Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <linux/vmalloc.h>
9#include <trace/events/block.h>
10#include "nvme.h"
11
12bool multipath = true;
13module_param(multipath, bool, 0444);
14MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20};
21
22static int iopolicy = NVME_IOPOLICY_NUMA;
23
24static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25{
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36}
37
38static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39{
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41}
42
43module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49{
50 subsys->iopolicy = iopolicy;
51}
52
53void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54{
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61}
62
63void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64{
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71}
72
73void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74{
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81}
82
83void nvme_failover_req(struct request *req)
84{
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 /*
110 * The alternate request queue that we may end up submitting
111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 * will fail the I/O immediately with EAGAIN to the issuer.
113 * We are not in the issuer context which cannot block. Clear
114 * the flag to avoid spurious EAGAIN I/O failures.
115 */
116 bio->bi_opf &= ~REQ_NOWAIT;
117 }
118 blk_steal_bios(&ns->head->requeue_list, req);
119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121 nvme_req(req)->status = 0;
122 nvme_end_req(req);
123 kblockd_schedule_work(&ns->head->requeue_work);
124}
125
126void nvme_mpath_start_request(struct request *rq)
127{
128 struct nvme_ns *ns = rq->q->queuedata;
129 struct gendisk *disk = ns->head->disk;
130
131 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
132 return;
133
134 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
135 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
136 jiffies);
137}
138EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
139
140void nvme_mpath_end_request(struct request *rq)
141{
142 struct nvme_ns *ns = rq->q->queuedata;
143
144 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
145 return;
146 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
147 blk_rq_bytes(rq) >> SECTOR_SHIFT,
148 nvme_req(rq)->start_time);
149}
150
151void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
152{
153 struct nvme_ns *ns;
154
155 down_read(&ctrl->namespaces_rwsem);
156 list_for_each_entry(ns, &ctrl->namespaces, list) {
157 if (!ns->head->disk)
158 continue;
159 kblockd_schedule_work(&ns->head->requeue_work);
160 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
161 disk_uevent(ns->head->disk, KOBJ_CHANGE);
162 }
163 up_read(&ctrl->namespaces_rwsem);
164}
165
166static const char *nvme_ana_state_names[] = {
167 [0] = "invalid state",
168 [NVME_ANA_OPTIMIZED] = "optimized",
169 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
170 [NVME_ANA_INACCESSIBLE] = "inaccessible",
171 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
172 [NVME_ANA_CHANGE] = "change",
173};
174
175bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
176{
177 struct nvme_ns_head *head = ns->head;
178 bool changed = false;
179 int node;
180
181 if (!head)
182 goto out;
183
184 for_each_node(node) {
185 if (ns == rcu_access_pointer(head->current_path[node])) {
186 rcu_assign_pointer(head->current_path[node], NULL);
187 changed = true;
188 }
189 }
190out:
191 return changed;
192}
193
194void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
195{
196 struct nvme_ns *ns;
197
198 down_read(&ctrl->namespaces_rwsem);
199 list_for_each_entry(ns, &ctrl->namespaces, list) {
200 nvme_mpath_clear_current_path(ns);
201 kblockd_schedule_work(&ns->head->requeue_work);
202 }
203 up_read(&ctrl->namespaces_rwsem);
204}
205
206void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
207{
208 struct nvme_ns_head *head = ns->head;
209 sector_t capacity = get_capacity(head->disk);
210 int node;
211 int srcu_idx;
212
213 srcu_idx = srcu_read_lock(&head->srcu);
214 list_for_each_entry_rcu(ns, &head->list, siblings) {
215 if (capacity != get_capacity(ns->disk))
216 clear_bit(NVME_NS_READY, &ns->flags);
217 }
218 srcu_read_unlock(&head->srcu, srcu_idx);
219
220 for_each_node(node)
221 rcu_assign_pointer(head->current_path[node], NULL);
222 kblockd_schedule_work(&head->requeue_work);
223}
224
225static bool nvme_path_is_disabled(struct nvme_ns *ns)
226{
227 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
228
229 /*
230 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
231 * still be able to complete assuming that the controller is connected.
232 * Otherwise it will fail immediately and return to the requeue list.
233 */
234 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
235 return true;
236 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
237 !test_bit(NVME_NS_READY, &ns->flags))
238 return true;
239 return false;
240}
241
242static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
243{
244 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
245 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
246
247 list_for_each_entry_rcu(ns, &head->list, siblings) {
248 if (nvme_path_is_disabled(ns))
249 continue;
250
251 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
252 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
253 distance = node_distance(node, ns->ctrl->numa_node);
254 else
255 distance = LOCAL_DISTANCE;
256
257 switch (ns->ana_state) {
258 case NVME_ANA_OPTIMIZED:
259 if (distance < found_distance) {
260 found_distance = distance;
261 found = ns;
262 }
263 break;
264 case NVME_ANA_NONOPTIMIZED:
265 if (distance < fallback_distance) {
266 fallback_distance = distance;
267 fallback = ns;
268 }
269 break;
270 default:
271 break;
272 }
273 }
274
275 if (!found)
276 found = fallback;
277 if (found)
278 rcu_assign_pointer(head->current_path[node], found);
279 return found;
280}
281
282static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
283 struct nvme_ns *ns)
284{
285 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
286 siblings);
287 if (ns)
288 return ns;
289 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
290}
291
292static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
293 int node, struct nvme_ns *old)
294{
295 struct nvme_ns *ns, *found = NULL;
296
297 if (list_is_singular(&head->list)) {
298 if (nvme_path_is_disabled(old))
299 return NULL;
300 return old;
301 }
302
303 for (ns = nvme_next_ns(head, old);
304 ns && ns != old;
305 ns = nvme_next_ns(head, ns)) {
306 if (nvme_path_is_disabled(ns))
307 continue;
308
309 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
310 found = ns;
311 goto out;
312 }
313 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
314 found = ns;
315 }
316
317 /*
318 * The loop above skips the current path for round-robin semantics.
319 * Fall back to the current path if either:
320 * - no other optimized path found and current is optimized,
321 * - no other usable path found and current is usable.
322 */
323 if (!nvme_path_is_disabled(old) &&
324 (old->ana_state == NVME_ANA_OPTIMIZED ||
325 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
326 return old;
327
328 if (!found)
329 return NULL;
330out:
331 rcu_assign_pointer(head->current_path[node], found);
332 return found;
333}
334
335static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
336{
337 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
338 ns->ana_state == NVME_ANA_OPTIMIZED;
339}
340
341inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
342{
343 int node = numa_node_id();
344 struct nvme_ns *ns;
345
346 ns = srcu_dereference(head->current_path[node], &head->srcu);
347 if (unlikely(!ns))
348 return __nvme_find_path(head, node);
349
350 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
351 return nvme_round_robin_path(head, node, ns);
352 if (unlikely(!nvme_path_is_optimized(ns)))
353 return __nvme_find_path(head, node);
354 return ns;
355}
356
357static bool nvme_available_path(struct nvme_ns_head *head)
358{
359 struct nvme_ns *ns;
360
361 list_for_each_entry_rcu(ns, &head->list, siblings) {
362 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
363 continue;
364 switch (nvme_ctrl_state(ns->ctrl)) {
365 case NVME_CTRL_LIVE:
366 case NVME_CTRL_RESETTING:
367 case NVME_CTRL_CONNECTING:
368 /* fallthru */
369 return true;
370 default:
371 break;
372 }
373 }
374 return false;
375}
376
377static void nvme_ns_head_submit_bio(struct bio *bio)
378{
379 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
380 struct device *dev = disk_to_dev(head->disk);
381 struct nvme_ns *ns;
382 int srcu_idx;
383
384 /*
385 * The namespace might be going away and the bio might be moved to a
386 * different queue via blk_steal_bios(), so we need to use the bio_split
387 * pool from the original queue to allocate the bvecs from.
388 */
389 bio = bio_split_to_limits(bio);
390 if (!bio)
391 return;
392
393 srcu_idx = srcu_read_lock(&head->srcu);
394 ns = nvme_find_path(head);
395 if (likely(ns)) {
396 bio_set_dev(bio, ns->disk->part0);
397 bio->bi_opf |= REQ_NVME_MPATH;
398 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
399 bio->bi_iter.bi_sector);
400 submit_bio_noacct(bio);
401 } else if (nvme_available_path(head)) {
402 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
403
404 spin_lock_irq(&head->requeue_lock);
405 bio_list_add(&head->requeue_list, bio);
406 spin_unlock_irq(&head->requeue_lock);
407 } else {
408 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
409
410 bio_io_error(bio);
411 }
412
413 srcu_read_unlock(&head->srcu, srcu_idx);
414}
415
416static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
417{
418 if (!nvme_tryget_ns_head(disk->private_data))
419 return -ENXIO;
420 return 0;
421}
422
423static void nvme_ns_head_release(struct gendisk *disk)
424{
425 nvme_put_ns_head(disk->private_data);
426}
427
428#ifdef CONFIG_BLK_DEV_ZONED
429static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
430 unsigned int nr_zones, report_zones_cb cb, void *data)
431{
432 struct nvme_ns_head *head = disk->private_data;
433 struct nvme_ns *ns;
434 int srcu_idx, ret = -EWOULDBLOCK;
435
436 srcu_idx = srcu_read_lock(&head->srcu);
437 ns = nvme_find_path(head);
438 if (ns)
439 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
440 srcu_read_unlock(&head->srcu, srcu_idx);
441 return ret;
442}
443#else
444#define nvme_ns_head_report_zones NULL
445#endif /* CONFIG_BLK_DEV_ZONED */
446
447const struct block_device_operations nvme_ns_head_ops = {
448 .owner = THIS_MODULE,
449 .submit_bio = nvme_ns_head_submit_bio,
450 .open = nvme_ns_head_open,
451 .release = nvme_ns_head_release,
452 .ioctl = nvme_ns_head_ioctl,
453 .compat_ioctl = blkdev_compat_ptr_ioctl,
454 .getgeo = nvme_getgeo,
455 .report_zones = nvme_ns_head_report_zones,
456 .pr_ops = &nvme_pr_ops,
457};
458
459static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
460{
461 return container_of(cdev, struct nvme_ns_head, cdev);
462}
463
464static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
465{
466 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
467 return -ENXIO;
468 return 0;
469}
470
471static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
472{
473 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
474 return 0;
475}
476
477static const struct file_operations nvme_ns_head_chr_fops = {
478 .owner = THIS_MODULE,
479 .open = nvme_ns_head_chr_open,
480 .release = nvme_ns_head_chr_release,
481 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
482 .compat_ioctl = compat_ptr_ioctl,
483 .uring_cmd = nvme_ns_head_chr_uring_cmd,
484 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
485};
486
487static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
488{
489 int ret;
490
491 head->cdev_device.parent = &head->subsys->dev;
492 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
493 head->subsys->instance, head->instance);
494 if (ret)
495 return ret;
496 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
497 &nvme_ns_head_chr_fops, THIS_MODULE);
498 return ret;
499}
500
501static void nvme_requeue_work(struct work_struct *work)
502{
503 struct nvme_ns_head *head =
504 container_of(work, struct nvme_ns_head, requeue_work);
505 struct bio *bio, *next;
506
507 spin_lock_irq(&head->requeue_lock);
508 next = bio_list_get(&head->requeue_list);
509 spin_unlock_irq(&head->requeue_lock);
510
511 while ((bio = next) != NULL) {
512 next = bio->bi_next;
513 bio->bi_next = NULL;
514
515 submit_bio_noacct(bio);
516 }
517}
518
519int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
520{
521 struct queue_limits lim;
522 bool vwc = false;
523
524 mutex_init(&head->lock);
525 bio_list_init(&head->requeue_list);
526 spin_lock_init(&head->requeue_lock);
527 INIT_WORK(&head->requeue_work, nvme_requeue_work);
528
529 /*
530 * Add a multipath node if the subsystems supports multiple controllers.
531 * We also do this for private namespaces as the namespace sharing flag
532 * could change after a rescan.
533 */
534 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
535 !nvme_is_unique_nsid(ctrl, head) || !multipath)
536 return 0;
537
538 blk_set_stacking_limits(&lim);
539 lim.dma_alignment = 3;
540 if (head->ids.csi != NVME_CSI_ZNS)
541 lim.max_zone_append_sectors = 0;
542
543 head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
544 if (IS_ERR(head->disk))
545 return PTR_ERR(head->disk);
546 head->disk->fops = &nvme_ns_head_ops;
547 head->disk->private_data = head;
548 sprintf(head->disk->disk_name, "nvme%dn%d",
549 ctrl->subsys->instance, head->instance);
550
551 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
552 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
553 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
554 /*
555 * This assumes all controllers that refer to a namespace either
556 * support poll queues or not. That is not a strict guarantee,
557 * but if the assumption is wrong the effect is only suboptimal
558 * performance but not correctness problem.
559 */
560 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
561 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
562 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
563
564 /* we need to propagate up the VMC settings */
565 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
566 vwc = true;
567 blk_queue_write_cache(head->disk->queue, vwc, vwc);
568 return 0;
569}
570
571static void nvme_mpath_set_live(struct nvme_ns *ns)
572{
573 struct nvme_ns_head *head = ns->head;
574 int rc;
575
576 if (!head->disk)
577 return;
578
579 /*
580 * test_and_set_bit() is used because it is protecting against two nvme
581 * paths simultaneously calling device_add_disk() on the same namespace
582 * head.
583 */
584 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
585 rc = device_add_disk(&head->subsys->dev, head->disk,
586 nvme_ns_attr_groups);
587 if (rc) {
588 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
589 return;
590 }
591 nvme_add_ns_head_cdev(head);
592 }
593
594 mutex_lock(&head->lock);
595 if (nvme_path_is_optimized(ns)) {
596 int node, srcu_idx;
597
598 srcu_idx = srcu_read_lock(&head->srcu);
599 for_each_node(node)
600 __nvme_find_path(head, node);
601 srcu_read_unlock(&head->srcu, srcu_idx);
602 }
603 mutex_unlock(&head->lock);
604
605 synchronize_srcu(&head->srcu);
606 kblockd_schedule_work(&head->requeue_work);
607}
608
609static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
610 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
611 void *))
612{
613 void *base = ctrl->ana_log_buf;
614 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
615 int error, i;
616
617 lockdep_assert_held(&ctrl->ana_lock);
618
619 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
620 struct nvme_ana_group_desc *desc = base + offset;
621 u32 nr_nsids;
622 size_t nsid_buf_size;
623
624 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
625 return -EINVAL;
626
627 nr_nsids = le32_to_cpu(desc->nnsids);
628 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
629
630 if (WARN_ON_ONCE(desc->grpid == 0))
631 return -EINVAL;
632 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
633 return -EINVAL;
634 if (WARN_ON_ONCE(desc->state == 0))
635 return -EINVAL;
636 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
637 return -EINVAL;
638
639 offset += sizeof(*desc);
640 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
641 return -EINVAL;
642
643 error = cb(ctrl, desc, data);
644 if (error)
645 return error;
646
647 offset += nsid_buf_size;
648 }
649
650 return 0;
651}
652
653static inline bool nvme_state_is_live(enum nvme_ana_state state)
654{
655 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
656}
657
658static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
659 struct nvme_ns *ns)
660{
661 ns->ana_grpid = le32_to_cpu(desc->grpid);
662 ns->ana_state = desc->state;
663 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
664 /*
665 * nvme_mpath_set_live() will trigger I/O to the multipath path device
666 * and in turn to this path device. However we cannot accept this I/O
667 * if the controller is not live. This may deadlock if called from
668 * nvme_mpath_init_identify() and the ctrl will never complete
669 * initialization, preventing I/O from completing. For this case we
670 * will reprocess the ANA log page in nvme_mpath_update() once the
671 * controller is ready.
672 */
673 if (nvme_state_is_live(ns->ana_state) &&
674 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
675 nvme_mpath_set_live(ns);
676}
677
678static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
679 struct nvme_ana_group_desc *desc, void *data)
680{
681 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
682 unsigned *nr_change_groups = data;
683 struct nvme_ns *ns;
684
685 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
686 le32_to_cpu(desc->grpid),
687 nvme_ana_state_names[desc->state]);
688
689 if (desc->state == NVME_ANA_CHANGE)
690 (*nr_change_groups)++;
691
692 if (!nr_nsids)
693 return 0;
694
695 down_read(&ctrl->namespaces_rwsem);
696 list_for_each_entry(ns, &ctrl->namespaces, list) {
697 unsigned nsid;
698again:
699 nsid = le32_to_cpu(desc->nsids[n]);
700 if (ns->head->ns_id < nsid)
701 continue;
702 if (ns->head->ns_id == nsid)
703 nvme_update_ns_ana_state(desc, ns);
704 if (++n == nr_nsids)
705 break;
706 if (ns->head->ns_id > nsid)
707 goto again;
708 }
709 up_read(&ctrl->namespaces_rwsem);
710 return 0;
711}
712
713static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
714{
715 u32 nr_change_groups = 0;
716 int error;
717
718 mutex_lock(&ctrl->ana_lock);
719 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
720 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
721 if (error) {
722 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
723 goto out_unlock;
724 }
725
726 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
727 nvme_update_ana_state);
728 if (error)
729 goto out_unlock;
730
731 /*
732 * In theory we should have an ANATT timer per group as they might enter
733 * the change state at different times. But that is a lot of overhead
734 * just to protect against a target that keeps entering new changes
735 * states while never finishing previous ones. But we'll still
736 * eventually time out once all groups are in change state, so this
737 * isn't a big deal.
738 *
739 * We also double the ANATT value to provide some slack for transports
740 * or AEN processing overhead.
741 */
742 if (nr_change_groups)
743 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
744 else
745 del_timer_sync(&ctrl->anatt_timer);
746out_unlock:
747 mutex_unlock(&ctrl->ana_lock);
748 return error;
749}
750
751static void nvme_ana_work(struct work_struct *work)
752{
753 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
754
755 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
756 return;
757
758 nvme_read_ana_log(ctrl);
759}
760
761void nvme_mpath_update(struct nvme_ctrl *ctrl)
762{
763 u32 nr_change_groups = 0;
764
765 if (!ctrl->ana_log_buf)
766 return;
767
768 mutex_lock(&ctrl->ana_lock);
769 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
770 mutex_unlock(&ctrl->ana_lock);
771}
772
773static void nvme_anatt_timeout(struct timer_list *t)
774{
775 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
776
777 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
778 nvme_reset_ctrl(ctrl);
779}
780
781void nvme_mpath_stop(struct nvme_ctrl *ctrl)
782{
783 if (!nvme_ctrl_use_ana(ctrl))
784 return;
785 del_timer_sync(&ctrl->anatt_timer);
786 cancel_work_sync(&ctrl->ana_work);
787}
788
789#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
790 struct device_attribute subsys_attr_##_name = \
791 __ATTR(_name, _mode, _show, _store)
792
793static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795{
796 struct nvme_subsystem *subsys =
797 container_of(dev, struct nvme_subsystem, dev);
798
799 return sysfs_emit(buf, "%s\n",
800 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
801}
802
803static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
804 struct device_attribute *attr, const char *buf, size_t count)
805{
806 struct nvme_subsystem *subsys =
807 container_of(dev, struct nvme_subsystem, dev);
808 int i;
809
810 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
811 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
812 WRITE_ONCE(subsys->iopolicy, i);
813 return count;
814 }
815 }
816
817 return -EINVAL;
818}
819SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
820 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
821
822static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
823 char *buf)
824{
825 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
826}
827DEVICE_ATTR_RO(ana_grpid);
828
829static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
830 char *buf)
831{
832 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
833
834 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
835}
836DEVICE_ATTR_RO(ana_state);
837
838static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
839 struct nvme_ana_group_desc *desc, void *data)
840{
841 struct nvme_ana_group_desc *dst = data;
842
843 if (desc->grpid != dst->grpid)
844 return 0;
845
846 *dst = *desc;
847 return -ENXIO; /* just break out of the loop */
848}
849
850void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
851{
852 if (nvme_ctrl_use_ana(ns->ctrl)) {
853 struct nvme_ana_group_desc desc = {
854 .grpid = anagrpid,
855 .state = 0,
856 };
857
858 mutex_lock(&ns->ctrl->ana_lock);
859 ns->ana_grpid = le32_to_cpu(anagrpid);
860 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
861 mutex_unlock(&ns->ctrl->ana_lock);
862 if (desc.state) {
863 /* found the group desc: update */
864 nvme_update_ns_ana_state(&desc, ns);
865 } else {
866 /* group desc not found: trigger a re-read */
867 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
868 queue_work(nvme_wq, &ns->ctrl->ana_work);
869 }
870 } else {
871 ns->ana_state = NVME_ANA_OPTIMIZED;
872 nvme_mpath_set_live(ns);
873 }
874
875 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
876 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
877 ns->head->disk->queue);
878#ifdef CONFIG_BLK_DEV_ZONED
879 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
880 ns->head->disk->nr_zones = ns->disk->nr_zones;
881#endif
882}
883
884void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
885{
886 if (!head->disk)
887 return;
888 kblockd_schedule_work(&head->requeue_work);
889 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
890 nvme_cdev_del(&head->cdev, &head->cdev_device);
891 del_gendisk(head->disk);
892 }
893}
894
895void nvme_mpath_remove_disk(struct nvme_ns_head *head)
896{
897 if (!head->disk)
898 return;
899 /* make sure all pending bios are cleaned up */
900 kblockd_schedule_work(&head->requeue_work);
901 flush_work(&head->requeue_work);
902 put_disk(head->disk);
903}
904
905void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
906{
907 mutex_init(&ctrl->ana_lock);
908 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
909 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
910}
911
912int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
913{
914 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
915 size_t ana_log_size;
916 int error = 0;
917
918 /* check if multipath is enabled and we have the capability */
919 if (!multipath || !ctrl->subsys ||
920 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
921 return 0;
922
923 if (!ctrl->max_namespaces ||
924 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
925 dev_err(ctrl->device,
926 "Invalid MNAN value %u\n", ctrl->max_namespaces);
927 return -EINVAL;
928 }
929
930 ctrl->anacap = id->anacap;
931 ctrl->anatt = id->anatt;
932 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
933 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
934
935 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
936 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
937 ctrl->max_namespaces * sizeof(__le32);
938 if (ana_log_size > max_transfer_size) {
939 dev_err(ctrl->device,
940 "ANA log page size (%zd) larger than MDTS (%zd).\n",
941 ana_log_size, max_transfer_size);
942 dev_err(ctrl->device, "disabling ANA support.\n");
943 goto out_uninit;
944 }
945 if (ana_log_size > ctrl->ana_log_size) {
946 nvme_mpath_stop(ctrl);
947 nvme_mpath_uninit(ctrl);
948 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
949 if (!ctrl->ana_log_buf)
950 return -ENOMEM;
951 }
952 ctrl->ana_log_size = ana_log_size;
953 error = nvme_read_ana_log(ctrl);
954 if (error)
955 goto out_uninit;
956 return 0;
957
958out_uninit:
959 nvme_mpath_uninit(ctrl);
960 return error;
961}
962
963void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
964{
965 kvfree(ctrl->ana_log_buf);
966 ctrl->ana_log_buf = NULL;
967 ctrl->ana_log_size = 0;
968}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <linux/vmalloc.h>
9#include <trace/events/block.h>
10#include "nvme.h"
11
12bool multipath = true;
13module_param(multipath, bool, 0444);
14MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20};
21
22static int iopolicy = NVME_IOPOLICY_NUMA;
23
24static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25{
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36}
37
38static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39{
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41}
42
43module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49{
50 subsys->iopolicy = iopolicy;
51}
52
53void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54{
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61}
62
63void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64{
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71}
72
73void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74{
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81}
82
83void nvme_failover_req(struct request *req)
84{
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 }
110 blk_steal_bios(&ns->head->requeue_list, req);
111 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112
113 blk_mq_end_request(req, 0);
114 kblockd_schedule_work(&ns->head->requeue_work);
115}
116
117void nvme_mpath_start_request(struct request *rq)
118{
119 struct nvme_ns *ns = rq->q->queuedata;
120 struct gendisk *disk = ns->head->disk;
121
122 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
123 return;
124
125 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
126 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0,
127 blk_rq_bytes(rq) >> SECTOR_SHIFT,
128 req_op(rq), jiffies);
129}
130EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
131
132void nvme_mpath_end_request(struct request *rq)
133{
134 struct nvme_ns *ns = rq->q->queuedata;
135
136 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
137 return;
138 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
139 nvme_req(rq)->start_time);
140}
141
142void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
143{
144 struct nvme_ns *ns;
145
146 down_read(&ctrl->namespaces_rwsem);
147 list_for_each_entry(ns, &ctrl->namespaces, list) {
148 if (!ns->head->disk)
149 continue;
150 kblockd_schedule_work(&ns->head->requeue_work);
151 if (ctrl->state == NVME_CTRL_LIVE)
152 disk_uevent(ns->head->disk, KOBJ_CHANGE);
153 }
154 up_read(&ctrl->namespaces_rwsem);
155}
156
157static const char *nvme_ana_state_names[] = {
158 [0] = "invalid state",
159 [NVME_ANA_OPTIMIZED] = "optimized",
160 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
161 [NVME_ANA_INACCESSIBLE] = "inaccessible",
162 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
163 [NVME_ANA_CHANGE] = "change",
164};
165
166bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
167{
168 struct nvme_ns_head *head = ns->head;
169 bool changed = false;
170 int node;
171
172 if (!head)
173 goto out;
174
175 for_each_node(node) {
176 if (ns == rcu_access_pointer(head->current_path[node])) {
177 rcu_assign_pointer(head->current_path[node], NULL);
178 changed = true;
179 }
180 }
181out:
182 return changed;
183}
184
185void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
186{
187 struct nvme_ns *ns;
188
189 down_read(&ctrl->namespaces_rwsem);
190 list_for_each_entry(ns, &ctrl->namespaces, list) {
191 nvme_mpath_clear_current_path(ns);
192 kblockd_schedule_work(&ns->head->requeue_work);
193 }
194 up_read(&ctrl->namespaces_rwsem);
195}
196
197void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
198{
199 struct nvme_ns_head *head = ns->head;
200 sector_t capacity = get_capacity(head->disk);
201 int node;
202 int srcu_idx;
203
204 srcu_idx = srcu_read_lock(&head->srcu);
205 list_for_each_entry_rcu(ns, &head->list, siblings) {
206 if (capacity != get_capacity(ns->disk))
207 clear_bit(NVME_NS_READY, &ns->flags);
208 }
209 srcu_read_unlock(&head->srcu, srcu_idx);
210
211 for_each_node(node)
212 rcu_assign_pointer(head->current_path[node], NULL);
213 kblockd_schedule_work(&head->requeue_work);
214}
215
216static bool nvme_path_is_disabled(struct nvme_ns *ns)
217{
218 /*
219 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
220 * still be able to complete assuming that the controller is connected.
221 * Otherwise it will fail immediately and return to the requeue list.
222 */
223 if (ns->ctrl->state != NVME_CTRL_LIVE &&
224 ns->ctrl->state != NVME_CTRL_DELETING)
225 return true;
226 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
227 !test_bit(NVME_NS_READY, &ns->flags))
228 return true;
229 return false;
230}
231
232static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
233{
234 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
235 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
236
237 list_for_each_entry_rcu(ns, &head->list, siblings) {
238 if (nvme_path_is_disabled(ns))
239 continue;
240
241 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
242 distance = node_distance(node, ns->ctrl->numa_node);
243 else
244 distance = LOCAL_DISTANCE;
245
246 switch (ns->ana_state) {
247 case NVME_ANA_OPTIMIZED:
248 if (distance < found_distance) {
249 found_distance = distance;
250 found = ns;
251 }
252 break;
253 case NVME_ANA_NONOPTIMIZED:
254 if (distance < fallback_distance) {
255 fallback_distance = distance;
256 fallback = ns;
257 }
258 break;
259 default:
260 break;
261 }
262 }
263
264 if (!found)
265 found = fallback;
266 if (found)
267 rcu_assign_pointer(head->current_path[node], found);
268 return found;
269}
270
271static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
272 struct nvme_ns *ns)
273{
274 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
275 siblings);
276 if (ns)
277 return ns;
278 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
279}
280
281static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
282 int node, struct nvme_ns *old)
283{
284 struct nvme_ns *ns, *found = NULL;
285
286 if (list_is_singular(&head->list)) {
287 if (nvme_path_is_disabled(old))
288 return NULL;
289 return old;
290 }
291
292 for (ns = nvme_next_ns(head, old);
293 ns && ns != old;
294 ns = nvme_next_ns(head, ns)) {
295 if (nvme_path_is_disabled(ns))
296 continue;
297
298 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
299 found = ns;
300 goto out;
301 }
302 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
303 found = ns;
304 }
305
306 /*
307 * The loop above skips the current path for round-robin semantics.
308 * Fall back to the current path if either:
309 * - no other optimized path found and current is optimized,
310 * - no other usable path found and current is usable.
311 */
312 if (!nvme_path_is_disabled(old) &&
313 (old->ana_state == NVME_ANA_OPTIMIZED ||
314 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
315 return old;
316
317 if (!found)
318 return NULL;
319out:
320 rcu_assign_pointer(head->current_path[node], found);
321 return found;
322}
323
324static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
325{
326 return ns->ctrl->state == NVME_CTRL_LIVE &&
327 ns->ana_state == NVME_ANA_OPTIMIZED;
328}
329
330inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
331{
332 int node = numa_node_id();
333 struct nvme_ns *ns;
334
335 ns = srcu_dereference(head->current_path[node], &head->srcu);
336 if (unlikely(!ns))
337 return __nvme_find_path(head, node);
338
339 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
340 return nvme_round_robin_path(head, node, ns);
341 if (unlikely(!nvme_path_is_optimized(ns)))
342 return __nvme_find_path(head, node);
343 return ns;
344}
345
346static bool nvme_available_path(struct nvme_ns_head *head)
347{
348 struct nvme_ns *ns;
349
350 list_for_each_entry_rcu(ns, &head->list, siblings) {
351 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
352 continue;
353 switch (ns->ctrl->state) {
354 case NVME_CTRL_LIVE:
355 case NVME_CTRL_RESETTING:
356 case NVME_CTRL_CONNECTING:
357 /* fallthru */
358 return true;
359 default:
360 break;
361 }
362 }
363 return false;
364}
365
366static void nvme_ns_head_submit_bio(struct bio *bio)
367{
368 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
369 struct device *dev = disk_to_dev(head->disk);
370 struct nvme_ns *ns;
371 int srcu_idx;
372
373 /*
374 * The namespace might be going away and the bio might be moved to a
375 * different queue via blk_steal_bios(), so we need to use the bio_split
376 * pool from the original queue to allocate the bvecs from.
377 */
378 bio = bio_split_to_limits(bio);
379 if (!bio)
380 return;
381
382 srcu_idx = srcu_read_lock(&head->srcu);
383 ns = nvme_find_path(head);
384 if (likely(ns)) {
385 bio_set_dev(bio, ns->disk->part0);
386 bio->bi_opf |= REQ_NVME_MPATH;
387 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
388 bio->bi_iter.bi_sector);
389 submit_bio_noacct(bio);
390 } else if (nvme_available_path(head)) {
391 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
392
393 spin_lock_irq(&head->requeue_lock);
394 bio_list_add(&head->requeue_list, bio);
395 spin_unlock_irq(&head->requeue_lock);
396 } else {
397 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
398
399 bio_io_error(bio);
400 }
401
402 srcu_read_unlock(&head->srcu, srcu_idx);
403}
404
405static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
406{
407 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
408 return -ENXIO;
409 return 0;
410}
411
412static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
413{
414 nvme_put_ns_head(disk->private_data);
415}
416
417#ifdef CONFIG_BLK_DEV_ZONED
418static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
419 unsigned int nr_zones, report_zones_cb cb, void *data)
420{
421 struct nvme_ns_head *head = disk->private_data;
422 struct nvme_ns *ns;
423 int srcu_idx, ret = -EWOULDBLOCK;
424
425 srcu_idx = srcu_read_lock(&head->srcu);
426 ns = nvme_find_path(head);
427 if (ns)
428 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
429 srcu_read_unlock(&head->srcu, srcu_idx);
430 return ret;
431}
432#else
433#define nvme_ns_head_report_zones NULL
434#endif /* CONFIG_BLK_DEV_ZONED */
435
436const struct block_device_operations nvme_ns_head_ops = {
437 .owner = THIS_MODULE,
438 .submit_bio = nvme_ns_head_submit_bio,
439 .open = nvme_ns_head_open,
440 .release = nvme_ns_head_release,
441 .ioctl = nvme_ns_head_ioctl,
442 .compat_ioctl = blkdev_compat_ptr_ioctl,
443 .getgeo = nvme_getgeo,
444 .report_zones = nvme_ns_head_report_zones,
445 .pr_ops = &nvme_pr_ops,
446};
447
448static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
449{
450 return container_of(cdev, struct nvme_ns_head, cdev);
451}
452
453static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
454{
455 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
456 return -ENXIO;
457 return 0;
458}
459
460static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
461{
462 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
463 return 0;
464}
465
466static const struct file_operations nvme_ns_head_chr_fops = {
467 .owner = THIS_MODULE,
468 .open = nvme_ns_head_chr_open,
469 .release = nvme_ns_head_chr_release,
470 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
471 .compat_ioctl = compat_ptr_ioctl,
472 .uring_cmd = nvme_ns_head_chr_uring_cmd,
473 .uring_cmd_iopoll = nvme_ns_head_chr_uring_cmd_iopoll,
474};
475
476static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
477{
478 int ret;
479
480 head->cdev_device.parent = &head->subsys->dev;
481 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
482 head->subsys->instance, head->instance);
483 if (ret)
484 return ret;
485 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
486 &nvme_ns_head_chr_fops, THIS_MODULE);
487 return ret;
488}
489
490static void nvme_requeue_work(struct work_struct *work)
491{
492 struct nvme_ns_head *head =
493 container_of(work, struct nvme_ns_head, requeue_work);
494 struct bio *bio, *next;
495
496 spin_lock_irq(&head->requeue_lock);
497 next = bio_list_get(&head->requeue_list);
498 spin_unlock_irq(&head->requeue_lock);
499
500 while ((bio = next) != NULL) {
501 next = bio->bi_next;
502 bio->bi_next = NULL;
503
504 submit_bio_noacct(bio);
505 }
506}
507
508int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
509{
510 bool vwc = false;
511
512 mutex_init(&head->lock);
513 bio_list_init(&head->requeue_list);
514 spin_lock_init(&head->requeue_lock);
515 INIT_WORK(&head->requeue_work, nvme_requeue_work);
516
517 /*
518 * Add a multipath node if the subsystems supports multiple controllers.
519 * We also do this for private namespaces as the namespace sharing flag
520 * could change after a rescan.
521 */
522 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
523 !nvme_is_unique_nsid(ctrl, head) || !multipath)
524 return 0;
525
526 head->disk = blk_alloc_disk(ctrl->numa_node);
527 if (!head->disk)
528 return -ENOMEM;
529 head->disk->fops = &nvme_ns_head_ops;
530 head->disk->private_data = head;
531 sprintf(head->disk->disk_name, "nvme%dn%d",
532 ctrl->subsys->instance, head->instance);
533
534 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
535 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
536 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
537 /*
538 * This assumes all controllers that refer to a namespace either
539 * support poll queues or not. That is not a strict guarantee,
540 * but if the assumption is wrong the effect is only suboptimal
541 * performance but not correctness problem.
542 */
543 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
544 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
545 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
546
547 /* set to a default value of 512 until the disk is validated */
548 blk_queue_logical_block_size(head->disk->queue, 512);
549 blk_set_stacking_limits(&head->disk->queue->limits);
550 blk_queue_dma_alignment(head->disk->queue, 3);
551
552 /* we need to propagate up the VMC settings */
553 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
554 vwc = true;
555 blk_queue_write_cache(head->disk->queue, vwc, vwc);
556 return 0;
557}
558
559static void nvme_mpath_set_live(struct nvme_ns *ns)
560{
561 struct nvme_ns_head *head = ns->head;
562 int rc;
563
564 if (!head->disk)
565 return;
566
567 /*
568 * test_and_set_bit() is used because it is protecting against two nvme
569 * paths simultaneously calling device_add_disk() on the same namespace
570 * head.
571 */
572 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
573 rc = device_add_disk(&head->subsys->dev, head->disk,
574 nvme_ns_id_attr_groups);
575 if (rc) {
576 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
577 return;
578 }
579 nvme_add_ns_head_cdev(head);
580 }
581
582 mutex_lock(&head->lock);
583 if (nvme_path_is_optimized(ns)) {
584 int node, srcu_idx;
585
586 srcu_idx = srcu_read_lock(&head->srcu);
587 for_each_node(node)
588 __nvme_find_path(head, node);
589 srcu_read_unlock(&head->srcu, srcu_idx);
590 }
591 mutex_unlock(&head->lock);
592
593 synchronize_srcu(&head->srcu);
594 kblockd_schedule_work(&head->requeue_work);
595}
596
597static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
598 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
599 void *))
600{
601 void *base = ctrl->ana_log_buf;
602 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
603 int error, i;
604
605 lockdep_assert_held(&ctrl->ana_lock);
606
607 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
608 struct nvme_ana_group_desc *desc = base + offset;
609 u32 nr_nsids;
610 size_t nsid_buf_size;
611
612 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
613 return -EINVAL;
614
615 nr_nsids = le32_to_cpu(desc->nnsids);
616 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
617
618 if (WARN_ON_ONCE(desc->grpid == 0))
619 return -EINVAL;
620 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
621 return -EINVAL;
622 if (WARN_ON_ONCE(desc->state == 0))
623 return -EINVAL;
624 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
625 return -EINVAL;
626
627 offset += sizeof(*desc);
628 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
629 return -EINVAL;
630
631 error = cb(ctrl, desc, data);
632 if (error)
633 return error;
634
635 offset += nsid_buf_size;
636 }
637
638 return 0;
639}
640
641static inline bool nvme_state_is_live(enum nvme_ana_state state)
642{
643 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
644}
645
646static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
647 struct nvme_ns *ns)
648{
649 ns->ana_grpid = le32_to_cpu(desc->grpid);
650 ns->ana_state = desc->state;
651 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
652 /*
653 * nvme_mpath_set_live() will trigger I/O to the multipath path device
654 * and in turn to this path device. However we cannot accept this I/O
655 * if the controller is not live. This may deadlock if called from
656 * nvme_mpath_init_identify() and the ctrl will never complete
657 * initialization, preventing I/O from completing. For this case we
658 * will reprocess the ANA log page in nvme_mpath_update() once the
659 * controller is ready.
660 */
661 if (nvme_state_is_live(ns->ana_state) &&
662 ns->ctrl->state == NVME_CTRL_LIVE)
663 nvme_mpath_set_live(ns);
664}
665
666static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
667 struct nvme_ana_group_desc *desc, void *data)
668{
669 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
670 unsigned *nr_change_groups = data;
671 struct nvme_ns *ns;
672
673 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
674 le32_to_cpu(desc->grpid),
675 nvme_ana_state_names[desc->state]);
676
677 if (desc->state == NVME_ANA_CHANGE)
678 (*nr_change_groups)++;
679
680 if (!nr_nsids)
681 return 0;
682
683 down_read(&ctrl->namespaces_rwsem);
684 list_for_each_entry(ns, &ctrl->namespaces, list) {
685 unsigned nsid;
686again:
687 nsid = le32_to_cpu(desc->nsids[n]);
688 if (ns->head->ns_id < nsid)
689 continue;
690 if (ns->head->ns_id == nsid)
691 nvme_update_ns_ana_state(desc, ns);
692 if (++n == nr_nsids)
693 break;
694 if (ns->head->ns_id > nsid)
695 goto again;
696 }
697 up_read(&ctrl->namespaces_rwsem);
698 return 0;
699}
700
701static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
702{
703 u32 nr_change_groups = 0;
704 int error;
705
706 mutex_lock(&ctrl->ana_lock);
707 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
708 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
709 if (error) {
710 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
711 goto out_unlock;
712 }
713
714 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
715 nvme_update_ana_state);
716 if (error)
717 goto out_unlock;
718
719 /*
720 * In theory we should have an ANATT timer per group as they might enter
721 * the change state at different times. But that is a lot of overhead
722 * just to protect against a target that keeps entering new changes
723 * states while never finishing previous ones. But we'll still
724 * eventually time out once all groups are in change state, so this
725 * isn't a big deal.
726 *
727 * We also double the ANATT value to provide some slack for transports
728 * or AEN processing overhead.
729 */
730 if (nr_change_groups)
731 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
732 else
733 del_timer_sync(&ctrl->anatt_timer);
734out_unlock:
735 mutex_unlock(&ctrl->ana_lock);
736 return error;
737}
738
739static void nvme_ana_work(struct work_struct *work)
740{
741 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
742
743 if (ctrl->state != NVME_CTRL_LIVE)
744 return;
745
746 nvme_read_ana_log(ctrl);
747}
748
749void nvme_mpath_update(struct nvme_ctrl *ctrl)
750{
751 u32 nr_change_groups = 0;
752
753 if (!ctrl->ana_log_buf)
754 return;
755
756 mutex_lock(&ctrl->ana_lock);
757 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
758 mutex_unlock(&ctrl->ana_lock);
759}
760
761static void nvme_anatt_timeout(struct timer_list *t)
762{
763 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
764
765 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
766 nvme_reset_ctrl(ctrl);
767}
768
769void nvme_mpath_stop(struct nvme_ctrl *ctrl)
770{
771 if (!nvme_ctrl_use_ana(ctrl))
772 return;
773 del_timer_sync(&ctrl->anatt_timer);
774 cancel_work_sync(&ctrl->ana_work);
775}
776
777#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
778 struct device_attribute subsys_attr_##_name = \
779 __ATTR(_name, _mode, _show, _store)
780
781static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
782 struct device_attribute *attr, char *buf)
783{
784 struct nvme_subsystem *subsys =
785 container_of(dev, struct nvme_subsystem, dev);
786
787 return sysfs_emit(buf, "%s\n",
788 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
789}
790
791static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
792 struct device_attribute *attr, const char *buf, size_t count)
793{
794 struct nvme_subsystem *subsys =
795 container_of(dev, struct nvme_subsystem, dev);
796 int i;
797
798 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
799 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
800 WRITE_ONCE(subsys->iopolicy, i);
801 return count;
802 }
803 }
804
805 return -EINVAL;
806}
807SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
808 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
809
810static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
811 char *buf)
812{
813 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
814}
815DEVICE_ATTR_RO(ana_grpid);
816
817static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
818 char *buf)
819{
820 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
821
822 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
823}
824DEVICE_ATTR_RO(ana_state);
825
826static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
827 struct nvme_ana_group_desc *desc, void *data)
828{
829 struct nvme_ana_group_desc *dst = data;
830
831 if (desc->grpid != dst->grpid)
832 return 0;
833
834 *dst = *desc;
835 return -ENXIO; /* just break out of the loop */
836}
837
838void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
839{
840 if (nvme_ctrl_use_ana(ns->ctrl)) {
841 struct nvme_ana_group_desc desc = {
842 .grpid = anagrpid,
843 .state = 0,
844 };
845
846 mutex_lock(&ns->ctrl->ana_lock);
847 ns->ana_grpid = le32_to_cpu(anagrpid);
848 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
849 mutex_unlock(&ns->ctrl->ana_lock);
850 if (desc.state) {
851 /* found the group desc: update */
852 nvme_update_ns_ana_state(&desc, ns);
853 } else {
854 /* group desc not found: trigger a re-read */
855 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
856 queue_work(nvme_wq, &ns->ctrl->ana_work);
857 }
858 } else {
859 ns->ana_state = NVME_ANA_OPTIMIZED;
860 nvme_mpath_set_live(ns);
861 }
862
863 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
864 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
865 ns->head->disk->queue);
866#ifdef CONFIG_BLK_DEV_ZONED
867 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
868 ns->head->disk->nr_zones = ns->disk->nr_zones;
869#endif
870}
871
872void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
873{
874 if (!head->disk)
875 return;
876 kblockd_schedule_work(&head->requeue_work);
877 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
878 nvme_cdev_del(&head->cdev, &head->cdev_device);
879 del_gendisk(head->disk);
880 }
881}
882
883void nvme_mpath_remove_disk(struct nvme_ns_head *head)
884{
885 if (!head->disk)
886 return;
887 blk_mark_disk_dead(head->disk);
888 /* make sure all pending bios are cleaned up */
889 kblockd_schedule_work(&head->requeue_work);
890 flush_work(&head->requeue_work);
891 put_disk(head->disk);
892}
893
894void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
895{
896 mutex_init(&ctrl->ana_lock);
897 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
898 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
899}
900
901int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
902{
903 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
904 size_t ana_log_size;
905 int error = 0;
906
907 /* check if multipath is enabled and we have the capability */
908 if (!multipath || !ctrl->subsys ||
909 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
910 return 0;
911
912 if (!ctrl->max_namespaces ||
913 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
914 dev_err(ctrl->device,
915 "Invalid MNAN value %u\n", ctrl->max_namespaces);
916 return -EINVAL;
917 }
918
919 ctrl->anacap = id->anacap;
920 ctrl->anatt = id->anatt;
921 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
922 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
923
924 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
925 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
926 ctrl->max_namespaces * sizeof(__le32);
927 if (ana_log_size > max_transfer_size) {
928 dev_err(ctrl->device,
929 "ANA log page size (%zd) larger than MDTS (%zd).\n",
930 ana_log_size, max_transfer_size);
931 dev_err(ctrl->device, "disabling ANA support.\n");
932 goto out_uninit;
933 }
934 if (ana_log_size > ctrl->ana_log_size) {
935 nvme_mpath_stop(ctrl);
936 nvme_mpath_uninit(ctrl);
937 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
938 if (!ctrl->ana_log_buf)
939 return -ENOMEM;
940 }
941 ctrl->ana_log_size = ana_log_size;
942 error = nvme_read_ana_log(ctrl);
943 if (error)
944 goto out_uninit;
945 return 0;
946
947out_uninit:
948 nvme_mpath_uninit(ctrl);
949 return error;
950}
951
952void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
953{
954 kvfree(ctrl->ana_log_buf);
955 ctrl->ana_log_buf = NULL;
956 ctrl->ana_log_size = 0;
957}