dev;
1311
1312 if (!dev || !dev->gpu)
1313 return;
1314
1315 /* GPU only creates direct links so apply flags setting to all */
1316 list_for_each_entry(link, &dev->io_link_props, list) {
1317 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1318 kfd_set_iolink_no_atomics(dev, NULL, link);
1319 peer_dev = kfd_topology_device_by_proximity_domain(
1320 link->node_to);
1321
1322 if (!peer_dev)
1323 continue;
1324
1325 /* Include the CPU peer in GPU hive if connected over xGMI. */
1326 if (!peer_dev->gpu && !peer_dev->node_props.hive_id &&
1327 dev->node_props.hive_id &&
1328 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
1329 peer_dev->node_props.hive_id = dev->node_props.hive_id;
1330
1331 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1332 list) {
1333 if (inbound_link->node_to != link->node_from)
1334 continue;
1335
1336 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1337 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1338 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1339 }
1340 }
1341
1342 /* Create indirect links so apply flags setting to all */
1343 list_for_each_entry(link, &dev->p2p_link_props, list) {
1344 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1345 kfd_set_iolink_no_atomics(dev, NULL, link);
1346 peer_dev = kfd_topology_device_by_proximity_domain(
1347 link->node_to);
1348
1349 if (!peer_dev)
1350 continue;
1351
1352 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1353 list) {
1354 if (inbound_link->node_to != link->node_from)
1355 continue;
1356
1357 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1358 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1359 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1360 }
1361 }
1362}
1363
1364static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1365 struct kfd_iolink_properties *p2plink)
1366{
1367 int ret;
1368
1369 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1370 if (!p2plink->kobj)
1371 return -ENOMEM;
1372
1373 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1374 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1375 if (ret < 0) {
1376 kobject_put(p2plink->kobj);
1377 return ret;
1378 }
1379
1380 p2plink->attr.name = "properties";
1381 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1382 sysfs_attr_init(&p2plink->attr);
1383 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1384 if (ret < 0)
1385 return ret;
1386
1387 return 0;
1388}
1389
1390static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1391{
1392 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1393 struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1394 struct kfd_topology_device *cpu_dev;
1395 int ret = 0;
1396 int i, num_cpu;
1397
1398 num_cpu = 0;
1399 list_for_each_entry(cpu_dev, &topology_device_list, list) {
1400 if (cpu_dev->gpu)
1401 break;
1402 num_cpu++;
1403 }
1404
1405 gpu_link = list_first_entry(&kdev->io_link_props,
1406 struct kfd_iolink_properties, list);
1407 if (!gpu_link)
1408 return -ENOMEM;
1409
1410 for (i = 0; i < num_cpu; i++) {
1411 /* CPU <--> GPU */
1412 if (gpu_link->node_to == i)
1413 continue;
1414
1415 /* find CPU <--> CPU links */
1416 cpu_link = NULL;
1417 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1418 if (cpu_dev) {
1419 list_for_each_entry(tmp_link,
1420 &cpu_dev->io_link_props, list) {
1421 if (tmp_link->node_to == gpu_link->node_to) {
1422 cpu_link = tmp_link;
1423 break;
1424 }
1425 }
1426 }
1427
1428 if (!cpu_link)
1429 return -ENOMEM;
1430
1431 /* CPU <--> CPU <--> GPU, GPU node*/
1432 props = kfd_alloc_struct(props);
1433 if (!props)
1434 return -ENOMEM;
1435
1436 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1437 props->weight = gpu_link->weight + cpu_link->weight;
1438 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1439 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1440 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1441 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1442
1443 props->node_from = gpu_node;
1444 props->node_to = i;
1445 kdev->node_props.p2p_links_count++;
1446 list_add_tail(&props->list, &kdev->p2p_link_props);
1447 ret = kfd_build_p2p_node_entry(kdev, props);
1448 if (ret < 0)
1449 return ret;
1450
1451 /* for small Bar, no CPU --> GPU in-direct links */
1452 if (kfd_dev_is_large_bar(kdev->gpu)) {
1453 /* CPU <--> CPU <--> GPU, CPU node*/
1454 props2 = kfd_alloc_struct(props2);
1455 if (!props2)
1456 return -ENOMEM;
1457
1458 memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1459 props2->node_from = i;
1460 props2->node_to = gpu_node;
1461 props2->kobj = NULL;
1462 cpu_dev->node_props.p2p_links_count++;
1463 list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1464 ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1465 if (ret < 0)
1466 return ret;
1467 }
1468 }
1469 return ret;
1470}
1471
1472#if defined(CONFIG_HSA_AMD_P2P)
1473static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1474 struct kfd_topology_device *peer, int from, int to)
1475{
1476 struct kfd_iolink_properties *props = NULL;
1477 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1478 struct kfd_topology_device *cpu_dev;
1479 int ret = 0;
1480
1481 if (!amdgpu_device_is_peer_accessible(
1482 kdev->gpu->adev,
1483 peer->gpu->adev))
1484 return ret;
1485
1486 iolink1 = list_first_entry(&kdev->io_link_props,
1487 struct kfd_iolink_properties, list);
1488 if (!iolink1)
1489 return -ENOMEM;
1490
1491 iolink2 = list_first_entry(&peer->io_link_props,
1492 struct kfd_iolink_properties, list);
1493 if (!iolink2)
1494 return -ENOMEM;
1495
1496 props = kfd_alloc_struct(props);
1497 if (!props)
1498 return -ENOMEM;
1499
1500 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1501
1502 props->weight = iolink1->weight + iolink2->weight;
1503 props->min_latency = iolink1->min_latency + iolink2->min_latency;
1504 props->max_latency = iolink1->max_latency + iolink2->max_latency;
1505 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1506 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1507
1508 if (iolink1->node_to != iolink2->node_to) {
1509 /* CPU->CPU link*/
1510 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1511 if (cpu_dev) {
1512 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1513 if (iolink3->node_to == iolink2->node_to)
1514 break;
1515
1516 props->weight += iolink3->weight;
1517 props->min_latency += iolink3->min_latency;
1518 props->max_latency += iolink3->max_latency;
1519 props->min_bandwidth = min(props->min_bandwidth,
1520 iolink3->min_bandwidth);
1521 props->max_bandwidth = min(props->max_bandwidth,
1522 iolink3->max_bandwidth);
1523 } else {
1524 WARN(1, "CPU node not found");
1525 }
1526 }
1527
1528 props->node_from = from;
1529 props->node_to = to;
1530 peer->node_props.p2p_links_count++;
1531 list_add_tail(&props->list, &peer->p2p_link_props);
1532 ret = kfd_build_p2p_node_entry(peer, props);
1533
1534 return ret;
1535}
1536#endif
1537
1538static int kfd_dev_create_p2p_links(void)
1539{
1540 struct kfd_topology_device *dev;
1541 struct kfd_topology_device *new_dev;
1542#if defined(CONFIG_HSA_AMD_P2P)
1543 uint32_t i;
1544#endif
1545 uint32_t k;
1546 int ret = 0;
1547
1548 k = 0;
1549 list_for_each_entry(dev, &topology_device_list, list)
1550 k++;
1551 if (k < 2)
1552 return 0;
1553
1554 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1555 if (WARN_ON(!new_dev->gpu))
1556 return 0;
1557
1558 k--;
1559
1560 /* create in-direct links */
1561 ret = kfd_create_indirect_link_prop(new_dev, k);
1562 if (ret < 0)
1563 goto out;
1564
1565 /* create p2p links */
1566#if defined(CONFIG_HSA_AMD_P2P)
1567 i = 0;
1568 list_for_each_entry(dev, &topology_device_list, list) {
1569 if (dev == new_dev)
1570 break;
1571 if (!dev->gpu || !dev->gpu->adev ||
1572 (dev->gpu->hive_id &&
1573 dev->gpu->hive_id == new_dev->gpu->hive_id))
1574 goto next;
1575
1576 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1577 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1578 if (ret < 0)
1579 goto out;
1580
1581 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1582 if (ret < 0)
1583 goto out;
1584next:
1585 i++;
1586 }
1587#endif
1588
1589out:
1590 return ret;
1591}
1592
1593
1594/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1595static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1596 struct kfd_gpu_cache_info *pcache_info,
1597 struct kfd_cu_info *cu_info,
1598 int cu_bitmask,
1599 int cache_type, unsigned int cu_processor_id,
1600 int cu_block)
1601{
1602 unsigned int cu_sibling_map_mask;
1603 int first_active_cu;
1604 struct kfd_cache_properties *pcache = NULL;
1605
1606 cu_sibling_map_mask = cu_bitmask;
1607 cu_sibling_map_mask >>= cu_block;
1608 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1609 first_active_cu = ffs(cu_sibling_map_mask);
1610
1611 /* CU could be inactive. In case of shared cache find the first active
1612 * CU. and incase of non-shared cache check if the CU is inactive. If
1613 * inactive active skip it
1614 */
1615 if (first_active_cu) {
1616 pcache = kfd_alloc_struct(pcache);
1617 if (!pcache)
1618 return -ENOMEM;
1619
1620 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1621 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1622 pcache->cache_level = pcache_info[cache_type].cache_level;
1623 pcache->cache_size = pcache_info[cache_type].cache_size;
1624
1625 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1626 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1627 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1628 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1629 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1630 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1631 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1632 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1633
1634 /* Sibling map is w.r.t processor_id_low, so shift out
1635 * inactive CU
1636 */
1637 cu_sibling_map_mask =
1638 cu_sibling_map_mask >> (first_active_cu - 1);
1639
1640 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1641 pcache->sibling_map[1] =
1642 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1643 pcache->sibling_map[2] =
1644 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1645 pcache->sibling_map[3] =
1646 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1647
1648 pcache->sibling_map_size = 4;
1649 *props_ext = pcache;
1650
1651 return 0;
1652 }
1653 return 1;
1654}
1655
1656/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1657static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1658 struct kfd_gpu_cache_info *pcache_info,
1659 struct kfd_cu_info *cu_info,
1660 int cache_type, unsigned int cu_processor_id)
1661{
1662 unsigned int cu_sibling_map_mask;
1663 int first_active_cu;
1664 int i, j, k;
1665 struct kfd_cache_properties *pcache = NULL;
1666
1667 cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1668 cu_sibling_map_mask &=
1669 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1670 first_active_cu = ffs(cu_sibling_map_mask);
1671
1672 /* CU could be inactive. In case of shared cache find the first active
1673 * CU. and incase of non-shared cache check if the CU is inactive. If
1674 * inactive active skip it
1675 */
1676 if (first_active_cu) {
1677 pcache = kfd_alloc_struct(pcache);
1678 if (!pcache)
1679 return -ENOMEM;
1680
1681 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1682 pcache->processor_id_low = cu_processor_id
1683 + (first_active_cu - 1);
1684 pcache->cache_level = pcache_info[cache_type].cache_level;
1685 pcache->cache_size = pcache_info[cache_type].cache_size;
1686
1687 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1688 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1689 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1690 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1691 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1692 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1693 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1694 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1695
1696 /* Sibling map is w.r.t processor_id_low, so shift out
1697 * inactive CU
1698 */
1699 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1700 k = 0;
1701
1702 for (i = 0; i < cu_info->num_shader_engines; i++) {
1703 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1704 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1705 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1706 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1707 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1708 k += 4;
1709
1710 cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1711 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1712 }
1713 }
1714 pcache->sibling_map_size = k;
1715 *props_ext = pcache;
1716 return 0;
1717 }
1718 return 1;
1719}
1720
1721#define KFD_MAX_CACHE_TYPES 6
1722
1723/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1724 * tables
1725 */
1726static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev)
1727{
1728 struct kfd_gpu_cache_info *pcache_info = NULL;
1729 int i, j, k;
1730 int ct = 0;
1731 unsigned int cu_processor_id;
1732 int ret;
1733 unsigned int num_cu_shared;
1734 struct kfd_cu_info cu_info;
1735 struct kfd_cu_info *pcu_info;
1736 int gpu_processor_id;
1737 struct kfd_cache_properties *props_ext;
1738 int num_of_entries = 0;
1739 int num_of_cache_types = 0;
1740 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1741
1742 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1743 pcu_info = &cu_info;
1744
1745 gpu_processor_id = dev->node_props.simd_id_base;
1746
1747 pcache_info = cache_info;
1748 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1749 if (!num_of_cache_types) {
1750 pr_warn("no cache info found\n");
1751 return;
1752 }
1753
1754 /* For each type of cache listed in the kfd_gpu_cache_info table,
1755 * go through all available Compute Units.
1756 * The [i,j,k] loop will
1757 * if kfd_gpu_cache_info.num_cu_shared = 1
1758 * will parse through all available CU
1759 * If (kfd_gpu_cache_info.num_cu_shared != 1)
1760 * then it will consider only one CU from
1761 * the shared unit
1762 */
1763 for (ct = 0; ct < num_of_cache_types; ct++) {
1764 cu_processor_id = gpu_processor_id;
1765 if (pcache_info[ct].cache_level == 1) {
1766 for (i = 0; i < pcu_info->num_shader_engines; i++) {
1767 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1768 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1769
1770 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1771 pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1772 cu_processor_id, k);
1773
1774 if (ret < 0)
1775 break;
1776
1777 if (!ret) {
1778 num_of_entries++;
1779 list_add_tail(&props_ext->list, &dev->cache_props);
1780 }
1781
1782 /* Move to next CU block */
1783 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1784 pcu_info->num_cu_per_sh) ?
1785 pcache_info[ct].num_cu_shared :
1786 (pcu_info->num_cu_per_sh - k);
1787 cu_processor_id += num_cu_shared;
1788 }
1789 }
1790 }
1791 } else {
1792 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1793 pcu_info, ct, cu_processor_id);
1794
1795 if (ret < 0)
1796 break;
1797
1798 if (!ret) {
1799 num_of_entries++;
1800 list_add_tail(&props_ext->list, &dev->cache_props);
1801 }
1802 }
1803 }
1804 dev->node_props.caches_count += num_of_entries;
1805 pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1806}
1807
1808static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id,
1809 struct kfd_topology_device **dev)
1810{
1811 int proximity_domain = ++topology_crat_proximity_domain;
1812 struct list_head temp_topology_device_list;
1813 void *crat_image = NULL;
1814 size_t image_size = 0;
1815 int res;
1816
1817 res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1818 COMPUTE_UNIT_GPU, gpu,
1819 proximity_domain);
1820 if (res) {
1821 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1822 gpu_id);
1823 topology_crat_proximity_domain--;
1824 goto err;
1825 }
1826
1827 INIT_LIST_HEAD(&temp_topology_device_list);
1828
1829 res = kfd_parse_crat_table(crat_image,
1830 &temp_topology_device_list,
1831 proximity_domain);
1832 if (res) {
1833 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1834 gpu_id);
1835 topology_crat_proximity_domain--;
1836 goto err;
1837 }
1838
1839 kfd_topology_update_device_list(&temp_topology_device_list,
1840 &topology_device_list);
1841
1842 *dev = kfd_assign_gpu(gpu);
1843 if (WARN_ON(!*dev)) {
1844 res = -ENODEV;
1845 goto err;
1846 }
1847
1848 /* Fill the cache affinity information here for the GPUs
1849 * using VCRAT
1850 */
1851 kfd_fill_cache_non_crat_info(*dev, gpu);
1852
1853 /* Update the SYSFS tree, since we added another topology
1854 * device
1855 */
1856 res = kfd_topology_update_sysfs();
1857 if (!res)
1858 sys_props.generation_count++;
1859 else
1860 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1861 gpu_id, res);
1862
1863err:
1864 kfd_destroy_crat_image(crat_image);
1865 return res;
1866}
1867
1868int kfd_topology_add_device(struct kfd_dev *gpu)
1869{
1870 uint32_t gpu_id;
1871 struct kfd_topology_device *dev;
1872 struct kfd_cu_info cu_info;
1873 int res = 0;
1874 int i;
1875 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1876
1877 gpu_id = kfd_generate_gpu_id(gpu);
1878 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1879
1880 /* Check to see if this gpu device exists in the topology_device_list.
1881 * If so, assign the gpu to that device,
1882 * else create a Virtual CRAT for this gpu device and then parse that
1883 * CRAT to create a new topology device. Once created assign the gpu to
1884 * that topology device
1885 */
1886 down_write(&topology_lock);
1887 dev = kfd_assign_gpu(gpu);
1888 if (!dev)
1889 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1890 up_write(&topology_lock);
1891 if (res)
1892 return res;
1893
1894 dev->gpu_id = gpu_id;
1895 gpu->id = gpu_id;
1896
1897 kfd_dev_create_p2p_links();
1898
1899 /* TODO: Move the following lines to function
1900 * kfd_add_non_crat_information
1901 */
1902
1903 /* Fill-in additional information that is not available in CRAT but
1904 * needed for the topology
1905 */
1906
1907 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1908
1909 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1910 dev->node_props.name[i] = __tolower(asic_name[i]);
1911 if (asic_name[i] == '\0')
1912 break;
1913 }
1914 dev->node_props.name[i] = '\0';
1915
1916 dev->node_props.simd_arrays_per_engine =
1917 cu_info.num_shader_arrays_per_engine;
1918
1919 dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version;
1920 dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1921 dev->node_props.device_id = gpu->adev->pdev->device;
1922 dev->node_props.capability |=
1923 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1924 HSA_CAP_ASIC_REVISION_MASK);
1925 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1926 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1927 dev->node_props.max_engine_clk_fcompute =
1928 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1929 dev->node_props.max_engine_clk_ccompute =
1930 cpufreq_quick_get_max(0) / 1000;
1931 dev->node_props.drm_render_minor =
1932 gpu->shared_resources.drm_render_minor;
1933
1934 dev->node_props.hive_id = gpu->hive_id;
1935 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1936 dev->node_props.num_sdma_xgmi_engines =
1937 kfd_get_num_xgmi_sdma_engines(gpu);
1938 dev->node_props.num_sdma_queues_per_engine =
1939 gpu->device_info.num_sdma_queues_per_engine -
1940 gpu->device_info.num_reserved_sdma_queues_per_engine;
1941 dev->node_props.num_gws = (dev->gpu->gws &&
1942 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
1943 dev->gpu->adev->gds.gws_size : 0;
1944 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
1945
1946 kfd_fill_mem_clk_max_info(dev);
1947 kfd_fill_iolink_non_crat_info(dev);
1948
1949 switch (dev->gpu->adev->asic_type) {
1950 case CHIP_KAVERI:
1951 case CHIP_HAWAII:
1952 case CHIP_TONGA:
1953 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1954 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1955 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1956 break;
1957 case CHIP_CARRIZO:
1958 case CHIP_FIJI:
1959 case CHIP_POLARIS10:
1960 case CHIP_POLARIS11:
1961 case CHIP_POLARIS12:
1962 case CHIP_VEGAM:
1963 pr_debug("Adding doorbell packet type capability\n");
1964 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1965 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1966 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1967 break;
1968 default:
1969 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1))
1970 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1971 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1972 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1973 else
1974 WARN(1, "Unexpected ASIC family %u",
1975 dev->gpu->adev->asic_type);
1976 }
1977
1978 /*
1979 * Overwrite ATS capability according to needs_iommu_device to fix
1980 * potential missing corresponding bit in CRAT of BIOS.
1981 */
1982 if (dev->gpu->use_iommu_v2)
1983 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1984 else
1985 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
1986
1987 /* Fix errors in CZ CRAT.
1988 * simd_count: Carrizo CRAT reports wrong simd_count, probably
1989 * because it doesn't consider masked out CUs
1990 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1991 */
1992 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
1993 dev->node_props.simd_count =
1994 cu_info.simd_per_cu * cu_info.cu_active_number;
1995 dev->node_props.max_waves_per_simd = 10;
1996 }
1997
1998 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
1999 dev->node_props.capability |=
2000 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2001 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2002 dev->node_props.capability |=
2003 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2004 HSA_CAP_MEM_EDCSUPPORTED : 0;
2005
2006 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2007 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2008 HSA_CAP_RASEVENTNOTIFY : 0;
2009
2010 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev))
2011 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2012
2013 kfd_debug_print_topology();
2014
2015 kfd_notify_gpu_change(gpu_id, 1);
2016
2017 return 0;
2018}
2019
2020/**
2021 * kfd_topology_update_io_links() - Update IO links after device removal.
2022 * @proximity_domain: Proximity domain value of the dev being removed.
2023 *
2024 * The topology list currently is arranged in increasing order of
2025 * proximity domain.
2026 *
2027 * Two things need to be done when a device is removed:
2028 * 1. All the IO links to this device need to be removed.
2029 * 2. All nodes after the current device node need to move
2030 * up once this device node is removed from the topology
2031 * list. As a result, the proximity domain values for
2032 * all nodes after the node being deleted reduce by 1.
2033 * This would also cause the proximity domain values for
2034 * io links to be updated based on new proximity domain
2035 * values.
2036 *
2037 * Context: The caller must hold write topology_lock.
2038 */
2039static void kfd_topology_update_io_links(int proximity_domain)
2040{
2041 struct kfd_topology_device *dev;
2042 struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2043
2044 list_for_each_entry(dev, &topology_device_list, list) {
2045 if (dev->proximity_domain > proximity_domain)
2046 dev->proximity_domain--;
2047
2048 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2049 /*
2050 * If there is an io link to the dev being deleted
2051 * then remove that IO link also.
2052 */
2053 if (iolink->node_to == proximity_domain) {
2054 list_del(&iolink->list);
2055 dev->node_props.io_links_count--;
2056 } else {
2057 if (iolink->node_from > proximity_domain)
2058 iolink->node_from--;
2059 if (iolink->node_to > proximity_domain)
2060 iolink->node_to--;
2061 }
2062 }
2063
2064 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2065 /*
2066 * If there is a p2p link to the dev being deleted
2067 * then remove that p2p link also.
2068 */
2069 if (p2plink->node_to == proximity_domain) {
2070 list_del(&p2plink->list);
2071 dev->node_props.p2p_links_count--;
2072 } else {
2073 if (p2plink->node_from > proximity_domain)
2074 p2plink->node_from--;
2075 if (p2plink->node_to > proximity_domain)
2076 p2plink->node_to--;
2077 }
2078 }
2079 }
2080}
2081
2082int kfd_topology_remove_device(struct kfd_dev *gpu)
2083{
2084 struct kfd_topology_device *dev, *tmp;
2085 uint32_t gpu_id;
2086 int res = -ENODEV;
2087 int i = 0;
2088
2089 down_write(&topology_lock);
2090
2091 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2092 if (dev->gpu == gpu) {
2093 gpu_id = dev->gpu_id;
2094 kfd_remove_sysfs_node_entry(dev);
2095 kfd_release_topology_device(dev);
2096 sys_props.num_devices--;
2097 kfd_topology_update_io_links(i);
2098 topology_crat_proximity_domain = sys_props.num_devices-1;
2099 sys_props.generation_count++;
2100 res = 0;
2101 if (kfd_topology_update_sysfs() < 0)
2102 kfd_topology_release_sysfs();
2103 break;
2104 }
2105 i++;
2106 }
2107
2108 up_write(&topology_lock);
2109
2110 if (!res)
2111 kfd_notify_gpu_change(gpu_id, 0);
2112
2113 return res;
2114}
2115
2116/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2117 * topology. If GPU device is found @idx, then valid kfd_dev pointer is
2118 * returned through @kdev
2119 * Return - 0: On success (@kdev will be NULL for non GPU nodes)
2120 * -1: If end of list
2121 */
2122int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
2123{
2124
2125 struct kfd_topology_device *top_dev;
2126 uint8_t device_idx = 0;
2127
2128 *kdev = NULL;
2129 down_read(&topology_lock);
2130
2131 list_for_each_entry(top_dev, &topology_device_list, list) {
2132 if (device_idx == idx) {
2133 *kdev = top_dev->gpu;
2134 up_read(&topology_lock);
2135 return 0;
2136 }
2137
2138 device_idx++;
2139 }
2140
2141 up_read(&topology_lock);
2142
2143 return -1;
2144
2145}
2146
2147static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2148{
2149 int first_cpu_of_numa_node;
2150
2151 if (!cpumask || cpumask == cpu_none_mask)
2152 return -1;
2153 first_cpu_of_numa_node = cpumask_first(cpumask);
2154 if (first_cpu_of_numa_node >= nr_cpu_ids)
2155 return -1;
2156#ifdef CONFIG_X86_64
2157 return cpu_data(first_cpu_of_numa_node).apicid;
2158#else
2159 return first_cpu_of_numa_node;
2160#endif
2161}
2162
2163/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2164 * of the given NUMA node (numa_node_id)
2165 * Return -1 on failure
2166 */
2167int kfd_numa_node_to_apic_id(int numa_node_id)
2168{
2169 if (numa_node_id == -1) {
2170 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2171 return kfd_cpumask_to_apic_id(cpu_online_mask);
2172 }
2173 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2174}
2175
2176void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
2177{
2178 struct kfd_topology_device *dev;
2179
2180 gpu->use_iommu_v2 = false;
2181
2182 if (!gpu->device_info.needs_iommu_device)
2183 return;
2184
2185 down_read(&topology_lock);
2186
2187 /* Only use IOMMUv2 if there is an APU topology node with no GPU
2188 * assigned yet. This GPU will be assigned to it.
2189 */
2190 list_for_each_entry(dev, &topology_device_list, list)
2191 if (dev->node_props.cpu_cores_count &&
2192 dev->node_props.simd_count &&
2193 !dev->gpu)
2194 gpu->use_iommu_v2 = true;
2195
2196 up_read(&topology_lock);
2197}
2198
2199#if defined(CONFIG_DEBUG_FS)
2200
2201int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2202{
2203 struct kfd_topology_device *dev;
2204 unsigned int i = 0;
2205 int r = 0;
2206
2207 down_read(&topology_lock);
2208
2209 list_for_each_entry(dev, &topology_device_list, list) {
2210 if (!dev->gpu) {
2211 i++;
2212 continue;
2213 }
2214
2215 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2216 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2217 if (r)
2218 break;
2219 }
2220
2221 up_read(&topology_lock);
2222
2223 return r;
2224}
2225
2226int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2227{
2228 struct kfd_topology_device *dev;
2229 unsigned int i = 0;
2230 int r = 0;
2231
2232 down_read(&topology_lock);
2233
2234 list_for_each_entry(dev, &topology_device_list, list) {
2235 if (!dev->gpu) {
2236 i++;
2237 continue;
2238 }
2239
2240 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2241 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2242 if (r)
2243 break;
2244 }
2245
2246 up_read(&topology_lock);
2247
2248 return r;
2249}
2250
2251#endif