Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38#include <linux/local_lock.h>
39#include <linux/buffer_head.h>
40
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
46/* How many pages do we try to swap or page in/out together? As a power of 2 */
47int page_cluster;
48const int page_cluster_max = 31;
49
50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51struct lru_rotate {
52 local_lock_t lock;
53 struct folio_batch fbatch;
54};
55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 .lock = INIT_LOCAL_LOCK(lock),
57};
58
59/*
60 * The following folio batches are grouped together because they are protected
61 * by disabling preemption (and interrupts remain enabled).
62 */
63struct cpu_fbatches {
64 local_lock_t lock;
65 struct folio_batch lru_add;
66 struct folio_batch lru_deactivate_file;
67 struct folio_batch lru_deactivate;
68 struct folio_batch lru_lazyfree;
69#ifdef CONFIG_SMP
70 struct folio_batch activate;
71#endif
72};
73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 .lock = INIT_LOCAL_LOCK(lock),
75};
76
77static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
78 unsigned long *flagsp)
79{
80 if (folio_test_lru(folio)) {
81 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
82 lruvec_del_folio(*lruvecp, folio);
83 __folio_clear_lru_flags(folio);
84 }
85
86 /*
87 * In rare cases, when truncation or holepunching raced with
88 * munlock after VM_LOCKED was cleared, Mlocked may still be
89 * found set here. This does not indicate a problem, unless
90 * "unevictable_pgs_cleared" appears worryingly large.
91 */
92 if (unlikely(folio_test_mlocked(folio))) {
93 long nr_pages = folio_nr_pages(folio);
94
95 __folio_clear_mlocked(folio);
96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98 }
99}
100
101/*
102 * This path almost never happens for VM activity - pages are normally freed
103 * in batches. But it gets used by networking - and for compound pages.
104 */
105static void page_cache_release(struct folio *folio)
106{
107 struct lruvec *lruvec = NULL;
108 unsigned long flags;
109
110 __page_cache_release(folio, &lruvec, &flags);
111 if (lruvec)
112 unlock_page_lruvec_irqrestore(lruvec, flags);
113}
114
115static void __folio_put_small(struct folio *folio)
116{
117 page_cache_release(folio);
118 mem_cgroup_uncharge(folio);
119 free_unref_page(&folio->page, 0);
120}
121
122static void __folio_put_large(struct folio *folio)
123{
124 /*
125 * __page_cache_release() is supposed to be called for thp, not for
126 * hugetlb. This is because hugetlb page does never have PageLRU set
127 * (it's never listed to any LRU lists) and no memcg routines should
128 * be called for hugetlb (it has a separate hugetlb_cgroup.)
129 */
130 if (!folio_test_hugetlb(folio))
131 page_cache_release(folio);
132 destroy_large_folio(folio);
133}
134
135void __folio_put(struct folio *folio)
136{
137 if (unlikely(folio_is_zone_device(folio)))
138 free_zone_device_page(&folio->page);
139 else if (unlikely(folio_test_large(folio)))
140 __folio_put_large(folio);
141 else
142 __folio_put_small(folio);
143}
144EXPORT_SYMBOL(__folio_put);
145
146/**
147 * put_pages_list() - release a list of pages
148 * @pages: list of pages threaded on page->lru
149 *
150 * Release a list of pages which are strung together on page.lru.
151 */
152void put_pages_list(struct list_head *pages)
153{
154 struct folio_batch fbatch;
155 struct folio *folio, *next;
156
157 folio_batch_init(&fbatch);
158 list_for_each_entry_safe(folio, next, pages, lru) {
159 if (!folio_put_testzero(folio))
160 continue;
161 if (folio_test_large(folio)) {
162 __folio_put_large(folio);
163 continue;
164 }
165 /* LRU flag must be clear because it's passed using the lru */
166 if (folio_batch_add(&fbatch, folio) > 0)
167 continue;
168 free_unref_folios(&fbatch);
169 }
170
171 if (fbatch.nr)
172 free_unref_folios(&fbatch);
173 INIT_LIST_HEAD(pages);
174}
175EXPORT_SYMBOL(put_pages_list);
176
177typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
178
179static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
180{
181 int was_unevictable = folio_test_clear_unevictable(folio);
182 long nr_pages = folio_nr_pages(folio);
183
184 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
185
186 /*
187 * Is an smp_mb__after_atomic() still required here, before
188 * folio_evictable() tests the mlocked flag, to rule out the possibility
189 * of stranding an evictable folio on an unevictable LRU? I think
190 * not, because __munlock_folio() only clears the mlocked flag
191 * while the LRU lock is held.
192 *
193 * (That is not true of __page_cache_release(), and not necessarily
194 * true of folios_put(): but those only clear the mlocked flag after
195 * folio_put_testzero() has excluded any other users of the folio.)
196 */
197 if (folio_evictable(folio)) {
198 if (was_unevictable)
199 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
200 } else {
201 folio_clear_active(folio);
202 folio_set_unevictable(folio);
203 /*
204 * folio->mlock_count = !!folio_test_mlocked(folio)?
205 * But that leaves __mlock_folio() in doubt whether another
206 * actor has already counted the mlock or not. Err on the
207 * safe side, underestimate, let page reclaim fix it, rather
208 * than leaving a page on the unevictable LRU indefinitely.
209 */
210 folio->mlock_count = 0;
211 if (!was_unevictable)
212 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
213 }
214
215 lruvec_add_folio(lruvec, folio);
216 trace_mm_lru_insertion(folio);
217}
218
219static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
220{
221 int i;
222 struct lruvec *lruvec = NULL;
223 unsigned long flags = 0;
224
225 for (i = 0; i < folio_batch_count(fbatch); i++) {
226 struct folio *folio = fbatch->folios[i];
227
228 /* block memcg migration while the folio moves between lru */
229 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
230 continue;
231
232 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
233 move_fn(lruvec, folio);
234
235 folio_set_lru(folio);
236 }
237
238 if (lruvec)
239 unlock_page_lruvec_irqrestore(lruvec, flags);
240 folios_put(fbatch);
241}
242
243static void folio_batch_add_and_move(struct folio_batch *fbatch,
244 struct folio *folio, move_fn_t move_fn)
245{
246 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
247 !lru_cache_disabled())
248 return;
249 folio_batch_move_lru(fbatch, move_fn);
250}
251
252static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
253{
254 if (!folio_test_unevictable(folio)) {
255 lruvec_del_folio(lruvec, folio);
256 folio_clear_active(folio);
257 lruvec_add_folio_tail(lruvec, folio);
258 __count_vm_events(PGROTATED, folio_nr_pages(folio));
259 }
260}
261
262/*
263 * Writeback is about to end against a folio which has been marked for
264 * immediate reclaim. If it still appears to be reclaimable, move it
265 * to the tail of the inactive list.
266 *
267 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
268 */
269void folio_rotate_reclaimable(struct folio *folio)
270{
271 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
272 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
273 struct folio_batch *fbatch;
274 unsigned long flags;
275
276 folio_get(folio);
277 local_lock_irqsave(&lru_rotate.lock, flags);
278 fbatch = this_cpu_ptr(&lru_rotate.fbatch);
279 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
280 local_unlock_irqrestore(&lru_rotate.lock, flags);
281 }
282}
283
284void lru_note_cost(struct lruvec *lruvec, bool file,
285 unsigned int nr_io, unsigned int nr_rotated)
286{
287 unsigned long cost;
288
289 /*
290 * Reflect the relative cost of incurring IO and spending CPU
291 * time on rotations. This doesn't attempt to make a precise
292 * comparison, it just says: if reloads are about comparable
293 * between the LRU lists, or rotations are overwhelmingly
294 * different between them, adjust scan balance for CPU work.
295 */
296 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
297
298 do {
299 unsigned long lrusize;
300
301 /*
302 * Hold lruvec->lru_lock is safe here, since
303 * 1) The pinned lruvec in reclaim, or
304 * 2) From a pre-LRU page during refault (which also holds the
305 * rcu lock, so would be safe even if the page was on the LRU
306 * and could move simultaneously to a new lruvec).
307 */
308 spin_lock_irq(&lruvec->lru_lock);
309 /* Record cost event */
310 if (file)
311 lruvec->file_cost += cost;
312 else
313 lruvec->anon_cost += cost;
314
315 /*
316 * Decay previous events
317 *
318 * Because workloads change over time (and to avoid
319 * overflow) we keep these statistics as a floating
320 * average, which ends up weighing recent refaults
321 * more than old ones.
322 */
323 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
324 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
325 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
326 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
327
328 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
329 lruvec->file_cost /= 2;
330 lruvec->anon_cost /= 2;
331 }
332 spin_unlock_irq(&lruvec->lru_lock);
333 } while ((lruvec = parent_lruvec(lruvec)));
334}
335
336void lru_note_cost_refault(struct folio *folio)
337{
338 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
339 folio_nr_pages(folio), 0);
340}
341
342static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
343{
344 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
345 long nr_pages = folio_nr_pages(folio);
346
347 lruvec_del_folio(lruvec, folio);
348 folio_set_active(folio);
349 lruvec_add_folio(lruvec, folio);
350 trace_mm_lru_activate(folio);
351
352 __count_vm_events(PGACTIVATE, nr_pages);
353 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
354 nr_pages);
355 }
356}
357
358#ifdef CONFIG_SMP
359static void folio_activate_drain(int cpu)
360{
361 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
362
363 if (folio_batch_count(fbatch))
364 folio_batch_move_lru(fbatch, folio_activate_fn);
365}
366
367void folio_activate(struct folio *folio)
368{
369 if (folio_test_lru(folio) && !folio_test_active(folio) &&
370 !folio_test_unevictable(folio)) {
371 struct folio_batch *fbatch;
372
373 folio_get(folio);
374 local_lock(&cpu_fbatches.lock);
375 fbatch = this_cpu_ptr(&cpu_fbatches.activate);
376 folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
377 local_unlock(&cpu_fbatches.lock);
378 }
379}
380
381#else
382static inline void folio_activate_drain(int cpu)
383{
384}
385
386void folio_activate(struct folio *folio)
387{
388 struct lruvec *lruvec;
389
390 if (folio_test_clear_lru(folio)) {
391 lruvec = folio_lruvec_lock_irq(folio);
392 folio_activate_fn(lruvec, folio);
393 unlock_page_lruvec_irq(lruvec);
394 folio_set_lru(folio);
395 }
396}
397#endif
398
399static void __lru_cache_activate_folio(struct folio *folio)
400{
401 struct folio_batch *fbatch;
402 int i;
403
404 local_lock(&cpu_fbatches.lock);
405 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
406
407 /*
408 * Search backwards on the optimistic assumption that the folio being
409 * activated has just been added to this batch. Note that only
410 * the local batch is examined as a !LRU folio could be in the
411 * process of being released, reclaimed, migrated or on a remote
412 * batch that is currently being drained. Furthermore, marking
413 * a remote batch's folio active potentially hits a race where
414 * a folio is marked active just after it is added to the inactive
415 * list causing accounting errors and BUG_ON checks to trigger.
416 */
417 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
418 struct folio *batch_folio = fbatch->folios[i];
419
420 if (batch_folio == folio) {
421 folio_set_active(folio);
422 break;
423 }
424 }
425
426 local_unlock(&cpu_fbatches.lock);
427}
428
429#ifdef CONFIG_LRU_GEN
430static void folio_inc_refs(struct folio *folio)
431{
432 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
433
434 if (folio_test_unevictable(folio))
435 return;
436
437 if (!folio_test_referenced(folio)) {
438 folio_set_referenced(folio);
439 return;
440 }
441
442 if (!folio_test_workingset(folio)) {
443 folio_set_workingset(folio);
444 return;
445 }
446
447 /* see the comment on MAX_NR_TIERS */
448 do {
449 new_flags = old_flags & LRU_REFS_MASK;
450 if (new_flags == LRU_REFS_MASK)
451 break;
452
453 new_flags += BIT(LRU_REFS_PGOFF);
454 new_flags |= old_flags & ~LRU_REFS_MASK;
455 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
456}
457#else
458static void folio_inc_refs(struct folio *folio)
459{
460}
461#endif /* CONFIG_LRU_GEN */
462
463/*
464 * Mark a page as having seen activity.
465 *
466 * inactive,unreferenced -> inactive,referenced
467 * inactive,referenced -> active,unreferenced
468 * active,unreferenced -> active,referenced
469 *
470 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
471 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
472 */
473void folio_mark_accessed(struct folio *folio)
474{
475 if (lru_gen_enabled()) {
476 folio_inc_refs(folio);
477 return;
478 }
479
480 if (!folio_test_referenced(folio)) {
481 folio_set_referenced(folio);
482 } else if (folio_test_unevictable(folio)) {
483 /*
484 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
485 * this list is never rotated or maintained, so marking an
486 * unevictable page accessed has no effect.
487 */
488 } else if (!folio_test_active(folio)) {
489 /*
490 * If the folio is on the LRU, queue it for activation via
491 * cpu_fbatches.activate. Otherwise, assume the folio is in a
492 * folio_batch, mark it active and it'll be moved to the active
493 * LRU on the next drain.
494 */
495 if (folio_test_lru(folio))
496 folio_activate(folio);
497 else
498 __lru_cache_activate_folio(folio);
499 folio_clear_referenced(folio);
500 workingset_activation(folio);
501 }
502 if (folio_test_idle(folio))
503 folio_clear_idle(folio);
504}
505EXPORT_SYMBOL(folio_mark_accessed);
506
507/**
508 * folio_add_lru - Add a folio to an LRU list.
509 * @folio: The folio to be added to the LRU.
510 *
511 * Queue the folio for addition to the LRU. The decision on whether
512 * to add the page to the [in]active [file|anon] list is deferred until the
513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
514 * have the folio added to the active list using folio_mark_accessed().
515 */
516void folio_add_lru(struct folio *folio)
517{
518 struct folio_batch *fbatch;
519
520 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
521 folio_test_unevictable(folio), folio);
522 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
523
524 /* see the comment in lru_gen_add_folio() */
525 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
526 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
527 folio_set_active(folio);
528
529 folio_get(folio);
530 local_lock(&cpu_fbatches.lock);
531 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
532 folio_batch_add_and_move(fbatch, folio, lru_add_fn);
533 local_unlock(&cpu_fbatches.lock);
534}
535EXPORT_SYMBOL(folio_add_lru);
536
537/**
538 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
539 * @folio: The folio to be added to the LRU.
540 * @vma: VMA in which the folio is mapped.
541 *
542 * If the VMA is mlocked, @folio is added to the unevictable list.
543 * Otherwise, it is treated the same way as folio_add_lru().
544 */
545void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
546{
547 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
548
549 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
550 mlock_new_folio(folio);
551 else
552 folio_add_lru(folio);
553}
554
555/*
556 * If the folio cannot be invalidated, it is moved to the
557 * inactive list to speed up its reclaim. It is moved to the
558 * head of the list, rather than the tail, to give the flusher
559 * threads some time to write it out, as this is much more
560 * effective than the single-page writeout from reclaim.
561 *
562 * If the folio isn't mapped and dirty/writeback, the folio
563 * could be reclaimed asap using the reclaim flag.
564 *
565 * 1. active, mapped folio -> none
566 * 2. active, dirty/writeback folio -> inactive, head, reclaim
567 * 3. inactive, mapped folio -> none
568 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
569 * 5. inactive, clean -> inactive, tail
570 * 6. Others -> none
571 *
572 * In 4, it moves to the head of the inactive list so the folio is
573 * written out by flusher threads as this is much more efficient
574 * than the single-page writeout from reclaim.
575 */
576static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
577{
578 bool active = folio_test_active(folio);
579 long nr_pages = folio_nr_pages(folio);
580
581 if (folio_test_unevictable(folio))
582 return;
583
584 /* Some processes are using the folio */
585 if (folio_mapped(folio))
586 return;
587
588 lruvec_del_folio(lruvec, folio);
589 folio_clear_active(folio);
590 folio_clear_referenced(folio);
591
592 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
593 /*
594 * Setting the reclaim flag could race with
595 * folio_end_writeback() and confuse readahead. But the
596 * race window is _really_ small and it's not a critical
597 * problem.
598 */
599 lruvec_add_folio(lruvec, folio);
600 folio_set_reclaim(folio);
601 } else {
602 /*
603 * The folio's writeback ended while it was in the batch.
604 * We move that folio to the tail of the inactive list.
605 */
606 lruvec_add_folio_tail(lruvec, folio);
607 __count_vm_events(PGROTATED, nr_pages);
608 }
609
610 if (active) {
611 __count_vm_events(PGDEACTIVATE, nr_pages);
612 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
613 nr_pages);
614 }
615}
616
617static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
618{
619 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
620 long nr_pages = folio_nr_pages(folio);
621
622 lruvec_del_folio(lruvec, folio);
623 folio_clear_active(folio);
624 folio_clear_referenced(folio);
625 lruvec_add_folio(lruvec, folio);
626
627 __count_vm_events(PGDEACTIVATE, nr_pages);
628 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
629 nr_pages);
630 }
631}
632
633static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
634{
635 if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
636 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
637 long nr_pages = folio_nr_pages(folio);
638
639 lruvec_del_folio(lruvec, folio);
640 folio_clear_active(folio);
641 folio_clear_referenced(folio);
642 /*
643 * Lazyfree folios are clean anonymous folios. They have
644 * the swapbacked flag cleared, to distinguish them from normal
645 * anonymous folios
646 */
647 folio_clear_swapbacked(folio);
648 lruvec_add_folio(lruvec, folio);
649
650 __count_vm_events(PGLAZYFREE, nr_pages);
651 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
652 nr_pages);
653 }
654}
655
656/*
657 * Drain pages out of the cpu's folio_batch.
658 * Either "cpu" is the current CPU, and preemption has already been
659 * disabled; or "cpu" is being hot-unplugged, and is already dead.
660 */
661void lru_add_drain_cpu(int cpu)
662{
663 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
664 struct folio_batch *fbatch = &fbatches->lru_add;
665
666 if (folio_batch_count(fbatch))
667 folio_batch_move_lru(fbatch, lru_add_fn);
668
669 fbatch = &per_cpu(lru_rotate.fbatch, cpu);
670 /* Disabling interrupts below acts as a compiler barrier. */
671 if (data_race(folio_batch_count(fbatch))) {
672 unsigned long flags;
673
674 /* No harm done if a racing interrupt already did this */
675 local_lock_irqsave(&lru_rotate.lock, flags);
676 folio_batch_move_lru(fbatch, lru_move_tail_fn);
677 local_unlock_irqrestore(&lru_rotate.lock, flags);
678 }
679
680 fbatch = &fbatches->lru_deactivate_file;
681 if (folio_batch_count(fbatch))
682 folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
683
684 fbatch = &fbatches->lru_deactivate;
685 if (folio_batch_count(fbatch))
686 folio_batch_move_lru(fbatch, lru_deactivate_fn);
687
688 fbatch = &fbatches->lru_lazyfree;
689 if (folio_batch_count(fbatch))
690 folio_batch_move_lru(fbatch, lru_lazyfree_fn);
691
692 folio_activate_drain(cpu);
693}
694
695/**
696 * deactivate_file_folio() - Deactivate a file folio.
697 * @folio: Folio to deactivate.
698 *
699 * This function hints to the VM that @folio is a good reclaim candidate,
700 * for example if its invalidation fails due to the folio being dirty
701 * or under writeback.
702 *
703 * Context: Caller holds a reference on the folio.
704 */
705void deactivate_file_folio(struct folio *folio)
706{
707 struct folio_batch *fbatch;
708
709 /* Deactivating an unevictable folio will not accelerate reclaim */
710 if (folio_test_unevictable(folio))
711 return;
712
713 folio_get(folio);
714 local_lock(&cpu_fbatches.lock);
715 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
716 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
717 local_unlock(&cpu_fbatches.lock);
718}
719
720/*
721 * folio_deactivate - deactivate a folio
722 * @folio: folio to deactivate
723 *
724 * folio_deactivate() moves @folio to the inactive list if @folio was on the
725 * active list and was not unevictable. This is done to accelerate the
726 * reclaim of @folio.
727 */
728void folio_deactivate(struct folio *folio)
729{
730 if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
731 (folio_test_active(folio) || lru_gen_enabled())) {
732 struct folio_batch *fbatch;
733
734 folio_get(folio);
735 local_lock(&cpu_fbatches.lock);
736 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
737 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
738 local_unlock(&cpu_fbatches.lock);
739 }
740}
741
742/**
743 * folio_mark_lazyfree - make an anon folio lazyfree
744 * @folio: folio to deactivate
745 *
746 * folio_mark_lazyfree() moves @folio to the inactive file list.
747 * This is done to accelerate the reclaim of @folio.
748 */
749void folio_mark_lazyfree(struct folio *folio)
750{
751 if (folio_test_lru(folio) && folio_test_anon(folio) &&
752 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
753 !folio_test_unevictable(folio)) {
754 struct folio_batch *fbatch;
755
756 folio_get(folio);
757 local_lock(&cpu_fbatches.lock);
758 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
759 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
760 local_unlock(&cpu_fbatches.lock);
761 }
762}
763
764void lru_add_drain(void)
765{
766 local_lock(&cpu_fbatches.lock);
767 lru_add_drain_cpu(smp_processor_id());
768 local_unlock(&cpu_fbatches.lock);
769 mlock_drain_local();
770}
771
772/*
773 * It's called from per-cpu workqueue context in SMP case so
774 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
775 * the same cpu. It shouldn't be a problem in !SMP case since
776 * the core is only one and the locks will disable preemption.
777 */
778static void lru_add_and_bh_lrus_drain(void)
779{
780 local_lock(&cpu_fbatches.lock);
781 lru_add_drain_cpu(smp_processor_id());
782 local_unlock(&cpu_fbatches.lock);
783 invalidate_bh_lrus_cpu();
784 mlock_drain_local();
785}
786
787void lru_add_drain_cpu_zone(struct zone *zone)
788{
789 local_lock(&cpu_fbatches.lock);
790 lru_add_drain_cpu(smp_processor_id());
791 drain_local_pages(zone);
792 local_unlock(&cpu_fbatches.lock);
793 mlock_drain_local();
794}
795
796#ifdef CONFIG_SMP
797
798static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
799
800static void lru_add_drain_per_cpu(struct work_struct *dummy)
801{
802 lru_add_and_bh_lrus_drain();
803}
804
805static bool cpu_needs_drain(unsigned int cpu)
806{
807 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
808
809 /* Check these in order of likelihood that they're not zero */
810 return folio_batch_count(&fbatches->lru_add) ||
811 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
812 folio_batch_count(&fbatches->lru_deactivate_file) ||
813 folio_batch_count(&fbatches->lru_deactivate) ||
814 folio_batch_count(&fbatches->lru_lazyfree) ||
815 folio_batch_count(&fbatches->activate) ||
816 need_mlock_drain(cpu) ||
817 has_bh_in_lru(cpu, NULL);
818}
819
820/*
821 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
822 * kworkers being shut down before our page_alloc_cpu_dead callback is
823 * executed on the offlined cpu.
824 * Calling this function with cpu hotplug locks held can actually lead
825 * to obscure indirect dependencies via WQ context.
826 */
827static inline void __lru_add_drain_all(bool force_all_cpus)
828{
829 /*
830 * lru_drain_gen - Global pages generation number
831 *
832 * (A) Definition: global lru_drain_gen = x implies that all generations
833 * 0 < n <= x are already *scheduled* for draining.
834 *
835 * This is an optimization for the highly-contended use case where a
836 * user space workload keeps constantly generating a flow of pages for
837 * each CPU.
838 */
839 static unsigned int lru_drain_gen;
840 static struct cpumask has_work;
841 static DEFINE_MUTEX(lock);
842 unsigned cpu, this_gen;
843
844 /*
845 * Make sure nobody triggers this path before mm_percpu_wq is fully
846 * initialized.
847 */
848 if (WARN_ON(!mm_percpu_wq))
849 return;
850
851 /*
852 * Guarantee folio_batch counter stores visible by this CPU
853 * are visible to other CPUs before loading the current drain
854 * generation.
855 */
856 smp_mb();
857
858 /*
859 * (B) Locally cache global LRU draining generation number
860 *
861 * The read barrier ensures that the counter is loaded before the mutex
862 * is taken. It pairs with smp_mb() inside the mutex critical section
863 * at (D).
864 */
865 this_gen = smp_load_acquire(&lru_drain_gen);
866
867 mutex_lock(&lock);
868
869 /*
870 * (C) Exit the draining operation if a newer generation, from another
871 * lru_add_drain_all(), was already scheduled for draining. Check (A).
872 */
873 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
874 goto done;
875
876 /*
877 * (D) Increment global generation number
878 *
879 * Pairs with smp_load_acquire() at (B), outside of the critical
880 * section. Use a full memory barrier to guarantee that the
881 * new global drain generation number is stored before loading
882 * folio_batch counters.
883 *
884 * This pairing must be done here, before the for_each_online_cpu loop
885 * below which drains the page vectors.
886 *
887 * Let x, y, and z represent some system CPU numbers, where x < y < z.
888 * Assume CPU #z is in the middle of the for_each_online_cpu loop
889 * below and has already reached CPU #y's per-cpu data. CPU #x comes
890 * along, adds some pages to its per-cpu vectors, then calls
891 * lru_add_drain_all().
892 *
893 * If the paired barrier is done at any later step, e.g. after the
894 * loop, CPU #x will just exit at (C) and miss flushing out all of its
895 * added pages.
896 */
897 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
898 smp_mb();
899
900 cpumask_clear(&has_work);
901 for_each_online_cpu(cpu) {
902 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
903
904 if (cpu_needs_drain(cpu)) {
905 INIT_WORK(work, lru_add_drain_per_cpu);
906 queue_work_on(cpu, mm_percpu_wq, work);
907 __cpumask_set_cpu(cpu, &has_work);
908 }
909 }
910
911 for_each_cpu(cpu, &has_work)
912 flush_work(&per_cpu(lru_add_drain_work, cpu));
913
914done:
915 mutex_unlock(&lock);
916}
917
918void lru_add_drain_all(void)
919{
920 __lru_add_drain_all(false);
921}
922#else
923void lru_add_drain_all(void)
924{
925 lru_add_drain();
926}
927#endif /* CONFIG_SMP */
928
929atomic_t lru_disable_count = ATOMIC_INIT(0);
930
931/*
932 * lru_cache_disable() needs to be called before we start compiling
933 * a list of pages to be migrated using isolate_lru_page().
934 * It drains pages on LRU cache and then disable on all cpus until
935 * lru_cache_enable is called.
936 *
937 * Must be paired with a call to lru_cache_enable().
938 */
939void lru_cache_disable(void)
940{
941 atomic_inc(&lru_disable_count);
942 /*
943 * Readers of lru_disable_count are protected by either disabling
944 * preemption or rcu_read_lock:
945 *
946 * preempt_disable, local_irq_disable [bh_lru_lock()]
947 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
948 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
949 *
950 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
951 * preempt_disable() regions of code. So any CPU which sees
952 * lru_disable_count = 0 will have exited the critical
953 * section when synchronize_rcu() returns.
954 */
955 synchronize_rcu_expedited();
956#ifdef CONFIG_SMP
957 __lru_add_drain_all(true);
958#else
959 lru_add_and_bh_lrus_drain();
960#endif
961}
962
963/**
964 * folios_put_refs - Reduce the reference count on a batch of folios.
965 * @folios: The folios.
966 * @refs: The number of refs to subtract from each folio.
967 *
968 * Like folio_put(), but for a batch of folios. This is more efficient
969 * than writing the loop yourself as it will optimise the locks which need
970 * to be taken if the folios are freed. The folios batch is returned
971 * empty and ready to be reused for another batch; there is no need
972 * to reinitialise it. If @refs is NULL, we subtract one from each
973 * folio refcount.
974 *
975 * Context: May be called in process or interrupt context, but not in NMI
976 * context. May be called while holding a spinlock.
977 */
978void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
979{
980 int i, j;
981 struct lruvec *lruvec = NULL;
982 unsigned long flags = 0;
983
984 for (i = 0, j = 0; i < folios->nr; i++) {
985 struct folio *folio = folios->folios[i];
986 unsigned int nr_refs = refs ? refs[i] : 1;
987
988 if (is_huge_zero_page(&folio->page))
989 continue;
990
991 if (folio_is_zone_device(folio)) {
992 if (lruvec) {
993 unlock_page_lruvec_irqrestore(lruvec, flags);
994 lruvec = NULL;
995 }
996 if (put_devmap_managed_page_refs(&folio->page, nr_refs))
997 continue;
998 if (folio_ref_sub_and_test(folio, nr_refs))
999 free_zone_device_page(&folio->page);
1000 continue;
1001 }
1002
1003 if (!folio_ref_sub_and_test(folio, nr_refs))
1004 continue;
1005
1006 /* hugetlb has its own memcg */
1007 if (folio_test_hugetlb(folio)) {
1008 if (lruvec) {
1009 unlock_page_lruvec_irqrestore(lruvec, flags);
1010 lruvec = NULL;
1011 }
1012 free_huge_folio(folio);
1013 continue;
1014 }
1015 if (folio_test_large(folio) &&
1016 folio_test_large_rmappable(folio))
1017 folio_undo_large_rmappable(folio);
1018
1019 __page_cache_release(folio, &lruvec, &flags);
1020
1021 if (j != i)
1022 folios->folios[j] = folio;
1023 j++;
1024 }
1025 if (lruvec)
1026 unlock_page_lruvec_irqrestore(lruvec, flags);
1027 if (!j) {
1028 folio_batch_reinit(folios);
1029 return;
1030 }
1031
1032 folios->nr = j;
1033 mem_cgroup_uncharge_folios(folios);
1034 free_unref_folios(folios);
1035}
1036EXPORT_SYMBOL(folios_put_refs);
1037
1038/**
1039 * release_pages - batched put_page()
1040 * @arg: array of pages to release
1041 * @nr: number of pages
1042 *
1043 * Decrement the reference count on all the pages in @arg. If it
1044 * fell to zero, remove the page from the LRU and free it.
1045 *
1046 * Note that the argument can be an array of pages, encoded pages,
1047 * or folio pointers. We ignore any encoded bits, and turn any of
1048 * them into just a folio that gets free'd.
1049 */
1050void release_pages(release_pages_arg arg, int nr)
1051{
1052 struct folio_batch fbatch;
1053 int refs[PAGEVEC_SIZE];
1054 struct encoded_page **encoded = arg.encoded_pages;
1055 int i;
1056
1057 folio_batch_init(&fbatch);
1058 for (i = 0; i < nr; i++) {
1059 /* Turn any of the argument types into a folio */
1060 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1061
1062 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1063 refs[fbatch.nr] = 1;
1064 if (unlikely(encoded_page_flags(encoded[i]) &
1065 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1066 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1067
1068 if (folio_batch_add(&fbatch, folio) > 0)
1069 continue;
1070 folios_put_refs(&fbatch, refs);
1071 }
1072
1073 if (fbatch.nr)
1074 folios_put_refs(&fbatch, refs);
1075}
1076EXPORT_SYMBOL(release_pages);
1077
1078/*
1079 * The folios which we're about to release may be in the deferred lru-addition
1080 * queues. That would prevent them from really being freed right now. That's
1081 * OK from a correctness point of view but is inefficient - those folios may be
1082 * cache-warm and we want to give them back to the page allocator ASAP.
1083 *
1084 * So __folio_batch_release() will drain those queues here.
1085 * folio_batch_move_lru() calls folios_put() directly to avoid
1086 * mutual recursion.
1087 */
1088void __folio_batch_release(struct folio_batch *fbatch)
1089{
1090 if (!fbatch->percpu_pvec_drained) {
1091 lru_add_drain();
1092 fbatch->percpu_pvec_drained = true;
1093 }
1094 folios_put(fbatch);
1095}
1096EXPORT_SYMBOL(__folio_batch_release);
1097
1098/**
1099 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1100 * @fbatch: The batch to prune
1101 *
1102 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1103 * entries. This function prunes all the non-folio entries from @fbatch
1104 * without leaving holes, so that it can be passed on to folio-only batch
1105 * operations.
1106 */
1107void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1108{
1109 unsigned int i, j;
1110
1111 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1112 struct folio *folio = fbatch->folios[i];
1113 if (!xa_is_value(folio))
1114 fbatch->folios[j++] = folio;
1115 }
1116 fbatch->nr = j;
1117}
1118
1119/*
1120 * Perform any setup for the swap system
1121 */
1122void __init swap_setup(void)
1123{
1124 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1125
1126 /* Use a smaller cluster for small-memory machines */
1127 if (megs < 16)
1128 page_cluster = 2;
1129 else
1130 page_cluster = 3;
1131 /*
1132 * Right now other parts of the system means that we
1133 * _really_ don't want to cluster much more
1134 */
1135}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38#include <linux/local_lock.h>
39#include <linux/buffer_head.h>
40
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
46/* How many pages do we try to swap or page in/out together? As a power of 2 */
47int page_cluster;
48const int page_cluster_max = 31;
49
50struct cpu_fbatches {
51 /*
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
54 */
55 local_lock_t lock;
56 struct folio_batch lru_add;
57 struct folio_batch lru_deactivate_file;
58 struct folio_batch lru_deactivate;
59 struct folio_batch lru_lazyfree;
60#ifdef CONFIG_SMP
61 struct folio_batch lru_activate;
62#endif
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq;
65 struct folio_batch lru_move_tail;
66};
67
68static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 .lock = INIT_LOCAL_LOCK(lock),
70 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
71};
72
73static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 unsigned long *flagsp)
75{
76 if (folio_test_lru(folio)) {
77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 lruvec_del_folio(*lruvecp, folio);
79 __folio_clear_lru_flags(folio);
80 }
81}
82
83/*
84 * This path almost never happens for VM activity - pages are normally freed
85 * in batches. But it gets used by networking - and for compound pages.
86 */
87static void page_cache_release(struct folio *folio)
88{
89 struct lruvec *lruvec = NULL;
90 unsigned long flags;
91
92 __page_cache_release(folio, &lruvec, &flags);
93 if (lruvec)
94 unlock_page_lruvec_irqrestore(lruvec, flags);
95}
96
97void __folio_put(struct folio *folio)
98{
99 if (unlikely(folio_is_zone_device(folio))) {
100 free_zone_device_folio(folio);
101 return;
102 }
103
104 if (folio_test_hugetlb(folio)) {
105 free_huge_folio(folio);
106 return;
107 }
108
109 page_cache_release(folio);
110 folio_unqueue_deferred_split(folio);
111 mem_cgroup_uncharge(folio);
112 free_unref_page(&folio->page, folio_order(folio));
113}
114EXPORT_SYMBOL(__folio_put);
115
116typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
117
118static void lru_add(struct lruvec *lruvec, struct folio *folio)
119{
120 int was_unevictable = folio_test_clear_unevictable(folio);
121 long nr_pages = folio_nr_pages(folio);
122
123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
124
125 /*
126 * Is an smp_mb__after_atomic() still required here, before
127 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 * of stranding an evictable folio on an unevictable LRU? I think
129 * not, because __munlock_folio() only clears the mlocked flag
130 * while the LRU lock is held.
131 *
132 * (That is not true of __page_cache_release(), and not necessarily
133 * true of folios_put(): but those only clear the mlocked flag after
134 * folio_put_testzero() has excluded any other users of the folio.)
135 */
136 if (folio_evictable(folio)) {
137 if (was_unevictable)
138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 } else {
140 folio_clear_active(folio);
141 folio_set_unevictable(folio);
142 /*
143 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 * But that leaves __mlock_folio() in doubt whether another
145 * actor has already counted the mlock or not. Err on the
146 * safe side, underestimate, let page reclaim fix it, rather
147 * than leaving a page on the unevictable LRU indefinitely.
148 */
149 folio->mlock_count = 0;
150 if (!was_unevictable)
151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
152 }
153
154 lruvec_add_folio(lruvec, folio);
155 trace_mm_lru_insertion(folio);
156}
157
158static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
159{
160 int i;
161 struct lruvec *lruvec = NULL;
162 unsigned long flags = 0;
163
164 for (i = 0; i < folio_batch_count(fbatch); i++) {
165 struct folio *folio = fbatch->folios[i];
166
167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 move_fn(lruvec, folio);
169
170 folio_set_lru(folio);
171 }
172
173 if (lruvec)
174 unlock_page_lruvec_irqrestore(lruvec, flags);
175 folios_put(fbatch);
176}
177
178static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 struct folio *folio, move_fn_t move_fn,
180 bool on_lru, bool disable_irq)
181{
182 unsigned long flags;
183
184 if (on_lru && !folio_test_clear_lru(folio))
185 return;
186
187 folio_get(folio);
188
189 if (disable_irq)
190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 else
192 local_lock(&cpu_fbatches.lock);
193
194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 lru_cache_disabled())
196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
197
198 if (disable_irq)
199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 else
201 local_unlock(&cpu_fbatches.lock);
202}
203
204#define folio_batch_add_and_move(folio, op, on_lru) \
205 __folio_batch_add_and_move( \
206 &cpu_fbatches.op, \
207 folio, \
208 op, \
209 on_lru, \
210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
211 )
212
213static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
214{
215 if (folio_test_unevictable(folio))
216 return;
217
218 lruvec_del_folio(lruvec, folio);
219 folio_clear_active(folio);
220 lruvec_add_folio_tail(lruvec, folio);
221 __count_vm_events(PGROTATED, folio_nr_pages(folio));
222}
223
224/*
225 * Writeback is about to end against a folio which has been marked for
226 * immediate reclaim. If it still appears to be reclaimable, move it
227 * to the tail of the inactive list.
228 *
229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
230 */
231void folio_rotate_reclaimable(struct folio *folio)
232{
233 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 folio_test_unevictable(folio))
235 return;
236
237 folio_batch_add_and_move(folio, lru_move_tail, true);
238}
239
240void lru_note_cost(struct lruvec *lruvec, bool file,
241 unsigned int nr_io, unsigned int nr_rotated)
242{
243 unsigned long cost;
244
245 /*
246 * Reflect the relative cost of incurring IO and spending CPU
247 * time on rotations. This doesn't attempt to make a precise
248 * comparison, it just says: if reloads are about comparable
249 * between the LRU lists, or rotations are overwhelmingly
250 * different between them, adjust scan balance for CPU work.
251 */
252 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
253
254 do {
255 unsigned long lrusize;
256
257 /*
258 * Hold lruvec->lru_lock is safe here, since
259 * 1) The pinned lruvec in reclaim, or
260 * 2) From a pre-LRU page during refault (which also holds the
261 * rcu lock, so would be safe even if the page was on the LRU
262 * and could move simultaneously to a new lruvec).
263 */
264 spin_lock_irq(&lruvec->lru_lock);
265 /* Record cost event */
266 if (file)
267 lruvec->file_cost += cost;
268 else
269 lruvec->anon_cost += cost;
270
271 /*
272 * Decay previous events
273 *
274 * Because workloads change over time (and to avoid
275 * overflow) we keep these statistics as a floating
276 * average, which ends up weighing recent refaults
277 * more than old ones.
278 */
279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283
284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 lruvec->file_cost /= 2;
286 lruvec->anon_cost /= 2;
287 }
288 spin_unlock_irq(&lruvec->lru_lock);
289 } while ((lruvec = parent_lruvec(lruvec)));
290}
291
292void lru_note_cost_refault(struct folio *folio)
293{
294 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
295 folio_nr_pages(folio), 0);
296}
297
298static void lru_activate(struct lruvec *lruvec, struct folio *folio)
299{
300 long nr_pages = folio_nr_pages(folio);
301
302 if (folio_test_active(folio) || folio_test_unevictable(folio))
303 return;
304
305
306 lruvec_del_folio(lruvec, folio);
307 folio_set_active(folio);
308 lruvec_add_folio(lruvec, folio);
309 trace_mm_lru_activate(folio);
310
311 __count_vm_events(PGACTIVATE, nr_pages);
312 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
313}
314
315#ifdef CONFIG_SMP
316static void folio_activate_drain(int cpu)
317{
318 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
319
320 if (folio_batch_count(fbatch))
321 folio_batch_move_lru(fbatch, lru_activate);
322}
323
324void folio_activate(struct folio *folio)
325{
326 if (folio_test_active(folio) || folio_test_unevictable(folio))
327 return;
328
329 folio_batch_add_and_move(folio, lru_activate, true);
330}
331
332#else
333static inline void folio_activate_drain(int cpu)
334{
335}
336
337void folio_activate(struct folio *folio)
338{
339 struct lruvec *lruvec;
340
341 if (!folio_test_clear_lru(folio))
342 return;
343
344 lruvec = folio_lruvec_lock_irq(folio);
345 lru_activate(lruvec, folio);
346 unlock_page_lruvec_irq(lruvec);
347 folio_set_lru(folio);
348}
349#endif
350
351static void __lru_cache_activate_folio(struct folio *folio)
352{
353 struct folio_batch *fbatch;
354 int i;
355
356 local_lock(&cpu_fbatches.lock);
357 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
358
359 /*
360 * Search backwards on the optimistic assumption that the folio being
361 * activated has just been added to this batch. Note that only
362 * the local batch is examined as a !LRU folio could be in the
363 * process of being released, reclaimed, migrated or on a remote
364 * batch that is currently being drained. Furthermore, marking
365 * a remote batch's folio active potentially hits a race where
366 * a folio is marked active just after it is added to the inactive
367 * list causing accounting errors and BUG_ON checks to trigger.
368 */
369 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
370 struct folio *batch_folio = fbatch->folios[i];
371
372 if (batch_folio == folio) {
373 folio_set_active(folio);
374 break;
375 }
376 }
377
378 local_unlock(&cpu_fbatches.lock);
379}
380
381#ifdef CONFIG_LRU_GEN
382static void folio_inc_refs(struct folio *folio)
383{
384 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
385
386 if (folio_test_unevictable(folio))
387 return;
388
389 if (!folio_test_referenced(folio)) {
390 folio_set_referenced(folio);
391 return;
392 }
393
394 if (!folio_test_workingset(folio)) {
395 folio_set_workingset(folio);
396 return;
397 }
398
399 /* see the comment on MAX_NR_TIERS */
400 do {
401 new_flags = old_flags & LRU_REFS_MASK;
402 if (new_flags == LRU_REFS_MASK)
403 break;
404
405 new_flags += BIT(LRU_REFS_PGOFF);
406 new_flags |= old_flags & ~LRU_REFS_MASK;
407 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
408}
409#else
410static void folio_inc_refs(struct folio *folio)
411{
412}
413#endif /* CONFIG_LRU_GEN */
414
415/**
416 * folio_mark_accessed - Mark a folio as having seen activity.
417 * @folio: The folio to mark.
418 *
419 * This function will perform one of the following transitions:
420 *
421 * * inactive,unreferenced -> inactive,referenced
422 * * inactive,referenced -> active,unreferenced
423 * * active,unreferenced -> active,referenced
424 *
425 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
426 * __folio_set_referenced() may be substituted for folio_mark_accessed().
427 */
428void folio_mark_accessed(struct folio *folio)
429{
430 if (lru_gen_enabled()) {
431 folio_inc_refs(folio);
432 return;
433 }
434
435 if (!folio_test_referenced(folio)) {
436 folio_set_referenced(folio);
437 } else if (folio_test_unevictable(folio)) {
438 /*
439 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
440 * this list is never rotated or maintained, so marking an
441 * unevictable page accessed has no effect.
442 */
443 } else if (!folio_test_active(folio)) {
444 /*
445 * If the folio is on the LRU, queue it for activation via
446 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
447 * folio_batch, mark it active and it'll be moved to the active
448 * LRU on the next drain.
449 */
450 if (folio_test_lru(folio))
451 folio_activate(folio);
452 else
453 __lru_cache_activate_folio(folio);
454 folio_clear_referenced(folio);
455 workingset_activation(folio);
456 }
457 if (folio_test_idle(folio))
458 folio_clear_idle(folio);
459}
460EXPORT_SYMBOL(folio_mark_accessed);
461
462/**
463 * folio_add_lru - Add a folio to an LRU list.
464 * @folio: The folio to be added to the LRU.
465 *
466 * Queue the folio for addition to the LRU. The decision on whether
467 * to add the page to the [in]active [file|anon] list is deferred until the
468 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
469 * have the folio added to the active list using folio_mark_accessed().
470 */
471void folio_add_lru(struct folio *folio)
472{
473 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
474 folio_test_unevictable(folio), folio);
475 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
476
477 /* see the comment in lru_gen_add_folio() */
478 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
479 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
480 folio_set_active(folio);
481
482 folio_batch_add_and_move(folio, lru_add, false);
483}
484EXPORT_SYMBOL(folio_add_lru);
485
486/**
487 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
488 * @folio: The folio to be added to the LRU.
489 * @vma: VMA in which the folio is mapped.
490 *
491 * If the VMA is mlocked, @folio is added to the unevictable list.
492 * Otherwise, it is treated the same way as folio_add_lru().
493 */
494void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
495{
496 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
497
498 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
499 mlock_new_folio(folio);
500 else
501 folio_add_lru(folio);
502}
503
504/*
505 * If the folio cannot be invalidated, it is moved to the
506 * inactive list to speed up its reclaim. It is moved to the
507 * head of the list, rather than the tail, to give the flusher
508 * threads some time to write it out, as this is much more
509 * effective than the single-page writeout from reclaim.
510 *
511 * If the folio isn't mapped and dirty/writeback, the folio
512 * could be reclaimed asap using the reclaim flag.
513 *
514 * 1. active, mapped folio -> none
515 * 2. active, dirty/writeback folio -> inactive, head, reclaim
516 * 3. inactive, mapped folio -> none
517 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
518 * 5. inactive, clean -> inactive, tail
519 * 6. Others -> none
520 *
521 * In 4, it moves to the head of the inactive list so the folio is
522 * written out by flusher threads as this is much more efficient
523 * than the single-page writeout from reclaim.
524 */
525static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
526{
527 bool active = folio_test_active(folio);
528 long nr_pages = folio_nr_pages(folio);
529
530 if (folio_test_unevictable(folio))
531 return;
532
533 /* Some processes are using the folio */
534 if (folio_mapped(folio))
535 return;
536
537 lruvec_del_folio(lruvec, folio);
538 folio_clear_active(folio);
539 folio_clear_referenced(folio);
540
541 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
542 /*
543 * Setting the reclaim flag could race with
544 * folio_end_writeback() and confuse readahead. But the
545 * race window is _really_ small and it's not a critical
546 * problem.
547 */
548 lruvec_add_folio(lruvec, folio);
549 folio_set_reclaim(folio);
550 } else {
551 /*
552 * The folio's writeback ended while it was in the batch.
553 * We move that folio to the tail of the inactive list.
554 */
555 lruvec_add_folio_tail(lruvec, folio);
556 __count_vm_events(PGROTATED, nr_pages);
557 }
558
559 if (active) {
560 __count_vm_events(PGDEACTIVATE, nr_pages);
561 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
562 nr_pages);
563 }
564}
565
566static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
567{
568 long nr_pages = folio_nr_pages(folio);
569
570 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
571 return;
572
573 lruvec_del_folio(lruvec, folio);
574 folio_clear_active(folio);
575 folio_clear_referenced(folio);
576 lruvec_add_folio(lruvec, folio);
577
578 __count_vm_events(PGDEACTIVATE, nr_pages);
579 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
580}
581
582static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
583{
584 long nr_pages = folio_nr_pages(folio);
585
586 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
587 folio_test_swapcache(folio) || folio_test_unevictable(folio))
588 return;
589
590 lruvec_del_folio(lruvec, folio);
591 folio_clear_active(folio);
592 folio_clear_referenced(folio);
593 /*
594 * Lazyfree folios are clean anonymous folios. They have
595 * the swapbacked flag cleared, to distinguish them from normal
596 * anonymous folios
597 */
598 folio_clear_swapbacked(folio);
599 lruvec_add_folio(lruvec, folio);
600
601 __count_vm_events(PGLAZYFREE, nr_pages);
602 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
603}
604
605/*
606 * Drain pages out of the cpu's folio_batch.
607 * Either "cpu" is the current CPU, and preemption has already been
608 * disabled; or "cpu" is being hot-unplugged, and is already dead.
609 */
610void lru_add_drain_cpu(int cpu)
611{
612 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
613 struct folio_batch *fbatch = &fbatches->lru_add;
614
615 if (folio_batch_count(fbatch))
616 folio_batch_move_lru(fbatch, lru_add);
617
618 fbatch = &fbatches->lru_move_tail;
619 /* Disabling interrupts below acts as a compiler barrier. */
620 if (data_race(folio_batch_count(fbatch))) {
621 unsigned long flags;
622
623 /* No harm done if a racing interrupt already did this */
624 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
625 folio_batch_move_lru(fbatch, lru_move_tail);
626 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
627 }
628
629 fbatch = &fbatches->lru_deactivate_file;
630 if (folio_batch_count(fbatch))
631 folio_batch_move_lru(fbatch, lru_deactivate_file);
632
633 fbatch = &fbatches->lru_deactivate;
634 if (folio_batch_count(fbatch))
635 folio_batch_move_lru(fbatch, lru_deactivate);
636
637 fbatch = &fbatches->lru_lazyfree;
638 if (folio_batch_count(fbatch))
639 folio_batch_move_lru(fbatch, lru_lazyfree);
640
641 folio_activate_drain(cpu);
642}
643
644/**
645 * deactivate_file_folio() - Deactivate a file folio.
646 * @folio: Folio to deactivate.
647 *
648 * This function hints to the VM that @folio is a good reclaim candidate,
649 * for example if its invalidation fails due to the folio being dirty
650 * or under writeback.
651 *
652 * Context: Caller holds a reference on the folio.
653 */
654void deactivate_file_folio(struct folio *folio)
655{
656 /* Deactivating an unevictable folio will not accelerate reclaim */
657 if (folio_test_unevictable(folio))
658 return;
659
660 folio_batch_add_and_move(folio, lru_deactivate_file, true);
661}
662
663/*
664 * folio_deactivate - deactivate a folio
665 * @folio: folio to deactivate
666 *
667 * folio_deactivate() moves @folio to the inactive list if @folio was on the
668 * active list and was not unevictable. This is done to accelerate the
669 * reclaim of @folio.
670 */
671void folio_deactivate(struct folio *folio)
672{
673 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
674 return;
675
676 folio_batch_add_and_move(folio, lru_deactivate, true);
677}
678
679/**
680 * folio_mark_lazyfree - make an anon folio lazyfree
681 * @folio: folio to deactivate
682 *
683 * folio_mark_lazyfree() moves @folio to the inactive file list.
684 * This is done to accelerate the reclaim of @folio.
685 */
686void folio_mark_lazyfree(struct folio *folio)
687{
688 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
689 folio_test_swapcache(folio) || folio_test_unevictable(folio))
690 return;
691
692 folio_batch_add_and_move(folio, lru_lazyfree, true);
693}
694
695void lru_add_drain(void)
696{
697 local_lock(&cpu_fbatches.lock);
698 lru_add_drain_cpu(smp_processor_id());
699 local_unlock(&cpu_fbatches.lock);
700 mlock_drain_local();
701}
702
703/*
704 * It's called from per-cpu workqueue context in SMP case so
705 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
706 * the same cpu. It shouldn't be a problem in !SMP case since
707 * the core is only one and the locks will disable preemption.
708 */
709static void lru_add_and_bh_lrus_drain(void)
710{
711 local_lock(&cpu_fbatches.lock);
712 lru_add_drain_cpu(smp_processor_id());
713 local_unlock(&cpu_fbatches.lock);
714 invalidate_bh_lrus_cpu();
715 mlock_drain_local();
716}
717
718void lru_add_drain_cpu_zone(struct zone *zone)
719{
720 local_lock(&cpu_fbatches.lock);
721 lru_add_drain_cpu(smp_processor_id());
722 drain_local_pages(zone);
723 local_unlock(&cpu_fbatches.lock);
724 mlock_drain_local();
725}
726
727#ifdef CONFIG_SMP
728
729static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
730
731static void lru_add_drain_per_cpu(struct work_struct *dummy)
732{
733 lru_add_and_bh_lrus_drain();
734}
735
736static bool cpu_needs_drain(unsigned int cpu)
737{
738 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
739
740 /* Check these in order of likelihood that they're not zero */
741 return folio_batch_count(&fbatches->lru_add) ||
742 folio_batch_count(&fbatches->lru_move_tail) ||
743 folio_batch_count(&fbatches->lru_deactivate_file) ||
744 folio_batch_count(&fbatches->lru_deactivate) ||
745 folio_batch_count(&fbatches->lru_lazyfree) ||
746 folio_batch_count(&fbatches->lru_activate) ||
747 need_mlock_drain(cpu) ||
748 has_bh_in_lru(cpu, NULL);
749}
750
751/*
752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
753 * kworkers being shut down before our page_alloc_cpu_dead callback is
754 * executed on the offlined cpu.
755 * Calling this function with cpu hotplug locks held can actually lead
756 * to obscure indirect dependencies via WQ context.
757 */
758static inline void __lru_add_drain_all(bool force_all_cpus)
759{
760 /*
761 * lru_drain_gen - Global pages generation number
762 *
763 * (A) Definition: global lru_drain_gen = x implies that all generations
764 * 0 < n <= x are already *scheduled* for draining.
765 *
766 * This is an optimization for the highly-contended use case where a
767 * user space workload keeps constantly generating a flow of pages for
768 * each CPU.
769 */
770 static unsigned int lru_drain_gen;
771 static struct cpumask has_work;
772 static DEFINE_MUTEX(lock);
773 unsigned cpu, this_gen;
774
775 /*
776 * Make sure nobody triggers this path before mm_percpu_wq is fully
777 * initialized.
778 */
779 if (WARN_ON(!mm_percpu_wq))
780 return;
781
782 /*
783 * Guarantee folio_batch counter stores visible by this CPU
784 * are visible to other CPUs before loading the current drain
785 * generation.
786 */
787 smp_mb();
788
789 /*
790 * (B) Locally cache global LRU draining generation number
791 *
792 * The read barrier ensures that the counter is loaded before the mutex
793 * is taken. It pairs with smp_mb() inside the mutex critical section
794 * at (D).
795 */
796 this_gen = smp_load_acquire(&lru_drain_gen);
797
798 mutex_lock(&lock);
799
800 /*
801 * (C) Exit the draining operation if a newer generation, from another
802 * lru_add_drain_all(), was already scheduled for draining. Check (A).
803 */
804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
805 goto done;
806
807 /*
808 * (D) Increment global generation number
809 *
810 * Pairs with smp_load_acquire() at (B), outside of the critical
811 * section. Use a full memory barrier to guarantee that the
812 * new global drain generation number is stored before loading
813 * folio_batch counters.
814 *
815 * This pairing must be done here, before the for_each_online_cpu loop
816 * below which drains the page vectors.
817 *
818 * Let x, y, and z represent some system CPU numbers, where x < y < z.
819 * Assume CPU #z is in the middle of the for_each_online_cpu loop
820 * below and has already reached CPU #y's per-cpu data. CPU #x comes
821 * along, adds some pages to its per-cpu vectors, then calls
822 * lru_add_drain_all().
823 *
824 * If the paired barrier is done at any later step, e.g. after the
825 * loop, CPU #x will just exit at (C) and miss flushing out all of its
826 * added pages.
827 */
828 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
829 smp_mb();
830
831 cpumask_clear(&has_work);
832 for_each_online_cpu(cpu) {
833 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
834
835 if (cpu_needs_drain(cpu)) {
836 INIT_WORK(work, lru_add_drain_per_cpu);
837 queue_work_on(cpu, mm_percpu_wq, work);
838 __cpumask_set_cpu(cpu, &has_work);
839 }
840 }
841
842 for_each_cpu(cpu, &has_work)
843 flush_work(&per_cpu(lru_add_drain_work, cpu));
844
845done:
846 mutex_unlock(&lock);
847}
848
849void lru_add_drain_all(void)
850{
851 __lru_add_drain_all(false);
852}
853#else
854void lru_add_drain_all(void)
855{
856 lru_add_drain();
857}
858#endif /* CONFIG_SMP */
859
860atomic_t lru_disable_count = ATOMIC_INIT(0);
861
862/*
863 * lru_cache_disable() needs to be called before we start compiling
864 * a list of folios to be migrated using folio_isolate_lru().
865 * It drains folios on LRU cache and then disable on all cpus until
866 * lru_cache_enable is called.
867 *
868 * Must be paired with a call to lru_cache_enable().
869 */
870void lru_cache_disable(void)
871{
872 atomic_inc(&lru_disable_count);
873 /*
874 * Readers of lru_disable_count are protected by either disabling
875 * preemption or rcu_read_lock:
876 *
877 * preempt_disable, local_irq_disable [bh_lru_lock()]
878 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
879 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
880 *
881 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
882 * preempt_disable() regions of code. So any CPU which sees
883 * lru_disable_count = 0 will have exited the critical
884 * section when synchronize_rcu() returns.
885 */
886 synchronize_rcu_expedited();
887#ifdef CONFIG_SMP
888 __lru_add_drain_all(true);
889#else
890 lru_add_and_bh_lrus_drain();
891#endif
892}
893
894/**
895 * folios_put_refs - Reduce the reference count on a batch of folios.
896 * @folios: The folios.
897 * @refs: The number of refs to subtract from each folio.
898 *
899 * Like folio_put(), but for a batch of folios. This is more efficient
900 * than writing the loop yourself as it will optimise the locks which need
901 * to be taken if the folios are freed. The folios batch is returned
902 * empty and ready to be reused for another batch; there is no need
903 * to reinitialise it. If @refs is NULL, we subtract one from each
904 * folio refcount.
905 *
906 * Context: May be called in process or interrupt context, but not in NMI
907 * context. May be called while holding a spinlock.
908 */
909void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
910{
911 int i, j;
912 struct lruvec *lruvec = NULL;
913 unsigned long flags = 0;
914
915 for (i = 0, j = 0; i < folios->nr; i++) {
916 struct folio *folio = folios->folios[i];
917 unsigned int nr_refs = refs ? refs[i] : 1;
918
919 if (is_huge_zero_folio(folio))
920 continue;
921
922 if (folio_is_zone_device(folio)) {
923 if (lruvec) {
924 unlock_page_lruvec_irqrestore(lruvec, flags);
925 lruvec = NULL;
926 }
927 if (put_devmap_managed_folio_refs(folio, nr_refs))
928 continue;
929 if (folio_ref_sub_and_test(folio, nr_refs))
930 free_zone_device_folio(folio);
931 continue;
932 }
933
934 if (!folio_ref_sub_and_test(folio, nr_refs))
935 continue;
936
937 /* hugetlb has its own memcg */
938 if (folio_test_hugetlb(folio)) {
939 if (lruvec) {
940 unlock_page_lruvec_irqrestore(lruvec, flags);
941 lruvec = NULL;
942 }
943 free_huge_folio(folio);
944 continue;
945 }
946 folio_unqueue_deferred_split(folio);
947 __page_cache_release(folio, &lruvec, &flags);
948
949 if (j != i)
950 folios->folios[j] = folio;
951 j++;
952 }
953 if (lruvec)
954 unlock_page_lruvec_irqrestore(lruvec, flags);
955 if (!j) {
956 folio_batch_reinit(folios);
957 return;
958 }
959
960 folios->nr = j;
961 mem_cgroup_uncharge_folios(folios);
962 free_unref_folios(folios);
963}
964EXPORT_SYMBOL(folios_put_refs);
965
966/**
967 * release_pages - batched put_page()
968 * @arg: array of pages to release
969 * @nr: number of pages
970 *
971 * Decrement the reference count on all the pages in @arg. If it
972 * fell to zero, remove the page from the LRU and free it.
973 *
974 * Note that the argument can be an array of pages, encoded pages,
975 * or folio pointers. We ignore any encoded bits, and turn any of
976 * them into just a folio that gets free'd.
977 */
978void release_pages(release_pages_arg arg, int nr)
979{
980 struct folio_batch fbatch;
981 int refs[PAGEVEC_SIZE];
982 struct encoded_page **encoded = arg.encoded_pages;
983 int i;
984
985 folio_batch_init(&fbatch);
986 for (i = 0; i < nr; i++) {
987 /* Turn any of the argument types into a folio */
988 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
989
990 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
991 refs[fbatch.nr] = 1;
992 if (unlikely(encoded_page_flags(encoded[i]) &
993 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
994 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
995
996 if (folio_batch_add(&fbatch, folio) > 0)
997 continue;
998 folios_put_refs(&fbatch, refs);
999 }
1000
1001 if (fbatch.nr)
1002 folios_put_refs(&fbatch, refs);
1003}
1004EXPORT_SYMBOL(release_pages);
1005
1006/*
1007 * The folios which we're about to release may be in the deferred lru-addition
1008 * queues. That would prevent them from really being freed right now. That's
1009 * OK from a correctness point of view but is inefficient - those folios may be
1010 * cache-warm and we want to give them back to the page allocator ASAP.
1011 *
1012 * So __folio_batch_release() will drain those queues here.
1013 * folio_batch_move_lru() calls folios_put() directly to avoid
1014 * mutual recursion.
1015 */
1016void __folio_batch_release(struct folio_batch *fbatch)
1017{
1018 if (!fbatch->percpu_pvec_drained) {
1019 lru_add_drain();
1020 fbatch->percpu_pvec_drained = true;
1021 }
1022 folios_put(fbatch);
1023}
1024EXPORT_SYMBOL(__folio_batch_release);
1025
1026/**
1027 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1028 * @fbatch: The batch to prune
1029 *
1030 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1031 * entries. This function prunes all the non-folio entries from @fbatch
1032 * without leaving holes, so that it can be passed on to folio-only batch
1033 * operations.
1034 */
1035void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1036{
1037 unsigned int i, j;
1038
1039 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1040 struct folio *folio = fbatch->folios[i];
1041 if (!xa_is_value(folio))
1042 fbatch->folios[j++] = folio;
1043 }
1044 fbatch->nr = j;
1045}
1046
1047/*
1048 * Perform any setup for the swap system
1049 */
1050void __init swap_setup(void)
1051{
1052 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1053
1054 /* Use a smaller cluster for small-memory machines */
1055 if (megs < 16)
1056 page_cluster = 2;
1057 else
1058 page_cluster = 3;
1059 /*
1060 * Right now other parts of the system means that we
1061 * _really_ don't want to cluster much more
1062 */
1063}