Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48 return map__dso(machine->vmlinux_map);
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56}
57
58static int machine__set_mmap_name(struct machine *machine)
59{
60 if (machine__is_host(machine))
61 machine->mmap_name = strdup("[kernel.kallsyms]");
62 else if (machine__is_default_guest(machine))
63 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
64 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
65 machine->pid) < 0)
66 machine->mmap_name = NULL;
67
68 return machine->mmap_name ? 0 : -ENOMEM;
69}
70
71static void thread__set_guest_comm(struct thread *thread, pid_t pid)
72{
73 char comm[64];
74
75 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
76 thread__set_comm(thread, comm, 0);
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 machine->kmaps = maps__new(machine);
85 if (machine->kmaps == NULL)
86 return -ENOMEM;
87
88 RB_CLEAR_NODE(&machine->rb_node);
89 dsos__init(&machine->dsos);
90
91 threads__init(&machine->threads);
92
93 machine->vdso_info = NULL;
94 machine->env = NULL;
95
96 machine->pid = pid;
97
98 machine->id_hdr_size = 0;
99 machine->kptr_restrict_warned = false;
100 machine->comm_exec = false;
101 machine->kernel_start = 0;
102 machine->vmlinux_map = NULL;
103
104 machine->root_dir = strdup(root_dir);
105 if (machine->root_dir == NULL)
106 goto out;
107
108 if (machine__set_mmap_name(machine))
109 goto out;
110
111 if (pid != HOST_KERNEL_ID) {
112 struct thread *thread = machine__findnew_thread(machine, -1,
113 pid);
114
115 if (thread == NULL)
116 goto out;
117
118 thread__set_guest_comm(thread, pid);
119 thread__put(thread);
120 }
121
122 machine->current_tid = NULL;
123 err = 0;
124
125out:
126 if (err) {
127 zfree(&machine->kmaps);
128 zfree(&machine->root_dir);
129 zfree(&machine->mmap_name);
130 }
131 return 0;
132}
133
134struct machine *machine__new_host(void)
135{
136 struct machine *machine = malloc(sizeof(*machine));
137
138 if (machine != NULL) {
139 machine__init(machine, "", HOST_KERNEL_ID);
140
141 if (machine__create_kernel_maps(machine) < 0)
142 goto out_delete;
143 }
144
145 return machine;
146out_delete:
147 free(machine);
148 return NULL;
149}
150
151struct machine *machine__new_kallsyms(void)
152{
153 struct machine *machine = machine__new_host();
154 /*
155 * FIXME:
156 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
157 * ask for not using the kcore parsing code, once this one is fixed
158 * to create a map per module.
159 */
160 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
161 machine__delete(machine);
162 machine = NULL;
163 }
164
165 return machine;
166}
167
168static void dsos__purge(struct dsos *dsos)
169{
170 struct dso *pos, *n;
171
172 down_write(&dsos->lock);
173
174 list_for_each_entry_safe(pos, n, &dsos->head, node) {
175 RB_CLEAR_NODE(&pos->rb_node);
176 pos->root = NULL;
177 list_del_init(&pos->node);
178 dso__put(pos);
179 }
180
181 up_write(&dsos->lock);
182}
183
184static void dsos__exit(struct dsos *dsos)
185{
186 dsos__purge(dsos);
187 exit_rwsem(&dsos->lock);
188}
189
190void machine__delete_threads(struct machine *machine)
191{
192 threads__remove_all_threads(&machine->threads);
193}
194
195void machine__exit(struct machine *machine)
196{
197 if (machine == NULL)
198 return;
199
200 machine__destroy_kernel_maps(machine);
201 maps__zput(machine->kmaps);
202 dsos__exit(&machine->dsos);
203 machine__exit_vdso(machine);
204 zfree(&machine->root_dir);
205 zfree(&machine->mmap_name);
206 zfree(&machine->current_tid);
207 zfree(&machine->kallsyms_filename);
208
209 threads__exit(&machine->threads);
210}
211
212void machine__delete(struct machine *machine)
213{
214 if (machine) {
215 machine__exit(machine);
216 free(machine);
217 }
218}
219
220void machines__init(struct machines *machines)
221{
222 machine__init(&machines->host, "", HOST_KERNEL_ID);
223 machines->guests = RB_ROOT_CACHED;
224}
225
226void machines__exit(struct machines *machines)
227{
228 machine__exit(&machines->host);
229 /* XXX exit guest */
230}
231
232struct machine *machines__add(struct machines *machines, pid_t pid,
233 const char *root_dir)
234{
235 struct rb_node **p = &machines->guests.rb_root.rb_node;
236 struct rb_node *parent = NULL;
237 struct machine *pos, *machine = malloc(sizeof(*machine));
238 bool leftmost = true;
239
240 if (machine == NULL)
241 return NULL;
242
243 if (machine__init(machine, root_dir, pid) != 0) {
244 free(machine);
245 return NULL;
246 }
247
248 while (*p != NULL) {
249 parent = *p;
250 pos = rb_entry(parent, struct machine, rb_node);
251 if (pid < pos->pid)
252 p = &(*p)->rb_left;
253 else {
254 p = &(*p)->rb_right;
255 leftmost = false;
256 }
257 }
258
259 rb_link_node(&machine->rb_node, parent, p);
260 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
261
262 machine->machines = machines;
263
264 return machine;
265}
266
267void machines__set_comm_exec(struct machines *machines, bool comm_exec)
268{
269 struct rb_node *nd;
270
271 machines->host.comm_exec = comm_exec;
272
273 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
274 struct machine *machine = rb_entry(nd, struct machine, rb_node);
275
276 machine->comm_exec = comm_exec;
277 }
278}
279
280struct machine *machines__find(struct machines *machines, pid_t pid)
281{
282 struct rb_node **p = &machines->guests.rb_root.rb_node;
283 struct rb_node *parent = NULL;
284 struct machine *machine;
285 struct machine *default_machine = NULL;
286
287 if (pid == HOST_KERNEL_ID)
288 return &machines->host;
289
290 while (*p != NULL) {
291 parent = *p;
292 machine = rb_entry(parent, struct machine, rb_node);
293 if (pid < machine->pid)
294 p = &(*p)->rb_left;
295 else if (pid > machine->pid)
296 p = &(*p)->rb_right;
297 else
298 return machine;
299 if (!machine->pid)
300 default_machine = machine;
301 }
302
303 return default_machine;
304}
305
306struct machine *machines__findnew(struct machines *machines, pid_t pid)
307{
308 char path[PATH_MAX];
309 const char *root_dir = "";
310 struct machine *machine = machines__find(machines, pid);
311
312 if (machine && (machine->pid == pid))
313 goto out;
314
315 if ((pid != HOST_KERNEL_ID) &&
316 (pid != DEFAULT_GUEST_KERNEL_ID) &&
317 (symbol_conf.guestmount)) {
318 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
319 if (access(path, R_OK)) {
320 static struct strlist *seen;
321
322 if (!seen)
323 seen = strlist__new(NULL, NULL);
324
325 if (!strlist__has_entry(seen, path)) {
326 pr_err("Can't access file %s\n", path);
327 strlist__add(seen, path);
328 }
329 machine = NULL;
330 goto out;
331 }
332 root_dir = path;
333 }
334
335 machine = machines__add(machines, pid, root_dir);
336out:
337 return machine;
338}
339
340struct machine *machines__find_guest(struct machines *machines, pid_t pid)
341{
342 struct machine *machine = machines__find(machines, pid);
343
344 if (!machine)
345 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
346 return machine;
347}
348
349/*
350 * A common case for KVM test programs is that the test program acts as the
351 * hypervisor, creating, running and destroying the virtual machine, and
352 * providing the guest object code from its own object code. In this case,
353 * the VM is not running an OS, but only the functions loaded into it by the
354 * hypervisor test program, and conveniently, loaded at the same virtual
355 * addresses.
356 *
357 * Normally to resolve addresses, MMAP events are needed to map addresses
358 * back to the object code and debug symbols for that object code.
359 *
360 * Currently, there is no way to get such mapping information from guests
361 * but, in the scenario described above, the guest has the same mappings
362 * as the hypervisor, so support for that scenario can be achieved.
363 *
364 * To support that, copy the host thread's maps to the guest thread's maps.
365 * Note, we do not discover the guest until we encounter a guest event,
366 * which works well because it is not until then that we know that the host
367 * thread's maps have been set up.
368 *
369 * This function returns the guest thread. Apart from keeping the data
370 * structures sane, using a thread belonging to the guest machine, instead
371 * of the host thread, allows it to have its own comm (refer
372 * thread__set_guest_comm()).
373 */
374static struct thread *findnew_guest_code(struct machine *machine,
375 struct machine *host_machine,
376 pid_t pid)
377{
378 struct thread *host_thread;
379 struct thread *thread;
380 int err;
381
382 if (!machine)
383 return NULL;
384
385 thread = machine__findnew_thread(machine, -1, pid);
386 if (!thread)
387 return NULL;
388
389 /* Assume maps are set up if there are any */
390 if (!maps__empty(thread__maps(thread)))
391 return thread;
392
393 host_thread = machine__find_thread(host_machine, -1, pid);
394 if (!host_thread)
395 goto out_err;
396
397 thread__set_guest_comm(thread, pid);
398
399 /*
400 * Guest code can be found in hypervisor process at the same address
401 * so copy host maps.
402 */
403 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
404 thread__put(host_thread);
405 if (err)
406 goto out_err;
407
408 return thread;
409
410out_err:
411 thread__zput(thread);
412 return NULL;
413}
414
415struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
416{
417 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
418 struct machine *machine = machines__findnew(machines, pid);
419
420 return findnew_guest_code(machine, host_machine, pid);
421}
422
423struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
424{
425 struct machines *machines = machine->machines;
426 struct machine *host_machine;
427
428 if (!machines)
429 return NULL;
430
431 host_machine = machines__find(machines, HOST_KERNEL_ID);
432
433 return findnew_guest_code(machine, host_machine, pid);
434}
435
436void machines__process_guests(struct machines *machines,
437 machine__process_t process, void *data)
438{
439 struct rb_node *nd;
440
441 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
442 struct machine *pos = rb_entry(nd, struct machine, rb_node);
443 process(pos, data);
444 }
445}
446
447void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
448{
449 struct rb_node *node;
450 struct machine *machine;
451
452 machines->host.id_hdr_size = id_hdr_size;
453
454 for (node = rb_first_cached(&machines->guests); node;
455 node = rb_next(node)) {
456 machine = rb_entry(node, struct machine, rb_node);
457 machine->id_hdr_size = id_hdr_size;
458 }
459
460 return;
461}
462
463static void machine__update_thread_pid(struct machine *machine,
464 struct thread *th, pid_t pid)
465{
466 struct thread *leader;
467
468 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
469 return;
470
471 thread__set_pid(th, pid);
472
473 if (thread__pid(th) == thread__tid(th))
474 return;
475
476 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
477 if (!leader)
478 goto out_err;
479
480 if (!thread__maps(leader))
481 thread__set_maps(leader, maps__new(machine));
482
483 if (!thread__maps(leader))
484 goto out_err;
485
486 if (thread__maps(th) == thread__maps(leader))
487 goto out_put;
488
489 if (thread__maps(th)) {
490 /*
491 * Maps are created from MMAP events which provide the pid and
492 * tid. Consequently there never should be any maps on a thread
493 * with an unknown pid. Just print an error if there are.
494 */
495 if (!maps__empty(thread__maps(th)))
496 pr_err("Discarding thread maps for %d:%d\n",
497 thread__pid(th), thread__tid(th));
498 maps__put(thread__maps(th));
499 }
500
501 thread__set_maps(th, maps__get(thread__maps(leader)));
502out_put:
503 thread__put(leader);
504 return;
505out_err:
506 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
507 goto out_put;
508}
509
510/*
511 * Caller must eventually drop thread->refcnt returned with a successful
512 * lookup/new thread inserted.
513 */
514static struct thread *__machine__findnew_thread(struct machine *machine,
515 pid_t pid,
516 pid_t tid,
517 bool create)
518{
519 struct thread *th = threads__find(&machine->threads, tid);
520 bool created;
521
522 if (th) {
523 machine__update_thread_pid(machine, th, pid);
524 return th;
525 }
526 if (!create)
527 return NULL;
528
529 th = threads__findnew(&machine->threads, pid, tid, &created);
530 if (created) {
531 /*
532 * We have to initialize maps separately after rb tree is
533 * updated.
534 *
535 * The reason is that we call machine__findnew_thread within
536 * thread__init_maps to find the thread leader and that would
537 * screwed the rb tree.
538 */
539 if (thread__init_maps(th, machine)) {
540 pr_err("Thread init failed thread %d\n", pid);
541 threads__remove(&machine->threads, th);
542 thread__put(th);
543 return NULL;
544 }
545 } else
546 machine__update_thread_pid(machine, th, pid);
547
548 return th;
549}
550
551struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552{
553 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
554}
555
556struct thread *machine__find_thread(struct machine *machine, pid_t pid,
557 pid_t tid)
558{
559 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
560}
561
562/*
563 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
564 * So here a single thread is created for that, but actually there is a separate
565 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
566 * is only 1. That causes problems for some tools, requiring workarounds. For
567 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
568 */
569struct thread *machine__idle_thread(struct machine *machine)
570{
571 struct thread *thread = machine__findnew_thread(machine, 0, 0);
572
573 if (!thread || thread__set_comm(thread, "swapper", 0) ||
574 thread__set_namespaces(thread, 0, NULL))
575 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
576
577 return thread;
578}
579
580struct comm *machine__thread_exec_comm(struct machine *machine,
581 struct thread *thread)
582{
583 if (machine->comm_exec)
584 return thread__exec_comm(thread);
585 else
586 return thread__comm(thread);
587}
588
589int machine__process_comm_event(struct machine *machine, union perf_event *event,
590 struct perf_sample *sample)
591{
592 struct thread *thread = machine__findnew_thread(machine,
593 event->comm.pid,
594 event->comm.tid);
595 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596 int err = 0;
597
598 if (exec)
599 machine->comm_exec = true;
600
601 if (dump_trace)
602 perf_event__fprintf_comm(event, stdout);
603
604 if (thread == NULL ||
605 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607 err = -1;
608 }
609
610 thread__put(thread);
611
612 return err;
613}
614
615int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616 union perf_event *event,
617 struct perf_sample *sample __maybe_unused)
618{
619 struct thread *thread = machine__findnew_thread(machine,
620 event->namespaces.pid,
621 event->namespaces.tid);
622 int err = 0;
623
624 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625 "\nWARNING: kernel seems to support more namespaces than perf"
626 " tool.\nTry updating the perf tool..\n\n");
627
628 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629 "\nWARNING: perf tool seems to support more namespaces than"
630 " the kernel.\nTry updating the kernel..\n\n");
631
632 if (dump_trace)
633 perf_event__fprintf_namespaces(event, stdout);
634
635 if (thread == NULL ||
636 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638 err = -1;
639 }
640
641 thread__put(thread);
642
643 return err;
644}
645
646int machine__process_cgroup_event(struct machine *machine,
647 union perf_event *event,
648 struct perf_sample *sample __maybe_unused)
649{
650 struct cgroup *cgrp;
651
652 if (dump_trace)
653 perf_event__fprintf_cgroup(event, stdout);
654
655 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
656 if (cgrp == NULL)
657 return -ENOMEM;
658
659 return 0;
660}
661
662int machine__process_lost_event(struct machine *machine __maybe_unused,
663 union perf_event *event, struct perf_sample *sample __maybe_unused)
664{
665 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
666 event->lost.id, event->lost.lost);
667 return 0;
668}
669
670int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
671 union perf_event *event, struct perf_sample *sample)
672{
673 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
674 sample->id, event->lost_samples.lost);
675 return 0;
676}
677
678static struct dso *machine__findnew_module_dso(struct machine *machine,
679 struct kmod_path *m,
680 const char *filename)
681{
682 struct dso *dso;
683
684 down_write(&machine->dsos.lock);
685
686 dso = __dsos__find(&machine->dsos, m->name, true);
687 if (!dso) {
688 dso = __dsos__addnew(&machine->dsos, m->name);
689 if (dso == NULL)
690 goto out_unlock;
691
692 dso__set_module_info(dso, m, machine);
693 dso__set_long_name(dso, strdup(filename), true);
694 dso->kernel = DSO_SPACE__KERNEL;
695 }
696
697 dso__get(dso);
698out_unlock:
699 up_write(&machine->dsos.lock);
700 return dso;
701}
702
703int machine__process_aux_event(struct machine *machine __maybe_unused,
704 union perf_event *event)
705{
706 if (dump_trace)
707 perf_event__fprintf_aux(event, stdout);
708 return 0;
709}
710
711int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
712 union perf_event *event)
713{
714 if (dump_trace)
715 perf_event__fprintf_itrace_start(event, stdout);
716 return 0;
717}
718
719int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
720 union perf_event *event)
721{
722 if (dump_trace)
723 perf_event__fprintf_aux_output_hw_id(event, stdout);
724 return 0;
725}
726
727int machine__process_switch_event(struct machine *machine __maybe_unused,
728 union perf_event *event)
729{
730 if (dump_trace)
731 perf_event__fprintf_switch(event, stdout);
732 return 0;
733}
734
735static int machine__process_ksymbol_register(struct machine *machine,
736 union perf_event *event,
737 struct perf_sample *sample __maybe_unused)
738{
739 struct symbol *sym;
740 struct dso *dso;
741 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
742 int err = 0;
743
744 if (!map) {
745 dso = dso__new(event->ksymbol.name);
746
747 if (!dso) {
748 err = -ENOMEM;
749 goto out;
750 }
751 dso->kernel = DSO_SPACE__KERNEL;
752 map = map__new2(0, dso);
753 dso__put(dso);
754 if (!map) {
755 err = -ENOMEM;
756 goto out;
757 }
758 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
759 dso->binary_type = DSO_BINARY_TYPE__OOL;
760 dso->data.file_size = event->ksymbol.len;
761 dso__set_loaded(dso);
762 }
763
764 map__set_start(map, event->ksymbol.addr);
765 map__set_end(map, map__start(map) + event->ksymbol.len);
766 err = maps__insert(machine__kernel_maps(machine), map);
767 if (err) {
768 err = -ENOMEM;
769 goto out;
770 }
771
772 dso__set_loaded(dso);
773
774 if (is_bpf_image(event->ksymbol.name)) {
775 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
776 dso__set_long_name(dso, "", false);
777 }
778 } else {
779 dso = map__dso(map);
780 }
781
782 sym = symbol__new(map__map_ip(map, map__start(map)),
783 event->ksymbol.len,
784 0, 0, event->ksymbol.name);
785 if (!sym) {
786 err = -ENOMEM;
787 goto out;
788 }
789 dso__insert_symbol(dso, sym);
790out:
791 map__put(map);
792 return err;
793}
794
795static int machine__process_ksymbol_unregister(struct machine *machine,
796 union perf_event *event,
797 struct perf_sample *sample __maybe_unused)
798{
799 struct symbol *sym;
800 struct map *map;
801
802 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
803 if (!map)
804 return 0;
805
806 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
807 maps__remove(machine__kernel_maps(machine), map);
808 else {
809 struct dso *dso = map__dso(map);
810
811 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
812 if (sym)
813 dso__delete_symbol(dso, sym);
814 }
815 map__put(map);
816 return 0;
817}
818
819int machine__process_ksymbol(struct machine *machine __maybe_unused,
820 union perf_event *event,
821 struct perf_sample *sample)
822{
823 if (dump_trace)
824 perf_event__fprintf_ksymbol(event, stdout);
825
826 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
827 return machine__process_ksymbol_unregister(machine, event,
828 sample);
829 return machine__process_ksymbol_register(machine, event, sample);
830}
831
832int machine__process_text_poke(struct machine *machine, union perf_event *event,
833 struct perf_sample *sample __maybe_unused)
834{
835 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
836 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
837 struct dso *dso = map ? map__dso(map) : NULL;
838
839 if (dump_trace)
840 perf_event__fprintf_text_poke(event, machine, stdout);
841
842 if (!event->text_poke.new_len)
843 goto out;
844
845 if (cpumode != PERF_RECORD_MISC_KERNEL) {
846 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
847 goto out;
848 }
849
850 if (dso) {
851 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
852 int ret;
853
854 /*
855 * Kernel maps might be changed when loading symbols so loading
856 * must be done prior to using kernel maps.
857 */
858 map__load(map);
859 ret = dso__data_write_cache_addr(dso, map, machine,
860 event->text_poke.addr,
861 new_bytes,
862 event->text_poke.new_len);
863 if (ret != event->text_poke.new_len)
864 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
865 event->text_poke.addr);
866 } else {
867 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
868 event->text_poke.addr);
869 }
870out:
871 map__put(map);
872 return 0;
873}
874
875static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
876 const char *filename)
877{
878 struct map *map = NULL;
879 struct kmod_path m;
880 struct dso *dso;
881 int err;
882
883 if (kmod_path__parse_name(&m, filename))
884 return NULL;
885
886 dso = machine__findnew_module_dso(machine, &m, filename);
887 if (dso == NULL)
888 goto out;
889
890 map = map__new2(start, dso);
891 if (map == NULL)
892 goto out;
893
894 err = maps__insert(machine__kernel_maps(machine), map);
895 /* If maps__insert failed, return NULL. */
896 if (err) {
897 map__put(map);
898 map = NULL;
899 }
900out:
901 /* put the dso here, corresponding to machine__findnew_module_dso */
902 dso__put(dso);
903 zfree(&m.name);
904 return map;
905}
906
907size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
908{
909 struct rb_node *nd;
910 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
911
912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 struct machine *pos = rb_entry(nd, struct machine, rb_node);
914 ret += __dsos__fprintf(&pos->dsos.head, fp);
915 }
916
917 return ret;
918}
919
920size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
921 bool (skip)(struct dso *dso, int parm), int parm)
922{
923 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
924}
925
926size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
927 bool (skip)(struct dso *dso, int parm), int parm)
928{
929 struct rb_node *nd;
930 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
931
932 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933 struct machine *pos = rb_entry(nd, struct machine, rb_node);
934 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
935 }
936 return ret;
937}
938
939size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
940{
941 int i;
942 size_t printed = 0;
943 struct dso *kdso = machine__kernel_dso(machine);
944
945 if (kdso->has_build_id) {
946 char filename[PATH_MAX];
947 if (dso__build_id_filename(kdso, filename, sizeof(filename),
948 false))
949 printed += fprintf(fp, "[0] %s\n", filename);
950 }
951
952 for (i = 0; i < vmlinux_path__nr_entries; ++i)
953 printed += fprintf(fp, "[%d] %s\n",
954 i + kdso->has_build_id, vmlinux_path[i]);
955
956 return printed;
957}
958
959struct machine_fprintf_cb_args {
960 FILE *fp;
961 size_t printed;
962};
963
964static int machine_fprintf_cb(struct thread *thread, void *data)
965{
966 struct machine_fprintf_cb_args *args = data;
967
968 /* TODO: handle fprintf errors. */
969 args->printed += thread__fprintf(thread, args->fp);
970 return 0;
971}
972
973size_t machine__fprintf(struct machine *machine, FILE *fp)
974{
975 struct machine_fprintf_cb_args args = {
976 .fp = fp,
977 .printed = 0,
978 };
979 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
980
981 machine__for_each_thread(machine, machine_fprintf_cb, &args);
982 return ret + args.printed;
983}
984
985static struct dso *machine__get_kernel(struct machine *machine)
986{
987 const char *vmlinux_name = machine->mmap_name;
988 struct dso *kernel;
989
990 if (machine__is_host(machine)) {
991 if (symbol_conf.vmlinux_name)
992 vmlinux_name = symbol_conf.vmlinux_name;
993
994 kernel = machine__findnew_kernel(machine, vmlinux_name,
995 "[kernel]", DSO_SPACE__KERNEL);
996 } else {
997 if (symbol_conf.default_guest_vmlinux_name)
998 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
999
1000 kernel = machine__findnew_kernel(machine, vmlinux_name,
1001 "[guest.kernel]",
1002 DSO_SPACE__KERNEL_GUEST);
1003 }
1004
1005 if (kernel != NULL && (!kernel->has_build_id))
1006 dso__read_running_kernel_build_id(kernel, machine);
1007
1008 return kernel;
1009}
1010
1011void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012 size_t bufsz)
1013{
1014 if (machine__is_default_guest(machine))
1015 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016 else
1017 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018}
1019
1020const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021
1022/* Figure out the start address of kernel map from /proc/kallsyms.
1023 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024 * symbol_name if it's not that important.
1025 */
1026static int machine__get_running_kernel_start(struct machine *machine,
1027 const char **symbol_name,
1028 u64 *start, u64 *end)
1029{
1030 char filename[PATH_MAX];
1031 int i, err = -1;
1032 const char *name;
1033 u64 addr = 0;
1034
1035 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036
1037 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038 return 0;
1039
1040 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041 err = kallsyms__get_function_start(filename, name, &addr);
1042 if (!err)
1043 break;
1044 }
1045
1046 if (err)
1047 return -1;
1048
1049 if (symbol_name)
1050 *symbol_name = name;
1051
1052 *start = addr;
1053
1054 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055 if (err)
1056 err = kallsyms__get_function_start(filename, "_etext", &addr);
1057 if (!err)
1058 *end = addr;
1059
1060 return 0;
1061}
1062
1063int machine__create_extra_kernel_map(struct machine *machine,
1064 struct dso *kernel,
1065 struct extra_kernel_map *xm)
1066{
1067 struct kmap *kmap;
1068 struct map *map;
1069 int err;
1070
1071 map = map__new2(xm->start, kernel);
1072 if (!map)
1073 return -ENOMEM;
1074
1075 map__set_end(map, xm->end);
1076 map__set_pgoff(map, xm->pgoff);
1077
1078 kmap = map__kmap(map);
1079
1080 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081
1082 err = maps__insert(machine__kernel_maps(machine), map);
1083
1084 if (!err) {
1085 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086 kmap->name, map__start(map), map__end(map));
1087 }
1088
1089 map__put(map);
1090
1091 return err;
1092}
1093
1094static u64 find_entry_trampoline(struct dso *dso)
1095{
1096 /* Duplicates are removed so lookup all aliases */
1097 const char *syms[] = {
1098 "_entry_trampoline",
1099 "__entry_trampoline_start",
1100 "entry_SYSCALL_64_trampoline",
1101 };
1102 struct symbol *sym = dso__first_symbol(dso);
1103 unsigned int i;
1104
1105 for (; sym; sym = dso__next_symbol(sym)) {
1106 if (sym->binding != STB_GLOBAL)
1107 continue;
1108 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109 if (!strcmp(sym->name, syms[i]))
1110 return sym->start;
1111 }
1112 }
1113
1114 return 0;
1115}
1116
1117/*
1118 * These values can be used for kernels that do not have symbols for the entry
1119 * trampolines in kallsyms.
1120 */
1121#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1122#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1123#define X86_64_ENTRY_TRAMPOLINE 0x6000
1124
1125struct machine__map_x86_64_entry_trampolines_args {
1126 struct maps *kmaps;
1127 bool found;
1128};
1129
1130static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131{
1132 struct machine__map_x86_64_entry_trampolines_args *args = data;
1133 struct map *dest_map;
1134 struct kmap *kmap = __map__kmap(map);
1135
1136 if (!kmap || !is_entry_trampoline(kmap->name))
1137 return 0;
1138
1139 dest_map = maps__find(args->kmaps, map__pgoff(map));
1140 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142
1143 map__put(dest_map);
1144 args->found = true;
1145 return 0;
1146}
1147
1148/* Map x86_64 PTI entry trampolines */
1149int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150 struct dso *kernel)
1151{
1152 struct machine__map_x86_64_entry_trampolines_args args = {
1153 .kmaps = machine__kernel_maps(machine),
1154 .found = false,
1155 };
1156 int nr_cpus_avail, cpu;
1157 u64 pgoff;
1158
1159 /*
1160 * In the vmlinux case, pgoff is a virtual address which must now be
1161 * mapped to a vmlinux offset.
1162 */
1163 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164
1165 if (args.found || machine->trampolines_mapped)
1166 return 0;
1167
1168 pgoff = find_entry_trampoline(kernel);
1169 if (!pgoff)
1170 return 0;
1171
1172 nr_cpus_avail = machine__nr_cpus_avail(machine);
1173
1174 /* Add a 1 page map for each CPU's entry trampoline */
1175 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178 X86_64_ENTRY_TRAMPOLINE;
1179 struct extra_kernel_map xm = {
1180 .start = va,
1181 .end = va + page_size,
1182 .pgoff = pgoff,
1183 };
1184
1185 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186
1187 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188 return -1;
1189 }
1190
1191 machine->trampolines_mapped = nr_cpus_avail;
1192
1193 return 0;
1194}
1195
1196int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197 struct dso *kernel __maybe_unused)
1198{
1199 return 0;
1200}
1201
1202static int
1203__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204{
1205 /* In case of renewal the kernel map, destroy previous one */
1206 machine__destroy_kernel_maps(machine);
1207
1208 map__put(machine->vmlinux_map);
1209 machine->vmlinux_map = map__new2(0, kernel);
1210 if (machine->vmlinux_map == NULL)
1211 return -ENOMEM;
1212
1213 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215}
1216
1217void machine__destroy_kernel_maps(struct machine *machine)
1218{
1219 struct kmap *kmap;
1220 struct map *map = machine__kernel_map(machine);
1221
1222 if (map == NULL)
1223 return;
1224
1225 kmap = map__kmap(map);
1226 maps__remove(machine__kernel_maps(machine), map);
1227 if (kmap && kmap->ref_reloc_sym) {
1228 zfree((char **)&kmap->ref_reloc_sym->name);
1229 zfree(&kmap->ref_reloc_sym);
1230 }
1231
1232 map__zput(machine->vmlinux_map);
1233}
1234
1235int machines__create_guest_kernel_maps(struct machines *machines)
1236{
1237 int ret = 0;
1238 struct dirent **namelist = NULL;
1239 int i, items = 0;
1240 char path[PATH_MAX];
1241 pid_t pid;
1242 char *endp;
1243
1244 if (symbol_conf.default_guest_vmlinux_name ||
1245 symbol_conf.default_guest_modules ||
1246 symbol_conf.default_guest_kallsyms) {
1247 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248 }
1249
1250 if (symbol_conf.guestmount) {
1251 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252 if (items <= 0)
1253 return -ENOENT;
1254 for (i = 0; i < items; i++) {
1255 if (!isdigit(namelist[i]->d_name[0])) {
1256 /* Filter out . and .. */
1257 continue;
1258 }
1259 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260 if ((*endp != '\0') ||
1261 (endp == namelist[i]->d_name) ||
1262 (errno == ERANGE)) {
1263 pr_debug("invalid directory (%s). Skipping.\n",
1264 namelist[i]->d_name);
1265 continue;
1266 }
1267 sprintf(path, "%s/%s/proc/kallsyms",
1268 symbol_conf.guestmount,
1269 namelist[i]->d_name);
1270 ret = access(path, R_OK);
1271 if (ret) {
1272 pr_debug("Can't access file %s\n", path);
1273 goto failure;
1274 }
1275 machines__create_kernel_maps(machines, pid);
1276 }
1277failure:
1278 free(namelist);
1279 }
1280
1281 return ret;
1282}
1283
1284void machines__destroy_kernel_maps(struct machines *machines)
1285{
1286 struct rb_node *next = rb_first_cached(&machines->guests);
1287
1288 machine__destroy_kernel_maps(&machines->host);
1289
1290 while (next) {
1291 struct machine *pos = rb_entry(next, struct machine, rb_node);
1292
1293 next = rb_next(&pos->rb_node);
1294 rb_erase_cached(&pos->rb_node, &machines->guests);
1295 machine__delete(pos);
1296 }
1297}
1298
1299int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300{
1301 struct machine *machine = machines__findnew(machines, pid);
1302
1303 if (machine == NULL)
1304 return -1;
1305
1306 return machine__create_kernel_maps(machine);
1307}
1308
1309int machine__load_kallsyms(struct machine *machine, const char *filename)
1310{
1311 struct map *map = machine__kernel_map(machine);
1312 struct dso *dso = map__dso(map);
1313 int ret = __dso__load_kallsyms(dso, filename, map, true);
1314
1315 if (ret > 0) {
1316 dso__set_loaded(dso);
1317 /*
1318 * Since /proc/kallsyms will have multiple sessions for the
1319 * kernel, with modules between them, fixup the end of all
1320 * sections.
1321 */
1322 maps__fixup_end(machine__kernel_maps(machine));
1323 }
1324
1325 return ret;
1326}
1327
1328int machine__load_vmlinux_path(struct machine *machine)
1329{
1330 struct map *map = machine__kernel_map(machine);
1331 struct dso *dso = map__dso(map);
1332 int ret = dso__load_vmlinux_path(dso, map);
1333
1334 if (ret > 0)
1335 dso__set_loaded(dso);
1336
1337 return ret;
1338}
1339
1340static char *get_kernel_version(const char *root_dir)
1341{
1342 char version[PATH_MAX];
1343 FILE *file;
1344 char *name, *tmp;
1345 const char *prefix = "Linux version ";
1346
1347 sprintf(version, "%s/proc/version", root_dir);
1348 file = fopen(version, "r");
1349 if (!file)
1350 return NULL;
1351
1352 tmp = fgets(version, sizeof(version), file);
1353 fclose(file);
1354 if (!tmp)
1355 return NULL;
1356
1357 name = strstr(version, prefix);
1358 if (!name)
1359 return NULL;
1360 name += strlen(prefix);
1361 tmp = strchr(name, ' ');
1362 if (tmp)
1363 *tmp = '\0';
1364
1365 return strdup(name);
1366}
1367
1368static bool is_kmod_dso(struct dso *dso)
1369{
1370 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372}
1373
1374static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375{
1376 char *long_name;
1377 struct dso *dso;
1378 struct map *map = maps__find_by_name(maps, m->name);
1379
1380 if (map == NULL)
1381 return 0;
1382
1383 long_name = strdup(path);
1384 if (long_name == NULL) {
1385 map__put(map);
1386 return -ENOMEM;
1387 }
1388
1389 dso = map__dso(map);
1390 dso__set_long_name(dso, long_name, true);
1391 dso__kernel_module_get_build_id(dso, "");
1392
1393 /*
1394 * Full name could reveal us kmod compression, so
1395 * we need to update the symtab_type if needed.
1396 */
1397 if (m->comp && is_kmod_dso(dso)) {
1398 dso->symtab_type++;
1399 dso->comp = m->comp;
1400 }
1401 map__put(map);
1402 return 0;
1403}
1404
1405static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406{
1407 struct dirent *dent;
1408 DIR *dir = opendir(dir_name);
1409 int ret = 0;
1410
1411 if (!dir) {
1412 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413 return -1;
1414 }
1415
1416 while ((dent = readdir(dir)) != NULL) {
1417 char path[PATH_MAX];
1418 struct stat st;
1419
1420 /*sshfs might return bad dent->d_type, so we have to stat*/
1421 path__join(path, sizeof(path), dir_name, dent->d_name);
1422 if (stat(path, &st))
1423 continue;
1424
1425 if (S_ISDIR(st.st_mode)) {
1426 if (!strcmp(dent->d_name, ".") ||
1427 !strcmp(dent->d_name, ".."))
1428 continue;
1429
1430 /* Do not follow top-level source and build symlinks */
1431 if (depth == 0) {
1432 if (!strcmp(dent->d_name, "source") ||
1433 !strcmp(dent->d_name, "build"))
1434 continue;
1435 }
1436
1437 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438 if (ret < 0)
1439 goto out;
1440 } else {
1441 struct kmod_path m;
1442
1443 ret = kmod_path__parse_name(&m, dent->d_name);
1444 if (ret)
1445 goto out;
1446
1447 if (m.kmod)
1448 ret = maps__set_module_path(maps, path, &m);
1449
1450 zfree(&m.name);
1451
1452 if (ret)
1453 goto out;
1454 }
1455 }
1456
1457out:
1458 closedir(dir);
1459 return ret;
1460}
1461
1462static int machine__set_modules_path(struct machine *machine)
1463{
1464 char *version;
1465 char modules_path[PATH_MAX];
1466
1467 version = get_kernel_version(machine->root_dir);
1468 if (!version)
1469 return -1;
1470
1471 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472 machine->root_dir, version);
1473 free(version);
1474
1475 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476}
1477int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478 u64 *size __maybe_unused,
1479 const char *name __maybe_unused)
1480{
1481 return 0;
1482}
1483
1484static int machine__create_module(void *arg, const char *name, u64 start,
1485 u64 size)
1486{
1487 struct machine *machine = arg;
1488 struct map *map;
1489
1490 if (arch__fix_module_text_start(&start, &size, name) < 0)
1491 return -1;
1492
1493 map = machine__addnew_module_map(machine, start, name);
1494 if (map == NULL)
1495 return -1;
1496 map__set_end(map, start + size);
1497
1498 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499 map__put(map);
1500 return 0;
1501}
1502
1503static int machine__create_modules(struct machine *machine)
1504{
1505 const char *modules;
1506 char path[PATH_MAX];
1507
1508 if (machine__is_default_guest(machine)) {
1509 modules = symbol_conf.default_guest_modules;
1510 } else {
1511 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512 modules = path;
1513 }
1514
1515 if (symbol__restricted_filename(modules, "/proc/modules"))
1516 return -1;
1517
1518 if (modules__parse(modules, machine, machine__create_module))
1519 return -1;
1520
1521 if (!machine__set_modules_path(machine))
1522 return 0;
1523
1524 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525
1526 return 0;
1527}
1528
1529static void machine__set_kernel_mmap(struct machine *machine,
1530 u64 start, u64 end)
1531{
1532 map__set_start(machine->vmlinux_map, start);
1533 map__set_end(machine->vmlinux_map, end);
1534 /*
1535 * Be a bit paranoid here, some perf.data file came with
1536 * a zero sized synthesized MMAP event for the kernel.
1537 */
1538 if (start == 0 && end == 0)
1539 map__set_end(machine->vmlinux_map, ~0ULL);
1540}
1541
1542static int machine__update_kernel_mmap(struct machine *machine,
1543 u64 start, u64 end)
1544{
1545 struct map *orig, *updated;
1546 int err;
1547
1548 orig = machine->vmlinux_map;
1549 updated = map__get(orig);
1550
1551 machine->vmlinux_map = updated;
1552 maps__remove(machine__kernel_maps(machine), orig);
1553 machine__set_kernel_mmap(machine, start, end);
1554 err = maps__insert(machine__kernel_maps(machine), updated);
1555 map__put(orig);
1556
1557 return err;
1558}
1559
1560int machine__create_kernel_maps(struct machine *machine)
1561{
1562 struct dso *kernel = machine__get_kernel(machine);
1563 const char *name = NULL;
1564 u64 start = 0, end = ~0ULL;
1565 int ret;
1566
1567 if (kernel == NULL)
1568 return -1;
1569
1570 ret = __machine__create_kernel_maps(machine, kernel);
1571 if (ret < 0)
1572 goto out_put;
1573
1574 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575 if (machine__is_host(machine))
1576 pr_debug("Problems creating module maps, "
1577 "continuing anyway...\n");
1578 else
1579 pr_debug("Problems creating module maps for guest %d, "
1580 "continuing anyway...\n", machine->pid);
1581 }
1582
1583 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584 if (name &&
1585 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586 machine__destroy_kernel_maps(machine);
1587 ret = -1;
1588 goto out_put;
1589 }
1590
1591 /*
1592 * we have a real start address now, so re-order the kmaps
1593 * assume it's the last in the kmaps
1594 */
1595 ret = machine__update_kernel_mmap(machine, start, end);
1596 if (ret < 0)
1597 goto out_put;
1598 }
1599
1600 if (machine__create_extra_kernel_maps(machine, kernel))
1601 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602
1603 if (end == ~0ULL) {
1604 /* update end address of the kernel map using adjacent module address */
1605 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606 machine__kernel_map(machine));
1607
1608 if (next) {
1609 machine__set_kernel_mmap(machine, start, map__start(next));
1610 map__put(next);
1611 }
1612 }
1613
1614out_put:
1615 dso__put(kernel);
1616 return ret;
1617}
1618
1619static bool machine__uses_kcore(struct machine *machine)
1620{
1621 struct dso *dso;
1622
1623 list_for_each_entry(dso, &machine->dsos.head, node) {
1624 if (dso__is_kcore(dso))
1625 return true;
1626 }
1627
1628 return false;
1629}
1630
1631static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632 struct extra_kernel_map *xm)
1633{
1634 return machine__is(machine, "x86_64") &&
1635 is_entry_trampoline(xm->name);
1636}
1637
1638static int machine__process_extra_kernel_map(struct machine *machine,
1639 struct extra_kernel_map *xm)
1640{
1641 struct dso *kernel = machine__kernel_dso(machine);
1642
1643 if (kernel == NULL)
1644 return -1;
1645
1646 return machine__create_extra_kernel_map(machine, kernel, xm);
1647}
1648
1649static int machine__process_kernel_mmap_event(struct machine *machine,
1650 struct extra_kernel_map *xm,
1651 struct build_id *bid)
1652{
1653 enum dso_space_type dso_space;
1654 bool is_kernel_mmap;
1655 const char *mmap_name = machine->mmap_name;
1656
1657 /* If we have maps from kcore then we do not need or want any others */
1658 if (machine__uses_kcore(machine))
1659 return 0;
1660
1661 if (machine__is_host(machine))
1662 dso_space = DSO_SPACE__KERNEL;
1663 else
1664 dso_space = DSO_SPACE__KERNEL_GUEST;
1665
1666 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667 if (!is_kernel_mmap && !machine__is_host(machine)) {
1668 /*
1669 * If the event was recorded inside the guest and injected into
1670 * the host perf.data file, then it will match a host mmap_name,
1671 * so try that - see machine__set_mmap_name().
1672 */
1673 mmap_name = "[kernel.kallsyms]";
1674 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675 }
1676 if (xm->name[0] == '/' ||
1677 (!is_kernel_mmap && xm->name[0] == '[')) {
1678 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679
1680 if (map == NULL)
1681 goto out_problem;
1682
1683 map__set_end(map, map__start(map) + xm->end - xm->start);
1684
1685 if (build_id__is_defined(bid))
1686 dso__set_build_id(map__dso(map), bid);
1687
1688 map__put(map);
1689 } else if (is_kernel_mmap) {
1690 const char *symbol_name = xm->name + strlen(mmap_name);
1691 /*
1692 * Should be there already, from the build-id table in
1693 * the header.
1694 */
1695 struct dso *kernel = NULL;
1696 struct dso *dso;
1697
1698 down_read(&machine->dsos.lock);
1699
1700 list_for_each_entry(dso, &machine->dsos.head, node) {
1701
1702 /*
1703 * The cpumode passed to is_kernel_module is not the
1704 * cpumode of *this* event. If we insist on passing
1705 * correct cpumode to is_kernel_module, we should
1706 * record the cpumode when we adding this dso to the
1707 * linked list.
1708 *
1709 * However we don't really need passing correct
1710 * cpumode. We know the correct cpumode must be kernel
1711 * mode (if not, we should not link it onto kernel_dsos
1712 * list).
1713 *
1714 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715 * is_kernel_module() treats it as a kernel cpumode.
1716 */
1717
1718 if (!dso->kernel ||
1719 is_kernel_module(dso->long_name,
1720 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721 continue;
1722
1723
1724 kernel = dso__get(dso);
1725 break;
1726 }
1727
1728 up_read(&machine->dsos.lock);
1729
1730 if (kernel == NULL)
1731 kernel = machine__findnew_dso(machine, machine->mmap_name);
1732 if (kernel == NULL)
1733 goto out_problem;
1734
1735 kernel->kernel = dso_space;
1736 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737 dso__put(kernel);
1738 goto out_problem;
1739 }
1740
1741 if (strstr(kernel->long_name, "vmlinux"))
1742 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743
1744 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745 dso__put(kernel);
1746 goto out_problem;
1747 }
1748
1749 if (build_id__is_defined(bid))
1750 dso__set_build_id(kernel, bid);
1751
1752 /*
1753 * Avoid using a zero address (kptr_restrict) for the ref reloc
1754 * symbol. Effectively having zero here means that at record
1755 * time /proc/sys/kernel/kptr_restrict was non zero.
1756 */
1757 if (xm->pgoff != 0) {
1758 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759 symbol_name,
1760 xm->pgoff);
1761 }
1762
1763 if (machine__is_default_guest(machine)) {
1764 /*
1765 * preload dso of guest kernel and modules
1766 */
1767 dso__load(kernel, machine__kernel_map(machine));
1768 }
1769 dso__put(kernel);
1770 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771 return machine__process_extra_kernel_map(machine, xm);
1772 }
1773 return 0;
1774out_problem:
1775 return -1;
1776}
1777
1778int machine__process_mmap2_event(struct machine *machine,
1779 union perf_event *event,
1780 struct perf_sample *sample)
1781{
1782 struct thread *thread;
1783 struct map *map;
1784 struct dso_id dso_id = {
1785 .maj = event->mmap2.maj,
1786 .min = event->mmap2.min,
1787 .ino = event->mmap2.ino,
1788 .ino_generation = event->mmap2.ino_generation,
1789 };
1790 struct build_id __bid, *bid = NULL;
1791 int ret = 0;
1792
1793 if (dump_trace)
1794 perf_event__fprintf_mmap2(event, stdout);
1795
1796 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797 bid = &__bid;
1798 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799 }
1800
1801 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803 struct extra_kernel_map xm = {
1804 .start = event->mmap2.start,
1805 .end = event->mmap2.start + event->mmap2.len,
1806 .pgoff = event->mmap2.pgoff,
1807 };
1808
1809 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811 if (ret < 0)
1812 goto out_problem;
1813 return 0;
1814 }
1815
1816 thread = machine__findnew_thread(machine, event->mmap2.pid,
1817 event->mmap2.tid);
1818 if (thread == NULL)
1819 goto out_problem;
1820
1821 map = map__new(machine, event->mmap2.start,
1822 event->mmap2.len, event->mmap2.pgoff,
1823 &dso_id, event->mmap2.prot,
1824 event->mmap2.flags, bid,
1825 event->mmap2.filename, thread);
1826
1827 if (map == NULL)
1828 goto out_problem_map;
1829
1830 ret = thread__insert_map(thread, map);
1831 if (ret)
1832 goto out_problem_insert;
1833
1834 thread__put(thread);
1835 map__put(map);
1836 return 0;
1837
1838out_problem_insert:
1839 map__put(map);
1840out_problem_map:
1841 thread__put(thread);
1842out_problem:
1843 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844 return 0;
1845}
1846
1847int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848 struct perf_sample *sample)
1849{
1850 struct thread *thread;
1851 struct map *map;
1852 u32 prot = 0;
1853 int ret = 0;
1854
1855 if (dump_trace)
1856 perf_event__fprintf_mmap(event, stdout);
1857
1858 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860 struct extra_kernel_map xm = {
1861 .start = event->mmap.start,
1862 .end = event->mmap.start + event->mmap.len,
1863 .pgoff = event->mmap.pgoff,
1864 };
1865
1866 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868 if (ret < 0)
1869 goto out_problem;
1870 return 0;
1871 }
1872
1873 thread = machine__findnew_thread(machine, event->mmap.pid,
1874 event->mmap.tid);
1875 if (thread == NULL)
1876 goto out_problem;
1877
1878 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879 prot = PROT_EXEC;
1880
1881 map = map__new(machine, event->mmap.start,
1882 event->mmap.len, event->mmap.pgoff,
1883 NULL, prot, 0, NULL, event->mmap.filename, thread);
1884
1885 if (map == NULL)
1886 goto out_problem_map;
1887
1888 ret = thread__insert_map(thread, map);
1889 if (ret)
1890 goto out_problem_insert;
1891
1892 thread__put(thread);
1893 map__put(map);
1894 return 0;
1895
1896out_problem_insert:
1897 map__put(map);
1898out_problem_map:
1899 thread__put(thread);
1900out_problem:
1901 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902 return 0;
1903}
1904
1905void machine__remove_thread(struct machine *machine, struct thread *th)
1906{
1907 return threads__remove(&machine->threads, th);
1908}
1909
1910int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911 struct perf_sample *sample)
1912{
1913 struct thread *thread = machine__find_thread(machine,
1914 event->fork.pid,
1915 event->fork.tid);
1916 struct thread *parent = machine__findnew_thread(machine,
1917 event->fork.ppid,
1918 event->fork.ptid);
1919 bool do_maps_clone = true;
1920 int err = 0;
1921
1922 if (dump_trace)
1923 perf_event__fprintf_task(event, stdout);
1924
1925 /*
1926 * There may be an existing thread that is not actually the parent,
1927 * either because we are processing events out of order, or because the
1928 * (fork) event that would have removed the thread was lost. Assume the
1929 * latter case and continue on as best we can.
1930 */
1931 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932 dump_printf("removing erroneous parent thread %d/%d\n",
1933 thread__pid(parent), thread__tid(parent));
1934 machine__remove_thread(machine, parent);
1935 thread__put(parent);
1936 parent = machine__findnew_thread(machine, event->fork.ppid,
1937 event->fork.ptid);
1938 }
1939
1940 /* if a thread currently exists for the thread id remove it */
1941 if (thread != NULL) {
1942 machine__remove_thread(machine, thread);
1943 thread__put(thread);
1944 }
1945
1946 thread = machine__findnew_thread(machine, event->fork.pid,
1947 event->fork.tid);
1948 /*
1949 * When synthesizing FORK events, we are trying to create thread
1950 * objects for the already running tasks on the machine.
1951 *
1952 * Normally, for a kernel FORK event, we want to clone the parent's
1953 * maps because that is what the kernel just did.
1954 *
1955 * But when synthesizing, this should not be done. If we do, we end up
1956 * with overlapping maps as we process the synthesized MMAP2 events that
1957 * get delivered shortly thereafter.
1958 *
1959 * Use the FORK event misc flags in an internal way to signal this
1960 * situation, so we can elide the map clone when appropriate.
1961 */
1962 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963 do_maps_clone = false;
1964
1965 if (thread == NULL || parent == NULL ||
1966 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968 err = -1;
1969 }
1970 thread__put(thread);
1971 thread__put(parent);
1972
1973 return err;
1974}
1975
1976int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977 struct perf_sample *sample __maybe_unused)
1978{
1979 struct thread *thread = machine__find_thread(machine,
1980 event->fork.pid,
1981 event->fork.tid);
1982
1983 if (dump_trace)
1984 perf_event__fprintf_task(event, stdout);
1985
1986 if (thread != NULL) {
1987 if (symbol_conf.keep_exited_threads)
1988 thread__set_exited(thread, /*exited=*/true);
1989 else
1990 machine__remove_thread(machine, thread);
1991 }
1992 thread__put(thread);
1993 return 0;
1994}
1995
1996int machine__process_event(struct machine *machine, union perf_event *event,
1997 struct perf_sample *sample)
1998{
1999 int ret;
2000
2001 switch (event->header.type) {
2002 case PERF_RECORD_COMM:
2003 ret = machine__process_comm_event(machine, event, sample); break;
2004 case PERF_RECORD_MMAP:
2005 ret = machine__process_mmap_event(machine, event, sample); break;
2006 case PERF_RECORD_NAMESPACES:
2007 ret = machine__process_namespaces_event(machine, event, sample); break;
2008 case PERF_RECORD_CGROUP:
2009 ret = machine__process_cgroup_event(machine, event, sample); break;
2010 case PERF_RECORD_MMAP2:
2011 ret = machine__process_mmap2_event(machine, event, sample); break;
2012 case PERF_RECORD_FORK:
2013 ret = machine__process_fork_event(machine, event, sample); break;
2014 case PERF_RECORD_EXIT:
2015 ret = machine__process_exit_event(machine, event, sample); break;
2016 case PERF_RECORD_LOST:
2017 ret = machine__process_lost_event(machine, event, sample); break;
2018 case PERF_RECORD_AUX:
2019 ret = machine__process_aux_event(machine, event); break;
2020 case PERF_RECORD_ITRACE_START:
2021 ret = machine__process_itrace_start_event(machine, event); break;
2022 case PERF_RECORD_LOST_SAMPLES:
2023 ret = machine__process_lost_samples_event(machine, event, sample); break;
2024 case PERF_RECORD_SWITCH:
2025 case PERF_RECORD_SWITCH_CPU_WIDE:
2026 ret = machine__process_switch_event(machine, event); break;
2027 case PERF_RECORD_KSYMBOL:
2028 ret = machine__process_ksymbol(machine, event, sample); break;
2029 case PERF_RECORD_BPF_EVENT:
2030 ret = machine__process_bpf(machine, event, sample); break;
2031 case PERF_RECORD_TEXT_POKE:
2032 ret = machine__process_text_poke(machine, event, sample); break;
2033 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035 default:
2036 ret = -1;
2037 break;
2038 }
2039
2040 return ret;
2041}
2042
2043static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044{
2045 return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046}
2047
2048static void ip__resolve_ams(struct thread *thread,
2049 struct addr_map_symbol *ams,
2050 u64 ip)
2051{
2052 struct addr_location al;
2053
2054 addr_location__init(&al);
2055 /*
2056 * We cannot use the header.misc hint to determine whether a
2057 * branch stack address is user, kernel, guest, hypervisor.
2058 * Branches may straddle the kernel/user/hypervisor boundaries.
2059 * Thus, we have to try consecutively until we find a match
2060 * or else, the symbol is unknown
2061 */
2062 thread__find_cpumode_addr_location(thread, ip, &al);
2063
2064 ams->addr = ip;
2065 ams->al_addr = al.addr;
2066 ams->al_level = al.level;
2067 ams->ms.maps = maps__get(al.maps);
2068 ams->ms.sym = al.sym;
2069 ams->ms.map = map__get(al.map);
2070 ams->phys_addr = 0;
2071 ams->data_page_size = 0;
2072 addr_location__exit(&al);
2073}
2074
2075static void ip__resolve_data(struct thread *thread,
2076 u8 m, struct addr_map_symbol *ams,
2077 u64 addr, u64 phys_addr, u64 daddr_page_size)
2078{
2079 struct addr_location al;
2080
2081 addr_location__init(&al);
2082
2083 thread__find_symbol(thread, m, addr, &al);
2084
2085 ams->addr = addr;
2086 ams->al_addr = al.addr;
2087 ams->al_level = al.level;
2088 ams->ms.maps = maps__get(al.maps);
2089 ams->ms.sym = al.sym;
2090 ams->ms.map = map__get(al.map);
2091 ams->phys_addr = phys_addr;
2092 ams->data_page_size = daddr_page_size;
2093 addr_location__exit(&al);
2094}
2095
2096struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097 struct addr_location *al)
2098{
2099 struct mem_info *mi = mem_info__new();
2100
2101 if (!mi)
2102 return NULL;
2103
2104 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106 sample->addr, sample->phys_addr,
2107 sample->data_page_size);
2108 mi->data_src.val = sample->data_src;
2109
2110 return mi;
2111}
2112
2113static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114{
2115 struct map *map = ms->map;
2116 char *srcline = NULL;
2117 struct dso *dso;
2118
2119 if (!map || callchain_param.key == CCKEY_FUNCTION)
2120 return srcline;
2121
2122 dso = map__dso(map);
2123 srcline = srcline__tree_find(&dso->srclines, ip);
2124 if (!srcline) {
2125 bool show_sym = false;
2126 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127
2128 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129 ms->sym, show_sym, show_addr, ip);
2130 srcline__tree_insert(&dso->srclines, ip, srcline);
2131 }
2132
2133 return srcline;
2134}
2135
2136struct iterations {
2137 int nr_loop_iter;
2138 u64 cycles;
2139};
2140
2141static int add_callchain_ip(struct thread *thread,
2142 struct callchain_cursor *cursor,
2143 struct symbol **parent,
2144 struct addr_location *root_al,
2145 u8 *cpumode,
2146 u64 ip,
2147 bool branch,
2148 struct branch_flags *flags,
2149 struct iterations *iter,
2150 u64 branch_from)
2151{
2152 struct map_symbol ms = {};
2153 struct addr_location al;
2154 int nr_loop_iter = 0, err = 0;
2155 u64 iter_cycles = 0;
2156 const char *srcline = NULL;
2157
2158 addr_location__init(&al);
2159 al.filtered = 0;
2160 al.sym = NULL;
2161 al.srcline = NULL;
2162 if (!cpumode) {
2163 thread__find_cpumode_addr_location(thread, ip, &al);
2164 } else {
2165 if (ip >= PERF_CONTEXT_MAX) {
2166 switch (ip) {
2167 case PERF_CONTEXT_HV:
2168 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169 break;
2170 case PERF_CONTEXT_KERNEL:
2171 *cpumode = PERF_RECORD_MISC_KERNEL;
2172 break;
2173 case PERF_CONTEXT_USER:
2174 *cpumode = PERF_RECORD_MISC_USER;
2175 break;
2176 default:
2177 pr_debug("invalid callchain context: "
2178 "%"PRId64"\n", (s64) ip);
2179 /*
2180 * It seems the callchain is corrupted.
2181 * Discard all.
2182 */
2183 callchain_cursor_reset(cursor);
2184 err = 1;
2185 goto out;
2186 }
2187 goto out;
2188 }
2189 thread__find_symbol(thread, *cpumode, ip, &al);
2190 }
2191
2192 if (al.sym != NULL) {
2193 if (perf_hpp_list.parent && !*parent &&
2194 symbol__match_regex(al.sym, &parent_regex))
2195 *parent = al.sym;
2196 else if (have_ignore_callees && root_al &&
2197 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198 /* Treat this symbol as the root,
2199 forgetting its callees. */
2200 addr_location__copy(root_al, &al);
2201 callchain_cursor_reset(cursor);
2202 }
2203 }
2204
2205 if (symbol_conf.hide_unresolved && al.sym == NULL)
2206 goto out;
2207
2208 if (iter) {
2209 nr_loop_iter = iter->nr_loop_iter;
2210 iter_cycles = iter->cycles;
2211 }
2212
2213 ms.maps = maps__get(al.maps);
2214 ms.map = map__get(al.map);
2215 ms.sym = al.sym;
2216 srcline = callchain_srcline(&ms, al.addr);
2217 err = callchain_cursor_append(cursor, ip, &ms,
2218 branch, flags, nr_loop_iter,
2219 iter_cycles, branch_from, srcline);
2220out:
2221 addr_location__exit(&al);
2222 map_symbol__exit(&ms);
2223 return err;
2224}
2225
2226struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227 struct addr_location *al)
2228{
2229 unsigned int i;
2230 const struct branch_stack *bs = sample->branch_stack;
2231 struct branch_entry *entries = perf_sample__branch_entries(sample);
2232 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234 if (!bi)
2235 return NULL;
2236
2237 for (i = 0; i < bs->nr; i++) {
2238 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240 bi[i].flags = entries[i].flags;
2241 }
2242 return bi;
2243}
2244
2245static void save_iterations(struct iterations *iter,
2246 struct branch_entry *be, int nr)
2247{
2248 int i;
2249
2250 iter->nr_loop_iter++;
2251 iter->cycles = 0;
2252
2253 for (i = 0; i < nr; i++)
2254 iter->cycles += be[i].flags.cycles;
2255}
2256
2257#define CHASHSZ 127
2258#define CHASHBITS 7
2259#define NO_ENTRY 0xff
2260
2261#define PERF_MAX_BRANCH_DEPTH 127
2262
2263/* Remove loops. */
2264static int remove_loops(struct branch_entry *l, int nr,
2265 struct iterations *iter)
2266{
2267 int i, j, off;
2268 unsigned char chash[CHASHSZ];
2269
2270 memset(chash, NO_ENTRY, sizeof(chash));
2271
2272 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274 for (i = 0; i < nr; i++) {
2275 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277 /* no collision handling for now */
2278 if (chash[h] == NO_ENTRY) {
2279 chash[h] = i;
2280 } else if (l[chash[h]].from == l[i].from) {
2281 bool is_loop = true;
2282 /* check if it is a real loop */
2283 off = 0;
2284 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285 if (l[j].from != l[i + off].from) {
2286 is_loop = false;
2287 break;
2288 }
2289 if (is_loop) {
2290 j = nr - (i + off);
2291 if (j > 0) {
2292 save_iterations(iter + i + off,
2293 l + i, off);
2294
2295 memmove(iter + i, iter + i + off,
2296 j * sizeof(*iter));
2297
2298 memmove(l + i, l + i + off,
2299 j * sizeof(*l));
2300 }
2301
2302 nr -= off;
2303 }
2304 }
2305 }
2306 return nr;
2307}
2308
2309static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310 struct callchain_cursor *cursor,
2311 struct perf_sample *sample,
2312 struct symbol **parent,
2313 struct addr_location *root_al,
2314 u64 branch_from,
2315 bool callee, int end)
2316{
2317 struct ip_callchain *chain = sample->callchain;
2318 u8 cpumode = PERF_RECORD_MISC_USER;
2319 int err, i;
2320
2321 if (callee) {
2322 for (i = 0; i < end + 1; i++) {
2323 err = add_callchain_ip(thread, cursor, parent,
2324 root_al, &cpumode, chain->ips[i],
2325 false, NULL, NULL, branch_from);
2326 if (err)
2327 return err;
2328 }
2329 return 0;
2330 }
2331
2332 for (i = end; i >= 0; i--) {
2333 err = add_callchain_ip(thread, cursor, parent,
2334 root_al, &cpumode, chain->ips[i],
2335 false, NULL, NULL, branch_from);
2336 if (err)
2337 return err;
2338 }
2339
2340 return 0;
2341}
2342
2343static void save_lbr_cursor_node(struct thread *thread,
2344 struct callchain_cursor *cursor,
2345 int idx)
2346{
2347 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348
2349 if (!lbr_stitch)
2350 return;
2351
2352 if (cursor->pos == cursor->nr) {
2353 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354 return;
2355 }
2356
2357 if (!cursor->curr)
2358 cursor->curr = cursor->first;
2359 else
2360 cursor->curr = cursor->curr->next;
2361 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362 sizeof(struct callchain_cursor_node));
2363
2364 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365 cursor->pos++;
2366}
2367
2368static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369 struct callchain_cursor *cursor,
2370 struct perf_sample *sample,
2371 struct symbol **parent,
2372 struct addr_location *root_al,
2373 u64 *branch_from,
2374 bool callee)
2375{
2376 struct branch_stack *lbr_stack = sample->branch_stack;
2377 struct branch_entry *entries = perf_sample__branch_entries(sample);
2378 u8 cpumode = PERF_RECORD_MISC_USER;
2379 int lbr_nr = lbr_stack->nr;
2380 struct branch_flags *flags;
2381 int err, i;
2382 u64 ip;
2383
2384 /*
2385 * The curr and pos are not used in writing session. They are cleared
2386 * in callchain_cursor_commit() when the writing session is closed.
2387 * Using curr and pos to track the current cursor node.
2388 */
2389 if (thread__lbr_stitch(thread)) {
2390 cursor->curr = NULL;
2391 cursor->pos = cursor->nr;
2392 if (cursor->nr) {
2393 cursor->curr = cursor->first;
2394 for (i = 0; i < (int)(cursor->nr - 1); i++)
2395 cursor->curr = cursor->curr->next;
2396 }
2397 }
2398
2399 if (callee) {
2400 /* Add LBR ip from first entries.to */
2401 ip = entries[0].to;
2402 flags = &entries[0].flags;
2403 *branch_from = entries[0].from;
2404 err = add_callchain_ip(thread, cursor, parent,
2405 root_al, &cpumode, ip,
2406 true, flags, NULL,
2407 *branch_from);
2408 if (err)
2409 return err;
2410
2411 /*
2412 * The number of cursor node increases.
2413 * Move the current cursor node.
2414 * But does not need to save current cursor node for entry 0.
2415 * It's impossible to stitch the whole LBRs of previous sample.
2416 */
2417 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418 if (!cursor->curr)
2419 cursor->curr = cursor->first;
2420 else
2421 cursor->curr = cursor->curr->next;
2422 cursor->pos++;
2423 }
2424
2425 /* Add LBR ip from entries.from one by one. */
2426 for (i = 0; i < lbr_nr; i++) {
2427 ip = entries[i].from;
2428 flags = &entries[i].flags;
2429 err = add_callchain_ip(thread, cursor, parent,
2430 root_al, &cpumode, ip,
2431 true, flags, NULL,
2432 *branch_from);
2433 if (err)
2434 return err;
2435 save_lbr_cursor_node(thread, cursor, i);
2436 }
2437 return 0;
2438 }
2439
2440 /* Add LBR ip from entries.from one by one. */
2441 for (i = lbr_nr - 1; i >= 0; i--) {
2442 ip = entries[i].from;
2443 flags = &entries[i].flags;
2444 err = add_callchain_ip(thread, cursor, parent,
2445 root_al, &cpumode, ip,
2446 true, flags, NULL,
2447 *branch_from);
2448 if (err)
2449 return err;
2450 save_lbr_cursor_node(thread, cursor, i);
2451 }
2452
2453 if (lbr_nr > 0) {
2454 /* Add LBR ip from first entries.to */
2455 ip = entries[0].to;
2456 flags = &entries[0].flags;
2457 *branch_from = entries[0].from;
2458 err = add_callchain_ip(thread, cursor, parent,
2459 root_al, &cpumode, ip,
2460 true, flags, NULL,
2461 *branch_from);
2462 if (err)
2463 return err;
2464 }
2465
2466 return 0;
2467}
2468
2469static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470 struct callchain_cursor *cursor)
2471{
2472 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473 struct callchain_cursor_node *cnode;
2474 struct stitch_list *stitch_node;
2475 int err;
2476
2477 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478 cnode = &stitch_node->cursor;
2479
2480 err = callchain_cursor_append(cursor, cnode->ip,
2481 &cnode->ms,
2482 cnode->branch,
2483 &cnode->branch_flags,
2484 cnode->nr_loop_iter,
2485 cnode->iter_cycles,
2486 cnode->branch_from,
2487 cnode->srcline);
2488 if (err)
2489 return err;
2490 }
2491 return 0;
2492}
2493
2494static struct stitch_list *get_stitch_node(struct thread *thread)
2495{
2496 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497 struct stitch_list *stitch_node;
2498
2499 if (!list_empty(&lbr_stitch->free_lists)) {
2500 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501 struct stitch_list, node);
2502 list_del(&stitch_node->node);
2503
2504 return stitch_node;
2505 }
2506
2507 return malloc(sizeof(struct stitch_list));
2508}
2509
2510static bool has_stitched_lbr(struct thread *thread,
2511 struct perf_sample *cur,
2512 struct perf_sample *prev,
2513 unsigned int max_lbr,
2514 bool callee)
2515{
2516 struct branch_stack *cur_stack = cur->branch_stack;
2517 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518 struct branch_stack *prev_stack = prev->branch_stack;
2519 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521 int i, j, nr_identical_branches = 0;
2522 struct stitch_list *stitch_node;
2523 u64 cur_base, distance;
2524
2525 if (!cur_stack || !prev_stack)
2526 return false;
2527
2528 /* Find the physical index of the base-of-stack for current sample. */
2529 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530
2531 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532 (max_lbr + prev_stack->hw_idx - cur_base);
2533 /* Previous sample has shorter stack. Nothing can be stitched. */
2534 if (distance + 1 > prev_stack->nr)
2535 return false;
2536
2537 /*
2538 * Check if there are identical LBRs between two samples.
2539 * Identical LBRs must have same from, to and flags values. Also,
2540 * they have to be saved in the same LBR registers (same physical
2541 * index).
2542 *
2543 * Starts from the base-of-stack of current sample.
2544 */
2545 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546 if ((prev_entries[i].from != cur_entries[j].from) ||
2547 (prev_entries[i].to != cur_entries[j].to) ||
2548 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549 break;
2550 nr_identical_branches++;
2551 }
2552
2553 if (!nr_identical_branches)
2554 return false;
2555
2556 /*
2557 * Save the LBRs between the base-of-stack of previous sample
2558 * and the base-of-stack of current sample into lbr_stitch->lists.
2559 * These LBRs will be stitched later.
2560 */
2561 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562
2563 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564 continue;
2565
2566 stitch_node = get_stitch_node(thread);
2567 if (!stitch_node)
2568 return false;
2569
2570 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571 sizeof(struct callchain_cursor_node));
2572
2573 if (callee)
2574 list_add(&stitch_node->node, &lbr_stitch->lists);
2575 else
2576 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577 }
2578
2579 return true;
2580}
2581
2582static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583{
2584 if (thread__lbr_stitch(thread))
2585 return true;
2586
2587 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588 if (!thread__lbr_stitch(thread))
2589 goto err;
2590
2591 thread__lbr_stitch(thread)->prev_lbr_cursor =
2592 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594 goto free_lbr_stitch;
2595
2596 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598
2599 return true;
2600
2601free_lbr_stitch:
2602 free(thread__lbr_stitch(thread));
2603 thread__set_lbr_stitch(thread, NULL);
2604err:
2605 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606 thread__set_lbr_stitch_enable(thread, false);
2607 return false;
2608}
2609
2610/*
2611 * Resolve LBR callstack chain sample
2612 * Return:
2613 * 1 on success get LBR callchain information
2614 * 0 no available LBR callchain information, should try fp
2615 * negative error code on other errors.
2616 */
2617static int resolve_lbr_callchain_sample(struct thread *thread,
2618 struct callchain_cursor *cursor,
2619 struct perf_sample *sample,
2620 struct symbol **parent,
2621 struct addr_location *root_al,
2622 int max_stack,
2623 unsigned int max_lbr)
2624{
2625 bool callee = (callchain_param.order == ORDER_CALLEE);
2626 struct ip_callchain *chain = sample->callchain;
2627 int chain_nr = min(max_stack, (int)chain->nr), i;
2628 struct lbr_stitch *lbr_stitch;
2629 bool stitched_lbr = false;
2630 u64 branch_from = 0;
2631 int err;
2632
2633 for (i = 0; i < chain_nr; i++) {
2634 if (chain->ips[i] == PERF_CONTEXT_USER)
2635 break;
2636 }
2637
2638 /* LBR only affects the user callchain */
2639 if (i == chain_nr)
2640 return 0;
2641
2642 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644 lbr_stitch = thread__lbr_stitch(thread);
2645
2646 stitched_lbr = has_stitched_lbr(thread, sample,
2647 &lbr_stitch->prev_sample,
2648 max_lbr, callee);
2649
2650 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651 list_replace_init(&lbr_stitch->lists,
2652 &lbr_stitch->free_lists);
2653 }
2654 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655 }
2656
2657 if (callee) {
2658 /* Add kernel ip */
2659 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660 parent, root_al, branch_from,
2661 true, i);
2662 if (err)
2663 goto error;
2664
2665 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666 root_al, &branch_from, true);
2667 if (err)
2668 goto error;
2669
2670 if (stitched_lbr) {
2671 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672 if (err)
2673 goto error;
2674 }
2675
2676 } else {
2677 if (stitched_lbr) {
2678 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679 if (err)
2680 goto error;
2681 }
2682 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683 root_al, &branch_from, false);
2684 if (err)
2685 goto error;
2686
2687 /* Add kernel ip */
2688 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689 parent, root_al, branch_from,
2690 false, i);
2691 if (err)
2692 goto error;
2693 }
2694 return 1;
2695
2696error:
2697 return (err < 0) ? err : 0;
2698}
2699
2700static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701 struct callchain_cursor *cursor,
2702 struct symbol **parent,
2703 struct addr_location *root_al,
2704 u8 *cpumode, int ent)
2705{
2706 int err = 0;
2707
2708 while (--ent >= 0) {
2709 u64 ip = chain->ips[ent];
2710
2711 if (ip >= PERF_CONTEXT_MAX) {
2712 err = add_callchain_ip(thread, cursor, parent,
2713 root_al, cpumode, ip,
2714 false, NULL, NULL, 0);
2715 break;
2716 }
2717 }
2718 return err;
2719}
2720
2721static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722 struct thread *thread, int usr_idx)
2723{
2724 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726 else
2727 return 0;
2728}
2729
2730static int thread__resolve_callchain_sample(struct thread *thread,
2731 struct callchain_cursor *cursor,
2732 struct evsel *evsel,
2733 struct perf_sample *sample,
2734 struct symbol **parent,
2735 struct addr_location *root_al,
2736 int max_stack)
2737{
2738 struct branch_stack *branch = sample->branch_stack;
2739 struct branch_entry *entries = perf_sample__branch_entries(sample);
2740 struct ip_callchain *chain = sample->callchain;
2741 int chain_nr = 0;
2742 u8 cpumode = PERF_RECORD_MISC_USER;
2743 int i, j, err, nr_entries, usr_idx;
2744 int skip_idx = -1;
2745 int first_call = 0;
2746 u64 leaf_frame_caller;
2747
2748 if (chain)
2749 chain_nr = chain->nr;
2750
2751 if (evsel__has_branch_callstack(evsel)) {
2752 struct perf_env *env = evsel__env(evsel);
2753
2754 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755 root_al, max_stack,
2756 !env ? 0 : env->max_branches);
2757 if (err)
2758 return (err < 0) ? err : 0;
2759 }
2760
2761 /*
2762 * Based on DWARF debug information, some architectures skip
2763 * a callchain entry saved by the kernel.
2764 */
2765 skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767 /*
2768 * Add branches to call stack for easier browsing. This gives
2769 * more context for a sample than just the callers.
2770 *
2771 * This uses individual histograms of paths compared to the
2772 * aggregated histograms the normal LBR mode uses.
2773 *
2774 * Limitations for now:
2775 * - No extra filters
2776 * - No annotations (should annotate somehow)
2777 */
2778
2779 if (branch && callchain_param.branch_callstack) {
2780 int nr = min(max_stack, (int)branch->nr);
2781 struct branch_entry be[nr];
2782 struct iterations iter[nr];
2783
2784 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785 pr_warning("corrupted branch chain. skipping...\n");
2786 goto check_calls;
2787 }
2788
2789 for (i = 0; i < nr; i++) {
2790 if (callchain_param.order == ORDER_CALLEE) {
2791 be[i] = entries[i];
2792
2793 if (chain == NULL)
2794 continue;
2795
2796 /*
2797 * Check for overlap into the callchain.
2798 * The return address is one off compared to
2799 * the branch entry. To adjust for this
2800 * assume the calling instruction is not longer
2801 * than 8 bytes.
2802 */
2803 if (i == skip_idx ||
2804 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805 first_call++;
2806 else if (be[i].from < chain->ips[first_call] &&
2807 be[i].from >= chain->ips[first_call] - 8)
2808 first_call++;
2809 } else
2810 be[i] = entries[branch->nr - i - 1];
2811 }
2812
2813 memset(iter, 0, sizeof(struct iterations) * nr);
2814 nr = remove_loops(be, nr, iter);
2815
2816 for (i = 0; i < nr; i++) {
2817 err = add_callchain_ip(thread, cursor, parent,
2818 root_al,
2819 NULL, be[i].to,
2820 true, &be[i].flags,
2821 NULL, be[i].from);
2822
2823 if (!err)
2824 err = add_callchain_ip(thread, cursor, parent, root_al,
2825 NULL, be[i].from,
2826 true, &be[i].flags,
2827 &iter[i], 0);
2828 if (err == -EINVAL)
2829 break;
2830 if (err)
2831 return err;
2832 }
2833
2834 if (chain_nr == 0)
2835 return 0;
2836
2837 chain_nr -= nr;
2838 }
2839
2840check_calls:
2841 if (chain && callchain_param.order != ORDER_CALLEE) {
2842 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843 &cpumode, chain->nr - first_call);
2844 if (err)
2845 return (err < 0) ? err : 0;
2846 }
2847 for (i = first_call, nr_entries = 0;
2848 i < chain_nr && nr_entries < max_stack; i++) {
2849 u64 ip;
2850
2851 if (callchain_param.order == ORDER_CALLEE)
2852 j = i;
2853 else
2854 j = chain->nr - i - 1;
2855
2856#ifdef HAVE_SKIP_CALLCHAIN_IDX
2857 if (j == skip_idx)
2858 continue;
2859#endif
2860 ip = chain->ips[j];
2861 if (ip < PERF_CONTEXT_MAX)
2862 ++nr_entries;
2863 else if (callchain_param.order != ORDER_CALLEE) {
2864 err = find_prev_cpumode(chain, thread, cursor, parent,
2865 root_al, &cpumode, j);
2866 if (err)
2867 return (err < 0) ? err : 0;
2868 continue;
2869 }
2870
2871 /*
2872 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874 * the index will be different in order to add the missing frame
2875 * at the right place.
2876 */
2877
2878 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884 /*
2885 * check if leaf_frame_Caller != ip to not add the same
2886 * value twice.
2887 */
2888
2889 if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891 err = add_callchain_ip(thread, cursor, parent,
2892 root_al, &cpumode, leaf_frame_caller,
2893 false, NULL, NULL, 0);
2894 if (err)
2895 return (err < 0) ? err : 0;
2896 }
2897 }
2898
2899 err = add_callchain_ip(thread, cursor, parent,
2900 root_al, &cpumode, ip,
2901 false, NULL, NULL, 0);
2902
2903 if (err)
2904 return (err < 0) ? err : 0;
2905 }
2906
2907 return 0;
2908}
2909
2910static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911{
2912 struct symbol *sym = ms->sym;
2913 struct map *map = ms->map;
2914 struct inline_node *inline_node;
2915 struct inline_list *ilist;
2916 struct dso *dso;
2917 u64 addr;
2918 int ret = 1;
2919 struct map_symbol ilist_ms;
2920
2921 if (!symbol_conf.inline_name || !map || !sym)
2922 return ret;
2923
2924 addr = map__dso_map_ip(map, ip);
2925 addr = map__rip_2objdump(map, addr);
2926 dso = map__dso(map);
2927
2928 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929 if (!inline_node) {
2930 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931 if (!inline_node)
2932 return ret;
2933 inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934 }
2935
2936 ilist_ms = (struct map_symbol) {
2937 .maps = maps__get(ms->maps),
2938 .map = map__get(map),
2939 };
2940 list_for_each_entry(ilist, &inline_node->val, list) {
2941 ilist_ms.sym = ilist->symbol;
2942 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943 NULL, 0, 0, 0, ilist->srcline);
2944
2945 if (ret != 0)
2946 return ret;
2947 }
2948 map_symbol__exit(&ilist_ms);
2949
2950 return ret;
2951}
2952
2953static int unwind_entry(struct unwind_entry *entry, void *arg)
2954{
2955 struct callchain_cursor *cursor = arg;
2956 const char *srcline = NULL;
2957 u64 addr = entry->ip;
2958
2959 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960 return 0;
2961
2962 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963 return 0;
2964
2965 /*
2966 * Convert entry->ip from a virtual address to an offset in
2967 * its corresponding binary.
2968 */
2969 if (entry->ms.map)
2970 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971
2972 srcline = callchain_srcline(&entry->ms, addr);
2973 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974 false, NULL, 0, 0, 0, srcline);
2975}
2976
2977static int thread__resolve_callchain_unwind(struct thread *thread,
2978 struct callchain_cursor *cursor,
2979 struct evsel *evsel,
2980 struct perf_sample *sample,
2981 int max_stack)
2982{
2983 /* Can we do dwarf post unwind? */
2984 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986 return 0;
2987
2988 /* Bail out if nothing was captured. */
2989 if ((!sample->user_regs.regs) ||
2990 (!sample->user_stack.size))
2991 return 0;
2992
2993 return unwind__get_entries(unwind_entry, cursor,
2994 thread, sample, max_stack, false);
2995}
2996
2997int thread__resolve_callchain(struct thread *thread,
2998 struct callchain_cursor *cursor,
2999 struct evsel *evsel,
3000 struct perf_sample *sample,
3001 struct symbol **parent,
3002 struct addr_location *root_al,
3003 int max_stack)
3004{
3005 int ret = 0;
3006
3007 if (cursor == NULL)
3008 return -ENOMEM;
3009
3010 callchain_cursor_reset(cursor);
3011
3012 if (callchain_param.order == ORDER_CALLEE) {
3013 ret = thread__resolve_callchain_sample(thread, cursor,
3014 evsel, sample,
3015 parent, root_al,
3016 max_stack);
3017 if (ret)
3018 return ret;
3019 ret = thread__resolve_callchain_unwind(thread, cursor,
3020 evsel, sample,
3021 max_stack);
3022 } else {
3023 ret = thread__resolve_callchain_unwind(thread, cursor,
3024 evsel, sample,
3025 max_stack);
3026 if (ret)
3027 return ret;
3028 ret = thread__resolve_callchain_sample(thread, cursor,
3029 evsel, sample,
3030 parent, root_al,
3031 max_stack);
3032 }
3033
3034 return ret;
3035}
3036
3037int machine__for_each_thread(struct machine *machine,
3038 int (*fn)(struct thread *thread, void *p),
3039 void *priv)
3040{
3041 return threads__for_each_thread(&machine->threads, fn, priv);
3042}
3043
3044int machines__for_each_thread(struct machines *machines,
3045 int (*fn)(struct thread *thread, void *p),
3046 void *priv)
3047{
3048 struct rb_node *nd;
3049 int rc = 0;
3050
3051 rc = machine__for_each_thread(&machines->host, fn, priv);
3052 if (rc != 0)
3053 return rc;
3054
3055 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057
3058 rc = machine__for_each_thread(machine, fn, priv);
3059 if (rc != 0)
3060 return rc;
3061 }
3062 return rc;
3063}
3064
3065
3066static int thread_list_cb(struct thread *thread, void *data)
3067{
3068 struct list_head *list = data;
3069 struct thread_list *entry = malloc(sizeof(*entry));
3070
3071 if (!entry)
3072 return -ENOMEM;
3073
3074 entry->thread = thread__get(thread);
3075 list_add_tail(&entry->list, list);
3076 return 0;
3077}
3078
3079int machine__thread_list(struct machine *machine, struct list_head *list)
3080{
3081 return machine__for_each_thread(machine, thread_list_cb, list);
3082}
3083
3084void thread_list__delete(struct list_head *list)
3085{
3086 struct thread_list *pos, *next;
3087
3088 list_for_each_entry_safe(pos, next, list, list) {
3089 thread__zput(pos->thread);
3090 list_del(&pos->list);
3091 free(pos);
3092 }
3093}
3094
3095pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096{
3097 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098 return -1;
3099
3100 return machine->current_tid[cpu];
3101}
3102
3103int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104 pid_t tid)
3105{
3106 struct thread *thread;
3107 const pid_t init_val = -1;
3108
3109 if (cpu < 0)
3110 return -EINVAL;
3111
3112 if (realloc_array_as_needed(machine->current_tid,
3113 machine->current_tid_sz,
3114 (unsigned int)cpu,
3115 &init_val))
3116 return -ENOMEM;
3117
3118 machine->current_tid[cpu] = tid;
3119
3120 thread = machine__findnew_thread(machine, pid, tid);
3121 if (!thread)
3122 return -ENOMEM;
3123
3124 thread__set_cpu(thread, cpu);
3125 thread__put(thread);
3126
3127 return 0;
3128}
3129
3130/*
3131 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132 * machine__normalized_is() if a normalized arch is needed.
3133 */
3134bool machine__is(struct machine *machine, const char *arch)
3135{
3136 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137}
3138
3139bool machine__normalized_is(struct machine *machine, const char *arch)
3140{
3141 return machine && !strcmp(perf_env__arch(machine->env), arch);
3142}
3143
3144int machine__nr_cpus_avail(struct machine *machine)
3145{
3146 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147}
3148
3149int machine__get_kernel_start(struct machine *machine)
3150{
3151 struct map *map = machine__kernel_map(machine);
3152 int err = 0;
3153
3154 /*
3155 * The only addresses above 2^63 are kernel addresses of a 64-bit
3156 * kernel. Note that addresses are unsigned so that on a 32-bit system
3157 * all addresses including kernel addresses are less than 2^32. In
3158 * that case (32-bit system), if the kernel mapping is unknown, all
3159 * addresses will be assumed to be in user space - see
3160 * machine__kernel_ip().
3161 */
3162 machine->kernel_start = 1ULL << 63;
3163 if (map) {
3164 err = map__load(map);
3165 /*
3166 * On x86_64, PTI entry trampolines are less than the
3167 * start of kernel text, but still above 2^63. So leave
3168 * kernel_start = 1ULL << 63 for x86_64.
3169 */
3170 if (!err && !machine__is(machine, "x86_64"))
3171 machine->kernel_start = map__start(map);
3172 }
3173 return err;
3174}
3175
3176u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177{
3178 u8 addr_cpumode = cpumode;
3179 bool kernel_ip;
3180
3181 if (!machine->single_address_space)
3182 goto out;
3183
3184 kernel_ip = machine__kernel_ip(machine, addr);
3185 switch (cpumode) {
3186 case PERF_RECORD_MISC_KERNEL:
3187 case PERF_RECORD_MISC_USER:
3188 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189 PERF_RECORD_MISC_USER;
3190 break;
3191 case PERF_RECORD_MISC_GUEST_KERNEL:
3192 case PERF_RECORD_MISC_GUEST_USER:
3193 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194 PERF_RECORD_MISC_GUEST_USER;
3195 break;
3196 default:
3197 break;
3198 }
3199out:
3200 return addr_cpumode;
3201}
3202
3203struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204{
3205 return dsos__findnew_id(&machine->dsos, filename, id);
3206}
3207
3208struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209{
3210 return machine__findnew_dso_id(machine, filename, NULL);
3211}
3212
3213char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214{
3215 struct machine *machine = vmachine;
3216 struct map *map;
3217 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218
3219 if (sym == NULL)
3220 return NULL;
3221
3222 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223 *addrp = map__unmap_ip(map, sym->start);
3224 return sym->name;
3225}
3226
3227int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228{
3229 struct dso *pos;
3230 int err = 0;
3231
3232 list_for_each_entry(pos, &machine->dsos.head, node) {
3233 if (fn(pos, machine, priv))
3234 err = -1;
3235 }
3236 return err;
3237}
3238
3239int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240{
3241 struct maps *maps = machine__kernel_maps(machine);
3242
3243 return maps__for_each_map(maps, fn, priv);
3244}
3245
3246bool machine__is_lock_function(struct machine *machine, u64 addr)
3247{
3248 if (!machine->sched.text_start) {
3249 struct map *kmap;
3250 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251
3252 if (!sym) {
3253 /* to avoid retry */
3254 machine->sched.text_start = 1;
3255 return false;
3256 }
3257
3258 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259
3260 /* should not fail from here */
3261 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263
3264 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266
3267 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269 }
3270
3271 /* failed to get kernel symbols */
3272 if (machine->sched.text_start == 1)
3273 return false;
3274
3275 /* mutex and rwsem functions are in sched text section */
3276 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277 return true;
3278
3279 /* spinlock functions are in lock text section */
3280 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281 return true;
3282
3283 return false;
3284}
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "mem-info.h"
20#include "path.h"
21#include "srcline.h"
22#include "symbol.h"
23#include "sort.h"
24#include "strlist.h"
25#include "target.h"
26#include "thread.h"
27#include "util.h"
28#include "vdso.h"
29#include <stdbool.h>
30#include <sys/types.h>
31#include <sys/stat.h>
32#include <unistd.h>
33#include "unwind.h"
34#include "linux/hash.h"
35#include "asm/bug.h"
36#include "bpf-event.h"
37#include <internal/lib.h> // page_size
38#include "cgroup.h"
39#include "arm64-frame-pointer-unwind-support.h"
40
41#include <linux/ctype.h>
42#include <symbol/kallsyms.h>
43#include <linux/mman.h>
44#include <linux/string.h>
45#include <linux/zalloc.h>
46
47static struct dso *machine__kernel_dso(struct machine *machine)
48{
49 return map__dso(machine->vmlinux_map);
50}
51
52static int machine__set_mmap_name(struct machine *machine)
53{
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 machine->pid) < 0)
60 machine->mmap_name = NULL;
61
62 return machine->mmap_name ? 0 : -ENOMEM;
63}
64
65static void thread__set_guest_comm(struct thread *thread, pid_t pid)
66{
67 char comm[64];
68
69 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70 thread__set_comm(thread, comm, 0);
71}
72
73int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
74{
75 int err = -ENOMEM;
76
77 memset(machine, 0, sizeof(*machine));
78 machine->kmaps = maps__new(machine);
79 if (machine->kmaps == NULL)
80 return -ENOMEM;
81
82 RB_CLEAR_NODE(&machine->rb_node);
83 dsos__init(&machine->dsos);
84
85 threads__init(&machine->threads);
86
87 machine->vdso_info = NULL;
88 machine->env = NULL;
89
90 machine->pid = pid;
91
92 machine->id_hdr_size = 0;
93 machine->kptr_restrict_warned = false;
94 machine->comm_exec = false;
95 machine->kernel_start = 0;
96 machine->vmlinux_map = NULL;
97
98 machine->root_dir = strdup(root_dir);
99 if (machine->root_dir == NULL)
100 goto out;
101
102 if (machine__set_mmap_name(machine))
103 goto out;
104
105 if (pid != HOST_KERNEL_ID) {
106 struct thread *thread = machine__findnew_thread(machine, -1,
107 pid);
108
109 if (thread == NULL)
110 goto out;
111
112 thread__set_guest_comm(thread, pid);
113 thread__put(thread);
114 }
115
116 machine->current_tid = NULL;
117 err = 0;
118
119out:
120 if (err) {
121 zfree(&machine->kmaps);
122 zfree(&machine->root_dir);
123 zfree(&machine->mmap_name);
124 }
125 return 0;
126}
127
128struct machine *machine__new_host(void)
129{
130 struct machine *machine = malloc(sizeof(*machine));
131
132 if (machine != NULL) {
133 machine__init(machine, "", HOST_KERNEL_ID);
134
135 if (machine__create_kernel_maps(machine) < 0)
136 goto out_delete;
137
138 machine->env = &perf_env;
139 }
140
141 return machine;
142out_delete:
143 free(machine);
144 return NULL;
145}
146
147struct machine *machine__new_kallsyms(void)
148{
149 struct machine *machine = machine__new_host();
150 /*
151 * FIXME:
152 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
153 * ask for not using the kcore parsing code, once this one is fixed
154 * to create a map per module.
155 */
156 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
157 machine__delete(machine);
158 machine = NULL;
159 }
160
161 return machine;
162}
163
164void machine__delete_threads(struct machine *machine)
165{
166 threads__remove_all_threads(&machine->threads);
167}
168
169void machine__exit(struct machine *machine)
170{
171 if (machine == NULL)
172 return;
173
174 machine__destroy_kernel_maps(machine);
175 maps__zput(machine->kmaps);
176 dsos__exit(&machine->dsos);
177 machine__exit_vdso(machine);
178 zfree(&machine->root_dir);
179 zfree(&machine->mmap_name);
180 zfree(&machine->current_tid);
181 zfree(&machine->kallsyms_filename);
182
183 threads__exit(&machine->threads);
184}
185
186void machine__delete(struct machine *machine)
187{
188 if (machine) {
189 machine__exit(machine);
190 free(machine);
191 }
192}
193
194void machines__init(struct machines *machines)
195{
196 machine__init(&machines->host, "", HOST_KERNEL_ID);
197 machines->guests = RB_ROOT_CACHED;
198}
199
200void machines__exit(struct machines *machines)
201{
202 machine__exit(&machines->host);
203 /* XXX exit guest */
204}
205
206struct machine *machines__add(struct machines *machines, pid_t pid,
207 const char *root_dir)
208{
209 struct rb_node **p = &machines->guests.rb_root.rb_node;
210 struct rb_node *parent = NULL;
211 struct machine *pos, *machine = malloc(sizeof(*machine));
212 bool leftmost = true;
213
214 if (machine == NULL)
215 return NULL;
216
217 if (machine__init(machine, root_dir, pid) != 0) {
218 free(machine);
219 return NULL;
220 }
221
222 while (*p != NULL) {
223 parent = *p;
224 pos = rb_entry(parent, struct machine, rb_node);
225 if (pid < pos->pid)
226 p = &(*p)->rb_left;
227 else {
228 p = &(*p)->rb_right;
229 leftmost = false;
230 }
231 }
232
233 rb_link_node(&machine->rb_node, parent, p);
234 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
235
236 machine->machines = machines;
237
238 return machine;
239}
240
241void machines__set_comm_exec(struct machines *machines, bool comm_exec)
242{
243 struct rb_node *nd;
244
245 machines->host.comm_exec = comm_exec;
246
247 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
248 struct machine *machine = rb_entry(nd, struct machine, rb_node);
249
250 machine->comm_exec = comm_exec;
251 }
252}
253
254struct machine *machines__find(struct machines *machines, pid_t pid)
255{
256 struct rb_node **p = &machines->guests.rb_root.rb_node;
257 struct rb_node *parent = NULL;
258 struct machine *machine;
259 struct machine *default_machine = NULL;
260
261 if (pid == HOST_KERNEL_ID)
262 return &machines->host;
263
264 while (*p != NULL) {
265 parent = *p;
266 machine = rb_entry(parent, struct machine, rb_node);
267 if (pid < machine->pid)
268 p = &(*p)->rb_left;
269 else if (pid > machine->pid)
270 p = &(*p)->rb_right;
271 else
272 return machine;
273 if (!machine->pid)
274 default_machine = machine;
275 }
276
277 return default_machine;
278}
279
280struct machine *machines__findnew(struct machines *machines, pid_t pid)
281{
282 char path[PATH_MAX];
283 const char *root_dir = "";
284 struct machine *machine = machines__find(machines, pid);
285
286 if (machine && (machine->pid == pid))
287 goto out;
288
289 if ((pid != HOST_KERNEL_ID) &&
290 (pid != DEFAULT_GUEST_KERNEL_ID) &&
291 (symbol_conf.guestmount)) {
292 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
293 if (access(path, R_OK)) {
294 static struct strlist *seen;
295
296 if (!seen)
297 seen = strlist__new(NULL, NULL);
298
299 if (!strlist__has_entry(seen, path)) {
300 pr_err("Can't access file %s\n", path);
301 strlist__add(seen, path);
302 }
303 machine = NULL;
304 goto out;
305 }
306 root_dir = path;
307 }
308
309 machine = machines__add(machines, pid, root_dir);
310out:
311 return machine;
312}
313
314struct machine *machines__find_guest(struct machines *machines, pid_t pid)
315{
316 struct machine *machine = machines__find(machines, pid);
317
318 if (!machine)
319 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
320 return machine;
321}
322
323/*
324 * A common case for KVM test programs is that the test program acts as the
325 * hypervisor, creating, running and destroying the virtual machine, and
326 * providing the guest object code from its own object code. In this case,
327 * the VM is not running an OS, but only the functions loaded into it by the
328 * hypervisor test program, and conveniently, loaded at the same virtual
329 * addresses.
330 *
331 * Normally to resolve addresses, MMAP events are needed to map addresses
332 * back to the object code and debug symbols for that object code.
333 *
334 * Currently, there is no way to get such mapping information from guests
335 * but, in the scenario described above, the guest has the same mappings
336 * as the hypervisor, so support for that scenario can be achieved.
337 *
338 * To support that, copy the host thread's maps to the guest thread's maps.
339 * Note, we do not discover the guest until we encounter a guest event,
340 * which works well because it is not until then that we know that the host
341 * thread's maps have been set up.
342 *
343 * This function returns the guest thread. Apart from keeping the data
344 * structures sane, using a thread belonging to the guest machine, instead
345 * of the host thread, allows it to have its own comm (refer
346 * thread__set_guest_comm()).
347 */
348static struct thread *findnew_guest_code(struct machine *machine,
349 struct machine *host_machine,
350 pid_t pid)
351{
352 struct thread *host_thread;
353 struct thread *thread;
354 int err;
355
356 if (!machine)
357 return NULL;
358
359 thread = machine__findnew_thread(machine, -1, pid);
360 if (!thread)
361 return NULL;
362
363 /* Assume maps are set up if there are any */
364 if (!maps__empty(thread__maps(thread)))
365 return thread;
366
367 host_thread = machine__find_thread(host_machine, -1, pid);
368 if (!host_thread)
369 goto out_err;
370
371 thread__set_guest_comm(thread, pid);
372
373 /*
374 * Guest code can be found in hypervisor process at the same address
375 * so copy host maps.
376 */
377 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
378 thread__put(host_thread);
379 if (err)
380 goto out_err;
381
382 return thread;
383
384out_err:
385 thread__zput(thread);
386 return NULL;
387}
388
389struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
390{
391 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
392 struct machine *machine = machines__findnew(machines, pid);
393
394 return findnew_guest_code(machine, host_machine, pid);
395}
396
397struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
398{
399 struct machines *machines = machine->machines;
400 struct machine *host_machine;
401
402 if (!machines)
403 return NULL;
404
405 host_machine = machines__find(machines, HOST_KERNEL_ID);
406
407 return findnew_guest_code(machine, host_machine, pid);
408}
409
410void machines__process_guests(struct machines *machines,
411 machine__process_t process, void *data)
412{
413 struct rb_node *nd;
414
415 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
416 struct machine *pos = rb_entry(nd, struct machine, rb_node);
417 process(pos, data);
418 }
419}
420
421void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
422{
423 struct rb_node *node;
424 struct machine *machine;
425
426 machines->host.id_hdr_size = id_hdr_size;
427
428 for (node = rb_first_cached(&machines->guests); node;
429 node = rb_next(node)) {
430 machine = rb_entry(node, struct machine, rb_node);
431 machine->id_hdr_size = id_hdr_size;
432 }
433
434 return;
435}
436
437static void machine__update_thread_pid(struct machine *machine,
438 struct thread *th, pid_t pid)
439{
440 struct thread *leader;
441
442 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
443 return;
444
445 thread__set_pid(th, pid);
446
447 if (thread__pid(th) == thread__tid(th))
448 return;
449
450 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
451 if (!leader)
452 goto out_err;
453
454 if (!thread__maps(leader))
455 thread__set_maps(leader, maps__new(machine));
456
457 if (!thread__maps(leader))
458 goto out_err;
459
460 if (thread__maps(th) == thread__maps(leader))
461 goto out_put;
462
463 if (thread__maps(th)) {
464 /*
465 * Maps are created from MMAP events which provide the pid and
466 * tid. Consequently there never should be any maps on a thread
467 * with an unknown pid. Just print an error if there are.
468 */
469 if (!maps__empty(thread__maps(th)))
470 pr_err("Discarding thread maps for %d:%d\n",
471 thread__pid(th), thread__tid(th));
472 maps__put(thread__maps(th));
473 }
474
475 thread__set_maps(th, maps__get(thread__maps(leader)));
476out_put:
477 thread__put(leader);
478 return;
479out_err:
480 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
481 goto out_put;
482}
483
484/*
485 * Caller must eventually drop thread->refcnt returned with a successful
486 * lookup/new thread inserted.
487 */
488static struct thread *__machine__findnew_thread(struct machine *machine,
489 pid_t pid,
490 pid_t tid,
491 bool create)
492{
493 struct thread *th = threads__find(&machine->threads, tid);
494 bool created;
495
496 if (th) {
497 machine__update_thread_pid(machine, th, pid);
498 return th;
499 }
500 if (!create)
501 return NULL;
502
503 th = threads__findnew(&machine->threads, pid, tid, &created);
504 if (created) {
505 /*
506 * We have to initialize maps separately after rb tree is
507 * updated.
508 *
509 * The reason is that we call machine__findnew_thread within
510 * thread__init_maps to find the thread leader and that would
511 * screwed the rb tree.
512 */
513 if (thread__init_maps(th, machine)) {
514 pr_err("Thread init failed thread %d\n", pid);
515 threads__remove(&machine->threads, th);
516 thread__put(th);
517 return NULL;
518 }
519 } else
520 machine__update_thread_pid(machine, th, pid);
521
522 return th;
523}
524
525struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
526{
527 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
528}
529
530struct thread *machine__find_thread(struct machine *machine, pid_t pid,
531 pid_t tid)
532{
533 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
534}
535
536/*
537 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
538 * So here a single thread is created for that, but actually there is a separate
539 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
540 * is only 1. That causes problems for some tools, requiring workarounds. For
541 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
542 */
543struct thread *machine__idle_thread(struct machine *machine)
544{
545 struct thread *thread = machine__findnew_thread(machine, 0, 0);
546
547 if (!thread || thread__set_comm(thread, "swapper", 0) ||
548 thread__set_namespaces(thread, 0, NULL))
549 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
550
551 return thread;
552}
553
554struct comm *machine__thread_exec_comm(struct machine *machine,
555 struct thread *thread)
556{
557 if (machine->comm_exec)
558 return thread__exec_comm(thread);
559 else
560 return thread__comm(thread);
561}
562
563int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 struct perf_sample *sample)
565{
566 struct thread *thread = machine__findnew_thread(machine,
567 event->comm.pid,
568 event->comm.tid);
569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570 int err = 0;
571
572 if (exec)
573 machine->comm_exec = true;
574
575 if (dump_trace)
576 perf_event__fprintf_comm(event, stdout);
577
578 if (thread == NULL ||
579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581 err = -1;
582 }
583
584 thread__put(thread);
585
586 return err;
587}
588
589int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 union perf_event *event,
591 struct perf_sample *sample __maybe_unused)
592{
593 struct thread *thread = machine__findnew_thread(machine,
594 event->namespaces.pid,
595 event->namespaces.tid);
596 int err = 0;
597
598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 "\nWARNING: kernel seems to support more namespaces than perf"
600 " tool.\nTry updating the perf tool..\n\n");
601
602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 "\nWARNING: perf tool seems to support more namespaces than"
604 " the kernel.\nTry updating the kernel..\n\n");
605
606 if (dump_trace)
607 perf_event__fprintf_namespaces(event, stdout);
608
609 if (thread == NULL ||
610 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
612 err = -1;
613 }
614
615 thread__put(thread);
616
617 return err;
618}
619
620int machine__process_cgroup_event(struct machine *machine,
621 union perf_event *event,
622 struct perf_sample *sample __maybe_unused)
623{
624 struct cgroup *cgrp;
625
626 if (dump_trace)
627 perf_event__fprintf_cgroup(event, stdout);
628
629 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
630 if (cgrp == NULL)
631 return -ENOMEM;
632
633 return 0;
634}
635
636int machine__process_lost_event(struct machine *machine __maybe_unused,
637 union perf_event *event, struct perf_sample *sample __maybe_unused)
638{
639 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
640 event->lost.id, event->lost.lost);
641 return 0;
642}
643
644int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
645 union perf_event *event, struct perf_sample *sample)
646{
647 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
648 sample->id, event->lost_samples.lost,
649 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
650 return 0;
651}
652
653int machine__process_aux_event(struct machine *machine __maybe_unused,
654 union perf_event *event)
655{
656 if (dump_trace)
657 perf_event__fprintf_aux(event, stdout);
658 return 0;
659}
660
661int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
662 union perf_event *event)
663{
664 if (dump_trace)
665 perf_event__fprintf_itrace_start(event, stdout);
666 return 0;
667}
668
669int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
670 union perf_event *event)
671{
672 if (dump_trace)
673 perf_event__fprintf_aux_output_hw_id(event, stdout);
674 return 0;
675}
676
677int machine__process_switch_event(struct machine *machine __maybe_unused,
678 union perf_event *event)
679{
680 if (dump_trace)
681 perf_event__fprintf_switch(event, stdout);
682 return 0;
683}
684
685static int machine__process_ksymbol_register(struct machine *machine,
686 union perf_event *event,
687 struct perf_sample *sample __maybe_unused)
688{
689 struct symbol *sym;
690 struct dso *dso = NULL;
691 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
692 int err = 0;
693
694 if (!map) {
695 dso = dso__new(event->ksymbol.name);
696
697 if (!dso) {
698 err = -ENOMEM;
699 goto out;
700 }
701 dso__set_kernel(dso, DSO_SPACE__KERNEL);
702 map = map__new2(0, dso);
703 if (!map) {
704 err = -ENOMEM;
705 goto out;
706 }
707 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
708 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
709 dso__data(dso)->file_size = event->ksymbol.len;
710 dso__set_loaded(dso);
711 }
712
713 map__set_start(map, event->ksymbol.addr);
714 map__set_end(map, map__start(map) + event->ksymbol.len);
715 err = maps__insert(machine__kernel_maps(machine), map);
716 if (err) {
717 err = -ENOMEM;
718 goto out;
719 }
720
721 dso__set_loaded(dso);
722
723 if (is_bpf_image(event->ksymbol.name)) {
724 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
725 dso__set_long_name(dso, "", false);
726 }
727 } else {
728 dso = dso__get(map__dso(map));
729 }
730
731 sym = symbol__new(map__map_ip(map, map__start(map)),
732 event->ksymbol.len,
733 0, 0, event->ksymbol.name);
734 if (!sym) {
735 err = -ENOMEM;
736 goto out;
737 }
738 dso__insert_symbol(dso, sym);
739out:
740 map__put(map);
741 dso__put(dso);
742 return err;
743}
744
745static int machine__process_ksymbol_unregister(struct machine *machine,
746 union perf_event *event,
747 struct perf_sample *sample __maybe_unused)
748{
749 struct symbol *sym;
750 struct map *map;
751
752 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
753 if (!map)
754 return 0;
755
756 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
757 maps__remove(machine__kernel_maps(machine), map);
758 else {
759 struct dso *dso = map__dso(map);
760
761 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
762 if (sym)
763 dso__delete_symbol(dso, sym);
764 }
765 map__put(map);
766 return 0;
767}
768
769int machine__process_ksymbol(struct machine *machine __maybe_unused,
770 union perf_event *event,
771 struct perf_sample *sample)
772{
773 if (dump_trace)
774 perf_event__fprintf_ksymbol(event, stdout);
775
776 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
777 return machine__process_ksymbol_unregister(machine, event,
778 sample);
779 return machine__process_ksymbol_register(machine, event, sample);
780}
781
782int machine__process_text_poke(struct machine *machine, union perf_event *event,
783 struct perf_sample *sample __maybe_unused)
784{
785 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
786 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
787 struct dso *dso = map ? map__dso(map) : NULL;
788
789 if (dump_trace)
790 perf_event__fprintf_text_poke(event, machine, stdout);
791
792 if (!event->text_poke.new_len)
793 goto out;
794
795 if (cpumode != PERF_RECORD_MISC_KERNEL) {
796 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
797 goto out;
798 }
799
800 if (dso) {
801 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
802 int ret;
803
804 /*
805 * Kernel maps might be changed when loading symbols so loading
806 * must be done prior to using kernel maps.
807 */
808 map__load(map);
809 ret = dso__data_write_cache_addr(dso, map, machine,
810 event->text_poke.addr,
811 new_bytes,
812 event->text_poke.new_len);
813 if (ret != event->text_poke.new_len)
814 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
815 event->text_poke.addr);
816 } else {
817 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
818 event->text_poke.addr);
819 }
820out:
821 map__put(map);
822 return 0;
823}
824
825static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
826 const char *filename)
827{
828 struct map *map = NULL;
829 struct kmod_path m;
830 struct dso *dso;
831 int err;
832
833 if (kmod_path__parse_name(&m, filename))
834 return NULL;
835
836 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
837 if (dso == NULL)
838 goto out;
839
840 map = map__new2(start, dso);
841 if (map == NULL)
842 goto out;
843
844 err = maps__insert(machine__kernel_maps(machine), map);
845 /* If maps__insert failed, return NULL. */
846 if (err) {
847 map__put(map);
848 map = NULL;
849 }
850out:
851 /* put the dso here, corresponding to machine__findnew_module_dso */
852 dso__put(dso);
853 zfree(&m.name);
854 return map;
855}
856
857size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
858{
859 struct rb_node *nd;
860 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
861
862 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
863 struct machine *pos = rb_entry(nd, struct machine, rb_node);
864 ret += dsos__fprintf(&pos->dsos, fp);
865 }
866
867 return ret;
868}
869
870size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
871 bool (skip)(struct dso *dso, int parm), int parm)
872{
873 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
874}
875
876size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
877 bool (skip)(struct dso *dso, int parm), int parm)
878{
879 struct rb_node *nd;
880 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
881
882 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
883 struct machine *pos = rb_entry(nd, struct machine, rb_node);
884 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
885 }
886 return ret;
887}
888
889size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
890{
891 int i;
892 size_t printed = 0;
893 struct dso *kdso = machine__kernel_dso(machine);
894
895 if (dso__has_build_id(kdso)) {
896 char filename[PATH_MAX];
897
898 if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
899 printed += fprintf(fp, "[0] %s\n", filename);
900 }
901
902 for (i = 0; i < vmlinux_path__nr_entries; ++i) {
903 printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
904 vmlinux_path[i]);
905 }
906 return printed;
907}
908
909struct machine_fprintf_cb_args {
910 FILE *fp;
911 size_t printed;
912};
913
914static int machine_fprintf_cb(struct thread *thread, void *data)
915{
916 struct machine_fprintf_cb_args *args = data;
917
918 /* TODO: handle fprintf errors. */
919 args->printed += thread__fprintf(thread, args->fp);
920 return 0;
921}
922
923size_t machine__fprintf(struct machine *machine, FILE *fp)
924{
925 struct machine_fprintf_cb_args args = {
926 .fp = fp,
927 .printed = 0,
928 };
929 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
930
931 machine__for_each_thread(machine, machine_fprintf_cb, &args);
932 return ret + args.printed;
933}
934
935static struct dso *machine__get_kernel(struct machine *machine)
936{
937 const char *vmlinux_name = machine->mmap_name;
938 struct dso *kernel;
939
940 if (machine__is_host(machine)) {
941 if (symbol_conf.vmlinux_name)
942 vmlinux_name = symbol_conf.vmlinux_name;
943
944 kernel = machine__findnew_kernel(machine, vmlinux_name,
945 "[kernel]", DSO_SPACE__KERNEL);
946 } else {
947 if (symbol_conf.default_guest_vmlinux_name)
948 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
949
950 kernel = machine__findnew_kernel(machine, vmlinux_name,
951 "[guest.kernel]",
952 DSO_SPACE__KERNEL_GUEST);
953 }
954
955 if (kernel != NULL && (!dso__has_build_id(kernel)))
956 dso__read_running_kernel_build_id(kernel, machine);
957
958 return kernel;
959}
960
961void machine__get_kallsyms_filename(struct machine *machine, char *buf,
962 size_t bufsz)
963{
964 if (machine__is_default_guest(machine))
965 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
966 else
967 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
968}
969
970const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
971
972/* Figure out the start address of kernel map from /proc/kallsyms.
973 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
974 * symbol_name if it's not that important.
975 */
976static int machine__get_running_kernel_start(struct machine *machine,
977 const char **symbol_name,
978 u64 *start, u64 *end)
979{
980 char filename[PATH_MAX];
981 int i, err = -1;
982 const char *name;
983 u64 addr = 0;
984
985 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
986
987 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
988 return 0;
989
990 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
991 err = kallsyms__get_function_start(filename, name, &addr);
992 if (!err)
993 break;
994 }
995
996 if (err)
997 return -1;
998
999 if (symbol_name)
1000 *symbol_name = name;
1001
1002 *start = addr;
1003
1004 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1005 if (err)
1006 err = kallsyms__get_symbol_start(filename, "_etext", &addr);
1007 if (!err)
1008 *end = addr;
1009
1010 return 0;
1011}
1012
1013int machine__create_extra_kernel_map(struct machine *machine,
1014 struct dso *kernel,
1015 struct extra_kernel_map *xm)
1016{
1017 struct kmap *kmap;
1018 struct map *map;
1019 int err;
1020
1021 map = map__new2(xm->start, kernel);
1022 if (!map)
1023 return -ENOMEM;
1024
1025 map__set_end(map, xm->end);
1026 map__set_pgoff(map, xm->pgoff);
1027
1028 kmap = map__kmap(map);
1029
1030 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1031
1032 err = maps__insert(machine__kernel_maps(machine), map);
1033
1034 if (!err) {
1035 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1036 kmap->name, map__start(map), map__end(map));
1037 }
1038
1039 map__put(map);
1040
1041 return err;
1042}
1043
1044static u64 find_entry_trampoline(struct dso *dso)
1045{
1046 /* Duplicates are removed so lookup all aliases */
1047 const char *syms[] = {
1048 "_entry_trampoline",
1049 "__entry_trampoline_start",
1050 "entry_SYSCALL_64_trampoline",
1051 };
1052 struct symbol *sym = dso__first_symbol(dso);
1053 unsigned int i;
1054
1055 for (; sym; sym = dso__next_symbol(sym)) {
1056 if (sym->binding != STB_GLOBAL)
1057 continue;
1058 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1059 if (!strcmp(sym->name, syms[i]))
1060 return sym->start;
1061 }
1062 }
1063
1064 return 0;
1065}
1066
1067/*
1068 * These values can be used for kernels that do not have symbols for the entry
1069 * trampolines in kallsyms.
1070 */
1071#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1072#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1073#define X86_64_ENTRY_TRAMPOLINE 0x6000
1074
1075struct machine__map_x86_64_entry_trampolines_args {
1076 struct maps *kmaps;
1077 bool found;
1078};
1079
1080static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1081{
1082 struct machine__map_x86_64_entry_trampolines_args *args = data;
1083 struct map *dest_map;
1084 struct kmap *kmap = __map__kmap(map);
1085
1086 if (!kmap || !is_entry_trampoline(kmap->name))
1087 return 0;
1088
1089 dest_map = maps__find(args->kmaps, map__pgoff(map));
1090 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1091 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1092
1093 map__put(dest_map);
1094 args->found = true;
1095 return 0;
1096}
1097
1098/* Map x86_64 PTI entry trampolines */
1099int machine__map_x86_64_entry_trampolines(struct machine *machine,
1100 struct dso *kernel)
1101{
1102 struct machine__map_x86_64_entry_trampolines_args args = {
1103 .kmaps = machine__kernel_maps(machine),
1104 .found = false,
1105 };
1106 int nr_cpus_avail, cpu;
1107 u64 pgoff;
1108
1109 /*
1110 * In the vmlinux case, pgoff is a virtual address which must now be
1111 * mapped to a vmlinux offset.
1112 */
1113 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1114
1115 if (args.found || machine->trampolines_mapped)
1116 return 0;
1117
1118 pgoff = find_entry_trampoline(kernel);
1119 if (!pgoff)
1120 return 0;
1121
1122 nr_cpus_avail = machine__nr_cpus_avail(machine);
1123
1124 /* Add a 1 page map for each CPU's entry trampoline */
1125 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1126 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1127 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1128 X86_64_ENTRY_TRAMPOLINE;
1129 struct extra_kernel_map xm = {
1130 .start = va,
1131 .end = va + page_size,
1132 .pgoff = pgoff,
1133 };
1134
1135 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1136
1137 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1138 return -1;
1139 }
1140
1141 machine->trampolines_mapped = nr_cpus_avail;
1142
1143 return 0;
1144}
1145
1146int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1147 struct dso *kernel __maybe_unused)
1148{
1149 return 0;
1150}
1151
1152static int
1153__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1154{
1155 /* In case of renewal the kernel map, destroy previous one */
1156 machine__destroy_kernel_maps(machine);
1157
1158 map__put(machine->vmlinux_map);
1159 machine->vmlinux_map = map__new2(0, kernel);
1160 if (machine->vmlinux_map == NULL)
1161 return -ENOMEM;
1162
1163 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1164 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1165}
1166
1167void machine__destroy_kernel_maps(struct machine *machine)
1168{
1169 struct kmap *kmap;
1170 struct map *map = machine__kernel_map(machine);
1171
1172 if (map == NULL)
1173 return;
1174
1175 kmap = map__kmap(map);
1176 maps__remove(machine__kernel_maps(machine), map);
1177 if (kmap && kmap->ref_reloc_sym) {
1178 zfree((char **)&kmap->ref_reloc_sym->name);
1179 zfree(&kmap->ref_reloc_sym);
1180 }
1181
1182 map__zput(machine->vmlinux_map);
1183}
1184
1185int machines__create_guest_kernel_maps(struct machines *machines)
1186{
1187 int ret = 0;
1188 struct dirent **namelist = NULL;
1189 int i, items = 0;
1190 char path[PATH_MAX];
1191 pid_t pid;
1192 char *endp;
1193
1194 if (symbol_conf.default_guest_vmlinux_name ||
1195 symbol_conf.default_guest_modules ||
1196 symbol_conf.default_guest_kallsyms) {
1197 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1198 }
1199
1200 if (symbol_conf.guestmount) {
1201 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1202 if (items <= 0)
1203 return -ENOENT;
1204 for (i = 0; i < items; i++) {
1205 if (!isdigit(namelist[i]->d_name[0])) {
1206 /* Filter out . and .. */
1207 continue;
1208 }
1209 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1210 if ((*endp != '\0') ||
1211 (endp == namelist[i]->d_name) ||
1212 (errno == ERANGE)) {
1213 pr_debug("invalid directory (%s). Skipping.\n",
1214 namelist[i]->d_name);
1215 continue;
1216 }
1217 sprintf(path, "%s/%s/proc/kallsyms",
1218 symbol_conf.guestmount,
1219 namelist[i]->d_name);
1220 ret = access(path, R_OK);
1221 if (ret) {
1222 pr_debug("Can't access file %s\n", path);
1223 goto failure;
1224 }
1225 machines__create_kernel_maps(machines, pid);
1226 }
1227failure:
1228 free(namelist);
1229 }
1230
1231 return ret;
1232}
1233
1234void machines__destroy_kernel_maps(struct machines *machines)
1235{
1236 struct rb_node *next = rb_first_cached(&machines->guests);
1237
1238 machine__destroy_kernel_maps(&machines->host);
1239
1240 while (next) {
1241 struct machine *pos = rb_entry(next, struct machine, rb_node);
1242
1243 next = rb_next(&pos->rb_node);
1244 rb_erase_cached(&pos->rb_node, &machines->guests);
1245 machine__delete(pos);
1246 }
1247}
1248
1249int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1250{
1251 struct machine *machine = machines__findnew(machines, pid);
1252
1253 if (machine == NULL)
1254 return -1;
1255
1256 return machine__create_kernel_maps(machine);
1257}
1258
1259int machine__load_kallsyms(struct machine *machine, const char *filename)
1260{
1261 struct map *map = machine__kernel_map(machine);
1262 struct dso *dso = map__dso(map);
1263 int ret = __dso__load_kallsyms(dso, filename, map, true);
1264
1265 if (ret > 0) {
1266 dso__set_loaded(dso);
1267 /*
1268 * Since /proc/kallsyms will have multiple sessions for the
1269 * kernel, with modules between them, fixup the end of all
1270 * sections.
1271 */
1272 maps__fixup_end(machine__kernel_maps(machine));
1273 }
1274
1275 return ret;
1276}
1277
1278int machine__load_vmlinux_path(struct machine *machine)
1279{
1280 struct map *map = machine__kernel_map(machine);
1281 struct dso *dso = map__dso(map);
1282 int ret = dso__load_vmlinux_path(dso, map);
1283
1284 if (ret > 0)
1285 dso__set_loaded(dso);
1286
1287 return ret;
1288}
1289
1290static char *get_kernel_version(const char *root_dir)
1291{
1292 char version[PATH_MAX];
1293 FILE *file;
1294 char *name, *tmp;
1295 const char *prefix = "Linux version ";
1296
1297 sprintf(version, "%s/proc/version", root_dir);
1298 file = fopen(version, "r");
1299 if (!file)
1300 return NULL;
1301
1302 tmp = fgets(version, sizeof(version), file);
1303 fclose(file);
1304 if (!tmp)
1305 return NULL;
1306
1307 name = strstr(version, prefix);
1308 if (!name)
1309 return NULL;
1310 name += strlen(prefix);
1311 tmp = strchr(name, ' ');
1312 if (tmp)
1313 *tmp = '\0';
1314
1315 return strdup(name);
1316}
1317
1318static bool is_kmod_dso(struct dso *dso)
1319{
1320 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1321 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1322}
1323
1324static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1325{
1326 char *long_name;
1327 struct dso *dso;
1328 struct map *map = maps__find_by_name(maps, m->name);
1329
1330 if (map == NULL)
1331 return 0;
1332
1333 long_name = strdup(path);
1334 if (long_name == NULL) {
1335 map__put(map);
1336 return -ENOMEM;
1337 }
1338
1339 dso = map__dso(map);
1340 dso__set_long_name(dso, long_name, true);
1341 dso__kernel_module_get_build_id(dso, "");
1342
1343 /*
1344 * Full name could reveal us kmod compression, so
1345 * we need to update the symtab_type if needed.
1346 */
1347 if (m->comp && is_kmod_dso(dso)) {
1348 dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1349 dso__set_comp(dso, m->comp);
1350 }
1351 map__put(map);
1352 return 0;
1353}
1354
1355static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1356{
1357 struct dirent *dent;
1358 DIR *dir = opendir(dir_name);
1359 int ret = 0;
1360
1361 if (!dir) {
1362 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1363 return -1;
1364 }
1365
1366 while ((dent = readdir(dir)) != NULL) {
1367 char path[PATH_MAX];
1368 struct stat st;
1369
1370 /*sshfs might return bad dent->d_type, so we have to stat*/
1371 path__join(path, sizeof(path), dir_name, dent->d_name);
1372 if (stat(path, &st))
1373 continue;
1374
1375 if (S_ISDIR(st.st_mode)) {
1376 if (!strcmp(dent->d_name, ".") ||
1377 !strcmp(dent->d_name, ".."))
1378 continue;
1379
1380 /* Do not follow top-level source and build symlinks */
1381 if (depth == 0) {
1382 if (!strcmp(dent->d_name, "source") ||
1383 !strcmp(dent->d_name, "build"))
1384 continue;
1385 }
1386
1387 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1388 if (ret < 0)
1389 goto out;
1390 } else {
1391 struct kmod_path m;
1392
1393 ret = kmod_path__parse_name(&m, dent->d_name);
1394 if (ret)
1395 goto out;
1396
1397 if (m.kmod)
1398 ret = maps__set_module_path(maps, path, &m);
1399
1400 zfree(&m.name);
1401
1402 if (ret)
1403 goto out;
1404 }
1405 }
1406
1407out:
1408 closedir(dir);
1409 return ret;
1410}
1411
1412static int machine__set_modules_path(struct machine *machine)
1413{
1414 char *version;
1415 char modules_path[PATH_MAX];
1416
1417 version = get_kernel_version(machine->root_dir);
1418 if (!version)
1419 return -1;
1420
1421 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1422 machine->root_dir, version);
1423 free(version);
1424
1425 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1426}
1427int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1428 u64 *size __maybe_unused,
1429 const char *name __maybe_unused)
1430{
1431 return 0;
1432}
1433
1434static int machine__create_module(void *arg, const char *name, u64 start,
1435 u64 size)
1436{
1437 struct machine *machine = arg;
1438 struct map *map;
1439
1440 if (arch__fix_module_text_start(&start, &size, name) < 0)
1441 return -1;
1442
1443 map = machine__addnew_module_map(machine, start, name);
1444 if (map == NULL)
1445 return -1;
1446 map__set_end(map, start + size);
1447
1448 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1449 map__put(map);
1450 return 0;
1451}
1452
1453static int machine__create_modules(struct machine *machine)
1454{
1455 const char *modules;
1456 char path[PATH_MAX];
1457
1458 if (machine__is_default_guest(machine)) {
1459 modules = symbol_conf.default_guest_modules;
1460 } else {
1461 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1462 modules = path;
1463 }
1464
1465 if (symbol__restricted_filename(modules, "/proc/modules"))
1466 return -1;
1467
1468 if (modules__parse(modules, machine, machine__create_module))
1469 return -1;
1470
1471 if (!machine__set_modules_path(machine))
1472 return 0;
1473
1474 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1475
1476 return 0;
1477}
1478
1479static void machine__set_kernel_mmap(struct machine *machine,
1480 u64 start, u64 end)
1481{
1482 map__set_start(machine->vmlinux_map, start);
1483 map__set_end(machine->vmlinux_map, end);
1484 /*
1485 * Be a bit paranoid here, some perf.data file came with
1486 * a zero sized synthesized MMAP event for the kernel.
1487 */
1488 if (start == 0 && end == 0)
1489 map__set_end(machine->vmlinux_map, ~0ULL);
1490}
1491
1492static int machine__update_kernel_mmap(struct machine *machine,
1493 u64 start, u64 end)
1494{
1495 struct map *orig, *updated;
1496 int err;
1497
1498 orig = machine->vmlinux_map;
1499 updated = map__get(orig);
1500
1501 machine->vmlinux_map = updated;
1502 maps__remove(machine__kernel_maps(machine), orig);
1503 machine__set_kernel_mmap(machine, start, end);
1504 err = maps__insert(machine__kernel_maps(machine), updated);
1505 map__put(orig);
1506
1507 return err;
1508}
1509
1510int machine__create_kernel_maps(struct machine *machine)
1511{
1512 struct dso *kernel = machine__get_kernel(machine);
1513 const char *name = NULL;
1514 u64 start = 0, end = ~0ULL;
1515 int ret;
1516
1517 if (kernel == NULL)
1518 return -1;
1519
1520 ret = __machine__create_kernel_maps(machine, kernel);
1521 if (ret < 0)
1522 goto out_put;
1523
1524 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1525 if (machine__is_host(machine))
1526 pr_debug("Problems creating module maps, "
1527 "continuing anyway...\n");
1528 else
1529 pr_debug("Problems creating module maps for guest %d, "
1530 "continuing anyway...\n", machine->pid);
1531 }
1532
1533 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1534 if (name &&
1535 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1536 machine__destroy_kernel_maps(machine);
1537 ret = -1;
1538 goto out_put;
1539 }
1540
1541 /*
1542 * we have a real start address now, so re-order the kmaps
1543 * assume it's the last in the kmaps
1544 */
1545 ret = machine__update_kernel_mmap(machine, start, end);
1546 if (ret < 0)
1547 goto out_put;
1548 }
1549
1550 if (machine__create_extra_kernel_maps(machine, kernel))
1551 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1552
1553 if (end == ~0ULL) {
1554 /* update end address of the kernel map using adjacent module address */
1555 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1556 machine__kernel_map(machine));
1557
1558 if (next) {
1559 machine__set_kernel_mmap(machine, start, map__start(next));
1560 map__put(next);
1561 }
1562 }
1563
1564out_put:
1565 dso__put(kernel);
1566 return ret;
1567}
1568
1569static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1570{
1571 return dso__is_kcore(dso) ? 1 : 0;
1572}
1573
1574static bool machine__uses_kcore(struct machine *machine)
1575{
1576 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1577}
1578
1579static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1580 struct extra_kernel_map *xm)
1581{
1582 return machine__is(machine, "x86_64") &&
1583 is_entry_trampoline(xm->name);
1584}
1585
1586static int machine__process_extra_kernel_map(struct machine *machine,
1587 struct extra_kernel_map *xm)
1588{
1589 struct dso *kernel = machine__kernel_dso(machine);
1590
1591 if (kernel == NULL)
1592 return -1;
1593
1594 return machine__create_extra_kernel_map(machine, kernel, xm);
1595}
1596
1597static int machine__process_kernel_mmap_event(struct machine *machine,
1598 struct extra_kernel_map *xm,
1599 struct build_id *bid)
1600{
1601 enum dso_space_type dso_space;
1602 bool is_kernel_mmap;
1603 const char *mmap_name = machine->mmap_name;
1604
1605 /* If we have maps from kcore then we do not need or want any others */
1606 if (machine__uses_kcore(machine))
1607 return 0;
1608
1609 if (machine__is_host(machine))
1610 dso_space = DSO_SPACE__KERNEL;
1611 else
1612 dso_space = DSO_SPACE__KERNEL_GUEST;
1613
1614 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1615 if (!is_kernel_mmap && !machine__is_host(machine)) {
1616 /*
1617 * If the event was recorded inside the guest and injected into
1618 * the host perf.data file, then it will match a host mmap_name,
1619 * so try that - see machine__set_mmap_name().
1620 */
1621 mmap_name = "[kernel.kallsyms]";
1622 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1623 }
1624 if (xm->name[0] == '/' ||
1625 (!is_kernel_mmap && xm->name[0] == '[')) {
1626 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1627
1628 if (map == NULL)
1629 goto out_problem;
1630
1631 map__set_end(map, map__start(map) + xm->end - xm->start);
1632
1633 if (build_id__is_defined(bid))
1634 dso__set_build_id(map__dso(map), bid);
1635
1636 map__put(map);
1637 } else if (is_kernel_mmap) {
1638 const char *symbol_name = xm->name + strlen(mmap_name);
1639 /*
1640 * Should be there already, from the build-id table in
1641 * the header.
1642 */
1643 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1644
1645 if (kernel == NULL)
1646 kernel = machine__findnew_dso(machine, machine->mmap_name);
1647 if (kernel == NULL)
1648 goto out_problem;
1649
1650 dso__set_kernel(kernel, dso_space);
1651 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1652 dso__put(kernel);
1653 goto out_problem;
1654 }
1655
1656 if (strstr(dso__long_name(kernel), "vmlinux"))
1657 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1658
1659 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1660 dso__put(kernel);
1661 goto out_problem;
1662 }
1663
1664 if (build_id__is_defined(bid))
1665 dso__set_build_id(kernel, bid);
1666
1667 /*
1668 * Avoid using a zero address (kptr_restrict) for the ref reloc
1669 * symbol. Effectively having zero here means that at record
1670 * time /proc/sys/kernel/kptr_restrict was non zero.
1671 */
1672 if (xm->pgoff != 0) {
1673 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1674 symbol_name,
1675 xm->pgoff);
1676 }
1677
1678 if (machine__is_default_guest(machine)) {
1679 /*
1680 * preload dso of guest kernel and modules
1681 */
1682 dso__load(kernel, machine__kernel_map(machine));
1683 }
1684 dso__put(kernel);
1685 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1686 return machine__process_extra_kernel_map(machine, xm);
1687 }
1688 return 0;
1689out_problem:
1690 return -1;
1691}
1692
1693int machine__process_mmap2_event(struct machine *machine,
1694 union perf_event *event,
1695 struct perf_sample *sample)
1696{
1697 struct thread *thread;
1698 struct map *map;
1699 struct dso_id dso_id = {
1700 .maj = event->mmap2.maj,
1701 .min = event->mmap2.min,
1702 .ino = event->mmap2.ino,
1703 .ino_generation = event->mmap2.ino_generation,
1704 };
1705 struct build_id __bid, *bid = NULL;
1706 int ret = 0;
1707
1708 if (dump_trace)
1709 perf_event__fprintf_mmap2(event, stdout);
1710
1711 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1712 bid = &__bid;
1713 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1714 }
1715
1716 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1717 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1718 struct extra_kernel_map xm = {
1719 .start = event->mmap2.start,
1720 .end = event->mmap2.start + event->mmap2.len,
1721 .pgoff = event->mmap2.pgoff,
1722 };
1723
1724 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1725 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1726 if (ret < 0)
1727 goto out_problem;
1728 return 0;
1729 }
1730
1731 thread = machine__findnew_thread(machine, event->mmap2.pid,
1732 event->mmap2.tid);
1733 if (thread == NULL)
1734 goto out_problem;
1735
1736 map = map__new(machine, event->mmap2.start,
1737 event->mmap2.len, event->mmap2.pgoff,
1738 &dso_id, event->mmap2.prot,
1739 event->mmap2.flags, bid,
1740 event->mmap2.filename, thread);
1741
1742 if (map == NULL)
1743 goto out_problem_map;
1744
1745 ret = thread__insert_map(thread, map);
1746 if (ret)
1747 goto out_problem_insert;
1748
1749 thread__put(thread);
1750 map__put(map);
1751 return 0;
1752
1753out_problem_insert:
1754 map__put(map);
1755out_problem_map:
1756 thread__put(thread);
1757out_problem:
1758 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1759 return 0;
1760}
1761
1762int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1763 struct perf_sample *sample)
1764{
1765 struct thread *thread;
1766 struct map *map;
1767 u32 prot = 0;
1768 int ret = 0;
1769
1770 if (dump_trace)
1771 perf_event__fprintf_mmap(event, stdout);
1772
1773 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1774 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1775 struct extra_kernel_map xm = {
1776 .start = event->mmap.start,
1777 .end = event->mmap.start + event->mmap.len,
1778 .pgoff = event->mmap.pgoff,
1779 };
1780
1781 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1782 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1783 if (ret < 0)
1784 goto out_problem;
1785 return 0;
1786 }
1787
1788 thread = machine__findnew_thread(machine, event->mmap.pid,
1789 event->mmap.tid);
1790 if (thread == NULL)
1791 goto out_problem;
1792
1793 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1794 prot = PROT_EXEC;
1795
1796 map = map__new(machine, event->mmap.start,
1797 event->mmap.len, event->mmap.pgoff,
1798 NULL, prot, 0, NULL, event->mmap.filename, thread);
1799
1800 if (map == NULL)
1801 goto out_problem_map;
1802
1803 ret = thread__insert_map(thread, map);
1804 if (ret)
1805 goto out_problem_insert;
1806
1807 thread__put(thread);
1808 map__put(map);
1809 return 0;
1810
1811out_problem_insert:
1812 map__put(map);
1813out_problem_map:
1814 thread__put(thread);
1815out_problem:
1816 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1817 return 0;
1818}
1819
1820void machine__remove_thread(struct machine *machine, struct thread *th)
1821{
1822 return threads__remove(&machine->threads, th);
1823}
1824
1825int machine__process_fork_event(struct machine *machine, union perf_event *event,
1826 struct perf_sample *sample)
1827{
1828 struct thread *thread = machine__find_thread(machine,
1829 event->fork.pid,
1830 event->fork.tid);
1831 struct thread *parent = machine__findnew_thread(machine,
1832 event->fork.ppid,
1833 event->fork.ptid);
1834 bool do_maps_clone = true;
1835 int err = 0;
1836
1837 if (dump_trace)
1838 perf_event__fprintf_task(event, stdout);
1839
1840 /*
1841 * There may be an existing thread that is not actually the parent,
1842 * either because we are processing events out of order, or because the
1843 * (fork) event that would have removed the thread was lost. Assume the
1844 * latter case and continue on as best we can.
1845 */
1846 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1847 dump_printf("removing erroneous parent thread %d/%d\n",
1848 thread__pid(parent), thread__tid(parent));
1849 machine__remove_thread(machine, parent);
1850 thread__put(parent);
1851 parent = machine__findnew_thread(machine, event->fork.ppid,
1852 event->fork.ptid);
1853 }
1854
1855 /* if a thread currently exists for the thread id remove it */
1856 if (thread != NULL) {
1857 machine__remove_thread(machine, thread);
1858 thread__put(thread);
1859 }
1860
1861 thread = machine__findnew_thread(machine, event->fork.pid,
1862 event->fork.tid);
1863 /*
1864 * When synthesizing FORK events, we are trying to create thread
1865 * objects for the already running tasks on the machine.
1866 *
1867 * Normally, for a kernel FORK event, we want to clone the parent's
1868 * maps because that is what the kernel just did.
1869 *
1870 * But when synthesizing, this should not be done. If we do, we end up
1871 * with overlapping maps as we process the synthesized MMAP2 events that
1872 * get delivered shortly thereafter.
1873 *
1874 * Use the FORK event misc flags in an internal way to signal this
1875 * situation, so we can elide the map clone when appropriate.
1876 */
1877 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1878 do_maps_clone = false;
1879
1880 if (thread == NULL || parent == NULL ||
1881 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1882 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1883 err = -1;
1884 }
1885 thread__put(thread);
1886 thread__put(parent);
1887
1888 return err;
1889}
1890
1891int machine__process_exit_event(struct machine *machine, union perf_event *event,
1892 struct perf_sample *sample __maybe_unused)
1893{
1894 struct thread *thread = machine__find_thread(machine,
1895 event->fork.pid,
1896 event->fork.tid);
1897
1898 if (dump_trace)
1899 perf_event__fprintf_task(event, stdout);
1900
1901 if (thread != NULL) {
1902 if (symbol_conf.keep_exited_threads)
1903 thread__set_exited(thread, /*exited=*/true);
1904 else
1905 machine__remove_thread(machine, thread);
1906 }
1907 thread__put(thread);
1908 return 0;
1909}
1910
1911int machine__process_event(struct machine *machine, union perf_event *event,
1912 struct perf_sample *sample)
1913{
1914 int ret;
1915
1916 switch (event->header.type) {
1917 case PERF_RECORD_COMM:
1918 ret = machine__process_comm_event(machine, event, sample); break;
1919 case PERF_RECORD_MMAP:
1920 ret = machine__process_mmap_event(machine, event, sample); break;
1921 case PERF_RECORD_NAMESPACES:
1922 ret = machine__process_namespaces_event(machine, event, sample); break;
1923 case PERF_RECORD_CGROUP:
1924 ret = machine__process_cgroup_event(machine, event, sample); break;
1925 case PERF_RECORD_MMAP2:
1926 ret = machine__process_mmap2_event(machine, event, sample); break;
1927 case PERF_RECORD_FORK:
1928 ret = machine__process_fork_event(machine, event, sample); break;
1929 case PERF_RECORD_EXIT:
1930 ret = machine__process_exit_event(machine, event, sample); break;
1931 case PERF_RECORD_LOST:
1932 ret = machine__process_lost_event(machine, event, sample); break;
1933 case PERF_RECORD_AUX:
1934 ret = machine__process_aux_event(machine, event); break;
1935 case PERF_RECORD_ITRACE_START:
1936 ret = machine__process_itrace_start_event(machine, event); break;
1937 case PERF_RECORD_LOST_SAMPLES:
1938 ret = machine__process_lost_samples_event(machine, event, sample); break;
1939 case PERF_RECORD_SWITCH:
1940 case PERF_RECORD_SWITCH_CPU_WIDE:
1941 ret = machine__process_switch_event(machine, event); break;
1942 case PERF_RECORD_KSYMBOL:
1943 ret = machine__process_ksymbol(machine, event, sample); break;
1944 case PERF_RECORD_BPF_EVENT:
1945 ret = machine__process_bpf(machine, event, sample); break;
1946 case PERF_RECORD_TEXT_POKE:
1947 ret = machine__process_text_poke(machine, event, sample); break;
1948 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1949 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1950 default:
1951 ret = -1;
1952 break;
1953 }
1954
1955 return ret;
1956}
1957
1958static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1959{
1960 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1961}
1962
1963static void ip__resolve_ams(struct thread *thread,
1964 struct addr_map_symbol *ams,
1965 u64 ip)
1966{
1967 struct addr_location al;
1968
1969 addr_location__init(&al);
1970 /*
1971 * We cannot use the header.misc hint to determine whether a
1972 * branch stack address is user, kernel, guest, hypervisor.
1973 * Branches may straddle the kernel/user/hypervisor boundaries.
1974 * Thus, we have to try consecutively until we find a match
1975 * or else, the symbol is unknown
1976 */
1977 thread__find_cpumode_addr_location(thread, ip, &al);
1978
1979 ams->addr = ip;
1980 ams->al_addr = al.addr;
1981 ams->al_level = al.level;
1982 ams->ms.maps = maps__get(al.maps);
1983 ams->ms.sym = al.sym;
1984 ams->ms.map = map__get(al.map);
1985 ams->phys_addr = 0;
1986 ams->data_page_size = 0;
1987 addr_location__exit(&al);
1988}
1989
1990static void ip__resolve_data(struct thread *thread,
1991 u8 m, struct addr_map_symbol *ams,
1992 u64 addr, u64 phys_addr, u64 daddr_page_size)
1993{
1994 struct addr_location al;
1995
1996 addr_location__init(&al);
1997
1998 thread__find_symbol(thread, m, addr, &al);
1999
2000 ams->addr = addr;
2001 ams->al_addr = al.addr;
2002 ams->al_level = al.level;
2003 ams->ms.maps = maps__get(al.maps);
2004 ams->ms.sym = al.sym;
2005 ams->ms.map = map__get(al.map);
2006 ams->phys_addr = phys_addr;
2007 ams->data_page_size = daddr_page_size;
2008 addr_location__exit(&al);
2009}
2010
2011struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2012 struct addr_location *al)
2013{
2014 struct mem_info *mi = mem_info__new();
2015
2016 if (!mi)
2017 return NULL;
2018
2019 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2020 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2021 sample->addr, sample->phys_addr,
2022 sample->data_page_size);
2023 mem_info__data_src(mi)->val = sample->data_src;
2024
2025 return mi;
2026}
2027
2028static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2029{
2030 struct map *map = ms->map;
2031 char *srcline = NULL;
2032 struct dso *dso;
2033
2034 if (!map || callchain_param.key == CCKEY_FUNCTION)
2035 return srcline;
2036
2037 dso = map__dso(map);
2038 srcline = srcline__tree_find(dso__srclines(dso), ip);
2039 if (!srcline) {
2040 bool show_sym = false;
2041 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2042
2043 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2044 ms->sym, show_sym, show_addr, ip);
2045 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2046 }
2047
2048 return srcline;
2049}
2050
2051struct iterations {
2052 int nr_loop_iter;
2053 u64 cycles;
2054};
2055
2056static int add_callchain_ip(struct thread *thread,
2057 struct callchain_cursor *cursor,
2058 struct symbol **parent,
2059 struct addr_location *root_al,
2060 u8 *cpumode,
2061 u64 ip,
2062 bool branch,
2063 struct branch_flags *flags,
2064 struct iterations *iter,
2065 u64 branch_from,
2066 bool symbols)
2067{
2068 struct map_symbol ms = {};
2069 struct addr_location al;
2070 int nr_loop_iter = 0, err = 0;
2071 u64 iter_cycles = 0;
2072 const char *srcline = NULL;
2073
2074 addr_location__init(&al);
2075 al.filtered = 0;
2076 al.sym = NULL;
2077 al.srcline = NULL;
2078 if (!cpumode) {
2079 thread__find_cpumode_addr_location(thread, ip, &al);
2080 } else {
2081 if (ip >= PERF_CONTEXT_MAX) {
2082 switch (ip) {
2083 case PERF_CONTEXT_HV:
2084 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2085 break;
2086 case PERF_CONTEXT_KERNEL:
2087 *cpumode = PERF_RECORD_MISC_KERNEL;
2088 break;
2089 case PERF_CONTEXT_USER:
2090 *cpumode = PERF_RECORD_MISC_USER;
2091 break;
2092 default:
2093 pr_debug("invalid callchain context: "
2094 "%"PRId64"\n", (s64) ip);
2095 /*
2096 * It seems the callchain is corrupted.
2097 * Discard all.
2098 */
2099 callchain_cursor_reset(cursor);
2100 err = 1;
2101 goto out;
2102 }
2103 goto out;
2104 }
2105 if (symbols)
2106 thread__find_symbol(thread, *cpumode, ip, &al);
2107 }
2108
2109 if (al.sym != NULL) {
2110 if (perf_hpp_list.parent && !*parent &&
2111 symbol__match_regex(al.sym, &parent_regex))
2112 *parent = al.sym;
2113 else if (have_ignore_callees && root_al &&
2114 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2115 /* Treat this symbol as the root,
2116 forgetting its callees. */
2117 addr_location__copy(root_al, &al);
2118 callchain_cursor_reset(cursor);
2119 }
2120 }
2121
2122 if (symbol_conf.hide_unresolved && al.sym == NULL)
2123 goto out;
2124
2125 if (iter) {
2126 nr_loop_iter = iter->nr_loop_iter;
2127 iter_cycles = iter->cycles;
2128 }
2129
2130 ms.maps = maps__get(al.maps);
2131 ms.map = map__get(al.map);
2132 ms.sym = al.sym;
2133 srcline = callchain_srcline(&ms, al.addr);
2134 err = callchain_cursor_append(cursor, ip, &ms,
2135 branch, flags, nr_loop_iter,
2136 iter_cycles, branch_from, srcline);
2137out:
2138 addr_location__exit(&al);
2139 map_symbol__exit(&ms);
2140 return err;
2141}
2142
2143struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2144 struct addr_location *al)
2145{
2146 unsigned int i;
2147 const struct branch_stack *bs = sample->branch_stack;
2148 struct branch_entry *entries = perf_sample__branch_entries(sample);
2149 u64 *branch_stack_cntr = sample->branch_stack_cntr;
2150 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2151
2152 if (!bi)
2153 return NULL;
2154
2155 for (i = 0; i < bs->nr; i++) {
2156 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2157 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2158 bi[i].flags = entries[i].flags;
2159 if (branch_stack_cntr)
2160 bi[i].branch_stack_cntr = branch_stack_cntr[i];
2161 }
2162 return bi;
2163}
2164
2165static void save_iterations(struct iterations *iter,
2166 struct branch_entry *be, int nr)
2167{
2168 int i;
2169
2170 iter->nr_loop_iter++;
2171 iter->cycles = 0;
2172
2173 for (i = 0; i < nr; i++)
2174 iter->cycles += be[i].flags.cycles;
2175}
2176
2177#define CHASHSZ 127
2178#define CHASHBITS 7
2179#define NO_ENTRY 0xff
2180
2181#define PERF_MAX_BRANCH_DEPTH 127
2182
2183/* Remove loops. */
2184static int remove_loops(struct branch_entry *l, int nr,
2185 struct iterations *iter)
2186{
2187 int i, j, off;
2188 unsigned char chash[CHASHSZ];
2189
2190 memset(chash, NO_ENTRY, sizeof(chash));
2191
2192 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2193
2194 for (i = 0; i < nr; i++) {
2195 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2196
2197 /* no collision handling for now */
2198 if (chash[h] == NO_ENTRY) {
2199 chash[h] = i;
2200 } else if (l[chash[h]].from == l[i].from) {
2201 bool is_loop = true;
2202 /* check if it is a real loop */
2203 off = 0;
2204 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2205 if (l[j].from != l[i + off].from) {
2206 is_loop = false;
2207 break;
2208 }
2209 if (is_loop) {
2210 j = nr - (i + off);
2211 if (j > 0) {
2212 save_iterations(iter + i + off,
2213 l + i, off);
2214
2215 memmove(iter + i, iter + i + off,
2216 j * sizeof(*iter));
2217
2218 memmove(l + i, l + i + off,
2219 j * sizeof(*l));
2220 }
2221
2222 nr -= off;
2223 }
2224 }
2225 }
2226 return nr;
2227}
2228
2229static int lbr_callchain_add_kernel_ip(struct thread *thread,
2230 struct callchain_cursor *cursor,
2231 struct perf_sample *sample,
2232 struct symbol **parent,
2233 struct addr_location *root_al,
2234 u64 branch_from,
2235 bool callee, int end,
2236 bool symbols)
2237{
2238 struct ip_callchain *chain = sample->callchain;
2239 u8 cpumode = PERF_RECORD_MISC_USER;
2240 int err, i;
2241
2242 if (callee) {
2243 for (i = 0; i < end + 1; i++) {
2244 err = add_callchain_ip(thread, cursor, parent,
2245 root_al, &cpumode, chain->ips[i],
2246 false, NULL, NULL, branch_from,
2247 symbols);
2248 if (err)
2249 return err;
2250 }
2251 return 0;
2252 }
2253
2254 for (i = end; i >= 0; i--) {
2255 err = add_callchain_ip(thread, cursor, parent,
2256 root_al, &cpumode, chain->ips[i],
2257 false, NULL, NULL, branch_from,
2258 symbols);
2259 if (err)
2260 return err;
2261 }
2262
2263 return 0;
2264}
2265
2266static void save_lbr_cursor_node(struct thread *thread,
2267 struct callchain_cursor *cursor,
2268 int idx)
2269{
2270 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2271
2272 if (!lbr_stitch)
2273 return;
2274
2275 if (cursor->pos == cursor->nr) {
2276 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2277 return;
2278 }
2279
2280 if (!cursor->curr)
2281 cursor->curr = cursor->first;
2282 else
2283 cursor->curr = cursor->curr->next;
2284
2285 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2286 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2287 sizeof(struct callchain_cursor_node));
2288 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2289 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2290
2291 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292 cursor->pos++;
2293}
2294
2295static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296 struct callchain_cursor *cursor,
2297 struct perf_sample *sample,
2298 struct symbol **parent,
2299 struct addr_location *root_al,
2300 u64 *branch_from,
2301 bool callee,
2302 bool symbols)
2303{
2304 struct branch_stack *lbr_stack = sample->branch_stack;
2305 struct branch_entry *entries = perf_sample__branch_entries(sample);
2306 u8 cpumode = PERF_RECORD_MISC_USER;
2307 int lbr_nr = lbr_stack->nr;
2308 struct branch_flags *flags;
2309 int err, i;
2310 u64 ip;
2311
2312 /*
2313 * The curr and pos are not used in writing session. They are cleared
2314 * in callchain_cursor_commit() when the writing session is closed.
2315 * Using curr and pos to track the current cursor node.
2316 */
2317 if (thread__lbr_stitch(thread)) {
2318 cursor->curr = NULL;
2319 cursor->pos = cursor->nr;
2320 if (cursor->nr) {
2321 cursor->curr = cursor->first;
2322 for (i = 0; i < (int)(cursor->nr - 1); i++)
2323 cursor->curr = cursor->curr->next;
2324 }
2325 }
2326
2327 if (callee) {
2328 /* Add LBR ip from first entries.to */
2329 ip = entries[0].to;
2330 flags = &entries[0].flags;
2331 *branch_from = entries[0].from;
2332 err = add_callchain_ip(thread, cursor, parent,
2333 root_al, &cpumode, ip,
2334 true, flags, NULL,
2335 *branch_from, symbols);
2336 if (err)
2337 return err;
2338
2339 /*
2340 * The number of cursor node increases.
2341 * Move the current cursor node.
2342 * But does not need to save current cursor node for entry 0.
2343 * It's impossible to stitch the whole LBRs of previous sample.
2344 */
2345 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2346 if (!cursor->curr)
2347 cursor->curr = cursor->first;
2348 else
2349 cursor->curr = cursor->curr->next;
2350 cursor->pos++;
2351 }
2352
2353 /* Add LBR ip from entries.from one by one. */
2354 for (i = 0; i < lbr_nr; i++) {
2355 ip = entries[i].from;
2356 flags = &entries[i].flags;
2357 err = add_callchain_ip(thread, cursor, parent,
2358 root_al, &cpumode, ip,
2359 true, flags, NULL,
2360 *branch_from, symbols);
2361 if (err)
2362 return err;
2363 save_lbr_cursor_node(thread, cursor, i);
2364 }
2365 return 0;
2366 }
2367
2368 /* Add LBR ip from entries.from one by one. */
2369 for (i = lbr_nr - 1; i >= 0; i--) {
2370 ip = entries[i].from;
2371 flags = &entries[i].flags;
2372 err = add_callchain_ip(thread, cursor, parent,
2373 root_al, &cpumode, ip,
2374 true, flags, NULL,
2375 *branch_from, symbols);
2376 if (err)
2377 return err;
2378 save_lbr_cursor_node(thread, cursor, i);
2379 }
2380
2381 if (lbr_nr > 0) {
2382 /* Add LBR ip from first entries.to */
2383 ip = entries[0].to;
2384 flags = &entries[0].flags;
2385 *branch_from = entries[0].from;
2386 err = add_callchain_ip(thread, cursor, parent,
2387 root_al, &cpumode, ip,
2388 true, flags, NULL,
2389 *branch_from, symbols);
2390 if (err)
2391 return err;
2392 }
2393
2394 return 0;
2395}
2396
2397static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2398 struct callchain_cursor *cursor)
2399{
2400 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2401 struct callchain_cursor_node *cnode;
2402 struct stitch_list *stitch_node;
2403 int err;
2404
2405 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2406 cnode = &stitch_node->cursor;
2407
2408 err = callchain_cursor_append(cursor, cnode->ip,
2409 &cnode->ms,
2410 cnode->branch,
2411 &cnode->branch_flags,
2412 cnode->nr_loop_iter,
2413 cnode->iter_cycles,
2414 cnode->branch_from,
2415 cnode->srcline);
2416 if (err)
2417 return err;
2418 }
2419 return 0;
2420}
2421
2422static struct stitch_list *get_stitch_node(struct thread *thread)
2423{
2424 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2425 struct stitch_list *stitch_node;
2426
2427 if (!list_empty(&lbr_stitch->free_lists)) {
2428 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2429 struct stitch_list, node);
2430 list_del(&stitch_node->node);
2431
2432 return stitch_node;
2433 }
2434
2435 return malloc(sizeof(struct stitch_list));
2436}
2437
2438static bool has_stitched_lbr(struct thread *thread,
2439 struct perf_sample *cur,
2440 struct perf_sample *prev,
2441 unsigned int max_lbr,
2442 bool callee)
2443{
2444 struct branch_stack *cur_stack = cur->branch_stack;
2445 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2446 struct branch_stack *prev_stack = prev->branch_stack;
2447 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2448 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2449 int i, j, nr_identical_branches = 0;
2450 struct stitch_list *stitch_node;
2451 u64 cur_base, distance;
2452
2453 if (!cur_stack || !prev_stack)
2454 return false;
2455
2456 /* Find the physical index of the base-of-stack for current sample. */
2457 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2458
2459 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2460 (max_lbr + prev_stack->hw_idx - cur_base);
2461 /* Previous sample has shorter stack. Nothing can be stitched. */
2462 if (distance + 1 > prev_stack->nr)
2463 return false;
2464
2465 /*
2466 * Check if there are identical LBRs between two samples.
2467 * Identical LBRs must have same from, to and flags values. Also,
2468 * they have to be saved in the same LBR registers (same physical
2469 * index).
2470 *
2471 * Starts from the base-of-stack of current sample.
2472 */
2473 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2474 if ((prev_entries[i].from != cur_entries[j].from) ||
2475 (prev_entries[i].to != cur_entries[j].to) ||
2476 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2477 break;
2478 nr_identical_branches++;
2479 }
2480
2481 if (!nr_identical_branches)
2482 return false;
2483
2484 /*
2485 * Save the LBRs between the base-of-stack of previous sample
2486 * and the base-of-stack of current sample into lbr_stitch->lists.
2487 * These LBRs will be stitched later.
2488 */
2489 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2490
2491 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2492 continue;
2493
2494 stitch_node = get_stitch_node(thread);
2495 if (!stitch_node)
2496 return false;
2497
2498 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2499 sizeof(struct callchain_cursor_node));
2500
2501 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2502 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2503
2504 if (callee)
2505 list_add(&stitch_node->node, &lbr_stitch->lists);
2506 else
2507 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2508 }
2509
2510 return true;
2511}
2512
2513static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2514{
2515 if (thread__lbr_stitch(thread))
2516 return true;
2517
2518 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2519 if (!thread__lbr_stitch(thread))
2520 goto err;
2521
2522 thread__lbr_stitch(thread)->prev_lbr_cursor =
2523 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2524 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2525 goto free_lbr_stitch;
2526
2527 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2528
2529 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2530 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2531
2532 return true;
2533
2534free_lbr_stitch:
2535 free(thread__lbr_stitch(thread));
2536 thread__set_lbr_stitch(thread, NULL);
2537err:
2538 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2539 thread__set_lbr_stitch_enable(thread, false);
2540 return false;
2541}
2542
2543/*
2544 * Resolve LBR callstack chain sample
2545 * Return:
2546 * 1 on success get LBR callchain information
2547 * 0 no available LBR callchain information, should try fp
2548 * negative error code on other errors.
2549 */
2550static int resolve_lbr_callchain_sample(struct thread *thread,
2551 struct callchain_cursor *cursor,
2552 struct perf_sample *sample,
2553 struct symbol **parent,
2554 struct addr_location *root_al,
2555 int max_stack,
2556 unsigned int max_lbr,
2557 bool symbols)
2558{
2559 bool callee = (callchain_param.order == ORDER_CALLEE);
2560 struct ip_callchain *chain = sample->callchain;
2561 int chain_nr = min(max_stack, (int)chain->nr), i;
2562 struct lbr_stitch *lbr_stitch;
2563 bool stitched_lbr = false;
2564 u64 branch_from = 0;
2565 int err;
2566
2567 for (i = 0; i < chain_nr; i++) {
2568 if (chain->ips[i] == PERF_CONTEXT_USER)
2569 break;
2570 }
2571
2572 /* LBR only affects the user callchain */
2573 if (i == chain_nr)
2574 return 0;
2575
2576 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2577 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2578 lbr_stitch = thread__lbr_stitch(thread);
2579
2580 stitched_lbr = has_stitched_lbr(thread, sample,
2581 &lbr_stitch->prev_sample,
2582 max_lbr, callee);
2583
2584 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2585 struct stitch_list *stitch_node;
2586
2587 list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2588 map_symbol__exit(&stitch_node->cursor.ms);
2589
2590 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2591 }
2592 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2593 }
2594
2595 if (callee) {
2596 /* Add kernel ip */
2597 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2598 parent, root_al, branch_from,
2599 true, i, symbols);
2600 if (err)
2601 goto error;
2602
2603 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2604 root_al, &branch_from, true, symbols);
2605 if (err)
2606 goto error;
2607
2608 if (stitched_lbr) {
2609 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2610 if (err)
2611 goto error;
2612 }
2613
2614 } else {
2615 if (stitched_lbr) {
2616 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2617 if (err)
2618 goto error;
2619 }
2620 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2621 root_al, &branch_from, false, symbols);
2622 if (err)
2623 goto error;
2624
2625 /* Add kernel ip */
2626 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2627 parent, root_al, branch_from,
2628 false, i, symbols);
2629 if (err)
2630 goto error;
2631 }
2632 return 1;
2633
2634error:
2635 return (err < 0) ? err : 0;
2636}
2637
2638static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2639 struct callchain_cursor *cursor,
2640 struct symbol **parent,
2641 struct addr_location *root_al,
2642 u8 *cpumode, int ent, bool symbols)
2643{
2644 int err = 0;
2645
2646 while (--ent >= 0) {
2647 u64 ip = chain->ips[ent];
2648
2649 if (ip >= PERF_CONTEXT_MAX) {
2650 err = add_callchain_ip(thread, cursor, parent,
2651 root_al, cpumode, ip,
2652 false, NULL, NULL, 0, symbols);
2653 break;
2654 }
2655 }
2656 return err;
2657}
2658
2659static u64 get_leaf_frame_caller(struct perf_sample *sample,
2660 struct thread *thread, int usr_idx)
2661{
2662 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2663 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2664 else
2665 return 0;
2666}
2667
2668static int thread__resolve_callchain_sample(struct thread *thread,
2669 struct callchain_cursor *cursor,
2670 struct evsel *evsel,
2671 struct perf_sample *sample,
2672 struct symbol **parent,
2673 struct addr_location *root_al,
2674 int max_stack,
2675 bool symbols)
2676{
2677 struct branch_stack *branch = sample->branch_stack;
2678 struct branch_entry *entries = perf_sample__branch_entries(sample);
2679 struct ip_callchain *chain = sample->callchain;
2680 int chain_nr = 0;
2681 u8 cpumode = PERF_RECORD_MISC_USER;
2682 int i, j, err, nr_entries, usr_idx;
2683 int skip_idx = -1;
2684 int first_call = 0;
2685 u64 leaf_frame_caller;
2686
2687 if (chain)
2688 chain_nr = chain->nr;
2689
2690 if (evsel__has_branch_callstack(evsel)) {
2691 struct perf_env *env = evsel__env(evsel);
2692
2693 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2694 root_al, max_stack,
2695 !env ? 0 : env->max_branches,
2696 symbols);
2697 if (err)
2698 return (err < 0) ? err : 0;
2699 }
2700
2701 /*
2702 * Based on DWARF debug information, some architectures skip
2703 * a callchain entry saved by the kernel.
2704 */
2705 skip_idx = arch_skip_callchain_idx(thread, chain);
2706
2707 /*
2708 * Add branches to call stack for easier browsing. This gives
2709 * more context for a sample than just the callers.
2710 *
2711 * This uses individual histograms of paths compared to the
2712 * aggregated histograms the normal LBR mode uses.
2713 *
2714 * Limitations for now:
2715 * - No extra filters
2716 * - No annotations (should annotate somehow)
2717 */
2718
2719 if (branch && callchain_param.branch_callstack) {
2720 int nr = min(max_stack, (int)branch->nr);
2721 struct branch_entry be[nr];
2722 struct iterations iter[nr];
2723
2724 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2725 pr_warning("corrupted branch chain. skipping...\n");
2726 goto check_calls;
2727 }
2728
2729 for (i = 0; i < nr; i++) {
2730 if (callchain_param.order == ORDER_CALLEE) {
2731 be[i] = entries[i];
2732
2733 if (chain == NULL)
2734 continue;
2735
2736 /*
2737 * Check for overlap into the callchain.
2738 * The return address is one off compared to
2739 * the branch entry. To adjust for this
2740 * assume the calling instruction is not longer
2741 * than 8 bytes.
2742 */
2743 if (i == skip_idx ||
2744 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2745 first_call++;
2746 else if (be[i].from < chain->ips[first_call] &&
2747 be[i].from >= chain->ips[first_call] - 8)
2748 first_call++;
2749 } else
2750 be[i] = entries[branch->nr - i - 1];
2751 }
2752
2753 memset(iter, 0, sizeof(struct iterations) * nr);
2754 nr = remove_loops(be, nr, iter);
2755
2756 for (i = 0; i < nr; i++) {
2757 err = add_callchain_ip(thread, cursor, parent,
2758 root_al,
2759 NULL, be[i].to,
2760 true, &be[i].flags,
2761 NULL, be[i].from, symbols);
2762
2763 if (!err) {
2764 err = add_callchain_ip(thread, cursor, parent, root_al,
2765 NULL, be[i].from,
2766 true, &be[i].flags,
2767 &iter[i], 0, symbols);
2768 }
2769 if (err == -EINVAL)
2770 break;
2771 if (err)
2772 return err;
2773 }
2774
2775 if (chain_nr == 0)
2776 return 0;
2777
2778 chain_nr -= nr;
2779 }
2780
2781check_calls:
2782 if (chain && callchain_param.order != ORDER_CALLEE) {
2783 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2784 &cpumode, chain->nr - first_call, symbols);
2785 if (err)
2786 return (err < 0) ? err : 0;
2787 }
2788 for (i = first_call, nr_entries = 0;
2789 i < chain_nr && nr_entries < max_stack; i++) {
2790 u64 ip;
2791
2792 if (callchain_param.order == ORDER_CALLEE)
2793 j = i;
2794 else
2795 j = chain->nr - i - 1;
2796
2797#ifdef HAVE_SKIP_CALLCHAIN_IDX
2798 if (j == skip_idx)
2799 continue;
2800#endif
2801 ip = chain->ips[j];
2802 if (ip < PERF_CONTEXT_MAX)
2803 ++nr_entries;
2804 else if (callchain_param.order != ORDER_CALLEE) {
2805 err = find_prev_cpumode(chain, thread, cursor, parent,
2806 root_al, &cpumode, j, symbols);
2807 if (err)
2808 return (err < 0) ? err : 0;
2809 continue;
2810 }
2811
2812 /*
2813 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2814 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2815 * the index will be different in order to add the missing frame
2816 * at the right place.
2817 */
2818
2819 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2820
2821 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2822
2823 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2824
2825 /*
2826 * check if leaf_frame_Caller != ip to not add the same
2827 * value twice.
2828 */
2829
2830 if (leaf_frame_caller && leaf_frame_caller != ip) {
2831
2832 err = add_callchain_ip(thread, cursor, parent,
2833 root_al, &cpumode, leaf_frame_caller,
2834 false, NULL, NULL, 0, symbols);
2835 if (err)
2836 return (err < 0) ? err : 0;
2837 }
2838 }
2839
2840 err = add_callchain_ip(thread, cursor, parent,
2841 root_al, &cpumode, ip,
2842 false, NULL, NULL, 0, symbols);
2843
2844 if (err)
2845 return (err < 0) ? err : 0;
2846 }
2847
2848 return 0;
2849}
2850
2851static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2852{
2853 struct symbol *sym = ms->sym;
2854 struct map *map = ms->map;
2855 struct inline_node *inline_node;
2856 struct inline_list *ilist;
2857 struct dso *dso;
2858 u64 addr;
2859 int ret = 1;
2860 struct map_symbol ilist_ms;
2861
2862 if (!symbol_conf.inline_name || !map || !sym)
2863 return ret;
2864
2865 addr = map__dso_map_ip(map, ip);
2866 addr = map__rip_2objdump(map, addr);
2867 dso = map__dso(map);
2868
2869 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2870 if (!inline_node) {
2871 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2872 if (!inline_node)
2873 return ret;
2874 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2875 }
2876
2877 ilist_ms = (struct map_symbol) {
2878 .maps = maps__get(ms->maps),
2879 .map = map__get(map),
2880 };
2881 list_for_each_entry(ilist, &inline_node->val, list) {
2882 ilist_ms.sym = ilist->symbol;
2883 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2884 NULL, 0, 0, 0, ilist->srcline);
2885
2886 if (ret != 0)
2887 return ret;
2888 }
2889 map_symbol__exit(&ilist_ms);
2890
2891 return ret;
2892}
2893
2894static int unwind_entry(struct unwind_entry *entry, void *arg)
2895{
2896 struct callchain_cursor *cursor = arg;
2897 const char *srcline = NULL;
2898 u64 addr = entry->ip;
2899
2900 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2901 return 0;
2902
2903 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2904 return 0;
2905
2906 /*
2907 * Convert entry->ip from a virtual address to an offset in
2908 * its corresponding binary.
2909 */
2910 if (entry->ms.map)
2911 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2912
2913 srcline = callchain_srcline(&entry->ms, addr);
2914 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2915 false, NULL, 0, 0, 0, srcline);
2916}
2917
2918static int thread__resolve_callchain_unwind(struct thread *thread,
2919 struct callchain_cursor *cursor,
2920 struct evsel *evsel,
2921 struct perf_sample *sample,
2922 int max_stack, bool symbols)
2923{
2924 /* Can we do dwarf post unwind? */
2925 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2926 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2927 return 0;
2928
2929 /* Bail out if nothing was captured. */
2930 if ((!sample->user_regs.regs) ||
2931 (!sample->user_stack.size))
2932 return 0;
2933
2934 if (!symbols)
2935 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2936
2937 return unwind__get_entries(unwind_entry, cursor,
2938 thread, sample, max_stack, false);
2939}
2940
2941int __thread__resolve_callchain(struct thread *thread,
2942 struct callchain_cursor *cursor,
2943 struct evsel *evsel,
2944 struct perf_sample *sample,
2945 struct symbol **parent,
2946 struct addr_location *root_al,
2947 int max_stack,
2948 bool symbols)
2949{
2950 int ret = 0;
2951
2952 if (cursor == NULL)
2953 return -ENOMEM;
2954
2955 callchain_cursor_reset(cursor);
2956
2957 if (callchain_param.order == ORDER_CALLEE) {
2958 ret = thread__resolve_callchain_sample(thread, cursor,
2959 evsel, sample,
2960 parent, root_al,
2961 max_stack, symbols);
2962 if (ret)
2963 return ret;
2964 ret = thread__resolve_callchain_unwind(thread, cursor,
2965 evsel, sample,
2966 max_stack, symbols);
2967 } else {
2968 ret = thread__resolve_callchain_unwind(thread, cursor,
2969 evsel, sample,
2970 max_stack, symbols);
2971 if (ret)
2972 return ret;
2973 ret = thread__resolve_callchain_sample(thread, cursor,
2974 evsel, sample,
2975 parent, root_al,
2976 max_stack, symbols);
2977 }
2978
2979 return ret;
2980}
2981
2982int machine__for_each_thread(struct machine *machine,
2983 int (*fn)(struct thread *thread, void *p),
2984 void *priv)
2985{
2986 return threads__for_each_thread(&machine->threads, fn, priv);
2987}
2988
2989int machines__for_each_thread(struct machines *machines,
2990 int (*fn)(struct thread *thread, void *p),
2991 void *priv)
2992{
2993 struct rb_node *nd;
2994 int rc = 0;
2995
2996 rc = machine__for_each_thread(&machines->host, fn, priv);
2997 if (rc != 0)
2998 return rc;
2999
3000 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3001 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3002
3003 rc = machine__for_each_thread(machine, fn, priv);
3004 if (rc != 0)
3005 return rc;
3006 }
3007 return rc;
3008}
3009
3010
3011static int thread_list_cb(struct thread *thread, void *data)
3012{
3013 struct list_head *list = data;
3014 struct thread_list *entry = malloc(sizeof(*entry));
3015
3016 if (!entry)
3017 return -ENOMEM;
3018
3019 entry->thread = thread__get(thread);
3020 list_add_tail(&entry->list, list);
3021 return 0;
3022}
3023
3024int machine__thread_list(struct machine *machine, struct list_head *list)
3025{
3026 return machine__for_each_thread(machine, thread_list_cb, list);
3027}
3028
3029void thread_list__delete(struct list_head *list)
3030{
3031 struct thread_list *pos, *next;
3032
3033 list_for_each_entry_safe(pos, next, list, list) {
3034 thread__zput(pos->thread);
3035 list_del(&pos->list);
3036 free(pos);
3037 }
3038}
3039
3040pid_t machine__get_current_tid(struct machine *machine, int cpu)
3041{
3042 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3043 return -1;
3044
3045 return machine->current_tid[cpu];
3046}
3047
3048int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3049 pid_t tid)
3050{
3051 struct thread *thread;
3052 const pid_t init_val = -1;
3053
3054 if (cpu < 0)
3055 return -EINVAL;
3056
3057 if (realloc_array_as_needed(machine->current_tid,
3058 machine->current_tid_sz,
3059 (unsigned int)cpu,
3060 &init_val))
3061 return -ENOMEM;
3062
3063 machine->current_tid[cpu] = tid;
3064
3065 thread = machine__findnew_thread(machine, pid, tid);
3066 if (!thread)
3067 return -ENOMEM;
3068
3069 thread__set_cpu(thread, cpu);
3070 thread__put(thread);
3071
3072 return 0;
3073}
3074
3075/*
3076 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3077 * machine__normalized_is() if a normalized arch is needed.
3078 */
3079bool machine__is(struct machine *machine, const char *arch)
3080{
3081 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3082}
3083
3084bool machine__normalized_is(struct machine *machine, const char *arch)
3085{
3086 return machine && !strcmp(perf_env__arch(machine->env), arch);
3087}
3088
3089int machine__nr_cpus_avail(struct machine *machine)
3090{
3091 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3092}
3093
3094int machine__get_kernel_start(struct machine *machine)
3095{
3096 struct map *map = machine__kernel_map(machine);
3097 int err = 0;
3098
3099 /*
3100 * The only addresses above 2^63 are kernel addresses of a 64-bit
3101 * kernel. Note that addresses are unsigned so that on a 32-bit system
3102 * all addresses including kernel addresses are less than 2^32. In
3103 * that case (32-bit system), if the kernel mapping is unknown, all
3104 * addresses will be assumed to be in user space - see
3105 * machine__kernel_ip().
3106 */
3107 machine->kernel_start = 1ULL << 63;
3108 if (map) {
3109 err = map__load(map);
3110 /*
3111 * On x86_64, PTI entry trampolines are less than the
3112 * start of kernel text, but still above 2^63. So leave
3113 * kernel_start = 1ULL << 63 for x86_64.
3114 */
3115 if (!err && !machine__is(machine, "x86_64"))
3116 machine->kernel_start = map__start(map);
3117 }
3118 return err;
3119}
3120
3121u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3122{
3123 u8 addr_cpumode = cpumode;
3124 bool kernel_ip;
3125
3126 if (!machine->single_address_space)
3127 goto out;
3128
3129 kernel_ip = machine__kernel_ip(machine, addr);
3130 switch (cpumode) {
3131 case PERF_RECORD_MISC_KERNEL:
3132 case PERF_RECORD_MISC_USER:
3133 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3134 PERF_RECORD_MISC_USER;
3135 break;
3136 case PERF_RECORD_MISC_GUEST_KERNEL:
3137 case PERF_RECORD_MISC_GUEST_USER:
3138 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3139 PERF_RECORD_MISC_GUEST_USER;
3140 break;
3141 default:
3142 break;
3143 }
3144out:
3145 return addr_cpumode;
3146}
3147
3148struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3149 const struct dso_id *id)
3150{
3151 return dsos__findnew_id(&machine->dsos, filename, id);
3152}
3153
3154struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3155{
3156 return machine__findnew_dso_id(machine, filename, NULL);
3157}
3158
3159char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3160{
3161 struct machine *machine = vmachine;
3162 struct map *map;
3163 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3164
3165 if (sym == NULL)
3166 return NULL;
3167
3168 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3169 *addrp = map__unmap_ip(map, sym->start);
3170 return sym->name;
3171}
3172
3173struct machine__for_each_dso_cb_args {
3174 struct machine *machine;
3175 machine__dso_t fn;
3176 void *priv;
3177};
3178
3179static int machine__for_each_dso_cb(struct dso *dso, void *data)
3180{
3181 struct machine__for_each_dso_cb_args *args = data;
3182
3183 return args->fn(dso, args->machine, args->priv);
3184}
3185
3186int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3187{
3188 struct machine__for_each_dso_cb_args args = {
3189 .machine = machine,
3190 .fn = fn,
3191 .priv = priv,
3192 };
3193
3194 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3195}
3196
3197int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3198{
3199 struct maps *maps = machine__kernel_maps(machine);
3200
3201 return maps__for_each_map(maps, fn, priv);
3202}
3203
3204bool machine__is_lock_function(struct machine *machine, u64 addr)
3205{
3206 if (!machine->sched.text_start) {
3207 struct map *kmap;
3208 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3209
3210 if (!sym) {
3211 /* to avoid retry */
3212 machine->sched.text_start = 1;
3213 return false;
3214 }
3215
3216 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3217
3218 /* should not fail from here */
3219 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3220 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3221
3222 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3223 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3224
3225 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3226 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3227
3228 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3229 if (sym) {
3230 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3231 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3232 }
3233 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3234 if (sym) {
3235 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3236 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3237 }
3238 }
3239
3240 /* failed to get kernel symbols */
3241 if (machine->sched.text_start == 1)
3242 return false;
3243
3244 /* mutex and rwsem functions are in sched text section */
3245 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3246 return true;
3247
3248 /* spinlock functions are in lock text section */
3249 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3250 return true;
3251
3252 /* traceiter functions currently don't have their own section
3253 * but we consider them lock functions
3254 */
3255 if (machine->traceiter.text_start != 0) {
3256 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3257 return true;
3258 }
3259
3260 if (machine->trace.text_start != 0) {
3261 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3262 return true;
3263 }
3264
3265 return false;
3266}
3267
3268int machine__hit_all_dsos(struct machine *machine)
3269{
3270 return dsos__hit_all(&machine->dsos);
3271}