Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
 
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95enum thread_state {
  96	THREAD_SLEEPING = 0,
  97	THREAD_WAIT_CPU,
  98	THREAD_SCHED_IN,
  99	THREAD_IGNORE
 100};
 101
 102struct work_atom {
 103	struct list_head	list;
 104	enum thread_state	state;
 105	u64			sched_out_time;
 106	u64			wake_up_time;
 107	u64			sched_in_time;
 108	u64			runtime;
 109};
 110
 111struct work_atoms {
 112	struct list_head	work_list;
 113	struct thread		*thread;
 114	struct rb_node		node;
 115	u64			max_lat;
 116	u64			max_lat_start;
 117	u64			max_lat_end;
 118	u64			total_lat;
 119	u64			nb_atoms;
 120	u64			total_runtime;
 121	int			num_merged;
 122};
 123
 124typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 125
 126struct perf_sched;
 127
 128struct trace_sched_handler {
 129	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 130			    struct perf_sample *sample, struct machine *machine);
 131
 132	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 133			     struct perf_sample *sample, struct machine *machine);
 134
 135	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 136			    struct perf_sample *sample, struct machine *machine);
 137
 138	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 139	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 140			  struct machine *machine);
 141
 142	int (*migrate_task_event)(struct perf_sched *sched,
 143				  struct evsel *evsel,
 144				  struct perf_sample *sample,
 145				  struct machine *machine);
 146};
 147
 148#define COLOR_PIDS PERF_COLOR_BLUE
 149#define COLOR_CPUS PERF_COLOR_BG_RED
 150
 151struct perf_sched_map {
 152	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 153	struct perf_cpu		*comp_cpus;
 154	bool			 comp;
 155	struct perf_thread_map *color_pids;
 156	const char		*color_pids_str;
 157	struct perf_cpu_map	*color_cpus;
 158	const char		*color_cpus_str;
 
 
 
 159	struct perf_cpu_map	*cpus;
 160	const char		*cpus_str;
 161};
 162
 163struct perf_sched {
 164	struct perf_tool tool;
 165	const char	 *sort_order;
 166	unsigned long	 nr_tasks;
 167	struct task_desc **pid_to_task;
 168	struct task_desc **tasks;
 169	const struct trace_sched_handler *tp_handler;
 170	struct mutex	 start_work_mutex;
 171	struct mutex	 work_done_wait_mutex;
 172	int		 profile_cpu;
 173/*
 174 * Track the current task - that way we can know whether there's any
 175 * weird events, such as a task being switched away that is not current.
 176 */
 177	struct perf_cpu	 max_cpu;
 178	u32		 *curr_pid;
 179	struct thread	 **curr_thread;
 
 180	char		 next_shortname1;
 181	char		 next_shortname2;
 182	unsigned int	 replay_repeat;
 183	unsigned long	 nr_run_events;
 184	unsigned long	 nr_sleep_events;
 185	unsigned long	 nr_wakeup_events;
 186	unsigned long	 nr_sleep_corrections;
 187	unsigned long	 nr_run_events_optimized;
 188	unsigned long	 targetless_wakeups;
 189	unsigned long	 multitarget_wakeups;
 190	unsigned long	 nr_runs;
 191	unsigned long	 nr_timestamps;
 192	unsigned long	 nr_unordered_timestamps;
 193	unsigned long	 nr_context_switch_bugs;
 194	unsigned long	 nr_events;
 195	unsigned long	 nr_lost_chunks;
 196	unsigned long	 nr_lost_events;
 197	u64		 run_measurement_overhead;
 198	u64		 sleep_measurement_overhead;
 199	u64		 start_time;
 200	u64		 cpu_usage;
 201	u64		 runavg_cpu_usage;
 202	u64		 parent_cpu_usage;
 203	u64		 runavg_parent_cpu_usage;
 204	u64		 sum_runtime;
 205	u64		 sum_fluct;
 206	u64		 run_avg;
 207	u64		 all_runtime;
 208	u64		 all_count;
 209	u64		 *cpu_last_switched;
 210	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 211	struct list_head sort_list, cmp_pid;
 212	bool force;
 213	bool skip_merge;
 214	struct perf_sched_map map;
 215
 216	/* options for timehist command */
 217	bool		summary;
 218	bool		summary_only;
 219	bool		idle_hist;
 220	bool		show_callchain;
 221	unsigned int	max_stack;
 222	bool		show_cpu_visual;
 223	bool		show_wakeups;
 224	bool		show_next;
 225	bool		show_migrations;
 
 226	bool		show_state;
 
 227	u64		skipped_samples;
 228	const char	*time_str;
 229	struct perf_time_interval ptime;
 230	struct perf_time_interval hist_time;
 231	volatile bool   thread_funcs_exit;
 
 
 232};
 233
 234/* per thread run time data */
 235struct thread_runtime {
 236	u64 last_time;      /* time of previous sched in/out event */
 237	u64 dt_run;         /* run time */
 238	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 239	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 240	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 241	u64 dt_delay;       /* time between wakeup and sched-in */
 
 242	u64 ready_to_run;   /* time of wakeup */
 
 243
 244	struct stats run_stats;
 245	u64 total_run_time;
 246	u64 total_sleep_time;
 247	u64 total_iowait_time;
 248	u64 total_preempt_time;
 249	u64 total_delay_time;
 
 250
 251	char last_state;
 252
 253	char shortname[3];
 254	bool comm_changed;
 255
 256	u64 migrations;
 
 
 257};
 258
 259/* per event run time data */
 260struct evsel_runtime {
 261	u64 *last_time; /* time this event was last seen per cpu */
 262	u32 ncpu;       /* highest cpu slot allocated */
 263};
 264
 265/* per cpu idle time data */
 266struct idle_thread_runtime {
 267	struct thread_runtime	tr;
 268	struct thread		*last_thread;
 269	struct rb_root_cached	sorted_root;
 270	struct callchain_root	callchain;
 271	struct callchain_cursor	cursor;
 272};
 273
 274/* track idle times per cpu */
 275static struct thread **idle_threads;
 276static int idle_max_cpu;
 277static char idle_comm[] = "<idle>";
 278
 279static u64 get_nsecs(void)
 280{
 281	struct timespec ts;
 282
 283	clock_gettime(CLOCK_MONOTONIC, &ts);
 284
 285	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 286}
 287
 288static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 289{
 290	u64 T0 = get_nsecs(), T1;
 291
 292	do {
 293		T1 = get_nsecs();
 294	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 295}
 296
 297static void sleep_nsecs(u64 nsecs)
 298{
 299	struct timespec ts;
 300
 301	ts.tv_nsec = nsecs % 999999999;
 302	ts.tv_sec = nsecs / 999999999;
 303
 304	nanosleep(&ts, NULL);
 305}
 306
 307static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 308{
 309	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 310	int i;
 311
 312	for (i = 0; i < 10; i++) {
 313		T0 = get_nsecs();
 314		burn_nsecs(sched, 0);
 315		T1 = get_nsecs();
 316		delta = T1-T0;
 317		min_delta = min(min_delta, delta);
 318	}
 319	sched->run_measurement_overhead = min_delta;
 320
 321	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 322}
 323
 324static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 325{
 326	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 327	int i;
 328
 329	for (i = 0; i < 10; i++) {
 330		T0 = get_nsecs();
 331		sleep_nsecs(10000);
 332		T1 = get_nsecs();
 333		delta = T1-T0;
 334		min_delta = min(min_delta, delta);
 335	}
 336	min_delta -= 10000;
 337	sched->sleep_measurement_overhead = min_delta;
 338
 339	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static struct sched_atom *
 343get_new_event(struct task_desc *task, u64 timestamp)
 344{
 345	struct sched_atom *event = zalloc(sizeof(*event));
 346	unsigned long idx = task->nr_events;
 347	size_t size;
 348
 349	event->timestamp = timestamp;
 350	event->nr = idx;
 351
 352	task->nr_events++;
 353	size = sizeof(struct sched_atom *) * task->nr_events;
 354	task->atoms = realloc(task->atoms, size);
 355	BUG_ON(!task->atoms);
 356
 357	task->atoms[idx] = event;
 358
 359	return event;
 360}
 361
 362static struct sched_atom *last_event(struct task_desc *task)
 363{
 364	if (!task->nr_events)
 365		return NULL;
 366
 367	return task->atoms[task->nr_events - 1];
 368}
 369
 370static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 371				u64 timestamp, u64 duration)
 372{
 373	struct sched_atom *event, *curr_event = last_event(task);
 374
 375	/*
 376	 * optimize an existing RUN event by merging this one
 377	 * to it:
 378	 */
 379	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 380		sched->nr_run_events_optimized++;
 381		curr_event->duration += duration;
 382		return;
 383	}
 384
 385	event = get_new_event(task, timestamp);
 386
 387	event->type = SCHED_EVENT_RUN;
 388	event->duration = duration;
 389
 390	sched->nr_run_events++;
 391}
 392
 393static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 394				   u64 timestamp, struct task_desc *wakee)
 395{
 396	struct sched_atom *event, *wakee_event;
 397
 398	event = get_new_event(task, timestamp);
 399	event->type = SCHED_EVENT_WAKEUP;
 400	event->wakee = wakee;
 401
 402	wakee_event = last_event(wakee);
 403	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 404		sched->targetless_wakeups++;
 405		return;
 406	}
 407	if (wakee_event->wait_sem) {
 408		sched->multitarget_wakeups++;
 409		return;
 410	}
 411
 412	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 413	sem_init(wakee_event->wait_sem, 0, 0);
 414	wakee_event->specific_wait = 1;
 415	event->wait_sem = wakee_event->wait_sem;
 416
 417	sched->nr_wakeup_events++;
 418}
 419
 420static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 421				  u64 timestamp, const char task_state __maybe_unused)
 422{
 423	struct sched_atom *event = get_new_event(task, timestamp);
 424
 425	event->type = SCHED_EVENT_SLEEP;
 426
 427	sched->nr_sleep_events++;
 428}
 429
 430static struct task_desc *register_pid(struct perf_sched *sched,
 431				      unsigned long pid, const char *comm)
 432{
 433	struct task_desc *task;
 434	static int pid_max;
 435
 436	if (sched->pid_to_task == NULL) {
 437		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 438			pid_max = MAX_PID;
 439		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 440	}
 441	if (pid >= (unsigned long)pid_max) {
 442		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 443			sizeof(struct task_desc *))) == NULL);
 444		while (pid >= (unsigned long)pid_max)
 445			sched->pid_to_task[pid_max++] = NULL;
 446	}
 447
 448	task = sched->pid_to_task[pid];
 449
 450	if (task)
 451		return task;
 452
 453	task = zalloc(sizeof(*task));
 454	task->pid = pid;
 455	task->nr = sched->nr_tasks;
 456	strcpy(task->comm, comm);
 457	/*
 458	 * every task starts in sleeping state - this gets ignored
 459	 * if there's no wakeup pointing to this sleep state:
 460	 */
 461	add_sched_event_sleep(sched, task, 0, 0);
 462
 463	sched->pid_to_task[pid] = task;
 464	sched->nr_tasks++;
 465	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 466	BUG_ON(!sched->tasks);
 467	sched->tasks[task->nr] = task;
 468
 469	if (verbose > 0)
 470		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 471
 472	return task;
 473}
 474
 475
 476static void print_task_traces(struct perf_sched *sched)
 477{
 478	struct task_desc *task;
 479	unsigned long i;
 480
 481	for (i = 0; i < sched->nr_tasks; i++) {
 482		task = sched->tasks[i];
 483		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 484			task->nr, task->comm, task->pid, task->nr_events);
 485	}
 486}
 487
 488static void add_cross_task_wakeups(struct perf_sched *sched)
 489{
 490	struct task_desc *task1, *task2;
 491	unsigned long i, j;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task1 = sched->tasks[i];
 495		j = i + 1;
 496		if (j == sched->nr_tasks)
 497			j = 0;
 498		task2 = sched->tasks[j];
 499		add_sched_event_wakeup(sched, task1, 0, task2);
 500	}
 501}
 502
 503static void perf_sched__process_event(struct perf_sched *sched,
 504				      struct sched_atom *atom)
 505{
 506	int ret = 0;
 507
 508	switch (atom->type) {
 509		case SCHED_EVENT_RUN:
 510			burn_nsecs(sched, atom->duration);
 511			break;
 512		case SCHED_EVENT_SLEEP:
 513			if (atom->wait_sem)
 514				ret = sem_wait(atom->wait_sem);
 515			BUG_ON(ret);
 516			break;
 517		case SCHED_EVENT_WAKEUP:
 518			if (atom->wait_sem)
 519				ret = sem_post(atom->wait_sem);
 520			BUG_ON(ret);
 521			break;
 522		case SCHED_EVENT_MIGRATION:
 523			break;
 524		default:
 525			BUG_ON(1);
 526	}
 527}
 528
 529static u64 get_cpu_usage_nsec_parent(void)
 530{
 531	struct rusage ru;
 532	u64 sum;
 533	int err;
 534
 535	err = getrusage(RUSAGE_SELF, &ru);
 536	BUG_ON(err);
 537
 538	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 539	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 540
 541	return sum;
 542}
 543
 544static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 545{
 546	struct perf_event_attr attr;
 547	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 548	int fd;
 549	struct rlimit limit;
 550	bool need_privilege = false;
 551
 552	memset(&attr, 0, sizeof(attr));
 553
 554	attr.type = PERF_TYPE_SOFTWARE;
 555	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 556
 557force_again:
 558	fd = sys_perf_event_open(&attr, 0, -1, -1,
 559				 perf_event_open_cloexec_flag());
 560
 561	if (fd < 0) {
 562		if (errno == EMFILE) {
 563			if (sched->force) {
 564				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 565				limit.rlim_cur += sched->nr_tasks - cur_task;
 566				if (limit.rlim_cur > limit.rlim_max) {
 567					limit.rlim_max = limit.rlim_cur;
 568					need_privilege = true;
 569				}
 570				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 571					if (need_privilege && errno == EPERM)
 572						strcpy(info, "Need privilege\n");
 573				} else
 574					goto force_again;
 575			} else
 576				strcpy(info, "Have a try with -f option\n");
 577		}
 578		pr_err("Error: sys_perf_event_open() syscall returned "
 579		       "with %d (%s)\n%s", fd,
 580		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 581		exit(EXIT_FAILURE);
 582	}
 583	return fd;
 584}
 585
 586static u64 get_cpu_usage_nsec_self(int fd)
 587{
 588	u64 runtime;
 589	int ret;
 590
 591	ret = read(fd, &runtime, sizeof(runtime));
 592	BUG_ON(ret != sizeof(runtime));
 593
 594	return runtime;
 595}
 596
 597struct sched_thread_parms {
 598	struct task_desc  *task;
 599	struct perf_sched *sched;
 600	int fd;
 601};
 602
 603static void *thread_func(void *ctx)
 604{
 605	struct sched_thread_parms *parms = ctx;
 606	struct task_desc *this_task = parms->task;
 607	struct perf_sched *sched = parms->sched;
 608	u64 cpu_usage_0, cpu_usage_1;
 609	unsigned long i, ret;
 610	char comm2[22];
 611	int fd = parms->fd;
 612
 613	zfree(&parms);
 614
 615	sprintf(comm2, ":%s", this_task->comm);
 616	prctl(PR_SET_NAME, comm2);
 617	if (fd < 0)
 618		return NULL;
 619
 620	while (!sched->thread_funcs_exit) {
 621		ret = sem_post(&this_task->ready_for_work);
 622		BUG_ON(ret);
 623		mutex_lock(&sched->start_work_mutex);
 624		mutex_unlock(&sched->start_work_mutex);
 625
 626		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 627
 628		for (i = 0; i < this_task->nr_events; i++) {
 629			this_task->curr_event = i;
 630			perf_sched__process_event(sched, this_task->atoms[i]);
 631		}
 632
 633		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 634		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 635		ret = sem_post(&this_task->work_done_sem);
 636		BUG_ON(ret);
 637
 638		mutex_lock(&sched->work_done_wait_mutex);
 639		mutex_unlock(&sched->work_done_wait_mutex);
 640	}
 641	return NULL;
 642}
 643
 644static void create_tasks(struct perf_sched *sched)
 645	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 646	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 647{
 648	struct task_desc *task;
 649	pthread_attr_t attr;
 650	unsigned long i;
 651	int err;
 652
 653	err = pthread_attr_init(&attr);
 654	BUG_ON(err);
 655	err = pthread_attr_setstacksize(&attr,
 656			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 657	BUG_ON(err);
 658	mutex_lock(&sched->start_work_mutex);
 659	mutex_lock(&sched->work_done_wait_mutex);
 660	for (i = 0; i < sched->nr_tasks; i++) {
 661		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 662		BUG_ON(parms == NULL);
 663		parms->task = task = sched->tasks[i];
 664		parms->sched = sched;
 665		parms->fd = self_open_counters(sched, i);
 666		sem_init(&task->sleep_sem, 0, 0);
 667		sem_init(&task->ready_for_work, 0, 0);
 668		sem_init(&task->work_done_sem, 0, 0);
 669		task->curr_event = 0;
 670		err = pthread_create(&task->thread, &attr, thread_func, parms);
 671		BUG_ON(err);
 672	}
 673}
 674
 675static void destroy_tasks(struct perf_sched *sched)
 676	UNLOCK_FUNCTION(sched->start_work_mutex)
 677	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 678{
 679	struct task_desc *task;
 680	unsigned long i;
 681	int err;
 682
 683	mutex_unlock(&sched->start_work_mutex);
 684	mutex_unlock(&sched->work_done_wait_mutex);
 685	/* Get rid of threads so they won't be upset by mutex destrunction */
 686	for (i = 0; i < sched->nr_tasks; i++) {
 687		task = sched->tasks[i];
 688		err = pthread_join(task->thread, NULL);
 689		BUG_ON(err);
 690		sem_destroy(&task->sleep_sem);
 691		sem_destroy(&task->ready_for_work);
 692		sem_destroy(&task->work_done_sem);
 693	}
 694}
 695
 696static void wait_for_tasks(struct perf_sched *sched)
 697	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 698	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 699{
 700	u64 cpu_usage_0, cpu_usage_1;
 701	struct task_desc *task;
 702	unsigned long i, ret;
 703
 704	sched->start_time = get_nsecs();
 705	sched->cpu_usage = 0;
 706	mutex_unlock(&sched->work_done_wait_mutex);
 707
 708	for (i = 0; i < sched->nr_tasks; i++) {
 709		task = sched->tasks[i];
 710		ret = sem_wait(&task->ready_for_work);
 711		BUG_ON(ret);
 712		sem_init(&task->ready_for_work, 0, 0);
 713	}
 714	mutex_lock(&sched->work_done_wait_mutex);
 715
 716	cpu_usage_0 = get_cpu_usage_nsec_parent();
 717
 718	mutex_unlock(&sched->start_work_mutex);
 719
 720	for (i = 0; i < sched->nr_tasks; i++) {
 721		task = sched->tasks[i];
 722		ret = sem_wait(&task->work_done_sem);
 723		BUG_ON(ret);
 724		sem_init(&task->work_done_sem, 0, 0);
 725		sched->cpu_usage += task->cpu_usage;
 726		task->cpu_usage = 0;
 727	}
 728
 729	cpu_usage_1 = get_cpu_usage_nsec_parent();
 730	if (!sched->runavg_cpu_usage)
 731		sched->runavg_cpu_usage = sched->cpu_usage;
 732	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 733
 734	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 735	if (!sched->runavg_parent_cpu_usage)
 736		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 737	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 738					 sched->parent_cpu_usage)/sched->replay_repeat;
 739
 740	mutex_lock(&sched->start_work_mutex);
 741
 742	for (i = 0; i < sched->nr_tasks; i++) {
 743		task = sched->tasks[i];
 744		sem_init(&task->sleep_sem, 0, 0);
 745		task->curr_event = 0;
 746	}
 747}
 748
 749static void run_one_test(struct perf_sched *sched)
 750	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 751	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 752{
 753	u64 T0, T1, delta, avg_delta, fluct;
 754
 755	T0 = get_nsecs();
 756	wait_for_tasks(sched);
 757	T1 = get_nsecs();
 758
 759	delta = T1 - T0;
 760	sched->sum_runtime += delta;
 761	sched->nr_runs++;
 762
 763	avg_delta = sched->sum_runtime / sched->nr_runs;
 764	if (delta < avg_delta)
 765		fluct = avg_delta - delta;
 766	else
 767		fluct = delta - avg_delta;
 768	sched->sum_fluct += fluct;
 769	if (!sched->run_avg)
 770		sched->run_avg = delta;
 771	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 772
 773	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 774
 775	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 776
 777	printf("cpu: %0.2f / %0.2f",
 778		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 779
 780#if 0
 781	/*
 782	 * rusage statistics done by the parent, these are less
 783	 * accurate than the sched->sum_exec_runtime based statistics:
 784	 */
 785	printf(" [%0.2f / %0.2f]",
 786		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 787		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 788#endif
 789
 790	printf("\n");
 791
 792	if (sched->nr_sleep_corrections)
 793		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 794	sched->nr_sleep_corrections = 0;
 795}
 796
 797static void test_calibrations(struct perf_sched *sched)
 798{
 799	u64 T0, T1;
 800
 801	T0 = get_nsecs();
 802	burn_nsecs(sched, NSEC_PER_MSEC);
 803	T1 = get_nsecs();
 804
 805	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 806
 807	T0 = get_nsecs();
 808	sleep_nsecs(NSEC_PER_MSEC);
 809	T1 = get_nsecs();
 810
 811	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 812}
 813
 814static int
 815replay_wakeup_event(struct perf_sched *sched,
 816		    struct evsel *evsel, struct perf_sample *sample,
 817		    struct machine *machine __maybe_unused)
 818{
 819	const char *comm = evsel__strval(evsel, sample, "comm");
 820	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 821	struct task_desc *waker, *wakee;
 822
 823	if (verbose > 0) {
 824		printf("sched_wakeup event %p\n", evsel);
 825
 826		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 827	}
 828
 829	waker = register_pid(sched, sample->tid, "<unknown>");
 830	wakee = register_pid(sched, pid, comm);
 831
 832	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 833	return 0;
 834}
 835
 836static int replay_switch_event(struct perf_sched *sched,
 837			       struct evsel *evsel,
 838			       struct perf_sample *sample,
 839			       struct machine *machine __maybe_unused)
 840{
 841	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 842		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 843	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 844		  next_pid = evsel__intval(evsel, sample, "next_pid");
 845	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
 846	struct task_desc *prev, __maybe_unused *next;
 847	u64 timestamp0, timestamp = sample->time;
 848	int cpu = sample->cpu;
 849	s64 delta;
 850
 851	if (verbose > 0)
 852		printf("sched_switch event %p\n", evsel);
 853
 854	if (cpu >= MAX_CPUS || cpu < 0)
 855		return 0;
 856
 857	timestamp0 = sched->cpu_last_switched[cpu];
 858	if (timestamp0)
 859		delta = timestamp - timestamp0;
 860	else
 861		delta = 0;
 862
 863	if (delta < 0) {
 864		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 865		return -1;
 866	}
 867
 868	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 869		 prev_comm, prev_pid, next_comm, next_pid, delta);
 870
 871	prev = register_pid(sched, prev_pid, prev_comm);
 872	next = register_pid(sched, next_pid, next_comm);
 873
 874	sched->cpu_last_switched[cpu] = timestamp;
 875
 876	add_sched_event_run(sched, prev, timestamp, delta);
 877	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 878
 879	return 0;
 880}
 881
 882static int replay_fork_event(struct perf_sched *sched,
 883			     union perf_event *event,
 884			     struct machine *machine)
 885{
 886	struct thread *child, *parent;
 887
 888	child = machine__findnew_thread(machine, event->fork.pid,
 889					event->fork.tid);
 890	parent = machine__findnew_thread(machine, event->fork.ppid,
 891					 event->fork.ptid);
 892
 893	if (child == NULL || parent == NULL) {
 894		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 895				 child, parent);
 896		goto out_put;
 897	}
 898
 899	if (verbose > 0) {
 900		printf("fork event\n");
 901		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 902		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 903	}
 904
 905	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 906	register_pid(sched, thread__tid(child), thread__comm_str(child));
 907out_put:
 908	thread__put(child);
 909	thread__put(parent);
 910	return 0;
 911}
 912
 913struct sort_dimension {
 914	const char		*name;
 915	sort_fn_t		cmp;
 916	struct list_head	list;
 917};
 918
 
 
 
 
 
 919/*
 920 * handle runtime stats saved per thread
 921 */
 922static struct thread_runtime *thread__init_runtime(struct thread *thread)
 923{
 924	struct thread_runtime *r;
 925
 926	r = zalloc(sizeof(struct thread_runtime));
 927	if (!r)
 928		return NULL;
 929
 930	init_stats(&r->run_stats);
 
 931	thread__set_priv(thread, r);
 932
 933	return r;
 934}
 935
 936static struct thread_runtime *thread__get_runtime(struct thread *thread)
 937{
 938	struct thread_runtime *tr;
 939
 940	tr = thread__priv(thread);
 941	if (tr == NULL) {
 942		tr = thread__init_runtime(thread);
 943		if (tr == NULL)
 944			pr_debug("Failed to malloc memory for runtime data.\n");
 945	}
 946
 947	return tr;
 948}
 949
 950static int
 951thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 952{
 953	struct sort_dimension *sort;
 954	int ret = 0;
 955
 956	BUG_ON(list_empty(list));
 957
 958	list_for_each_entry(sort, list, list) {
 959		ret = sort->cmp(l, r);
 960		if (ret)
 961			return ret;
 962	}
 963
 964	return ret;
 965}
 966
 967static struct work_atoms *
 968thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 969			 struct list_head *sort_list)
 970{
 971	struct rb_node *node = root->rb_root.rb_node;
 972	struct work_atoms key = { .thread = thread };
 973
 974	while (node) {
 975		struct work_atoms *atoms;
 976		int cmp;
 977
 978		atoms = container_of(node, struct work_atoms, node);
 979
 980		cmp = thread_lat_cmp(sort_list, &key, atoms);
 981		if (cmp > 0)
 982			node = node->rb_left;
 983		else if (cmp < 0)
 984			node = node->rb_right;
 985		else {
 986			BUG_ON(thread != atoms->thread);
 987			return atoms;
 988		}
 989	}
 990	return NULL;
 991}
 992
 993static void
 994__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 995			 struct list_head *sort_list)
 996{
 997	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 998	bool leftmost = true;
 999
1000	while (*new) {
1001		struct work_atoms *this;
1002		int cmp;
1003
1004		this = container_of(*new, struct work_atoms, node);
1005		parent = *new;
1006
1007		cmp = thread_lat_cmp(sort_list, data, this);
1008
1009		if (cmp > 0)
1010			new = &((*new)->rb_left);
1011		else {
1012			new = &((*new)->rb_right);
1013			leftmost = false;
1014		}
1015	}
1016
1017	rb_link_node(&data->node, parent, new);
1018	rb_insert_color_cached(&data->node, root, leftmost);
1019}
1020
1021static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1022{
1023	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1024	if (!atoms) {
1025		pr_err("No memory at %s\n", __func__);
1026		return -1;
1027	}
1028
1029	atoms->thread = thread__get(thread);
1030	INIT_LIST_HEAD(&atoms->work_list);
1031	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1032	return 0;
1033}
1034
1035static int
1036add_sched_out_event(struct work_atoms *atoms,
1037		    char run_state,
1038		    u64 timestamp)
1039{
1040	struct work_atom *atom = zalloc(sizeof(*atom));
1041	if (!atom) {
1042		pr_err("Non memory at %s", __func__);
1043		return -1;
1044	}
1045
1046	atom->sched_out_time = timestamp;
1047
1048	if (run_state == 'R') {
1049		atom->state = THREAD_WAIT_CPU;
1050		atom->wake_up_time = atom->sched_out_time;
1051	}
1052
1053	list_add_tail(&atom->list, &atoms->work_list);
1054	return 0;
1055}
1056
1057static void
1058add_runtime_event(struct work_atoms *atoms, u64 delta,
1059		  u64 timestamp __maybe_unused)
1060{
1061	struct work_atom *atom;
1062
1063	BUG_ON(list_empty(&atoms->work_list));
1064
1065	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1066
1067	atom->runtime += delta;
1068	atoms->total_runtime += delta;
1069}
1070
1071static void
1072add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1073{
1074	struct work_atom *atom;
1075	u64 delta;
1076
1077	if (list_empty(&atoms->work_list))
1078		return;
1079
1080	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1081
1082	if (atom->state != THREAD_WAIT_CPU)
1083		return;
1084
1085	if (timestamp < atom->wake_up_time) {
1086		atom->state = THREAD_IGNORE;
1087		return;
1088	}
1089
1090	atom->state = THREAD_SCHED_IN;
1091	atom->sched_in_time = timestamp;
1092
1093	delta = atom->sched_in_time - atom->wake_up_time;
1094	atoms->total_lat += delta;
1095	if (delta > atoms->max_lat) {
1096		atoms->max_lat = delta;
1097		atoms->max_lat_start = atom->wake_up_time;
1098		atoms->max_lat_end = timestamp;
1099	}
1100	atoms->nb_atoms++;
1101}
1102
1103static int latency_switch_event(struct perf_sched *sched,
1104				struct evsel *evsel,
1105				struct perf_sample *sample,
1106				struct machine *machine)
1107{
1108	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1109		  next_pid = evsel__intval(evsel, sample, "next_pid");
1110	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1111	struct work_atoms *out_events, *in_events;
1112	struct thread *sched_out, *sched_in;
1113	u64 timestamp0, timestamp = sample->time;
1114	int cpu = sample->cpu, err = -1;
1115	s64 delta;
1116
1117	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1118
1119	timestamp0 = sched->cpu_last_switched[cpu];
1120	sched->cpu_last_switched[cpu] = timestamp;
1121	if (timestamp0)
1122		delta = timestamp - timestamp0;
1123	else
1124		delta = 0;
1125
1126	if (delta < 0) {
1127		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1128		return -1;
1129	}
1130
1131	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1132	sched_in = machine__findnew_thread(machine, -1, next_pid);
1133	if (sched_out == NULL || sched_in == NULL)
1134		goto out_put;
1135
1136	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1137	if (!out_events) {
1138		if (thread_atoms_insert(sched, sched_out))
1139			goto out_put;
1140		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1141		if (!out_events) {
1142			pr_err("out-event: Internal tree error");
1143			goto out_put;
1144		}
1145	}
1146	if (add_sched_out_event(out_events, prev_state, timestamp))
1147		return -1;
1148
1149	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1150	if (!in_events) {
1151		if (thread_atoms_insert(sched, sched_in))
1152			goto out_put;
1153		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1154		if (!in_events) {
1155			pr_err("in-event: Internal tree error");
1156			goto out_put;
1157		}
1158		/*
1159		 * Take came in we have not heard about yet,
1160		 * add in an initial atom in runnable state:
1161		 */
1162		if (add_sched_out_event(in_events, 'R', timestamp))
1163			goto out_put;
1164	}
1165	add_sched_in_event(in_events, timestamp);
1166	err = 0;
1167out_put:
1168	thread__put(sched_out);
1169	thread__put(sched_in);
1170	return err;
1171}
1172
1173static int latency_runtime_event(struct perf_sched *sched,
1174				 struct evsel *evsel,
1175				 struct perf_sample *sample,
1176				 struct machine *machine)
1177{
1178	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1179	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1180	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1181	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1182	u64 timestamp = sample->time;
1183	int cpu = sample->cpu, err = -1;
1184
1185	if (thread == NULL)
1186		return -1;
1187
1188	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1189	if (!atoms) {
1190		if (thread_atoms_insert(sched, thread))
1191			goto out_put;
1192		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193		if (!atoms) {
1194			pr_err("in-event: Internal tree error");
1195			goto out_put;
1196		}
1197		if (add_sched_out_event(atoms, 'R', timestamp))
1198			goto out_put;
1199	}
1200
1201	add_runtime_event(atoms, runtime, timestamp);
1202	err = 0;
1203out_put:
1204	thread__put(thread);
1205	return err;
1206}
1207
1208static int latency_wakeup_event(struct perf_sched *sched,
1209				struct evsel *evsel,
1210				struct perf_sample *sample,
1211				struct machine *machine)
1212{
1213	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1214	struct work_atoms *atoms;
1215	struct work_atom *atom;
1216	struct thread *wakee;
1217	u64 timestamp = sample->time;
1218	int err = -1;
1219
1220	wakee = machine__findnew_thread(machine, -1, pid);
1221	if (wakee == NULL)
1222		return -1;
1223	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1224	if (!atoms) {
1225		if (thread_atoms_insert(sched, wakee))
1226			goto out_put;
1227		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1228		if (!atoms) {
1229			pr_err("wakeup-event: Internal tree error");
1230			goto out_put;
1231		}
1232		if (add_sched_out_event(atoms, 'S', timestamp))
1233			goto out_put;
1234	}
1235
1236	BUG_ON(list_empty(&atoms->work_list));
1237
1238	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1239
1240	/*
1241	 * As we do not guarantee the wakeup event happens when
1242	 * task is out of run queue, also may happen when task is
1243	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1244	 * then we should not set the ->wake_up_time when wake up a
1245	 * task which is on run queue.
1246	 *
1247	 * You WILL be missing events if you've recorded only
1248	 * one CPU, or are only looking at only one, so don't
1249	 * skip in this case.
1250	 */
1251	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1252		goto out_ok;
1253
1254	sched->nr_timestamps++;
1255	if (atom->sched_out_time > timestamp) {
1256		sched->nr_unordered_timestamps++;
1257		goto out_ok;
1258	}
1259
1260	atom->state = THREAD_WAIT_CPU;
1261	atom->wake_up_time = timestamp;
1262out_ok:
1263	err = 0;
1264out_put:
1265	thread__put(wakee);
1266	return err;
1267}
1268
1269static int latency_migrate_task_event(struct perf_sched *sched,
1270				      struct evsel *evsel,
1271				      struct perf_sample *sample,
1272				      struct machine *machine)
1273{
1274	const u32 pid = evsel__intval(evsel, sample, "pid");
1275	u64 timestamp = sample->time;
1276	struct work_atoms *atoms;
1277	struct work_atom *atom;
1278	struct thread *migrant;
1279	int err = -1;
1280
1281	/*
1282	 * Only need to worry about migration when profiling one CPU.
1283	 */
1284	if (sched->profile_cpu == -1)
1285		return 0;
1286
1287	migrant = machine__findnew_thread(machine, -1, pid);
1288	if (migrant == NULL)
1289		return -1;
1290	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1291	if (!atoms) {
1292		if (thread_atoms_insert(sched, migrant))
1293			goto out_put;
1294		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1295		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1296		if (!atoms) {
1297			pr_err("migration-event: Internal tree error");
1298			goto out_put;
1299		}
1300		if (add_sched_out_event(atoms, 'R', timestamp))
1301			goto out_put;
1302	}
1303
1304	BUG_ON(list_empty(&atoms->work_list));
1305
1306	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1307	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1308
1309	sched->nr_timestamps++;
1310
1311	if (atom->sched_out_time > timestamp)
1312		sched->nr_unordered_timestamps++;
1313	err = 0;
1314out_put:
1315	thread__put(migrant);
1316	return err;
1317}
1318
1319static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1320{
1321	int i;
1322	int ret;
1323	u64 avg;
1324	char max_lat_start[32], max_lat_end[32];
1325
1326	if (!work_list->nb_atoms)
1327		return;
1328	/*
1329	 * Ignore idle threads:
1330	 */
1331	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1332		return;
1333
1334	sched->all_runtime += work_list->total_runtime;
1335	sched->all_count   += work_list->nb_atoms;
1336
1337	if (work_list->num_merged > 1) {
1338		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1339			     work_list->num_merged);
1340	} else {
1341		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1342			     thread__tid(work_list->thread));
1343	}
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	pid_t l_tid, r_tid;
1362
1363	if (RC_CHK_EQUAL(l->thread, r->thread))
1364		return 0;
1365	l_tid = thread__tid(l->thread);
1366	r_tid = thread__tid(r->thread);
1367	if (l_tid < r_tid)
1368		return -1;
1369	if (l_tid > r_tid)
1370		return 1;
1371	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1372}
1373
1374static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1375{
1376	u64 avgl, avgr;
1377
1378	if (!l->nb_atoms)
1379		return -1;
1380
1381	if (!r->nb_atoms)
1382		return 1;
1383
1384	avgl = l->total_lat / l->nb_atoms;
1385	avgr = r->total_lat / r->nb_atoms;
1386
1387	if (avgl < avgr)
1388		return -1;
1389	if (avgl > avgr)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->max_lat < r->max_lat)
1398		return -1;
1399	if (l->max_lat > r->max_lat)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->nb_atoms < r->nb_atoms)
1408		return -1;
1409	if (l->nb_atoms > r->nb_atoms)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->total_runtime < r->total_runtime)
1418		return -1;
1419	if (l->total_runtime > r->total_runtime)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int sort_dimension__add(const char *tok, struct list_head *list)
1426{
1427	size_t i;
1428	static struct sort_dimension avg_sort_dimension = {
1429		.name = "avg",
1430		.cmp  = avg_cmp,
1431	};
1432	static struct sort_dimension max_sort_dimension = {
1433		.name = "max",
1434		.cmp  = max_cmp,
1435	};
1436	static struct sort_dimension pid_sort_dimension = {
1437		.name = "pid",
1438		.cmp  = pid_cmp,
1439	};
1440	static struct sort_dimension runtime_sort_dimension = {
1441		.name = "runtime",
1442		.cmp  = runtime_cmp,
1443	};
1444	static struct sort_dimension switch_sort_dimension = {
1445		.name = "switch",
1446		.cmp  = switch_cmp,
1447	};
1448	struct sort_dimension *available_sorts[] = {
1449		&pid_sort_dimension,
1450		&avg_sort_dimension,
1451		&max_sort_dimension,
1452		&switch_sort_dimension,
1453		&runtime_sort_dimension,
1454	};
1455
1456	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1457		if (!strcmp(available_sorts[i]->name, tok)) {
1458			list_add_tail(&available_sorts[i]->list, list);
1459
1460			return 0;
1461		}
1462	}
1463
1464	return -1;
1465}
1466
1467static void perf_sched__sort_lat(struct perf_sched *sched)
1468{
1469	struct rb_node *node;
1470	struct rb_root_cached *root = &sched->atom_root;
1471again:
1472	for (;;) {
1473		struct work_atoms *data;
1474		node = rb_first_cached(root);
1475		if (!node)
1476			break;
1477
1478		rb_erase_cached(node, root);
1479		data = rb_entry(node, struct work_atoms, node);
1480		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1481	}
1482	if (root == &sched->atom_root) {
1483		root = &sched->merged_atom_root;
1484		goto again;
1485	}
1486}
1487
1488static int process_sched_wakeup_event(struct perf_tool *tool,
1489				      struct evsel *evsel,
1490				      struct perf_sample *sample,
1491				      struct machine *machine)
1492{
1493	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1494
1495	if (sched->tp_handler->wakeup_event)
1496		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1497
1498	return 0;
1499}
1500
1501static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1502				      struct evsel *evsel __maybe_unused,
1503				      struct perf_sample *sample __maybe_unused,
1504				      struct machine *machine __maybe_unused)
1505{
1506	return 0;
1507}
1508
1509union map_priv {
1510	void	*ptr;
1511	bool	 color;
1512};
1513
1514static bool thread__has_color(struct thread *thread)
1515{
1516	union map_priv priv = {
1517		.ptr = thread__priv(thread),
1518	};
1519
1520	return priv.color;
1521}
1522
1523static struct thread*
1524map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1525{
1526	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1527	union map_priv priv = {
1528		.color = false,
1529	};
1530
1531	if (!sched->map.color_pids || !thread || thread__priv(thread))
1532		return thread;
1533
1534	if (thread_map__has(sched->map.color_pids, tid))
1535		priv.color = true;
1536
1537	thread__set_priv(thread, priv.ptr);
1538	return thread;
1539}
1540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1542			    struct perf_sample *sample, struct machine *machine)
1543{
1544	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1545	struct thread *sched_in;
 
1546	struct thread_runtime *tr;
1547	int new_shortname;
1548	u64 timestamp0, timestamp = sample->time;
1549	s64 delta;
1550	int i;
1551	struct perf_cpu this_cpu = {
1552		.cpu = sample->cpu,
1553	};
1554	int cpus_nr;
 
1555	bool new_cpu = false;
1556	const char *color = PERF_COLOR_NORMAL;
1557	char stimestamp[32];
 
1558
1559	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1560
1561	if (this_cpu.cpu > sched->max_cpu.cpu)
1562		sched->max_cpu = this_cpu;
1563
1564	if (sched->map.comp) {
1565		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1566		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1567			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1568			new_cpu = true;
1569		}
1570	} else
1571		cpus_nr = sched->max_cpu.cpu;
1572
1573	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1574	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1575	if (timestamp0)
1576		delta = timestamp - timestamp0;
1577	else
1578		delta = 0;
1579
1580	if (delta < 0) {
1581		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1582		return -1;
1583	}
1584
1585	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1586	if (sched_in == NULL)
 
1587		return -1;
1588
1589	tr = thread__get_runtime(sched_in);
1590	if (tr == NULL) {
1591		thread__put(sched_in);
1592		return -1;
1593	}
1594
1595	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
 
1596
1597	printf("  ");
1598
1599	new_shortname = 0;
1600	if (!tr->shortname[0]) {
1601		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1602			/*
1603			 * Don't allocate a letter-number for swapper:0
1604			 * as a shortname. Instead, we use '.' for it.
1605			 */
1606			tr->shortname[0] = '.';
1607			tr->shortname[1] = ' ';
1608		} else {
1609			tr->shortname[0] = sched->next_shortname1;
1610			tr->shortname[1] = sched->next_shortname2;
1611
1612			if (sched->next_shortname1 < 'Z') {
1613				sched->next_shortname1++;
1614			} else {
1615				sched->next_shortname1 = 'A';
1616				if (sched->next_shortname2 < '9')
1617					sched->next_shortname2++;
1618				else
1619					sched->next_shortname2 = '0';
1620			}
 
 
 
1621		}
1622		new_shortname = 1;
1623	}
1624
1625	for (i = 0; i < cpus_nr; i++) {
1626		struct perf_cpu cpu = {
1627			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1628		};
1629		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1630		struct thread_runtime *curr_tr;
1631		const char *pid_color = color;
1632		const char *cpu_color = color;
1633
1634		if (curr_thread && thread__has_color(curr_thread))
1635			pid_color = COLOR_PIDS;
1636
1637		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1638			continue;
1639
1640		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1641			cpu_color = COLOR_CPUS;
1642
1643		if (cpu.cpu != this_cpu.cpu)
1644			color_fprintf(stdout, color, " ");
 
 
 
 
 
 
 
1645		else
1646			color_fprintf(stdout, cpu_color, "*");
1647
1648		if (sched->curr_thread[cpu.cpu]) {
1649			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1650			if (curr_tr == NULL) {
1651				thread__put(sched_in);
1652				return -1;
1653			}
1654			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1655		} else
1656			color_fprintf(stdout, color, "   ");
1657	}
1658
1659	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1660		goto out;
 
1661
1662	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1663	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1664	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1665		const char *pid_color = color;
1666
1667		if (thread__has_color(sched_in))
1668			pid_color = COLOR_PIDS;
1669
1670		color_fprintf(stdout, pid_color, "%s => %s:%d",
1671			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1672		tr->comm_changed = false;
1673	}
1674
1675	if (sched->map.comp && new_cpu)
1676		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677
1678out:
1679	color_fprintf(stdout, color, "\n");
1680
 
 
 
 
1681	thread__put(sched_in);
1682
1683	return 0;
1684}
1685
1686static int process_sched_switch_event(struct perf_tool *tool,
1687				      struct evsel *evsel,
1688				      struct perf_sample *sample,
1689				      struct machine *machine)
1690{
1691	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1692	int this_cpu = sample->cpu, err = 0;
1693	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1694	    next_pid = evsel__intval(evsel, sample, "next_pid");
1695
1696	if (sched->curr_pid[this_cpu] != (u32)-1) {
1697		/*
1698		 * Are we trying to switch away a PID that is
1699		 * not current?
1700		 */
1701		if (sched->curr_pid[this_cpu] != prev_pid)
1702			sched->nr_context_switch_bugs++;
1703	}
1704
1705	if (sched->tp_handler->switch_event)
1706		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1707
1708	sched->curr_pid[this_cpu] = next_pid;
1709	return err;
1710}
1711
1712static int process_sched_runtime_event(struct perf_tool *tool,
1713				       struct evsel *evsel,
1714				       struct perf_sample *sample,
1715				       struct machine *machine)
1716{
1717	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718
1719	if (sched->tp_handler->runtime_event)
1720		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1721
1722	return 0;
1723}
1724
1725static int perf_sched__process_fork_event(struct perf_tool *tool,
1726					  union perf_event *event,
1727					  struct perf_sample *sample,
1728					  struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	/* run the fork event through the perf machinery */
1733	perf_event__process_fork(tool, event, sample, machine);
1734
1735	/* and then run additional processing needed for this command */
1736	if (sched->tp_handler->fork_event)
1737		return sched->tp_handler->fork_event(sched, event, machine);
1738
1739	return 0;
1740}
1741
1742static int process_sched_migrate_task_event(struct perf_tool *tool,
1743					    struct evsel *evsel,
1744					    struct perf_sample *sample,
1745					    struct machine *machine)
1746{
1747	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1748
1749	if (sched->tp_handler->migrate_task_event)
1750		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1751
1752	return 0;
1753}
1754
1755typedef int (*tracepoint_handler)(struct perf_tool *tool,
1756				  struct evsel *evsel,
1757				  struct perf_sample *sample,
1758				  struct machine *machine);
1759
1760static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1761						 union perf_event *event __maybe_unused,
1762						 struct perf_sample *sample,
1763						 struct evsel *evsel,
1764						 struct machine *machine)
1765{
1766	int err = 0;
1767
1768	if (evsel->handler != NULL) {
1769		tracepoint_handler f = evsel->handler;
1770		err = f(tool, evsel, sample, machine);
1771	}
1772
1773	return err;
1774}
1775
1776static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1777				    union perf_event *event,
1778				    struct perf_sample *sample,
1779				    struct machine *machine)
1780{
1781	struct thread *thread;
1782	struct thread_runtime *tr;
1783	int err;
1784
1785	err = perf_event__process_comm(tool, event, sample, machine);
1786	if (err)
1787		return err;
1788
1789	thread = machine__find_thread(machine, sample->pid, sample->tid);
1790	if (!thread) {
1791		pr_err("Internal error: can't find thread\n");
1792		return -1;
1793	}
1794
1795	tr = thread__get_runtime(thread);
1796	if (tr == NULL) {
1797		thread__put(thread);
1798		return -1;
1799	}
1800
1801	tr->comm_changed = true;
1802	thread__put(thread);
1803
1804	return 0;
1805}
1806
1807static int perf_sched__read_events(struct perf_sched *sched)
1808{
1809	struct evsel_str_handler handlers[] = {
1810		{ "sched:sched_switch",	      process_sched_switch_event, },
1811		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1812		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1813		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1814		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1815		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1816	};
1817	struct perf_session *session;
1818	struct perf_data data = {
1819		.path  = input_name,
1820		.mode  = PERF_DATA_MODE_READ,
1821		.force = sched->force,
1822	};
1823	int rc = -1;
1824
1825	session = perf_session__new(&data, &sched->tool);
1826	if (IS_ERR(session)) {
1827		pr_debug("Error creating perf session");
1828		return PTR_ERR(session);
1829	}
1830
1831	symbol__init(&session->header.env);
1832
1833	/* prefer sched_waking if it is captured */
1834	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1835		handlers[2].handler = process_sched_wakeup_ignore;
1836
1837	if (perf_session__set_tracepoints_handlers(session, handlers))
1838		goto out_delete;
1839
1840	if (perf_session__has_traces(session, "record -R")) {
1841		int err = perf_session__process_events(session);
1842		if (err) {
1843			pr_err("Failed to process events, error %d", err);
1844			goto out_delete;
1845		}
1846
1847		sched->nr_events      = session->evlist->stats.nr_events[0];
1848		sched->nr_lost_events = session->evlist->stats.total_lost;
1849		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1850	}
1851
1852	rc = 0;
1853out_delete:
1854	perf_session__delete(session);
1855	return rc;
1856}
1857
1858/*
1859 * scheduling times are printed as msec.usec
1860 */
1861static inline void print_sched_time(unsigned long long nsecs, int width)
1862{
1863	unsigned long msecs;
1864	unsigned long usecs;
1865
1866	msecs  = nsecs / NSEC_PER_MSEC;
1867	nsecs -= msecs * NSEC_PER_MSEC;
1868	usecs  = nsecs / NSEC_PER_USEC;
1869	printf("%*lu.%03lu ", width, msecs, usecs);
1870}
1871
1872/*
1873 * returns runtime data for event, allocating memory for it the
1874 * first time it is used.
1875 */
1876static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1877{
1878	struct evsel_runtime *r = evsel->priv;
1879
1880	if (r == NULL) {
1881		r = zalloc(sizeof(struct evsel_runtime));
1882		evsel->priv = r;
1883	}
1884
1885	return r;
1886}
1887
1888/*
1889 * save last time event was seen per cpu
1890 */
1891static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1892{
1893	struct evsel_runtime *r = evsel__get_runtime(evsel);
1894
1895	if (r == NULL)
1896		return;
1897
1898	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1899		int i, n = __roundup_pow_of_two(cpu+1);
1900		void *p = r->last_time;
1901
1902		p = realloc(r->last_time, n * sizeof(u64));
1903		if (!p)
1904			return;
1905
1906		r->last_time = p;
1907		for (i = r->ncpu; i < n; ++i)
1908			r->last_time[i] = (u64) 0;
1909
1910		r->ncpu = n;
1911	}
1912
1913	r->last_time[cpu] = timestamp;
1914}
1915
1916/* returns last time this event was seen on the given cpu */
1917static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1918{
1919	struct evsel_runtime *r = evsel__get_runtime(evsel);
1920
1921	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1922		return 0;
1923
1924	return r->last_time[cpu];
1925}
1926
1927static int comm_width = 30;
1928
1929static char *timehist_get_commstr(struct thread *thread)
1930{
1931	static char str[32];
1932	const char *comm = thread__comm_str(thread);
1933	pid_t tid = thread__tid(thread);
1934	pid_t pid = thread__pid(thread);
1935	int n;
1936
1937	if (pid == 0)
1938		n = scnprintf(str, sizeof(str), "%s", comm);
1939
1940	else if (tid != pid)
1941		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1942
1943	else
1944		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1945
1946	if (n > comm_width)
1947		comm_width = n;
1948
1949	return str;
1950}
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952static void timehist_header(struct perf_sched *sched)
1953{
1954	u32 ncpus = sched->max_cpu.cpu + 1;
1955	u32 i, j;
1956
1957	printf("%15s %6s ", "time", "cpu");
1958
1959	if (sched->show_cpu_visual) {
1960		printf(" ");
1961		for (i = 0, j = 0; i < ncpus; ++i) {
1962			printf("%x", j++);
1963			if (j > 15)
1964				j = 0;
1965		}
1966		printf(" ");
1967	}
1968
1969	printf(" %-*s  %9s  %9s  %9s", comm_width,
1970		"task name", "wait time", "sch delay", "run time");
 
 
 
 
 
 
 
1971
1972	if (sched->show_state)
1973		printf("  %s", "state");
1974
1975	printf("\n");
1976
1977	/*
1978	 * units row
1979	 */
1980	printf("%15s %-6s ", "", "");
1981
1982	if (sched->show_cpu_visual)
1983		printf(" %*s ", ncpus, "");
1984
1985	printf(" %-*s  %9s  %9s  %9s", comm_width,
1986	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1987
1988	if (sched->show_state)
1989		printf("  %5s", "");
 
 
 
 
 
1990
1991	printf("\n");
1992
1993	/*
1994	 * separator
1995	 */
1996	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1997
1998	if (sched->show_cpu_visual)
1999		printf(" %.*s ", ncpus, graph_dotted_line);
2000
2001	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2002		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2003		graph_dotted_line);
 
 
 
 
 
 
2004
2005	if (sched->show_state)
2006		printf("  %.5s", graph_dotted_line);
2007
2008	printf("\n");
2009}
2010
2011static void timehist_print_sample(struct perf_sched *sched,
2012				  struct evsel *evsel,
2013				  struct perf_sample *sample,
2014				  struct addr_location *al,
2015				  struct thread *thread,
2016				  u64 t, const char state)
2017{
2018	struct thread_runtime *tr = thread__priv(thread);
2019	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2020	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2021	u32 max_cpus = sched->max_cpu.cpu + 1;
2022	char tstr[64];
2023	char nstr[30];
2024	u64 wait_time;
2025
2026	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2027		return;
2028
2029	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2030	printf("%15s [%04d] ", tstr, sample->cpu);
2031
2032	if (sched->show_cpu_visual) {
2033		u32 i;
2034		char c;
2035
2036		printf(" ");
2037		for (i = 0; i < max_cpus; ++i) {
2038			/* flag idle times with 'i'; others are sched events */
2039			if (i == sample->cpu)
2040				c = (thread__tid(thread) == 0) ? 'i' : 's';
2041			else
2042				c = ' ';
2043			printf("%c", c);
2044		}
2045		printf(" ");
2046	}
2047
2048	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2049
 
 
 
2050	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2051	print_sched_time(wait_time, 6);
2052
2053	print_sched_time(tr->dt_delay, 6);
2054	print_sched_time(tr->dt_run, 6);
 
 
2055
2056	if (sched->show_state)
2057		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2058
2059	if (sched->show_next) {
2060		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2061		printf(" %-*s", comm_width, nstr);
2062	}
2063
2064	if (sched->show_wakeups && !sched->show_next)
2065		printf("  %-*s", comm_width, "");
2066
2067	if (thread__tid(thread) == 0)
2068		goto out;
2069
2070	if (sched->show_callchain)
2071		printf("  ");
2072
2073	sample__fprintf_sym(sample, al, 0,
2074			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2075			    EVSEL__PRINT_CALLCHAIN_ARROW |
2076			    EVSEL__PRINT_SKIP_IGNORED,
2077			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2078
2079out:
2080	printf("\n");
2081}
2082
2083/*
2084 * Explanation of delta-time stats:
2085 *
2086 *            t = time of current schedule out event
2087 *        tprev = time of previous sched out event
2088 *                also time of schedule-in event for current task
2089 *    last_time = time of last sched change event for current task
2090 *                (i.e, time process was last scheduled out)
2091 * ready_to_run = time of wakeup for current task
 
2092 *
2093 * -----|------------|------------|------------|------
2094 *    last         ready        tprev          t
2095 *    time         to run
2096 *
2097 *      |-------- dt_wait --------|
2098 *                   |- dt_delay -|-- dt_run --|
 
2099 *
2100 *   dt_run = run time of current task
2101 *  dt_wait = time between last schedule out event for task and tprev
2102 *            represents time spent off the cpu
2103 * dt_delay = time between wakeup and schedule-in of task
 
2104 */
2105
2106static void timehist_update_runtime_stats(struct thread_runtime *r,
2107					 u64 t, u64 tprev)
2108{
2109	r->dt_delay   = 0;
2110	r->dt_sleep   = 0;
2111	r->dt_iowait  = 0;
2112	r->dt_preempt = 0;
2113	r->dt_run     = 0;
 
2114
2115	if (tprev) {
2116		r->dt_run = t - tprev;
2117		if (r->ready_to_run) {
2118			if (r->ready_to_run > tprev)
2119				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2120			else
2121				r->dt_delay = tprev - r->ready_to_run;
 
 
 
2122		}
2123
2124		if (r->last_time > tprev)
2125			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2126		else if (r->last_time) {
2127			u64 dt_wait = tprev - r->last_time;
2128
2129			if (r->last_state == 'R')
2130				r->dt_preempt = dt_wait;
2131			else if (r->last_state == 'D')
2132				r->dt_iowait = dt_wait;
2133			else
2134				r->dt_sleep = dt_wait;
2135		}
2136	}
2137
2138	update_stats(&r->run_stats, r->dt_run);
2139
2140	r->total_run_time     += r->dt_run;
2141	r->total_delay_time   += r->dt_delay;
2142	r->total_sleep_time   += r->dt_sleep;
2143	r->total_iowait_time  += r->dt_iowait;
2144	r->total_preempt_time += r->dt_preempt;
 
2145}
2146
2147static bool is_idle_sample(struct perf_sample *sample,
2148			   struct evsel *evsel)
2149{
2150	/* pid 0 == swapper == idle task */
2151	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2152		return evsel__intval(evsel, sample, "prev_pid") == 0;
2153
2154	return sample->pid == 0;
2155}
2156
2157static void save_task_callchain(struct perf_sched *sched,
2158				struct perf_sample *sample,
2159				struct evsel *evsel,
2160				struct machine *machine)
2161{
2162	struct callchain_cursor *cursor;
2163	struct thread *thread;
2164
2165	/* want main thread for process - has maps */
2166	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2167	if (thread == NULL) {
2168		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2169		return;
2170	}
2171
2172	if (!sched->show_callchain || sample->callchain == NULL)
2173		return;
2174
2175	cursor = get_tls_callchain_cursor();
2176
2177	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2178				      NULL, NULL, sched->max_stack + 2) != 0) {
2179		if (verbose > 0)
2180			pr_err("Failed to resolve callchain. Skipping\n");
2181
2182		return;
2183	}
2184
2185	callchain_cursor_commit(cursor);
2186
2187	while (true) {
2188		struct callchain_cursor_node *node;
2189		struct symbol *sym;
2190
2191		node = callchain_cursor_current(cursor);
2192		if (node == NULL)
2193			break;
2194
2195		sym = node->ms.sym;
2196		if (sym) {
2197			if (!strcmp(sym->name, "schedule") ||
2198			    !strcmp(sym->name, "__schedule") ||
2199			    !strcmp(sym->name, "preempt_schedule"))
2200				sym->ignore = 1;
2201		}
2202
2203		callchain_cursor_advance(cursor);
2204	}
2205}
2206
2207static int init_idle_thread(struct thread *thread)
2208{
2209	struct idle_thread_runtime *itr;
2210
2211	thread__set_comm(thread, idle_comm, 0);
2212
2213	itr = zalloc(sizeof(*itr));
2214	if (itr == NULL)
2215		return -ENOMEM;
2216
 
2217	init_stats(&itr->tr.run_stats);
2218	callchain_init(&itr->callchain);
2219	callchain_cursor_reset(&itr->cursor);
2220	thread__set_priv(thread, itr);
2221
2222	return 0;
2223}
2224
2225/*
2226 * Track idle stats per cpu by maintaining a local thread
2227 * struct for the idle task on each cpu.
2228 */
2229static int init_idle_threads(int ncpu)
2230{
2231	int i, ret;
2232
2233	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2234	if (!idle_threads)
2235		return -ENOMEM;
2236
2237	idle_max_cpu = ncpu;
2238
2239	/* allocate the actual thread struct if needed */
2240	for (i = 0; i < ncpu; ++i) {
2241		idle_threads[i] = thread__new(0, 0);
2242		if (idle_threads[i] == NULL)
2243			return -ENOMEM;
2244
2245		ret = init_idle_thread(idle_threads[i]);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	return 0;
2251}
2252
2253static void free_idle_threads(void)
2254{
2255	int i;
2256
2257	if (idle_threads == NULL)
2258		return;
2259
2260	for (i = 0; i < idle_max_cpu; ++i) {
2261		if ((idle_threads[i]))
2262			thread__delete(idle_threads[i]);
2263	}
2264
2265	free(idle_threads);
2266}
2267
2268static struct thread *get_idle_thread(int cpu)
2269{
2270	/*
2271	 * expand/allocate array of pointers to local thread
2272	 * structs if needed
2273	 */
2274	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2275		int i, j = __roundup_pow_of_two(cpu+1);
2276		void *p;
2277
2278		p = realloc(idle_threads, j * sizeof(struct thread *));
2279		if (!p)
2280			return NULL;
2281
2282		idle_threads = (struct thread **) p;
2283		for (i = idle_max_cpu; i < j; ++i)
2284			idle_threads[i] = NULL;
2285
2286		idle_max_cpu = j;
2287	}
2288
2289	/* allocate a new thread struct if needed */
2290	if (idle_threads[cpu] == NULL) {
2291		idle_threads[cpu] = thread__new(0, 0);
2292
2293		if (idle_threads[cpu]) {
2294			if (init_idle_thread(idle_threads[cpu]) < 0)
2295				return NULL;
2296		}
2297	}
2298
2299	return idle_threads[cpu];
2300}
2301
2302static void save_idle_callchain(struct perf_sched *sched,
2303				struct idle_thread_runtime *itr,
2304				struct perf_sample *sample)
2305{
2306	struct callchain_cursor *cursor;
2307
2308	if (!sched->show_callchain || sample->callchain == NULL)
2309		return;
2310
2311	cursor = get_tls_callchain_cursor();
2312	if (cursor == NULL)
2313		return;
2314
2315	callchain_cursor__copy(&itr->cursor, cursor);
2316}
2317
2318static struct thread *timehist_get_thread(struct perf_sched *sched,
2319					  struct perf_sample *sample,
2320					  struct machine *machine,
2321					  struct evsel *evsel)
2322{
2323	struct thread *thread;
2324
2325	if (is_idle_sample(sample, evsel)) {
2326		thread = get_idle_thread(sample->cpu);
2327		if (thread == NULL)
2328			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329
2330	} else {
2331		/* there were samples with tid 0 but non-zero pid */
2332		thread = machine__findnew_thread(machine, sample->pid,
2333						 sample->tid ?: sample->pid);
2334		if (thread == NULL) {
2335			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2336				 sample->tid);
2337		}
2338
2339		save_task_callchain(sched, sample, evsel, machine);
2340		if (sched->idle_hist) {
2341			struct thread *idle;
2342			struct idle_thread_runtime *itr;
2343
2344			idle = get_idle_thread(sample->cpu);
2345			if (idle == NULL) {
2346				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2347				return NULL;
2348			}
2349
2350			itr = thread__priv(idle);
2351			if (itr == NULL)
2352				return NULL;
2353
2354			itr->last_thread = thread;
2355
2356			/* copy task callchain when entering to idle */
2357			if (evsel__intval(evsel, sample, "next_pid") == 0)
2358				save_idle_callchain(sched, itr, sample);
2359		}
2360	}
2361
2362	return thread;
2363}
2364
2365static bool timehist_skip_sample(struct perf_sched *sched,
2366				 struct thread *thread,
2367				 struct evsel *evsel,
2368				 struct perf_sample *sample)
2369{
2370	bool rc = false;
 
 
2371
2372	if (thread__is_filtered(thread)) {
2373		rc = true;
2374		sched->skipped_samples++;
2375	}
2376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2377	if (sched->idle_hist) {
2378		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2379			rc = true;
2380		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2381			 evsel__intval(evsel, sample, "next_pid") != 0)
2382			rc = true;
2383	}
2384
2385	return rc;
2386}
2387
2388static void timehist_print_wakeup_event(struct perf_sched *sched,
2389					struct evsel *evsel,
2390					struct perf_sample *sample,
2391					struct machine *machine,
2392					struct thread *awakened)
2393{
2394	struct thread *thread;
2395	char tstr[64];
2396
2397	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2398	if (thread == NULL)
2399		return;
2400
2401	/* show wakeup unless both awakee and awaker are filtered */
2402	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2403	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2404		return;
2405	}
2406
2407	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2408	printf("%15s [%04d] ", tstr, sample->cpu);
2409	if (sched->show_cpu_visual)
2410		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2411
2412	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2413
2414	/* dt spacer */
2415	printf("  %9s  %9s  %9s ", "", "", "");
2416
2417	printf("awakened: %s", timehist_get_commstr(awakened));
2418
2419	printf("\n");
2420}
2421
2422static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2423					union perf_event *event __maybe_unused,
2424					struct evsel *evsel __maybe_unused,
2425					struct perf_sample *sample __maybe_unused,
2426					struct machine *machine __maybe_unused)
2427{
2428	return 0;
2429}
2430
2431static int timehist_sched_wakeup_event(struct perf_tool *tool,
2432				       union perf_event *event __maybe_unused,
2433				       struct evsel *evsel,
2434				       struct perf_sample *sample,
2435				       struct machine *machine)
2436{
2437	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2438	struct thread *thread;
2439	struct thread_runtime *tr = NULL;
2440	/* want pid of awakened task not pid in sample */
2441	const u32 pid = evsel__intval(evsel, sample, "pid");
2442
2443	thread = machine__findnew_thread(machine, 0, pid);
2444	if (thread == NULL)
2445		return -1;
2446
2447	tr = thread__get_runtime(thread);
2448	if (tr == NULL)
2449		return -1;
2450
2451	if (tr->ready_to_run == 0)
2452		tr->ready_to_run = sample->time;
2453
2454	/* show wakeups if requested */
2455	if (sched->show_wakeups &&
2456	    !perf_time__skip_sample(&sched->ptime, sample->time))
2457		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2458
2459	return 0;
2460}
2461
2462static void timehist_print_migration_event(struct perf_sched *sched,
2463					struct evsel *evsel,
2464					struct perf_sample *sample,
2465					struct machine *machine,
2466					struct thread *migrated)
2467{
2468	struct thread *thread;
2469	char tstr[64];
2470	u32 max_cpus;
2471	u32 ocpu, dcpu;
2472
2473	if (sched->summary_only)
2474		return;
2475
2476	max_cpus = sched->max_cpu.cpu + 1;
2477	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2478	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2479
2480	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2481	if (thread == NULL)
2482		return;
2483
2484	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2485	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2486		return;
2487	}
2488
2489	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2490	printf("%15s [%04d] ", tstr, sample->cpu);
2491
2492	if (sched->show_cpu_visual) {
2493		u32 i;
2494		char c;
2495
2496		printf("  ");
2497		for (i = 0; i < max_cpus; ++i) {
2498			c = (i == sample->cpu) ? 'm' : ' ';
2499			printf("%c", c);
2500		}
2501		printf("  ");
2502	}
2503
2504	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2505
2506	/* dt spacer */
2507	printf("  %9s  %9s  %9s ", "", "", "");
2508
2509	printf("migrated: %s", timehist_get_commstr(migrated));
2510	printf(" cpu %d => %d", ocpu, dcpu);
2511
2512	printf("\n");
2513}
2514
2515static int timehist_migrate_task_event(struct perf_tool *tool,
2516				       union perf_event *event __maybe_unused,
2517				       struct evsel *evsel,
2518				       struct perf_sample *sample,
2519				       struct machine *machine)
2520{
2521	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2522	struct thread *thread;
2523	struct thread_runtime *tr = NULL;
2524	/* want pid of migrated task not pid in sample */
2525	const u32 pid = evsel__intval(evsel, sample, "pid");
2526
2527	thread = machine__findnew_thread(machine, 0, pid);
2528	if (thread == NULL)
2529		return -1;
2530
2531	tr = thread__get_runtime(thread);
2532	if (tr == NULL)
2533		return -1;
2534
2535	tr->migrations++;
 
2536
2537	/* show migrations if requested */
2538	timehist_print_migration_event(sched, evsel, sample, machine, thread);
 
 
 
2539
2540	return 0;
2541}
2542
2543static int timehist_sched_change_event(struct perf_tool *tool,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544				       union perf_event *event,
2545				       struct evsel *evsel,
2546				       struct perf_sample *sample,
2547				       struct machine *machine)
2548{
2549	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2550	struct perf_time_interval *ptime = &sched->ptime;
2551	struct addr_location al;
2552	struct thread *thread;
2553	struct thread_runtime *tr = NULL;
2554	u64 tprev, t = sample->time;
2555	int rc = 0;
2556	const char state = evsel__taskstate(evsel, sample, "prev_state");
2557
2558	addr_location__init(&al);
2559	if (machine__resolve(machine, &al, sample) < 0) {
2560		pr_err("problem processing %d event. skipping it\n",
2561		       event->header.type);
2562		rc = -1;
2563		goto out;
2564	}
2565
 
 
 
2566	thread = timehist_get_thread(sched, sample, machine, evsel);
2567	if (thread == NULL) {
2568		rc = -1;
2569		goto out;
2570	}
2571
2572	if (timehist_skip_sample(sched, thread, evsel, sample))
2573		goto out;
2574
2575	tr = thread__get_runtime(thread);
2576	if (tr == NULL) {
2577		rc = -1;
2578		goto out;
2579	}
2580
2581	tprev = evsel__get_time(evsel, sample->cpu);
2582
2583	/*
2584	 * If start time given:
2585	 * - sample time is under window user cares about - skip sample
2586	 * - tprev is under window user cares about  - reset to start of window
2587	 */
2588	if (ptime->start && ptime->start > t)
2589		goto out;
2590
2591	if (tprev && ptime->start > tprev)
2592		tprev = ptime->start;
2593
2594	/*
2595	 * If end time given:
2596	 * - previous sched event is out of window - we are done
2597	 * - sample time is beyond window user cares about - reset it
2598	 *   to close out stats for time window interest
 
 
 
2599	 */
2600	if (ptime->end) {
2601		if (tprev > ptime->end)
2602			goto out;
2603
2604		if (t > ptime->end)
2605			t = ptime->end;
2606	}
2607
2608	if (!sched->idle_hist || thread__tid(thread) == 0) {
2609		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2610			timehist_update_runtime_stats(tr, t, tprev);
2611
2612		if (sched->idle_hist) {
2613			struct idle_thread_runtime *itr = (void *)tr;
2614			struct thread_runtime *last_tr;
2615
2616			BUG_ON(thread__tid(thread) != 0);
2617
2618			if (itr->last_thread == NULL)
2619				goto out;
2620
2621			/* add current idle time as last thread's runtime */
2622			last_tr = thread__get_runtime(itr->last_thread);
2623			if (last_tr == NULL)
2624				goto out;
2625
2626			timehist_update_runtime_stats(last_tr, t, tprev);
2627			/*
2628			 * remove delta time of last thread as it's not updated
2629			 * and otherwise it will show an invalid value next
2630			 * time.  we only care total run time and run stat.
2631			 */
2632			last_tr->dt_run = 0;
2633			last_tr->dt_delay = 0;
2634			last_tr->dt_sleep = 0;
2635			last_tr->dt_iowait = 0;
2636			last_tr->dt_preempt = 0;
2637
2638			if (itr->cursor.nr)
2639				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2640
2641			itr->last_thread = NULL;
2642		}
2643	}
2644
2645	if (!sched->summary_only)
2646		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
 
2647
2648out:
2649	if (sched->hist_time.start == 0 && t >= ptime->start)
2650		sched->hist_time.start = t;
2651	if (ptime->end == 0 || t <= ptime->end)
2652		sched->hist_time.end = t;
2653
2654	if (tr) {
2655		/* time of this sched_switch event becomes last time task seen */
2656		tr->last_time = sample->time;
2657
2658		/* last state is used to determine where to account wait time */
2659		tr->last_state = state;
2660
2661		/* sched out event for task so reset ready to run time */
2662		tr->ready_to_run = 0;
 
 
 
 
 
2663	}
2664
2665	evsel__save_time(evsel, sample->time, sample->cpu);
2666
2667	addr_location__exit(&al);
2668	return rc;
2669}
2670
2671static int timehist_sched_switch_event(struct perf_tool *tool,
2672			     union perf_event *event,
2673			     struct evsel *evsel,
2674			     struct perf_sample *sample,
2675			     struct machine *machine __maybe_unused)
2676{
2677	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2678}
2679
2680static int process_lost(struct perf_tool *tool __maybe_unused,
2681			union perf_event *event,
2682			struct perf_sample *sample,
2683			struct machine *machine __maybe_unused)
2684{
2685	char tstr[64];
2686
2687	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2688	printf("%15s ", tstr);
2689	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2690
2691	return 0;
2692}
2693
2694
2695static void print_thread_runtime(struct thread *t,
2696				 struct thread_runtime *r)
2697{
2698	double mean = avg_stats(&r->run_stats);
2699	float stddev;
2700
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2707	print_sched_time(r->run_stats.min, 6);
2708	printf(" ");
2709	print_sched_time((u64) mean, 6);
2710	printf(" ");
2711	print_sched_time(r->run_stats.max, 6);
2712	printf("  ");
2713	printf("%5.2f", stddev);
2714	printf("   %5" PRIu64, r->migrations);
2715	printf("\n");
2716}
2717
2718static void print_thread_waittime(struct thread *t,
2719				  struct thread_runtime *r)
2720{
2721	printf("%*s   %5d  %9" PRIu64 " ",
2722	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2723	       (u64) r->run_stats.n);
2724
2725	print_sched_time(r->total_run_time, 8);
2726	print_sched_time(r->total_sleep_time, 6);
2727	printf(" ");
2728	print_sched_time(r->total_iowait_time, 6);
2729	printf(" ");
2730	print_sched_time(r->total_preempt_time, 6);
2731	printf(" ");
2732	print_sched_time(r->total_delay_time, 6);
2733	printf("\n");
2734}
2735
2736struct total_run_stats {
2737	struct perf_sched *sched;
2738	u64  sched_count;
2739	u64  task_count;
2740	u64  total_run_time;
2741};
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745	struct total_run_stats *stats = priv;
2746	struct thread_runtime *r;
2747
2748	if (thread__is_filtered(t))
2749		return 0;
2750
2751	r = thread__priv(t);
2752	if (r && r->run_stats.n) {
2753		stats->task_count++;
2754		stats->sched_count += r->run_stats.n;
2755		stats->total_run_time += r->total_run_time;
2756
2757		if (stats->sched->show_state)
2758			print_thread_waittime(t, r);
2759		else
2760			print_thread_runtime(t, r);
2761	}
2762
2763	return 0;
2764}
2765
2766static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2767{
2768	const char *sep = " <- ";
2769	struct callchain_list *chain;
2770	size_t ret = 0;
2771	char bf[1024];
2772	bool first;
2773
2774	if (node == NULL)
2775		return 0;
2776
2777	ret = callchain__fprintf_folded(fp, node->parent);
2778	first = (ret == 0);
2779
2780	list_for_each_entry(chain, &node->val, list) {
2781		if (chain->ip >= PERF_CONTEXT_MAX)
2782			continue;
2783		if (chain->ms.sym && chain->ms.sym->ignore)
2784			continue;
2785		ret += fprintf(fp, "%s%s", first ? "" : sep,
2786			       callchain_list__sym_name(chain, bf, sizeof(bf),
2787							false));
2788		first = false;
2789	}
2790
2791	return ret;
2792}
2793
2794static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2795{
2796	size_t ret = 0;
2797	FILE *fp = stdout;
2798	struct callchain_node *chain;
2799	struct rb_node *rb_node = rb_first_cached(root);
2800
2801	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2802	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2803	       graph_dotted_line);
2804
2805	while (rb_node) {
2806		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2807		rb_node = rb_next(rb_node);
2808
2809		ret += fprintf(fp, "  ");
2810		print_sched_time(chain->hit, 12);
2811		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2812		ret += fprintf(fp, " %8d  ", chain->count);
2813		ret += callchain__fprintf_folded(fp, chain);
2814		ret += fprintf(fp, "\n");
2815	}
2816
2817	return ret;
2818}
2819
2820static void timehist_print_summary(struct perf_sched *sched,
2821				   struct perf_session *session)
2822{
2823	struct machine *m = &session->machines.host;
2824	struct total_run_stats totals;
2825	u64 task_count;
2826	struct thread *t;
2827	struct thread_runtime *r;
2828	int i;
2829	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2830
2831	memset(&totals, 0, sizeof(totals));
2832	totals.sched = sched;
2833
2834	if (sched->idle_hist) {
2835		printf("\nIdle-time summary\n");
2836		printf("%*s  parent  sched-out  ", comm_width, "comm");
2837		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2838	} else if (sched->show_state) {
2839		printf("\nWait-time summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time      sleep      iowait     preempt       delay\n");
2842	} else {
2843		printf("\nRuntime summary\n");
2844		printf("%*s  parent   sched-in  ", comm_width, "comm");
2845		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2846	}
2847	printf("%*s            (count)  ", comm_width, "");
2848	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2849	       sched->show_state ? "(msec)" : "%");
2850	printf("%.117s\n", graph_dotted_line);
2851
2852	machine__for_each_thread(m, show_thread_runtime, &totals);
2853	task_count = totals.task_count;
2854	if (!task_count)
2855		printf("<no still running tasks>\n");
2856
2857	/* CPU idle stats not tracked when samples were skipped */
2858	if (sched->skipped_samples && !sched->idle_hist)
2859		return;
2860
2861	printf("\nIdle stats:\n");
2862	for (i = 0; i < idle_max_cpu; ++i) {
2863		if (cpu_list && !test_bit(i, cpu_bitmap))
2864			continue;
2865
2866		t = idle_threads[i];
2867		if (!t)
2868			continue;
2869
2870		r = thread__priv(t);
2871		if (r && r->run_stats.n) {
2872			totals.sched_count += r->run_stats.n;
2873			printf("    CPU %2d idle for ", i);
2874			print_sched_time(r->total_run_time, 6);
2875			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2876		} else
2877			printf("    CPU %2d idle entire time window\n", i);
2878	}
2879
2880	if (sched->idle_hist && sched->show_callchain) {
2881		callchain_param.mode  = CHAIN_FOLDED;
2882		callchain_param.value = CCVAL_PERIOD;
2883
2884		callchain_register_param(&callchain_param);
2885
2886		printf("\nIdle stats by callchain:\n");
2887		for (i = 0; i < idle_max_cpu; ++i) {
2888			struct idle_thread_runtime *itr;
2889
2890			t = idle_threads[i];
2891			if (!t)
2892				continue;
2893
2894			itr = thread__priv(t);
2895			if (itr == NULL)
2896				continue;
2897
2898			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2899					     0, &callchain_param);
2900
2901			printf("  CPU %2d:", i);
2902			print_sched_time(itr->tr.total_run_time, 6);
2903			printf(" msec\n");
2904			timehist_print_idlehist_callchain(&itr->sorted_root);
2905			printf("\n");
2906		}
2907	}
2908
2909	printf("\n"
2910	       "    Total number of unique tasks: %" PRIu64 "\n"
2911	       "Total number of context switches: %" PRIu64 "\n",
2912	       totals.task_count, totals.sched_count);
2913
2914	printf("           Total run time (msec): ");
2915	print_sched_time(totals.total_run_time, 2);
2916	printf("\n");
2917
2918	printf("    Total scheduling time (msec): ");
2919	print_sched_time(hist_time, 2);
2920	printf(" (x %d)\n", sched->max_cpu.cpu);
2921}
2922
2923typedef int (*sched_handler)(struct perf_tool *tool,
2924			  union perf_event *event,
2925			  struct evsel *evsel,
2926			  struct perf_sample *sample,
2927			  struct machine *machine);
2928
2929static int perf_timehist__process_sample(struct perf_tool *tool,
2930					 union perf_event *event,
2931					 struct perf_sample *sample,
2932					 struct evsel *evsel,
2933					 struct machine *machine)
2934{
2935	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2936	int err = 0;
2937	struct perf_cpu this_cpu = {
2938		.cpu = sample->cpu,
2939	};
2940
2941	if (this_cpu.cpu > sched->max_cpu.cpu)
2942		sched->max_cpu = this_cpu;
2943
2944	if (evsel->handler != NULL) {
2945		sched_handler f = evsel->handler;
2946
2947		err = f(tool, event, evsel, sample, machine);
2948	}
2949
2950	return err;
2951}
2952
2953static int timehist_check_attr(struct perf_sched *sched,
2954			       struct evlist *evlist)
2955{
2956	struct evsel *evsel;
2957	struct evsel_runtime *er;
2958
2959	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2960		er = evsel__get_runtime(evsel);
2961		if (er == NULL) {
2962			pr_err("Failed to allocate memory for evsel runtime data\n");
2963			return -1;
2964		}
2965
2966		/* only need to save callchain related to sched_switch event */
2967		if (sched->show_callchain &&
2968		    evsel__name_is(evsel, "sched:sched_switch") &&
2969		    !evsel__has_callchain(evsel)) {
2970			pr_info("Samples of sched_switch event do not have callchains.\n");
2971			sched->show_callchain = 0;
2972			symbol_conf.use_callchain = 0;
2973		}
2974	}
2975
2976	return 0;
2977}
2978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979static int perf_sched__timehist(struct perf_sched *sched)
2980{
2981	struct evsel_str_handler handlers[] = {
2982		{ "sched:sched_switch",       timehist_sched_switch_event, },
2983		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2984		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2985		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2986	};
2987	const struct evsel_str_handler migrate_handlers[] = {
2988		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2989	};
2990	struct perf_data data = {
2991		.path  = input_name,
2992		.mode  = PERF_DATA_MODE_READ,
2993		.force = sched->force,
2994	};
2995
2996	struct perf_session *session;
2997	struct evlist *evlist;
2998	int err = -1;
2999
3000	/*
3001	 * event handlers for timehist option
3002	 */
3003	sched->tool.sample	 = perf_timehist__process_sample;
3004	sched->tool.mmap	 = perf_event__process_mmap;
3005	sched->tool.comm	 = perf_event__process_comm;
3006	sched->tool.exit	 = perf_event__process_exit;
3007	sched->tool.fork	 = perf_event__process_fork;
3008	sched->tool.lost	 = process_lost;
3009	sched->tool.attr	 = perf_event__process_attr;
3010	sched->tool.tracing_data = perf_event__process_tracing_data;
3011	sched->tool.build_id	 = perf_event__process_build_id;
3012
3013	sched->tool.ordered_events = true;
3014	sched->tool.ordering_requires_timestamps = true;
3015
3016	symbol_conf.use_callchain = sched->show_callchain;
3017
3018	session = perf_session__new(&data, &sched->tool);
3019	if (IS_ERR(session))
3020		return PTR_ERR(session);
3021
3022	if (cpu_list) {
3023		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3024		if (err < 0)
3025			goto out;
3026	}
3027
3028	evlist = session->evlist;
3029
3030	symbol__init(&session->header.env);
3031
3032	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3033		pr_err("Invalid time string\n");
3034		return -EINVAL;
 
3035	}
3036
3037	if (timehist_check_attr(sched, evlist) != 0)
3038		goto out;
3039
 
 
 
 
 
3040	setup_pager();
3041
3042	/* prefer sched_waking if it is captured */
3043	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3044		handlers[1].handler = timehist_sched_wakeup_ignore;
3045
3046	/* setup per-evsel handlers */
3047	if (perf_session__set_tracepoints_handlers(session, handlers))
3048		goto out;
3049
3050	/* sched_switch event at a minimum needs to exist */
3051	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3052		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3053		goto out;
3054	}
3055
3056	if (sched->show_migrations &&
3057	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3058		goto out;
3059
3060	/* pre-allocate struct for per-CPU idle stats */
3061	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3062	if (sched->max_cpu.cpu == 0)
3063		sched->max_cpu.cpu = 4;
3064	if (init_idle_threads(sched->max_cpu.cpu))
3065		goto out;
3066
3067	/* summary_only implies summary option, but don't overwrite summary if set */
3068	if (sched->summary_only)
3069		sched->summary = sched->summary_only;
3070
3071	if (!sched->summary_only)
3072		timehist_header(sched);
3073
3074	err = perf_session__process_events(session);
3075	if (err) {
3076		pr_err("Failed to process events, error %d", err);
3077		goto out;
3078	}
3079
3080	sched->nr_events      = evlist->stats.nr_events[0];
3081	sched->nr_lost_events = evlist->stats.total_lost;
3082	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3083
3084	if (sched->summary)
3085		timehist_print_summary(sched, session);
3086
3087out:
3088	free_idle_threads();
3089	perf_session__delete(session);
3090
3091	return err;
3092}
3093
3094
3095static void print_bad_events(struct perf_sched *sched)
3096{
3097	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3098		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3099			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3100			sched->nr_unordered_timestamps, sched->nr_timestamps);
3101	}
3102	if (sched->nr_lost_events && sched->nr_events) {
3103		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3104			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3105			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3106	}
3107	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3108		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3109			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3110			sched->nr_context_switch_bugs, sched->nr_timestamps);
3111		if (sched->nr_lost_events)
3112			printf(" (due to lost events?)");
3113		printf("\n");
3114	}
3115}
3116
3117static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3118{
3119	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3120	struct work_atoms *this;
3121	const char *comm = thread__comm_str(data->thread), *this_comm;
3122	bool leftmost = true;
3123
3124	while (*new) {
3125		int cmp;
3126
3127		this = container_of(*new, struct work_atoms, node);
3128		parent = *new;
3129
3130		this_comm = thread__comm_str(this->thread);
3131		cmp = strcmp(comm, this_comm);
3132		if (cmp > 0) {
3133			new = &((*new)->rb_left);
3134		} else if (cmp < 0) {
3135			new = &((*new)->rb_right);
3136			leftmost = false;
3137		} else {
3138			this->num_merged++;
3139			this->total_runtime += data->total_runtime;
3140			this->nb_atoms += data->nb_atoms;
3141			this->total_lat += data->total_lat;
3142			list_splice(&data->work_list, &this->work_list);
3143			if (this->max_lat < data->max_lat) {
3144				this->max_lat = data->max_lat;
3145				this->max_lat_start = data->max_lat_start;
3146				this->max_lat_end = data->max_lat_end;
3147			}
3148			zfree(&data);
3149			return;
3150		}
3151	}
3152
3153	data->num_merged++;
3154	rb_link_node(&data->node, parent, new);
3155	rb_insert_color_cached(&data->node, root, leftmost);
3156}
3157
3158static void perf_sched__merge_lat(struct perf_sched *sched)
3159{
3160	struct work_atoms *data;
3161	struct rb_node *node;
3162
3163	if (sched->skip_merge)
3164		return;
3165
3166	while ((node = rb_first_cached(&sched->atom_root))) {
3167		rb_erase_cached(node, &sched->atom_root);
3168		data = rb_entry(node, struct work_atoms, node);
3169		__merge_work_atoms(&sched->merged_atom_root, data);
3170	}
3171}
3172
3173static int setup_cpus_switch_event(struct perf_sched *sched)
3174{
3175	unsigned int i;
3176
3177	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3178	if (!sched->cpu_last_switched)
3179		return -1;
3180
3181	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3182	if (!sched->curr_pid) {
3183		zfree(&sched->cpu_last_switched);
3184		return -1;
3185	}
3186
3187	for (i = 0; i < MAX_CPUS; i++)
3188		sched->curr_pid[i] = -1;
3189
3190	return 0;
3191}
3192
3193static void free_cpus_switch_event(struct perf_sched *sched)
3194{
3195	zfree(&sched->curr_pid);
3196	zfree(&sched->cpu_last_switched);
3197}
3198
3199static int perf_sched__lat(struct perf_sched *sched)
3200{
3201	int rc = -1;
3202	struct rb_node *next;
3203
3204	setup_pager();
3205
3206	if (setup_cpus_switch_event(sched))
3207		return rc;
3208
3209	if (perf_sched__read_events(sched))
3210		goto out_free_cpus_switch_event;
3211
3212	perf_sched__merge_lat(sched);
3213	perf_sched__sort_lat(sched);
3214
3215	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3216	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3217	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3218
3219	next = rb_first_cached(&sched->sorted_atom_root);
3220
3221	while (next) {
3222		struct work_atoms *work_list;
3223
3224		work_list = rb_entry(next, struct work_atoms, node);
3225		output_lat_thread(sched, work_list);
3226		next = rb_next(next);
3227		thread__zput(work_list->thread);
3228	}
3229
3230	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3231	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3232		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3233
3234	printf(" ---------------------------------------------------\n");
3235
3236	print_bad_events(sched);
3237	printf("\n");
3238
3239	rc = 0;
3240
3241out_free_cpus_switch_event:
3242	free_cpus_switch_event(sched);
3243	return rc;
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
3248	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3249
3250	if (sched->map.comp) {
3251		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3252		if (!sched->map.comp_cpus)
3253			return -1;
3254	}
3255
3256	if (sched->map.cpus_str) {
3257		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3258		if (!sched->map.cpus) {
3259			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3260			zfree(&sched->map.comp_cpus);
3261			return -1;
3262		}
3263	}
3264
3265	return 0;
3266}
3267
3268static int setup_color_pids(struct perf_sched *sched)
3269{
3270	struct perf_thread_map *map;
3271
3272	if (!sched->map.color_pids_str)
3273		return 0;
3274
3275	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3276	if (!map) {
3277		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3278		return -1;
3279	}
3280
3281	sched->map.color_pids = map;
3282	return 0;
3283}
3284
3285static int setup_color_cpus(struct perf_sched *sched)
3286{
3287	struct perf_cpu_map *map;
3288
3289	if (!sched->map.color_cpus_str)
3290		return 0;
3291
3292	map = perf_cpu_map__new(sched->map.color_cpus_str);
3293	if (!map) {
3294		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3295		return -1;
3296	}
3297
3298	sched->map.color_cpus = map;
3299	return 0;
3300}
3301
3302static int perf_sched__map(struct perf_sched *sched)
3303{
3304	int rc = -1;
3305
3306	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3307	if (!sched->curr_thread)
3308		return rc;
3309
 
 
 
 
3310	if (setup_cpus_switch_event(sched))
3311		goto out_free_curr_thread;
3312
3313	if (setup_map_cpus(sched))
3314		goto out_free_cpus_switch_event;
3315
3316	if (setup_color_pids(sched))
3317		goto out_put_map_cpus;
3318
3319	if (setup_color_cpus(sched))
3320		goto out_put_color_pids;
3321
3322	setup_pager();
3323	if (perf_sched__read_events(sched))
3324		goto out_put_color_cpus;
3325
3326	rc = 0;
3327	print_bad_events(sched);
3328
3329out_put_color_cpus:
3330	perf_cpu_map__put(sched->map.color_cpus);
3331
3332out_put_color_pids:
3333	perf_thread_map__put(sched->map.color_pids);
3334
3335out_put_map_cpus:
3336	zfree(&sched->map.comp_cpus);
3337	perf_cpu_map__put(sched->map.cpus);
3338
3339out_free_cpus_switch_event:
3340	free_cpus_switch_event(sched);
3341
3342out_free_curr_thread:
3343	zfree(&sched->curr_thread);
3344	return rc;
3345}
3346
3347static int perf_sched__replay(struct perf_sched *sched)
3348{
3349	int ret;
3350	unsigned long i;
3351
3352	mutex_init(&sched->start_work_mutex);
3353	mutex_init(&sched->work_done_wait_mutex);
3354
3355	ret = setup_cpus_switch_event(sched);
3356	if (ret)
3357		goto out_mutex_destroy;
3358
3359	calibrate_run_measurement_overhead(sched);
3360	calibrate_sleep_measurement_overhead(sched);
3361
3362	test_calibrations(sched);
3363
3364	ret = perf_sched__read_events(sched);
3365	if (ret)
3366		goto out_free_cpus_switch_event;
3367
3368	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3369	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3370	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3371
3372	if (sched->targetless_wakeups)
3373		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3374	if (sched->multitarget_wakeups)
3375		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3376	if (sched->nr_run_events_optimized)
3377		printf("run atoms optimized: %ld\n",
3378			sched->nr_run_events_optimized);
3379
3380	print_task_traces(sched);
3381	add_cross_task_wakeups(sched);
3382
3383	sched->thread_funcs_exit = false;
3384	create_tasks(sched);
3385	printf("------------------------------------------------------------\n");
 
 
 
3386	for (i = 0; i < sched->replay_repeat; i++)
3387		run_one_test(sched);
3388
3389	sched->thread_funcs_exit = true;
3390	destroy_tasks(sched);
3391
3392out_free_cpus_switch_event:
3393	free_cpus_switch_event(sched);
3394
3395out_mutex_destroy:
3396	mutex_destroy(&sched->start_work_mutex);
3397	mutex_destroy(&sched->work_done_wait_mutex);
3398	return ret;
3399}
3400
3401static void setup_sorting(struct perf_sched *sched, const struct option *options,
3402			  const char * const usage_msg[])
3403{
3404	char *tmp, *tok, *str = strdup(sched->sort_order);
3405
3406	for (tok = strtok_r(str, ", ", &tmp);
3407			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3408		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3409			usage_with_options_msg(usage_msg, options,
3410					"Unknown --sort key: `%s'", tok);
3411		}
3412	}
3413
3414	free(str);
3415
3416	sort_dimension__add("pid", &sched->cmp_pid);
3417}
3418
3419static bool schedstat_events_exposed(void)
3420{
3421	/*
3422	 * Select "sched:sched_stat_wait" event to check
3423	 * whether schedstat tracepoints are exposed.
3424	 */
3425	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3426		false : true;
3427}
3428
3429static int __cmd_record(int argc, const char **argv)
3430{
3431	unsigned int rec_argc, i, j;
3432	char **rec_argv;
3433	const char **rec_argv_copy;
3434	const char * const record_args[] = {
3435		"record",
3436		"-a",
3437		"-R",
3438		"-m", "1024",
3439		"-c", "1",
3440		"-e", "sched:sched_switch",
3441		"-e", "sched:sched_stat_runtime",
3442		"-e", "sched:sched_process_fork",
3443		"-e", "sched:sched_wakeup_new",
3444		"-e", "sched:sched_migrate_task",
3445	};
3446
3447	/*
3448	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3449	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3450	 * to prevent "perf sched record" execution failure, determine
3451	 * whether to record schedstat events according to actual situation.
3452	 */
3453	const char * const schedstat_args[] = {
3454		"-e", "sched:sched_stat_wait",
3455		"-e", "sched:sched_stat_sleep",
3456		"-e", "sched:sched_stat_iowait",
3457	};
3458	unsigned int schedstat_argc = schedstat_events_exposed() ?
3459		ARRAY_SIZE(schedstat_args) : 0;
3460
3461	struct tep_event *waking_event;
3462	int ret;
3463
3464	/*
3465	 * +2 for either "-e", "sched:sched_wakeup" or
3466	 * "-e", "sched:sched_waking"
3467	 */
3468	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3469	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3470	if (rec_argv == NULL)
3471		return -ENOMEM;
3472	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3473	if (rec_argv_copy == NULL) {
3474		free(rec_argv);
3475		return -ENOMEM;
3476	}
3477
3478	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3479		rec_argv[i] = strdup(record_args[i]);
3480
3481	rec_argv[i++] = strdup("-e");
3482	waking_event = trace_event__tp_format("sched", "sched_waking");
3483	if (!IS_ERR(waking_event))
3484		rec_argv[i++] = strdup("sched:sched_waking");
3485	else
3486		rec_argv[i++] = strdup("sched:sched_wakeup");
3487
3488	for (j = 0; j < schedstat_argc; j++)
3489		rec_argv[i++] = strdup(schedstat_args[j]);
3490
3491	for (j = 1; j < (unsigned int)argc; j++, i++)
3492		rec_argv[i] = strdup(argv[j]);
3493
3494	BUG_ON(i != rec_argc);
3495
3496	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3497	ret = cmd_record(rec_argc, rec_argv_copy);
3498
3499	for (i = 0; i < rec_argc; i++)
3500		free(rec_argv[i]);
3501	free(rec_argv);
3502	free(rec_argv_copy);
3503
3504	return ret;
3505}
3506
3507int cmd_sched(int argc, const char **argv)
3508{
3509	static const char default_sort_order[] = "avg, max, switch, runtime";
3510	struct perf_sched sched = {
3511		.tool = {
3512			.sample		 = perf_sched__process_tracepoint_sample,
3513			.comm		 = perf_sched__process_comm,
3514			.namespaces	 = perf_event__process_namespaces,
3515			.lost		 = perf_event__process_lost,
3516			.fork		 = perf_sched__process_fork_event,
3517			.ordered_events = true,
3518		},
3519		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3520		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3521		.sort_order	      = default_sort_order,
3522		.replay_repeat	      = 10,
3523		.profile_cpu	      = -1,
3524		.next_shortname1      = 'A',
3525		.next_shortname2      = '0',
3526		.skip_merge           = 0,
3527		.show_callchain	      = 1,
3528		.max_stack            = 5,
3529	};
3530	const struct option sched_options[] = {
3531	OPT_STRING('i', "input", &input_name, "file",
3532		    "input file name"),
3533	OPT_INCR('v', "verbose", &verbose,
3534		    "be more verbose (show symbol address, etc)"),
3535	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3536		    "dump raw trace in ASCII"),
3537	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3538	OPT_END()
3539	};
3540	const struct option latency_options[] = {
3541	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3542		   "sort by key(s): runtime, switch, avg, max"),
3543	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3544		    "CPU to profile on"),
3545	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3546		    "latency stats per pid instead of per comm"),
3547	OPT_PARENT(sched_options)
3548	};
3549	const struct option replay_options[] = {
3550	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3551		     "repeat the workload replay N times (-1: infinite)"),
3552	OPT_PARENT(sched_options)
3553	};
3554	const struct option map_options[] = {
3555	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3556		    "map output in compact mode"),
3557	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3558		   "highlight given pids in map"),
3559	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3560                    "highlight given CPUs in map"),
3561	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3562                    "display given CPUs in map"),
 
 
 
 
3563	OPT_PARENT(sched_options)
3564	};
3565	const struct option timehist_options[] = {
3566	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3567		   "file", "vmlinux pathname"),
3568	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3569		   "file", "kallsyms pathname"),
3570	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3571		    "Display call chains if present (default on)"),
3572	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3573		   "Maximum number of functions to display backtrace."),
3574	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3575		    "Look for files with symbols relative to this directory"),
3576	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3577		    "Show only syscall summary with statistics"),
3578	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3579		    "Show all syscalls and summary with statistics"),
3580	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3581	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3582	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3583	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3584	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3585	OPT_STRING(0, "time", &sched.time_str, "str",
3586		   "Time span for analysis (start,stop)"),
3587	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3588	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3589		   "analyze events only for given process id(s)"),
3590	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3591		   "analyze events only for given thread id(s)"),
3592	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
 
 
 
 
3593	OPT_PARENT(sched_options)
3594	};
3595
3596	const char * const latency_usage[] = {
3597		"perf sched latency [<options>]",
3598		NULL
3599	};
3600	const char * const replay_usage[] = {
3601		"perf sched replay [<options>]",
3602		NULL
3603	};
3604	const char * const map_usage[] = {
3605		"perf sched map [<options>]",
3606		NULL
3607	};
3608	const char * const timehist_usage[] = {
3609		"perf sched timehist [<options>]",
3610		NULL
3611	};
3612	const char *const sched_subcommands[] = { "record", "latency", "map",
3613						  "replay", "script",
3614						  "timehist", NULL };
3615	const char *sched_usage[] = {
3616		NULL,
3617		NULL
3618	};
3619	struct trace_sched_handler lat_ops  = {
3620		.wakeup_event	    = latency_wakeup_event,
3621		.switch_event	    = latency_switch_event,
3622		.runtime_event	    = latency_runtime_event,
3623		.migrate_task_event = latency_migrate_task_event,
3624	};
3625	struct trace_sched_handler map_ops  = {
3626		.switch_event	    = map_switch_event,
3627	};
3628	struct trace_sched_handler replay_ops  = {
3629		.wakeup_event	    = replay_wakeup_event,
3630		.switch_event	    = replay_switch_event,
3631		.fork_event	    = replay_fork_event,
3632	};
3633	int ret;
3634
 
 
 
 
 
 
 
3635	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3636					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3637	if (!argc)
3638		usage_with_options(sched_usage, sched_options);
3639
3640	/*
3641	 * Aliased to 'perf script' for now:
3642	 */
3643	if (!strcmp(argv[0], "script")) {
3644		return cmd_script(argc, argv);
3645	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3646		return __cmd_record(argc, argv);
3647	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3648		sched.tp_handler = &lat_ops;
3649		if (argc > 1) {
3650			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3651			if (argc)
3652				usage_with_options(latency_usage, latency_options);
3653		}
3654		setup_sorting(&sched, latency_options, latency_usage);
3655		return perf_sched__lat(&sched);
3656	} else if (!strcmp(argv[0], "map")) {
3657		if (argc) {
3658			argc = parse_options(argc, argv, map_options, map_usage, 0);
3659			if (argc)
3660				usage_with_options(map_usage, map_options);
 
 
 
 
 
 
 
 
3661		}
3662		sched.tp_handler = &map_ops;
3663		setup_sorting(&sched, latency_options, latency_usage);
3664		return perf_sched__map(&sched);
3665	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3666		sched.tp_handler = &replay_ops;
3667		if (argc) {
3668			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3669			if (argc)
3670				usage_with_options(replay_usage, replay_options);
3671		}
3672		return perf_sched__replay(&sched);
3673	} else if (!strcmp(argv[0], "timehist")) {
3674		if (argc) {
3675			argc = parse_options(argc, argv, timehist_options,
3676					     timehist_usage, 0);
3677			if (argc)
3678				usage_with_options(timehist_usage, timehist_options);
3679		}
3680		if ((sched.show_wakeups || sched.show_next) &&
3681		    sched.summary_only) {
3682			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3683			parse_options_usage(timehist_usage, timehist_options, "s", true);
3684			if (sched.show_wakeups)
3685				parse_options_usage(NULL, timehist_options, "w", true);
3686			if (sched.show_next)
3687				parse_options_usage(NULL, timehist_options, "n", true);
3688			return -EINVAL;
3689		}
3690		ret = symbol__validate_sym_arguments();
3691		if (ret)
3692			return ret;
3693
3694		return perf_sched__timehist(&sched);
3695	} else {
3696		usage_with_options(sched_usage, sched_options);
3697	}
 
 
 
3698
3699	return 0;
3700}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54#define MAX_PRIO		140
  55
  56static const char *cpu_list;
  57static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  58
  59struct sched_atom;
  60
  61struct task_desc {
  62	unsigned long		nr;
  63	unsigned long		pid;
  64	char			comm[COMM_LEN];
  65
  66	unsigned long		nr_events;
  67	unsigned long		curr_event;
  68	struct sched_atom	**atoms;
  69
  70	pthread_t		thread;
 
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
 
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
 
  86	u64			timestamp;
  87	u64			duration;
  88	unsigned long		nr;
  89	sem_t			*wait_sem;
  90	struct task_desc	*wakee;
  91};
  92
  93enum thread_state {
  94	THREAD_SLEEPING = 0,
  95	THREAD_WAIT_CPU,
  96	THREAD_SCHED_IN,
  97	THREAD_IGNORE
  98};
  99
 100struct work_atom {
 101	struct list_head	list;
 102	enum thread_state	state;
 103	u64			sched_out_time;
 104	u64			wake_up_time;
 105	u64			sched_in_time;
 106	u64			runtime;
 107};
 108
 109struct work_atoms {
 110	struct list_head	work_list;
 111	struct thread		*thread;
 112	struct rb_node		node;
 113	u64			max_lat;
 114	u64			max_lat_start;
 115	u64			max_lat_end;
 116	u64			total_lat;
 117	u64			nb_atoms;
 118	u64			total_runtime;
 119	int			num_merged;
 120};
 121
 122typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 123
 124struct perf_sched;
 125
 126struct trace_sched_handler {
 127	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 128			    struct perf_sample *sample, struct machine *machine);
 129
 130	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 131			     struct perf_sample *sample, struct machine *machine);
 132
 133	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 134			    struct perf_sample *sample, struct machine *machine);
 135
 136	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 137	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 138			  struct machine *machine);
 139
 140	int (*migrate_task_event)(struct perf_sched *sched,
 141				  struct evsel *evsel,
 142				  struct perf_sample *sample,
 143				  struct machine *machine);
 144};
 145
 146#define COLOR_PIDS PERF_COLOR_BLUE
 147#define COLOR_CPUS PERF_COLOR_BG_RED
 148
 149struct perf_sched_map {
 150	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 151	struct perf_cpu		*comp_cpus;
 152	bool			 comp;
 153	struct perf_thread_map *color_pids;
 154	const char		*color_pids_str;
 155	struct perf_cpu_map	*color_cpus;
 156	const char		*color_cpus_str;
 157	const char		*task_name;
 158	struct strlist		*task_names;
 159	bool			fuzzy;
 160	struct perf_cpu_map	*cpus;
 161	const char		*cpus_str;
 162};
 163
 164struct perf_sched {
 165	struct perf_tool tool;
 166	const char	 *sort_order;
 167	unsigned long	 nr_tasks;
 168	struct task_desc **pid_to_task;
 169	struct task_desc **tasks;
 170	const struct trace_sched_handler *tp_handler;
 171	struct mutex	 start_work_mutex;
 172	struct mutex	 work_done_wait_mutex;
 173	int		 profile_cpu;
 174/*
 175 * Track the current task - that way we can know whether there's any
 176 * weird events, such as a task being switched away that is not current.
 177 */
 178	struct perf_cpu	 max_cpu;
 179	u32		 *curr_pid;
 180	struct thread	 **curr_thread;
 181	struct thread	 **curr_out_thread;
 182	char		 next_shortname1;
 183	char		 next_shortname2;
 184	unsigned int	 replay_repeat;
 185	unsigned long	 nr_run_events;
 186	unsigned long	 nr_sleep_events;
 187	unsigned long	 nr_wakeup_events;
 188	unsigned long	 nr_sleep_corrections;
 189	unsigned long	 nr_run_events_optimized;
 190	unsigned long	 targetless_wakeups;
 191	unsigned long	 multitarget_wakeups;
 192	unsigned long	 nr_runs;
 193	unsigned long	 nr_timestamps;
 194	unsigned long	 nr_unordered_timestamps;
 195	unsigned long	 nr_context_switch_bugs;
 196	unsigned long	 nr_events;
 197	unsigned long	 nr_lost_chunks;
 198	unsigned long	 nr_lost_events;
 199	u64		 run_measurement_overhead;
 200	u64		 sleep_measurement_overhead;
 201	u64		 start_time;
 202	u64		 cpu_usage;
 203	u64		 runavg_cpu_usage;
 204	u64		 parent_cpu_usage;
 205	u64		 runavg_parent_cpu_usage;
 206	u64		 sum_runtime;
 207	u64		 sum_fluct;
 208	u64		 run_avg;
 209	u64		 all_runtime;
 210	u64		 all_count;
 211	u64		 *cpu_last_switched;
 212	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 213	struct list_head sort_list, cmp_pid;
 214	bool force;
 215	bool skip_merge;
 216	struct perf_sched_map map;
 217
 218	/* options for timehist command */
 219	bool		summary;
 220	bool		summary_only;
 221	bool		idle_hist;
 222	bool		show_callchain;
 223	unsigned int	max_stack;
 224	bool		show_cpu_visual;
 225	bool		show_wakeups;
 226	bool		show_next;
 227	bool		show_migrations;
 228	bool		pre_migrations;
 229	bool		show_state;
 230	bool		show_prio;
 231	u64		skipped_samples;
 232	const char	*time_str;
 233	struct perf_time_interval ptime;
 234	struct perf_time_interval hist_time;
 235	volatile bool   thread_funcs_exit;
 236	const char	*prio_str;
 237	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
 238};
 239
 240/* per thread run time data */
 241struct thread_runtime {
 242	u64 last_time;      /* time of previous sched in/out event */
 243	u64 dt_run;         /* run time */
 244	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 245	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 246	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 247	u64 dt_delay;       /* time between wakeup and sched-in */
 248	u64 dt_pre_mig;     /* time between migration and wakeup */
 249	u64 ready_to_run;   /* time of wakeup */
 250	u64 migrated;	    /* time when a thread is migrated */
 251
 252	struct stats run_stats;
 253	u64 total_run_time;
 254	u64 total_sleep_time;
 255	u64 total_iowait_time;
 256	u64 total_preempt_time;
 257	u64 total_delay_time;
 258	u64 total_pre_mig_time;
 259
 260	char last_state;
 261
 262	char shortname[3];
 263	bool comm_changed;
 264
 265	u64 migrations;
 266
 267	int prio;
 268};
 269
 270/* per event run time data */
 271struct evsel_runtime {
 272	u64 *last_time; /* time this event was last seen per cpu */
 273	u32 ncpu;       /* highest cpu slot allocated */
 274};
 275
 276/* per cpu idle time data */
 277struct idle_thread_runtime {
 278	struct thread_runtime	tr;
 279	struct thread		*last_thread;
 280	struct rb_root_cached	sorted_root;
 281	struct callchain_root	callchain;
 282	struct callchain_cursor	cursor;
 283};
 284
 285/* track idle times per cpu */
 286static struct thread **idle_threads;
 287static int idle_max_cpu;
 288static char idle_comm[] = "<idle>";
 289
 290static u64 get_nsecs(void)
 291{
 292	struct timespec ts;
 293
 294	clock_gettime(CLOCK_MONOTONIC, &ts);
 295
 296	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 297}
 298
 299static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 300{
 301	u64 T0 = get_nsecs(), T1;
 302
 303	do {
 304		T1 = get_nsecs();
 305	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 306}
 307
 308static void sleep_nsecs(u64 nsecs)
 309{
 310	struct timespec ts;
 311
 312	ts.tv_nsec = nsecs % 999999999;
 313	ts.tv_sec = nsecs / 999999999;
 314
 315	nanosleep(&ts, NULL);
 316}
 317
 318static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 319{
 320	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 321	int i;
 322
 323	for (i = 0; i < 10; i++) {
 324		T0 = get_nsecs();
 325		burn_nsecs(sched, 0);
 326		T1 = get_nsecs();
 327		delta = T1-T0;
 328		min_delta = min(min_delta, delta);
 329	}
 330	sched->run_measurement_overhead = min_delta;
 331
 332	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 333}
 334
 335static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 336{
 337	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 338	int i;
 339
 340	for (i = 0; i < 10; i++) {
 341		T0 = get_nsecs();
 342		sleep_nsecs(10000);
 343		T1 = get_nsecs();
 344		delta = T1-T0;
 345		min_delta = min(min_delta, delta);
 346	}
 347	min_delta -= 10000;
 348	sched->sleep_measurement_overhead = min_delta;
 349
 350	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 351}
 352
 353static struct sched_atom *
 354get_new_event(struct task_desc *task, u64 timestamp)
 355{
 356	struct sched_atom *event = zalloc(sizeof(*event));
 357	unsigned long idx = task->nr_events;
 358	size_t size;
 359
 360	event->timestamp = timestamp;
 361	event->nr = idx;
 362
 363	task->nr_events++;
 364	size = sizeof(struct sched_atom *) * task->nr_events;
 365	task->atoms = realloc(task->atoms, size);
 366	BUG_ON(!task->atoms);
 367
 368	task->atoms[idx] = event;
 369
 370	return event;
 371}
 372
 373static struct sched_atom *last_event(struct task_desc *task)
 374{
 375	if (!task->nr_events)
 376		return NULL;
 377
 378	return task->atoms[task->nr_events - 1];
 379}
 380
 381static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 382				u64 timestamp, u64 duration)
 383{
 384	struct sched_atom *event, *curr_event = last_event(task);
 385
 386	/*
 387	 * optimize an existing RUN event by merging this one
 388	 * to it:
 389	 */
 390	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 391		sched->nr_run_events_optimized++;
 392		curr_event->duration += duration;
 393		return;
 394	}
 395
 396	event = get_new_event(task, timestamp);
 397
 398	event->type = SCHED_EVENT_RUN;
 399	event->duration = duration;
 400
 401	sched->nr_run_events++;
 402}
 403
 404static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 405				   u64 timestamp, struct task_desc *wakee)
 406{
 407	struct sched_atom *event, *wakee_event;
 408
 409	event = get_new_event(task, timestamp);
 410	event->type = SCHED_EVENT_WAKEUP;
 411	event->wakee = wakee;
 412
 413	wakee_event = last_event(wakee);
 414	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 415		sched->targetless_wakeups++;
 416		return;
 417	}
 418	if (wakee_event->wait_sem) {
 419		sched->multitarget_wakeups++;
 420		return;
 421	}
 422
 423	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 424	sem_init(wakee_event->wait_sem, 0, 0);
 
 425	event->wait_sem = wakee_event->wait_sem;
 426
 427	sched->nr_wakeup_events++;
 428}
 429
 430static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 431				  u64 timestamp)
 432{
 433	struct sched_atom *event = get_new_event(task, timestamp);
 434
 435	event->type = SCHED_EVENT_SLEEP;
 436
 437	sched->nr_sleep_events++;
 438}
 439
 440static struct task_desc *register_pid(struct perf_sched *sched,
 441				      unsigned long pid, const char *comm)
 442{
 443	struct task_desc *task;
 444	static int pid_max;
 445
 446	if (sched->pid_to_task == NULL) {
 447		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 448			pid_max = MAX_PID;
 449		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 450	}
 451	if (pid >= (unsigned long)pid_max) {
 452		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 453			sizeof(struct task_desc *))) == NULL);
 454		while (pid >= (unsigned long)pid_max)
 455			sched->pid_to_task[pid_max++] = NULL;
 456	}
 457
 458	task = sched->pid_to_task[pid];
 459
 460	if (task)
 461		return task;
 462
 463	task = zalloc(sizeof(*task));
 464	task->pid = pid;
 465	task->nr = sched->nr_tasks;
 466	strcpy(task->comm, comm);
 467	/*
 468	 * every task starts in sleeping state - this gets ignored
 469	 * if there's no wakeup pointing to this sleep state:
 470	 */
 471	add_sched_event_sleep(sched, task, 0);
 472
 473	sched->pid_to_task[pid] = task;
 474	sched->nr_tasks++;
 475	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 476	BUG_ON(!sched->tasks);
 477	sched->tasks[task->nr] = task;
 478
 479	if (verbose > 0)
 480		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 481
 482	return task;
 483}
 484
 485
 486static void print_task_traces(struct perf_sched *sched)
 487{
 488	struct task_desc *task;
 489	unsigned long i;
 490
 491	for (i = 0; i < sched->nr_tasks; i++) {
 492		task = sched->tasks[i];
 493		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 494			task->nr, task->comm, task->pid, task->nr_events);
 495	}
 496}
 497
 498static void add_cross_task_wakeups(struct perf_sched *sched)
 499{
 500	struct task_desc *task1, *task2;
 501	unsigned long i, j;
 502
 503	for (i = 0; i < sched->nr_tasks; i++) {
 504		task1 = sched->tasks[i];
 505		j = i + 1;
 506		if (j == sched->nr_tasks)
 507			j = 0;
 508		task2 = sched->tasks[j];
 509		add_sched_event_wakeup(sched, task1, 0, task2);
 510	}
 511}
 512
 513static void perf_sched__process_event(struct perf_sched *sched,
 514				      struct sched_atom *atom)
 515{
 516	int ret = 0;
 517
 518	switch (atom->type) {
 519		case SCHED_EVENT_RUN:
 520			burn_nsecs(sched, atom->duration);
 521			break;
 522		case SCHED_EVENT_SLEEP:
 523			if (atom->wait_sem)
 524				ret = sem_wait(atom->wait_sem);
 525			BUG_ON(ret);
 526			break;
 527		case SCHED_EVENT_WAKEUP:
 528			if (atom->wait_sem)
 529				ret = sem_post(atom->wait_sem);
 530			BUG_ON(ret);
 531			break;
 
 
 532		default:
 533			BUG_ON(1);
 534	}
 535}
 536
 537static u64 get_cpu_usage_nsec_parent(void)
 538{
 539	struct rusage ru;
 540	u64 sum;
 541	int err;
 542
 543	err = getrusage(RUSAGE_SELF, &ru);
 544	BUG_ON(err);
 545
 546	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 547	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 548
 549	return sum;
 550}
 551
 552static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 553{
 554	struct perf_event_attr attr;
 555	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 556	int fd;
 557	struct rlimit limit;
 558	bool need_privilege = false;
 559
 560	memset(&attr, 0, sizeof(attr));
 561
 562	attr.type = PERF_TYPE_SOFTWARE;
 563	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 564
 565force_again:
 566	fd = sys_perf_event_open(&attr, 0, -1, -1,
 567				 perf_event_open_cloexec_flag());
 568
 569	if (fd < 0) {
 570		if (errno == EMFILE) {
 571			if (sched->force) {
 572				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 573				limit.rlim_cur += sched->nr_tasks - cur_task;
 574				if (limit.rlim_cur > limit.rlim_max) {
 575					limit.rlim_max = limit.rlim_cur;
 576					need_privilege = true;
 577				}
 578				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 579					if (need_privilege && errno == EPERM)
 580						strcpy(info, "Need privilege\n");
 581				} else
 582					goto force_again;
 583			} else
 584				strcpy(info, "Have a try with -f option\n");
 585		}
 586		pr_err("Error: sys_perf_event_open() syscall returned "
 587		       "with %d (%s)\n%s", fd,
 588		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 589		exit(EXIT_FAILURE);
 590	}
 591	return fd;
 592}
 593
 594static u64 get_cpu_usage_nsec_self(int fd)
 595{
 596	u64 runtime;
 597	int ret;
 598
 599	ret = read(fd, &runtime, sizeof(runtime));
 600	BUG_ON(ret != sizeof(runtime));
 601
 602	return runtime;
 603}
 604
 605struct sched_thread_parms {
 606	struct task_desc  *task;
 607	struct perf_sched *sched;
 608	int fd;
 609};
 610
 611static void *thread_func(void *ctx)
 612{
 613	struct sched_thread_parms *parms = ctx;
 614	struct task_desc *this_task = parms->task;
 615	struct perf_sched *sched = parms->sched;
 616	u64 cpu_usage_0, cpu_usage_1;
 617	unsigned long i, ret;
 618	char comm2[22];
 619	int fd = parms->fd;
 620
 621	zfree(&parms);
 622
 623	sprintf(comm2, ":%s", this_task->comm);
 624	prctl(PR_SET_NAME, comm2);
 625	if (fd < 0)
 626		return NULL;
 627
 628	while (!sched->thread_funcs_exit) {
 629		ret = sem_post(&this_task->ready_for_work);
 630		BUG_ON(ret);
 631		mutex_lock(&sched->start_work_mutex);
 632		mutex_unlock(&sched->start_work_mutex);
 633
 634		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 635
 636		for (i = 0; i < this_task->nr_events; i++) {
 637			this_task->curr_event = i;
 638			perf_sched__process_event(sched, this_task->atoms[i]);
 639		}
 640
 641		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 642		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 643		ret = sem_post(&this_task->work_done_sem);
 644		BUG_ON(ret);
 645
 646		mutex_lock(&sched->work_done_wait_mutex);
 647		mutex_unlock(&sched->work_done_wait_mutex);
 648	}
 649	return NULL;
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 653	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 654	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 655{
 656	struct task_desc *task;
 657	pthread_attr_t attr;
 658	unsigned long i;
 659	int err;
 660
 661	err = pthread_attr_init(&attr);
 662	BUG_ON(err);
 663	err = pthread_attr_setstacksize(&attr,
 664			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 665	BUG_ON(err);
 666	mutex_lock(&sched->start_work_mutex);
 667	mutex_lock(&sched->work_done_wait_mutex);
 668	for (i = 0; i < sched->nr_tasks; i++) {
 669		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670		BUG_ON(parms == NULL);
 671		parms->task = task = sched->tasks[i];
 672		parms->sched = sched;
 673		parms->fd = self_open_counters(sched, i);
 
 674		sem_init(&task->ready_for_work, 0, 0);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		task->curr_event = 0;
 677		err = pthread_create(&task->thread, &attr, thread_func, parms);
 678		BUG_ON(err);
 679	}
 680}
 681
 682static void destroy_tasks(struct perf_sched *sched)
 683	UNLOCK_FUNCTION(sched->start_work_mutex)
 684	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 685{
 686	struct task_desc *task;
 687	unsigned long i;
 688	int err;
 689
 690	mutex_unlock(&sched->start_work_mutex);
 691	mutex_unlock(&sched->work_done_wait_mutex);
 692	/* Get rid of threads so they won't be upset by mutex destrunction */
 693	for (i = 0; i < sched->nr_tasks; i++) {
 694		task = sched->tasks[i];
 695		err = pthread_join(task->thread, NULL);
 696		BUG_ON(err);
 
 697		sem_destroy(&task->ready_for_work);
 698		sem_destroy(&task->work_done_sem);
 699	}
 700}
 701
 702static void wait_for_tasks(struct perf_sched *sched)
 703	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 704	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 705{
 706	u64 cpu_usage_0, cpu_usage_1;
 707	struct task_desc *task;
 708	unsigned long i, ret;
 709
 710	sched->start_time = get_nsecs();
 711	sched->cpu_usage = 0;
 712	mutex_unlock(&sched->work_done_wait_mutex);
 713
 714	for (i = 0; i < sched->nr_tasks; i++) {
 715		task = sched->tasks[i];
 716		ret = sem_wait(&task->ready_for_work);
 717		BUG_ON(ret);
 718		sem_init(&task->ready_for_work, 0, 0);
 719	}
 720	mutex_lock(&sched->work_done_wait_mutex);
 721
 722	cpu_usage_0 = get_cpu_usage_nsec_parent();
 723
 724	mutex_unlock(&sched->start_work_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->work_done_sem);
 729		BUG_ON(ret);
 730		sem_init(&task->work_done_sem, 0, 0);
 731		sched->cpu_usage += task->cpu_usage;
 732		task->cpu_usage = 0;
 733	}
 734
 735	cpu_usage_1 = get_cpu_usage_nsec_parent();
 736	if (!sched->runavg_cpu_usage)
 737		sched->runavg_cpu_usage = sched->cpu_usage;
 738	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 739
 740	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 741	if (!sched->runavg_parent_cpu_usage)
 742		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 743	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 744					 sched->parent_cpu_usage)/sched->replay_repeat;
 745
 746	mutex_lock(&sched->start_work_mutex);
 747
 748	for (i = 0; i < sched->nr_tasks; i++) {
 749		task = sched->tasks[i];
 
 750		task->curr_event = 0;
 751	}
 752}
 753
 754static void run_one_test(struct perf_sched *sched)
 755	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 756	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 757{
 758	u64 T0, T1, delta, avg_delta, fluct;
 759
 760	T0 = get_nsecs();
 761	wait_for_tasks(sched);
 762	T1 = get_nsecs();
 763
 764	delta = T1 - T0;
 765	sched->sum_runtime += delta;
 766	sched->nr_runs++;
 767
 768	avg_delta = sched->sum_runtime / sched->nr_runs;
 769	if (delta < avg_delta)
 770		fluct = avg_delta - delta;
 771	else
 772		fluct = delta - avg_delta;
 773	sched->sum_fluct += fluct;
 774	if (!sched->run_avg)
 775		sched->run_avg = delta;
 776	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 777
 778	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 779
 780	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 781
 782	printf("cpu: %0.2f / %0.2f",
 783		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 784
 785#if 0
 786	/*
 787	 * rusage statistics done by the parent, these are less
 788	 * accurate than the sched->sum_exec_runtime based statistics:
 789	 */
 790	printf(" [%0.2f / %0.2f]",
 791		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 792		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 793#endif
 794
 795	printf("\n");
 796
 797	if (sched->nr_sleep_corrections)
 798		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 799	sched->nr_sleep_corrections = 0;
 800}
 801
 802static void test_calibrations(struct perf_sched *sched)
 803{
 804	u64 T0, T1;
 805
 806	T0 = get_nsecs();
 807	burn_nsecs(sched, NSEC_PER_MSEC);
 808	T1 = get_nsecs();
 809
 810	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 811
 812	T0 = get_nsecs();
 813	sleep_nsecs(NSEC_PER_MSEC);
 814	T1 = get_nsecs();
 815
 816	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 817}
 818
 819static int
 820replay_wakeup_event(struct perf_sched *sched,
 821		    struct evsel *evsel, struct perf_sample *sample,
 822		    struct machine *machine __maybe_unused)
 823{
 824	const char *comm = evsel__strval(evsel, sample, "comm");
 825	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 826	struct task_desc *waker, *wakee;
 827
 828	if (verbose > 0) {
 829		printf("sched_wakeup event %p\n", evsel);
 830
 831		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 832	}
 833
 834	waker = register_pid(sched, sample->tid, "<unknown>");
 835	wakee = register_pid(sched, pid, comm);
 836
 837	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 838	return 0;
 839}
 840
 841static int replay_switch_event(struct perf_sched *sched,
 842			       struct evsel *evsel,
 843			       struct perf_sample *sample,
 844			       struct machine *machine __maybe_unused)
 845{
 846	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 847		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 848	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 849		  next_pid = evsel__intval(evsel, sample, "next_pid");
 
 850	struct task_desc *prev, __maybe_unused *next;
 851	u64 timestamp0, timestamp = sample->time;
 852	int cpu = sample->cpu;
 853	s64 delta;
 854
 855	if (verbose > 0)
 856		printf("sched_switch event %p\n", evsel);
 857
 858	if (cpu >= MAX_CPUS || cpu < 0)
 859		return 0;
 860
 861	timestamp0 = sched->cpu_last_switched[cpu];
 862	if (timestamp0)
 863		delta = timestamp - timestamp0;
 864	else
 865		delta = 0;
 866
 867	if (delta < 0) {
 868		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 869		return -1;
 870	}
 871
 872	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 873		 prev_comm, prev_pid, next_comm, next_pid, delta);
 874
 875	prev = register_pid(sched, prev_pid, prev_comm);
 876	next = register_pid(sched, next_pid, next_comm);
 877
 878	sched->cpu_last_switched[cpu] = timestamp;
 879
 880	add_sched_event_run(sched, prev, timestamp, delta);
 881	add_sched_event_sleep(sched, prev, timestamp);
 882
 883	return 0;
 884}
 885
 886static int replay_fork_event(struct perf_sched *sched,
 887			     union perf_event *event,
 888			     struct machine *machine)
 889{
 890	struct thread *child, *parent;
 891
 892	child = machine__findnew_thread(machine, event->fork.pid,
 893					event->fork.tid);
 894	parent = machine__findnew_thread(machine, event->fork.ppid,
 895					 event->fork.ptid);
 896
 897	if (child == NULL || parent == NULL) {
 898		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 899				 child, parent);
 900		goto out_put;
 901	}
 902
 903	if (verbose > 0) {
 904		printf("fork event\n");
 905		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 906		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 907	}
 908
 909	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 910	register_pid(sched, thread__tid(child), thread__comm_str(child));
 911out_put:
 912	thread__put(child);
 913	thread__put(parent);
 914	return 0;
 915}
 916
 917struct sort_dimension {
 918	const char		*name;
 919	sort_fn_t		cmp;
 920	struct list_head	list;
 921};
 922
 923static inline void init_prio(struct thread_runtime *r)
 924{
 925	r->prio = -1;
 926}
 927
 928/*
 929 * handle runtime stats saved per thread
 930 */
 931static struct thread_runtime *thread__init_runtime(struct thread *thread)
 932{
 933	struct thread_runtime *r;
 934
 935	r = zalloc(sizeof(struct thread_runtime));
 936	if (!r)
 937		return NULL;
 938
 939	init_stats(&r->run_stats);
 940	init_prio(r);
 941	thread__set_priv(thread, r);
 942
 943	return r;
 944}
 945
 946static struct thread_runtime *thread__get_runtime(struct thread *thread)
 947{
 948	struct thread_runtime *tr;
 949
 950	tr = thread__priv(thread);
 951	if (tr == NULL) {
 952		tr = thread__init_runtime(thread);
 953		if (tr == NULL)
 954			pr_debug("Failed to malloc memory for runtime data.\n");
 955	}
 956
 957	return tr;
 958}
 959
 960static int
 961thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 962{
 963	struct sort_dimension *sort;
 964	int ret = 0;
 965
 966	BUG_ON(list_empty(list));
 967
 968	list_for_each_entry(sort, list, list) {
 969		ret = sort->cmp(l, r);
 970		if (ret)
 971			return ret;
 972	}
 973
 974	return ret;
 975}
 976
 977static struct work_atoms *
 978thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 979			 struct list_head *sort_list)
 980{
 981	struct rb_node *node = root->rb_root.rb_node;
 982	struct work_atoms key = { .thread = thread };
 983
 984	while (node) {
 985		struct work_atoms *atoms;
 986		int cmp;
 987
 988		atoms = container_of(node, struct work_atoms, node);
 989
 990		cmp = thread_lat_cmp(sort_list, &key, atoms);
 991		if (cmp > 0)
 992			node = node->rb_left;
 993		else if (cmp < 0)
 994			node = node->rb_right;
 995		else {
 996			BUG_ON(thread != atoms->thread);
 997			return atoms;
 998		}
 999	}
1000	return NULL;
1001}
1002
1003static void
1004__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1005			 struct list_head *sort_list)
1006{
1007	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1008	bool leftmost = true;
1009
1010	while (*new) {
1011		struct work_atoms *this;
1012		int cmp;
1013
1014		this = container_of(*new, struct work_atoms, node);
1015		parent = *new;
1016
1017		cmp = thread_lat_cmp(sort_list, data, this);
1018
1019		if (cmp > 0)
1020			new = &((*new)->rb_left);
1021		else {
1022			new = &((*new)->rb_right);
1023			leftmost = false;
1024		}
1025	}
1026
1027	rb_link_node(&data->node, parent, new);
1028	rb_insert_color_cached(&data->node, root, leftmost);
1029}
1030
1031static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1032{
1033	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1034	if (!atoms) {
1035		pr_err("No memory at %s\n", __func__);
1036		return -1;
1037	}
1038
1039	atoms->thread = thread__get(thread);
1040	INIT_LIST_HEAD(&atoms->work_list);
1041	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1042	return 0;
1043}
1044
1045static int
1046add_sched_out_event(struct work_atoms *atoms,
1047		    char run_state,
1048		    u64 timestamp)
1049{
1050	struct work_atom *atom = zalloc(sizeof(*atom));
1051	if (!atom) {
1052		pr_err("Non memory at %s", __func__);
1053		return -1;
1054	}
1055
1056	atom->sched_out_time = timestamp;
1057
1058	if (run_state == 'R') {
1059		atom->state = THREAD_WAIT_CPU;
1060		atom->wake_up_time = atom->sched_out_time;
1061	}
1062
1063	list_add_tail(&atom->list, &atoms->work_list);
1064	return 0;
1065}
1066
1067static void
1068add_runtime_event(struct work_atoms *atoms, u64 delta,
1069		  u64 timestamp __maybe_unused)
1070{
1071	struct work_atom *atom;
1072
1073	BUG_ON(list_empty(&atoms->work_list));
1074
1075	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1076
1077	atom->runtime += delta;
1078	atoms->total_runtime += delta;
1079}
1080
1081static void
1082add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1083{
1084	struct work_atom *atom;
1085	u64 delta;
1086
1087	if (list_empty(&atoms->work_list))
1088		return;
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	if (atom->state != THREAD_WAIT_CPU)
1093		return;
1094
1095	if (timestamp < atom->wake_up_time) {
1096		atom->state = THREAD_IGNORE;
1097		return;
1098	}
1099
1100	atom->state = THREAD_SCHED_IN;
1101	atom->sched_in_time = timestamp;
1102
1103	delta = atom->sched_in_time - atom->wake_up_time;
1104	atoms->total_lat += delta;
1105	if (delta > atoms->max_lat) {
1106		atoms->max_lat = delta;
1107		atoms->max_lat_start = atom->wake_up_time;
1108		atoms->max_lat_end = timestamp;
1109	}
1110	atoms->nb_atoms++;
1111}
1112
1113static int latency_switch_event(struct perf_sched *sched,
1114				struct evsel *evsel,
1115				struct perf_sample *sample,
1116				struct machine *machine)
1117{
1118	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1119		  next_pid = evsel__intval(evsel, sample, "next_pid");
1120	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1121	struct work_atoms *out_events, *in_events;
1122	struct thread *sched_out, *sched_in;
1123	u64 timestamp0, timestamp = sample->time;
1124	int cpu = sample->cpu, err = -1;
1125	s64 delta;
1126
1127	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129	timestamp0 = sched->cpu_last_switched[cpu];
1130	sched->cpu_last_switched[cpu] = timestamp;
1131	if (timestamp0)
1132		delta = timestamp - timestamp0;
1133	else
1134		delta = 0;
1135
1136	if (delta < 0) {
1137		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1138		return -1;
1139	}
1140
1141	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1142	sched_in = machine__findnew_thread(machine, -1, next_pid);
1143	if (sched_out == NULL || sched_in == NULL)
1144		goto out_put;
1145
1146	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1147	if (!out_events) {
1148		if (thread_atoms_insert(sched, sched_out))
1149			goto out_put;
1150		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1151		if (!out_events) {
1152			pr_err("out-event: Internal tree error");
1153			goto out_put;
1154		}
1155	}
1156	if (add_sched_out_event(out_events, prev_state, timestamp))
1157		return -1;
1158
1159	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1160	if (!in_events) {
1161		if (thread_atoms_insert(sched, sched_in))
1162			goto out_put;
1163		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1164		if (!in_events) {
1165			pr_err("in-event: Internal tree error");
1166			goto out_put;
1167		}
1168		/*
1169		 * Take came in we have not heard about yet,
1170		 * add in an initial atom in runnable state:
1171		 */
1172		if (add_sched_out_event(in_events, 'R', timestamp))
1173			goto out_put;
1174	}
1175	add_sched_in_event(in_events, timestamp);
1176	err = 0;
1177out_put:
1178	thread__put(sched_out);
1179	thread__put(sched_in);
1180	return err;
1181}
1182
1183static int latency_runtime_event(struct perf_sched *sched,
1184				 struct evsel *evsel,
1185				 struct perf_sample *sample,
1186				 struct machine *machine)
1187{
1188	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1189	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1190	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1191	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1192	u64 timestamp = sample->time;
1193	int cpu = sample->cpu, err = -1;
1194
1195	if (thread == NULL)
1196		return -1;
1197
1198	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1199	if (!atoms) {
1200		if (thread_atoms_insert(sched, thread))
1201			goto out_put;
1202		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1203		if (!atoms) {
1204			pr_err("in-event: Internal tree error");
1205			goto out_put;
1206		}
1207		if (add_sched_out_event(atoms, 'R', timestamp))
1208			goto out_put;
1209	}
1210
1211	add_runtime_event(atoms, runtime, timestamp);
1212	err = 0;
1213out_put:
1214	thread__put(thread);
1215	return err;
1216}
1217
1218static int latency_wakeup_event(struct perf_sched *sched,
1219				struct evsel *evsel,
1220				struct perf_sample *sample,
1221				struct machine *machine)
1222{
1223	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1224	struct work_atoms *atoms;
1225	struct work_atom *atom;
1226	struct thread *wakee;
1227	u64 timestamp = sample->time;
1228	int err = -1;
1229
1230	wakee = machine__findnew_thread(machine, -1, pid);
1231	if (wakee == NULL)
1232		return -1;
1233	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1234	if (!atoms) {
1235		if (thread_atoms_insert(sched, wakee))
1236			goto out_put;
1237		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1238		if (!atoms) {
1239			pr_err("wakeup-event: Internal tree error");
1240			goto out_put;
1241		}
1242		if (add_sched_out_event(atoms, 'S', timestamp))
1243			goto out_put;
1244	}
1245
1246	BUG_ON(list_empty(&atoms->work_list));
1247
1248	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1249
1250	/*
1251	 * As we do not guarantee the wakeup event happens when
1252	 * task is out of run queue, also may happen when task is
1253	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1254	 * then we should not set the ->wake_up_time when wake up a
1255	 * task which is on run queue.
1256	 *
1257	 * You WILL be missing events if you've recorded only
1258	 * one CPU, or are only looking at only one, so don't
1259	 * skip in this case.
1260	 */
1261	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1262		goto out_ok;
1263
1264	sched->nr_timestamps++;
1265	if (atom->sched_out_time > timestamp) {
1266		sched->nr_unordered_timestamps++;
1267		goto out_ok;
1268	}
1269
1270	atom->state = THREAD_WAIT_CPU;
1271	atom->wake_up_time = timestamp;
1272out_ok:
1273	err = 0;
1274out_put:
1275	thread__put(wakee);
1276	return err;
1277}
1278
1279static int latency_migrate_task_event(struct perf_sched *sched,
1280				      struct evsel *evsel,
1281				      struct perf_sample *sample,
1282				      struct machine *machine)
1283{
1284	const u32 pid = evsel__intval(evsel, sample, "pid");
1285	u64 timestamp = sample->time;
1286	struct work_atoms *atoms;
1287	struct work_atom *atom;
1288	struct thread *migrant;
1289	int err = -1;
1290
1291	/*
1292	 * Only need to worry about migration when profiling one CPU.
1293	 */
1294	if (sched->profile_cpu == -1)
1295		return 0;
1296
1297	migrant = machine__findnew_thread(machine, -1, pid);
1298	if (migrant == NULL)
1299		return -1;
1300	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1301	if (!atoms) {
1302		if (thread_atoms_insert(sched, migrant))
1303			goto out_put;
1304		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1305		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1306		if (!atoms) {
1307			pr_err("migration-event: Internal tree error");
1308			goto out_put;
1309		}
1310		if (add_sched_out_event(atoms, 'R', timestamp))
1311			goto out_put;
1312	}
1313
1314	BUG_ON(list_empty(&atoms->work_list));
1315
1316	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1317	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1318
1319	sched->nr_timestamps++;
1320
1321	if (atom->sched_out_time > timestamp)
1322		sched->nr_unordered_timestamps++;
1323	err = 0;
1324out_put:
1325	thread__put(migrant);
1326	return err;
1327}
1328
1329static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1330{
1331	int i;
1332	int ret;
1333	u64 avg;
1334	char max_lat_start[32], max_lat_end[32];
1335
1336	if (!work_list->nb_atoms)
1337		return;
1338	/*
1339	 * Ignore idle threads:
1340	 */
1341	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1342		return;
1343
1344	sched->all_runtime += work_list->total_runtime;
1345	sched->all_count   += work_list->nb_atoms;
1346
1347	if (work_list->num_merged > 1) {
1348		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1349			     work_list->num_merged);
1350	} else {
1351		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1352			     thread__tid(work_list->thread));
1353	}
1354
1355	for (i = 0; i < 24 - ret; i++)
1356		printf(" ");
1357
1358	avg = work_list->total_lat / work_list->nb_atoms;
1359	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1360	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1361
1362	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1363	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1364		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1365		 (double)work_list->max_lat / NSEC_PER_MSEC,
1366		 max_lat_start, max_lat_end);
1367}
1368
1369static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1370{
1371	pid_t l_tid, r_tid;
1372
1373	if (RC_CHK_EQUAL(l->thread, r->thread))
1374		return 0;
1375	l_tid = thread__tid(l->thread);
1376	r_tid = thread__tid(r->thread);
1377	if (l_tid < r_tid)
1378		return -1;
1379	if (l_tid > r_tid)
1380		return 1;
1381	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1382}
1383
1384static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386	u64 avgl, avgr;
1387
1388	if (!l->nb_atoms)
1389		return -1;
1390
1391	if (!r->nb_atoms)
1392		return 1;
1393
1394	avgl = l->total_lat / l->nb_atoms;
1395	avgr = r->total_lat / r->nb_atoms;
1396
1397	if (avgl < avgr)
1398		return -1;
1399	if (avgl > avgr)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->max_lat < r->max_lat)
1408		return -1;
1409	if (l->max_lat > r->max_lat)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->nb_atoms < r->nb_atoms)
1418		return -1;
1419	if (l->nb_atoms > r->nb_atoms)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1426{
1427	if (l->total_runtime < r->total_runtime)
1428		return -1;
1429	if (l->total_runtime > r->total_runtime)
1430		return 1;
1431
1432	return 0;
1433}
1434
1435static int sort_dimension__add(const char *tok, struct list_head *list)
1436{
1437	size_t i;
1438	static struct sort_dimension avg_sort_dimension = {
1439		.name = "avg",
1440		.cmp  = avg_cmp,
1441	};
1442	static struct sort_dimension max_sort_dimension = {
1443		.name = "max",
1444		.cmp  = max_cmp,
1445	};
1446	static struct sort_dimension pid_sort_dimension = {
1447		.name = "pid",
1448		.cmp  = pid_cmp,
1449	};
1450	static struct sort_dimension runtime_sort_dimension = {
1451		.name = "runtime",
1452		.cmp  = runtime_cmp,
1453	};
1454	static struct sort_dimension switch_sort_dimension = {
1455		.name = "switch",
1456		.cmp  = switch_cmp,
1457	};
1458	struct sort_dimension *available_sorts[] = {
1459		&pid_sort_dimension,
1460		&avg_sort_dimension,
1461		&max_sort_dimension,
1462		&switch_sort_dimension,
1463		&runtime_sort_dimension,
1464	};
1465
1466	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1467		if (!strcmp(available_sorts[i]->name, tok)) {
1468			list_add_tail(&available_sorts[i]->list, list);
1469
1470			return 0;
1471		}
1472	}
1473
1474	return -1;
1475}
1476
1477static void perf_sched__sort_lat(struct perf_sched *sched)
1478{
1479	struct rb_node *node;
1480	struct rb_root_cached *root = &sched->atom_root;
1481again:
1482	for (;;) {
1483		struct work_atoms *data;
1484		node = rb_first_cached(root);
1485		if (!node)
1486			break;
1487
1488		rb_erase_cached(node, root);
1489		data = rb_entry(node, struct work_atoms, node);
1490		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1491	}
1492	if (root == &sched->atom_root) {
1493		root = &sched->merged_atom_root;
1494		goto again;
1495	}
1496}
1497
1498static int process_sched_wakeup_event(const struct perf_tool *tool,
1499				      struct evsel *evsel,
1500				      struct perf_sample *sample,
1501				      struct machine *machine)
1502{
1503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1504
1505	if (sched->tp_handler->wakeup_event)
1506		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1507
1508	return 0;
1509}
1510
1511static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1512				      struct evsel *evsel __maybe_unused,
1513				      struct perf_sample *sample __maybe_unused,
1514				      struct machine *machine __maybe_unused)
1515{
1516	return 0;
1517}
1518
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1552{
1553	bool fuzzy_match = sched->map.fuzzy;
1554	struct strlist *task_names = sched->map.task_names;
1555	struct str_node *node;
1556
1557	strlist__for_each_entry(node, task_names) {
1558		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1559							!strcmp(comm_str, node->s);
1560		if (match_found)
1561			return true;
1562	}
1563
1564	return false;
1565}
1566
1567static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1568								const char *color, bool sched_out)
1569{
1570	for (int i = 0; i < cpus_nr; i++) {
1571		struct perf_cpu cpu = {
1572			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1573		};
1574		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1575		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1576		struct thread_runtime *curr_tr;
1577		const char *pid_color = color;
1578		const char *cpu_color = color;
1579		char symbol = ' ';
1580		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1581
1582		if (thread_to_check && thread__has_color(thread_to_check))
1583			pid_color = COLOR_PIDS;
1584
1585		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1586			cpu_color = COLOR_CPUS;
1587
1588		if (cpu.cpu == this_cpu.cpu)
1589			symbol = '*';
1590
1591		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1592
1593		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1594								sched->curr_thread[cpu.cpu];
1595
1596		if (thread_to_check) {
1597			curr_tr = thread__get_runtime(thread_to_check);
1598			if (curr_tr == NULL)
1599				return;
1600
1601			if (sched_out) {
1602				if (cpu.cpu == this_cpu.cpu)
1603					color_fprintf(stdout, color, "-  ");
1604				else {
1605					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1606					if (curr_tr != NULL)
1607						color_fprintf(stdout, pid_color, "%2s ",
1608										curr_tr->shortname);
1609				}
1610			} else
1611				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1612		} else
1613			color_fprintf(stdout, color, "   ");
1614	}
1615}
1616
1617static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1618			    struct perf_sample *sample, struct machine *machine)
1619{
1620	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1621	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1622	struct thread *sched_in, *sched_out;
1623	struct thread_runtime *tr;
1624	int new_shortname;
1625	u64 timestamp0, timestamp = sample->time;
1626	s64 delta;
 
1627	struct perf_cpu this_cpu = {
1628		.cpu = sample->cpu,
1629	};
1630	int cpus_nr;
1631	int proceed;
1632	bool new_cpu = false;
1633	const char *color = PERF_COLOR_NORMAL;
1634	char stimestamp[32];
1635	const char *str;
1636
1637	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1638
1639	if (this_cpu.cpu > sched->max_cpu.cpu)
1640		sched->max_cpu = this_cpu;
1641
1642	if (sched->map.comp) {
1643		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1644		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1645			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1646			new_cpu = true;
1647		}
1648	} else
1649		cpus_nr = sched->max_cpu.cpu;
1650
1651	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1652	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1653	if (timestamp0)
1654		delta = timestamp - timestamp0;
1655	else
1656		delta = 0;
1657
1658	if (delta < 0) {
1659		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1660		return -1;
1661	}
1662
1663	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1664	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1665	if (sched_in == NULL || sched_out == NULL)
1666		return -1;
1667
1668	tr = thread__get_runtime(sched_in);
1669	if (tr == NULL) {
1670		thread__put(sched_in);
1671		return -1;
1672	}
1673
1674	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1675	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1676
1677	str = thread__comm_str(sched_in);
 
1678	new_shortname = 0;
1679	if (!tr->shortname[0]) {
1680		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1681			/*
1682			 * Don't allocate a letter-number for swapper:0
1683			 * as a shortname. Instead, we use '.' for it.
1684			 */
1685			tr->shortname[0] = '.';
1686			tr->shortname[1] = ' ';
1687		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1688			tr->shortname[0] = sched->next_shortname1;
1689			tr->shortname[1] = sched->next_shortname2;
1690
1691			if (sched->next_shortname1 < 'Z') {
1692				sched->next_shortname1++;
1693			} else {
1694				sched->next_shortname1 = 'A';
1695				if (sched->next_shortname2 < '9')
1696					sched->next_shortname2++;
1697				else
1698					sched->next_shortname2 = '0';
1699			}
1700		} else {
1701			tr->shortname[0] = '-';
1702			tr->shortname[1] = ' ';
1703		}
1704		new_shortname = 1;
1705	}
1706
1707	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1708		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710	proceed = 0;
1711	str = thread__comm_str(sched_in);
1712	/*
1713	 * Check which of sched_in and sched_out matches the passed --task-name
1714	 * arguments and call the corresponding print_sched_map.
1715	 */
1716	if (sched->map.task_name && !sched_match_task(sched, str)) {
1717		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1718			goto out;
1719		else
1720			goto sched_out;
1721
1722	} else {
1723		str = thread__comm_str(sched_out);
1724		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1725			proceed = 1;
 
 
 
 
 
1726	}
1727
1728	printf("  ");
1729
1730	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1731
1732	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1733	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1734	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1735		const char *pid_color = color;
1736
1737		if (thread__has_color(sched_in))
1738			pid_color = COLOR_PIDS;
1739
1740		color_fprintf(stdout, pid_color, "%s => %s:%d",
1741			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1742		tr->comm_changed = false;
1743	}
1744
1745	if (sched->map.comp && new_cpu)
1746		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1747
1748	if (proceed != 1) {
1749		color_fprintf(stdout, color, "\n");
1750		goto out;
1751	}
1752
1753sched_out:
1754	if (sched->map.task_name) {
1755		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1756		if (strcmp(tr->shortname, "") == 0)
1757			goto out;
1758
1759		if (proceed == 1)
1760			color_fprintf(stdout, color, "\n");
1761
1762		printf("  ");
1763		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1764		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1765		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1766	}
1767
 
1768	color_fprintf(stdout, color, "\n");
1769
1770out:
1771	if (sched->map.task_name)
1772		thread__put(sched_out);
1773
1774	thread__put(sched_in);
1775
1776	return 0;
1777}
1778
1779static int process_sched_switch_event(const struct perf_tool *tool,
1780				      struct evsel *evsel,
1781				      struct perf_sample *sample,
1782				      struct machine *machine)
1783{
1784	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1785	int this_cpu = sample->cpu, err = 0;
1786	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1787	    next_pid = evsel__intval(evsel, sample, "next_pid");
1788
1789	if (sched->curr_pid[this_cpu] != (u32)-1) {
1790		/*
1791		 * Are we trying to switch away a PID that is
1792		 * not current?
1793		 */
1794		if (sched->curr_pid[this_cpu] != prev_pid)
1795			sched->nr_context_switch_bugs++;
1796	}
1797
1798	if (sched->tp_handler->switch_event)
1799		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1800
1801	sched->curr_pid[this_cpu] = next_pid;
1802	return err;
1803}
1804
1805static int process_sched_runtime_event(const struct perf_tool *tool,
1806				       struct evsel *evsel,
1807				       struct perf_sample *sample,
1808				       struct machine *machine)
1809{
1810	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1811
1812	if (sched->tp_handler->runtime_event)
1813		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1814
1815	return 0;
1816}
1817
1818static int perf_sched__process_fork_event(const struct perf_tool *tool,
1819					  union perf_event *event,
1820					  struct perf_sample *sample,
1821					  struct machine *machine)
1822{
1823	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1824
1825	/* run the fork event through the perf machinery */
1826	perf_event__process_fork(tool, event, sample, machine);
1827
1828	/* and then run additional processing needed for this command */
1829	if (sched->tp_handler->fork_event)
1830		return sched->tp_handler->fork_event(sched, event, machine);
1831
1832	return 0;
1833}
1834
1835static int process_sched_migrate_task_event(const struct perf_tool *tool,
1836					    struct evsel *evsel,
1837					    struct perf_sample *sample,
1838					    struct machine *machine)
1839{
1840	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1841
1842	if (sched->tp_handler->migrate_task_event)
1843		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1844
1845	return 0;
1846}
1847
1848typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1849				  struct evsel *evsel,
1850				  struct perf_sample *sample,
1851				  struct machine *machine);
1852
1853static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1854						 union perf_event *event __maybe_unused,
1855						 struct perf_sample *sample,
1856						 struct evsel *evsel,
1857						 struct machine *machine)
1858{
1859	int err = 0;
1860
1861	if (evsel->handler != NULL) {
1862		tracepoint_handler f = evsel->handler;
1863		err = f(tool, evsel, sample, machine);
1864	}
1865
1866	return err;
1867}
1868
1869static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1870				    union perf_event *event,
1871				    struct perf_sample *sample,
1872				    struct machine *machine)
1873{
1874	struct thread *thread;
1875	struct thread_runtime *tr;
1876	int err;
1877
1878	err = perf_event__process_comm(tool, event, sample, machine);
1879	if (err)
1880		return err;
1881
1882	thread = machine__find_thread(machine, sample->pid, sample->tid);
1883	if (!thread) {
1884		pr_err("Internal error: can't find thread\n");
1885		return -1;
1886	}
1887
1888	tr = thread__get_runtime(thread);
1889	if (tr == NULL) {
1890		thread__put(thread);
1891		return -1;
1892	}
1893
1894	tr->comm_changed = true;
1895	thread__put(thread);
1896
1897	return 0;
1898}
1899
1900static int perf_sched__read_events(struct perf_sched *sched)
1901{
1902	struct evsel_str_handler handlers[] = {
1903		{ "sched:sched_switch",	      process_sched_switch_event, },
1904		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1905		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1906		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1907		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1908		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1909	};
1910	struct perf_session *session;
1911	struct perf_data data = {
1912		.path  = input_name,
1913		.mode  = PERF_DATA_MODE_READ,
1914		.force = sched->force,
1915	};
1916	int rc = -1;
1917
1918	session = perf_session__new(&data, &sched->tool);
1919	if (IS_ERR(session)) {
1920		pr_debug("Error creating perf session");
1921		return PTR_ERR(session);
1922	}
1923
1924	symbol__init(&session->header.env);
1925
1926	/* prefer sched_waking if it is captured */
1927	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1928		handlers[2].handler = process_sched_wakeup_ignore;
1929
1930	if (perf_session__set_tracepoints_handlers(session, handlers))
1931		goto out_delete;
1932
1933	if (perf_session__has_traces(session, "record -R")) {
1934		int err = perf_session__process_events(session);
1935		if (err) {
1936			pr_err("Failed to process events, error %d", err);
1937			goto out_delete;
1938		}
1939
1940		sched->nr_events      = session->evlist->stats.nr_events[0];
1941		sched->nr_lost_events = session->evlist->stats.total_lost;
1942		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1943	}
1944
1945	rc = 0;
1946out_delete:
1947	perf_session__delete(session);
1948	return rc;
1949}
1950
1951/*
1952 * scheduling times are printed as msec.usec
1953 */
1954static inline void print_sched_time(unsigned long long nsecs, int width)
1955{
1956	unsigned long msecs;
1957	unsigned long usecs;
1958
1959	msecs  = nsecs / NSEC_PER_MSEC;
1960	nsecs -= msecs * NSEC_PER_MSEC;
1961	usecs  = nsecs / NSEC_PER_USEC;
1962	printf("%*lu.%03lu ", width, msecs, usecs);
1963}
1964
1965/*
1966 * returns runtime data for event, allocating memory for it the
1967 * first time it is used.
1968 */
1969static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1970{
1971	struct evsel_runtime *r = evsel->priv;
1972
1973	if (r == NULL) {
1974		r = zalloc(sizeof(struct evsel_runtime));
1975		evsel->priv = r;
1976	}
1977
1978	return r;
1979}
1980
1981/*
1982 * save last time event was seen per cpu
1983 */
1984static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1985{
1986	struct evsel_runtime *r = evsel__get_runtime(evsel);
1987
1988	if (r == NULL)
1989		return;
1990
1991	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1992		int i, n = __roundup_pow_of_two(cpu+1);
1993		void *p = r->last_time;
1994
1995		p = realloc(r->last_time, n * sizeof(u64));
1996		if (!p)
1997			return;
1998
1999		r->last_time = p;
2000		for (i = r->ncpu; i < n; ++i)
2001			r->last_time[i] = (u64) 0;
2002
2003		r->ncpu = n;
2004	}
2005
2006	r->last_time[cpu] = timestamp;
2007}
2008
2009/* returns last time this event was seen on the given cpu */
2010static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2011{
2012	struct evsel_runtime *r = evsel__get_runtime(evsel);
2013
2014	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2015		return 0;
2016
2017	return r->last_time[cpu];
2018}
2019
2020static int comm_width = 30;
2021
2022static char *timehist_get_commstr(struct thread *thread)
2023{
2024	static char str[32];
2025	const char *comm = thread__comm_str(thread);
2026	pid_t tid = thread__tid(thread);
2027	pid_t pid = thread__pid(thread);
2028	int n;
2029
2030	if (pid == 0)
2031		n = scnprintf(str, sizeof(str), "%s", comm);
2032
2033	else if (tid != pid)
2034		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2035
2036	else
2037		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2038
2039	if (n > comm_width)
2040		comm_width = n;
2041
2042	return str;
2043}
2044
2045/* prio field format: xxx or xxx->yyy */
2046#define MAX_PRIO_STR_LEN 8
2047static char *timehist_get_priostr(struct evsel *evsel,
2048				  struct thread *thread,
2049				  struct perf_sample *sample)
2050{
2051	static char prio_str[16];
2052	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2053	struct thread_runtime *tr = thread__priv(thread);
2054
2055	if (tr->prio != prev_prio && tr->prio != -1)
2056		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2057	else
2058		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2059
2060	return prio_str;
2061}
2062
2063static void timehist_header(struct perf_sched *sched)
2064{
2065	u32 ncpus = sched->max_cpu.cpu + 1;
2066	u32 i, j;
2067
2068	printf("%15s %6s ", "time", "cpu");
2069
2070	if (sched->show_cpu_visual) {
2071		printf(" ");
2072		for (i = 0, j = 0; i < ncpus; ++i) {
2073			printf("%x", j++);
2074			if (j > 15)
2075				j = 0;
2076		}
2077		printf(" ");
2078	}
2079
2080	printf(" %-*s", comm_width, "task name");
2081
2082	if (sched->show_prio)
2083		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2084
2085	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2086
2087	if (sched->pre_migrations)
2088		printf("  %9s", "pre-mig time");
2089
2090	if (sched->show_state)
2091		printf("  %s", "state");
2092
2093	printf("\n");
2094
2095	/*
2096	 * units row
2097	 */
2098	printf("%15s %-6s ", "", "");
2099
2100	if (sched->show_cpu_visual)
2101		printf(" %*s ", ncpus, "");
2102
2103	printf(" %-*s", comm_width, "[tid/pid]");
 
2104
2105	if (sched->show_prio)
2106		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2107
2108	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2109
2110	if (sched->pre_migrations)
2111		printf("  %9s", "(msec)");
2112
2113	printf("\n");
2114
2115	/*
2116	 * separator
2117	 */
2118	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2119
2120	if (sched->show_cpu_visual)
2121		printf(" %.*s ", ncpus, graph_dotted_line);
2122
2123	printf(" %.*s", comm_width, graph_dotted_line);
2124
2125	if (sched->show_prio)
2126		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2127
2128	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2129
2130	if (sched->pre_migrations)
2131		printf("  %.9s", graph_dotted_line);
2132
2133	if (sched->show_state)
2134		printf("  %.5s", graph_dotted_line);
2135
2136	printf("\n");
2137}
2138
2139static void timehist_print_sample(struct perf_sched *sched,
2140				  struct evsel *evsel,
2141				  struct perf_sample *sample,
2142				  struct addr_location *al,
2143				  struct thread *thread,
2144				  u64 t, const char state)
2145{
2146	struct thread_runtime *tr = thread__priv(thread);
2147	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2148	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2149	u32 max_cpus = sched->max_cpu.cpu + 1;
2150	char tstr[64];
2151	char nstr[30];
2152	u64 wait_time;
2153
2154	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2155		return;
2156
2157	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2158	printf("%15s [%04d] ", tstr, sample->cpu);
2159
2160	if (sched->show_cpu_visual) {
2161		u32 i;
2162		char c;
2163
2164		printf(" ");
2165		for (i = 0; i < max_cpus; ++i) {
2166			/* flag idle times with 'i'; others are sched events */
2167			if (i == sample->cpu)
2168				c = (thread__tid(thread) == 0) ? 'i' : 's';
2169			else
2170				c = ' ';
2171			printf("%c", c);
2172		}
2173		printf(" ");
2174	}
2175
2176	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2177
2178	if (sched->show_prio)
2179		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2180
2181	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2182	print_sched_time(wait_time, 6);
2183
2184	print_sched_time(tr->dt_delay, 6);
2185	print_sched_time(tr->dt_run, 6);
2186	if (sched->pre_migrations)
2187		print_sched_time(tr->dt_pre_mig, 6);
2188
2189	if (sched->show_state)
2190		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2191
2192	if (sched->show_next) {
2193		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2194		printf(" %-*s", comm_width, nstr);
2195	}
2196
2197	if (sched->show_wakeups && !sched->show_next)
2198		printf("  %-*s", comm_width, "");
2199
2200	if (thread__tid(thread) == 0)
2201		goto out;
2202
2203	if (sched->show_callchain)
2204		printf("  ");
2205
2206	sample__fprintf_sym(sample, al, 0,
2207			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2208			    EVSEL__PRINT_CALLCHAIN_ARROW |
2209			    EVSEL__PRINT_SKIP_IGNORED,
2210			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2211
2212out:
2213	printf("\n");
2214}
2215
2216/*
2217 * Explanation of delta-time stats:
2218 *
2219 *            t = time of current schedule out event
2220 *        tprev = time of previous sched out event
2221 *                also time of schedule-in event for current task
2222 *    last_time = time of last sched change event for current task
2223 *                (i.e, time process was last scheduled out)
2224 * ready_to_run = time of wakeup for current task
2225 *     migrated = time of task migration to another CPU
2226 *
2227 * -----|-------------|-------------|-------------|-------------|-----
2228 *    last         ready         migrated       tprev           t
2229 *    time         to run
2230 *
2231 *      |---------------- dt_wait ----------------|
2232 *                   |--------- dt_delay ---------|-- dt_run --|
2233 *                   |- dt_pre_mig -|
2234 *
2235 *     dt_run = run time of current task
2236 *    dt_wait = time between last schedule out event for task and tprev
2237 *              represents time spent off the cpu
2238 *   dt_delay = time between wakeup and schedule-in of task
2239 * dt_pre_mig = time between wakeup and migration to another CPU
2240 */
2241
2242static void timehist_update_runtime_stats(struct thread_runtime *r,
2243					 u64 t, u64 tprev)
2244{
2245	r->dt_delay   = 0;
2246	r->dt_sleep   = 0;
2247	r->dt_iowait  = 0;
2248	r->dt_preempt = 0;
2249	r->dt_run     = 0;
2250	r->dt_pre_mig = 0;
2251
2252	if (tprev) {
2253		r->dt_run = t - tprev;
2254		if (r->ready_to_run) {
2255			if (r->ready_to_run > tprev)
2256				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2257			else
2258				r->dt_delay = tprev - r->ready_to_run;
2259
2260			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2261				r->dt_pre_mig = r->migrated - r->ready_to_run;
2262		}
2263
2264		if (r->last_time > tprev)
2265			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2266		else if (r->last_time) {
2267			u64 dt_wait = tprev - r->last_time;
2268
2269			if (r->last_state == 'R')
2270				r->dt_preempt = dt_wait;
2271			else if (r->last_state == 'D')
2272				r->dt_iowait = dt_wait;
2273			else
2274				r->dt_sleep = dt_wait;
2275		}
2276	}
2277
2278	update_stats(&r->run_stats, r->dt_run);
2279
2280	r->total_run_time     += r->dt_run;
2281	r->total_delay_time   += r->dt_delay;
2282	r->total_sleep_time   += r->dt_sleep;
2283	r->total_iowait_time  += r->dt_iowait;
2284	r->total_preempt_time += r->dt_preempt;
2285	r->total_pre_mig_time += r->dt_pre_mig;
2286}
2287
2288static bool is_idle_sample(struct perf_sample *sample,
2289			   struct evsel *evsel)
2290{
2291	/* pid 0 == swapper == idle task */
2292	if (evsel__name_is(evsel, "sched:sched_switch"))
2293		return evsel__intval(evsel, sample, "prev_pid") == 0;
2294
2295	return sample->pid == 0;
2296}
2297
2298static void save_task_callchain(struct perf_sched *sched,
2299				struct perf_sample *sample,
2300				struct evsel *evsel,
2301				struct machine *machine)
2302{
2303	struct callchain_cursor *cursor;
2304	struct thread *thread;
2305
2306	/* want main thread for process - has maps */
2307	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2308	if (thread == NULL) {
2309		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2310		return;
2311	}
2312
2313	if (!sched->show_callchain || sample->callchain == NULL)
2314		return;
2315
2316	cursor = get_tls_callchain_cursor();
2317
2318	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2319				      NULL, NULL, sched->max_stack + 2) != 0) {
2320		if (verbose > 0)
2321			pr_err("Failed to resolve callchain. Skipping\n");
2322
2323		return;
2324	}
2325
2326	callchain_cursor_commit(cursor);
2327
2328	while (true) {
2329		struct callchain_cursor_node *node;
2330		struct symbol *sym;
2331
2332		node = callchain_cursor_current(cursor);
2333		if (node == NULL)
2334			break;
2335
2336		sym = node->ms.sym;
2337		if (sym) {
2338			if (!strcmp(sym->name, "schedule") ||
2339			    !strcmp(sym->name, "__schedule") ||
2340			    !strcmp(sym->name, "preempt_schedule"))
2341				sym->ignore = 1;
2342		}
2343
2344		callchain_cursor_advance(cursor);
2345	}
2346}
2347
2348static int init_idle_thread(struct thread *thread)
2349{
2350	struct idle_thread_runtime *itr;
2351
2352	thread__set_comm(thread, idle_comm, 0);
2353
2354	itr = zalloc(sizeof(*itr));
2355	if (itr == NULL)
2356		return -ENOMEM;
2357
2358	init_prio(&itr->tr);
2359	init_stats(&itr->tr.run_stats);
2360	callchain_init(&itr->callchain);
2361	callchain_cursor_reset(&itr->cursor);
2362	thread__set_priv(thread, itr);
2363
2364	return 0;
2365}
2366
2367/*
2368 * Track idle stats per cpu by maintaining a local thread
2369 * struct for the idle task on each cpu.
2370 */
2371static int init_idle_threads(int ncpu)
2372{
2373	int i, ret;
2374
2375	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2376	if (!idle_threads)
2377		return -ENOMEM;
2378
2379	idle_max_cpu = ncpu;
2380
2381	/* allocate the actual thread struct if needed */
2382	for (i = 0; i < ncpu; ++i) {
2383		idle_threads[i] = thread__new(0, 0);
2384		if (idle_threads[i] == NULL)
2385			return -ENOMEM;
2386
2387		ret = init_idle_thread(idle_threads[i]);
2388		if (ret < 0)
2389			return ret;
2390	}
2391
2392	return 0;
2393}
2394
2395static void free_idle_threads(void)
2396{
2397	int i;
2398
2399	if (idle_threads == NULL)
2400		return;
2401
2402	for (i = 0; i < idle_max_cpu; ++i) {
2403		if ((idle_threads[i]))
2404			thread__delete(idle_threads[i]);
2405	}
2406
2407	free(idle_threads);
2408}
2409
2410static struct thread *get_idle_thread(int cpu)
2411{
2412	/*
2413	 * expand/allocate array of pointers to local thread
2414	 * structs if needed
2415	 */
2416	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2417		int i, j = __roundup_pow_of_two(cpu+1);
2418		void *p;
2419
2420		p = realloc(idle_threads, j * sizeof(struct thread *));
2421		if (!p)
2422			return NULL;
2423
2424		idle_threads = (struct thread **) p;
2425		for (i = idle_max_cpu; i < j; ++i)
2426			idle_threads[i] = NULL;
2427
2428		idle_max_cpu = j;
2429	}
2430
2431	/* allocate a new thread struct if needed */
2432	if (idle_threads[cpu] == NULL) {
2433		idle_threads[cpu] = thread__new(0, 0);
2434
2435		if (idle_threads[cpu]) {
2436			if (init_idle_thread(idle_threads[cpu]) < 0)
2437				return NULL;
2438		}
2439	}
2440
2441	return idle_threads[cpu];
2442}
2443
2444static void save_idle_callchain(struct perf_sched *sched,
2445				struct idle_thread_runtime *itr,
2446				struct perf_sample *sample)
2447{
2448	struct callchain_cursor *cursor;
2449
2450	if (!sched->show_callchain || sample->callchain == NULL)
2451		return;
2452
2453	cursor = get_tls_callchain_cursor();
2454	if (cursor == NULL)
2455		return;
2456
2457	callchain_cursor__copy(&itr->cursor, cursor);
2458}
2459
2460static struct thread *timehist_get_thread(struct perf_sched *sched,
2461					  struct perf_sample *sample,
2462					  struct machine *machine,
2463					  struct evsel *evsel)
2464{
2465	struct thread *thread;
2466
2467	if (is_idle_sample(sample, evsel)) {
2468		thread = get_idle_thread(sample->cpu);
2469		if (thread == NULL)
2470			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2471
2472	} else {
2473		/* there were samples with tid 0 but non-zero pid */
2474		thread = machine__findnew_thread(machine, sample->pid,
2475						 sample->tid ?: sample->pid);
2476		if (thread == NULL) {
2477			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2478				 sample->tid);
2479		}
2480
2481		save_task_callchain(sched, sample, evsel, machine);
2482		if (sched->idle_hist) {
2483			struct thread *idle;
2484			struct idle_thread_runtime *itr;
2485
2486			idle = get_idle_thread(sample->cpu);
2487			if (idle == NULL) {
2488				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2489				return NULL;
2490			}
2491
2492			itr = thread__priv(idle);
2493			if (itr == NULL)
2494				return NULL;
2495
2496			itr->last_thread = thread;
2497
2498			/* copy task callchain when entering to idle */
2499			if (evsel__intval(evsel, sample, "next_pid") == 0)
2500				save_idle_callchain(sched, itr, sample);
2501		}
2502	}
2503
2504	return thread;
2505}
2506
2507static bool timehist_skip_sample(struct perf_sched *sched,
2508				 struct thread *thread,
2509				 struct evsel *evsel,
2510				 struct perf_sample *sample)
2511{
2512	bool rc = false;
2513	int prio = -1;
2514	struct thread_runtime *tr = NULL;
2515
2516	if (thread__is_filtered(thread)) {
2517		rc = true;
2518		sched->skipped_samples++;
2519	}
2520
2521	if (sched->prio_str) {
2522		/*
2523		 * Because priority may be changed during task execution,
2524		 * first read priority from prev sched_in event for current task.
2525		 * If prev sched_in event is not saved, then read priority from
2526		 * current task sched_out event.
2527		 */
2528		tr = thread__get_runtime(thread);
2529		if (tr && tr->prio != -1)
2530			prio = tr->prio;
2531		else if (evsel__name_is(evsel, "sched:sched_switch"))
2532			prio = evsel__intval(evsel, sample, "prev_prio");
2533
2534		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2535			rc = true;
2536			sched->skipped_samples++;
2537		}
2538	}
2539
2540	if (sched->idle_hist) {
2541		if (!evsel__name_is(evsel, "sched:sched_switch"))
2542			rc = true;
2543		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2544			 evsel__intval(evsel, sample, "next_pid") != 0)
2545			rc = true;
2546	}
2547
2548	return rc;
2549}
2550
2551static void timehist_print_wakeup_event(struct perf_sched *sched,
2552					struct evsel *evsel,
2553					struct perf_sample *sample,
2554					struct machine *machine,
2555					struct thread *awakened)
2556{
2557	struct thread *thread;
2558	char tstr[64];
2559
2560	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2561	if (thread == NULL)
2562		return;
2563
2564	/* show wakeup unless both awakee and awaker are filtered */
2565	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2566	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2567		return;
2568	}
2569
2570	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2571	printf("%15s [%04d] ", tstr, sample->cpu);
2572	if (sched->show_cpu_visual)
2573		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2574
2575	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2576
2577	/* dt spacer */
2578	printf("  %9s  %9s  %9s ", "", "", "");
2579
2580	printf("awakened: %s", timehist_get_commstr(awakened));
2581
2582	printf("\n");
2583}
2584
2585static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2586					union perf_event *event __maybe_unused,
2587					struct evsel *evsel __maybe_unused,
2588					struct perf_sample *sample __maybe_unused,
2589					struct machine *machine __maybe_unused)
2590{
2591	return 0;
2592}
2593
2594static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2595				       union perf_event *event __maybe_unused,
2596				       struct evsel *evsel,
2597				       struct perf_sample *sample,
2598				       struct machine *machine)
2599{
2600	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2601	struct thread *thread;
2602	struct thread_runtime *tr = NULL;
2603	/* want pid of awakened task not pid in sample */
2604	const u32 pid = evsel__intval(evsel, sample, "pid");
2605
2606	thread = machine__findnew_thread(machine, 0, pid);
2607	if (thread == NULL)
2608		return -1;
2609
2610	tr = thread__get_runtime(thread);
2611	if (tr == NULL)
2612		return -1;
2613
2614	if (tr->ready_to_run == 0)
2615		tr->ready_to_run = sample->time;
2616
2617	/* show wakeups if requested */
2618	if (sched->show_wakeups &&
2619	    !perf_time__skip_sample(&sched->ptime, sample->time))
2620		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2621
2622	return 0;
2623}
2624
2625static void timehist_print_migration_event(struct perf_sched *sched,
2626					struct evsel *evsel,
2627					struct perf_sample *sample,
2628					struct machine *machine,
2629					struct thread *migrated)
2630{
2631	struct thread *thread;
2632	char tstr[64];
2633	u32 max_cpus;
2634	u32 ocpu, dcpu;
2635
2636	if (sched->summary_only)
2637		return;
2638
2639	max_cpus = sched->max_cpu.cpu + 1;
2640	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2641	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2642
2643	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2644	if (thread == NULL)
2645		return;
2646
2647	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2648	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2649		return;
2650	}
2651
2652	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2653	printf("%15s [%04d] ", tstr, sample->cpu);
2654
2655	if (sched->show_cpu_visual) {
2656		u32 i;
2657		char c;
2658
2659		printf("  ");
2660		for (i = 0; i < max_cpus; ++i) {
2661			c = (i == sample->cpu) ? 'm' : ' ';
2662			printf("%c", c);
2663		}
2664		printf("  ");
2665	}
2666
2667	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2668
2669	/* dt spacer */
2670	printf("  %9s  %9s  %9s ", "", "", "");
2671
2672	printf("migrated: %s", timehist_get_commstr(migrated));
2673	printf(" cpu %d => %d", ocpu, dcpu);
2674
2675	printf("\n");
2676}
2677
2678static int timehist_migrate_task_event(const struct perf_tool *tool,
2679				       union perf_event *event __maybe_unused,
2680				       struct evsel *evsel,
2681				       struct perf_sample *sample,
2682				       struct machine *machine)
2683{
2684	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2685	struct thread *thread;
2686	struct thread_runtime *tr = NULL;
2687	/* want pid of migrated task not pid in sample */
2688	const u32 pid = evsel__intval(evsel, sample, "pid");
2689
2690	thread = machine__findnew_thread(machine, 0, pid);
2691	if (thread == NULL)
2692		return -1;
2693
2694	tr = thread__get_runtime(thread);
2695	if (tr == NULL)
2696		return -1;
2697
2698	tr->migrations++;
2699	tr->migrated = sample->time;
2700
2701	/* show migrations if requested */
2702	if (sched->show_migrations) {
2703		timehist_print_migration_event(sched, evsel, sample,
2704							machine, thread);
2705	}
2706
2707	return 0;
2708}
2709
2710static void timehist_update_task_prio(struct evsel *evsel,
2711				      struct perf_sample *sample,
2712				      struct machine *machine)
2713{
2714	struct thread *thread;
2715	struct thread_runtime *tr = NULL;
2716	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2717	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2718
2719	if (next_pid == 0)
2720		thread = get_idle_thread(sample->cpu);
2721	else
2722		thread = machine__findnew_thread(machine, -1, next_pid);
2723
2724	if (thread == NULL)
2725		return;
2726
2727	tr = thread__get_runtime(thread);
2728	if (tr == NULL)
2729		return;
2730
2731	tr->prio = next_prio;
2732}
2733
2734static int timehist_sched_change_event(const struct perf_tool *tool,
2735				       union perf_event *event,
2736				       struct evsel *evsel,
2737				       struct perf_sample *sample,
2738				       struct machine *machine)
2739{
2740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2741	struct perf_time_interval *ptime = &sched->ptime;
2742	struct addr_location al;
2743	struct thread *thread;
2744	struct thread_runtime *tr = NULL;
2745	u64 tprev, t = sample->time;
2746	int rc = 0;
2747	const char state = evsel__taskstate(evsel, sample, "prev_state");
2748
2749	addr_location__init(&al);
2750	if (machine__resolve(machine, &al, sample) < 0) {
2751		pr_err("problem processing %d event. skipping it\n",
2752		       event->header.type);
2753		rc = -1;
2754		goto out;
2755	}
2756
2757	if (sched->show_prio || sched->prio_str)
2758		timehist_update_task_prio(evsel, sample, machine);
2759
2760	thread = timehist_get_thread(sched, sample, machine, evsel);
2761	if (thread == NULL) {
2762		rc = -1;
2763		goto out;
2764	}
2765
2766	if (timehist_skip_sample(sched, thread, evsel, sample))
2767		goto out;
2768
2769	tr = thread__get_runtime(thread);
2770	if (tr == NULL) {
2771		rc = -1;
2772		goto out;
2773	}
2774
2775	tprev = evsel__get_time(evsel, sample->cpu);
2776
2777	/*
2778	 * If start time given:
2779	 * - sample time is under window user cares about - skip sample
2780	 * - tprev is under window user cares about  - reset to start of window
2781	 */
2782	if (ptime->start && ptime->start > t)
2783		goto out;
2784
2785	if (tprev && ptime->start > tprev)
2786		tprev = ptime->start;
2787
2788	/*
2789	 * If end time given:
2790	 * - previous sched event is out of window - we are done
2791	 * - sample time is beyond window user cares about - reset it
2792	 *   to close out stats for time window interest
2793	 * - If tprev is 0, that is, sched_in event for current task is
2794	 *   not recorded, cannot determine whether sched_in event is
2795	 *   within time window interest - ignore it
2796	 */
2797	if (ptime->end) {
2798		if (!tprev || tprev > ptime->end)
2799			goto out;
2800
2801		if (t > ptime->end)
2802			t = ptime->end;
2803	}
2804
2805	if (!sched->idle_hist || thread__tid(thread) == 0) {
2806		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2807			timehist_update_runtime_stats(tr, t, tprev);
2808
2809		if (sched->idle_hist) {
2810			struct idle_thread_runtime *itr = (void *)tr;
2811			struct thread_runtime *last_tr;
2812
 
 
2813			if (itr->last_thread == NULL)
2814				goto out;
2815
2816			/* add current idle time as last thread's runtime */
2817			last_tr = thread__get_runtime(itr->last_thread);
2818			if (last_tr == NULL)
2819				goto out;
2820
2821			timehist_update_runtime_stats(last_tr, t, tprev);
2822			/*
2823			 * remove delta time of last thread as it's not updated
2824			 * and otherwise it will show an invalid value next
2825			 * time.  we only care total run time and run stat.
2826			 */
2827			last_tr->dt_run = 0;
2828			last_tr->dt_delay = 0;
2829			last_tr->dt_sleep = 0;
2830			last_tr->dt_iowait = 0;
2831			last_tr->dt_preempt = 0;
2832
2833			if (itr->cursor.nr)
2834				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2835
2836			itr->last_thread = NULL;
2837		}
 
2838
2839		if (!sched->summary_only)
2840			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2841	}
2842
2843out:
2844	if (sched->hist_time.start == 0 && t >= ptime->start)
2845		sched->hist_time.start = t;
2846	if (ptime->end == 0 || t <= ptime->end)
2847		sched->hist_time.end = t;
2848
2849	if (tr) {
2850		/* time of this sched_switch event becomes last time task seen */
2851		tr->last_time = sample->time;
2852
2853		/* last state is used to determine where to account wait time */
2854		tr->last_state = state;
2855
2856		/* sched out event for task so reset ready to run time and migrated time */
2857		if (state == 'R')
2858			tr->ready_to_run = t;
2859		else
2860			tr->ready_to_run = 0;
2861
2862		tr->migrated = 0;
2863	}
2864
2865	evsel__save_time(evsel, sample->time, sample->cpu);
2866
2867	addr_location__exit(&al);
2868	return rc;
2869}
2870
2871static int timehist_sched_switch_event(const struct perf_tool *tool,
2872			     union perf_event *event,
2873			     struct evsel *evsel,
2874			     struct perf_sample *sample,
2875			     struct machine *machine __maybe_unused)
2876{
2877	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2878}
2879
2880static int process_lost(const struct perf_tool *tool __maybe_unused,
2881			union perf_event *event,
2882			struct perf_sample *sample,
2883			struct machine *machine __maybe_unused)
2884{
2885	char tstr[64];
2886
2887	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2888	printf("%15s ", tstr);
2889	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2890
2891	return 0;
2892}
2893
2894
2895static void print_thread_runtime(struct thread *t,
2896				 struct thread_runtime *r)
2897{
2898	double mean = avg_stats(&r->run_stats);
2899	float stddev;
2900
2901	printf("%*s   %5d  %9" PRIu64 " ",
2902	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2903	       (u64) r->run_stats.n);
2904
2905	print_sched_time(r->total_run_time, 8);
2906	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2907	print_sched_time(r->run_stats.min, 6);
2908	printf(" ");
2909	print_sched_time((u64) mean, 6);
2910	printf(" ");
2911	print_sched_time(r->run_stats.max, 6);
2912	printf("  ");
2913	printf("%5.2f", stddev);
2914	printf("   %5" PRIu64, r->migrations);
2915	printf("\n");
2916}
2917
2918static void print_thread_waittime(struct thread *t,
2919				  struct thread_runtime *r)
2920{
2921	printf("%*s   %5d  %9" PRIu64 " ",
2922	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2923	       (u64) r->run_stats.n);
2924
2925	print_sched_time(r->total_run_time, 8);
2926	print_sched_time(r->total_sleep_time, 6);
2927	printf(" ");
2928	print_sched_time(r->total_iowait_time, 6);
2929	printf(" ");
2930	print_sched_time(r->total_preempt_time, 6);
2931	printf(" ");
2932	print_sched_time(r->total_delay_time, 6);
2933	printf("\n");
2934}
2935
2936struct total_run_stats {
2937	struct perf_sched *sched;
2938	u64  sched_count;
2939	u64  task_count;
2940	u64  total_run_time;
2941};
2942
2943static int show_thread_runtime(struct thread *t, void *priv)
2944{
2945	struct total_run_stats *stats = priv;
2946	struct thread_runtime *r;
2947
2948	if (thread__is_filtered(t))
2949		return 0;
2950
2951	r = thread__priv(t);
2952	if (r && r->run_stats.n) {
2953		stats->task_count++;
2954		stats->sched_count += r->run_stats.n;
2955		stats->total_run_time += r->total_run_time;
2956
2957		if (stats->sched->show_state)
2958			print_thread_waittime(t, r);
2959		else
2960			print_thread_runtime(t, r);
2961	}
2962
2963	return 0;
2964}
2965
2966static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2967{
2968	const char *sep = " <- ";
2969	struct callchain_list *chain;
2970	size_t ret = 0;
2971	char bf[1024];
2972	bool first;
2973
2974	if (node == NULL)
2975		return 0;
2976
2977	ret = callchain__fprintf_folded(fp, node->parent);
2978	first = (ret == 0);
2979
2980	list_for_each_entry(chain, &node->val, list) {
2981		if (chain->ip >= PERF_CONTEXT_MAX)
2982			continue;
2983		if (chain->ms.sym && chain->ms.sym->ignore)
2984			continue;
2985		ret += fprintf(fp, "%s%s", first ? "" : sep,
2986			       callchain_list__sym_name(chain, bf, sizeof(bf),
2987							false));
2988		first = false;
2989	}
2990
2991	return ret;
2992}
2993
2994static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2995{
2996	size_t ret = 0;
2997	FILE *fp = stdout;
2998	struct callchain_node *chain;
2999	struct rb_node *rb_node = rb_first_cached(root);
3000
3001	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3002	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3003	       graph_dotted_line);
3004
3005	while (rb_node) {
3006		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3007		rb_node = rb_next(rb_node);
3008
3009		ret += fprintf(fp, "  ");
3010		print_sched_time(chain->hit, 12);
3011		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3012		ret += fprintf(fp, " %8d  ", chain->count);
3013		ret += callchain__fprintf_folded(fp, chain);
3014		ret += fprintf(fp, "\n");
3015	}
3016
3017	return ret;
3018}
3019
3020static void timehist_print_summary(struct perf_sched *sched,
3021				   struct perf_session *session)
3022{
3023	struct machine *m = &session->machines.host;
3024	struct total_run_stats totals;
3025	u64 task_count;
3026	struct thread *t;
3027	struct thread_runtime *r;
3028	int i;
3029	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3030
3031	memset(&totals, 0, sizeof(totals));
3032	totals.sched = sched;
3033
3034	if (sched->idle_hist) {
3035		printf("\nIdle-time summary\n");
3036		printf("%*s  parent  sched-out  ", comm_width, "comm");
3037		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3038	} else if (sched->show_state) {
3039		printf("\nWait-time summary\n");
3040		printf("%*s  parent   sched-in  ", comm_width, "comm");
3041		printf("   run-time      sleep      iowait     preempt       delay\n");
3042	} else {
3043		printf("\nRuntime summary\n");
3044		printf("%*s  parent   sched-in  ", comm_width, "comm");
3045		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3046	}
3047	printf("%*s            (count)  ", comm_width, "");
3048	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3049	       sched->show_state ? "(msec)" : "%");
3050	printf("%.117s\n", graph_dotted_line);
3051
3052	machine__for_each_thread(m, show_thread_runtime, &totals);
3053	task_count = totals.task_count;
3054	if (!task_count)
3055		printf("<no still running tasks>\n");
3056
3057	/* CPU idle stats not tracked when samples were skipped */
3058	if (sched->skipped_samples && !sched->idle_hist)
3059		return;
3060
3061	printf("\nIdle stats:\n");
3062	for (i = 0; i < idle_max_cpu; ++i) {
3063		if (cpu_list && !test_bit(i, cpu_bitmap))
3064			continue;
3065
3066		t = idle_threads[i];
3067		if (!t)
3068			continue;
3069
3070		r = thread__priv(t);
3071		if (r && r->run_stats.n) {
3072			totals.sched_count += r->run_stats.n;
3073			printf("    CPU %2d idle for ", i);
3074			print_sched_time(r->total_run_time, 6);
3075			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3076		} else
3077			printf("    CPU %2d idle entire time window\n", i);
3078	}
3079
3080	if (sched->idle_hist && sched->show_callchain) {
3081		callchain_param.mode  = CHAIN_FOLDED;
3082		callchain_param.value = CCVAL_PERIOD;
3083
3084		callchain_register_param(&callchain_param);
3085
3086		printf("\nIdle stats by callchain:\n");
3087		for (i = 0; i < idle_max_cpu; ++i) {
3088			struct idle_thread_runtime *itr;
3089
3090			t = idle_threads[i];
3091			if (!t)
3092				continue;
3093
3094			itr = thread__priv(t);
3095			if (itr == NULL)
3096				continue;
3097
3098			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3099					     0, &callchain_param);
3100
3101			printf("  CPU %2d:", i);
3102			print_sched_time(itr->tr.total_run_time, 6);
3103			printf(" msec\n");
3104			timehist_print_idlehist_callchain(&itr->sorted_root);
3105			printf("\n");
3106		}
3107	}
3108
3109	printf("\n"
3110	       "    Total number of unique tasks: %" PRIu64 "\n"
3111	       "Total number of context switches: %" PRIu64 "\n",
3112	       totals.task_count, totals.sched_count);
3113
3114	printf("           Total run time (msec): ");
3115	print_sched_time(totals.total_run_time, 2);
3116	printf("\n");
3117
3118	printf("    Total scheduling time (msec): ");
3119	print_sched_time(hist_time, 2);
3120	printf(" (x %d)\n", sched->max_cpu.cpu);
3121}
3122
3123typedef int (*sched_handler)(const struct perf_tool *tool,
3124			  union perf_event *event,
3125			  struct evsel *evsel,
3126			  struct perf_sample *sample,
3127			  struct machine *machine);
3128
3129static int perf_timehist__process_sample(const struct perf_tool *tool,
3130					 union perf_event *event,
3131					 struct perf_sample *sample,
3132					 struct evsel *evsel,
3133					 struct machine *machine)
3134{
3135	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3136	int err = 0;
3137	struct perf_cpu this_cpu = {
3138		.cpu = sample->cpu,
3139	};
3140
3141	if (this_cpu.cpu > sched->max_cpu.cpu)
3142		sched->max_cpu = this_cpu;
3143
3144	if (evsel->handler != NULL) {
3145		sched_handler f = evsel->handler;
3146
3147		err = f(tool, event, evsel, sample, machine);
3148	}
3149
3150	return err;
3151}
3152
3153static int timehist_check_attr(struct perf_sched *sched,
3154			       struct evlist *evlist)
3155{
3156	struct evsel *evsel;
3157	struct evsel_runtime *er;
3158
3159	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3160		er = evsel__get_runtime(evsel);
3161		if (er == NULL) {
3162			pr_err("Failed to allocate memory for evsel runtime data\n");
3163			return -1;
3164		}
3165
3166		/* only need to save callchain related to sched_switch event */
3167		if (sched->show_callchain &&
3168		    evsel__name_is(evsel, "sched:sched_switch") &&
3169		    !evsel__has_callchain(evsel)) {
3170			pr_info("Samples of sched_switch event do not have callchains.\n");
3171			sched->show_callchain = 0;
3172			symbol_conf.use_callchain = 0;
3173		}
3174	}
3175
3176	return 0;
3177}
3178
3179static int timehist_parse_prio_str(struct perf_sched *sched)
3180{
3181	char *p;
3182	unsigned long start_prio, end_prio;
3183	const char *str = sched->prio_str;
3184
3185	if (!str)
3186		return 0;
3187
3188	while (isdigit(*str)) {
3189		p = NULL;
3190		start_prio = strtoul(str, &p, 0);
3191		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3192			return -1;
3193
3194		if (*p == '-') {
3195			str = ++p;
3196			p = NULL;
3197			end_prio = strtoul(str, &p, 0);
3198
3199			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3200				return -1;
3201
3202			if (end_prio < start_prio)
3203				return -1;
3204		} else {
3205			end_prio = start_prio;
3206		}
3207
3208		for (; start_prio <= end_prio; start_prio++)
3209			__set_bit(start_prio, sched->prio_bitmap);
3210
3211		if (*p)
3212			++p;
3213
3214		str = p;
3215	}
3216
3217	return 0;
3218}
3219
3220static int perf_sched__timehist(struct perf_sched *sched)
3221{
3222	struct evsel_str_handler handlers[] = {
3223		{ "sched:sched_switch",       timehist_sched_switch_event, },
3224		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3225		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3226		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3227	};
3228	const struct evsel_str_handler migrate_handlers[] = {
3229		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3230	};
3231	struct perf_data data = {
3232		.path  = input_name,
3233		.mode  = PERF_DATA_MODE_READ,
3234		.force = sched->force,
3235	};
3236
3237	struct perf_session *session;
3238	struct evlist *evlist;
3239	int err = -1;
3240
3241	/*
3242	 * event handlers for timehist option
3243	 */
3244	sched->tool.sample	 = perf_timehist__process_sample;
3245	sched->tool.mmap	 = perf_event__process_mmap;
3246	sched->tool.comm	 = perf_event__process_comm;
3247	sched->tool.exit	 = perf_event__process_exit;
3248	sched->tool.fork	 = perf_event__process_fork;
3249	sched->tool.lost	 = process_lost;
3250	sched->tool.attr	 = perf_event__process_attr;
3251	sched->tool.tracing_data = perf_event__process_tracing_data;
3252	sched->tool.build_id	 = perf_event__process_build_id;
3253
 
3254	sched->tool.ordering_requires_timestamps = true;
3255
3256	symbol_conf.use_callchain = sched->show_callchain;
3257
3258	session = perf_session__new(&data, &sched->tool);
3259	if (IS_ERR(session))
3260		return PTR_ERR(session);
3261
3262	if (cpu_list) {
3263		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3264		if (err < 0)
3265			goto out;
3266	}
3267
3268	evlist = session->evlist;
3269
3270	symbol__init(&session->header.env);
3271
3272	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3273		pr_err("Invalid time string\n");
3274		err = -EINVAL;
3275		goto out;
3276	}
3277
3278	if (timehist_check_attr(sched, evlist) != 0)
3279		goto out;
3280
3281	if (timehist_parse_prio_str(sched) != 0) {
3282		pr_err("Invalid prio string\n");
3283		goto out;
3284	}
3285
3286	setup_pager();
3287
3288	/* prefer sched_waking if it is captured */
3289	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3290		handlers[1].handler = timehist_sched_wakeup_ignore;
3291
3292	/* setup per-evsel handlers */
3293	if (perf_session__set_tracepoints_handlers(session, handlers))
3294		goto out;
3295
3296	/* sched_switch event at a minimum needs to exist */
3297	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3298		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3299		goto out;
3300	}
3301
3302	if ((sched->show_migrations || sched->pre_migrations) &&
3303		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3304		goto out;
3305
3306	/* pre-allocate struct for per-CPU idle stats */
3307	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3308	if (sched->max_cpu.cpu == 0)
3309		sched->max_cpu.cpu = 4;
3310	if (init_idle_threads(sched->max_cpu.cpu))
3311		goto out;
3312
3313	/* summary_only implies summary option, but don't overwrite summary if set */
3314	if (sched->summary_only)
3315		sched->summary = sched->summary_only;
3316
3317	if (!sched->summary_only)
3318		timehist_header(sched);
3319
3320	err = perf_session__process_events(session);
3321	if (err) {
3322		pr_err("Failed to process events, error %d", err);
3323		goto out;
3324	}
3325
3326	sched->nr_events      = evlist->stats.nr_events[0];
3327	sched->nr_lost_events = evlist->stats.total_lost;
3328	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3329
3330	if (sched->summary)
3331		timehist_print_summary(sched, session);
3332
3333out:
3334	free_idle_threads();
3335	perf_session__delete(session);
3336
3337	return err;
3338}
3339
3340
3341static void print_bad_events(struct perf_sched *sched)
3342{
3343	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3344		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3345			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3346			sched->nr_unordered_timestamps, sched->nr_timestamps);
3347	}
3348	if (sched->nr_lost_events && sched->nr_events) {
3349		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3350			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3351			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3352	}
3353	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3354		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3355			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3356			sched->nr_context_switch_bugs, sched->nr_timestamps);
3357		if (sched->nr_lost_events)
3358			printf(" (due to lost events?)");
3359		printf("\n");
3360	}
3361}
3362
3363static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3364{
3365	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3366	struct work_atoms *this;
3367	const char *comm = thread__comm_str(data->thread), *this_comm;
3368	bool leftmost = true;
3369
3370	while (*new) {
3371		int cmp;
3372
3373		this = container_of(*new, struct work_atoms, node);
3374		parent = *new;
3375
3376		this_comm = thread__comm_str(this->thread);
3377		cmp = strcmp(comm, this_comm);
3378		if (cmp > 0) {
3379			new = &((*new)->rb_left);
3380		} else if (cmp < 0) {
3381			new = &((*new)->rb_right);
3382			leftmost = false;
3383		} else {
3384			this->num_merged++;
3385			this->total_runtime += data->total_runtime;
3386			this->nb_atoms += data->nb_atoms;
3387			this->total_lat += data->total_lat;
3388			list_splice(&data->work_list, &this->work_list);
3389			if (this->max_lat < data->max_lat) {
3390				this->max_lat = data->max_lat;
3391				this->max_lat_start = data->max_lat_start;
3392				this->max_lat_end = data->max_lat_end;
3393			}
3394			zfree(&data);
3395			return;
3396		}
3397	}
3398
3399	data->num_merged++;
3400	rb_link_node(&data->node, parent, new);
3401	rb_insert_color_cached(&data->node, root, leftmost);
3402}
3403
3404static void perf_sched__merge_lat(struct perf_sched *sched)
3405{
3406	struct work_atoms *data;
3407	struct rb_node *node;
3408
3409	if (sched->skip_merge)
3410		return;
3411
3412	while ((node = rb_first_cached(&sched->atom_root))) {
3413		rb_erase_cached(node, &sched->atom_root);
3414		data = rb_entry(node, struct work_atoms, node);
3415		__merge_work_atoms(&sched->merged_atom_root, data);
3416	}
3417}
3418
3419static int setup_cpus_switch_event(struct perf_sched *sched)
3420{
3421	unsigned int i;
3422
3423	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3424	if (!sched->cpu_last_switched)
3425		return -1;
3426
3427	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3428	if (!sched->curr_pid) {
3429		zfree(&sched->cpu_last_switched);
3430		return -1;
3431	}
3432
3433	for (i = 0; i < MAX_CPUS; i++)
3434		sched->curr_pid[i] = -1;
3435
3436	return 0;
3437}
3438
3439static void free_cpus_switch_event(struct perf_sched *sched)
3440{
3441	zfree(&sched->curr_pid);
3442	zfree(&sched->cpu_last_switched);
3443}
3444
3445static int perf_sched__lat(struct perf_sched *sched)
3446{
3447	int rc = -1;
3448	struct rb_node *next;
3449
3450	setup_pager();
3451
3452	if (setup_cpus_switch_event(sched))
3453		return rc;
3454
3455	if (perf_sched__read_events(sched))
3456		goto out_free_cpus_switch_event;
3457
3458	perf_sched__merge_lat(sched);
3459	perf_sched__sort_lat(sched);
3460
3461	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3462	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3463	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3464
3465	next = rb_first_cached(&sched->sorted_atom_root);
3466
3467	while (next) {
3468		struct work_atoms *work_list;
3469
3470		work_list = rb_entry(next, struct work_atoms, node);
3471		output_lat_thread(sched, work_list);
3472		next = rb_next(next);
3473		thread__zput(work_list->thread);
3474	}
3475
3476	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3477	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3478		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3479
3480	printf(" ---------------------------------------------------\n");
3481
3482	print_bad_events(sched);
3483	printf("\n");
3484
3485	rc = 0;
3486
3487out_free_cpus_switch_event:
3488	free_cpus_switch_event(sched);
3489	return rc;
3490}
3491
3492static int setup_map_cpus(struct perf_sched *sched)
3493{
3494	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3495
3496	if (sched->map.comp) {
3497		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3498		if (!sched->map.comp_cpus)
3499			return -1;
3500	}
3501
3502	if (sched->map.cpus_str) {
3503		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3504		if (!sched->map.cpus) {
3505			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3506			zfree(&sched->map.comp_cpus);
3507			return -1;
3508		}
3509	}
3510
3511	return 0;
3512}
3513
3514static int setup_color_pids(struct perf_sched *sched)
3515{
3516	struct perf_thread_map *map;
3517
3518	if (!sched->map.color_pids_str)
3519		return 0;
3520
3521	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3522	if (!map) {
3523		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3524		return -1;
3525	}
3526
3527	sched->map.color_pids = map;
3528	return 0;
3529}
3530
3531static int setup_color_cpus(struct perf_sched *sched)
3532{
3533	struct perf_cpu_map *map;
3534
3535	if (!sched->map.color_cpus_str)
3536		return 0;
3537
3538	map = perf_cpu_map__new(sched->map.color_cpus_str);
3539	if (!map) {
3540		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3541		return -1;
3542	}
3543
3544	sched->map.color_cpus = map;
3545	return 0;
3546}
3547
3548static int perf_sched__map(struct perf_sched *sched)
3549{
3550	int rc = -1;
3551
3552	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3553	if (!sched->curr_thread)
3554		return rc;
3555
3556	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3557	if (!sched->curr_out_thread)
3558		return rc;
3559
3560	if (setup_cpus_switch_event(sched))
3561		goto out_free_curr_thread;
3562
3563	if (setup_map_cpus(sched))
3564		goto out_free_cpus_switch_event;
3565
3566	if (setup_color_pids(sched))
3567		goto out_put_map_cpus;
3568
3569	if (setup_color_cpus(sched))
3570		goto out_put_color_pids;
3571
3572	setup_pager();
3573	if (perf_sched__read_events(sched))
3574		goto out_put_color_cpus;
3575
3576	rc = 0;
3577	print_bad_events(sched);
3578
3579out_put_color_cpus:
3580	perf_cpu_map__put(sched->map.color_cpus);
3581
3582out_put_color_pids:
3583	perf_thread_map__put(sched->map.color_pids);
3584
3585out_put_map_cpus:
3586	zfree(&sched->map.comp_cpus);
3587	perf_cpu_map__put(sched->map.cpus);
3588
3589out_free_cpus_switch_event:
3590	free_cpus_switch_event(sched);
3591
3592out_free_curr_thread:
3593	zfree(&sched->curr_thread);
3594	return rc;
3595}
3596
3597static int perf_sched__replay(struct perf_sched *sched)
3598{
3599	int ret;
3600	unsigned long i;
3601
3602	mutex_init(&sched->start_work_mutex);
3603	mutex_init(&sched->work_done_wait_mutex);
3604
3605	ret = setup_cpus_switch_event(sched);
3606	if (ret)
3607		goto out_mutex_destroy;
3608
3609	calibrate_run_measurement_overhead(sched);
3610	calibrate_sleep_measurement_overhead(sched);
3611
3612	test_calibrations(sched);
3613
3614	ret = perf_sched__read_events(sched);
3615	if (ret)
3616		goto out_free_cpus_switch_event;
3617
3618	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3619	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3620	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3621
3622	if (sched->targetless_wakeups)
3623		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3624	if (sched->multitarget_wakeups)
3625		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3626	if (sched->nr_run_events_optimized)
3627		printf("run atoms optimized: %ld\n",
3628			sched->nr_run_events_optimized);
3629
3630	print_task_traces(sched);
3631	add_cross_task_wakeups(sched);
3632
3633	sched->thread_funcs_exit = false;
3634	create_tasks(sched);
3635	printf("------------------------------------------------------------\n");
3636	if (sched->replay_repeat == 0)
3637		sched->replay_repeat = UINT_MAX;
3638
3639	for (i = 0; i < sched->replay_repeat; i++)
3640		run_one_test(sched);
3641
3642	sched->thread_funcs_exit = true;
3643	destroy_tasks(sched);
3644
3645out_free_cpus_switch_event:
3646	free_cpus_switch_event(sched);
3647
3648out_mutex_destroy:
3649	mutex_destroy(&sched->start_work_mutex);
3650	mutex_destroy(&sched->work_done_wait_mutex);
3651	return ret;
3652}
3653
3654static void setup_sorting(struct perf_sched *sched, const struct option *options,
3655			  const char * const usage_msg[])
3656{
3657	char *tmp, *tok, *str = strdup(sched->sort_order);
3658
3659	for (tok = strtok_r(str, ", ", &tmp);
3660			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3661		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3662			usage_with_options_msg(usage_msg, options,
3663					"Unknown --sort key: `%s'", tok);
3664		}
3665	}
3666
3667	free(str);
3668
3669	sort_dimension__add("pid", &sched->cmp_pid);
3670}
3671
3672static bool schedstat_events_exposed(void)
3673{
3674	/*
3675	 * Select "sched:sched_stat_wait" event to check
3676	 * whether schedstat tracepoints are exposed.
3677	 */
3678	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3679		false : true;
3680}
3681
3682static int __cmd_record(int argc, const char **argv)
3683{
3684	unsigned int rec_argc, i, j;
3685	char **rec_argv;
3686	const char **rec_argv_copy;
3687	const char * const record_args[] = {
3688		"record",
3689		"-a",
3690		"-R",
3691		"-m", "1024",
3692		"-c", "1",
3693		"-e", "sched:sched_switch",
3694		"-e", "sched:sched_stat_runtime",
3695		"-e", "sched:sched_process_fork",
3696		"-e", "sched:sched_wakeup_new",
3697		"-e", "sched:sched_migrate_task",
3698	};
3699
3700	/*
3701	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3702	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3703	 * to prevent "perf sched record" execution failure, determine
3704	 * whether to record schedstat events according to actual situation.
3705	 */
3706	const char * const schedstat_args[] = {
3707		"-e", "sched:sched_stat_wait",
3708		"-e", "sched:sched_stat_sleep",
3709		"-e", "sched:sched_stat_iowait",
3710	};
3711	unsigned int schedstat_argc = schedstat_events_exposed() ?
3712		ARRAY_SIZE(schedstat_args) : 0;
3713
3714	struct tep_event *waking_event;
3715	int ret;
3716
3717	/*
3718	 * +2 for either "-e", "sched:sched_wakeup" or
3719	 * "-e", "sched:sched_waking"
3720	 */
3721	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3722	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3723	if (rec_argv == NULL)
3724		return -ENOMEM;
3725	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3726	if (rec_argv_copy == NULL) {
3727		free(rec_argv);
3728		return -ENOMEM;
3729	}
3730
3731	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3732		rec_argv[i] = strdup(record_args[i]);
3733
3734	rec_argv[i++] = strdup("-e");
3735	waking_event = trace_event__tp_format("sched", "sched_waking");
3736	if (!IS_ERR(waking_event))
3737		rec_argv[i++] = strdup("sched:sched_waking");
3738	else
3739		rec_argv[i++] = strdup("sched:sched_wakeup");
3740
3741	for (j = 0; j < schedstat_argc; j++)
3742		rec_argv[i++] = strdup(schedstat_args[j]);
3743
3744	for (j = 1; j < (unsigned int)argc; j++, i++)
3745		rec_argv[i] = strdup(argv[j]);
3746
3747	BUG_ON(i != rec_argc);
3748
3749	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3750	ret = cmd_record(rec_argc, rec_argv_copy);
3751
3752	for (i = 0; i < rec_argc; i++)
3753		free(rec_argv[i]);
3754	free(rec_argv);
3755	free(rec_argv_copy);
3756
3757	return ret;
3758}
3759
3760int cmd_sched(int argc, const char **argv)
3761{
3762	static const char default_sort_order[] = "avg, max, switch, runtime";
3763	struct perf_sched sched = {
 
 
 
 
 
 
 
 
3764		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3765		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3766		.sort_order	      = default_sort_order,
3767		.replay_repeat	      = 10,
3768		.profile_cpu	      = -1,
3769		.next_shortname1      = 'A',
3770		.next_shortname2      = '0',
3771		.skip_merge           = 0,
3772		.show_callchain	      = 1,
3773		.max_stack            = 5,
3774	};
3775	const struct option sched_options[] = {
3776	OPT_STRING('i', "input", &input_name, "file",
3777		    "input file name"),
3778	OPT_INCR('v', "verbose", &verbose,
3779		    "be more verbose (show symbol address, etc)"),
3780	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3781		    "dump raw trace in ASCII"),
3782	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3783	OPT_END()
3784	};
3785	const struct option latency_options[] = {
3786	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3787		   "sort by key(s): runtime, switch, avg, max"),
3788	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3789		    "CPU to profile on"),
3790	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3791		    "latency stats per pid instead of per comm"),
3792	OPT_PARENT(sched_options)
3793	};
3794	const struct option replay_options[] = {
3795	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3796		     "repeat the workload replay N times (0: infinite)"),
3797	OPT_PARENT(sched_options)
3798	};
3799	const struct option map_options[] = {
3800	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3801		    "map output in compact mode"),
3802	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3803		   "highlight given pids in map"),
3804	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3805                    "highlight given CPUs in map"),
3806	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3807                    "display given CPUs in map"),
3808	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3809		"map output only for the given task name(s)."),
3810	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3811		"given command name can be partially matched (fuzzy matching)"),
3812	OPT_PARENT(sched_options)
3813	};
3814	const struct option timehist_options[] = {
3815	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3816		   "file", "vmlinux pathname"),
3817	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3818		   "file", "kallsyms pathname"),
3819	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3820		    "Display call chains if present (default on)"),
3821	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3822		   "Maximum number of functions to display backtrace."),
3823	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3824		    "Look for files with symbols relative to this directory"),
3825	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3826		    "Show only syscall summary with statistics"),
3827	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3828		    "Show all syscalls and summary with statistics"),
3829	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3830	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3831	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3832	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3833	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3834	OPT_STRING(0, "time", &sched.time_str, "str",
3835		   "Time span for analysis (start,stop)"),
3836	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3837	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3838		   "analyze events only for given process id(s)"),
3839	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3840		   "analyze events only for given thread id(s)"),
3841	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3842	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3843	OPT_STRING(0, "prio", &sched.prio_str, "prio",
3844		   "analyze events only for given task priority(ies)"),
3845	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3846	OPT_PARENT(sched_options)
3847	};
3848
3849	const char * const latency_usage[] = {
3850		"perf sched latency [<options>]",
3851		NULL
3852	};
3853	const char * const replay_usage[] = {
3854		"perf sched replay [<options>]",
3855		NULL
3856	};
3857	const char * const map_usage[] = {
3858		"perf sched map [<options>]",
3859		NULL
3860	};
3861	const char * const timehist_usage[] = {
3862		"perf sched timehist [<options>]",
3863		NULL
3864	};
3865	const char *const sched_subcommands[] = { "record", "latency", "map",
3866						  "replay", "script",
3867						  "timehist", NULL };
3868	const char *sched_usage[] = {
3869		NULL,
3870		NULL
3871	};
3872	struct trace_sched_handler lat_ops  = {
3873		.wakeup_event	    = latency_wakeup_event,
3874		.switch_event	    = latency_switch_event,
3875		.runtime_event	    = latency_runtime_event,
3876		.migrate_task_event = latency_migrate_task_event,
3877	};
3878	struct trace_sched_handler map_ops  = {
3879		.switch_event	    = map_switch_event,
3880	};
3881	struct trace_sched_handler replay_ops  = {
3882		.wakeup_event	    = replay_wakeup_event,
3883		.switch_event	    = replay_switch_event,
3884		.fork_event	    = replay_fork_event,
3885	};
3886	int ret;
3887
3888	perf_tool__init(&sched.tool, /*ordered_events=*/true);
3889	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
3890	sched.tool.comm		 = perf_sched__process_comm;
3891	sched.tool.namespaces	 = perf_event__process_namespaces;
3892	sched.tool.lost		 = perf_event__process_lost;
3893	sched.tool.fork		 = perf_sched__process_fork_event;
3894
3895	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3896					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3897	if (!argc)
3898		usage_with_options(sched_usage, sched_options);
3899
3900	/*
3901	 * Aliased to 'perf script' for now:
3902	 */
3903	if (!strcmp(argv[0], "script")) {
3904		return cmd_script(argc, argv);
3905	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3906		return __cmd_record(argc, argv);
3907	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3908		sched.tp_handler = &lat_ops;
3909		if (argc > 1) {
3910			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3911			if (argc)
3912				usage_with_options(latency_usage, latency_options);
3913		}
3914		setup_sorting(&sched, latency_options, latency_usage);
3915		return perf_sched__lat(&sched);
3916	} else if (!strcmp(argv[0], "map")) {
3917		if (argc) {
3918			argc = parse_options(argc, argv, map_options, map_usage, 0);
3919			if (argc)
3920				usage_with_options(map_usage, map_options);
3921
3922			if (sched.map.task_name) {
3923				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3924				if (sched.map.task_names == NULL) {
3925					fprintf(stderr, "Failed to parse task names\n");
3926					return -1;
3927				}
3928			}
3929		}
3930		sched.tp_handler = &map_ops;
3931		setup_sorting(&sched, latency_options, latency_usage);
3932		return perf_sched__map(&sched);
3933	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3934		sched.tp_handler = &replay_ops;
3935		if (argc) {
3936			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3937			if (argc)
3938				usage_with_options(replay_usage, replay_options);
3939		}
3940		return perf_sched__replay(&sched);
3941	} else if (!strcmp(argv[0], "timehist")) {
3942		if (argc) {
3943			argc = parse_options(argc, argv, timehist_options,
3944					     timehist_usage, 0);
3945			if (argc)
3946				usage_with_options(timehist_usage, timehist_options);
3947		}
3948		if ((sched.show_wakeups || sched.show_next) &&
3949		    sched.summary_only) {
3950			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3951			parse_options_usage(timehist_usage, timehist_options, "s", true);
3952			if (sched.show_wakeups)
3953				parse_options_usage(NULL, timehist_options, "w", true);
3954			if (sched.show_next)
3955				parse_options_usage(NULL, timehist_options, "n", true);
3956			return -EINVAL;
3957		}
3958		ret = symbol__validate_sym_arguments();
3959		if (ret)
3960			return ret;
3961
3962		return perf_sched__timehist(&sched);
3963	} else {
3964		usage_with_options(sched_usage, sched_options);
3965	}
3966
3967	/* free usage string allocated by parse_options_subcommand */
3968	free((void *)sched_usage[0]);
3969
3970	return 0;
3971}