Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_health.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_ag.h"
23
24static struct kmem_cache *xfs_allocbt_cur_cache;
25
26STATIC struct xfs_btree_cur *
27xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29{
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 cur->bc_ag.pag);
32}
33
34STATIC struct xfs_btree_cur *
35xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37{
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 cur->bc_ag.pag);
40}
41
42
43STATIC void
44xfs_allocbt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *ptr,
47 int inc)
48{
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 cur->bc_ag.pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 cur->bc_ag.pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108 bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123 struct xfs_btree_cur *cur,
124 const struct xfs_btree_block *block,
125 const union xfs_btree_rec *rec,
126 int ptr,
127 int reason)
128{
129 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
130 struct xfs_perag *pag;
131 __be32 len;
132 int numrecs;
133
134 ASSERT(!xfs_btree_is_bno(cur->bc_ops));
135
136 switch (reason) {
137 case LASTREC_UPDATE:
138 /*
139 * If this is the last leaf block and it's the last record,
140 * then update the size of the longest extent in the AG.
141 */
142 if (ptr != xfs_btree_get_numrecs(block))
143 return;
144 len = rec->alloc.ar_blockcount;
145 break;
146 case LASTREC_INSREC:
147 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
148 be32_to_cpu(agf->agf_longest))
149 return;
150 len = rec->alloc.ar_blockcount;
151 break;
152 case LASTREC_DELREC:
153 numrecs = xfs_btree_get_numrecs(block);
154 if (ptr <= numrecs)
155 return;
156 ASSERT(ptr == numrecs + 1);
157
158 if (numrecs) {
159 xfs_alloc_rec_t *rrp;
160
161 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
162 len = rrp->ar_blockcount;
163 } else {
164 len = 0;
165 }
166
167 break;
168 default:
169 ASSERT(0);
170 return;
171 }
172
173 agf->agf_longest = len;
174 pag = cur->bc_ag.agbp->b_pag;
175 pag->pagf_longest = be32_to_cpu(len);
176 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
177}
178
179STATIC int
180xfs_allocbt_get_minrecs(
181 struct xfs_btree_cur *cur,
182 int level)
183{
184 return cur->bc_mp->m_alloc_mnr[level != 0];
185}
186
187STATIC int
188xfs_allocbt_get_maxrecs(
189 struct xfs_btree_cur *cur,
190 int level)
191{
192 return cur->bc_mp->m_alloc_mxr[level != 0];
193}
194
195STATIC void
196xfs_allocbt_init_key_from_rec(
197 union xfs_btree_key *key,
198 const union xfs_btree_rec *rec)
199{
200 key->alloc.ar_startblock = rec->alloc.ar_startblock;
201 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
202}
203
204STATIC void
205xfs_bnobt_init_high_key_from_rec(
206 union xfs_btree_key *key,
207 const union xfs_btree_rec *rec)
208{
209 __u32 x;
210
211 x = be32_to_cpu(rec->alloc.ar_startblock);
212 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
213 key->alloc.ar_startblock = cpu_to_be32(x);
214 key->alloc.ar_blockcount = 0;
215}
216
217STATIC void
218xfs_cntbt_init_high_key_from_rec(
219 union xfs_btree_key *key,
220 const union xfs_btree_rec *rec)
221{
222 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
223 key->alloc.ar_startblock = 0;
224}
225
226STATIC void
227xfs_allocbt_init_rec_from_cur(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_rec *rec)
230{
231 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
232 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
233}
234
235STATIC void
236xfs_allocbt_init_ptr_from_cur(
237 struct xfs_btree_cur *cur,
238 union xfs_btree_ptr *ptr)
239{
240 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
241
242 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
243
244 if (xfs_btree_is_bno(cur->bc_ops))
245 ptr->s = agf->agf_bno_root;
246 else
247 ptr->s = agf->agf_cnt_root;
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252 struct xfs_btree_cur *cur,
253 const union xfs_btree_key *key)
254{
255 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
256 const struct xfs_alloc_rec *kp = &key->alloc;
257
258 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263 struct xfs_btree_cur *cur,
264 const union xfs_btree_key *key)
265{
266 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
267 const struct xfs_alloc_rec *kp = &key->alloc;
268 int64_t diff;
269
270 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271 if (diff)
272 return diff;
273
274 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 const union xfs_btree_key *k1,
281 const union xfs_btree_key *k2,
282 const union xfs_btree_key *mask)
283{
284 ASSERT(!mask || mask->alloc.ar_startblock);
285
286 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
287 be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290STATIC int64_t
291xfs_cntbt_diff_two_keys(
292 struct xfs_btree_cur *cur,
293 const union xfs_btree_key *k1,
294 const union xfs_btree_key *k2,
295 const union xfs_btree_key *mask)
296{
297 int64_t diff;
298
299 ASSERT(!mask || (mask->alloc.ar_blockcount &&
300 mask->alloc.ar_startblock));
301
302 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
303 be32_to_cpu(k2->alloc.ar_blockcount);
304 if (diff)
305 return diff;
306
307 return be32_to_cpu(k1->alloc.ar_startblock) -
308 be32_to_cpu(k2->alloc.ar_startblock);
309}
310
311static xfs_failaddr_t
312xfs_allocbt_verify(
313 struct xfs_buf *bp)
314{
315 struct xfs_mount *mp = bp->b_mount;
316 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
317 struct xfs_perag *pag = bp->b_pag;
318 xfs_failaddr_t fa;
319 unsigned int level;
320
321 if (!xfs_verify_magic(bp, block->bb_magic))
322 return __this_address;
323
324 if (xfs_has_crc(mp)) {
325 fa = xfs_btree_agblock_v5hdr_verify(bp);
326 if (fa)
327 return fa;
328 }
329
330 /*
331 * The perag may not be attached during grow operations or fully
332 * initialized from the AGF during log recovery. Therefore we can only
333 * check against maximum tree depth from those contexts.
334 *
335 * Otherwise check against the per-tree limit. Peek at one of the
336 * verifier magic values to determine the type of tree we're verifying
337 * against.
338 */
339 level = be16_to_cpu(block->bb_level);
340 if (pag && xfs_perag_initialised_agf(pag)) {
341 unsigned int maxlevel, repair_maxlevel = 0;
342
343 /*
344 * Online repair could be rewriting the free space btrees, so
345 * we'll validate against the larger of either tree while this
346 * is going on.
347 */
348 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
349 maxlevel = pag->pagf_cnt_level;
350#ifdef CONFIG_XFS_ONLINE_REPAIR
351 repair_maxlevel = pag->pagf_repair_cnt_level;
352#endif
353 } else {
354 maxlevel = pag->pagf_bno_level;
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356 repair_maxlevel = pag->pagf_repair_bno_level;
357#endif
358 }
359
360 if (level >= max(maxlevel, repair_maxlevel))
361 return __this_address;
362 } else if (level >= mp->m_alloc_maxlevels)
363 return __this_address;
364
365 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
366}
367
368static void
369xfs_allocbt_read_verify(
370 struct xfs_buf *bp)
371{
372 xfs_failaddr_t fa;
373
374 if (!xfs_btree_agblock_verify_crc(bp))
375 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
376 else {
377 fa = xfs_allocbt_verify(bp);
378 if (fa)
379 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
380 }
381
382 if (bp->b_error)
383 trace_xfs_btree_corrupt(bp, _RET_IP_);
384}
385
386static void
387xfs_allocbt_write_verify(
388 struct xfs_buf *bp)
389{
390 xfs_failaddr_t fa;
391
392 fa = xfs_allocbt_verify(bp);
393 if (fa) {
394 trace_xfs_btree_corrupt(bp, _RET_IP_);
395 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
396 return;
397 }
398 xfs_btree_agblock_calc_crc(bp);
399
400}
401
402const struct xfs_buf_ops xfs_bnobt_buf_ops = {
403 .name = "xfs_bnobt",
404 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
405 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
406 .verify_read = xfs_allocbt_read_verify,
407 .verify_write = xfs_allocbt_write_verify,
408 .verify_struct = xfs_allocbt_verify,
409};
410
411const struct xfs_buf_ops xfs_cntbt_buf_ops = {
412 .name = "xfs_cntbt",
413 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
414 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
415 .verify_read = xfs_allocbt_read_verify,
416 .verify_write = xfs_allocbt_write_verify,
417 .verify_struct = xfs_allocbt_verify,
418};
419
420STATIC int
421xfs_bnobt_keys_inorder(
422 struct xfs_btree_cur *cur,
423 const union xfs_btree_key *k1,
424 const union xfs_btree_key *k2)
425{
426 return be32_to_cpu(k1->alloc.ar_startblock) <
427 be32_to_cpu(k2->alloc.ar_startblock);
428}
429
430STATIC int
431xfs_bnobt_recs_inorder(
432 struct xfs_btree_cur *cur,
433 const union xfs_btree_rec *r1,
434 const union xfs_btree_rec *r2)
435{
436 return be32_to_cpu(r1->alloc.ar_startblock) +
437 be32_to_cpu(r1->alloc.ar_blockcount) <=
438 be32_to_cpu(r2->alloc.ar_startblock);
439}
440
441STATIC int
442xfs_cntbt_keys_inorder(
443 struct xfs_btree_cur *cur,
444 const union xfs_btree_key *k1,
445 const union xfs_btree_key *k2)
446{
447 return be32_to_cpu(k1->alloc.ar_blockcount) <
448 be32_to_cpu(k2->alloc.ar_blockcount) ||
449 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
450 be32_to_cpu(k1->alloc.ar_startblock) <
451 be32_to_cpu(k2->alloc.ar_startblock));
452}
453
454STATIC int
455xfs_cntbt_recs_inorder(
456 struct xfs_btree_cur *cur,
457 const union xfs_btree_rec *r1,
458 const union xfs_btree_rec *r2)
459{
460 return be32_to_cpu(r1->alloc.ar_blockcount) <
461 be32_to_cpu(r2->alloc.ar_blockcount) ||
462 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
463 be32_to_cpu(r1->alloc.ar_startblock) <
464 be32_to_cpu(r2->alloc.ar_startblock));
465}
466
467STATIC enum xbtree_key_contig
468xfs_allocbt_keys_contiguous(
469 struct xfs_btree_cur *cur,
470 const union xfs_btree_key *key1,
471 const union xfs_btree_key *key2,
472 const union xfs_btree_key *mask)
473{
474 ASSERT(!mask || mask->alloc.ar_startblock);
475
476 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
477 be32_to_cpu(key2->alloc.ar_startblock));
478}
479
480const struct xfs_btree_ops xfs_bnobt_ops = {
481 .name = "bno",
482 .type = XFS_BTREE_TYPE_AG,
483
484 .rec_len = sizeof(xfs_alloc_rec_t),
485 .key_len = sizeof(xfs_alloc_key_t),
486 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
487
488 .lru_refs = XFS_ALLOC_BTREE_REF,
489 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
490 .sick_mask = XFS_SICK_AG_BNOBT,
491
492 .dup_cursor = xfs_bnobt_dup_cursor,
493 .set_root = xfs_allocbt_set_root,
494 .alloc_block = xfs_allocbt_alloc_block,
495 .free_block = xfs_allocbt_free_block,
496 .update_lastrec = xfs_allocbt_update_lastrec,
497 .get_minrecs = xfs_allocbt_get_minrecs,
498 .get_maxrecs = xfs_allocbt_get_maxrecs,
499 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
500 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
501 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
502 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
503 .key_diff = xfs_bnobt_key_diff,
504 .buf_ops = &xfs_bnobt_buf_ops,
505 .diff_two_keys = xfs_bnobt_diff_two_keys,
506 .keys_inorder = xfs_bnobt_keys_inorder,
507 .recs_inorder = xfs_bnobt_recs_inorder,
508 .keys_contiguous = xfs_allocbt_keys_contiguous,
509};
510
511const struct xfs_btree_ops xfs_cntbt_ops = {
512 .name = "cnt",
513 .type = XFS_BTREE_TYPE_AG,
514 .geom_flags = XFS_BTGEO_LASTREC_UPDATE,
515
516 .rec_len = sizeof(xfs_alloc_rec_t),
517 .key_len = sizeof(xfs_alloc_key_t),
518 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
519
520 .lru_refs = XFS_ALLOC_BTREE_REF,
521 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
522 .sick_mask = XFS_SICK_AG_CNTBT,
523
524 .dup_cursor = xfs_cntbt_dup_cursor,
525 .set_root = xfs_allocbt_set_root,
526 .alloc_block = xfs_allocbt_alloc_block,
527 .free_block = xfs_allocbt_free_block,
528 .update_lastrec = xfs_allocbt_update_lastrec,
529 .get_minrecs = xfs_allocbt_get_minrecs,
530 .get_maxrecs = xfs_allocbt_get_maxrecs,
531 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
532 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
533 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
534 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
535 .key_diff = xfs_cntbt_key_diff,
536 .buf_ops = &xfs_cntbt_buf_ops,
537 .diff_two_keys = xfs_cntbt_diff_two_keys,
538 .keys_inorder = xfs_cntbt_keys_inorder,
539 .recs_inorder = xfs_cntbt_recs_inorder,
540 .keys_contiguous = NULL, /* not needed right now */
541};
542
543/*
544 * Allocate a new bnobt cursor.
545 *
546 * For staging cursors tp and agbp are NULL.
547 */
548struct xfs_btree_cur *
549xfs_bnobt_init_cursor(
550 struct xfs_mount *mp,
551 struct xfs_trans *tp,
552 struct xfs_buf *agbp,
553 struct xfs_perag *pag)
554{
555 struct xfs_btree_cur *cur;
556
557 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
558 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
559 cur->bc_ag.pag = xfs_perag_hold(pag);
560 cur->bc_ag.agbp = agbp;
561 if (agbp) {
562 struct xfs_agf *agf = agbp->b_addr;
563
564 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
565 }
566 return cur;
567}
568
569/*
570 * Allocate a new cntbt cursor.
571 *
572 * For staging cursors tp and agbp are NULL.
573 */
574struct xfs_btree_cur *
575xfs_cntbt_init_cursor(
576 struct xfs_mount *mp,
577 struct xfs_trans *tp,
578 struct xfs_buf *agbp,
579 struct xfs_perag *pag)
580{
581 struct xfs_btree_cur *cur;
582
583 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
584 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
585 cur->bc_ag.pag = xfs_perag_hold(pag);
586 cur->bc_ag.agbp = agbp;
587 if (agbp) {
588 struct xfs_agf *agf = agbp->b_addr;
589
590 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
591 }
592 return cur;
593}
594
595/*
596 * Install a new free space btree root. Caller is responsible for invalidating
597 * and freeing the old btree blocks.
598 */
599void
600xfs_allocbt_commit_staged_btree(
601 struct xfs_btree_cur *cur,
602 struct xfs_trans *tp,
603 struct xfs_buf *agbp)
604{
605 struct xfs_agf *agf = agbp->b_addr;
606 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
607
608 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
609
610 if (xfs_btree_is_bno(cur->bc_ops)) {
611 agf->agf_bno_root = cpu_to_be32(afake->af_root);
612 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
613 } else {
614 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
615 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
616 }
617 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
618
619 xfs_btree_commit_afakeroot(cur, tp, agbp);
620}
621
622/* Calculate number of records in an alloc btree block. */
623static inline unsigned int
624xfs_allocbt_block_maxrecs(
625 unsigned int blocklen,
626 bool leaf)
627{
628 if (leaf)
629 return blocklen / sizeof(xfs_alloc_rec_t);
630 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
631}
632
633/*
634 * Calculate number of records in an alloc btree block.
635 */
636int
637xfs_allocbt_maxrecs(
638 struct xfs_mount *mp,
639 int blocklen,
640 int leaf)
641{
642 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
643 return xfs_allocbt_block_maxrecs(blocklen, leaf);
644}
645
646/* Free space btrees are at their largest when every other block is free. */
647#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
648
649/* Compute the max possible height for free space btrees. */
650unsigned int
651xfs_allocbt_maxlevels_ondisk(void)
652{
653 unsigned int minrecs[2];
654 unsigned int blocklen;
655
656 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
657 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
658
659 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
660 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
661
662 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
663}
664
665/* Calculate the freespace btree size for some records. */
666xfs_extlen_t
667xfs_allocbt_calc_size(
668 struct xfs_mount *mp,
669 unsigned long long len)
670{
671 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
672}
673
674int __init
675xfs_allocbt_init_cur_cache(void)
676{
677 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
678 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
679 0, 0, NULL);
680
681 if (!xfs_allocbt_cur_cache)
682 return -ENOMEM;
683 return 0;
684}
685
686void
687xfs_allocbt_destroy_cur_cache(void)
688{
689 kmem_cache_destroy(xfs_allocbt_cur_cache);
690 xfs_allocbt_cur_cache = NULL;
691}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_health.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_ag.h"
23
24static struct kmem_cache *xfs_allocbt_cur_cache;
25
26STATIC struct xfs_btree_cur *
27xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29{
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 to_perag(cur->bc_group));
32}
33
34STATIC struct xfs_btree_cur *
35xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37{
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 to_perag(cur->bc_group));
40}
41
42STATIC void
43xfs_allocbt_set_root(
44 struct xfs_btree_cur *cur,
45 const union xfs_btree_ptr *ptr,
46 int inc)
47{
48 struct xfs_perag *pag = to_perag(cur->bc_group);
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108 agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116}
117
118STATIC int
119xfs_allocbt_get_minrecs(
120 struct xfs_btree_cur *cur,
121 int level)
122{
123 return cur->bc_mp->m_alloc_mnr[level != 0];
124}
125
126STATIC int
127xfs_allocbt_get_maxrecs(
128 struct xfs_btree_cur *cur,
129 int level)
130{
131 return cur->bc_mp->m_alloc_mxr[level != 0];
132}
133
134STATIC void
135xfs_allocbt_init_key_from_rec(
136 union xfs_btree_key *key,
137 const union xfs_btree_rec *rec)
138{
139 key->alloc.ar_startblock = rec->alloc.ar_startblock;
140 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141}
142
143STATIC void
144xfs_bnobt_init_high_key_from_rec(
145 union xfs_btree_key *key,
146 const union xfs_btree_rec *rec)
147{
148 __u32 x;
149
150 x = be32_to_cpu(rec->alloc.ar_startblock);
151 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152 key->alloc.ar_startblock = cpu_to_be32(x);
153 key->alloc.ar_blockcount = 0;
154}
155
156STATIC void
157xfs_cntbt_init_high_key_from_rec(
158 union xfs_btree_key *key,
159 const union xfs_btree_rec *rec)
160{
161 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162 key->alloc.ar_startblock = 0;
163}
164
165STATIC void
166xfs_allocbt_init_rec_from_cur(
167 struct xfs_btree_cur *cur,
168 union xfs_btree_rec *rec)
169{
170 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172}
173
174STATIC void
175xfs_allocbt_init_ptr_from_cur(
176 struct xfs_btree_cur *cur,
177 union xfs_btree_ptr *ptr)
178{
179 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
180
181 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
182
183 if (xfs_btree_is_bno(cur->bc_ops))
184 ptr->s = agf->agf_bno_root;
185 else
186 ptr->s = agf->agf_cnt_root;
187}
188
189STATIC int64_t
190xfs_bnobt_key_diff(
191 struct xfs_btree_cur *cur,
192 const union xfs_btree_key *key)
193{
194 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
195 const struct xfs_alloc_rec *kp = &key->alloc;
196
197 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
198}
199
200STATIC int64_t
201xfs_cntbt_key_diff(
202 struct xfs_btree_cur *cur,
203 const union xfs_btree_key *key)
204{
205 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
206 const struct xfs_alloc_rec *kp = &key->alloc;
207 int64_t diff;
208
209 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
210 if (diff)
211 return diff;
212
213 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
214}
215
216STATIC int64_t
217xfs_bnobt_diff_two_keys(
218 struct xfs_btree_cur *cur,
219 const union xfs_btree_key *k1,
220 const union xfs_btree_key *k2,
221 const union xfs_btree_key *mask)
222{
223 ASSERT(!mask || mask->alloc.ar_startblock);
224
225 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
226 be32_to_cpu(k2->alloc.ar_startblock);
227}
228
229STATIC int64_t
230xfs_cntbt_diff_two_keys(
231 struct xfs_btree_cur *cur,
232 const union xfs_btree_key *k1,
233 const union xfs_btree_key *k2,
234 const union xfs_btree_key *mask)
235{
236 int64_t diff;
237
238 ASSERT(!mask || (mask->alloc.ar_blockcount &&
239 mask->alloc.ar_startblock));
240
241 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
242 be32_to_cpu(k2->alloc.ar_blockcount);
243 if (diff)
244 return diff;
245
246 return be32_to_cpu(k1->alloc.ar_startblock) -
247 be32_to_cpu(k2->alloc.ar_startblock);
248}
249
250static xfs_failaddr_t
251xfs_allocbt_verify(
252 struct xfs_buf *bp)
253{
254 struct xfs_mount *mp = bp->b_mount;
255 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
256 struct xfs_perag *pag = bp->b_pag;
257 xfs_failaddr_t fa;
258 unsigned int level;
259
260 if (!xfs_verify_magic(bp, block->bb_magic))
261 return __this_address;
262
263 if (xfs_has_crc(mp)) {
264 fa = xfs_btree_agblock_v5hdr_verify(bp);
265 if (fa)
266 return fa;
267 }
268
269 /*
270 * The perag may not be attached during grow operations or fully
271 * initialized from the AGF during log recovery. Therefore we can only
272 * check against maximum tree depth from those contexts.
273 *
274 * Otherwise check against the per-tree limit. Peek at one of the
275 * verifier magic values to determine the type of tree we're verifying
276 * against.
277 */
278 level = be16_to_cpu(block->bb_level);
279 if (pag && xfs_perag_initialised_agf(pag)) {
280 unsigned int maxlevel, repair_maxlevel = 0;
281
282 /*
283 * Online repair could be rewriting the free space btrees, so
284 * we'll validate against the larger of either tree while this
285 * is going on.
286 */
287 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
288 maxlevel = pag->pagf_cnt_level;
289#ifdef CONFIG_XFS_ONLINE_REPAIR
290 repair_maxlevel = pag->pagf_repair_cnt_level;
291#endif
292 } else {
293 maxlevel = pag->pagf_bno_level;
294#ifdef CONFIG_XFS_ONLINE_REPAIR
295 repair_maxlevel = pag->pagf_repair_bno_level;
296#endif
297 }
298
299 if (level >= max(maxlevel, repair_maxlevel))
300 return __this_address;
301 } else if (level >= mp->m_alloc_maxlevels)
302 return __this_address;
303
304 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
305}
306
307static void
308xfs_allocbt_read_verify(
309 struct xfs_buf *bp)
310{
311 xfs_failaddr_t fa;
312
313 if (!xfs_btree_agblock_verify_crc(bp))
314 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
315 else {
316 fa = xfs_allocbt_verify(bp);
317 if (fa)
318 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
319 }
320
321 if (bp->b_error)
322 trace_xfs_btree_corrupt(bp, _RET_IP_);
323}
324
325static void
326xfs_allocbt_write_verify(
327 struct xfs_buf *bp)
328{
329 xfs_failaddr_t fa;
330
331 fa = xfs_allocbt_verify(bp);
332 if (fa) {
333 trace_xfs_btree_corrupt(bp, _RET_IP_);
334 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335 return;
336 }
337 xfs_btree_agblock_calc_crc(bp);
338
339}
340
341const struct xfs_buf_ops xfs_bnobt_buf_ops = {
342 .name = "xfs_bnobt",
343 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
344 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
345 .verify_read = xfs_allocbt_read_verify,
346 .verify_write = xfs_allocbt_write_verify,
347 .verify_struct = xfs_allocbt_verify,
348};
349
350const struct xfs_buf_ops xfs_cntbt_buf_ops = {
351 .name = "xfs_cntbt",
352 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
353 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
354 .verify_read = xfs_allocbt_read_verify,
355 .verify_write = xfs_allocbt_write_verify,
356 .verify_struct = xfs_allocbt_verify,
357};
358
359STATIC int
360xfs_bnobt_keys_inorder(
361 struct xfs_btree_cur *cur,
362 const union xfs_btree_key *k1,
363 const union xfs_btree_key *k2)
364{
365 return be32_to_cpu(k1->alloc.ar_startblock) <
366 be32_to_cpu(k2->alloc.ar_startblock);
367}
368
369STATIC int
370xfs_bnobt_recs_inorder(
371 struct xfs_btree_cur *cur,
372 const union xfs_btree_rec *r1,
373 const union xfs_btree_rec *r2)
374{
375 return be32_to_cpu(r1->alloc.ar_startblock) +
376 be32_to_cpu(r1->alloc.ar_blockcount) <=
377 be32_to_cpu(r2->alloc.ar_startblock);
378}
379
380STATIC int
381xfs_cntbt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 const union xfs_btree_key *k1,
384 const union xfs_btree_key *k2)
385{
386 return be32_to_cpu(k1->alloc.ar_blockcount) <
387 be32_to_cpu(k2->alloc.ar_blockcount) ||
388 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
389 be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock));
391}
392
393STATIC int
394xfs_cntbt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 const union xfs_btree_rec *r1,
397 const union xfs_btree_rec *r2)
398{
399 return be32_to_cpu(r1->alloc.ar_blockcount) <
400 be32_to_cpu(r2->alloc.ar_blockcount) ||
401 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
402 be32_to_cpu(r1->alloc.ar_startblock) <
403 be32_to_cpu(r2->alloc.ar_startblock));
404}
405
406STATIC enum xbtree_key_contig
407xfs_allocbt_keys_contiguous(
408 struct xfs_btree_cur *cur,
409 const union xfs_btree_key *key1,
410 const union xfs_btree_key *key2,
411 const union xfs_btree_key *mask)
412{
413 ASSERT(!mask || mask->alloc.ar_startblock);
414
415 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
416 be32_to_cpu(key2->alloc.ar_startblock));
417}
418
419const struct xfs_btree_ops xfs_bnobt_ops = {
420 .name = "bno",
421 .type = XFS_BTREE_TYPE_AG,
422
423 .rec_len = sizeof(xfs_alloc_rec_t),
424 .key_len = sizeof(xfs_alloc_key_t),
425 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
426
427 .lru_refs = XFS_ALLOC_BTREE_REF,
428 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
429 .sick_mask = XFS_SICK_AG_BNOBT,
430
431 .dup_cursor = xfs_bnobt_dup_cursor,
432 .set_root = xfs_allocbt_set_root,
433 .alloc_block = xfs_allocbt_alloc_block,
434 .free_block = xfs_allocbt_free_block,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446 .keys_contiguous = xfs_allocbt_keys_contiguous,
447};
448
449const struct xfs_btree_ops xfs_cntbt_ops = {
450 .name = "cnt",
451 .type = XFS_BTREE_TYPE_AG,
452
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
456
457 .lru_refs = XFS_ALLOC_BTREE_REF,
458 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
459 .sick_mask = XFS_SICK_AG_CNTBT,
460
461 .dup_cursor = xfs_cntbt_dup_cursor,
462 .set_root = xfs_allocbt_set_root,
463 .alloc_block = xfs_allocbt_alloc_block,
464 .free_block = xfs_allocbt_free_block,
465 .get_minrecs = xfs_allocbt_get_minrecs,
466 .get_maxrecs = xfs_allocbt_get_maxrecs,
467 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
468 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
469 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
470 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
471 .key_diff = xfs_cntbt_key_diff,
472 .buf_ops = &xfs_cntbt_buf_ops,
473 .diff_two_keys = xfs_cntbt_diff_two_keys,
474 .keys_inorder = xfs_cntbt_keys_inorder,
475 .recs_inorder = xfs_cntbt_recs_inorder,
476 .keys_contiguous = NULL, /* not needed right now */
477};
478
479/*
480 * Allocate a new bnobt cursor.
481 *
482 * For staging cursors tp and agbp are NULL.
483 */
484struct xfs_btree_cur *
485xfs_bnobt_init_cursor(
486 struct xfs_mount *mp,
487 struct xfs_trans *tp,
488 struct xfs_buf *agbp,
489 struct xfs_perag *pag)
490{
491 struct xfs_btree_cur *cur;
492
493 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
494 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
495 cur->bc_group = xfs_group_hold(pag_group(pag));
496 cur->bc_ag.agbp = agbp;
497 if (agbp) {
498 struct xfs_agf *agf = agbp->b_addr;
499
500 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
501 }
502 return cur;
503}
504
505/*
506 * Allocate a new cntbt cursor.
507 *
508 * For staging cursors tp and agbp are NULL.
509 */
510struct xfs_btree_cur *
511xfs_cntbt_init_cursor(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 struct xfs_perag *pag)
516{
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
520 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
521 cur->bc_group = xfs_group_hold(pag_group(pag));
522 cur->bc_ag.agbp = agbp;
523 if (agbp) {
524 struct xfs_agf *agf = agbp->b_addr;
525
526 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
527 }
528 return cur;
529}
530
531/*
532 * Install a new free space btree root. Caller is responsible for invalidating
533 * and freeing the old btree blocks.
534 */
535void
536xfs_allocbt_commit_staged_btree(
537 struct xfs_btree_cur *cur,
538 struct xfs_trans *tp,
539 struct xfs_buf *agbp)
540{
541 struct xfs_agf *agf = agbp->b_addr;
542 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
543
544 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
545
546 if (xfs_btree_is_bno(cur->bc_ops)) {
547 agf->agf_bno_root = cpu_to_be32(afake->af_root);
548 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
549 } else {
550 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
551 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
552 }
553 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
554
555 xfs_btree_commit_afakeroot(cur, tp, agbp);
556}
557
558/* Calculate number of records in an alloc btree block. */
559static inline unsigned int
560xfs_allocbt_block_maxrecs(
561 unsigned int blocklen,
562 bool leaf)
563{
564 if (leaf)
565 return blocklen / sizeof(xfs_alloc_rec_t);
566 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
567}
568
569/*
570 * Calculate number of records in an alloc btree block.
571 */
572unsigned int
573xfs_allocbt_maxrecs(
574 struct xfs_mount *mp,
575 unsigned int blocklen,
576 bool leaf)
577{
578 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
579 return xfs_allocbt_block_maxrecs(blocklen, leaf);
580}
581
582/* Free space btrees are at their largest when every other block is free. */
583#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
584
585/* Compute the max possible height for free space btrees. */
586unsigned int
587xfs_allocbt_maxlevels_ondisk(void)
588{
589 unsigned int minrecs[2];
590 unsigned int blocklen;
591
592 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
593 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
594
595 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
596 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
597
598 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
599}
600
601/* Calculate the freespace btree size for some records. */
602xfs_extlen_t
603xfs_allocbt_calc_size(
604 struct xfs_mount *mp,
605 unsigned long long len)
606{
607 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
608}
609
610int __init
611xfs_allocbt_init_cur_cache(void)
612{
613 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
614 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
615 0, 0, NULL);
616
617 if (!xfs_allocbt_cur_cache)
618 return -ENOMEM;
619 return 0;
620}
621
622void
623xfs_allocbt_destroy_cur_cache(void)
624{
625 kmem_cache_destroy(xfs_allocbt_cur_cache);
626 xfs_allocbt_cur_cache = NULL;
627}