Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35#include <linux/notifier.h>
  36
  37#include <asm/early_ioremap.h>
  38
  39struct efi __read_mostly efi = {
  40	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  41	.acpi			= EFI_INVALID_TABLE_ADDR,
  42	.acpi20			= EFI_INVALID_TABLE_ADDR,
  43	.smbios			= EFI_INVALID_TABLE_ADDR,
  44	.smbios3		= EFI_INVALID_TABLE_ADDR,
  45	.esrt			= EFI_INVALID_TABLE_ADDR,
  46	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  47	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  48#ifdef CONFIG_LOAD_UEFI_KEYS
  49	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  50#endif
  51#ifdef CONFIG_EFI_COCO_SECRET
  52	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  53#endif
  54#ifdef CONFIG_UNACCEPTED_MEMORY
  55	.unaccepted		= EFI_INVALID_TABLE_ADDR,
  56#endif
  57};
  58EXPORT_SYMBOL(efi);
  59
  60unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  61static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  62static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  63static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  64
  65extern unsigned long screen_info_table;
  66
  67struct mm_struct efi_mm = {
  68	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  69	.mm_users		= ATOMIC_INIT(2),
  70	.mm_count		= ATOMIC_INIT(1),
  71	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  72	MMAP_LOCK_INITIALIZER(efi_mm)
  73	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  74	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  75	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  76};
  77
  78struct workqueue_struct *efi_rts_wq;
  79
  80static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  81static int __init setup_noefi(char *arg)
  82{
  83	disable_runtime = true;
  84	return 0;
  85}
  86early_param("noefi", setup_noefi);
  87
  88bool efi_runtime_disabled(void)
  89{
  90	return disable_runtime;
  91}
  92
  93bool __pure __efi_soft_reserve_enabled(void)
  94{
  95	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  96}
  97
  98static int __init parse_efi_cmdline(char *str)
  99{
 100	if (!str) {
 101		pr_warn("need at least one option\n");
 102		return -EINVAL;
 103	}
 104
 105	if (parse_option_str(str, "debug"))
 106		set_bit(EFI_DBG, &efi.flags);
 107
 108	if (parse_option_str(str, "noruntime"))
 109		disable_runtime = true;
 110
 111	if (parse_option_str(str, "runtime"))
 112		disable_runtime = false;
 113
 114	if (parse_option_str(str, "nosoftreserve"))
 115		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 116
 117	return 0;
 118}
 119early_param("efi", parse_efi_cmdline);
 120
 121struct kobject *efi_kobj;
 122
 123/*
 124 * Let's not leave out systab information that snuck into
 125 * the efivars driver
 126 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 127 * one value per file rule!
 128 */
 129static ssize_t systab_show(struct kobject *kobj,
 130			   struct kobj_attribute *attr, char *buf)
 131{
 132	char *str = buf;
 133
 134	if (!kobj || !buf)
 135		return -EINVAL;
 136
 137	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 138		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 139	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 140		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 141	/*
 142	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 143	 * SMBIOS3 entry point shall be preferred, so we list it first to
 144	 * let applications stop parsing after the first match.
 145	 */
 146	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 147		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 148	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 149		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 150
 151	if (IS_ENABLED(CONFIG_X86))
 152		str = efi_systab_show_arch(str);
 153
 154	return str - buf;
 155}
 156
 157static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 158
 159static ssize_t fw_platform_size_show(struct kobject *kobj,
 160				     struct kobj_attribute *attr, char *buf)
 161{
 162	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 163}
 164
 165extern __weak struct kobj_attribute efi_attr_fw_vendor;
 166extern __weak struct kobj_attribute efi_attr_runtime;
 167extern __weak struct kobj_attribute efi_attr_config_table;
 168static struct kobj_attribute efi_attr_fw_platform_size =
 169	__ATTR_RO(fw_platform_size);
 170
 171static struct attribute *efi_subsys_attrs[] = {
 172	&efi_attr_systab.attr,
 173	&efi_attr_fw_platform_size.attr,
 174	&efi_attr_fw_vendor.attr,
 175	&efi_attr_runtime.attr,
 176	&efi_attr_config_table.attr,
 177	NULL,
 178};
 179
 180umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 181				   int n)
 182{
 183	return attr->mode;
 184}
 185
 186static const struct attribute_group efi_subsys_attr_group = {
 187	.attrs = efi_subsys_attrs,
 188	.is_visible = efi_attr_is_visible,
 189};
 190
 191struct blocking_notifier_head efivar_ops_nh;
 192EXPORT_SYMBOL_GPL(efivar_ops_nh);
 193
 194static struct efivars generic_efivars;
 195static struct efivar_operations generic_ops;
 196
 197static bool generic_ops_supported(void)
 198{
 199	unsigned long name_size;
 200	efi_status_t status;
 201	efi_char16_t name;
 202	efi_guid_t guid;
 203
 204	name_size = sizeof(name);
 205
 206	if (!efi.get_next_variable)
 207		return false;
 208	status = efi.get_next_variable(&name_size, &name, &guid);
 209	if (status == EFI_UNSUPPORTED)
 210		return false;
 211
 212	return true;
 213}
 214
 215static int generic_ops_register(void)
 216{
 217	if (!generic_ops_supported())
 218		return 0;
 219
 220	generic_ops.get_variable = efi.get_variable;
 221	generic_ops.get_next_variable = efi.get_next_variable;
 222	generic_ops.query_variable_store = efi_query_variable_store;
 223	generic_ops.query_variable_info = efi.query_variable_info;
 224
 225	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 226		generic_ops.set_variable = efi.set_variable;
 227		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 228	}
 229	return efivars_register(&generic_efivars, &generic_ops);
 230}
 231
 232static void generic_ops_unregister(void)
 233{
 234	if (!generic_ops.get_variable)
 235		return;
 236
 237	efivars_unregister(&generic_efivars);
 238}
 239
 240void efivars_generic_ops_register(void)
 241{
 242	generic_ops_register();
 243}
 244EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
 245
 246void efivars_generic_ops_unregister(void)
 247{
 248	generic_ops_unregister();
 249}
 250EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
 251
 252#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 253#define EFIVAR_SSDT_NAME_MAX	16UL
 254static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 255static int __init efivar_ssdt_setup(char *str)
 256{
 257	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 258
 259	if (ret)
 260		return ret;
 261
 262	if (strlen(str) < sizeof(efivar_ssdt))
 263		memcpy(efivar_ssdt, str, strlen(str));
 264	else
 265		pr_warn("efivar_ssdt: name too long: %s\n", str);
 266	return 1;
 267}
 268__setup("efivar_ssdt=", efivar_ssdt_setup);
 269
 270static __init int efivar_ssdt_load(void)
 271{
 272	unsigned long name_size = 256;
 273	efi_char16_t *name = NULL;
 274	efi_status_t status;
 275	efi_guid_t guid;
 276
 277	if (!efivar_ssdt[0])
 278		return 0;
 279
 280	name = kzalloc(name_size, GFP_KERNEL);
 281	if (!name)
 282		return -ENOMEM;
 283
 284	for (;;) {
 285		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 286		unsigned long data_size = 0;
 287		void *data;
 288		int limit;
 289
 290		status = efi.get_next_variable(&name_size, name, &guid);
 291		if (status == EFI_NOT_FOUND) {
 292			break;
 293		} else if (status == EFI_BUFFER_TOO_SMALL) {
 294			efi_char16_t *name_tmp =
 295				krealloc(name, name_size, GFP_KERNEL);
 296			if (!name_tmp) {
 297				kfree(name);
 298				return -ENOMEM;
 299			}
 300			name = name_tmp;
 301			continue;
 302		}
 303
 304		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 305		ucs2_as_utf8(utf8_name, name, limit - 1);
 306		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 307			continue;
 308
 309		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 310
 311		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 312		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 313			return -EIO;
 314
 315		data = kmalloc(data_size, GFP_KERNEL);
 316		if (!data)
 317			return -ENOMEM;
 318
 319		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 320		if (status == EFI_SUCCESS) {
 321			acpi_status ret = acpi_load_table(data, NULL);
 322			if (ret)
 323				pr_err("failed to load table: %u\n", ret);
 324			else
 325				continue;
 326		} else {
 327			pr_err("failed to get var data: 0x%lx\n", status);
 328		}
 329		kfree(data);
 330	}
 331	return 0;
 332}
 333#else
 334static inline int efivar_ssdt_load(void) { return 0; }
 335#endif
 336
 337#ifdef CONFIG_DEBUG_FS
 338
 339#define EFI_DEBUGFS_MAX_BLOBS 32
 340
 341static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 342
 343static void __init efi_debugfs_init(void)
 344{
 345	struct dentry *efi_debugfs;
 346	efi_memory_desc_t *md;
 347	char name[32];
 348	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 349	int i = 0;
 350
 351	efi_debugfs = debugfs_create_dir("efi", NULL);
 352	if (IS_ERR_OR_NULL(efi_debugfs))
 353		return;
 354
 355	for_each_efi_memory_desc(md) {
 356		switch (md->type) {
 357		case EFI_BOOT_SERVICES_CODE:
 358			snprintf(name, sizeof(name), "boot_services_code%d",
 359				 type_count[md->type]++);
 360			break;
 361		case EFI_BOOT_SERVICES_DATA:
 362			snprintf(name, sizeof(name), "boot_services_data%d",
 363				 type_count[md->type]++);
 364			break;
 365		default:
 366			continue;
 367		}
 368
 369		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 370			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 371				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 372			break;
 373		}
 374
 375		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 376		debugfs_blob[i].data = memremap(md->phys_addr,
 377						debugfs_blob[i].size,
 378						MEMREMAP_WB);
 379		if (!debugfs_blob[i].data)
 380			continue;
 381
 382		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 383		i++;
 384	}
 385}
 386#else
 387static inline void efi_debugfs_init(void) {}
 388#endif
 389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390/*
 391 * We register the efi subsystem with the firmware subsystem and the
 392 * efivars subsystem with the efi subsystem, if the system was booted with
 393 * EFI.
 394 */
 395static int __init efisubsys_init(void)
 396{
 397	int error;
 398
 399	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 400		efi.runtime_supported_mask = 0;
 401
 402	if (!efi_enabled(EFI_BOOT))
 403		return 0;
 404
 405	if (efi.runtime_supported_mask) {
 406		/*
 407		 * Since we process only one efi_runtime_service() at a time, an
 408		 * ordered workqueue (which creates only one execution context)
 409		 * should suffice for all our needs.
 410		 */
 411		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 412		if (!efi_rts_wq) {
 413			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 414			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 415			efi.runtime_supported_mask = 0;
 416			return 0;
 417		}
 418	}
 419
 420	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 421		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 422
 423	/* We register the efi directory at /sys/firmware/efi */
 424	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 425	if (!efi_kobj) {
 426		pr_err("efi: Firmware registration failed.\n");
 427		error = -ENOMEM;
 428		goto err_destroy_wq;
 429	}
 430
 431	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 432				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 433		error = generic_ops_register();
 434		if (error)
 435			goto err_put;
 436		efivar_ssdt_load();
 437		platform_device_register_simple("efivars", 0, NULL, 0);
 438	}
 439
 440	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
 441
 442	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 443	if (error) {
 444		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 445		       error);
 446		goto err_unregister;
 447	}
 448
 449	/* and the standard mountpoint for efivarfs */
 450	error = sysfs_create_mount_point(efi_kobj, "efivars");
 451	if (error) {
 452		pr_err("efivars: Subsystem registration failed.\n");
 453		goto err_remove_group;
 454	}
 455
 456	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 457		efi_debugfs_init();
 458
 459#ifdef CONFIG_EFI_COCO_SECRET
 460	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 461		platform_device_register_simple("efi_secret", 0, NULL, 0);
 462#endif
 463
 
 
 
 464	return 0;
 465
 466err_remove_group:
 467	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 468err_unregister:
 469	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 470				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 471		generic_ops_unregister();
 472err_put:
 473	kobject_put(efi_kobj);
 474	efi_kobj = NULL;
 475err_destroy_wq:
 476	if (efi_rts_wq)
 477		destroy_workqueue(efi_rts_wq);
 478
 479	return error;
 480}
 481
 482subsys_initcall(efisubsys_init);
 483
 484void __init efi_find_mirror(void)
 485{
 486	efi_memory_desc_t *md;
 487	u64 mirror_size = 0, total_size = 0;
 488
 489	if (!efi_enabled(EFI_MEMMAP))
 490		return;
 491
 492	for_each_efi_memory_desc(md) {
 493		unsigned long long start = md->phys_addr;
 494		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 495
 496		total_size += size;
 497		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 498			memblock_mark_mirror(start, size);
 499			mirror_size += size;
 500		}
 501	}
 502	if (mirror_size)
 503		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 504			mirror_size>>20, total_size>>20);
 505}
 506
 507/*
 508 * Find the efi memory descriptor for a given physical address.  Given a
 509 * physical address, determine if it exists within an EFI Memory Map entry,
 510 * and if so, populate the supplied memory descriptor with the appropriate
 511 * data.
 512 */
 513int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 514{
 515	efi_memory_desc_t *md;
 516
 517	if (!efi_enabled(EFI_MEMMAP)) {
 518		pr_err_once("EFI_MEMMAP is not enabled.\n");
 519		return -EINVAL;
 520	}
 521
 522	if (!out_md) {
 523		pr_err_once("out_md is null.\n");
 524		return -EINVAL;
 525        }
 526
 527	for_each_efi_memory_desc(md) {
 528		u64 size;
 529		u64 end;
 530
 531		/* skip bogus entries (including empty ones) */
 532		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
 533		    (md->num_pages <= 0) ||
 534		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
 535			continue;
 536
 537		size = md->num_pages << EFI_PAGE_SHIFT;
 538		end = md->phys_addr + size;
 539		if (phys_addr >= md->phys_addr && phys_addr < end) {
 540			memcpy(out_md, md, sizeof(*out_md));
 541			return 0;
 542		}
 543	}
 544	return -ENOENT;
 545}
 546
 547extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 548	__weak __alias(__efi_mem_desc_lookup);
 549
 550/*
 551 * Calculate the highest address of an efi memory descriptor.
 552 */
 553u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 554{
 555	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 556	u64 end = md->phys_addr + size;
 557	return end;
 558}
 559
 560void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 561
 562/**
 563 * efi_mem_reserve - Reserve an EFI memory region
 564 * @addr: Physical address to reserve
 565 * @size: Size of reservation
 566 *
 567 * Mark a region as reserved from general kernel allocation and
 568 * prevent it being released by efi_free_boot_services().
 569 *
 570 * This function should be called drivers once they've parsed EFI
 571 * configuration tables to figure out where their data lives, e.g.
 572 * efi_esrt_init().
 573 */
 574void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 575{
 576	/* efi_mem_reserve() does not work under Xen */
 577	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
 578		return;
 579
 580	if (!memblock_is_region_reserved(addr, size))
 581		memblock_reserve(addr, size);
 582
 583	/*
 584	 * Some architectures (x86) reserve all boot services ranges
 585	 * until efi_free_boot_services() because of buggy firmware
 586	 * implementations. This means the above memblock_reserve() is
 587	 * superfluous on x86 and instead what it needs to do is
 588	 * ensure the @start, @size is not freed.
 589	 */
 590	efi_arch_mem_reserve(addr, size);
 591}
 592
 593static const efi_config_table_type_t common_tables[] __initconst = {
 594	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 595	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 596	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 597	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 598	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 599	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 600	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 601	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 602	{EFI_TCG2_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"TPMFinalLog"	},
 603	{EFI_CC_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"CCFinalLog"	},
 604	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 605	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 606	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 607#ifdef CONFIG_EFI_RCI2_TABLE
 608	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 609#endif
 610#ifdef CONFIG_LOAD_UEFI_KEYS
 611	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 612#endif
 613#ifdef CONFIG_EFI_COCO_SECRET
 614	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 615#endif
 616#ifdef CONFIG_UNACCEPTED_MEMORY
 617	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
 618#endif
 619#ifdef CONFIG_EFI_GENERIC_STUB
 620	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 621#endif
 622	{},
 623};
 624
 625static __init int match_config_table(const efi_guid_t *guid,
 626				     unsigned long table,
 627				     const efi_config_table_type_t *table_types)
 628{
 629	int i;
 630
 631	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 632		if (efi_guidcmp(*guid, table_types[i].guid))
 633			continue;
 634
 635		if (!efi_config_table_is_usable(guid, table)) {
 636			if (table_types[i].name[0])
 637				pr_cont("(%s=0x%lx unusable) ",
 638					table_types[i].name, table);
 639			return 1;
 640		}
 641
 642		*(table_types[i].ptr) = table;
 643		if (table_types[i].name[0])
 644			pr_cont("%s=0x%lx ", table_types[i].name, table);
 645		return 1;
 646	}
 647
 648	return 0;
 649}
 650
 651/**
 652 * reserve_unaccepted - Map and reserve unaccepted configuration table
 653 * @unaccepted: Pointer to unaccepted memory table
 654 *
 655 * memblock_add() makes sure that the table is mapped in direct mapping. During
 656 * normal boot it happens automatically because the table is allocated from
 657 * usable memory. But during crashkernel boot only memory specifically reserved
 658 * for crash scenario is mapped. memblock_add() forces the table to be mapped
 659 * in crashkernel case.
 660 *
 661 * Align the range to the nearest page borders. Ranges smaller than page size
 662 * are not going to be mapped.
 663 *
 664 * memblock_reserve() makes sure that future allocations will not touch the
 665 * table.
 666 */
 667
 668static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
 669{
 670	phys_addr_t start, size;
 671
 672	start = PAGE_ALIGN_DOWN(efi.unaccepted);
 673	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
 674
 675	memblock_add(start, size);
 676	memblock_reserve(start, size);
 677}
 678
 679int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 680				   int count,
 681				   const efi_config_table_type_t *arch_tables)
 682{
 683	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 684	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 685	const efi_guid_t *guid;
 686	unsigned long table;
 687	int i;
 688
 689	pr_info("");
 690	for (i = 0; i < count; i++) {
 691		if (!IS_ENABLED(CONFIG_X86)) {
 692			guid = &config_tables[i].guid;
 693			table = (unsigned long)config_tables[i].table;
 694		} else if (efi_enabled(EFI_64BIT)) {
 695			guid = &tbl64[i].guid;
 696			table = tbl64[i].table;
 697
 698			if (IS_ENABLED(CONFIG_X86_32) &&
 699			    tbl64[i].table > U32_MAX) {
 700				pr_cont("\n");
 701				pr_err("Table located above 4GB, disabling EFI.\n");
 702				return -EINVAL;
 703			}
 704		} else {
 705			guid = &tbl32[i].guid;
 706			table = tbl32[i].table;
 707		}
 708
 709		if (!match_config_table(guid, table, common_tables) && arch_tables)
 710			match_config_table(guid, table, arch_tables);
 711	}
 712	pr_cont("\n");
 713	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 714
 715	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 716		struct linux_efi_random_seed *seed;
 717		u32 size = 0;
 718
 719		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 720		if (seed != NULL) {
 721			size = min_t(u32, seed->size, SZ_1K); // sanity check
 722			early_memunmap(seed, sizeof(*seed));
 723		} else {
 724			pr_err("Could not map UEFI random seed!\n");
 725		}
 726		if (size > 0) {
 727			seed = early_memremap(efi_rng_seed,
 728					      sizeof(*seed) + size);
 729			if (seed != NULL) {
 730				add_bootloader_randomness(seed->bits, size);
 731				memzero_explicit(seed->bits, size);
 732				early_memunmap(seed, sizeof(*seed) + size);
 733			} else {
 734				pr_err("Could not map UEFI random seed!\n");
 735			}
 736		}
 737	}
 738
 739	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 740		efi_memattr_init();
 741
 742	efi_tpm_eventlog_init();
 743
 744	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 745		unsigned long prsv = mem_reserve;
 746
 747		while (prsv) {
 748			struct linux_efi_memreserve *rsv;
 749			u8 *p;
 750
 751			/*
 752			 * Just map a full page: that is what we will get
 753			 * anyway, and it permits us to map the entire entry
 754			 * before knowing its size.
 755			 */
 756			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 757					   PAGE_SIZE);
 758			if (p == NULL) {
 759				pr_err("Could not map UEFI memreserve entry!\n");
 760				return -ENOMEM;
 761			}
 762
 763			rsv = (void *)(p + prsv % PAGE_SIZE);
 764
 765			/* reserve the entry itself */
 766			memblock_reserve(prsv,
 767					 struct_size(rsv, entry, rsv->size));
 768
 769			for (i = 0; i < atomic_read(&rsv->count); i++) {
 770				memblock_reserve(rsv->entry[i].base,
 771						 rsv->entry[i].size);
 772			}
 773
 774			prsv = rsv->next;
 775			early_memunmap(p, PAGE_SIZE);
 776		}
 777	}
 778
 779	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 780		efi_rt_properties_table_t *tbl;
 781
 782		tbl = early_memremap(rt_prop, sizeof(*tbl));
 783		if (tbl) {
 784			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 785			early_memunmap(tbl, sizeof(*tbl));
 786		}
 787	}
 788
 789	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 790	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 791		struct linux_efi_initrd *tbl;
 792
 793		tbl = early_memremap(initrd, sizeof(*tbl));
 794		if (tbl) {
 795			phys_initrd_start = tbl->base;
 796			phys_initrd_size = tbl->size;
 797			early_memunmap(tbl, sizeof(*tbl));
 798		}
 799	}
 800
 801	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
 802	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
 803		struct efi_unaccepted_memory *unaccepted;
 804
 805		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
 806		if (unaccepted) {
 807
 808			if (unaccepted->version == 1) {
 809				reserve_unaccepted(unaccepted);
 810			} else {
 811				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
 812			}
 813
 814			early_memunmap(unaccepted, sizeof(*unaccepted));
 815		}
 816	}
 817
 818	return 0;
 819}
 820
 821int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
 
 822{
 823	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 824		pr_err("System table signature incorrect!\n");
 825		return -EINVAL;
 826	}
 827
 
 
 
 
 
 
 828	return 0;
 829}
 830
 
 831static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 832						size_t size)
 833{
 834	const efi_char16_t *ret;
 835
 836	ret = early_memremap_ro(fw_vendor, size);
 837	if (!ret)
 838		pr_err("Could not map the firmware vendor!\n");
 839	return ret;
 840}
 841
 842static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 843{
 844	early_memunmap((void *)fw_vendor, size);
 845}
 
 
 
 
 846
 847void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 848				     unsigned long fw_vendor)
 849{
 850	char vendor[100] = "unknown";
 851	const efi_char16_t *c16;
 852	size_t i;
 853	u16 rev;
 854
 855	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 856	if (c16) {
 857		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 858			vendor[i] = c16[i];
 859		vendor[i] = '\0';
 860
 861		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 862	}
 863
 864	rev = (u16)systab_hdr->revision;
 865	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
 866
 867	rev %= 10;
 868	if (rev)
 869		pr_cont(".%u", rev);
 870
 871	pr_cont(" by %s\n", vendor);
 872
 873	if (IS_ENABLED(CONFIG_X86_64) &&
 874	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 875	    !strcmp(vendor, "Apple")) {
 876		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 877		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 878	}
 879}
 880
 881static __initdata char memory_type_name[][13] = {
 882	"Reserved",
 883	"Loader Code",
 884	"Loader Data",
 885	"Boot Code",
 886	"Boot Data",
 887	"Runtime Code",
 888	"Runtime Data",
 889	"Conventional",
 890	"Unusable",
 891	"ACPI Reclaim",
 892	"ACPI Mem NVS",
 893	"MMIO",
 894	"MMIO Port",
 895	"PAL Code",
 896	"Persistent",
 897	"Unaccepted",
 898};
 899
 900char * __init efi_md_typeattr_format(char *buf, size_t size,
 901				     const efi_memory_desc_t *md)
 902{
 903	char *pos;
 904	int type_len;
 905	u64 attr;
 906
 907	pos = buf;
 908	if (md->type >= ARRAY_SIZE(memory_type_name))
 909		type_len = snprintf(pos, size, "[type=%u", md->type);
 910	else
 911		type_len = snprintf(pos, size, "[%-*s",
 912				    (int)(sizeof(memory_type_name[0]) - 1),
 913				    memory_type_name[md->type]);
 914	if (type_len >= size)
 915		return buf;
 916
 917	pos += type_len;
 918	size -= type_len;
 919
 920	attr = md->attribute;
 921	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 922		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 923		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 924		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 925		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 926		snprintf(pos, size, "|attr=0x%016llx]",
 927			 (unsigned long long)attr);
 928	else
 929		snprintf(pos, size,
 930			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 931			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 932			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 933			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 934			 attr & EFI_MEMORY_SP			? "SP"  : "",
 935			 attr & EFI_MEMORY_NV			? "NV"  : "",
 936			 attr & EFI_MEMORY_XP			? "XP"  : "",
 937			 attr & EFI_MEMORY_RP			? "RP"  : "",
 938			 attr & EFI_MEMORY_WP			? "WP"  : "",
 939			 attr & EFI_MEMORY_RO			? "RO"  : "",
 940			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 941			 attr & EFI_MEMORY_WB			? "WB"  : "",
 942			 attr & EFI_MEMORY_WT			? "WT"  : "",
 943			 attr & EFI_MEMORY_WC			? "WC"  : "",
 944			 attr & EFI_MEMORY_UC			? "UC"  : "");
 945	return buf;
 946}
 947
 948/*
 
 
 
 
 
 949 * efi_mem_attributes - lookup memmap attributes for physical address
 950 * @phys_addr: the physical address to lookup
 951 *
 952 * Search in the EFI memory map for the region covering
 953 * @phys_addr. Returns the EFI memory attributes if the region
 954 * was found in the memory map, 0 otherwise.
 955 */
 956u64 efi_mem_attributes(unsigned long phys_addr)
 957{
 958	efi_memory_desc_t *md;
 959
 960	if (!efi_enabled(EFI_MEMMAP))
 961		return 0;
 962
 963	for_each_efi_memory_desc(md) {
 964		if ((md->phys_addr <= phys_addr) &&
 965		    (phys_addr < (md->phys_addr +
 966		    (md->num_pages << EFI_PAGE_SHIFT))))
 967			return md->attribute;
 968	}
 969	return 0;
 970}
 971
 972/*
 973 * efi_mem_type - lookup memmap type for physical address
 974 * @phys_addr: the physical address to lookup
 975 *
 976 * Search in the EFI memory map for the region covering @phys_addr.
 977 * Returns the EFI memory type if the region was found in the memory
 978 * map, -EINVAL otherwise.
 979 */
 980int efi_mem_type(unsigned long phys_addr)
 981{
 982	const efi_memory_desc_t *md;
 983
 984	if (!efi_enabled(EFI_MEMMAP))
 985		return -ENOTSUPP;
 986
 987	for_each_efi_memory_desc(md) {
 988		if ((md->phys_addr <= phys_addr) &&
 989		    (phys_addr < (md->phys_addr +
 990				  (md->num_pages << EFI_PAGE_SHIFT))))
 991			return md->type;
 992	}
 993	return -EINVAL;
 994}
 
 995
 996int efi_status_to_err(efi_status_t status)
 997{
 998	int err;
 999
1000	switch (status) {
1001	case EFI_SUCCESS:
1002		err = 0;
1003		break;
1004	case EFI_INVALID_PARAMETER:
1005		err = -EINVAL;
1006		break;
1007	case EFI_OUT_OF_RESOURCES:
1008		err = -ENOSPC;
1009		break;
1010	case EFI_DEVICE_ERROR:
1011		err = -EIO;
1012		break;
1013	case EFI_WRITE_PROTECTED:
1014		err = -EROFS;
1015		break;
1016	case EFI_SECURITY_VIOLATION:
1017		err = -EACCES;
1018		break;
1019	case EFI_NOT_FOUND:
1020		err = -ENOENT;
1021		break;
1022	case EFI_ABORTED:
1023		err = -EINTR;
1024		break;
1025	default:
1026		err = -EINVAL;
1027	}
1028
1029	return err;
1030}
1031EXPORT_SYMBOL_GPL(efi_status_to_err);
1032
1033static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1034static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1035
1036static int __init efi_memreserve_map_root(void)
1037{
1038	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1039		return -ENODEV;
1040
1041	efi_memreserve_root = memremap(mem_reserve,
1042				       sizeof(*efi_memreserve_root),
1043				       MEMREMAP_WB);
1044	if (WARN_ON_ONCE(!efi_memreserve_root))
1045		return -ENOMEM;
1046	return 0;
1047}
1048
1049static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1050{
1051	struct resource *res, *parent;
1052	int ret;
1053
1054	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1055	if (!res)
1056		return -ENOMEM;
1057
1058	res->name	= "reserved";
1059	res->flags	= IORESOURCE_MEM;
1060	res->start	= addr;
1061	res->end	= addr + size - 1;
1062
1063	/* we expect a conflict with a 'System RAM' region */
1064	parent = request_resource_conflict(&iomem_resource, res);
1065	ret = parent ? request_resource(parent, res) : 0;
1066
1067	/*
1068	 * Given that efi_mem_reserve_iomem() can be called at any
1069	 * time, only call memblock_reserve() if the architecture
1070	 * keeps the infrastructure around.
1071	 */
1072	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1073		memblock_reserve(addr, size);
1074
1075	return ret;
1076}
1077
1078int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1079{
1080	struct linux_efi_memreserve *rsv;
1081	unsigned long prsv;
1082	int rc, index;
1083
1084	if (efi_memreserve_root == (void *)ULONG_MAX)
1085		return -ENODEV;
1086
1087	if (!efi_memreserve_root) {
1088		rc = efi_memreserve_map_root();
1089		if (rc)
1090			return rc;
1091	}
1092
1093	/* first try to find a slot in an existing linked list entry */
1094	for (prsv = efi_memreserve_root->next; prsv; ) {
1095		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1096		if (!rsv)
1097			return -ENOMEM;
1098		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1099		if (index < rsv->size) {
1100			rsv->entry[index].base = addr;
1101			rsv->entry[index].size = size;
1102
1103			memunmap(rsv);
1104			return efi_mem_reserve_iomem(addr, size);
1105		}
1106		prsv = rsv->next;
1107		memunmap(rsv);
1108	}
1109
1110	/* no slot found - allocate a new linked list entry */
1111	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1112	if (!rsv)
1113		return -ENOMEM;
1114
1115	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1116	if (rc) {
1117		free_page((unsigned long)rsv);
1118		return rc;
1119	}
1120
1121	/*
1122	 * The memremap() call above assumes that a linux_efi_memreserve entry
1123	 * never crosses a page boundary, so let's ensure that this remains true
1124	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1125	 * using SZ_4K explicitly in the size calculation below.
1126	 */
1127	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1128	atomic_set(&rsv->count, 1);
1129	rsv->entry[0].base = addr;
1130	rsv->entry[0].size = size;
1131
1132	spin_lock(&efi_mem_reserve_persistent_lock);
1133	rsv->next = efi_memreserve_root->next;
1134	efi_memreserve_root->next = __pa(rsv);
1135	spin_unlock(&efi_mem_reserve_persistent_lock);
1136
1137	return efi_mem_reserve_iomem(addr, size);
1138}
1139
1140static int __init efi_memreserve_root_init(void)
1141{
1142	if (efi_memreserve_root)
1143		return 0;
1144	if (efi_memreserve_map_root())
1145		efi_memreserve_root = (void *)ULONG_MAX;
1146	return 0;
1147}
1148early_initcall(efi_memreserve_root_init);
1149
1150#ifdef CONFIG_KEXEC
1151static int update_efi_random_seed(struct notifier_block *nb,
1152				  unsigned long code, void *unused)
1153{
1154	struct linux_efi_random_seed *seed;
1155	u32 size = 0;
1156
1157	if (!kexec_in_progress)
1158		return NOTIFY_DONE;
1159
1160	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1161	if (seed != NULL) {
1162		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1163		memunmap(seed);
1164	} else {
1165		pr_err("Could not map UEFI random seed!\n");
1166	}
1167	if (size > 0) {
1168		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1169				MEMREMAP_WB);
1170		if (seed != NULL) {
1171			seed->size = size;
1172			get_random_bytes(seed->bits, seed->size);
1173			memunmap(seed);
1174		} else {
1175			pr_err("Could not map UEFI random seed!\n");
1176		}
1177	}
1178	return NOTIFY_DONE;
1179}
1180
1181static struct notifier_block efi_random_seed_nb = {
1182	.notifier_call = update_efi_random_seed,
1183};
1184
1185static int __init register_update_efi_random_seed(void)
1186{
1187	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1188		return 0;
1189	return register_reboot_notifier(&efi_random_seed_nb);
1190}
1191late_initcall(register_update_efi_random_seed);
1192#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
 
  35
  36#include <asm/early_ioremap.h>
  37
  38struct efi __read_mostly efi = {
  39	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  40	.acpi			= EFI_INVALID_TABLE_ADDR,
  41	.acpi20			= EFI_INVALID_TABLE_ADDR,
  42	.smbios			= EFI_INVALID_TABLE_ADDR,
  43	.smbios3		= EFI_INVALID_TABLE_ADDR,
  44	.esrt			= EFI_INVALID_TABLE_ADDR,
  45	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  46	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  47#ifdef CONFIG_LOAD_UEFI_KEYS
  48	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  49#endif
  50#ifdef CONFIG_EFI_COCO_SECRET
  51	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  52#endif
 
 
 
  53};
  54EXPORT_SYMBOL(efi);
  55
  56unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  57static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  58static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  59static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  60
  61extern unsigned long screen_info_table;
  62
  63struct mm_struct efi_mm = {
  64	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  65	.mm_users		= ATOMIC_INIT(2),
  66	.mm_count		= ATOMIC_INIT(1),
  67	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  68	MMAP_LOCK_INITIALIZER(efi_mm)
  69	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  70	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  71	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  72};
  73
  74struct workqueue_struct *efi_rts_wq;
  75
  76static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  77static int __init setup_noefi(char *arg)
  78{
  79	disable_runtime = true;
  80	return 0;
  81}
  82early_param("noefi", setup_noefi);
  83
  84bool efi_runtime_disabled(void)
  85{
  86	return disable_runtime;
  87}
  88
  89bool __pure __efi_soft_reserve_enabled(void)
  90{
  91	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  92}
  93
  94static int __init parse_efi_cmdline(char *str)
  95{
  96	if (!str) {
  97		pr_warn("need at least one option\n");
  98		return -EINVAL;
  99	}
 100
 101	if (parse_option_str(str, "debug"))
 102		set_bit(EFI_DBG, &efi.flags);
 103
 104	if (parse_option_str(str, "noruntime"))
 105		disable_runtime = true;
 106
 107	if (parse_option_str(str, "runtime"))
 108		disable_runtime = false;
 109
 110	if (parse_option_str(str, "nosoftreserve"))
 111		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 112
 113	return 0;
 114}
 115early_param("efi", parse_efi_cmdline);
 116
 117struct kobject *efi_kobj;
 118
 119/*
 120 * Let's not leave out systab information that snuck into
 121 * the efivars driver
 122 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 123 * one value per file rule!
 124 */
 125static ssize_t systab_show(struct kobject *kobj,
 126			   struct kobj_attribute *attr, char *buf)
 127{
 128	char *str = buf;
 129
 130	if (!kobj || !buf)
 131		return -EINVAL;
 132
 133	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 134		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 135	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 136		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 137	/*
 138	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 139	 * SMBIOS3 entry point shall be preferred, so we list it first to
 140	 * let applications stop parsing after the first match.
 141	 */
 142	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 143		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 144	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 145		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 146
 147	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 148		str = efi_systab_show_arch(str);
 149
 150	return str - buf;
 151}
 152
 153static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 154
 155static ssize_t fw_platform_size_show(struct kobject *kobj,
 156				     struct kobj_attribute *attr, char *buf)
 157{
 158	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 159}
 160
 161extern __weak struct kobj_attribute efi_attr_fw_vendor;
 162extern __weak struct kobj_attribute efi_attr_runtime;
 163extern __weak struct kobj_attribute efi_attr_config_table;
 164static struct kobj_attribute efi_attr_fw_platform_size =
 165	__ATTR_RO(fw_platform_size);
 166
 167static struct attribute *efi_subsys_attrs[] = {
 168	&efi_attr_systab.attr,
 169	&efi_attr_fw_platform_size.attr,
 170	&efi_attr_fw_vendor.attr,
 171	&efi_attr_runtime.attr,
 172	&efi_attr_config_table.attr,
 173	NULL,
 174};
 175
 176umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 177				   int n)
 178{
 179	return attr->mode;
 180}
 181
 182static const struct attribute_group efi_subsys_attr_group = {
 183	.attrs = efi_subsys_attrs,
 184	.is_visible = efi_attr_is_visible,
 185};
 186
 
 
 
 187static struct efivars generic_efivars;
 188static struct efivar_operations generic_ops;
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190static int generic_ops_register(void)
 191{
 
 
 
 192	generic_ops.get_variable = efi.get_variable;
 193	generic_ops.get_next_variable = efi.get_next_variable;
 194	generic_ops.query_variable_store = efi_query_variable_store;
 
 195
 196	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 197		generic_ops.set_variable = efi.set_variable;
 198		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 199	}
 200	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 201}
 202
 203static void generic_ops_unregister(void)
 204{
 
 
 
 205	efivars_unregister(&generic_efivars);
 206}
 207
 
 
 
 
 
 
 
 
 
 
 
 
 208#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 209#define EFIVAR_SSDT_NAME_MAX	16UL
 210static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 211static int __init efivar_ssdt_setup(char *str)
 212{
 213	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 214
 215	if (ret)
 216		return ret;
 217
 218	if (strlen(str) < sizeof(efivar_ssdt))
 219		memcpy(efivar_ssdt, str, strlen(str));
 220	else
 221		pr_warn("efivar_ssdt: name too long: %s\n", str);
 222	return 1;
 223}
 224__setup("efivar_ssdt=", efivar_ssdt_setup);
 225
 226static __init int efivar_ssdt_load(void)
 227{
 228	unsigned long name_size = 256;
 229	efi_char16_t *name = NULL;
 230	efi_status_t status;
 231	efi_guid_t guid;
 232
 233	if (!efivar_ssdt[0])
 234		return 0;
 235
 236	name = kzalloc(name_size, GFP_KERNEL);
 237	if (!name)
 238		return -ENOMEM;
 239
 240	for (;;) {
 241		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 242		unsigned long data_size = 0;
 243		void *data;
 244		int limit;
 245
 246		status = efi.get_next_variable(&name_size, name, &guid);
 247		if (status == EFI_NOT_FOUND) {
 248			break;
 249		} else if (status == EFI_BUFFER_TOO_SMALL) {
 250			name = krealloc(name, name_size, GFP_KERNEL);
 251			if (!name)
 
 
 252				return -ENOMEM;
 
 
 253			continue;
 254		}
 255
 256		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 257		ucs2_as_utf8(utf8_name, name, limit - 1);
 258		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 259			continue;
 260
 261		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 262
 263		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 264		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 265			return -EIO;
 266
 267		data = kmalloc(data_size, GFP_KERNEL);
 268		if (!data)
 269			return -ENOMEM;
 270
 271		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 272		if (status == EFI_SUCCESS) {
 273			acpi_status ret = acpi_load_table(data, NULL);
 274			if (ret)
 275				pr_err("failed to load table: %u\n", ret);
 276			else
 277				continue;
 278		} else {
 279			pr_err("failed to get var data: 0x%lx\n", status);
 280		}
 281		kfree(data);
 282	}
 283	return 0;
 284}
 285#else
 286static inline int efivar_ssdt_load(void) { return 0; }
 287#endif
 288
 289#ifdef CONFIG_DEBUG_FS
 290
 291#define EFI_DEBUGFS_MAX_BLOBS 32
 292
 293static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 294
 295static void __init efi_debugfs_init(void)
 296{
 297	struct dentry *efi_debugfs;
 298	efi_memory_desc_t *md;
 299	char name[32];
 300	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 301	int i = 0;
 302
 303	efi_debugfs = debugfs_create_dir("efi", NULL);
 304	if (IS_ERR_OR_NULL(efi_debugfs))
 305		return;
 306
 307	for_each_efi_memory_desc(md) {
 308		switch (md->type) {
 309		case EFI_BOOT_SERVICES_CODE:
 310			snprintf(name, sizeof(name), "boot_services_code%d",
 311				 type_count[md->type]++);
 312			break;
 313		case EFI_BOOT_SERVICES_DATA:
 314			snprintf(name, sizeof(name), "boot_services_data%d",
 315				 type_count[md->type]++);
 316			break;
 317		default:
 318			continue;
 319		}
 320
 321		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 322			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 323				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 324			break;
 325		}
 326
 327		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 328		debugfs_blob[i].data = memremap(md->phys_addr,
 329						debugfs_blob[i].size,
 330						MEMREMAP_WB);
 331		if (!debugfs_blob[i].data)
 332			continue;
 333
 334		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 335		i++;
 336	}
 337}
 338#else
 339static inline void efi_debugfs_init(void) {}
 340#endif
 341
 342static void refresh_nv_rng_seed(struct work_struct *work)
 343{
 344	u8 seed[EFI_RANDOM_SEED_SIZE];
 345
 346	get_random_bytes(seed, sizeof(seed));
 347	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
 348			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
 349			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
 350	memzero_explicit(seed, sizeof(seed));
 351}
 352static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
 353{
 354	static DECLARE_WORK(work, refresh_nv_rng_seed);
 355	schedule_work(&work);
 356	return NOTIFY_DONE;
 357}
 358static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
 359
 360/*
 361 * We register the efi subsystem with the firmware subsystem and the
 362 * efivars subsystem with the efi subsystem, if the system was booted with
 363 * EFI.
 364 */
 365static int __init efisubsys_init(void)
 366{
 367	int error;
 368
 369	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 370		efi.runtime_supported_mask = 0;
 371
 372	if (!efi_enabled(EFI_BOOT))
 373		return 0;
 374
 375	if (efi.runtime_supported_mask) {
 376		/*
 377		 * Since we process only one efi_runtime_service() at a time, an
 378		 * ordered workqueue (which creates only one execution context)
 379		 * should suffice for all our needs.
 380		 */
 381		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 382		if (!efi_rts_wq) {
 383			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 384			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 385			efi.runtime_supported_mask = 0;
 386			return 0;
 387		}
 388	}
 389
 390	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 391		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 392
 393	/* We register the efi directory at /sys/firmware/efi */
 394	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 395	if (!efi_kobj) {
 396		pr_err("efi: Firmware registration failed.\n");
 397		error = -ENOMEM;
 398		goto err_destroy_wq;
 399	}
 400
 401	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 402				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 403		error = generic_ops_register();
 404		if (error)
 405			goto err_put;
 406		efivar_ssdt_load();
 407		platform_device_register_simple("efivars", 0, NULL, 0);
 408	}
 409
 
 
 410	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 411	if (error) {
 412		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 413		       error);
 414		goto err_unregister;
 415	}
 416
 417	/* and the standard mountpoint for efivarfs */
 418	error = sysfs_create_mount_point(efi_kobj, "efivars");
 419	if (error) {
 420		pr_err("efivars: Subsystem registration failed.\n");
 421		goto err_remove_group;
 422	}
 423
 424	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 425		efi_debugfs_init();
 426
 427#ifdef CONFIG_EFI_COCO_SECRET
 428	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 429		platform_device_register_simple("efi_secret", 0, NULL, 0);
 430#endif
 431
 432	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE))
 433		execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
 434
 435	return 0;
 436
 437err_remove_group:
 438	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 439err_unregister:
 440	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 441				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 442		generic_ops_unregister();
 443err_put:
 444	kobject_put(efi_kobj);
 445	efi_kobj = NULL;
 446err_destroy_wq:
 447	if (efi_rts_wq)
 448		destroy_workqueue(efi_rts_wq);
 449
 450	return error;
 451}
 452
 453subsys_initcall(efisubsys_init);
 454
 455void __init efi_find_mirror(void)
 456{
 457	efi_memory_desc_t *md;
 458	u64 mirror_size = 0, total_size = 0;
 459
 460	if (!efi_enabled(EFI_MEMMAP))
 461		return;
 462
 463	for_each_efi_memory_desc(md) {
 464		unsigned long long start = md->phys_addr;
 465		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 466
 467		total_size += size;
 468		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 469			memblock_mark_mirror(start, size);
 470			mirror_size += size;
 471		}
 472	}
 473	if (mirror_size)
 474		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 475			mirror_size>>20, total_size>>20);
 476}
 477
 478/*
 479 * Find the efi memory descriptor for a given physical address.  Given a
 480 * physical address, determine if it exists within an EFI Memory Map entry,
 481 * and if so, populate the supplied memory descriptor with the appropriate
 482 * data.
 483 */
 484int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 485{
 486	efi_memory_desc_t *md;
 487
 488	if (!efi_enabled(EFI_MEMMAP)) {
 489		pr_err_once("EFI_MEMMAP is not enabled.\n");
 490		return -EINVAL;
 491	}
 492
 493	if (!out_md) {
 494		pr_err_once("out_md is null.\n");
 495		return -EINVAL;
 496        }
 497
 498	for_each_efi_memory_desc(md) {
 499		u64 size;
 500		u64 end;
 501
 
 
 
 
 
 
 502		size = md->num_pages << EFI_PAGE_SHIFT;
 503		end = md->phys_addr + size;
 504		if (phys_addr >= md->phys_addr && phys_addr < end) {
 505			memcpy(out_md, md, sizeof(*out_md));
 506			return 0;
 507		}
 508	}
 509	return -ENOENT;
 510}
 511
 
 
 
 512/*
 513 * Calculate the highest address of an efi memory descriptor.
 514 */
 515u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 516{
 517	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 518	u64 end = md->phys_addr + size;
 519	return end;
 520}
 521
 522void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 523
 524/**
 525 * efi_mem_reserve - Reserve an EFI memory region
 526 * @addr: Physical address to reserve
 527 * @size: Size of reservation
 528 *
 529 * Mark a region as reserved from general kernel allocation and
 530 * prevent it being released by efi_free_boot_services().
 531 *
 532 * This function should be called drivers once they've parsed EFI
 533 * configuration tables to figure out where their data lives, e.g.
 534 * efi_esrt_init().
 535 */
 536void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 537{
 
 
 
 
 538	if (!memblock_is_region_reserved(addr, size))
 539		memblock_reserve(addr, size);
 540
 541	/*
 542	 * Some architectures (x86) reserve all boot services ranges
 543	 * until efi_free_boot_services() because of buggy firmware
 544	 * implementations. This means the above memblock_reserve() is
 545	 * superfluous on x86 and instead what it needs to do is
 546	 * ensure the @start, @size is not freed.
 547	 */
 548	efi_arch_mem_reserve(addr, size);
 549}
 550
 551static const efi_config_table_type_t common_tables[] __initconst = {
 552	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 553	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 554	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 555	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 556	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 557	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 558	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 559	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 560	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 
 561	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 562	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 563	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 564#ifdef CONFIG_EFI_RCI2_TABLE
 565	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 566#endif
 567#ifdef CONFIG_LOAD_UEFI_KEYS
 568	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 569#endif
 570#ifdef CONFIG_EFI_COCO_SECRET
 571	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 572#endif
 
 
 
 573#ifdef CONFIG_EFI_GENERIC_STUB
 574	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 575#endif
 576	{},
 577};
 578
 579static __init int match_config_table(const efi_guid_t *guid,
 580				     unsigned long table,
 581				     const efi_config_table_type_t *table_types)
 582{
 583	int i;
 584
 585	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 586		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 587			*(table_types[i].ptr) = table;
 
 
 588			if (table_types[i].name[0])
 589				pr_cont("%s=0x%lx ",
 590					table_types[i].name, table);
 591			return 1;
 592		}
 
 
 
 
 
 593	}
 594
 595	return 0;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 599				   int count,
 600				   const efi_config_table_type_t *arch_tables)
 601{
 602	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 603	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 604	const efi_guid_t *guid;
 605	unsigned long table;
 606	int i;
 607
 608	pr_info("");
 609	for (i = 0; i < count; i++) {
 610		if (!IS_ENABLED(CONFIG_X86)) {
 611			guid = &config_tables[i].guid;
 612			table = (unsigned long)config_tables[i].table;
 613		} else if (efi_enabled(EFI_64BIT)) {
 614			guid = &tbl64[i].guid;
 615			table = tbl64[i].table;
 616
 617			if (IS_ENABLED(CONFIG_X86_32) &&
 618			    tbl64[i].table > U32_MAX) {
 619				pr_cont("\n");
 620				pr_err("Table located above 4GB, disabling EFI.\n");
 621				return -EINVAL;
 622			}
 623		} else {
 624			guid = &tbl32[i].guid;
 625			table = tbl32[i].table;
 626		}
 627
 628		if (!match_config_table(guid, table, common_tables) && arch_tables)
 629			match_config_table(guid, table, arch_tables);
 630	}
 631	pr_cont("\n");
 632	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 633
 634	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 635		struct linux_efi_random_seed *seed;
 636		u32 size = 0;
 637
 638		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 639		if (seed != NULL) {
 640			size = min_t(u32, seed->size, SZ_1K); // sanity check
 641			early_memunmap(seed, sizeof(*seed));
 642		} else {
 643			pr_err("Could not map UEFI random seed!\n");
 644		}
 645		if (size > 0) {
 646			seed = early_memremap(efi_rng_seed,
 647					      sizeof(*seed) + size);
 648			if (seed != NULL) {
 649				add_bootloader_randomness(seed->bits, size);
 650				memzero_explicit(seed->bits, size);
 651				early_memunmap(seed, sizeof(*seed) + size);
 652			} else {
 653				pr_err("Could not map UEFI random seed!\n");
 654			}
 655		}
 656	}
 657
 658	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 659		efi_memattr_init();
 660
 661	efi_tpm_eventlog_init();
 662
 663	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 664		unsigned long prsv = mem_reserve;
 665
 666		while (prsv) {
 667			struct linux_efi_memreserve *rsv;
 668			u8 *p;
 669
 670			/*
 671			 * Just map a full page: that is what we will get
 672			 * anyway, and it permits us to map the entire entry
 673			 * before knowing its size.
 674			 */
 675			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 676					   PAGE_SIZE);
 677			if (p == NULL) {
 678				pr_err("Could not map UEFI memreserve entry!\n");
 679				return -ENOMEM;
 680			}
 681
 682			rsv = (void *)(p + prsv % PAGE_SIZE);
 683
 684			/* reserve the entry itself */
 685			memblock_reserve(prsv,
 686					 struct_size(rsv, entry, rsv->size));
 687
 688			for (i = 0; i < atomic_read(&rsv->count); i++) {
 689				memblock_reserve(rsv->entry[i].base,
 690						 rsv->entry[i].size);
 691			}
 692
 693			prsv = rsv->next;
 694			early_memunmap(p, PAGE_SIZE);
 695		}
 696	}
 697
 698	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 699		efi_rt_properties_table_t *tbl;
 700
 701		tbl = early_memremap(rt_prop, sizeof(*tbl));
 702		if (tbl) {
 703			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 704			early_memunmap(tbl, sizeof(*tbl));
 705		}
 706	}
 707
 708	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 709	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 710		struct linux_efi_initrd *tbl;
 711
 712		tbl = early_memremap(initrd, sizeof(*tbl));
 713		if (tbl) {
 714			phys_initrd_start = tbl->base;
 715			phys_initrd_size = tbl->size;
 716			early_memunmap(tbl, sizeof(*tbl));
 717		}
 718	}
 719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	return 0;
 721}
 722
 723int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 724				   int min_major_version)
 725{
 726	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 727		pr_err("System table signature incorrect!\n");
 728		return -EINVAL;
 729	}
 730
 731	if ((systab_hdr->revision >> 16) < min_major_version)
 732		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 733		       systab_hdr->revision >> 16,
 734		       systab_hdr->revision & 0xffff,
 735		       min_major_version);
 736
 737	return 0;
 738}
 739
 740#ifndef CONFIG_IA64
 741static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 742						size_t size)
 743{
 744	const efi_char16_t *ret;
 745
 746	ret = early_memremap_ro(fw_vendor, size);
 747	if (!ret)
 748		pr_err("Could not map the firmware vendor!\n");
 749	return ret;
 750}
 751
 752static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 753{
 754	early_memunmap((void *)fw_vendor, size);
 755}
 756#else
 757#define map_fw_vendor(p, s)	__va(p)
 758#define unmap_fw_vendor(v, s)
 759#endif
 760
 761void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 762				     unsigned long fw_vendor)
 763{
 764	char vendor[100] = "unknown";
 765	const efi_char16_t *c16;
 766	size_t i;
 
 767
 768	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 769	if (c16) {
 770		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 771			vendor[i] = c16[i];
 772		vendor[i] = '\0';
 773
 774		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 775	}
 776
 777	pr_info("EFI v%u.%.02u by %s\n",
 778		systab_hdr->revision >> 16,
 779		systab_hdr->revision & 0xffff,
 780		vendor);
 
 
 
 
 781
 782	if (IS_ENABLED(CONFIG_X86_64) &&
 783	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 784	    !strcmp(vendor, "Apple")) {
 785		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 786		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 787	}
 788}
 789
 790static __initdata char memory_type_name[][13] = {
 791	"Reserved",
 792	"Loader Code",
 793	"Loader Data",
 794	"Boot Code",
 795	"Boot Data",
 796	"Runtime Code",
 797	"Runtime Data",
 798	"Conventional",
 799	"Unusable",
 800	"ACPI Reclaim",
 801	"ACPI Mem NVS",
 802	"MMIO",
 803	"MMIO Port",
 804	"PAL Code",
 805	"Persistent",
 
 806};
 807
 808char * __init efi_md_typeattr_format(char *buf, size_t size,
 809				     const efi_memory_desc_t *md)
 810{
 811	char *pos;
 812	int type_len;
 813	u64 attr;
 814
 815	pos = buf;
 816	if (md->type >= ARRAY_SIZE(memory_type_name))
 817		type_len = snprintf(pos, size, "[type=%u", md->type);
 818	else
 819		type_len = snprintf(pos, size, "[%-*s",
 820				    (int)(sizeof(memory_type_name[0]) - 1),
 821				    memory_type_name[md->type]);
 822	if (type_len >= size)
 823		return buf;
 824
 825	pos += type_len;
 826	size -= type_len;
 827
 828	attr = md->attribute;
 829	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 830		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 831		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 832		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 833		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 834		snprintf(pos, size, "|attr=0x%016llx]",
 835			 (unsigned long long)attr);
 836	else
 837		snprintf(pos, size,
 838			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 839			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 840			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 841			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 842			 attr & EFI_MEMORY_SP			? "SP"  : "",
 843			 attr & EFI_MEMORY_NV			? "NV"  : "",
 844			 attr & EFI_MEMORY_XP			? "XP"  : "",
 845			 attr & EFI_MEMORY_RP			? "RP"  : "",
 846			 attr & EFI_MEMORY_WP			? "WP"  : "",
 847			 attr & EFI_MEMORY_RO			? "RO"  : "",
 848			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 849			 attr & EFI_MEMORY_WB			? "WB"  : "",
 850			 attr & EFI_MEMORY_WT			? "WT"  : "",
 851			 attr & EFI_MEMORY_WC			? "WC"  : "",
 852			 attr & EFI_MEMORY_UC			? "UC"  : "");
 853	return buf;
 854}
 855
 856/*
 857 * IA64 has a funky EFI memory map that doesn't work the same way as
 858 * other architectures.
 859 */
 860#ifndef CONFIG_IA64
 861/*
 862 * efi_mem_attributes - lookup memmap attributes for physical address
 863 * @phys_addr: the physical address to lookup
 864 *
 865 * Search in the EFI memory map for the region covering
 866 * @phys_addr. Returns the EFI memory attributes if the region
 867 * was found in the memory map, 0 otherwise.
 868 */
 869u64 efi_mem_attributes(unsigned long phys_addr)
 870{
 871	efi_memory_desc_t *md;
 872
 873	if (!efi_enabled(EFI_MEMMAP))
 874		return 0;
 875
 876	for_each_efi_memory_desc(md) {
 877		if ((md->phys_addr <= phys_addr) &&
 878		    (phys_addr < (md->phys_addr +
 879		    (md->num_pages << EFI_PAGE_SHIFT))))
 880			return md->attribute;
 881	}
 882	return 0;
 883}
 884
 885/*
 886 * efi_mem_type - lookup memmap type for physical address
 887 * @phys_addr: the physical address to lookup
 888 *
 889 * Search in the EFI memory map for the region covering @phys_addr.
 890 * Returns the EFI memory type if the region was found in the memory
 891 * map, -EINVAL otherwise.
 892 */
 893int efi_mem_type(unsigned long phys_addr)
 894{
 895	const efi_memory_desc_t *md;
 896
 897	if (!efi_enabled(EFI_MEMMAP))
 898		return -ENOTSUPP;
 899
 900	for_each_efi_memory_desc(md) {
 901		if ((md->phys_addr <= phys_addr) &&
 902		    (phys_addr < (md->phys_addr +
 903				  (md->num_pages << EFI_PAGE_SHIFT))))
 904			return md->type;
 905	}
 906	return -EINVAL;
 907}
 908#endif
 909
 910int efi_status_to_err(efi_status_t status)
 911{
 912	int err;
 913
 914	switch (status) {
 915	case EFI_SUCCESS:
 916		err = 0;
 917		break;
 918	case EFI_INVALID_PARAMETER:
 919		err = -EINVAL;
 920		break;
 921	case EFI_OUT_OF_RESOURCES:
 922		err = -ENOSPC;
 923		break;
 924	case EFI_DEVICE_ERROR:
 925		err = -EIO;
 926		break;
 927	case EFI_WRITE_PROTECTED:
 928		err = -EROFS;
 929		break;
 930	case EFI_SECURITY_VIOLATION:
 931		err = -EACCES;
 932		break;
 933	case EFI_NOT_FOUND:
 934		err = -ENOENT;
 935		break;
 936	case EFI_ABORTED:
 937		err = -EINTR;
 938		break;
 939	default:
 940		err = -EINVAL;
 941	}
 942
 943	return err;
 944}
 945EXPORT_SYMBOL_GPL(efi_status_to_err);
 946
 947static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 948static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 949
 950static int __init efi_memreserve_map_root(void)
 951{
 952	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 953		return -ENODEV;
 954
 955	efi_memreserve_root = memremap(mem_reserve,
 956				       sizeof(*efi_memreserve_root),
 957				       MEMREMAP_WB);
 958	if (WARN_ON_ONCE(!efi_memreserve_root))
 959		return -ENOMEM;
 960	return 0;
 961}
 962
 963static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 964{
 965	struct resource *res, *parent;
 966	int ret;
 967
 968	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 969	if (!res)
 970		return -ENOMEM;
 971
 972	res->name	= "reserved";
 973	res->flags	= IORESOURCE_MEM;
 974	res->start	= addr;
 975	res->end	= addr + size - 1;
 976
 977	/* we expect a conflict with a 'System RAM' region */
 978	parent = request_resource_conflict(&iomem_resource, res);
 979	ret = parent ? request_resource(parent, res) : 0;
 980
 981	/*
 982	 * Given that efi_mem_reserve_iomem() can be called at any
 983	 * time, only call memblock_reserve() if the architecture
 984	 * keeps the infrastructure around.
 985	 */
 986	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 987		memblock_reserve(addr, size);
 988
 989	return ret;
 990}
 991
 992int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 993{
 994	struct linux_efi_memreserve *rsv;
 995	unsigned long prsv;
 996	int rc, index;
 997
 998	if (efi_memreserve_root == (void *)ULONG_MAX)
 999		return -ENODEV;
1000
1001	if (!efi_memreserve_root) {
1002		rc = efi_memreserve_map_root();
1003		if (rc)
1004			return rc;
1005	}
1006
1007	/* first try to find a slot in an existing linked list entry */
1008	for (prsv = efi_memreserve_root->next; prsv; ) {
1009		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1010		if (!rsv)
1011			return -ENOMEM;
1012		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1013		if (index < rsv->size) {
1014			rsv->entry[index].base = addr;
1015			rsv->entry[index].size = size;
1016
1017			memunmap(rsv);
1018			return efi_mem_reserve_iomem(addr, size);
1019		}
1020		prsv = rsv->next;
1021		memunmap(rsv);
1022	}
1023
1024	/* no slot found - allocate a new linked list entry */
1025	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1026	if (!rsv)
1027		return -ENOMEM;
1028
1029	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1030	if (rc) {
1031		free_page((unsigned long)rsv);
1032		return rc;
1033	}
1034
1035	/*
1036	 * The memremap() call above assumes that a linux_efi_memreserve entry
1037	 * never crosses a page boundary, so let's ensure that this remains true
1038	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1039	 * using SZ_4K explicitly in the size calculation below.
1040	 */
1041	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1042	atomic_set(&rsv->count, 1);
1043	rsv->entry[0].base = addr;
1044	rsv->entry[0].size = size;
1045
1046	spin_lock(&efi_mem_reserve_persistent_lock);
1047	rsv->next = efi_memreserve_root->next;
1048	efi_memreserve_root->next = __pa(rsv);
1049	spin_unlock(&efi_mem_reserve_persistent_lock);
1050
1051	return efi_mem_reserve_iomem(addr, size);
1052}
1053
1054static int __init efi_memreserve_root_init(void)
1055{
1056	if (efi_memreserve_root)
1057		return 0;
1058	if (efi_memreserve_map_root())
1059		efi_memreserve_root = (void *)ULONG_MAX;
1060	return 0;
1061}
1062early_initcall(efi_memreserve_root_init);
1063
1064#ifdef CONFIG_KEXEC
1065static int update_efi_random_seed(struct notifier_block *nb,
1066				  unsigned long code, void *unused)
1067{
1068	struct linux_efi_random_seed *seed;
1069	u32 size = 0;
1070
1071	if (!kexec_in_progress)
1072		return NOTIFY_DONE;
1073
1074	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1075	if (seed != NULL) {
1076		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1077		memunmap(seed);
1078	} else {
1079		pr_err("Could not map UEFI random seed!\n");
1080	}
1081	if (size > 0) {
1082		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1083				MEMREMAP_WB);
1084		if (seed != NULL) {
1085			seed->size = size;
1086			get_random_bytes(seed->bits, seed->size);
1087			memunmap(seed);
1088		} else {
1089			pr_err("Could not map UEFI random seed!\n");
1090		}
1091	}
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block efi_random_seed_nb = {
1096	.notifier_call = update_efi_random_seed,
1097};
1098
1099static int __init register_update_efi_random_seed(void)
1100{
1101	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1102		return 0;
1103	return register_reboot_notifier(&efi_random_seed_nb);
1104}
1105late_initcall(register_update_efi_random_seed);
1106#endif