Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 21#include "xfs_trans.h"
 22#include "xfs_ag.h"
 23
 24static struct kmem_cache	*xfs_allocbt_cur_cache;
 25
 26STATIC struct xfs_btree_cur *
 27xfs_bnobt_dup_cursor(
 28	struct xfs_btree_cur	*cur)
 29{
 30	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 31			cur->bc_ag.pag);
 32}
 33
 34STATIC struct xfs_btree_cur *
 35xfs_cntbt_dup_cursor(
 36	struct xfs_btree_cur	*cur)
 37{
 38	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 39			cur->bc_ag.pag);
 40}
 41
 42
 43STATIC void
 44xfs_allocbt_set_root(
 45	struct xfs_btree_cur		*cur,
 46	const union xfs_btree_ptr	*ptr,
 47	int				inc)
 48{
 49	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 50	struct xfs_agf		*agf = agbp->b_addr;
 
 51
 52	ASSERT(ptr->s != 0);
 53
 54	if (xfs_btree_is_bno(cur->bc_ops)) {
 55		agf->agf_bno_root = ptr->s;
 56		be32_add_cpu(&agf->agf_bno_level, inc);
 57		cur->bc_ag.pag->pagf_bno_level += inc;
 58	} else {
 59		agf->agf_cnt_root = ptr->s;
 60		be32_add_cpu(&agf->agf_cnt_level, inc);
 61		cur->bc_ag.pag->pagf_cnt_level += inc;
 62	}
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur		*cur,
 70	const union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr		*new,
 72	int				*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 79			cur->bc_ag.agbp, &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 89	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 90
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_ag.agbp;
103	xfs_agblock_t		bno;
104	int			error;
105
106	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108			bno, 1);
109	if (error)
110		return error;
111
112	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114			      XFS_EXTENT_BUSY_SKIP_DISCARD);
115	return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123	struct xfs_btree_cur		*cur,
124	const struct xfs_btree_block	*block,
125	const union xfs_btree_rec	*rec,
126	int				ptr,
127	int				reason)
128{
129	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
130	struct xfs_perag	*pag;
131	__be32			len;
132	int			numrecs;
133
134	ASSERT(!xfs_btree_is_bno(cur->bc_ops));
135
136	switch (reason) {
137	case LASTREC_UPDATE:
138		/*
139		 * If this is the last leaf block and it's the last record,
140		 * then update the size of the longest extent in the AG.
141		 */
142		if (ptr != xfs_btree_get_numrecs(block))
143			return;
144		len = rec->alloc.ar_blockcount;
145		break;
146	case LASTREC_INSREC:
147		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
148		    be32_to_cpu(agf->agf_longest))
149			return;
150		len = rec->alloc.ar_blockcount;
151		break;
152	case LASTREC_DELREC:
153		numrecs = xfs_btree_get_numrecs(block);
154		if (ptr <= numrecs)
155			return;
156		ASSERT(ptr == numrecs + 1);
157
158		if (numrecs) {
159			xfs_alloc_rec_t *rrp;
160
161			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
162			len = rrp->ar_blockcount;
163		} else {
164			len = 0;
165		}
166
167		break;
168	default:
169		ASSERT(0);
170		return;
171	}
172
173	agf->agf_longest = len;
174	pag = cur->bc_ag.agbp->b_pag;
175	pag->pagf_longest = be32_to_cpu(len);
176	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
177}
178
179STATIC int
180xfs_allocbt_get_minrecs(
181	struct xfs_btree_cur	*cur,
182	int			level)
183{
184	return cur->bc_mp->m_alloc_mnr[level != 0];
185}
186
187STATIC int
188xfs_allocbt_get_maxrecs(
189	struct xfs_btree_cur	*cur,
190	int			level)
191{
192	return cur->bc_mp->m_alloc_mxr[level != 0];
193}
194
195STATIC void
196xfs_allocbt_init_key_from_rec(
197	union xfs_btree_key		*key,
198	const union xfs_btree_rec	*rec)
199{
200	key->alloc.ar_startblock = rec->alloc.ar_startblock;
201	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
202}
203
204STATIC void
205xfs_bnobt_init_high_key_from_rec(
206	union xfs_btree_key		*key,
207	const union xfs_btree_rec	*rec)
208{
209	__u32				x;
210
211	x = be32_to_cpu(rec->alloc.ar_startblock);
212	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
213	key->alloc.ar_startblock = cpu_to_be32(x);
214	key->alloc.ar_blockcount = 0;
215}
216
217STATIC void
218xfs_cntbt_init_high_key_from_rec(
219	union xfs_btree_key		*key,
220	const union xfs_btree_rec	*rec)
221{
222	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
223	key->alloc.ar_startblock = 0;
224}
225
226STATIC void
227xfs_allocbt_init_rec_from_cur(
228	struct xfs_btree_cur	*cur,
229	union xfs_btree_rec	*rec)
230{
231	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
232	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
233}
234
235STATIC void
236xfs_allocbt_init_ptr_from_cur(
237	struct xfs_btree_cur	*cur,
238	union xfs_btree_ptr	*ptr)
239{
240	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
241
242	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
243
244	if (xfs_btree_is_bno(cur->bc_ops))
245		ptr->s = agf->agf_bno_root;
246	else
247		ptr->s = agf->agf_cnt_root;
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252	struct xfs_btree_cur		*cur,
253	const union xfs_btree_key	*key)
254{
255	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
256	const struct xfs_alloc_rec	*kp = &key->alloc;
257
258	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263	struct xfs_btree_cur		*cur,
264	const union xfs_btree_key	*key)
265{
266	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
267	const struct xfs_alloc_rec	*kp = &key->alloc;
268	int64_t				diff;
269
270	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271	if (diff)
272		return diff;
273
274	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279	struct xfs_btree_cur		*cur,
280	const union xfs_btree_key	*k1,
281	const union xfs_btree_key	*k2,
282	const union xfs_btree_key	*mask)
283{
284	ASSERT(!mask || mask->alloc.ar_startblock);
285
286	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
287			be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290STATIC int64_t
291xfs_cntbt_diff_two_keys(
292	struct xfs_btree_cur		*cur,
293	const union xfs_btree_key	*k1,
294	const union xfs_btree_key	*k2,
295	const union xfs_btree_key	*mask)
296{
297	int64_t				diff;
298
299	ASSERT(!mask || (mask->alloc.ar_blockcount &&
300			 mask->alloc.ar_startblock));
301
302	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
303		be32_to_cpu(k2->alloc.ar_blockcount);
304	if (diff)
305		return diff;
306
307	return  be32_to_cpu(k1->alloc.ar_startblock) -
308		be32_to_cpu(k2->alloc.ar_startblock);
309}
310
311static xfs_failaddr_t
312xfs_allocbt_verify(
313	struct xfs_buf		*bp)
314{
315	struct xfs_mount	*mp = bp->b_mount;
316	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
317	struct xfs_perag	*pag = bp->b_pag;
318	xfs_failaddr_t		fa;
319	unsigned int		level;
320
321	if (!xfs_verify_magic(bp, block->bb_magic))
322		return __this_address;
323
324	if (xfs_has_crc(mp)) {
325		fa = xfs_btree_agblock_v5hdr_verify(bp);
326		if (fa)
327			return fa;
328	}
329
330	/*
331	 * The perag may not be attached during grow operations or fully
332	 * initialized from the AGF during log recovery. Therefore we can only
333	 * check against maximum tree depth from those contexts.
334	 *
335	 * Otherwise check against the per-tree limit. Peek at one of the
336	 * verifier magic values to determine the type of tree we're verifying
337	 * against.
338	 */
339	level = be16_to_cpu(block->bb_level);
340	if (pag && xfs_perag_initialised_agf(pag)) {
341		unsigned int	maxlevel, repair_maxlevel = 0;
342
343		/*
344		 * Online repair could be rewriting the free space btrees, so
345		 * we'll validate against the larger of either tree while this
346		 * is going on.
347		 */
348		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
349			maxlevel = pag->pagf_cnt_level;
350#ifdef CONFIG_XFS_ONLINE_REPAIR
351			repair_maxlevel = pag->pagf_repair_cnt_level;
352#endif
353		} else {
354			maxlevel = pag->pagf_bno_level;
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356			repair_maxlevel = pag->pagf_repair_bno_level;
357#endif
358		}
359
360		if (level >= max(maxlevel, repair_maxlevel))
361			return __this_address;
362	} else if (level >= mp->m_alloc_maxlevels)
363		return __this_address;
364
365	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
366}
367
368static void
369xfs_allocbt_read_verify(
370	struct xfs_buf	*bp)
371{
372	xfs_failaddr_t	fa;
373
374	if (!xfs_btree_agblock_verify_crc(bp))
375		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
376	else {
377		fa = xfs_allocbt_verify(bp);
378		if (fa)
379			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
380	}
381
382	if (bp->b_error)
383		trace_xfs_btree_corrupt(bp, _RET_IP_);
384}
385
386static void
387xfs_allocbt_write_verify(
388	struct xfs_buf	*bp)
389{
390	xfs_failaddr_t	fa;
391
392	fa = xfs_allocbt_verify(bp);
393	if (fa) {
394		trace_xfs_btree_corrupt(bp, _RET_IP_);
395		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
396		return;
397	}
398	xfs_btree_agblock_calc_crc(bp);
399
400}
401
402const struct xfs_buf_ops xfs_bnobt_buf_ops = {
403	.name = "xfs_bnobt",
404	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
405		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
406	.verify_read = xfs_allocbt_read_verify,
407	.verify_write = xfs_allocbt_write_verify,
408	.verify_struct = xfs_allocbt_verify,
409};
410
411const struct xfs_buf_ops xfs_cntbt_buf_ops = {
412	.name = "xfs_cntbt",
413	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
414		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
415	.verify_read = xfs_allocbt_read_verify,
416	.verify_write = xfs_allocbt_write_verify,
417	.verify_struct = xfs_allocbt_verify,
418};
419
420STATIC int
421xfs_bnobt_keys_inorder(
422	struct xfs_btree_cur		*cur,
423	const union xfs_btree_key	*k1,
424	const union xfs_btree_key	*k2)
425{
426	return be32_to_cpu(k1->alloc.ar_startblock) <
427	       be32_to_cpu(k2->alloc.ar_startblock);
428}
429
430STATIC int
431xfs_bnobt_recs_inorder(
432	struct xfs_btree_cur		*cur,
433	const union xfs_btree_rec	*r1,
434	const union xfs_btree_rec	*r2)
435{
436	return be32_to_cpu(r1->alloc.ar_startblock) +
437		be32_to_cpu(r1->alloc.ar_blockcount) <=
438		be32_to_cpu(r2->alloc.ar_startblock);
439}
440
441STATIC int
442xfs_cntbt_keys_inorder(
443	struct xfs_btree_cur		*cur,
444	const union xfs_btree_key	*k1,
445	const union xfs_btree_key	*k2)
446{
447	return be32_to_cpu(k1->alloc.ar_blockcount) <
448		be32_to_cpu(k2->alloc.ar_blockcount) ||
449		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
450		 be32_to_cpu(k1->alloc.ar_startblock) <
451		 be32_to_cpu(k2->alloc.ar_startblock));
452}
453
454STATIC int
455xfs_cntbt_recs_inorder(
456	struct xfs_btree_cur		*cur,
457	const union xfs_btree_rec	*r1,
458	const union xfs_btree_rec	*r2)
459{
460	return be32_to_cpu(r1->alloc.ar_blockcount) <
461		be32_to_cpu(r2->alloc.ar_blockcount) ||
462		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
463		 be32_to_cpu(r1->alloc.ar_startblock) <
464		 be32_to_cpu(r2->alloc.ar_startblock));
465}
466
467STATIC enum xbtree_key_contig
468xfs_allocbt_keys_contiguous(
469	struct xfs_btree_cur		*cur,
470	const union xfs_btree_key	*key1,
471	const union xfs_btree_key	*key2,
472	const union xfs_btree_key	*mask)
473{
474	ASSERT(!mask || mask->alloc.ar_startblock);
475
476	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
477				 be32_to_cpu(key2->alloc.ar_startblock));
478}
479
480const struct xfs_btree_ops xfs_bnobt_ops = {
481	.name			= "bno",
482	.type			= XFS_BTREE_TYPE_AG,
483
484	.rec_len		= sizeof(xfs_alloc_rec_t),
485	.key_len		= sizeof(xfs_alloc_key_t),
486	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
487
488	.lru_refs		= XFS_ALLOC_BTREE_REF,
489	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
490	.sick_mask		= XFS_SICK_AG_BNOBT,
491
492	.dup_cursor		= xfs_bnobt_dup_cursor,
493	.set_root		= xfs_allocbt_set_root,
494	.alloc_block		= xfs_allocbt_alloc_block,
495	.free_block		= xfs_allocbt_free_block,
496	.update_lastrec		= xfs_allocbt_update_lastrec,
497	.get_minrecs		= xfs_allocbt_get_minrecs,
498	.get_maxrecs		= xfs_allocbt_get_maxrecs,
499	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
500	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
501	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
502	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
503	.key_diff		= xfs_bnobt_key_diff,
504	.buf_ops		= &xfs_bnobt_buf_ops,
505	.diff_two_keys		= xfs_bnobt_diff_two_keys,
506	.keys_inorder		= xfs_bnobt_keys_inorder,
507	.recs_inorder		= xfs_bnobt_recs_inorder,
508	.keys_contiguous	= xfs_allocbt_keys_contiguous,
509};
510
511const struct xfs_btree_ops xfs_cntbt_ops = {
512	.name			= "cnt",
513	.type			= XFS_BTREE_TYPE_AG,
514	.geom_flags		= XFS_BTGEO_LASTREC_UPDATE,
515
516	.rec_len		= sizeof(xfs_alloc_rec_t),
517	.key_len		= sizeof(xfs_alloc_key_t),
518	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
519
520	.lru_refs		= XFS_ALLOC_BTREE_REF,
521	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
522	.sick_mask		= XFS_SICK_AG_CNTBT,
523
524	.dup_cursor		= xfs_cntbt_dup_cursor,
525	.set_root		= xfs_allocbt_set_root,
526	.alloc_block		= xfs_allocbt_alloc_block,
527	.free_block		= xfs_allocbt_free_block,
528	.update_lastrec		= xfs_allocbt_update_lastrec,
529	.get_minrecs		= xfs_allocbt_get_minrecs,
530	.get_maxrecs		= xfs_allocbt_get_maxrecs,
531	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
532	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
533	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
534	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
535	.key_diff		= xfs_cntbt_key_diff,
536	.buf_ops		= &xfs_cntbt_buf_ops,
537	.diff_two_keys		= xfs_cntbt_diff_two_keys,
538	.keys_inorder		= xfs_cntbt_keys_inorder,
539	.recs_inorder		= xfs_cntbt_recs_inorder,
540	.keys_contiguous	= NULL, /* not needed right now */
541};
542
543/*
544 * Allocate a new bnobt cursor.
545 *
546 * For staging cursors tp and agbp are NULL.
547 */
548struct xfs_btree_cur *
549xfs_bnobt_init_cursor(
550	struct xfs_mount	*mp,
551	struct xfs_trans	*tp,
552	struct xfs_buf		*agbp,
553	struct xfs_perag	*pag)
554{
555	struct xfs_btree_cur	*cur;
556
557	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
558			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
559	cur->bc_ag.pag = xfs_perag_hold(pag);
560	cur->bc_ag.agbp = agbp;
561	if (agbp) {
562		struct xfs_agf		*agf = agbp->b_addr;
563
564		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
565	}
566	return cur;
567}
568
569/*
570 * Allocate a new cntbt cursor.
571 *
572 * For staging cursors tp and agbp are NULL.
573 */
574struct xfs_btree_cur *
575xfs_cntbt_init_cursor(
576	struct xfs_mount	*mp,
577	struct xfs_trans	*tp,
578	struct xfs_buf		*agbp,
579	struct xfs_perag	*pag)
580{
581	struct xfs_btree_cur	*cur;
582
583	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
584			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
585	cur->bc_ag.pag = xfs_perag_hold(pag);
586	cur->bc_ag.agbp = agbp;
587	if (agbp) {
588		struct xfs_agf		*agf = agbp->b_addr;
589
590		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
591	}
592	return cur;
593}
594
595/*
596 * Install a new free space btree root.  Caller is responsible for invalidating
597 * and freeing the old btree blocks.
598 */
599void
600xfs_allocbt_commit_staged_btree(
601	struct xfs_btree_cur	*cur,
602	struct xfs_trans	*tp,
603	struct xfs_buf		*agbp)
604{
605	struct xfs_agf		*agf = agbp->b_addr;
606	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
607
608	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
609
610	if (xfs_btree_is_bno(cur->bc_ops)) {
611		agf->agf_bno_root = cpu_to_be32(afake->af_root);
612		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
613	} else {
614		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
615		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
616	}
617	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
618
619	xfs_btree_commit_afakeroot(cur, tp, agbp);
620}
621
622/* Calculate number of records in an alloc btree block. */
623static inline unsigned int
624xfs_allocbt_block_maxrecs(
625	unsigned int		blocklen,
626	bool			leaf)
627{
628	if (leaf)
629		return blocklen / sizeof(xfs_alloc_rec_t);
630	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
631}
632
633/*
634 * Calculate number of records in an alloc btree block.
635 */
636int
637xfs_allocbt_maxrecs(
638	struct xfs_mount	*mp,
639	int			blocklen,
640	int			leaf)
641{
642	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
643	return xfs_allocbt_block_maxrecs(blocklen, leaf);
644}
645
646/* Free space btrees are at their largest when every other block is free. */
647#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
648
649/* Compute the max possible height for free space btrees. */
650unsigned int
651xfs_allocbt_maxlevels_ondisk(void)
652{
653	unsigned int		minrecs[2];
654	unsigned int		blocklen;
655
656	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
657		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
658
659	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
660	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
661
662	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
663}
664
665/* Calculate the freespace btree size for some records. */
666xfs_extlen_t
667xfs_allocbt_calc_size(
668	struct xfs_mount	*mp,
669	unsigned long long	len)
670{
671	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
672}
673
674int __init
675xfs_allocbt_init_cur_cache(void)
676{
677	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
678			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
679			0, 0, NULL);
680
681	if (!xfs_allocbt_cur_cache)
682		return -ENOMEM;
683	return 0;
684}
685
686void
687xfs_allocbt_destroy_cur_cache(void)
688{
689	kmem_cache_destroy(xfs_allocbt_cur_cache);
690	xfs_allocbt_cur_cache = NULL;
691}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 21#include "xfs_trans.h"
 22#include "xfs_ag.h"
 23
 24static struct kmem_cache	*xfs_allocbt_cur_cache;
 25
 26STATIC struct xfs_btree_cur *
 27xfs_bnobt_dup_cursor(
 28	struct xfs_btree_cur	*cur)
 29{
 30	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 31			to_perag(cur->bc_group));
 32}
 33
 34STATIC struct xfs_btree_cur *
 35xfs_cntbt_dup_cursor(
 36	struct xfs_btree_cur	*cur)
 37{
 38	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
 39			to_perag(cur->bc_group));
 40}
 41
 
 42STATIC void
 43xfs_allocbt_set_root(
 44	struct xfs_btree_cur		*cur,
 45	const union xfs_btree_ptr	*ptr,
 46	int				inc)
 47{
 48	struct xfs_perag		*pag = to_perag(cur->bc_group);
 49	struct xfs_buf			*agbp = cur->bc_ag.agbp;
 50	struct xfs_agf			*agf = agbp->b_addr;
 51
 52	ASSERT(ptr->s != 0);
 53
 54	if (xfs_btree_is_bno(cur->bc_ops)) {
 55		agf->agf_bno_root = ptr->s;
 56		be32_add_cpu(&agf->agf_bno_level, inc);
 57		pag->pagf_bno_level += inc;
 58	} else {
 59		agf->agf_cnt_root = ptr->s;
 60		be32_add_cpu(&agf->agf_cnt_level, inc);
 61		pag->pagf_cnt_level += inc;
 62	}
 63
 64	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 65}
 66
 67STATIC int
 68xfs_allocbt_alloc_block(
 69	struct xfs_btree_cur		*cur,
 70	const union xfs_btree_ptr	*start,
 71	union xfs_btree_ptr		*new,
 72	int				*stat)
 73{
 74	int			error;
 75	xfs_agblock_t		bno;
 76
 77	/* Allocate the new block from the freelist. If we can't, give up.  */
 78	error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
 79			cur->bc_ag.agbp, &bno, 1);
 80	if (error)
 81		return error;
 82
 83	if (bno == NULLAGBLOCK) {
 84		*stat = 0;
 85		return 0;
 86	}
 87
 88	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 89	xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
 90
 91	new->s = cpu_to_be32(bno);
 92
 93	*stat = 1;
 94	return 0;
 95}
 96
 97STATIC int
 98xfs_allocbt_free_block(
 99	struct xfs_btree_cur	*cur,
100	struct xfs_buf		*bp)
101{
102	struct xfs_buf		*agbp = cur->bc_ag.agbp;
103	xfs_agblock_t		bno;
104	int			error;
105
106	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107	error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108			agbp, NULL, bno, 1);
109	if (error)
110		return error;
111
112	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113	xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114			      XFS_EXTENT_BUSY_SKIP_DISCARD);
115	return 0;
116}
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118STATIC int
119xfs_allocbt_get_minrecs(
120	struct xfs_btree_cur	*cur,
121	int			level)
122{
123	return cur->bc_mp->m_alloc_mnr[level != 0];
124}
125
126STATIC int
127xfs_allocbt_get_maxrecs(
128	struct xfs_btree_cur	*cur,
129	int			level)
130{
131	return cur->bc_mp->m_alloc_mxr[level != 0];
132}
133
134STATIC void
135xfs_allocbt_init_key_from_rec(
136	union xfs_btree_key		*key,
137	const union xfs_btree_rec	*rec)
138{
139	key->alloc.ar_startblock = rec->alloc.ar_startblock;
140	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141}
142
143STATIC void
144xfs_bnobt_init_high_key_from_rec(
145	union xfs_btree_key		*key,
146	const union xfs_btree_rec	*rec)
147{
148	__u32				x;
149
150	x = be32_to_cpu(rec->alloc.ar_startblock);
151	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152	key->alloc.ar_startblock = cpu_to_be32(x);
153	key->alloc.ar_blockcount = 0;
154}
155
156STATIC void
157xfs_cntbt_init_high_key_from_rec(
158	union xfs_btree_key		*key,
159	const union xfs_btree_rec	*rec)
160{
161	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162	key->alloc.ar_startblock = 0;
163}
164
165STATIC void
166xfs_allocbt_init_rec_from_cur(
167	struct xfs_btree_cur	*cur,
168	union xfs_btree_rec	*rec)
169{
170	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172}
173
174STATIC void
175xfs_allocbt_init_ptr_from_cur(
176	struct xfs_btree_cur	*cur,
177	union xfs_btree_ptr	*ptr)
178{
179	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
180
181	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
182
183	if (xfs_btree_is_bno(cur->bc_ops))
184		ptr->s = agf->agf_bno_root;
185	else
186		ptr->s = agf->agf_cnt_root;
187}
188
189STATIC int64_t
190xfs_bnobt_key_diff(
191	struct xfs_btree_cur		*cur,
192	const union xfs_btree_key	*key)
193{
194	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
195	const struct xfs_alloc_rec	*kp = &key->alloc;
196
197	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
198}
199
200STATIC int64_t
201xfs_cntbt_key_diff(
202	struct xfs_btree_cur		*cur,
203	const union xfs_btree_key	*key)
204{
205	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
206	const struct xfs_alloc_rec	*kp = &key->alloc;
207	int64_t				diff;
208
209	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
210	if (diff)
211		return diff;
212
213	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
214}
215
216STATIC int64_t
217xfs_bnobt_diff_two_keys(
218	struct xfs_btree_cur		*cur,
219	const union xfs_btree_key	*k1,
220	const union xfs_btree_key	*k2,
221	const union xfs_btree_key	*mask)
222{
223	ASSERT(!mask || mask->alloc.ar_startblock);
224
225	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
226			be32_to_cpu(k2->alloc.ar_startblock);
227}
228
229STATIC int64_t
230xfs_cntbt_diff_two_keys(
231	struct xfs_btree_cur		*cur,
232	const union xfs_btree_key	*k1,
233	const union xfs_btree_key	*k2,
234	const union xfs_btree_key	*mask)
235{
236	int64_t				diff;
237
238	ASSERT(!mask || (mask->alloc.ar_blockcount &&
239			 mask->alloc.ar_startblock));
240
241	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
242		be32_to_cpu(k2->alloc.ar_blockcount);
243	if (diff)
244		return diff;
245
246	return  be32_to_cpu(k1->alloc.ar_startblock) -
247		be32_to_cpu(k2->alloc.ar_startblock);
248}
249
250static xfs_failaddr_t
251xfs_allocbt_verify(
252	struct xfs_buf		*bp)
253{
254	struct xfs_mount	*mp = bp->b_mount;
255	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
256	struct xfs_perag	*pag = bp->b_pag;
257	xfs_failaddr_t		fa;
258	unsigned int		level;
259
260	if (!xfs_verify_magic(bp, block->bb_magic))
261		return __this_address;
262
263	if (xfs_has_crc(mp)) {
264		fa = xfs_btree_agblock_v5hdr_verify(bp);
265		if (fa)
266			return fa;
267	}
268
269	/*
270	 * The perag may not be attached during grow operations or fully
271	 * initialized from the AGF during log recovery. Therefore we can only
272	 * check against maximum tree depth from those contexts.
273	 *
274	 * Otherwise check against the per-tree limit. Peek at one of the
275	 * verifier magic values to determine the type of tree we're verifying
276	 * against.
277	 */
278	level = be16_to_cpu(block->bb_level);
279	if (pag && xfs_perag_initialised_agf(pag)) {
280		unsigned int	maxlevel, repair_maxlevel = 0;
281
282		/*
283		 * Online repair could be rewriting the free space btrees, so
284		 * we'll validate against the larger of either tree while this
285		 * is going on.
286		 */
287		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
288			maxlevel = pag->pagf_cnt_level;
289#ifdef CONFIG_XFS_ONLINE_REPAIR
290			repair_maxlevel = pag->pagf_repair_cnt_level;
291#endif
292		} else {
293			maxlevel = pag->pagf_bno_level;
294#ifdef CONFIG_XFS_ONLINE_REPAIR
295			repair_maxlevel = pag->pagf_repair_bno_level;
296#endif
297		}
298
299		if (level >= max(maxlevel, repair_maxlevel))
300			return __this_address;
301	} else if (level >= mp->m_alloc_maxlevels)
302		return __this_address;
303
304	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
305}
306
307static void
308xfs_allocbt_read_verify(
309	struct xfs_buf	*bp)
310{
311	xfs_failaddr_t	fa;
312
313	if (!xfs_btree_agblock_verify_crc(bp))
314		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
315	else {
316		fa = xfs_allocbt_verify(bp);
317		if (fa)
318			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
319	}
320
321	if (bp->b_error)
322		trace_xfs_btree_corrupt(bp, _RET_IP_);
323}
324
325static void
326xfs_allocbt_write_verify(
327	struct xfs_buf	*bp)
328{
329	xfs_failaddr_t	fa;
330
331	fa = xfs_allocbt_verify(bp);
332	if (fa) {
333		trace_xfs_btree_corrupt(bp, _RET_IP_);
334		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335		return;
336	}
337	xfs_btree_agblock_calc_crc(bp);
338
339}
340
341const struct xfs_buf_ops xfs_bnobt_buf_ops = {
342	.name = "xfs_bnobt",
343	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
344		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
345	.verify_read = xfs_allocbt_read_verify,
346	.verify_write = xfs_allocbt_write_verify,
347	.verify_struct = xfs_allocbt_verify,
348};
349
350const struct xfs_buf_ops xfs_cntbt_buf_ops = {
351	.name = "xfs_cntbt",
352	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
353		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
354	.verify_read = xfs_allocbt_read_verify,
355	.verify_write = xfs_allocbt_write_verify,
356	.verify_struct = xfs_allocbt_verify,
357};
358
359STATIC int
360xfs_bnobt_keys_inorder(
361	struct xfs_btree_cur		*cur,
362	const union xfs_btree_key	*k1,
363	const union xfs_btree_key	*k2)
364{
365	return be32_to_cpu(k1->alloc.ar_startblock) <
366	       be32_to_cpu(k2->alloc.ar_startblock);
367}
368
369STATIC int
370xfs_bnobt_recs_inorder(
371	struct xfs_btree_cur		*cur,
372	const union xfs_btree_rec	*r1,
373	const union xfs_btree_rec	*r2)
374{
375	return be32_to_cpu(r1->alloc.ar_startblock) +
376		be32_to_cpu(r1->alloc.ar_blockcount) <=
377		be32_to_cpu(r2->alloc.ar_startblock);
378}
379
380STATIC int
381xfs_cntbt_keys_inorder(
382	struct xfs_btree_cur		*cur,
383	const union xfs_btree_key	*k1,
384	const union xfs_btree_key	*k2)
385{
386	return be32_to_cpu(k1->alloc.ar_blockcount) <
387		be32_to_cpu(k2->alloc.ar_blockcount) ||
388		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
389		 be32_to_cpu(k1->alloc.ar_startblock) <
390		 be32_to_cpu(k2->alloc.ar_startblock));
391}
392
393STATIC int
394xfs_cntbt_recs_inorder(
395	struct xfs_btree_cur		*cur,
396	const union xfs_btree_rec	*r1,
397	const union xfs_btree_rec	*r2)
398{
399	return be32_to_cpu(r1->alloc.ar_blockcount) <
400		be32_to_cpu(r2->alloc.ar_blockcount) ||
401		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
402		 be32_to_cpu(r1->alloc.ar_startblock) <
403		 be32_to_cpu(r2->alloc.ar_startblock));
404}
405
406STATIC enum xbtree_key_contig
407xfs_allocbt_keys_contiguous(
408	struct xfs_btree_cur		*cur,
409	const union xfs_btree_key	*key1,
410	const union xfs_btree_key	*key2,
411	const union xfs_btree_key	*mask)
412{
413	ASSERT(!mask || mask->alloc.ar_startblock);
414
415	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
416				 be32_to_cpu(key2->alloc.ar_startblock));
417}
418
419const struct xfs_btree_ops xfs_bnobt_ops = {
420	.name			= "bno",
421	.type			= XFS_BTREE_TYPE_AG,
422
423	.rec_len		= sizeof(xfs_alloc_rec_t),
424	.key_len		= sizeof(xfs_alloc_key_t),
425	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
426
427	.lru_refs		= XFS_ALLOC_BTREE_REF,
428	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
429	.sick_mask		= XFS_SICK_AG_BNOBT,
430
431	.dup_cursor		= xfs_bnobt_dup_cursor,
432	.set_root		= xfs_allocbt_set_root,
433	.alloc_block		= xfs_allocbt_alloc_block,
434	.free_block		= xfs_allocbt_free_block,
 
435	.get_minrecs		= xfs_allocbt_get_minrecs,
436	.get_maxrecs		= xfs_allocbt_get_maxrecs,
437	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
441	.key_diff		= xfs_bnobt_key_diff,
442	.buf_ops		= &xfs_bnobt_buf_ops,
443	.diff_two_keys		= xfs_bnobt_diff_two_keys,
444	.keys_inorder		= xfs_bnobt_keys_inorder,
445	.recs_inorder		= xfs_bnobt_recs_inorder,
446	.keys_contiguous	= xfs_allocbt_keys_contiguous,
447};
448
449const struct xfs_btree_ops xfs_cntbt_ops = {
450	.name			= "cnt",
451	.type			= XFS_BTREE_TYPE_AG,
 
452
453	.rec_len		= sizeof(xfs_alloc_rec_t),
454	.key_len		= sizeof(xfs_alloc_key_t),
455	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
456
457	.lru_refs		= XFS_ALLOC_BTREE_REF,
458	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
459	.sick_mask		= XFS_SICK_AG_CNTBT,
460
461	.dup_cursor		= xfs_cntbt_dup_cursor,
462	.set_root		= xfs_allocbt_set_root,
463	.alloc_block		= xfs_allocbt_alloc_block,
464	.free_block		= xfs_allocbt_free_block,
 
465	.get_minrecs		= xfs_allocbt_get_minrecs,
466	.get_maxrecs		= xfs_allocbt_get_maxrecs,
467	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
468	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
469	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
470	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
471	.key_diff		= xfs_cntbt_key_diff,
472	.buf_ops		= &xfs_cntbt_buf_ops,
473	.diff_two_keys		= xfs_cntbt_diff_two_keys,
474	.keys_inorder		= xfs_cntbt_keys_inorder,
475	.recs_inorder		= xfs_cntbt_recs_inorder,
476	.keys_contiguous	= NULL, /* not needed right now */
477};
478
479/*
480 * Allocate a new bnobt cursor.
481 *
482 * For staging cursors tp and agbp are NULL.
483 */
484struct xfs_btree_cur *
485xfs_bnobt_init_cursor(
486	struct xfs_mount	*mp,
487	struct xfs_trans	*tp,
488	struct xfs_buf		*agbp,
489	struct xfs_perag	*pag)
490{
491	struct xfs_btree_cur	*cur;
492
493	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
494			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
495	cur->bc_group = xfs_group_hold(pag_group(pag));
496	cur->bc_ag.agbp = agbp;
497	if (agbp) {
498		struct xfs_agf		*agf = agbp->b_addr;
499
500		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
501	}
502	return cur;
503}
504
505/*
506 * Allocate a new cntbt cursor.
507 *
508 * For staging cursors tp and agbp are NULL.
509 */
510struct xfs_btree_cur *
511xfs_cntbt_init_cursor(
512	struct xfs_mount	*mp,
513	struct xfs_trans	*tp,
514	struct xfs_buf		*agbp,
515	struct xfs_perag	*pag)
516{
517	struct xfs_btree_cur	*cur;
518
519	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
520			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
521	cur->bc_group = xfs_group_hold(pag_group(pag));
522	cur->bc_ag.agbp = agbp;
523	if (agbp) {
524		struct xfs_agf		*agf = agbp->b_addr;
525
526		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
527	}
528	return cur;
529}
530
531/*
532 * Install a new free space btree root.  Caller is responsible for invalidating
533 * and freeing the old btree blocks.
534 */
535void
536xfs_allocbt_commit_staged_btree(
537	struct xfs_btree_cur	*cur,
538	struct xfs_trans	*tp,
539	struct xfs_buf		*agbp)
540{
541	struct xfs_agf		*agf = agbp->b_addr;
542	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
543
544	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
545
546	if (xfs_btree_is_bno(cur->bc_ops)) {
547		agf->agf_bno_root = cpu_to_be32(afake->af_root);
548		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
549	} else {
550		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
551		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
552	}
553	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
554
555	xfs_btree_commit_afakeroot(cur, tp, agbp);
556}
557
558/* Calculate number of records in an alloc btree block. */
559static inline unsigned int
560xfs_allocbt_block_maxrecs(
561	unsigned int		blocklen,
562	bool			leaf)
563{
564	if (leaf)
565		return blocklen / sizeof(xfs_alloc_rec_t);
566	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
567}
568
569/*
570 * Calculate number of records in an alloc btree block.
571 */
572unsigned int
573xfs_allocbt_maxrecs(
574	struct xfs_mount	*mp,
575	unsigned int		blocklen,
576	bool			leaf)
577{
578	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
579	return xfs_allocbt_block_maxrecs(blocklen, leaf);
580}
581
582/* Free space btrees are at their largest when every other block is free. */
583#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
584
585/* Compute the max possible height for free space btrees. */
586unsigned int
587xfs_allocbt_maxlevels_ondisk(void)
588{
589	unsigned int		minrecs[2];
590	unsigned int		blocklen;
591
592	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
593		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
594
595	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
596	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
597
598	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
599}
600
601/* Calculate the freespace btree size for some records. */
602xfs_extlen_t
603xfs_allocbt_calc_size(
604	struct xfs_mount	*mp,
605	unsigned long long	len)
606{
607	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
608}
609
610int __init
611xfs_allocbt_init_cur_cache(void)
612{
613	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
614			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
615			0, 0, NULL);
616
617	if (!xfs_allocbt_cur_cache)
618		return -ENOMEM;
619	return 0;
620}
621
622void
623xfs_allocbt_destroy_cur_cache(void)
624{
625	kmem_cache_destroy(xfs_allocbt_cur_cache);
626	xfs_allocbt_cur_cache = NULL;
627}