Linux Audio

Check our new training course

Loading...
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef KFD_PRIV_H_INCLUDED
  25#define KFD_PRIV_H_INCLUDED
  26
  27#include <linux/hashtable.h>
  28#include <linux/mmu_notifier.h>
  29#include <linux/memremap.h>
  30#include <linux/mutex.h>
  31#include <linux/types.h>
  32#include <linux/atomic.h>
  33#include <linux/workqueue.h>
  34#include <linux/spinlock.h>
  35#include <linux/kfd_ioctl.h>
  36#include <linux/idr.h>
  37#include <linux/kfifo.h>
  38#include <linux/seq_file.h>
  39#include <linux/kref.h>
  40#include <linux/sysfs.h>
  41#include <linux/device_cgroup.h>
  42#include <drm/drm_file.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_device.h>
  45#include <drm/drm_ioctl.h>
  46#include <kgd_kfd_interface.h>
  47#include <linux/swap.h>
  48
  49#include "amd_shared.h"
  50#include "amdgpu.h"
  51
  52#define KFD_MAX_RING_ENTRY_SIZE	8
  53
  54#define KFD_SYSFS_FILE_MODE 0444
  55
  56/* GPU ID hash width in bits */
  57#define KFD_GPU_ID_HASH_WIDTH 16
  58
  59/* Use upper bits of mmap offset to store KFD driver specific information.
  60 * BITS[63:62] - Encode MMAP type
  61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  62 * BITS[45:0]  - MMAP offset value
  63 *
  64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  65 *  defines are w.r.t to PAGE_SIZE
  66 */
  67#define KFD_MMAP_TYPE_SHIFT	62
  68#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  70#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
  71#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
  72#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
  73
  74#define KFD_MMAP_GPU_ID_SHIFT 46
  75#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  76				<< KFD_MMAP_GPU_ID_SHIFT)
  77#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  78				& KFD_MMAP_GPU_ID_MASK)
  79#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  80				>> KFD_MMAP_GPU_ID_SHIFT)
  81
  82/*
  83 * When working with cp scheduler we should assign the HIQ manually or via
  84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  85 * definitions for Kaveri. In Kaveri only the first ME queues participates
  86 * in the cp scheduling taking that in mind we set the HIQ slot in the
  87 * second ME.
  88 */
  89#define KFD_CIK_HIQ_PIPE 4
  90#define KFD_CIK_HIQ_QUEUE 0
  91
  92/* Macro for allocating structures */
  93#define kfd_alloc_struct(ptr_to_struct)	\
  94	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  95
  96#define KFD_MAX_NUM_OF_PROCESSES 512
  97#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  98
  99/*
 100 * Size of the per-process TBA+TMA buffer: 2 pages
 101 *
 102 * The first chunk is the TBA used for the CWSR ISA code. The second
 103 * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
 104 */
 105#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 106#define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
 107
 108#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 109	(KFD_MAX_NUM_OF_PROCESSES *			\
 110			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 111
 112#define KFD_KERNEL_QUEUE_SIZE 2048
 113
 114#define KFD_UNMAP_LATENCY_MS	(4000)
 115
 116#define KFD_MAX_SDMA_QUEUES	128
 117
 118/*
 119 * 512 = 0x200
 120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 125 */
 126#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 127
 128/**
 129 * enum kfd_ioctl_flags - KFD ioctl flags
 130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
 131 * userspace can use a given ioctl.
 132 */
 133enum kfd_ioctl_flags {
 134	/*
 135	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
 136	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
 137	 * perform privileged operations and load arbitrary data into MQDs and
 138	 * eventually HQD registers when the queue is mapped by HWS. In order to
 139	 * prevent this we should perform additional security checks.
 140	 *
 141	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
 142	 *
 143	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
 144	 * we also allow ioctls with SYS_ADMIN capability.
 145	 */
 146	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
 147};
 148/*
 149 * Kernel module parameter to specify maximum number of supported queues per
 150 * device
 151 */
 152extern int max_num_of_queues_per_device;
 153
 154
 155/* Kernel module parameter to specify the scheduling policy */
 156extern int sched_policy;
 157
 158/*
 159 * Kernel module parameter to specify the maximum process
 160 * number per HW scheduler
 161 */
 162extern int hws_max_conc_proc;
 163
 164extern int cwsr_enable;
 165
 166/*
 167 * Kernel module parameter to specify whether to send sigterm to HSA process on
 168 * unhandled exception
 169 */
 170extern int send_sigterm;
 171
 172/*
 173 * This kernel module is used to simulate large bar machine on non-large bar
 174 * enabled machines.
 175 */
 176extern int debug_largebar;
 177
 
 
 
 
 
 
 178/* Set sh_mem_config.retry_disable on GFX v9 */
 179extern int amdgpu_noretry;
 180
 181/* Halt if HWS hang is detected */
 182extern int halt_if_hws_hang;
 183
 184/* Whether MEC FW support GWS barriers */
 185extern bool hws_gws_support;
 186
 187/* Queue preemption timeout in ms */
 188extern int queue_preemption_timeout_ms;
 189
 190/*
 191 * Don't evict process queues on vm fault
 192 */
 193extern int amdgpu_no_queue_eviction_on_vm_fault;
 194
 195/* Enable eviction debug messages */
 196extern bool debug_evictions;
 197
 198extern struct mutex kfd_processes_mutex;
 199
 200enum cache_policy {
 201	cache_policy_coherent,
 202	cache_policy_noncoherent
 203};
 204
 205#define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
 206#define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
 207#define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
 208	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
 209	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
 210
 211struct kfd_node;
 212
 213struct kfd_event_interrupt_class {
 214	bool (*interrupt_isr)(struct kfd_node *dev,
 215			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 216			bool *patched_flag);
 217	void (*interrupt_wq)(struct kfd_node *dev,
 218			const uint32_t *ih_ring_entry);
 219};
 220
 221struct kfd_device_info {
 222	uint32_t gfx_target_version;
 223	const struct kfd_event_interrupt_class *event_interrupt_class;
 224	unsigned int max_pasid_bits;
 225	unsigned int max_no_of_hqd;
 226	unsigned int doorbell_size;
 227	size_t ih_ring_entry_size;
 228	uint8_t num_of_watch_points;
 229	uint16_t mqd_size_aligned;
 230	bool supports_cwsr;
 
 231	bool needs_pci_atomics;
 232	uint32_t no_atomic_fw_version;
 233	unsigned int num_sdma_queues_per_engine;
 234	unsigned int num_reserved_sdma_queues_per_engine;
 235	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
 236};
 237
 238unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
 239unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
 240
 241struct kfd_mem_obj {
 242	uint32_t range_start;
 243	uint32_t range_end;
 244	uint64_t gpu_addr;
 245	uint32_t *cpu_ptr;
 246	void *gtt_mem;
 247};
 248
 249struct kfd_vmid_info {
 250	uint32_t first_vmid_kfd;
 251	uint32_t last_vmid_kfd;
 252	uint32_t vmid_num_kfd;
 253};
 254
 255#define MAX_KFD_NODES	8
 256
 257struct kfd_dev;
 258
 259struct kfd_node {
 260	unsigned int node_id;
 261	struct amdgpu_device *adev;     /* Duplicated here along with keeping
 262					 * a copy in kfd_dev to save a hop
 263					 */
 264	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
 265					      * keeping a copy in kfd_dev to
 266					      * save a hop
 267					      */
 268	struct kfd_vmid_info vm_info;
 269	unsigned int id;                /* topology stub index */
 270	uint32_t xcc_mask; /* Instance mask of XCCs present */
 271	struct amdgpu_xcp *xcp;
 272
 273	/* Interrupts */
 274	struct kfifo ih_fifo;
 275	struct workqueue_struct *ih_wq;
 276	struct work_struct interrupt_work;
 277	spinlock_t interrupt_lock;
 278
 279	/*
 280	 * Interrupts of interest to KFD are copied
 281	 * from the HW ring into a SW ring.
 282	 */
 283	bool interrupts_active;
 284	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
 285
 286	/* QCM Device instance */
 287	struct device_queue_manager *dqm;
 288
 289	/* Global GWS resource shared between processes */
 290	void *gws;
 291	bool gws_debug_workaround;
 292
 293	/* Clients watching SMI events */
 294	struct list_head smi_clients;
 295	spinlock_t smi_lock;
 296	uint32_t reset_seq_num;
 297
 298	/* SRAM ECC flag */
 299	atomic_t sram_ecc_flag;
 300
 301	/*spm process id */
 302	unsigned int spm_pasid;
 303
 304	/* Maximum process number mapped to HW scheduler */
 305	unsigned int max_proc_per_quantum;
 306
 307	unsigned int compute_vmid_bitmap;
 308
 309	struct kfd_local_mem_info local_mem_info;
 310
 311	struct kfd_dev *kfd;
 312};
 313
 314struct kfd_dev {
 315	struct amdgpu_device *adev;
 316
 317	struct kfd_device_info device_info;
 318
 
 
 
 
 
 
 
 
 
 
 
 319	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 320					   * page used by kernel queue
 321					   */
 322
 323	struct kgd2kfd_shared_resources shared_resources;
 
 
 324
 325	const struct kfd2kgd_calls *kfd2kgd;
 326	struct mutex doorbell_mutex;
 
 
 327
 328	void *gtt_mem;
 329	uint64_t gtt_start_gpu_addr;
 330	void *gtt_start_cpu_ptr;
 331	void *gtt_sa_bitmap;
 332	struct mutex gtt_sa_lock;
 333	unsigned int gtt_sa_chunk_size;
 334	unsigned int gtt_sa_num_of_chunks;
 335
 
 
 
 
 
 
 
 
 
 336	bool init_complete;
 
 
 
 
 
 337
 338	/* Firmware versions */
 339	uint16_t mec_fw_version;
 340	uint16_t mec2_fw_version;
 341	uint16_t sdma_fw_version;
 342
 
 
 
 343	/* CWSR */
 344	bool cwsr_enabled;
 345	const void *cwsr_isa;
 346	unsigned int cwsr_isa_size;
 347
 348	/* xGMI */
 349	uint64_t hive_id;
 350
 351	bool pci_atomic_requested;
 352
 
 
 
 
 
 
 353	/* Compute Profile ref. count */
 354	atomic_t compute_profile;
 355
 356	struct ida doorbell_ida;
 357	unsigned int max_doorbell_slices;
 358
 359	int noretry;
 
 
 360
 361	struct kfd_node *nodes[MAX_KFD_NODES];
 362	unsigned int num_nodes;
 363
 364	/* Track per device allocated watch points */
 365	uint32_t alloc_watch_ids;
 366	spinlock_t watch_points_lock;
 367
 368	/* Kernel doorbells for KFD device */
 369	struct amdgpu_bo *doorbells;
 370
 371	/* bitmap for dynamic doorbell allocation from doorbell object */
 372	unsigned long *doorbell_bitmap;
 373};
 374
 375enum kfd_mempool {
 376	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 377	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 378	KFD_MEMPOOL_FRAMEBUFFER = 3,
 379};
 380
 381/* Character device interface */
 382int kfd_chardev_init(void);
 383void kfd_chardev_exit(void);
 384
 385/**
 386 * enum kfd_unmap_queues_filter - Enum for queue filters.
 387 *
 388 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 389 *						running queues list.
 390 *
 391 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
 392 *						in the run list.
 393 *
 394 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 395 *						specific process.
 396 *
 397 */
 398enum kfd_unmap_queues_filter {
 399	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
 400	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
 401	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
 402};
 403
 404/**
 405 * enum kfd_queue_type - Enum for various queue types.
 406 *
 407 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 408 *
 409 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 410 *
 411 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 412 *
 413 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 414 *
 415 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 416 */
 417enum kfd_queue_type  {
 418	KFD_QUEUE_TYPE_COMPUTE,
 419	KFD_QUEUE_TYPE_SDMA,
 420	KFD_QUEUE_TYPE_HIQ,
 421	KFD_QUEUE_TYPE_DIQ,
 422	KFD_QUEUE_TYPE_SDMA_XGMI
 423};
 424
 425enum kfd_queue_format {
 426	KFD_QUEUE_FORMAT_PM4,
 427	KFD_QUEUE_FORMAT_AQL
 428};
 429
 430enum KFD_QUEUE_PRIORITY {
 431	KFD_QUEUE_PRIORITY_MINIMUM = 0,
 432	KFD_QUEUE_PRIORITY_MAXIMUM = 15
 433};
 434
 435/**
 436 * struct queue_properties
 437 *
 438 * @type: The queue type.
 439 *
 440 * @queue_id: Queue identifier.
 441 *
 442 * @queue_address: Queue ring buffer address.
 443 *
 444 * @queue_size: Queue ring buffer size.
 445 *
 446 * @priority: Defines the queue priority relative to other queues in the
 447 * process.
 448 * This is just an indication and HW scheduling may override the priority as
 449 * necessary while keeping the relative prioritization.
 450 * the priority granularity is from 0 to f which f is the highest priority.
 451 * currently all queues are initialized with the highest priority.
 452 *
 453 * @queue_percent: This field is partially implemented and currently a zero in
 454 * this field defines that the queue is non active.
 455 *
 456 * @read_ptr: User space address which points to the number of dwords the
 457 * cp read from the ring buffer. This field updates automatically by the H/W.
 458 *
 459 * @write_ptr: Defines the number of dwords written to the ring buffer.
 460 *
 461 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 462 * buffer. This field should be similar to write_ptr and the user should
 463 * update this field after updating the write_ptr.
 464 *
 465 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 466 *
 467 * @is_interop: Defines if this is a interop queue. Interop queue means that
 468 * the queue can access both graphics and compute resources.
 469 *
 470 * @is_evicted: Defines if the queue is evicted. Only active queues
 471 * are evicted, rendering them inactive.
 472 *
 473 * @is_active: Defines if the queue is active or not. @is_active and
 474 * @is_evicted are protected by the DQM lock.
 475 *
 476 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 477 * @is_gws should be protected by the DQM lock, since changing it can yield the
 478 * possibility of updating DQM state on number of GWS queues.
 479 *
 480 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 481 * of the queue.
 482 *
 483 * This structure represents the queue properties for each queue no matter if
 484 * it's user mode or kernel mode queue.
 485 *
 486 */
 487
 488struct queue_properties {
 489	enum kfd_queue_type type;
 490	enum kfd_queue_format format;
 491	unsigned int queue_id;
 492	uint64_t queue_address;
 493	uint64_t  queue_size;
 494	uint32_t priority;
 495	uint32_t queue_percent;
 496	uint32_t *read_ptr;
 497	uint32_t *write_ptr;
 498	void __iomem *doorbell_ptr;
 499	uint32_t doorbell_off;
 500	bool is_interop;
 501	bool is_evicted;
 502	bool is_suspended;
 503	bool is_being_destroyed;
 504	bool is_active;
 505	bool is_gws;
 506	uint32_t pm4_target_xcc;
 507	bool is_dbg_wa;
 508	bool is_user_cu_masked;
 509	/* Not relevant for user mode queues in cp scheduling */
 510	unsigned int vmid;
 511	/* Relevant only for sdma queues*/
 512	uint32_t sdma_engine_id;
 513	uint32_t sdma_queue_id;
 514	uint32_t sdma_vm_addr;
 515	/* Relevant only for VI */
 516	uint64_t eop_ring_buffer_address;
 517	uint32_t eop_ring_buffer_size;
 518	uint64_t ctx_save_restore_area_address;
 519	uint32_t ctx_save_restore_area_size;
 520	uint32_t ctl_stack_size;
 521	uint64_t tba_addr;
 522	uint64_t tma_addr;
 523	uint64_t exception_status;
 524};
 525
 526#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
 527			    (q).queue_address != 0 &&	\
 528			    (q).queue_percent > 0 &&	\
 529			    !(q).is_evicted &&		\
 530			    !(q).is_suspended)
 531
 532enum mqd_update_flag {
 533	UPDATE_FLAG_DBG_WA_ENABLE = 1,
 534	UPDATE_FLAG_DBG_WA_DISABLE = 2,
 535	UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
 536};
 537
 538struct mqd_update_info {
 539	union {
 540		struct {
 541			uint32_t count; /* Must be a multiple of 32 */
 542			uint32_t *ptr;
 543		} cu_mask;
 544	};
 545	enum mqd_update_flag update_flag;
 546};
 547
 548/**
 549 * struct queue
 550 *
 551 * @list: Queue linked list.
 552 *
 553 * @mqd: The queue MQD (memory queue descriptor).
 554 *
 555 * @mqd_mem_obj: The MQD local gpu memory object.
 556 *
 557 * @gart_mqd_addr: The MQD gart mc address.
 558 *
 559 * @properties: The queue properties.
 560 *
 561 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 562 *	 that the queue should be executed on.
 563 *
 564 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 565 *	  id.
 566 *
 567 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 568 *
 569 * @process: The kfd process that created this queue.
 570 *
 571 * @device: The kfd device that created this queue.
 572 *
 573 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 574 * otherwise.
 575 *
 576 * This structure represents user mode compute queues.
 577 * It contains all the necessary data to handle such queues.
 578 *
 579 */
 580
 581struct queue {
 582	struct list_head list;
 583	void *mqd;
 584	struct kfd_mem_obj *mqd_mem_obj;
 585	uint64_t gart_mqd_addr;
 586	struct queue_properties properties;
 587
 588	uint32_t mec;
 589	uint32_t pipe;
 590	uint32_t queue;
 591
 592	unsigned int sdma_id;
 593	unsigned int doorbell_id;
 594
 595	struct kfd_process	*process;
 596	struct kfd_node		*device;
 597	void *gws;
 598
 599	/* procfs */
 600	struct kobject kobj;
 601
 602	void *gang_ctx_bo;
 603	uint64_t gang_ctx_gpu_addr;
 604	void *gang_ctx_cpu_ptr;
 605
 606	struct amdgpu_bo *wptr_bo;
 607};
 608
 609enum KFD_MQD_TYPE {
 610	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
 611	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
 612	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 613	KFD_MQD_TYPE_DIQ,		/* for diq */
 614	KFD_MQD_TYPE_MAX
 615};
 616
 617enum KFD_PIPE_PRIORITY {
 618	KFD_PIPE_PRIORITY_CS_LOW = 0,
 619	KFD_PIPE_PRIORITY_CS_MEDIUM,
 620	KFD_PIPE_PRIORITY_CS_HIGH
 621};
 622
 623struct scheduling_resources {
 624	unsigned int vmid_mask;
 625	enum kfd_queue_type type;
 626	uint64_t queue_mask;
 627	uint64_t gws_mask;
 628	uint32_t oac_mask;
 629	uint32_t gds_heap_base;
 630	uint32_t gds_heap_size;
 631};
 632
 633struct process_queue_manager {
 634	/* data */
 635	struct kfd_process	*process;
 636	struct list_head	queues;
 637	unsigned long		*queue_slot_bitmap;
 638};
 639
 640struct qcm_process_device {
 641	/* The Device Queue Manager that owns this data */
 642	struct device_queue_manager *dqm;
 643	struct process_queue_manager *pqm;
 644	/* Queues list */
 645	struct list_head queues_list;
 646	struct list_head priv_queue_list;
 647
 648	unsigned int queue_count;
 649	unsigned int vmid;
 650	bool is_debug;
 651	unsigned int evicted; /* eviction counter, 0=active */
 652
 653	/* This flag tells if we should reset all wavefronts on
 654	 * process termination
 655	 */
 656	bool reset_wavefronts;
 657
 658	/* This flag tells us if this process has a GWS-capable
 659	 * queue that will be mapped into the runlist. It's
 660	 * possible to request a GWS BO, but not have the queue
 661	 * currently mapped, and this changes how the MAP_PROCESS
 662	 * PM4 packet is configured.
 663	 */
 664	bool mapped_gws_queue;
 665
 666	/* All the memory management data should be here too */
 667	uint64_t gds_context_area;
 668	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 669	uint64_t page_table_base;
 670	uint32_t sh_mem_config;
 671	uint32_t sh_mem_bases;
 672	uint32_t sh_mem_ape1_base;
 673	uint32_t sh_mem_ape1_limit;
 674	uint32_t gds_size;
 675	uint32_t num_gws;
 676	uint32_t num_oac;
 677	uint32_t sh_hidden_private_base;
 678
 679	/* CWSR memory */
 680	struct kgd_mem *cwsr_mem;
 681	void *cwsr_kaddr;
 682	uint64_t cwsr_base;
 683	uint64_t tba_addr;
 684	uint64_t tma_addr;
 685
 686	/* IB memory */
 687	struct kgd_mem *ib_mem;
 688	uint64_t ib_base;
 689	void *ib_kaddr;
 690
 691	/* doorbells for kfd process */
 692	struct amdgpu_bo *proc_doorbells;
 693
 694	/* bitmap for dynamic doorbell allocation from the bo */
 695	unsigned long *doorbell_bitmap;
 696};
 697
 698/* KFD Memory Eviction */
 699
 700/* Approx. wait time before attempting to restore evicted BOs */
 701#define PROCESS_RESTORE_TIME_MS 100
 702/* Approx. back off time if restore fails due to lack of memory */
 703#define PROCESS_BACK_OFF_TIME_MS 100
 704/* Approx. time before evicting the process again */
 705#define PROCESS_ACTIVE_TIME_MS 10
 706
 707/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 708 * idr_handle in the least significant 4 bytes
 709 */
 710#define MAKE_HANDLE(gpu_id, idr_handle) \
 711	(((uint64_t)(gpu_id) << 32) + idr_handle)
 712#define GET_GPU_ID(handle) (handle >> 32)
 713#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 714
 715enum kfd_pdd_bound {
 716	PDD_UNBOUND = 0,
 717	PDD_BOUND,
 718	PDD_BOUND_SUSPENDED,
 719};
 720
 721#define MAX_SYSFS_FILENAME_LEN 15
 722
 723/*
 724 * SDMA counter runs at 100MHz frequency.
 725 * We display SDMA activity in microsecond granularity in sysfs.
 726 * As a result, the divisor is 100.
 727 */
 728#define SDMA_ACTIVITY_DIVISOR  100
 729
 730/* Data that is per-process-per device. */
 731struct kfd_process_device {
 732	/* The device that owns this data. */
 733	struct kfd_node *dev;
 734
 735	/* The process that owns this kfd_process_device. */
 736	struct kfd_process *process;
 737
 738	/* per-process-per device QCM data structure */
 739	struct qcm_process_device qpd;
 740
 741	/*Apertures*/
 742	uint64_t lds_base;
 743	uint64_t lds_limit;
 744	uint64_t gpuvm_base;
 745	uint64_t gpuvm_limit;
 746	uint64_t scratch_base;
 747	uint64_t scratch_limit;
 748
 749	/* VM context for GPUVM allocations */
 750	struct file *drm_file;
 751	void *drm_priv;
 
 752
 753	/* GPUVM allocations storage */
 754	struct idr alloc_idr;
 755
 756	/* Flag used to tell the pdd has dequeued from the dqm.
 757	 * This is used to prevent dev->dqm->ops.process_termination() from
 758	 * being called twice when it is already called in IOMMU callback
 759	 * function.
 760	 */
 761	bool already_dequeued;
 762	bool runtime_inuse;
 763
 764	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 765	enum kfd_pdd_bound bound;
 766
 767	/* VRAM usage */
 768	uint64_t vram_usage;
 769	struct attribute attr_vram;
 770	char vram_filename[MAX_SYSFS_FILENAME_LEN];
 771
 772	/* SDMA activity tracking */
 773	uint64_t sdma_past_activity_counter;
 774	struct attribute attr_sdma;
 775	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 776
 777	/* Eviction activity tracking */
 778	uint64_t last_evict_timestamp;
 779	atomic64_t evict_duration_counter;
 780	struct attribute attr_evict;
 781
 782	struct kobject *kobj_stats;
 
 783
 784	/*
 785	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
 786	 * that is associated with device encoded by "this" struct instance. The
 787	 * value reflects CU usage by all of the waves launched by this process
 788	 * on this device. A very important property of occupancy parameter is
 789	 * that its value is a snapshot of current use.
 790	 *
 791	 * Following is to be noted regarding how this parameter is reported:
 792	 *
 793	 *  The number of waves that a CU can launch is limited by couple of
 794	 *  parameters. These are encoded by struct amdgpu_cu_info instance
 795	 *  that is part of every device definition. For GFX9 devices this
 796	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
 797	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
 798	 *  when they do use scratch memory. This could change for future
 799	 *  devices and therefore this example should be considered as a guide.
 800	 *
 801	 *  All CU's of a device are available for the process. This may not be true
 802	 *  under certain conditions - e.g. CU masking.
 803	 *
 804	 *  Finally number of CU's that are occupied by a process is affected by both
 805	 *  number of CU's a device has along with number of other competing processes
 806	 */
 807	struct attribute attr_cu_occupancy;
 808
 809	/* sysfs counters for GPU retry fault and page migration tracking */
 810	struct kobject *kobj_counters;
 811	struct attribute attr_faults;
 812	struct attribute attr_page_in;
 813	struct attribute attr_page_out;
 814	uint64_t faults;
 815	uint64_t page_in;
 816	uint64_t page_out;
 817
 818	/* Exception code status*/
 819	uint64_t exception_status;
 820	void *vm_fault_exc_data;
 821	size_t vm_fault_exc_data_size;
 822
 823	/* Tracks debug per-vmid request settings */
 824	uint32_t spi_dbg_override;
 825	uint32_t spi_dbg_launch_mode;
 826	uint32_t watch_points[4];
 827	uint32_t alloc_watch_ids;
 828
 829	/*
 830	 * If this process has been checkpointed before, then the user
 831	 * application will use the original gpu_id on the
 832	 * checkpointed node to refer to this device.
 833	 */
 834	uint32_t user_gpu_id;
 835
 836	void *proc_ctx_bo;
 837	uint64_t proc_ctx_gpu_addr;
 838	void *proc_ctx_cpu_ptr;
 839};
 840
 841#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 842
 843struct svm_range_list {
 844	struct mutex			lock;
 845	struct rb_root_cached		objects;
 846	struct list_head		list;
 847	struct work_struct		deferred_list_work;
 848	struct list_head		deferred_range_list;
 849	struct list_head                criu_svm_metadata_list;
 850	spinlock_t			deferred_list_lock;
 851	atomic_t			evicted_ranges;
 852	atomic_t			drain_pagefaults;
 853	struct delayed_work		restore_work;
 854	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
 855	struct task_struct		*faulting_task;
 856};
 857
 858/* Process data */
 859struct kfd_process {
 860	/*
 861	 * kfd_process are stored in an mm_struct*->kfd_process*
 862	 * hash table (kfd_processes in kfd_process.c)
 863	 */
 864	struct hlist_node kfd_processes;
 865
 866	/*
 867	 * Opaque pointer to mm_struct. We don't hold a reference to
 868	 * it so it should never be dereferenced from here. This is
 869	 * only used for looking up processes by their mm.
 870	 */
 871	void *mm;
 872
 873	struct kref ref;
 874	struct work_struct release_work;
 875
 876	struct mutex mutex;
 877
 878	/*
 879	 * In any process, the thread that started main() is the lead
 880	 * thread and outlives the rest.
 881	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 882	 * It can also be used for safely getting a reference to the
 883	 * mm_struct of the process.
 884	 */
 885	struct task_struct *lead_thread;
 886
 887	/* We want to receive a notification when the mm_struct is destroyed */
 888	struct mmu_notifier mmu_notifier;
 889
 890	u32 pasid;
 891
 892	/*
 893	 * Array of kfd_process_device pointers,
 894	 * one for each device the process is using.
 895	 */
 896	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
 897	uint32_t n_pdds;
 898
 899	struct process_queue_manager pqm;
 900
 901	/*Is the user space process 32 bit?*/
 902	bool is_32bit_user_mode;
 903
 904	/* Event-related data */
 905	struct mutex event_mutex;
 906	/* Event ID allocator and lookup */
 907	struct idr event_idr;
 908	/* Event page */
 909	u64 signal_handle;
 910	struct kfd_signal_page *signal_page;
 911	size_t signal_mapped_size;
 912	size_t signal_event_count;
 913	bool signal_event_limit_reached;
 914
 915	/* Information used for memory eviction */
 916	void *kgd_process_info;
 917	/* Eviction fence that is attached to all the BOs of this process. The
 918	 * fence will be triggered during eviction and new one will be created
 919	 * during restore
 920	 */
 921	struct dma_fence __rcu *ef;
 922
 923	/* Work items for evicting and restoring BOs */
 924	struct delayed_work eviction_work;
 925	struct delayed_work restore_work;
 926	/* seqno of the last scheduled eviction */
 927	unsigned int last_eviction_seqno;
 928	/* Approx. the last timestamp (in jiffies) when the process was
 929	 * restored after an eviction
 930	 */
 931	unsigned long last_restore_timestamp;
 932
 933	/* Indicates device process is debug attached with reserved vmid. */
 934	bool debug_trap_enabled;
 935
 936	/* per-process-per device debug event fd file */
 937	struct file *dbg_ev_file;
 938
 939	/* If the process is a kfd debugger, we need to know so we can clean
 940	 * up at exit time.  If a process enables debugging on itself, it does
 941	 * its own clean-up, so we don't set the flag here.  We track this by
 942	 * counting the number of processes this process is debugging.
 943	 */
 944	atomic_t debugged_process_count;
 945
 946	/* If the process is a debugged, this is the debugger process */
 947	struct kfd_process *debugger_process;
 948
 949	/* Kobj for our procfs */
 950	struct kobject *kobj;
 951	struct kobject *kobj_queues;
 952	struct attribute attr_pasid;
 953
 954	/* Keep track cwsr init */
 955	bool has_cwsr;
 956
 957	/* Exception code enable mask and status */
 958	uint64_t exception_enable_mask;
 959	uint64_t exception_status;
 960
 961	/* Used to drain stale interrupts */
 962	wait_queue_head_t wait_irq_drain;
 963	bool irq_drain_is_open;
 964
 965	/* shared virtual memory registered by this process */
 966	struct svm_range_list svms;
 967
 968	bool xnack_enabled;
 969
 970	/* Work area for debugger event writer worker. */
 971	struct work_struct debug_event_workarea;
 972
 973	/* Tracks debug per-vmid request for debug flags */
 974	u32 dbg_flags;
 975
 976	atomic_t poison;
 977	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
 978	bool queues_paused;
 979
 980	/* Tracks runtime enable status */
 981	struct semaphore runtime_enable_sema;
 982	bool is_runtime_retry;
 983	struct kfd_runtime_info runtime_info;
 984};
 985
 986#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 987extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 988extern struct srcu_struct kfd_processes_srcu;
 989
 990/**
 991 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 992 *
 993 * @filep: pointer to file structure.
 994 * @p: amdkfd process pointer.
 995 * @data: pointer to arg that was copied from user.
 996 *
 997 * Return: returns ioctl completion code.
 998 */
 999typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1000				void *data);
1001
1002struct amdkfd_ioctl_desc {
1003	unsigned int cmd;
1004	int flags;
1005	amdkfd_ioctl_t *func;
1006	unsigned int cmd_drv;
1007	const char *name;
1008};
1009bool kfd_dev_is_large_bar(struct kfd_node *dev);
1010
1011int kfd_process_create_wq(void);
1012void kfd_process_destroy_wq(void);
1013void kfd_cleanup_processes(void);
1014struct kfd_process *kfd_create_process(struct task_struct *thread);
1015struct kfd_process *kfd_get_process(const struct task_struct *task);
1016struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
1017struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1018
1019int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1020int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1021				uint32_t *gpuid, uint32_t *gpuidx);
 
1022static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1023				uint32_t gpuidx, uint32_t *gpuid) {
1024	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1025}
1026static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1027				struct kfd_process *p, uint32_t gpuidx) {
1028	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1029}
1030
1031void kfd_unref_process(struct kfd_process *p);
1032int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1033int kfd_process_restore_queues(struct kfd_process *p);
1034void kfd_suspend_all_processes(void);
1035int kfd_resume_all_processes(void);
1036
1037struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1038							 uint32_t gpu_id);
1039
1040int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1041
1042int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1043			       struct file *drm_file);
1044struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1045						struct kfd_process *p);
1046struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1047							struct kfd_process *p);
1048struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1049							struct kfd_process *p);
1050
1051bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1052
1053int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1054			  struct vm_area_struct *vma);
1055
1056/* KFD process API for creating and translating handles */
1057int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1058					void *mem);
1059void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1060					int handle);
1061void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1062					int handle);
1063struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1064
1065/* PASIDs */
1066int kfd_pasid_init(void);
1067void kfd_pasid_exit(void);
1068bool kfd_set_pasid_limit(unsigned int new_limit);
1069unsigned int kfd_get_pasid_limit(void);
1070u32 kfd_pasid_alloc(void);
1071void kfd_pasid_free(u32 pasid);
1072
1073/* Doorbells */
1074size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1075int kfd_doorbell_init(struct kfd_dev *kfd);
1076void kfd_doorbell_fini(struct kfd_dev *kfd);
1077int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1078		      struct vm_area_struct *vma);
1079void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1080					unsigned int *doorbell_off);
1081void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1082u32 read_kernel_doorbell(u32 __iomem *db);
1083void write_kernel_doorbell(void __iomem *db, u32 value);
1084void write_kernel_doorbell64(void __iomem *db, u64 value);
1085unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1086					struct kfd_process_device *pdd,
1087					unsigned int doorbell_id);
1088phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1089int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1090				struct kfd_process_device *pdd);
1091void kfd_free_process_doorbells(struct kfd_dev *kfd,
1092				struct kfd_process_device *pdd);
1093/* GTT Sub-Allocator */
1094
1095int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1096			struct kfd_mem_obj **mem_obj);
1097
1098int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1099
1100extern struct device *kfd_device;
1101
1102/* KFD's procfs */
1103void kfd_procfs_init(void);
1104void kfd_procfs_shutdown(void);
1105int kfd_procfs_add_queue(struct queue *q);
1106void kfd_procfs_del_queue(struct queue *q);
1107
1108/* Topology */
1109int kfd_topology_init(void);
1110void kfd_topology_shutdown(void);
1111int kfd_topology_add_device(struct kfd_node *gpu);
1112int kfd_topology_remove_device(struct kfd_node *gpu);
1113struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1114						uint32_t proximity_domain);
1115struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1116						uint32_t proximity_domain);
1117struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1118struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1119struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1120static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1121					uint32_t vmid)
1122{
1123	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1124	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1125}
1126static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1127					uint32_t node_id, uint32_t vmid) {
1128	struct kfd_dev *dev = adev->kfd.dev;
1129	uint32_t i;
1130
1131	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3))
1132		return dev->nodes[0];
1133
1134	for (i = 0; i < dev->num_nodes; i++)
1135		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1136			return dev->nodes[i];
1137
1138	return NULL;
1139}
1140int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1141int kfd_numa_node_to_apic_id(int numa_node_id);
 
1142
1143/* Interrupts */
1144#define	KFD_IRQ_FENCE_CLIENTID	0xff
1145#define	KFD_IRQ_FENCE_SOURCEID	0xff
1146#define	KFD_IRQ_IS_FENCE(client, source)				\
1147				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1148				(source) == KFD_IRQ_FENCE_SOURCEID)
1149int kfd_interrupt_init(struct kfd_node *dev);
1150void kfd_interrupt_exit(struct kfd_node *dev);
1151bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1152bool interrupt_is_wanted(struct kfd_node *dev,
1153				const uint32_t *ih_ring_entry,
1154				uint32_t *patched_ihre, bool *flag);
1155int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1156void kfd_process_close_interrupt_drain(unsigned int pasid);
1157
1158/* amdkfd Apertures */
1159int kfd_init_apertures(struct kfd_process *process);
1160
1161void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1162				  uint64_t tba_addr,
1163				  uint64_t tma_addr);
1164void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1165				     bool enabled);
1166
1167/* CWSR initialization */
1168int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1169
1170/* CRIU */
1171/*
1172 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1173 * structures:
1174 * kfd_criu_process_priv_data
1175 * kfd_criu_device_priv_data
1176 * kfd_criu_bo_priv_data
1177 * kfd_criu_queue_priv_data
1178 * kfd_criu_event_priv_data
1179 * kfd_criu_svm_range_priv_data
1180 */
1181
1182#define KFD_CRIU_PRIV_VERSION 1
1183
1184struct kfd_criu_process_priv_data {
1185	uint32_t version;
1186	uint32_t xnack_mode;
1187};
1188
1189struct kfd_criu_device_priv_data {
1190	/* For future use */
1191	uint64_t reserved;
1192};
1193
1194struct kfd_criu_bo_priv_data {
1195	uint64_t user_addr;
1196	uint32_t idr_handle;
1197	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1198};
1199
1200/*
1201 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1202 * kfd_criu_svm_range_priv_data is the object type
1203 */
1204enum kfd_criu_object_type {
1205	KFD_CRIU_OBJECT_TYPE_QUEUE,
1206	KFD_CRIU_OBJECT_TYPE_EVENT,
1207	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1208};
1209
1210struct kfd_criu_svm_range_priv_data {
1211	uint32_t object_type;
1212	uint64_t start_addr;
1213	uint64_t size;
1214	/* Variable length array of attributes */
1215	struct kfd_ioctl_svm_attribute attrs[];
1216};
1217
1218struct kfd_criu_queue_priv_data {
1219	uint32_t object_type;
1220	uint64_t q_address;
1221	uint64_t q_size;
1222	uint64_t read_ptr_addr;
1223	uint64_t write_ptr_addr;
1224	uint64_t doorbell_off;
1225	uint64_t eop_ring_buffer_address;
1226	uint64_t ctx_save_restore_area_address;
1227	uint32_t gpu_id;
1228	uint32_t type;
1229	uint32_t format;
1230	uint32_t q_id;
1231	uint32_t priority;
1232	uint32_t q_percent;
1233	uint32_t doorbell_id;
1234	uint32_t gws;
1235	uint32_t sdma_id;
1236	uint32_t eop_ring_buffer_size;
1237	uint32_t ctx_save_restore_area_size;
1238	uint32_t ctl_stack_size;
1239	uint32_t mqd_size;
1240};
1241
1242struct kfd_criu_event_priv_data {
1243	uint32_t object_type;
1244	uint64_t user_handle;
1245	uint32_t event_id;
1246	uint32_t auto_reset;
1247	uint32_t type;
1248	uint32_t signaled;
1249
1250	union {
1251		struct kfd_hsa_memory_exception_data memory_exception_data;
1252		struct kfd_hsa_hw_exception_data hw_exception_data;
1253	};
1254};
1255
1256int kfd_process_get_queue_info(struct kfd_process *p,
1257			       uint32_t *num_queues,
1258			       uint64_t *priv_data_sizes);
1259
1260int kfd_criu_checkpoint_queues(struct kfd_process *p,
1261			 uint8_t __user *user_priv_data,
1262			 uint64_t *priv_data_offset);
1263
1264int kfd_criu_restore_queue(struct kfd_process *p,
1265			   uint8_t __user *user_priv_data,
1266			   uint64_t *priv_data_offset,
1267			   uint64_t max_priv_data_size);
1268
1269int kfd_criu_checkpoint_events(struct kfd_process *p,
1270			 uint8_t __user *user_priv_data,
1271			 uint64_t *priv_data_offset);
1272
1273int kfd_criu_restore_event(struct file *devkfd,
1274			   struct kfd_process *p,
1275			   uint8_t __user *user_priv_data,
1276			   uint64_t *priv_data_offset,
1277			   uint64_t max_priv_data_size);
1278/* CRIU - End */
1279
1280/* Queue Context Management */
1281int init_queue(struct queue **q, const struct queue_properties *properties);
1282void uninit_queue(struct queue *q);
1283void print_queue_properties(struct queue_properties *q);
1284void print_queue(struct queue *q);
1285
1286struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1287		struct kfd_node *dev);
 
 
1288struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1289		struct kfd_node *dev);
 
 
1290struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1291		struct kfd_node *dev);
1292struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1293		struct kfd_node *dev);
1294struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1295		struct kfd_node *dev);
1296struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1297void device_queue_manager_uninit(struct device_queue_manager *dqm);
1298struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1299					enum kfd_queue_type type);
1300void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1301int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1302
1303/* Process Queue Manager */
1304struct process_queue_node {
1305	struct queue *q;
1306	struct kernel_queue *kq;
1307	struct list_head process_queue_list;
1308};
1309
1310void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1311void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1312int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1313void pqm_uninit(struct process_queue_manager *pqm);
1314int pqm_create_queue(struct process_queue_manager *pqm,
1315			    struct kfd_node *dev,
1316			    struct file *f,
1317			    struct queue_properties *properties,
1318			    unsigned int *qid,
1319			    struct amdgpu_bo *wptr_bo,
1320			    const struct kfd_criu_queue_priv_data *q_data,
1321			    const void *restore_mqd,
1322			    const void *restore_ctl_stack,
1323			    uint32_t *p_doorbell_offset_in_process);
1324int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1325int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1326			struct queue_properties *p);
1327int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1328			struct mqd_update_info *minfo);
1329int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1330			void *gws);
1331struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1332						unsigned int qid);
1333struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1334						unsigned int qid);
1335int pqm_get_wave_state(struct process_queue_manager *pqm,
1336		       unsigned int qid,
1337		       void __user *ctl_stack,
1338		       u32 *ctl_stack_used_size,
1339		       u32 *save_area_used_size);
1340int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1341			   uint64_t exception_clear_mask,
1342			   void __user *buf,
1343			   int *num_qss_entries,
1344			   uint32_t *entry_size);
1345
1346int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1347			      uint64_t fence_value,
1348			      unsigned int timeout_ms);
1349
1350int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1351				  unsigned int qid,
1352				  u32 *mqd_size,
1353				  u32 *ctl_stack_size);
1354/* Packet Manager */
1355
1356#define KFD_FENCE_COMPLETED (100)
1357#define KFD_FENCE_INIT   (10)
1358
1359struct packet_manager {
1360	struct device_queue_manager *dqm;
1361	struct kernel_queue *priv_queue;
1362	struct mutex lock;
1363	bool allocated;
1364	struct kfd_mem_obj *ib_buffer_obj;
1365	unsigned int ib_size_bytes;
1366	bool is_over_subscription;
1367
1368	const struct packet_manager_funcs *pmf;
1369};
1370
1371struct packet_manager_funcs {
1372	/* Support ASIC-specific packet formats for PM4 packets */
1373	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1374			struct qcm_process_device *qpd);
1375	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1376			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1377	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1378			struct scheduling_resources *res);
1379	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1380			struct queue *q, bool is_static);
1381	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1382			enum kfd_unmap_queues_filter mode,
1383			uint32_t filter_param, bool reset);
1384	int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
1385			uint32_t grace_period);
1386	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1387			uint64_t fence_address,	uint64_t fence_value);
1388	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1389
1390	/* Packet sizes */
1391	int map_process_size;
1392	int runlist_size;
1393	int set_resources_size;
1394	int map_queues_size;
1395	int unmap_queues_size;
1396	int set_grace_period_size;
1397	int query_status_size;
1398	int release_mem_size;
1399};
1400
1401extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1402extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1403extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1404
1405int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1406void pm_uninit(struct packet_manager *pm, bool hanging);
1407int pm_send_set_resources(struct packet_manager *pm,
1408				struct scheduling_resources *res);
1409int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1410int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1411				uint64_t fence_value);
1412
1413int pm_send_unmap_queue(struct packet_manager *pm,
1414			enum kfd_unmap_queues_filter mode,
1415			uint32_t filter_param, bool reset);
1416
1417void pm_release_ib(struct packet_manager *pm);
1418
1419int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
1420
1421/* Following PM funcs can be shared among VI and AI */
1422unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1423
1424uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1425
1426/* Events */
1427extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1428extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1429extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1430extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1431extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1432
1433extern const struct kfd_device_global_init_class device_global_init_class_cik;
1434
1435int kfd_event_init_process(struct kfd_process *p);
1436void kfd_event_free_process(struct kfd_process *p);
1437int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1438int kfd_wait_on_events(struct kfd_process *p,
1439		       uint32_t num_events, void __user *data,
1440		       bool all, uint32_t *user_timeout_ms,
1441		       uint32_t *wait_result);
1442void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1443				uint32_t valid_id_bits);
 
 
 
1444void kfd_signal_hw_exception_event(u32 pasid);
1445int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1446int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1447int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1448
1449int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1450		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1451		     uint32_t *event_id, uint32_t *event_trigger_data,
1452		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1453
1454int kfd_get_num_events(struct kfd_process *p);
1455int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1456
1457void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1458				struct kfd_vm_fault_info *info,
1459				struct kfd_hsa_memory_exception_data *data);
1460
1461void kfd_signal_reset_event(struct kfd_node *dev);
1462
1463void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1464
1465static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
1466				 enum TLB_FLUSH_TYPE type)
1467{
1468	struct amdgpu_device *adev = pdd->dev->adev;
1469	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1470
1471	amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
1472}
1473
1474static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1475{
1476	return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) ||
1477	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
 
1478	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1479}
1480
1481int kfd_send_exception_to_runtime(struct kfd_process *p,
1482				unsigned int queue_id,
1483				uint64_t error_reason);
1484bool kfd_is_locked(void);
1485
1486/* Compute profile */
1487void kfd_inc_compute_active(struct kfd_node *dev);
1488void kfd_dec_compute_active(struct kfd_node *dev);
1489
1490/* Cgroup Support */
1491/* Check with device cgroup if @kfd device is accessible */
1492static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
1493{
1494#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1495	struct drm_device *ddev;
1496
1497	if (node->xcp)
1498		ddev = node->xcp->ddev;
1499	else
1500		ddev = adev_to_drm(node->adev);
1501
1502	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1503					  ddev->render->index,
1504					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1505#else
1506	return 0;
1507#endif
1508}
1509
1510static inline bool kfd_is_first_node(struct kfd_node *node)
1511{
1512	return (node == node->kfd->nodes[0]);
1513}
1514
1515/* Debugfs */
1516#if defined(CONFIG_DEBUG_FS)
1517
1518void kfd_debugfs_init(void);
1519void kfd_debugfs_fini(void);
1520int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1521int pqm_debugfs_mqds(struct seq_file *m, void *data);
1522int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1523int dqm_debugfs_hqds(struct seq_file *m, void *data);
1524int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1525int pm_debugfs_runlist(struct seq_file *m, void *data);
1526
1527int kfd_debugfs_hang_hws(struct kfd_node *dev);
1528int pm_debugfs_hang_hws(struct packet_manager *pm);
1529int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1530
1531#else
1532
1533static inline void kfd_debugfs_init(void) {}
1534static inline void kfd_debugfs_fini(void) {}
1535
1536#endif
1537
1538#endif
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef KFD_PRIV_H_INCLUDED
  25#define KFD_PRIV_H_INCLUDED
  26
  27#include <linux/hashtable.h>
  28#include <linux/mmu_notifier.h>
  29#include <linux/memremap.h>
  30#include <linux/mutex.h>
  31#include <linux/types.h>
  32#include <linux/atomic.h>
  33#include <linux/workqueue.h>
  34#include <linux/spinlock.h>
  35#include <linux/kfd_ioctl.h>
  36#include <linux/idr.h>
  37#include <linux/kfifo.h>
  38#include <linux/seq_file.h>
  39#include <linux/kref.h>
  40#include <linux/sysfs.h>
  41#include <linux/device_cgroup.h>
  42#include <drm/drm_file.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_device.h>
  45#include <drm/drm_ioctl.h>
  46#include <kgd_kfd_interface.h>
  47#include <linux/swap.h>
  48
  49#include "amd_shared.h"
  50#include "amdgpu.h"
  51
  52#define KFD_MAX_RING_ENTRY_SIZE	8
  53
  54#define KFD_SYSFS_FILE_MODE 0444
  55
  56/* GPU ID hash width in bits */
  57#define KFD_GPU_ID_HASH_WIDTH 16
  58
  59/* Use upper bits of mmap offset to store KFD driver specific information.
  60 * BITS[63:62] - Encode MMAP type
  61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  62 * BITS[45:0]  - MMAP offset value
  63 *
  64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  65 *  defines are w.r.t to PAGE_SIZE
  66 */
  67#define KFD_MMAP_TYPE_SHIFT	62
  68#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  70#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
  71#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
  72#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
  73
  74#define KFD_MMAP_GPU_ID_SHIFT 46
  75#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  76				<< KFD_MMAP_GPU_ID_SHIFT)
  77#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  78				& KFD_MMAP_GPU_ID_MASK)
  79#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  80				>> KFD_MMAP_GPU_ID_SHIFT)
  81
  82/*
  83 * When working with cp scheduler we should assign the HIQ manually or via
  84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  85 * definitions for Kaveri. In Kaveri only the first ME queues participates
  86 * in the cp scheduling taking that in mind we set the HIQ slot in the
  87 * second ME.
  88 */
  89#define KFD_CIK_HIQ_PIPE 4
  90#define KFD_CIK_HIQ_QUEUE 0
  91
  92/* Macro for allocating structures */
  93#define kfd_alloc_struct(ptr_to_struct)	\
  94	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  95
  96#define KFD_MAX_NUM_OF_PROCESSES 512
  97#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  98
  99/*
 100 * Size of the per-process TBA+TMA buffer: 2 pages
 101 *
 102 * The first page is the TBA used for the CWSR ISA code. The second
 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
 104 */
 105#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 106#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 107
 108#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 109	(KFD_MAX_NUM_OF_PROCESSES *			\
 110			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 111
 112#define KFD_KERNEL_QUEUE_SIZE 2048
 113
 114#define KFD_UNMAP_LATENCY_MS	(4000)
 115
 
 
 116/*
 117 * 512 = 0x200
 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 123 */
 124#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 125
 126/**
 127 * enum kfd_ioctl_flags - KFD ioctl flags
 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
 129 * userspace can use a given ioctl.
 130 */
 131enum kfd_ioctl_flags {
 132	/*
 133	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
 134	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
 135	 * perform privileged operations and load arbitrary data into MQDs and
 136	 * eventually HQD registers when the queue is mapped by HWS. In order to
 137	 * prevent this we should perform additional security checks.
 138	 *
 139	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
 140	 *
 141	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
 142	 * we also allow ioctls with SYS_ADMIN capability.
 143	 */
 144	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
 145};
 146/*
 147 * Kernel module parameter to specify maximum number of supported queues per
 148 * device
 149 */
 150extern int max_num_of_queues_per_device;
 151
 152
 153/* Kernel module parameter to specify the scheduling policy */
 154extern int sched_policy;
 155
 156/*
 157 * Kernel module parameter to specify the maximum process
 158 * number per HW scheduler
 159 */
 160extern int hws_max_conc_proc;
 161
 162extern int cwsr_enable;
 163
 164/*
 165 * Kernel module parameter to specify whether to send sigterm to HSA process on
 166 * unhandled exception
 167 */
 168extern int send_sigterm;
 169
 170/*
 171 * This kernel module is used to simulate large bar machine on non-large bar
 172 * enabled machines.
 173 */
 174extern int debug_largebar;
 175
 176/*
 177 * Ignore CRAT table during KFD initialization, can be used to work around
 178 * broken CRAT tables on some AMD systems
 179 */
 180extern int ignore_crat;
 181
 182/* Set sh_mem_config.retry_disable on GFX v9 */
 183extern int amdgpu_noretry;
 184
 185/* Halt if HWS hang is detected */
 186extern int halt_if_hws_hang;
 187
 188/* Whether MEC FW support GWS barriers */
 189extern bool hws_gws_support;
 190
 191/* Queue preemption timeout in ms */
 192extern int queue_preemption_timeout_ms;
 193
 194/*
 195 * Don't evict process queues on vm fault
 196 */
 197extern int amdgpu_no_queue_eviction_on_vm_fault;
 198
 199/* Enable eviction debug messages */
 200extern bool debug_evictions;
 201
 
 
 202enum cache_policy {
 203	cache_policy_coherent,
 204	cache_policy_noncoherent
 205};
 206
 207#define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
 208#define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
 
 
 
 
 
 209
 210struct kfd_event_interrupt_class {
 211	bool (*interrupt_isr)(struct kfd_dev *dev,
 212			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 213			bool *patched_flag);
 214	void (*interrupt_wq)(struct kfd_dev *dev,
 215			const uint32_t *ih_ring_entry);
 216};
 217
 218struct kfd_device_info {
 219	uint32_t gfx_target_version;
 220	const struct kfd_event_interrupt_class *event_interrupt_class;
 221	unsigned int max_pasid_bits;
 222	unsigned int max_no_of_hqd;
 223	unsigned int doorbell_size;
 224	size_t ih_ring_entry_size;
 225	uint8_t num_of_watch_points;
 226	uint16_t mqd_size_aligned;
 227	bool supports_cwsr;
 228	bool needs_iommu_device;
 229	bool needs_pci_atomics;
 230	uint32_t no_atomic_fw_version;
 231	unsigned int num_sdma_queues_per_engine;
 232	unsigned int num_reserved_sdma_queues_per_engine;
 233	uint64_t reserved_sdma_queues_bitmap;
 234};
 235
 236unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
 237unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
 238
 239struct kfd_mem_obj {
 240	uint32_t range_start;
 241	uint32_t range_end;
 242	uint64_t gpu_addr;
 243	uint32_t *cpu_ptr;
 244	void *gtt_mem;
 245};
 246
 247struct kfd_vmid_info {
 248	uint32_t first_vmid_kfd;
 249	uint32_t last_vmid_kfd;
 250	uint32_t vmid_num_kfd;
 251};
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253struct kfd_dev {
 254	struct amdgpu_device *adev;
 255
 256	struct kfd_device_info device_info;
 257
 258	unsigned int id;		/* topology stub index */
 259
 260	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
 261					 * KFD. It is aligned for mapping
 262					 * into user mode
 263					 */
 264	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
 265					 * doorbell BAR to the first KFD
 266					 * doorbell in dwords. GFX reserves
 267					 * the segment before this offset.
 268					 */
 269	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 270					   * page used by kernel queue
 271					   */
 272
 273	struct kgd2kfd_shared_resources shared_resources;
 274	struct kfd_vmid_info vm_info;
 275	struct kfd_local_mem_info local_mem_info;
 276
 277	const struct kfd2kgd_calls *kfd2kgd;
 278	struct mutex doorbell_mutex;
 279	DECLARE_BITMAP(doorbell_available_index,
 280			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 281
 282	void *gtt_mem;
 283	uint64_t gtt_start_gpu_addr;
 284	void *gtt_start_cpu_ptr;
 285	void *gtt_sa_bitmap;
 286	struct mutex gtt_sa_lock;
 287	unsigned int gtt_sa_chunk_size;
 288	unsigned int gtt_sa_num_of_chunks;
 289
 290	/* Interrupts */
 291	struct kfifo ih_fifo;
 292	struct workqueue_struct *ih_wq;
 293	struct work_struct interrupt_work;
 294	spinlock_t interrupt_lock;
 295
 296	/* QCM Device instance */
 297	struct device_queue_manager *dqm;
 298
 299	bool init_complete;
 300	/*
 301	 * Interrupts of interest to KFD are copied
 302	 * from the HW ring into a SW ring.
 303	 */
 304	bool interrupts_active;
 305
 306	/* Firmware versions */
 307	uint16_t mec_fw_version;
 308	uint16_t mec2_fw_version;
 309	uint16_t sdma_fw_version;
 310
 311	/* Maximum process number mapped to HW scheduler */
 312	unsigned int max_proc_per_quantum;
 313
 314	/* CWSR */
 315	bool cwsr_enabled;
 316	const void *cwsr_isa;
 317	unsigned int cwsr_isa_size;
 318
 319	/* xGMI */
 320	uint64_t hive_id;
 321
 322	bool pci_atomic_requested;
 323
 324	/* Use IOMMU v2 flag */
 325	bool use_iommu_v2;
 326
 327	/* SRAM ECC flag */
 328	atomic_t sram_ecc_flag;
 329
 330	/* Compute Profile ref. count */
 331	atomic_t compute_profile;
 332
 333	/* Global GWS resource shared between processes */
 334	void *gws;
 335
 336	/* Clients watching SMI events */
 337	struct list_head smi_clients;
 338	spinlock_t smi_lock;
 339
 340	uint32_t reset_seq_num;
 
 341
 342	struct ida doorbell_ida;
 343	unsigned int max_doorbell_slices;
 
 344
 345	int noretry;
 
 346
 347	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
 348	struct dev_pagemap pgmap;
 349};
 350
 351enum kfd_mempool {
 352	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 353	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 354	KFD_MEMPOOL_FRAMEBUFFER = 3,
 355};
 356
 357/* Character device interface */
 358int kfd_chardev_init(void);
 359void kfd_chardev_exit(void);
 360
 361/**
 362 * enum kfd_unmap_queues_filter - Enum for queue filters.
 363 *
 364 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 365 *						running queues list.
 366 *
 367 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
 368 *						in the run list.
 369 *
 370 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 371 *						specific process.
 372 *
 373 */
 374enum kfd_unmap_queues_filter {
 375	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
 376	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
 377	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
 378};
 379
 380/**
 381 * enum kfd_queue_type - Enum for various queue types.
 382 *
 383 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 384 *
 385 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 386 *
 387 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 388 *
 389 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 390 *
 391 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 392 */
 393enum kfd_queue_type  {
 394	KFD_QUEUE_TYPE_COMPUTE,
 395	KFD_QUEUE_TYPE_SDMA,
 396	KFD_QUEUE_TYPE_HIQ,
 397	KFD_QUEUE_TYPE_DIQ,
 398	KFD_QUEUE_TYPE_SDMA_XGMI
 399};
 400
 401enum kfd_queue_format {
 402	KFD_QUEUE_FORMAT_PM4,
 403	KFD_QUEUE_FORMAT_AQL
 404};
 405
 406enum KFD_QUEUE_PRIORITY {
 407	KFD_QUEUE_PRIORITY_MINIMUM = 0,
 408	KFD_QUEUE_PRIORITY_MAXIMUM = 15
 409};
 410
 411/**
 412 * struct queue_properties
 413 *
 414 * @type: The queue type.
 415 *
 416 * @queue_id: Queue identifier.
 417 *
 418 * @queue_address: Queue ring buffer address.
 419 *
 420 * @queue_size: Queue ring buffer size.
 421 *
 422 * @priority: Defines the queue priority relative to other queues in the
 423 * process.
 424 * This is just an indication and HW scheduling may override the priority as
 425 * necessary while keeping the relative prioritization.
 426 * the priority granularity is from 0 to f which f is the highest priority.
 427 * currently all queues are initialized with the highest priority.
 428 *
 429 * @queue_percent: This field is partially implemented and currently a zero in
 430 * this field defines that the queue is non active.
 431 *
 432 * @read_ptr: User space address which points to the number of dwords the
 433 * cp read from the ring buffer. This field updates automatically by the H/W.
 434 *
 435 * @write_ptr: Defines the number of dwords written to the ring buffer.
 436 *
 437 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 438 * buffer. This field should be similar to write_ptr and the user should
 439 * update this field after updating the write_ptr.
 440 *
 441 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 442 *
 443 * @is_interop: Defines if this is a interop queue. Interop queue means that
 444 * the queue can access both graphics and compute resources.
 445 *
 446 * @is_evicted: Defines if the queue is evicted. Only active queues
 447 * are evicted, rendering them inactive.
 448 *
 449 * @is_active: Defines if the queue is active or not. @is_active and
 450 * @is_evicted are protected by the DQM lock.
 451 *
 452 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 453 * @is_gws should be protected by the DQM lock, since changing it can yield the
 454 * possibility of updating DQM state on number of GWS queues.
 455 *
 456 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 457 * of the queue.
 458 *
 459 * This structure represents the queue properties for each queue no matter if
 460 * it's user mode or kernel mode queue.
 461 *
 462 */
 463
 464struct queue_properties {
 465	enum kfd_queue_type type;
 466	enum kfd_queue_format format;
 467	unsigned int queue_id;
 468	uint64_t queue_address;
 469	uint64_t  queue_size;
 470	uint32_t priority;
 471	uint32_t queue_percent;
 472	uint32_t *read_ptr;
 473	uint32_t *write_ptr;
 474	void __iomem *doorbell_ptr;
 475	uint32_t doorbell_off;
 476	bool is_interop;
 477	bool is_evicted;
 
 
 478	bool is_active;
 479	bool is_gws;
 
 
 
 480	/* Not relevant for user mode queues in cp scheduling */
 481	unsigned int vmid;
 482	/* Relevant only for sdma queues*/
 483	uint32_t sdma_engine_id;
 484	uint32_t sdma_queue_id;
 485	uint32_t sdma_vm_addr;
 486	/* Relevant only for VI */
 487	uint64_t eop_ring_buffer_address;
 488	uint32_t eop_ring_buffer_size;
 489	uint64_t ctx_save_restore_area_address;
 490	uint32_t ctx_save_restore_area_size;
 491	uint32_t ctl_stack_size;
 492	uint64_t tba_addr;
 493	uint64_t tma_addr;
 
 494};
 495
 496#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
 497			    (q).queue_address != 0 &&	\
 498			    (q).queue_percent > 0 &&	\
 499			    !(q).is_evicted)
 
 500
 501enum mqd_update_flag {
 502	UPDATE_FLAG_CU_MASK = 0,
 
 
 503};
 504
 505struct mqd_update_info {
 506	union {
 507		struct {
 508			uint32_t count; /* Must be a multiple of 32 */
 509			uint32_t *ptr;
 510		} cu_mask;
 511	};
 512	enum mqd_update_flag update_flag;
 513};
 514
 515/**
 516 * struct queue
 517 *
 518 * @list: Queue linked list.
 519 *
 520 * @mqd: The queue MQD (memory queue descriptor).
 521 *
 522 * @mqd_mem_obj: The MQD local gpu memory object.
 523 *
 524 * @gart_mqd_addr: The MQD gart mc address.
 525 *
 526 * @properties: The queue properties.
 527 *
 528 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 529 *	 that the queue should be executed on.
 530 *
 531 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 532 *	  id.
 533 *
 534 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 535 *
 536 * @process: The kfd process that created this queue.
 537 *
 538 * @device: The kfd device that created this queue.
 539 *
 540 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 541 * otherwise.
 542 *
 543 * This structure represents user mode compute queues.
 544 * It contains all the necessary data to handle such queues.
 545 *
 546 */
 547
 548struct queue {
 549	struct list_head list;
 550	void *mqd;
 551	struct kfd_mem_obj *mqd_mem_obj;
 552	uint64_t gart_mqd_addr;
 553	struct queue_properties properties;
 554
 555	uint32_t mec;
 556	uint32_t pipe;
 557	uint32_t queue;
 558
 559	unsigned int sdma_id;
 560	unsigned int doorbell_id;
 561
 562	struct kfd_process	*process;
 563	struct kfd_dev		*device;
 564	void *gws;
 565
 566	/* procfs */
 567	struct kobject kobj;
 568
 569	void *gang_ctx_bo;
 570	uint64_t gang_ctx_gpu_addr;
 571	void *gang_ctx_cpu_ptr;
 572
 573	struct amdgpu_bo *wptr_bo;
 574};
 575
 576enum KFD_MQD_TYPE {
 577	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
 578	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
 579	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 580	KFD_MQD_TYPE_DIQ,		/* for diq */
 581	KFD_MQD_TYPE_MAX
 582};
 583
 584enum KFD_PIPE_PRIORITY {
 585	KFD_PIPE_PRIORITY_CS_LOW = 0,
 586	KFD_PIPE_PRIORITY_CS_MEDIUM,
 587	KFD_PIPE_PRIORITY_CS_HIGH
 588};
 589
 590struct scheduling_resources {
 591	unsigned int vmid_mask;
 592	enum kfd_queue_type type;
 593	uint64_t queue_mask;
 594	uint64_t gws_mask;
 595	uint32_t oac_mask;
 596	uint32_t gds_heap_base;
 597	uint32_t gds_heap_size;
 598};
 599
 600struct process_queue_manager {
 601	/* data */
 602	struct kfd_process	*process;
 603	struct list_head	queues;
 604	unsigned long		*queue_slot_bitmap;
 605};
 606
 607struct qcm_process_device {
 608	/* The Device Queue Manager that owns this data */
 609	struct device_queue_manager *dqm;
 610	struct process_queue_manager *pqm;
 611	/* Queues list */
 612	struct list_head queues_list;
 613	struct list_head priv_queue_list;
 614
 615	unsigned int queue_count;
 616	unsigned int vmid;
 617	bool is_debug;
 618	unsigned int evicted; /* eviction counter, 0=active */
 619
 620	/* This flag tells if we should reset all wavefronts on
 621	 * process termination
 622	 */
 623	bool reset_wavefronts;
 624
 625	/* This flag tells us if this process has a GWS-capable
 626	 * queue that will be mapped into the runlist. It's
 627	 * possible to request a GWS BO, but not have the queue
 628	 * currently mapped, and this changes how the MAP_PROCESS
 629	 * PM4 packet is configured.
 630	 */
 631	bool mapped_gws_queue;
 632
 633	/* All the memory management data should be here too */
 634	uint64_t gds_context_area;
 635	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 636	uint64_t page_table_base;
 637	uint32_t sh_mem_config;
 638	uint32_t sh_mem_bases;
 639	uint32_t sh_mem_ape1_base;
 640	uint32_t sh_mem_ape1_limit;
 641	uint32_t gds_size;
 642	uint32_t num_gws;
 643	uint32_t num_oac;
 644	uint32_t sh_hidden_private_base;
 645
 646	/* CWSR memory */
 647	struct kgd_mem *cwsr_mem;
 648	void *cwsr_kaddr;
 649	uint64_t cwsr_base;
 650	uint64_t tba_addr;
 651	uint64_t tma_addr;
 652
 653	/* IB memory */
 654	struct kgd_mem *ib_mem;
 655	uint64_t ib_base;
 656	void *ib_kaddr;
 657
 658	/* doorbell resources per process per device */
 
 
 
 659	unsigned long *doorbell_bitmap;
 660};
 661
 662/* KFD Memory Eviction */
 663
 664/* Approx. wait time before attempting to restore evicted BOs */
 665#define PROCESS_RESTORE_TIME_MS 100
 666/* Approx. back off time if restore fails due to lack of memory */
 667#define PROCESS_BACK_OFF_TIME_MS 100
 668/* Approx. time before evicting the process again */
 669#define PROCESS_ACTIVE_TIME_MS 10
 670
 671/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 672 * idr_handle in the least significant 4 bytes
 673 */
 674#define MAKE_HANDLE(gpu_id, idr_handle) \
 675	(((uint64_t)(gpu_id) << 32) + idr_handle)
 676#define GET_GPU_ID(handle) (handle >> 32)
 677#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 678
 679enum kfd_pdd_bound {
 680	PDD_UNBOUND = 0,
 681	PDD_BOUND,
 682	PDD_BOUND_SUSPENDED,
 683};
 684
 685#define MAX_SYSFS_FILENAME_LEN 15
 686
 687/*
 688 * SDMA counter runs at 100MHz frequency.
 689 * We display SDMA activity in microsecond granularity in sysfs.
 690 * As a result, the divisor is 100.
 691 */
 692#define SDMA_ACTIVITY_DIVISOR  100
 693
 694/* Data that is per-process-per device. */
 695struct kfd_process_device {
 696	/* The device that owns this data. */
 697	struct kfd_dev *dev;
 698
 699	/* The process that owns this kfd_process_device. */
 700	struct kfd_process *process;
 701
 702	/* per-process-per device QCM data structure */
 703	struct qcm_process_device qpd;
 704
 705	/*Apertures*/
 706	uint64_t lds_base;
 707	uint64_t lds_limit;
 708	uint64_t gpuvm_base;
 709	uint64_t gpuvm_limit;
 710	uint64_t scratch_base;
 711	uint64_t scratch_limit;
 712
 713	/* VM context for GPUVM allocations */
 714	struct file *drm_file;
 715	void *drm_priv;
 716	atomic64_t tlb_seq;
 717
 718	/* GPUVM allocations storage */
 719	struct idr alloc_idr;
 720
 721	/* Flag used to tell the pdd has dequeued from the dqm.
 722	 * This is used to prevent dev->dqm->ops.process_termination() from
 723	 * being called twice when it is already called in IOMMU callback
 724	 * function.
 725	 */
 726	bool already_dequeued;
 727	bool runtime_inuse;
 728
 729	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 730	enum kfd_pdd_bound bound;
 731
 732	/* VRAM usage */
 733	uint64_t vram_usage;
 734	struct attribute attr_vram;
 735	char vram_filename[MAX_SYSFS_FILENAME_LEN];
 736
 737	/* SDMA activity tracking */
 738	uint64_t sdma_past_activity_counter;
 739	struct attribute attr_sdma;
 740	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 741
 742	/* Eviction activity tracking */
 743	uint64_t last_evict_timestamp;
 744	atomic64_t evict_duration_counter;
 745	struct attribute attr_evict;
 746
 747	struct kobject *kobj_stats;
 748	unsigned int doorbell_index;
 749
 750	/*
 751	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
 752	 * that is associated with device encoded by "this" struct instance. The
 753	 * value reflects CU usage by all of the waves launched by this process
 754	 * on this device. A very important property of occupancy parameter is
 755	 * that its value is a snapshot of current use.
 756	 *
 757	 * Following is to be noted regarding how this parameter is reported:
 758	 *
 759	 *  The number of waves that a CU can launch is limited by couple of
 760	 *  parameters. These are encoded by struct amdgpu_cu_info instance
 761	 *  that is part of every device definition. For GFX9 devices this
 762	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
 763	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
 764	 *  when they do use scratch memory. This could change for future
 765	 *  devices and therefore this example should be considered as a guide.
 766	 *
 767	 *  All CU's of a device are available for the process. This may not be true
 768	 *  under certain conditions - e.g. CU masking.
 769	 *
 770	 *  Finally number of CU's that are occupied by a process is affected by both
 771	 *  number of CU's a device has along with number of other competing processes
 772	 */
 773	struct attribute attr_cu_occupancy;
 774
 775	/* sysfs counters for GPU retry fault and page migration tracking */
 776	struct kobject *kobj_counters;
 777	struct attribute attr_faults;
 778	struct attribute attr_page_in;
 779	struct attribute attr_page_out;
 780	uint64_t faults;
 781	uint64_t page_in;
 782	uint64_t page_out;
 
 
 
 
 
 
 
 
 
 
 
 
 783	/*
 784	 * If this process has been checkpointed before, then the user
 785	 * application will use the original gpu_id on the
 786	 * checkpointed node to refer to this device.
 787	 */
 788	uint32_t user_gpu_id;
 789
 790	void *proc_ctx_bo;
 791	uint64_t proc_ctx_gpu_addr;
 792	void *proc_ctx_cpu_ptr;
 793};
 794
 795#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 796
 797struct svm_range_list {
 798	struct mutex			lock;
 799	struct rb_root_cached		objects;
 800	struct list_head		list;
 801	struct work_struct		deferred_list_work;
 802	struct list_head		deferred_range_list;
 803	struct list_head                criu_svm_metadata_list;
 804	spinlock_t			deferred_list_lock;
 805	atomic_t			evicted_ranges;
 806	atomic_t			drain_pagefaults;
 807	struct delayed_work		restore_work;
 808	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
 809	struct task_struct		*faulting_task;
 810};
 811
 812/* Process data */
 813struct kfd_process {
 814	/*
 815	 * kfd_process are stored in an mm_struct*->kfd_process*
 816	 * hash table (kfd_processes in kfd_process.c)
 817	 */
 818	struct hlist_node kfd_processes;
 819
 820	/*
 821	 * Opaque pointer to mm_struct. We don't hold a reference to
 822	 * it so it should never be dereferenced from here. This is
 823	 * only used for looking up processes by their mm.
 824	 */
 825	void *mm;
 826
 827	struct kref ref;
 828	struct work_struct release_work;
 829
 830	struct mutex mutex;
 831
 832	/*
 833	 * In any process, the thread that started main() is the lead
 834	 * thread and outlives the rest.
 835	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 836	 * It can also be used for safely getting a reference to the
 837	 * mm_struct of the process.
 838	 */
 839	struct task_struct *lead_thread;
 840
 841	/* We want to receive a notification when the mm_struct is destroyed */
 842	struct mmu_notifier mmu_notifier;
 843
 844	u32 pasid;
 845
 846	/*
 847	 * Array of kfd_process_device pointers,
 848	 * one for each device the process is using.
 849	 */
 850	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
 851	uint32_t n_pdds;
 852
 853	struct process_queue_manager pqm;
 854
 855	/*Is the user space process 32 bit?*/
 856	bool is_32bit_user_mode;
 857
 858	/* Event-related data */
 859	struct mutex event_mutex;
 860	/* Event ID allocator and lookup */
 861	struct idr event_idr;
 862	/* Event page */
 863	u64 signal_handle;
 864	struct kfd_signal_page *signal_page;
 865	size_t signal_mapped_size;
 866	size_t signal_event_count;
 867	bool signal_event_limit_reached;
 868
 869	/* Information used for memory eviction */
 870	void *kgd_process_info;
 871	/* Eviction fence that is attached to all the BOs of this process. The
 872	 * fence will be triggered during eviction and new one will be created
 873	 * during restore
 874	 */
 875	struct dma_fence *ef;
 876
 877	/* Work items for evicting and restoring BOs */
 878	struct delayed_work eviction_work;
 879	struct delayed_work restore_work;
 880	/* seqno of the last scheduled eviction */
 881	unsigned int last_eviction_seqno;
 882	/* Approx. the last timestamp (in jiffies) when the process was
 883	 * restored after an eviction
 884	 */
 885	unsigned long last_restore_timestamp;
 886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887	/* Kobj for our procfs */
 888	struct kobject *kobj;
 889	struct kobject *kobj_queues;
 890	struct attribute attr_pasid;
 891
 
 
 
 
 
 
 
 
 
 
 
 892	/* shared virtual memory registered by this process */
 893	struct svm_range_list svms;
 894
 895	bool xnack_enabled;
 896
 
 
 
 
 
 
 897	atomic_t poison;
 898	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
 899	bool queues_paused;
 
 
 
 
 
 900};
 901
 902#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 903extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 904extern struct srcu_struct kfd_processes_srcu;
 905
 906/**
 907 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 908 *
 909 * @filep: pointer to file structure.
 910 * @p: amdkfd process pointer.
 911 * @data: pointer to arg that was copied from user.
 912 *
 913 * Return: returns ioctl completion code.
 914 */
 915typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 916				void *data);
 917
 918struct amdkfd_ioctl_desc {
 919	unsigned int cmd;
 920	int flags;
 921	amdkfd_ioctl_t *func;
 922	unsigned int cmd_drv;
 923	const char *name;
 924};
 925bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 926
 927int kfd_process_create_wq(void);
 928void kfd_process_destroy_wq(void);
 929struct kfd_process *kfd_create_process(struct file *filep);
 
 930struct kfd_process *kfd_get_process(const struct task_struct *task);
 931struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
 932struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 933
 934int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
 935int kfd_process_gpuid_from_adev(struct kfd_process *p,
 936			       struct amdgpu_device *adev, uint32_t *gpuid,
 937			       uint32_t *gpuidx);
 938static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
 939				uint32_t gpuidx, uint32_t *gpuid) {
 940	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
 941}
 942static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
 943				struct kfd_process *p, uint32_t gpuidx) {
 944	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
 945}
 946
 947void kfd_unref_process(struct kfd_process *p);
 948int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
 949int kfd_process_restore_queues(struct kfd_process *p);
 950void kfd_suspend_all_processes(void);
 951int kfd_resume_all_processes(void);
 952
 953struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
 954							 uint32_t gpu_id);
 955
 956int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
 957
 958int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 959			       struct file *drm_file);
 960struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 961						struct kfd_process *p);
 962struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 963							struct kfd_process *p);
 964struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 965							struct kfd_process *p);
 966
 967bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
 968
 969int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 970			  struct vm_area_struct *vma);
 971
 972/* KFD process API for creating and translating handles */
 973int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 974					void *mem);
 975void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 976					int handle);
 977void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 978					int handle);
 979struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
 980
 981/* PASIDs */
 982int kfd_pasid_init(void);
 983void kfd_pasid_exit(void);
 984bool kfd_set_pasid_limit(unsigned int new_limit);
 985unsigned int kfd_get_pasid_limit(void);
 986u32 kfd_pasid_alloc(void);
 987void kfd_pasid_free(u32 pasid);
 988
 989/* Doorbells */
 990size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 991int kfd_doorbell_init(struct kfd_dev *kfd);
 992void kfd_doorbell_fini(struct kfd_dev *kfd);
 993int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 994		      struct vm_area_struct *vma);
 995void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 996					unsigned int *doorbell_off);
 997void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 998u32 read_kernel_doorbell(u32 __iomem *db);
 999void write_kernel_doorbell(void __iomem *db, u32 value);
1000void write_kernel_doorbell64(void __iomem *db, u64 value);
1001unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1002					struct kfd_process_device *pdd,
1003					unsigned int doorbell_id);
1004phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1005int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1006				unsigned int *doorbell_index);
1007void kfd_free_process_doorbells(struct kfd_dev *kfd,
1008				unsigned int doorbell_index);
1009/* GTT Sub-Allocator */
1010
1011int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1012			struct kfd_mem_obj **mem_obj);
1013
1014int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
1015
1016extern struct device *kfd_device;
1017
1018/* KFD's procfs */
1019void kfd_procfs_init(void);
1020void kfd_procfs_shutdown(void);
1021int kfd_procfs_add_queue(struct queue *q);
1022void kfd_procfs_del_queue(struct queue *q);
1023
1024/* Topology */
1025int kfd_topology_init(void);
1026void kfd_topology_shutdown(void);
1027int kfd_topology_add_device(struct kfd_dev *gpu);
1028int kfd_topology_remove_device(struct kfd_dev *gpu);
1029struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1030						uint32_t proximity_domain);
1031struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1032						uint32_t proximity_domain);
1033struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1034struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
1035struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1036struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
1037int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038int kfd_numa_node_to_apic_id(int numa_node_id);
1039void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1040
1041/* Interrupts */
1042int kfd_interrupt_init(struct kfd_dev *dev);
1043void kfd_interrupt_exit(struct kfd_dev *dev);
1044bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
1045bool interrupt_is_wanted(struct kfd_dev *dev,
 
 
 
 
 
1046				const uint32_t *ih_ring_entry,
1047				uint32_t *patched_ihre, bool *flag);
 
 
1048
1049/* amdkfd Apertures */
1050int kfd_init_apertures(struct kfd_process *process);
1051
1052void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1053				  uint64_t tba_addr,
1054				  uint64_t tma_addr);
 
 
 
 
 
1055
1056/* CRIU */
1057/*
1058 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1059 * structures:
1060 * kfd_criu_process_priv_data
1061 * kfd_criu_device_priv_data
1062 * kfd_criu_bo_priv_data
1063 * kfd_criu_queue_priv_data
1064 * kfd_criu_event_priv_data
1065 * kfd_criu_svm_range_priv_data
1066 */
1067
1068#define KFD_CRIU_PRIV_VERSION 1
1069
1070struct kfd_criu_process_priv_data {
1071	uint32_t version;
1072	uint32_t xnack_mode;
1073};
1074
1075struct kfd_criu_device_priv_data {
1076	/* For future use */
1077	uint64_t reserved;
1078};
1079
1080struct kfd_criu_bo_priv_data {
1081	uint64_t user_addr;
1082	uint32_t idr_handle;
1083	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1084};
1085
1086/*
1087 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1088 * kfd_criu_svm_range_priv_data is the object type
1089 */
1090enum kfd_criu_object_type {
1091	KFD_CRIU_OBJECT_TYPE_QUEUE,
1092	KFD_CRIU_OBJECT_TYPE_EVENT,
1093	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1094};
1095
1096struct kfd_criu_svm_range_priv_data {
1097	uint32_t object_type;
1098	uint64_t start_addr;
1099	uint64_t size;
1100	/* Variable length array of attributes */
1101	struct kfd_ioctl_svm_attribute attrs[];
1102};
1103
1104struct kfd_criu_queue_priv_data {
1105	uint32_t object_type;
1106	uint64_t q_address;
1107	uint64_t q_size;
1108	uint64_t read_ptr_addr;
1109	uint64_t write_ptr_addr;
1110	uint64_t doorbell_off;
1111	uint64_t eop_ring_buffer_address;
1112	uint64_t ctx_save_restore_area_address;
1113	uint32_t gpu_id;
1114	uint32_t type;
1115	uint32_t format;
1116	uint32_t q_id;
1117	uint32_t priority;
1118	uint32_t q_percent;
1119	uint32_t doorbell_id;
1120	uint32_t gws;
1121	uint32_t sdma_id;
1122	uint32_t eop_ring_buffer_size;
1123	uint32_t ctx_save_restore_area_size;
1124	uint32_t ctl_stack_size;
1125	uint32_t mqd_size;
1126};
1127
1128struct kfd_criu_event_priv_data {
1129	uint32_t object_type;
1130	uint64_t user_handle;
1131	uint32_t event_id;
1132	uint32_t auto_reset;
1133	uint32_t type;
1134	uint32_t signaled;
1135
1136	union {
1137		struct kfd_hsa_memory_exception_data memory_exception_data;
1138		struct kfd_hsa_hw_exception_data hw_exception_data;
1139	};
1140};
1141
1142int kfd_process_get_queue_info(struct kfd_process *p,
1143			       uint32_t *num_queues,
1144			       uint64_t *priv_data_sizes);
1145
1146int kfd_criu_checkpoint_queues(struct kfd_process *p,
1147			 uint8_t __user *user_priv_data,
1148			 uint64_t *priv_data_offset);
1149
1150int kfd_criu_restore_queue(struct kfd_process *p,
1151			   uint8_t __user *user_priv_data,
1152			   uint64_t *priv_data_offset,
1153			   uint64_t max_priv_data_size);
1154
1155int kfd_criu_checkpoint_events(struct kfd_process *p,
1156			 uint8_t __user *user_priv_data,
1157			 uint64_t *priv_data_offset);
1158
1159int kfd_criu_restore_event(struct file *devkfd,
1160			   struct kfd_process *p,
1161			   uint8_t __user *user_priv_data,
1162			   uint64_t *priv_data_offset,
1163			   uint64_t max_priv_data_size);
1164/* CRIU - End */
1165
1166/* Queue Context Management */
1167int init_queue(struct queue **q, const struct queue_properties *properties);
1168void uninit_queue(struct queue *q);
1169void print_queue_properties(struct queue_properties *q);
1170void print_queue(struct queue *q);
1171
1172struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1173		struct kfd_dev *dev);
1174struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1175		struct kfd_dev *dev);
1176struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1177		struct kfd_dev *dev);
1178struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1179		struct kfd_dev *dev);
1180struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1181		struct kfd_dev *dev);
1182struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1183		struct kfd_dev *dev);
1184struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1185		struct kfd_dev *dev);
1186struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1187void device_queue_manager_uninit(struct device_queue_manager *dqm);
1188struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1189					enum kfd_queue_type type);
1190void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1191int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1192
1193/* Process Queue Manager */
1194struct process_queue_node {
1195	struct queue *q;
1196	struct kernel_queue *kq;
1197	struct list_head process_queue_list;
1198};
1199
1200void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1201void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1202int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1203void pqm_uninit(struct process_queue_manager *pqm);
1204int pqm_create_queue(struct process_queue_manager *pqm,
1205			    struct kfd_dev *dev,
1206			    struct file *f,
1207			    struct queue_properties *properties,
1208			    unsigned int *qid,
1209			    struct amdgpu_bo *wptr_bo,
1210			    const struct kfd_criu_queue_priv_data *q_data,
1211			    const void *restore_mqd,
1212			    const void *restore_ctl_stack,
1213			    uint32_t *p_doorbell_offset_in_process);
1214int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1215int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1216			struct queue_properties *p);
1217int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1218			struct mqd_update_info *minfo);
1219int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1220			void *gws);
1221struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1222						unsigned int qid);
1223struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1224						unsigned int qid);
1225int pqm_get_wave_state(struct process_queue_manager *pqm,
1226		       unsigned int qid,
1227		       void __user *ctl_stack,
1228		       u32 *ctl_stack_used_size,
1229		       u32 *save_area_used_size);
 
 
 
 
 
1230
1231int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1232			      uint64_t fence_value,
1233			      unsigned int timeout_ms);
1234
1235int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1236				  unsigned int qid,
1237				  u32 *mqd_size,
1238				  u32 *ctl_stack_size);
1239/* Packet Manager */
1240
1241#define KFD_FENCE_COMPLETED (100)
1242#define KFD_FENCE_INIT   (10)
1243
1244struct packet_manager {
1245	struct device_queue_manager *dqm;
1246	struct kernel_queue *priv_queue;
1247	struct mutex lock;
1248	bool allocated;
1249	struct kfd_mem_obj *ib_buffer_obj;
1250	unsigned int ib_size_bytes;
1251	bool is_over_subscription;
1252
1253	const struct packet_manager_funcs *pmf;
1254};
1255
1256struct packet_manager_funcs {
1257	/* Support ASIC-specific packet formats for PM4 packets */
1258	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1259			struct qcm_process_device *qpd);
1260	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1261			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1262	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1263			struct scheduling_resources *res);
1264	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1265			struct queue *q, bool is_static);
1266	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1267			enum kfd_unmap_queues_filter mode,
1268			uint32_t filter_param, bool reset);
 
 
1269	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1270			uint64_t fence_address,	uint64_t fence_value);
1271	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1272
1273	/* Packet sizes */
1274	int map_process_size;
1275	int runlist_size;
1276	int set_resources_size;
1277	int map_queues_size;
1278	int unmap_queues_size;
 
1279	int query_status_size;
1280	int release_mem_size;
1281};
1282
1283extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1284extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1285extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1286
1287int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1288void pm_uninit(struct packet_manager *pm, bool hanging);
1289int pm_send_set_resources(struct packet_manager *pm,
1290				struct scheduling_resources *res);
1291int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1292int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1293				uint64_t fence_value);
1294
1295int pm_send_unmap_queue(struct packet_manager *pm,
1296			enum kfd_unmap_queues_filter mode,
1297			uint32_t filter_param, bool reset);
1298
1299void pm_release_ib(struct packet_manager *pm);
1300
 
 
1301/* Following PM funcs can be shared among VI and AI */
1302unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1303
1304uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1305
1306/* Events */
1307extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1308extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
 
 
1309extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1310
1311extern const struct kfd_device_global_init_class device_global_init_class_cik;
1312
1313int kfd_event_init_process(struct kfd_process *p);
1314void kfd_event_free_process(struct kfd_process *p);
1315int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1316int kfd_wait_on_events(struct kfd_process *p,
1317		       uint32_t num_events, void __user *data,
1318		       bool all, uint32_t *user_timeout_ms,
1319		       uint32_t *wait_result);
1320void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1321				uint32_t valid_id_bits);
1322void kfd_signal_iommu_event(struct kfd_dev *dev,
1323			    u32 pasid, unsigned long address,
1324			    bool is_write_requested, bool is_execute_requested);
1325void kfd_signal_hw_exception_event(u32 pasid);
1326int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1327int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1328int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1329
1330int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1331		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1332		     uint32_t *event_id, uint32_t *event_trigger_data,
1333		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1334
1335int kfd_get_num_events(struct kfd_process *p);
1336int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1337
1338void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1339				struct kfd_vm_fault_info *info);
 
1340
1341void kfd_signal_reset_event(struct kfd_dev *dev);
1342
1343void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1344
1345void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
 
 
 
 
 
 
 
1346
1347static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1348{
1349	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1350	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) &&
1351	       dev->adev->sdma.instance[0].fw_version >= 18) ||
1352	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1353}
1354
 
 
 
1355bool kfd_is_locked(void);
1356
1357/* Compute profile */
1358void kfd_inc_compute_active(struct kfd_dev *dev);
1359void kfd_dec_compute_active(struct kfd_dev *dev);
1360
1361/* Cgroup Support */
1362/* Check with device cgroup if @kfd device is accessible */
1363static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1364{
1365#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1366	struct drm_device *ddev = adev_to_drm(kfd->adev);
 
 
 
 
 
1367
1368	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1369					  ddev->render->index,
1370					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1371#else
1372	return 0;
1373#endif
1374}
1375
 
 
 
 
 
1376/* Debugfs */
1377#if defined(CONFIG_DEBUG_FS)
1378
1379void kfd_debugfs_init(void);
1380void kfd_debugfs_fini(void);
1381int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1382int pqm_debugfs_mqds(struct seq_file *m, void *data);
1383int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1384int dqm_debugfs_hqds(struct seq_file *m, void *data);
1385int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1386int pm_debugfs_runlist(struct seq_file *m, void *data);
1387
1388int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1389int pm_debugfs_hang_hws(struct packet_manager *pm);
1390int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1391
1392#else
1393
1394static inline void kfd_debugfs_init(void) {}
1395static inline void kfd_debugfs_fini(void) {}
1396
1397#endif
1398
1399#endif