Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/sched/mm.h>
22#include <linux/vmalloc.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/quotaops.h>
26#include <linux/part_stat.h>
27#include <linux/rw_hint.h>
28#include <crypto/hash.h>
29
30#include <linux/fscrypt.h>
31#include <linux/fsverity.h>
32
33struct pagevec;
34
35#ifdef CONFIG_F2FS_CHECK_FS
36#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
37#else
38#define f2fs_bug_on(sbi, condition) \
39 do { \
40 if (WARN_ON(condition)) \
41 set_sbi_flag(sbi, SBI_NEED_FSCK); \
42 } while (0)
43#endif
44
45enum {
46 FAULT_KMALLOC,
47 FAULT_KVMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_READ_IO,
58 FAULT_CHECKPOINT,
59 FAULT_DISCARD,
60 FAULT_WRITE_IO,
61 FAULT_SLAB_ALLOC,
62 FAULT_DQUOT_INIT,
63 FAULT_LOCK_OP,
64 FAULT_BLKADDR_VALIDITY,
65 FAULT_BLKADDR_CONSISTENCE,
66 FAULT_NO_SEGMENT,
67 FAULT_MAX,
68};
69
70#ifdef CONFIG_F2FS_FAULT_INJECTION
71#define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
72
73struct f2fs_fault_info {
74 atomic_t inject_ops;
75 unsigned int inject_rate;
76 unsigned int inject_type;
77};
78
79extern const char *f2fs_fault_name[FAULT_MAX];
80#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81
82/* maximum retry count for injected failure */
83#define DEFAULT_FAILURE_RETRY_COUNT 8
84#else
85#define DEFAULT_FAILURE_RETRY_COUNT 1
86#endif
87
88/*
89 * For mount options
90 */
91#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
92#define F2FS_MOUNT_DISCARD 0x00000002
93#define F2FS_MOUNT_NOHEAP 0x00000004
94#define F2FS_MOUNT_XATTR_USER 0x00000008
95#define F2FS_MOUNT_POSIX_ACL 0x00000010
96#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
97#define F2FS_MOUNT_INLINE_XATTR 0x00000040
98#define F2FS_MOUNT_INLINE_DATA 0x00000080
99#define F2FS_MOUNT_INLINE_DENTRY 0x00000100
100#define F2FS_MOUNT_FLUSH_MERGE 0x00000200
101#define F2FS_MOUNT_NOBARRIER 0x00000400
102#define F2FS_MOUNT_FASTBOOT 0x00000800
103#define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
104#define F2FS_MOUNT_DATA_FLUSH 0x00002000
105#define F2FS_MOUNT_FAULT_INJECTION 0x00004000
106#define F2FS_MOUNT_USRQUOTA 0x00008000
107#define F2FS_MOUNT_GRPQUOTA 0x00010000
108#define F2FS_MOUNT_PRJQUOTA 0x00020000
109#define F2FS_MOUNT_QUOTA 0x00040000
110#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
111#define F2FS_MOUNT_RESERVE_ROOT 0x00100000
112#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
113#define F2FS_MOUNT_NORECOVERY 0x00400000
114#define F2FS_MOUNT_ATGC 0x00800000
115#define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
116#define F2FS_MOUNT_GC_MERGE 0x02000000
117#define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
118#define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
119
120#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
121#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124
125#define ver_after(a, b) (typecheck(unsigned long long, a) && \
126 typecheck(unsigned long long, b) && \
127 ((long long)((a) - (b)) > 0))
128
129typedef u32 block_t; /*
130 * should not change u32, since it is the on-disk block
131 * address format, __le32.
132 */
133typedef u32 nid_t;
134
135#define COMPRESS_EXT_NUM 16
136
137/*
138 * An implementation of an rwsem that is explicitly unfair to readers. This
139 * prevents priority inversion when a low-priority reader acquires the read lock
140 * while sleeping on the write lock but the write lock is needed by
141 * higher-priority clients.
142 */
143
144struct f2fs_rwsem {
145 struct rw_semaphore internal_rwsem;
146#ifdef CONFIG_F2FS_UNFAIR_RWSEM
147 wait_queue_head_t read_waiters;
148#endif
149};
150
151struct f2fs_mount_info {
152 unsigned int opt;
153 block_t root_reserved_blocks; /* root reserved blocks */
154 kuid_t s_resuid; /* reserved blocks for uid */
155 kgid_t s_resgid; /* reserved blocks for gid */
156 int active_logs; /* # of active logs */
157 int inline_xattr_size; /* inline xattr size */
158#ifdef CONFIG_F2FS_FAULT_INJECTION
159 struct f2fs_fault_info fault_info; /* For fault injection */
160#endif
161#ifdef CONFIG_QUOTA
162 /* Names of quota files with journalled quota */
163 char *s_qf_names[MAXQUOTAS];
164 int s_jquota_fmt; /* Format of quota to use */
165#endif
166 /* For which write hints are passed down to block layer */
167 int alloc_mode; /* segment allocation policy */
168 int fsync_mode; /* fsync policy */
169 int fs_mode; /* fs mode: LFS or ADAPTIVE */
170 int bggc_mode; /* bggc mode: off, on or sync */
171 int memory_mode; /* memory mode */
172 int errors; /* errors parameter */
173 int discard_unit; /*
174 * discard command's offset/size should
175 * be aligned to this unit: block,
176 * segment or section
177 */
178 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179 block_t unusable_cap_perc; /* percentage for cap */
180 block_t unusable_cap; /* Amount of space allowed to be
181 * unusable when disabling checkpoint
182 */
183
184 /* For compression */
185 unsigned char compress_algorithm; /* algorithm type */
186 unsigned char compress_log_size; /* cluster log size */
187 unsigned char compress_level; /* compress level */
188 bool compress_chksum; /* compressed data chksum */
189 unsigned char compress_ext_cnt; /* extension count */
190 unsigned char nocompress_ext_cnt; /* nocompress extension count */
191 int compress_mode; /* compression mode */
192 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
193 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194};
195
196#define F2FS_FEATURE_ENCRYPT 0x00000001
197#define F2FS_FEATURE_BLKZONED 0x00000002
198#define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
199#define F2FS_FEATURE_EXTRA_ATTR 0x00000008
200#define F2FS_FEATURE_PRJQUOTA 0x00000010
201#define F2FS_FEATURE_INODE_CHKSUM 0x00000020
202#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
203#define F2FS_FEATURE_QUOTA_INO 0x00000080
204#define F2FS_FEATURE_INODE_CRTIME 0x00000100
205#define F2FS_FEATURE_LOST_FOUND 0x00000200
206#define F2FS_FEATURE_VERITY 0x00000400
207#define F2FS_FEATURE_SB_CHKSUM 0x00000800
208#define F2FS_FEATURE_CASEFOLD 0x00001000
209#define F2FS_FEATURE_COMPRESSION 0x00002000
210#define F2FS_FEATURE_RO 0x00004000
211
212#define __F2FS_HAS_FEATURE(raw_super, mask) \
213 ((raw_super->feature & cpu_to_le32(mask)) != 0)
214#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
215
216/*
217 * Default values for user and/or group using reserved blocks
218 */
219#define F2FS_DEF_RESUID 0
220#define F2FS_DEF_RESGID 0
221
222/*
223 * For checkpoint manager
224 */
225enum {
226 NAT_BITMAP,
227 SIT_BITMAP
228};
229
230#define CP_UMOUNT 0x00000001
231#define CP_FASTBOOT 0x00000002
232#define CP_SYNC 0x00000004
233#define CP_RECOVERY 0x00000008
234#define CP_DISCARD 0x00000010
235#define CP_TRIMMED 0x00000020
236#define CP_PAUSE 0x00000040
237#define CP_RESIZE 0x00000080
238
239#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
240#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
241#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
242#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
243#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
244#define DEF_CP_INTERVAL 60 /* 60 secs */
245#define DEF_IDLE_INTERVAL 5 /* 5 secs */
246#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
247#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
248#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
249
250struct cp_control {
251 int reason;
252 __u64 trim_start;
253 __u64 trim_end;
254 __u64 trim_minlen;
255};
256
257/*
258 * indicate meta/data type
259 */
260enum {
261 META_CP,
262 META_NAT,
263 META_SIT,
264 META_SSA,
265 META_MAX,
266 META_POR,
267 DATA_GENERIC, /* check range only */
268 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
269 DATA_GENERIC_ENHANCE_READ, /*
270 * strong check on range and segment
271 * bitmap but no warning due to race
272 * condition of read on truncated area
273 * by extent_cache
274 */
275 DATA_GENERIC_ENHANCE_UPDATE, /*
276 * strong check on range and segment
277 * bitmap for update case
278 */
279 META_GENERIC,
280};
281
282/* for the list of ino */
283enum {
284 ORPHAN_INO, /* for orphan ino list */
285 APPEND_INO, /* for append ino list */
286 UPDATE_INO, /* for update ino list */
287 TRANS_DIR_INO, /* for transactions dir ino list */
288 FLUSH_INO, /* for multiple device flushing */
289 MAX_INO_ENTRY, /* max. list */
290};
291
292struct ino_entry {
293 struct list_head list; /* list head */
294 nid_t ino; /* inode number */
295 unsigned int dirty_device; /* dirty device bitmap */
296};
297
298/* for the list of inodes to be GCed */
299struct inode_entry {
300 struct list_head list; /* list head */
301 struct inode *inode; /* vfs inode pointer */
302};
303
304struct fsync_node_entry {
305 struct list_head list; /* list head */
306 struct page *page; /* warm node page pointer */
307 unsigned int seq_id; /* sequence id */
308};
309
310struct ckpt_req {
311 struct completion wait; /* completion for checkpoint done */
312 struct llist_node llnode; /* llist_node to be linked in wait queue */
313 int ret; /* return code of checkpoint */
314 ktime_t queue_time; /* request queued time */
315};
316
317struct ckpt_req_control {
318 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
319 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
320 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
321 atomic_t issued_ckpt; /* # of actually issued ckpts */
322 atomic_t total_ckpt; /* # of total ckpts */
323 atomic_t queued_ckpt; /* # of queued ckpts */
324 struct llist_head issue_list; /* list for command issue */
325 spinlock_t stat_lock; /* lock for below checkpoint time stats */
326 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
327 unsigned int peak_time; /* peak wait time in msec until now */
328};
329
330/* for the bitmap indicate blocks to be discarded */
331struct discard_entry {
332 struct list_head list; /* list head */
333 block_t start_blkaddr; /* start blockaddr of current segment */
334 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
335};
336
337/* minimum discard granularity, unit: block count */
338#define MIN_DISCARD_GRANULARITY 1
339/* default discard granularity of inner discard thread, unit: block count */
340#define DEFAULT_DISCARD_GRANULARITY 16
341/* default maximum discard granularity of ordered discard, unit: block count */
342#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
343
344/* max discard pend list number */
345#define MAX_PLIST_NUM 512
346#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
347 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348
349enum {
350 D_PREP, /* initial */
351 D_PARTIAL, /* partially submitted */
352 D_SUBMIT, /* all submitted */
353 D_DONE, /* finished */
354};
355
356struct discard_info {
357 block_t lstart; /* logical start address */
358 block_t len; /* length */
359 block_t start; /* actual start address in dev */
360};
361
362struct discard_cmd {
363 struct rb_node rb_node; /* rb node located in rb-tree */
364 struct discard_info di; /* discard info */
365 struct list_head list; /* command list */
366 struct completion wait; /* compleation */
367 struct block_device *bdev; /* bdev */
368 unsigned short ref; /* reference count */
369 unsigned char state; /* state */
370 unsigned char queued; /* queued discard */
371 int error; /* bio error */
372 spinlock_t lock; /* for state/bio_ref updating */
373 unsigned short bio_ref; /* bio reference count */
374};
375
376enum {
377 DPOLICY_BG,
378 DPOLICY_FORCE,
379 DPOLICY_FSTRIM,
380 DPOLICY_UMOUNT,
381 MAX_DPOLICY,
382};
383
384enum {
385 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
386 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
387 DPOLICY_IO_AWARE_MAX,
388};
389
390struct discard_policy {
391 int type; /* type of discard */
392 unsigned int min_interval; /* used for candidates exist */
393 unsigned int mid_interval; /* used for device busy */
394 unsigned int max_interval; /* used for candidates not exist */
395 unsigned int max_requests; /* # of discards issued per round */
396 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
397 bool io_aware; /* issue discard in idle time */
398 bool sync; /* submit discard with REQ_SYNC flag */
399 bool ordered; /* issue discard by lba order */
400 bool timeout; /* discard timeout for put_super */
401 unsigned int granularity; /* discard granularity */
402};
403
404struct discard_cmd_control {
405 struct task_struct *f2fs_issue_discard; /* discard thread */
406 struct list_head entry_list; /* 4KB discard entry list */
407 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408 struct list_head wait_list; /* store on-flushing entries */
409 struct list_head fstrim_list; /* in-flight discard from fstrim */
410 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
411 struct mutex cmd_lock;
412 unsigned int nr_discards; /* # of discards in the list */
413 unsigned int max_discards; /* max. discards to be issued */
414 unsigned int max_discard_request; /* max. discard request per round */
415 unsigned int min_discard_issue_time; /* min. interval between discard issue */
416 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
417 unsigned int max_discard_issue_time; /* max. interval between discard issue */
418 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
420 unsigned int discard_granularity; /* discard granularity */
421 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
422 unsigned int discard_io_aware; /* io_aware policy */
423 unsigned int undiscard_blks; /* # of undiscard blocks */
424 unsigned int next_pos; /* next discard position */
425 atomic_t issued_discard; /* # of issued discard */
426 atomic_t queued_discard; /* # of queued discard */
427 atomic_t discard_cmd_cnt; /* # of cached cmd count */
428 struct rb_root_cached root; /* root of discard rb-tree */
429 bool rbtree_check; /* config for consistence check */
430 bool discard_wake; /* to wake up discard thread */
431};
432
433/* for the list of fsync inodes, used only during recovery */
434struct fsync_inode_entry {
435 struct list_head list; /* list head */
436 struct inode *inode; /* vfs inode pointer */
437 block_t blkaddr; /* block address locating the last fsync */
438 block_t last_dentry; /* block address locating the last dentry */
439};
440
441#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
442#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
443
444#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
445#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
446#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
447#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
448
449#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451
452static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453{
454 int before = nats_in_cursum(journal);
455
456 journal->n_nats = cpu_to_le16(before + i);
457 return before;
458}
459
460static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461{
462 int before = sits_in_cursum(journal);
463
464 journal->n_sits = cpu_to_le16(before + i);
465 return before;
466}
467
468static inline bool __has_cursum_space(struct f2fs_journal *journal,
469 int size, int type)
470{
471 if (type == NAT_JOURNAL)
472 return size <= MAX_NAT_JENTRIES(journal);
473 return size <= MAX_SIT_JENTRIES(journal);
474}
475
476/* for inline stuff */
477#define DEF_INLINE_RESERVED_SIZE 1
478static inline int get_extra_isize(struct inode *inode);
479static inline int get_inline_xattr_addrs(struct inode *inode);
480#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
481 (CUR_ADDRS_PER_INODE(inode) - \
482 get_inline_xattr_addrs(inode) - \
483 DEF_INLINE_RESERVED_SIZE))
484
485/* for inline dir */
486#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488 BITS_PER_BYTE + 1))
489#define INLINE_DENTRY_BITMAP_SIZE(inode) \
490 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
492 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493 NR_INLINE_DENTRY(inode) + \
494 INLINE_DENTRY_BITMAP_SIZE(inode)))
495
496/*
497 * For INODE and NODE manager
498 */
499/* for directory operations */
500
501struct f2fs_filename {
502 /*
503 * The filename the user specified. This is NULL for some
504 * filesystem-internal operations, e.g. converting an inline directory
505 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506 */
507 const struct qstr *usr_fname;
508
509 /*
510 * The on-disk filename. For encrypted directories, this is encrypted.
511 * This may be NULL for lookups in an encrypted dir without the key.
512 */
513 struct fscrypt_str disk_name;
514
515 /* The dirhash of this filename */
516 f2fs_hash_t hash;
517
518#ifdef CONFIG_FS_ENCRYPTION
519 /*
520 * For lookups in encrypted directories: either the buffer backing
521 * disk_name, or a buffer that holds the decoded no-key name.
522 */
523 struct fscrypt_str crypto_buf;
524#endif
525#if IS_ENABLED(CONFIG_UNICODE)
526 /*
527 * For casefolded directories: the casefolded name, but it's left NULL
528 * if the original name is not valid Unicode, if the original name is
529 * "." or "..", if the directory is both casefolded and encrypted and
530 * its encryption key is unavailable, or if the filesystem is doing an
531 * internal operation where usr_fname is also NULL. In all these cases
532 * we fall back to treating the name as an opaque byte sequence.
533 */
534 struct fscrypt_str cf_name;
535#endif
536};
537
538struct f2fs_dentry_ptr {
539 struct inode *inode;
540 void *bitmap;
541 struct f2fs_dir_entry *dentry;
542 __u8 (*filename)[F2FS_SLOT_LEN];
543 int max;
544 int nr_bitmap;
545};
546
547static inline void make_dentry_ptr_block(struct inode *inode,
548 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549{
550 d->inode = inode;
551 d->max = NR_DENTRY_IN_BLOCK;
552 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553 d->bitmap = t->dentry_bitmap;
554 d->dentry = t->dentry;
555 d->filename = t->filename;
556}
557
558static inline void make_dentry_ptr_inline(struct inode *inode,
559 struct f2fs_dentry_ptr *d, void *t)
560{
561 int entry_cnt = NR_INLINE_DENTRY(inode);
562 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563 int reserved_size = INLINE_RESERVED_SIZE(inode);
564
565 d->inode = inode;
566 d->max = entry_cnt;
567 d->nr_bitmap = bitmap_size;
568 d->bitmap = t;
569 d->dentry = t + bitmap_size + reserved_size;
570 d->filename = t + bitmap_size + reserved_size +
571 SIZE_OF_DIR_ENTRY * entry_cnt;
572}
573
574/*
575 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576 * as its node offset to distinguish from index node blocks.
577 * But some bits are used to mark the node block.
578 */
579#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580 >> OFFSET_BIT_SHIFT)
581enum {
582 ALLOC_NODE, /* allocate a new node page if needed */
583 LOOKUP_NODE, /* look up a node without readahead */
584 LOOKUP_NODE_RA, /*
585 * look up a node with readahead called
586 * by get_data_block.
587 */
588};
589
590#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
591
592/* congestion wait timeout value, default: 20ms */
593#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
594
595/* maximum retry quota flush count */
596#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
597
598/* maximum retry of EIO'ed page */
599#define MAX_RETRY_PAGE_EIO 100
600
601#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
602
603#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
604
605/* dirty segments threshold for triggering CP */
606#define DEFAULT_DIRTY_THRESHOLD 4
607
608#define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
609#define RECOVERY_MIN_RA_BLOCKS 1
610
611#define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
612
613/* for in-memory extent cache entry */
614#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
615
616/* number of extent info in extent cache we try to shrink */
617#define READ_EXTENT_CACHE_SHRINK_NUMBER 128
618
619/* number of age extent info in extent cache we try to shrink */
620#define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
621#define LAST_AGE_WEIGHT 30
622#define SAME_AGE_REGION 1024
623
624/*
625 * Define data block with age less than 1GB as hot data
626 * define data block with age less than 10GB but more than 1GB as warm data
627 */
628#define DEF_HOT_DATA_AGE_THRESHOLD 262144
629#define DEF_WARM_DATA_AGE_THRESHOLD 2621440
630
631/* extent cache type */
632enum extent_type {
633 EX_READ,
634 EX_BLOCK_AGE,
635 NR_EXTENT_CACHES,
636};
637
638struct extent_info {
639 unsigned int fofs; /* start offset in a file */
640 unsigned int len; /* length of the extent */
641 union {
642 /* read extent_cache */
643 struct {
644 /* start block address of the extent */
645 block_t blk;
646#ifdef CONFIG_F2FS_FS_COMPRESSION
647 /* physical extent length of compressed blocks */
648 unsigned int c_len;
649#endif
650 };
651 /* block age extent_cache */
652 struct {
653 /* block age of the extent */
654 unsigned long long age;
655 /* last total blocks allocated */
656 unsigned long long last_blocks;
657 };
658 };
659};
660
661struct extent_node {
662 struct rb_node rb_node; /* rb node located in rb-tree */
663 struct extent_info ei; /* extent info */
664 struct list_head list; /* node in global extent list of sbi */
665 struct extent_tree *et; /* extent tree pointer */
666};
667
668struct extent_tree {
669 nid_t ino; /* inode number */
670 enum extent_type type; /* keep the extent tree type */
671 struct rb_root_cached root; /* root of extent info rb-tree */
672 struct extent_node *cached_en; /* recently accessed extent node */
673 struct list_head list; /* to be used by sbi->zombie_list */
674 rwlock_t lock; /* protect extent info rb-tree */
675 atomic_t node_cnt; /* # of extent node in rb-tree*/
676 bool largest_updated; /* largest extent updated */
677 struct extent_info largest; /* largest cached extent for EX_READ */
678};
679
680struct extent_tree_info {
681 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682 struct mutex extent_tree_lock; /* locking extent radix tree */
683 struct list_head extent_list; /* lru list for shrinker */
684 spinlock_t extent_lock; /* locking extent lru list */
685 atomic_t total_ext_tree; /* extent tree count */
686 struct list_head zombie_list; /* extent zombie tree list */
687 atomic_t total_zombie_tree; /* extent zombie tree count */
688 atomic_t total_ext_node; /* extent info count */
689};
690
691/*
692 * State of block returned by f2fs_map_blocks.
693 */
694#define F2FS_MAP_NEW (1U << 0)
695#define F2FS_MAP_MAPPED (1U << 1)
696#define F2FS_MAP_DELALLOC (1U << 2)
697#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698 F2FS_MAP_DELALLOC)
699
700struct f2fs_map_blocks {
701 struct block_device *m_bdev; /* for multi-device dio */
702 block_t m_pblk;
703 block_t m_lblk;
704 unsigned int m_len;
705 unsigned int m_flags;
706 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
707 pgoff_t *m_next_extent; /* point to next possible extent */
708 int m_seg_type;
709 bool m_may_create; /* indicate it is from write path */
710 bool m_multidev_dio; /* indicate it allows multi-device dio */
711};
712
713/* for flag in get_data_block */
714enum {
715 F2FS_GET_BLOCK_DEFAULT,
716 F2FS_GET_BLOCK_FIEMAP,
717 F2FS_GET_BLOCK_BMAP,
718 F2FS_GET_BLOCK_DIO,
719 F2FS_GET_BLOCK_PRE_DIO,
720 F2FS_GET_BLOCK_PRE_AIO,
721 F2FS_GET_BLOCK_PRECACHE,
722};
723
724/*
725 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726 */
727#define FADVISE_COLD_BIT 0x01
728#define FADVISE_LOST_PINO_BIT 0x02
729#define FADVISE_ENCRYPT_BIT 0x04
730#define FADVISE_ENC_NAME_BIT 0x08
731#define FADVISE_KEEP_SIZE_BIT 0x10
732#define FADVISE_HOT_BIT 0x20
733#define FADVISE_VERITY_BIT 0x40
734#define FADVISE_TRUNC_BIT 0x80
735
736#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737
738#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
739#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
740#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
741
742#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
743#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
744#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
745
746#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
747#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
748
749#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
750#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751
752#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
753#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754
755#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
756#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
757#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
758
759#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
760#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
761
762#define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
763#define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
764#define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
765
766#define DEF_DIR_LEVEL 0
767
768enum {
769 GC_FAILURE_PIN,
770 MAX_GC_FAILURE
771};
772
773/* used for f2fs_inode_info->flags */
774enum {
775 FI_NEW_INODE, /* indicate newly allocated inode */
776 FI_DIRTY_INODE, /* indicate inode is dirty or not */
777 FI_AUTO_RECOVER, /* indicate inode is recoverable */
778 FI_DIRTY_DIR, /* indicate directory has dirty pages */
779 FI_INC_LINK, /* need to increment i_nlink */
780 FI_ACL_MODE, /* indicate acl mode */
781 FI_NO_ALLOC, /* should not allocate any blocks */
782 FI_FREE_NID, /* free allocated nide */
783 FI_NO_EXTENT, /* not to use the extent cache */
784 FI_INLINE_XATTR, /* used for inline xattr */
785 FI_INLINE_DATA, /* used for inline data*/
786 FI_INLINE_DENTRY, /* used for inline dentry */
787 FI_APPEND_WRITE, /* inode has appended data */
788 FI_UPDATE_WRITE, /* inode has in-place-update data */
789 FI_NEED_IPU, /* used for ipu per file */
790 FI_ATOMIC_FILE, /* indicate atomic file */
791 FI_DATA_EXIST, /* indicate data exists */
792 FI_INLINE_DOTS, /* indicate inline dot dentries */
793 FI_SKIP_WRITES, /* should skip data page writeback */
794 FI_OPU_WRITE, /* used for opu per file */
795 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
796 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
797 FI_HOT_DATA, /* indicate file is hot */
798 FI_EXTRA_ATTR, /* indicate file has extra attribute */
799 FI_PROJ_INHERIT, /* indicate file inherits projectid */
800 FI_PIN_FILE, /* indicate file should not be gced */
801 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
802 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
803 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
804 FI_MMAP_FILE, /* indicate file was mmapped */
805 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
806 FI_COMPRESS_RELEASED, /* compressed blocks were released */
807 FI_ALIGNED_WRITE, /* enable aligned write */
808 FI_COW_FILE, /* indicate COW file */
809 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
810 FI_ATOMIC_REPLACE, /* indicate atomic replace */
811 FI_MAX, /* max flag, never be used */
812};
813
814struct f2fs_inode_info {
815 struct inode vfs_inode; /* serve a vfs inode */
816 unsigned long i_flags; /* keep an inode flags for ioctl */
817 unsigned char i_advise; /* use to give file attribute hints */
818 unsigned char i_dir_level; /* use for dentry level for large dir */
819 unsigned int i_current_depth; /* only for directory depth */
820 /* for gc failure statistic */
821 unsigned int i_gc_failures[MAX_GC_FAILURE];
822 unsigned int i_pino; /* parent inode number */
823 umode_t i_acl_mode; /* keep file acl mode temporarily */
824
825 /* Use below internally in f2fs*/
826 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
827 struct f2fs_rwsem i_sem; /* protect fi info */
828 atomic_t dirty_pages; /* # of dirty pages */
829 f2fs_hash_t chash; /* hash value of given file name */
830 unsigned int clevel; /* maximum level of given file name */
831 struct task_struct *task; /* lookup and create consistency */
832 struct task_struct *cp_task; /* separate cp/wb IO stats*/
833 struct task_struct *wb_task; /* indicate inode is in context of writeback */
834 nid_t i_xattr_nid; /* node id that contains xattrs */
835 loff_t last_disk_size; /* lastly written file size */
836 spinlock_t i_size_lock; /* protect last_disk_size */
837
838#ifdef CONFIG_QUOTA
839 struct dquot __rcu *i_dquot[MAXQUOTAS];
840
841 /* quota space reservation, managed internally by quota code */
842 qsize_t i_reserved_quota;
843#endif
844 struct list_head dirty_list; /* dirty list for dirs and files */
845 struct list_head gdirty_list; /* linked in global dirty list */
846 struct task_struct *atomic_write_task; /* store atomic write task */
847 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
848 /* cached extent_tree entry */
849 struct inode *cow_inode; /* copy-on-write inode for atomic write */
850
851 /* avoid racing between foreground op and gc */
852 struct f2fs_rwsem i_gc_rwsem[2];
853 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
854
855 int i_extra_isize; /* size of extra space located in i_addr */
856 kprojid_t i_projid; /* id for project quota */
857 int i_inline_xattr_size; /* inline xattr size */
858 struct timespec64 i_crtime; /* inode creation time */
859 struct timespec64 i_disk_time[3];/* inode disk times */
860
861 /* for file compress */
862 atomic_t i_compr_blocks; /* # of compressed blocks */
863 unsigned char i_compress_algorithm; /* algorithm type */
864 unsigned char i_log_cluster_size; /* log of cluster size */
865 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
866 unsigned char i_compress_flag; /* compress flag */
867 unsigned int i_cluster_size; /* cluster size */
868
869 unsigned int atomic_write_cnt;
870 loff_t original_i_size; /* original i_size before atomic write */
871};
872
873static inline void get_read_extent_info(struct extent_info *ext,
874 struct f2fs_extent *i_ext)
875{
876 ext->fofs = le32_to_cpu(i_ext->fofs);
877 ext->blk = le32_to_cpu(i_ext->blk);
878 ext->len = le32_to_cpu(i_ext->len);
879}
880
881static inline void set_raw_read_extent(struct extent_info *ext,
882 struct f2fs_extent *i_ext)
883{
884 i_ext->fofs = cpu_to_le32(ext->fofs);
885 i_ext->blk = cpu_to_le32(ext->blk);
886 i_ext->len = cpu_to_le32(ext->len);
887}
888
889static inline bool __is_discard_mergeable(struct discard_info *back,
890 struct discard_info *front, unsigned int max_len)
891{
892 return (back->lstart + back->len == front->lstart) &&
893 (back->len + front->len <= max_len);
894}
895
896static inline bool __is_discard_back_mergeable(struct discard_info *cur,
897 struct discard_info *back, unsigned int max_len)
898{
899 return __is_discard_mergeable(back, cur, max_len);
900}
901
902static inline bool __is_discard_front_mergeable(struct discard_info *cur,
903 struct discard_info *front, unsigned int max_len)
904{
905 return __is_discard_mergeable(cur, front, max_len);
906}
907
908/*
909 * For free nid management
910 */
911enum nid_state {
912 FREE_NID, /* newly added to free nid list */
913 PREALLOC_NID, /* it is preallocated */
914 MAX_NID_STATE,
915};
916
917enum nat_state {
918 TOTAL_NAT,
919 DIRTY_NAT,
920 RECLAIMABLE_NAT,
921 MAX_NAT_STATE,
922};
923
924struct f2fs_nm_info {
925 block_t nat_blkaddr; /* base disk address of NAT */
926 nid_t max_nid; /* maximum possible node ids */
927 nid_t available_nids; /* # of available node ids */
928 nid_t next_scan_nid; /* the next nid to be scanned */
929 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
930 unsigned int ram_thresh; /* control the memory footprint */
931 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
932 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
933
934 /* NAT cache management */
935 struct radix_tree_root nat_root;/* root of the nat entry cache */
936 struct radix_tree_root nat_set_root;/* root of the nat set cache */
937 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
938 struct list_head nat_entries; /* cached nat entry list (clean) */
939 spinlock_t nat_list_lock; /* protect clean nat entry list */
940 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941 unsigned int nat_blocks; /* # of nat blocks */
942
943 /* free node ids management */
944 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
946 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
947 spinlock_t nid_list_lock; /* protect nid lists ops */
948 struct mutex build_lock; /* lock for build free nids */
949 unsigned char **free_nid_bitmap;
950 unsigned char *nat_block_bitmap;
951 unsigned short *free_nid_count; /* free nid count of NAT block */
952
953 /* for checkpoint */
954 char *nat_bitmap; /* NAT bitmap pointer */
955
956 unsigned int nat_bits_blocks; /* # of nat bits blocks */
957 unsigned char *nat_bits; /* NAT bits blocks */
958 unsigned char *full_nat_bits; /* full NAT pages */
959 unsigned char *empty_nat_bits; /* empty NAT pages */
960#ifdef CONFIG_F2FS_CHECK_FS
961 char *nat_bitmap_mir; /* NAT bitmap mirror */
962#endif
963 int bitmap_size; /* bitmap size */
964};
965
966/*
967 * this structure is used as one of function parameters.
968 * all the information are dedicated to a given direct node block determined
969 * by the data offset in a file.
970 */
971struct dnode_of_data {
972 struct inode *inode; /* vfs inode pointer */
973 struct page *inode_page; /* its inode page, NULL is possible */
974 struct page *node_page; /* cached direct node page */
975 nid_t nid; /* node id of the direct node block */
976 unsigned int ofs_in_node; /* data offset in the node page */
977 bool inode_page_locked; /* inode page is locked or not */
978 bool node_changed; /* is node block changed */
979 char cur_level; /* level of hole node page */
980 char max_level; /* level of current page located */
981 block_t data_blkaddr; /* block address of the node block */
982};
983
984static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985 struct page *ipage, struct page *npage, nid_t nid)
986{
987 memset(dn, 0, sizeof(*dn));
988 dn->inode = inode;
989 dn->inode_page = ipage;
990 dn->node_page = npage;
991 dn->nid = nid;
992}
993
994/*
995 * For SIT manager
996 *
997 * By default, there are 6 active log areas across the whole main area.
998 * When considering hot and cold data separation to reduce cleaning overhead,
999 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000 * respectively.
1001 * In the current design, you should not change the numbers intentionally.
1002 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003 * logs individually according to the underlying devices. (default: 6)
1004 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005 * data and 8 for node logs.
1006 */
1007#define NR_CURSEG_DATA_TYPE (3)
1008#define NR_CURSEG_NODE_TYPE (3)
1009#define NR_CURSEG_INMEM_TYPE (2)
1010#define NR_CURSEG_RO_TYPE (2)
1011#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013
1014enum {
1015 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1016 CURSEG_WARM_DATA, /* data blocks */
1017 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1018 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1019 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1020 CURSEG_COLD_NODE, /* indirect node blocks */
1021 NR_PERSISTENT_LOG, /* number of persistent log */
1022 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023 /* pinned file that needs consecutive block address */
1024 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1025 NO_CHECK_TYPE, /* number of persistent & inmem log */
1026};
1027
1028struct flush_cmd {
1029 struct completion wait;
1030 struct llist_node llnode;
1031 nid_t ino;
1032 int ret;
1033};
1034
1035struct flush_cmd_control {
1036 struct task_struct *f2fs_issue_flush; /* flush thread */
1037 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1038 atomic_t issued_flush; /* # of issued flushes */
1039 atomic_t queued_flush; /* # of queued flushes */
1040 struct llist_head issue_list; /* list for command issue */
1041 struct llist_node *dispatch_list; /* list for command dispatch */
1042};
1043
1044struct f2fs_sm_info {
1045 struct sit_info *sit_info; /* whole segment information */
1046 struct free_segmap_info *free_info; /* free segment information */
1047 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1048 struct curseg_info *curseg_array; /* active segment information */
1049
1050 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1051
1052 block_t seg0_blkaddr; /* block address of 0'th segment */
1053 block_t main_blkaddr; /* start block address of main area */
1054 block_t ssa_blkaddr; /* start block address of SSA area */
1055
1056 unsigned int segment_count; /* total # of segments */
1057 unsigned int main_segments; /* # of segments in main area */
1058 unsigned int reserved_segments; /* # of reserved segments */
1059 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060 unsigned int ovp_segments; /* # of overprovision segments */
1061
1062 /* a threshold to reclaim prefree segments */
1063 unsigned int rec_prefree_segments;
1064
1065 struct list_head sit_entry_set; /* sit entry set list */
1066
1067 unsigned int ipu_policy; /* in-place-update policy */
1068 unsigned int min_ipu_util; /* in-place-update threshold */
1069 unsigned int min_fsync_blocks; /* threshold for fsync */
1070 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1071 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1072 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1073
1074 /* for flush command control */
1075 struct flush_cmd_control *fcc_info;
1076
1077 /* for discard command control */
1078 struct discard_cmd_control *dcc_info;
1079};
1080
1081/*
1082 * For superblock
1083 */
1084/*
1085 * COUNT_TYPE for monitoring
1086 *
1087 * f2fs monitors the number of several block types such as on-writeback,
1088 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1089 */
1090#define WB_DATA_TYPE(p, f) \
1091 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1092enum count_type {
1093 F2FS_DIRTY_DENTS,
1094 F2FS_DIRTY_DATA,
1095 F2FS_DIRTY_QDATA,
1096 F2FS_DIRTY_NODES,
1097 F2FS_DIRTY_META,
1098 F2FS_DIRTY_IMETA,
1099 F2FS_WB_CP_DATA,
1100 F2FS_WB_DATA,
1101 F2FS_RD_DATA,
1102 F2FS_RD_NODE,
1103 F2FS_RD_META,
1104 F2FS_DIO_WRITE,
1105 F2FS_DIO_READ,
1106 NR_COUNT_TYPE,
1107};
1108
1109/*
1110 * The below are the page types of bios used in submit_bio().
1111 * The available types are:
1112 * DATA User data pages. It operates as async mode.
1113 * NODE Node pages. It operates as async mode.
1114 * META FS metadata pages such as SIT, NAT, CP.
1115 * NR_PAGE_TYPE The number of page types.
1116 * META_FLUSH Make sure the previous pages are written
1117 * with waiting the bio's completion
1118 * ... Only can be used with META.
1119 */
1120#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1121#define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1122enum page_type {
1123 DATA = 0,
1124 NODE = 1, /* should not change this */
1125 META,
1126 NR_PAGE_TYPE,
1127 META_FLUSH,
1128 IPU, /* the below types are used by tracepoints only. */
1129 OPU,
1130};
1131
1132enum temp_type {
1133 HOT = 0, /* must be zero for meta bio */
1134 WARM,
1135 COLD,
1136 NR_TEMP_TYPE,
1137};
1138
1139enum need_lock_type {
1140 LOCK_REQ = 0,
1141 LOCK_DONE,
1142 LOCK_RETRY,
1143};
1144
1145enum cp_reason_type {
1146 CP_NO_NEEDED,
1147 CP_NON_REGULAR,
1148 CP_COMPRESSED,
1149 CP_HARDLINK,
1150 CP_SB_NEED_CP,
1151 CP_WRONG_PINO,
1152 CP_NO_SPC_ROLL,
1153 CP_NODE_NEED_CP,
1154 CP_FASTBOOT_MODE,
1155 CP_SPEC_LOG_NUM,
1156 CP_RECOVER_DIR,
1157};
1158
1159enum iostat_type {
1160 /* WRITE IO */
1161 APP_DIRECT_IO, /* app direct write IOs */
1162 APP_BUFFERED_IO, /* app buffered write IOs */
1163 APP_WRITE_IO, /* app write IOs */
1164 APP_MAPPED_IO, /* app mapped IOs */
1165 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1166 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1167 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1168 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1169 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1170 FS_META_IO, /* meta IOs from kworker/reclaimer */
1171 FS_GC_DATA_IO, /* data IOs from forground gc */
1172 FS_GC_NODE_IO, /* node IOs from forground gc */
1173 FS_CP_DATA_IO, /* data IOs from checkpoint */
1174 FS_CP_NODE_IO, /* node IOs from checkpoint */
1175 FS_CP_META_IO, /* meta IOs from checkpoint */
1176
1177 /* READ IO */
1178 APP_DIRECT_READ_IO, /* app direct read IOs */
1179 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1180 APP_READ_IO, /* app read IOs */
1181 APP_MAPPED_READ_IO, /* app mapped read IOs */
1182 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1183 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1184 FS_DATA_READ_IO, /* data read IOs */
1185 FS_GDATA_READ_IO, /* data read IOs from background gc */
1186 FS_CDATA_READ_IO, /* compressed data read IOs */
1187 FS_NODE_READ_IO, /* node read IOs */
1188 FS_META_READ_IO, /* meta read IOs */
1189
1190 /* other */
1191 FS_DISCARD_IO, /* discard */
1192 FS_FLUSH_IO, /* flush */
1193 FS_ZONE_RESET_IO, /* zone reset */
1194 NR_IO_TYPE,
1195};
1196
1197struct f2fs_io_info {
1198 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1199 nid_t ino; /* inode number */
1200 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1201 enum temp_type temp; /* contains HOT/WARM/COLD */
1202 enum req_op op; /* contains REQ_OP_ */
1203 blk_opf_t op_flags; /* req_flag_bits */
1204 block_t new_blkaddr; /* new block address to be written */
1205 block_t old_blkaddr; /* old block address before Cow */
1206 struct page *page; /* page to be written */
1207 struct page *encrypted_page; /* encrypted page */
1208 struct page *compressed_page; /* compressed page */
1209 struct list_head list; /* serialize IOs */
1210 unsigned int compr_blocks; /* # of compressed block addresses */
1211 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1212 unsigned int version:8; /* version of the node */
1213 unsigned int submitted:1; /* indicate IO submission */
1214 unsigned int in_list:1; /* indicate fio is in io_list */
1215 unsigned int is_por:1; /* indicate IO is from recovery or not */
1216 unsigned int encrypted:1; /* indicate file is encrypted */
1217 unsigned int post_read:1; /* require post read */
1218 enum iostat_type io_type; /* io type */
1219 struct writeback_control *io_wbc; /* writeback control */
1220 struct bio **bio; /* bio for ipu */
1221 sector_t *last_block; /* last block number in bio */
1222};
1223
1224struct bio_entry {
1225 struct bio *bio;
1226 struct list_head list;
1227};
1228
1229#define is_read_io(rw) ((rw) == READ)
1230struct f2fs_bio_info {
1231 struct f2fs_sb_info *sbi; /* f2fs superblock */
1232 struct bio *bio; /* bios to merge */
1233 sector_t last_block_in_bio; /* last block number */
1234 struct f2fs_io_info fio; /* store buffered io info. */
1235#ifdef CONFIG_BLK_DEV_ZONED
1236 struct completion zone_wait; /* condition value for the previous open zone to close */
1237 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1238 void *bi_private; /* previous bi_private for pending bio */
1239#endif
1240 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1241 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1242 struct list_head io_list; /* track fios */
1243 struct list_head bio_list; /* bio entry list head */
1244 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1245};
1246
1247#define FDEV(i) (sbi->devs[i])
1248#define RDEV(i) (raw_super->devs[i])
1249struct f2fs_dev_info {
1250 struct file *bdev_file;
1251 struct block_device *bdev;
1252 char path[MAX_PATH_LEN];
1253 unsigned int total_segments;
1254 block_t start_blk;
1255 block_t end_blk;
1256#ifdef CONFIG_BLK_DEV_ZONED
1257 unsigned int nr_blkz; /* Total number of zones */
1258 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1259#endif
1260};
1261
1262enum inode_type {
1263 DIR_INODE, /* for dirty dir inode */
1264 FILE_INODE, /* for dirty regular/symlink inode */
1265 DIRTY_META, /* for all dirtied inode metadata */
1266 NR_INODE_TYPE,
1267};
1268
1269/* for inner inode cache management */
1270struct inode_management {
1271 struct radix_tree_root ino_root; /* ino entry array */
1272 spinlock_t ino_lock; /* for ino entry lock */
1273 struct list_head ino_list; /* inode list head */
1274 unsigned long ino_num; /* number of entries */
1275};
1276
1277/* for GC_AT */
1278struct atgc_management {
1279 bool atgc_enabled; /* ATGC is enabled or not */
1280 struct rb_root_cached root; /* root of victim rb-tree */
1281 struct list_head victim_list; /* linked with all victim entries */
1282 unsigned int victim_count; /* victim count in rb-tree */
1283 unsigned int candidate_ratio; /* candidate ratio */
1284 unsigned int max_candidate_count; /* max candidate count */
1285 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1286 unsigned long long age_threshold; /* age threshold */
1287};
1288
1289struct f2fs_gc_control {
1290 unsigned int victim_segno; /* target victim segment number */
1291 int init_gc_type; /* FG_GC or BG_GC */
1292 bool no_bg_gc; /* check the space and stop bg_gc */
1293 bool should_migrate_blocks; /* should migrate blocks */
1294 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1295 unsigned int nr_free_secs; /* # of free sections to do GC */
1296};
1297
1298/*
1299 * For s_flag in struct f2fs_sb_info
1300 * Modification on enum should be synchronized with s_flag array
1301 */
1302enum {
1303 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1304 SBI_IS_CLOSE, /* specify unmounting */
1305 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1306 SBI_POR_DOING, /* recovery is doing or not */
1307 SBI_NEED_SB_WRITE, /* need to recover superblock */
1308 SBI_NEED_CP, /* need to checkpoint */
1309 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1310 SBI_IS_RECOVERED, /* recovered orphan/data */
1311 SBI_CP_DISABLED, /* CP was disabled last mount */
1312 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1313 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1314 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1315 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1316 SBI_IS_RESIZEFS, /* resizefs is in process */
1317 SBI_IS_FREEZING, /* freezefs is in process */
1318 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1319 MAX_SBI_FLAG,
1320};
1321
1322enum {
1323 CP_TIME,
1324 REQ_TIME,
1325 DISCARD_TIME,
1326 GC_TIME,
1327 DISABLE_TIME,
1328 UMOUNT_DISCARD_TIMEOUT,
1329 MAX_TIME,
1330};
1331
1332/* Note that you need to keep synchronization with this gc_mode_names array */
1333enum {
1334 GC_NORMAL,
1335 GC_IDLE_CB,
1336 GC_IDLE_GREEDY,
1337 GC_IDLE_AT,
1338 GC_URGENT_HIGH,
1339 GC_URGENT_LOW,
1340 GC_URGENT_MID,
1341 MAX_GC_MODE,
1342};
1343
1344enum {
1345 BGGC_MODE_ON, /* background gc is on */
1346 BGGC_MODE_OFF, /* background gc is off */
1347 BGGC_MODE_SYNC, /*
1348 * background gc is on, migrating blocks
1349 * like foreground gc
1350 */
1351};
1352
1353enum {
1354 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1355 FS_MODE_LFS, /* use lfs allocation only */
1356 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1357 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1358};
1359
1360enum {
1361 ALLOC_MODE_DEFAULT, /* stay default */
1362 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1363};
1364
1365enum fsync_mode {
1366 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1367 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1368 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1369};
1370
1371enum {
1372 COMPR_MODE_FS, /*
1373 * automatically compress compression
1374 * enabled files
1375 */
1376 COMPR_MODE_USER, /*
1377 * automatical compression is disabled.
1378 * user can control the file compression
1379 * using ioctls
1380 */
1381};
1382
1383enum {
1384 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1385 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1386 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1387};
1388
1389enum {
1390 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1391 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1392};
1393
1394enum errors_option {
1395 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1396 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1397 MOUNT_ERRORS_PANIC, /* panic on errors */
1398};
1399
1400enum {
1401 BACKGROUND,
1402 FOREGROUND,
1403 MAX_CALL_TYPE,
1404 TOTAL_CALL = FOREGROUND,
1405};
1406
1407static inline int f2fs_test_bit(unsigned int nr, char *addr);
1408static inline void f2fs_set_bit(unsigned int nr, char *addr);
1409static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1410
1411/*
1412 * Layout of f2fs page.private:
1413 *
1414 * Layout A: lowest bit should be 1
1415 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1416 * bit 0 PAGE_PRIVATE_NOT_POINTER
1417 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1418 * bit 2 PAGE_PRIVATE_INLINE_INODE
1419 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1420 * bit 4- f2fs private data
1421 *
1422 * Layout B: lowest bit should be 0
1423 * page.private is a wrapped pointer.
1424 */
1425enum {
1426 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1427 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1428 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1429 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1430 PAGE_PRIVATE_MAX
1431};
1432
1433/* For compression */
1434enum compress_algorithm_type {
1435 COMPRESS_LZO,
1436 COMPRESS_LZ4,
1437 COMPRESS_ZSTD,
1438 COMPRESS_LZORLE,
1439 COMPRESS_MAX,
1440};
1441
1442enum compress_flag {
1443 COMPRESS_CHKSUM,
1444 COMPRESS_MAX_FLAG,
1445};
1446
1447#define COMPRESS_WATERMARK 20
1448#define COMPRESS_PERCENT 20
1449
1450#define COMPRESS_DATA_RESERVED_SIZE 4
1451struct compress_data {
1452 __le32 clen; /* compressed data size */
1453 __le32 chksum; /* compressed data chksum */
1454 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1455 u8 cdata[]; /* compressed data */
1456};
1457
1458#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1459
1460#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1461
1462#define F2FS_ZSTD_DEFAULT_CLEVEL 1
1463
1464#define COMPRESS_LEVEL_OFFSET 8
1465
1466/* compress context */
1467struct compress_ctx {
1468 struct inode *inode; /* inode the context belong to */
1469 pgoff_t cluster_idx; /* cluster index number */
1470 unsigned int cluster_size; /* page count in cluster */
1471 unsigned int log_cluster_size; /* log of cluster size */
1472 struct page **rpages; /* pages store raw data in cluster */
1473 unsigned int nr_rpages; /* total page number in rpages */
1474 struct page **cpages; /* pages store compressed data in cluster */
1475 unsigned int nr_cpages; /* total page number in cpages */
1476 unsigned int valid_nr_cpages; /* valid page number in cpages */
1477 void *rbuf; /* virtual mapped address on rpages */
1478 struct compress_data *cbuf; /* virtual mapped address on cpages */
1479 size_t rlen; /* valid data length in rbuf */
1480 size_t clen; /* valid data length in cbuf */
1481 void *private; /* payload buffer for specified compression algorithm */
1482 void *private2; /* extra payload buffer */
1483};
1484
1485/* compress context for write IO path */
1486struct compress_io_ctx {
1487 u32 magic; /* magic number to indicate page is compressed */
1488 struct inode *inode; /* inode the context belong to */
1489 struct page **rpages; /* pages store raw data in cluster */
1490 unsigned int nr_rpages; /* total page number in rpages */
1491 atomic_t pending_pages; /* in-flight compressed page count */
1492};
1493
1494/* Context for decompressing one cluster on the read IO path */
1495struct decompress_io_ctx {
1496 u32 magic; /* magic number to indicate page is compressed */
1497 struct inode *inode; /* inode the context belong to */
1498 pgoff_t cluster_idx; /* cluster index number */
1499 unsigned int cluster_size; /* page count in cluster */
1500 unsigned int log_cluster_size; /* log of cluster size */
1501 struct page **rpages; /* pages store raw data in cluster */
1502 unsigned int nr_rpages; /* total page number in rpages */
1503 struct page **cpages; /* pages store compressed data in cluster */
1504 unsigned int nr_cpages; /* total page number in cpages */
1505 struct page **tpages; /* temp pages to pad holes in cluster */
1506 void *rbuf; /* virtual mapped address on rpages */
1507 struct compress_data *cbuf; /* virtual mapped address on cpages */
1508 size_t rlen; /* valid data length in rbuf */
1509 size_t clen; /* valid data length in cbuf */
1510
1511 /*
1512 * The number of compressed pages remaining to be read in this cluster.
1513 * This is initially nr_cpages. It is decremented by 1 each time a page
1514 * has been read (or failed to be read). When it reaches 0, the cluster
1515 * is decompressed (or an error is reported).
1516 *
1517 * If an error occurs before all the pages have been submitted for I/O,
1518 * then this will never reach 0. In this case the I/O submitter is
1519 * responsible for calling f2fs_decompress_end_io() instead.
1520 */
1521 atomic_t remaining_pages;
1522
1523 /*
1524 * Number of references to this decompress_io_ctx.
1525 *
1526 * One reference is held for I/O completion. This reference is dropped
1527 * after the pagecache pages are updated and unlocked -- either after
1528 * decompression (and verity if enabled), or after an error.
1529 *
1530 * In addition, each compressed page holds a reference while it is in a
1531 * bio. These references are necessary prevent compressed pages from
1532 * being freed while they are still in a bio.
1533 */
1534 refcount_t refcnt;
1535
1536 bool failed; /* IO error occurred before decompression? */
1537 bool need_verity; /* need fs-verity verification after decompression? */
1538 void *private; /* payload buffer for specified decompression algorithm */
1539 void *private2; /* extra payload buffer */
1540 struct work_struct verity_work; /* work to verify the decompressed pages */
1541 struct work_struct free_work; /* work for late free this structure itself */
1542};
1543
1544#define NULL_CLUSTER ((unsigned int)(~0))
1545#define MIN_COMPRESS_LOG_SIZE 2
1546#define MAX_COMPRESS_LOG_SIZE 8
1547#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1548
1549struct f2fs_sb_info {
1550 struct super_block *sb; /* pointer to VFS super block */
1551 struct proc_dir_entry *s_proc; /* proc entry */
1552 struct f2fs_super_block *raw_super; /* raw super block pointer */
1553 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1554 int valid_super_block; /* valid super block no */
1555 unsigned long s_flag; /* flags for sbi */
1556 struct mutex writepages; /* mutex for writepages() */
1557
1558#ifdef CONFIG_BLK_DEV_ZONED
1559 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1560#endif
1561
1562 /* for node-related operations */
1563 struct f2fs_nm_info *nm_info; /* node manager */
1564 struct inode *node_inode; /* cache node blocks */
1565
1566 /* for segment-related operations */
1567 struct f2fs_sm_info *sm_info; /* segment manager */
1568
1569 /* for bio operations */
1570 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1571 /* keep migration IO order for LFS mode */
1572 struct f2fs_rwsem io_order_lock;
1573 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1574 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1575
1576 /* for checkpoint */
1577 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1578 int cur_cp_pack; /* remain current cp pack */
1579 spinlock_t cp_lock; /* for flag in ckpt */
1580 struct inode *meta_inode; /* cache meta blocks */
1581 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1582 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1583 struct f2fs_rwsem node_write; /* locking node writes */
1584 struct f2fs_rwsem node_change; /* locking node change */
1585 wait_queue_head_t cp_wait;
1586 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1587 long interval_time[MAX_TIME]; /* to store thresholds */
1588 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1589
1590 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1591
1592 spinlock_t fsync_node_lock; /* for node entry lock */
1593 struct list_head fsync_node_list; /* node list head */
1594 unsigned int fsync_seg_id; /* sequence id */
1595 unsigned int fsync_node_num; /* number of node entries */
1596
1597 /* for orphan inode, use 0'th array */
1598 unsigned int max_orphans; /* max orphan inodes */
1599
1600 /* for inode management */
1601 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1602 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1603 struct mutex flush_lock; /* for flush exclusion */
1604
1605 /* for extent tree cache */
1606 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1607 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1608
1609 /* The threshold used for hot and warm data seperation*/
1610 unsigned int hot_data_age_threshold;
1611 unsigned int warm_data_age_threshold;
1612 unsigned int last_age_weight;
1613
1614 /* basic filesystem units */
1615 unsigned int log_sectors_per_block; /* log2 sectors per block */
1616 unsigned int log_blocksize; /* log2 block size */
1617 unsigned int blocksize; /* block size */
1618 unsigned int root_ino_num; /* root inode number*/
1619 unsigned int node_ino_num; /* node inode number*/
1620 unsigned int meta_ino_num; /* meta inode number*/
1621 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1622 unsigned int blocks_per_seg; /* blocks per segment */
1623 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1624 unsigned int segs_per_sec; /* segments per section */
1625 unsigned int secs_per_zone; /* sections per zone */
1626 unsigned int total_sections; /* total section count */
1627 unsigned int total_node_count; /* total node block count */
1628 unsigned int total_valid_node_count; /* valid node block count */
1629 int dir_level; /* directory level */
1630 bool readdir_ra; /* readahead inode in readdir */
1631 u64 max_io_bytes; /* max io bytes to merge IOs */
1632
1633 block_t user_block_count; /* # of user blocks */
1634 block_t total_valid_block_count; /* # of valid blocks */
1635 block_t discard_blks; /* discard command candidats */
1636 block_t last_valid_block_count; /* for recovery */
1637 block_t reserved_blocks; /* configurable reserved blocks */
1638 block_t current_reserved_blocks; /* current reserved blocks */
1639
1640 /* Additional tracking for no checkpoint mode */
1641 block_t unusable_block_count; /* # of blocks saved by last cp */
1642
1643 unsigned int nquota_files; /* # of quota sysfile */
1644 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1645
1646 /* # of pages, see count_type */
1647 atomic_t nr_pages[NR_COUNT_TYPE];
1648 /* # of allocated blocks */
1649 struct percpu_counter alloc_valid_block_count;
1650 /* # of node block writes as roll forward recovery */
1651 struct percpu_counter rf_node_block_count;
1652
1653 /* writeback control */
1654 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1655
1656 /* valid inode count */
1657 struct percpu_counter total_valid_inode_count;
1658
1659 struct f2fs_mount_info mount_opt; /* mount options */
1660
1661 /* for cleaning operations */
1662 struct f2fs_rwsem gc_lock; /*
1663 * semaphore for GC, avoid
1664 * race between GC and GC or CP
1665 */
1666 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1667 struct atgc_management am; /* atgc management */
1668 unsigned int cur_victim_sec; /* current victim section num */
1669 unsigned int gc_mode; /* current GC state */
1670 unsigned int next_victim_seg[2]; /* next segment in victim section */
1671 spinlock_t gc_remaining_trials_lock;
1672 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1673 unsigned int gc_remaining_trials;
1674
1675 /* for skip statistic */
1676 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1677
1678 /* threshold for gc trials on pinned files */
1679 u64 gc_pin_file_threshold;
1680 struct f2fs_rwsem pin_sem;
1681
1682 /* maximum # of trials to find a victim segment for SSR and GC */
1683 unsigned int max_victim_search;
1684 /* migration granularity of garbage collection, unit: segment */
1685 unsigned int migration_granularity;
1686
1687 /*
1688 * for stat information.
1689 * one is for the LFS mode, and the other is for the SSR mode.
1690 */
1691#ifdef CONFIG_F2FS_STAT_FS
1692 struct f2fs_stat_info *stat_info; /* FS status information */
1693 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1694 unsigned int segment_count[2]; /* # of allocated segments */
1695 unsigned int block_count[2]; /* # of allocated blocks */
1696 atomic_t inplace_count; /* # of inplace update */
1697 /* # of lookup extent cache */
1698 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1699 /* # of hit rbtree extent node */
1700 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1701 /* # of hit cached extent node */
1702 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1703 /* # of hit largest extent node in read extent cache */
1704 atomic64_t read_hit_largest;
1705 atomic_t inline_xattr; /* # of inline_xattr inodes */
1706 atomic_t inline_inode; /* # of inline_data inodes */
1707 atomic_t inline_dir; /* # of inline_dentry inodes */
1708 atomic_t compr_inode; /* # of compressed inodes */
1709 atomic64_t compr_blocks; /* # of compressed blocks */
1710 atomic_t swapfile_inode; /* # of swapfile inodes */
1711 atomic_t atomic_files; /* # of opened atomic file */
1712 atomic_t max_aw_cnt; /* max # of atomic writes */
1713 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1714 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1715 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1716 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1717#endif
1718 spinlock_t stat_lock; /* lock for stat operations */
1719
1720 /* to attach REQ_META|REQ_FUA flags */
1721 unsigned int data_io_flag;
1722 unsigned int node_io_flag;
1723
1724 /* For sysfs support */
1725 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1726 struct completion s_kobj_unregister;
1727
1728 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1729 struct completion s_stat_kobj_unregister;
1730
1731 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1732 struct completion s_feature_list_kobj_unregister;
1733
1734 /* For shrinker support */
1735 struct list_head s_list;
1736 struct mutex umount_mutex;
1737 unsigned int shrinker_run_no;
1738
1739 /* For multi devices */
1740 int s_ndevs; /* number of devices */
1741 struct f2fs_dev_info *devs; /* for device list */
1742 unsigned int dirty_device; /* for checkpoint data flush */
1743 spinlock_t dev_lock; /* protect dirty_device */
1744 bool aligned_blksize; /* all devices has the same logical blksize */
1745
1746 /* For write statistics */
1747 u64 sectors_written_start;
1748 u64 kbytes_written;
1749
1750 /* Reference to checksum algorithm driver via cryptoapi */
1751 struct crypto_shash *s_chksum_driver;
1752
1753 /* Precomputed FS UUID checksum for seeding other checksums */
1754 __u32 s_chksum_seed;
1755
1756 struct workqueue_struct *post_read_wq; /* post read workqueue */
1757
1758 /*
1759 * If we are in irq context, let's update error information into
1760 * on-disk superblock in the work.
1761 */
1762 struct work_struct s_error_work;
1763 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1764 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1765 spinlock_t error_lock; /* protect errors/stop_reason array */
1766 bool error_dirty; /* errors of sb is dirty */
1767
1768 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1769 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1770
1771 /* For reclaimed segs statistics per each GC mode */
1772 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1773 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1774
1775 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1776
1777 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1778 int max_fragment_hole; /* max hole size for block fragmentation mode */
1779
1780 /* For atomic write statistics */
1781 atomic64_t current_atomic_write;
1782 s64 peak_atomic_write;
1783 u64 committed_atomic_block;
1784 u64 revoked_atomic_block;
1785
1786#ifdef CONFIG_F2FS_FS_COMPRESSION
1787 struct kmem_cache *page_array_slab; /* page array entry */
1788 unsigned int page_array_slab_size; /* default page array slab size */
1789
1790 /* For runtime compression statistics */
1791 u64 compr_written_block;
1792 u64 compr_saved_block;
1793 u32 compr_new_inode;
1794
1795 /* For compressed block cache */
1796 struct inode *compress_inode; /* cache compressed blocks */
1797 unsigned int compress_percent; /* cache page percentage */
1798 unsigned int compress_watermark; /* cache page watermark */
1799 atomic_t compress_page_hit; /* cache hit count */
1800#endif
1801
1802#ifdef CONFIG_F2FS_IOSTAT
1803 /* For app/fs IO statistics */
1804 spinlock_t iostat_lock;
1805 unsigned long long iostat_count[NR_IO_TYPE];
1806 unsigned long long iostat_bytes[NR_IO_TYPE];
1807 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1808 bool iostat_enable;
1809 unsigned long iostat_next_period;
1810 unsigned int iostat_period_ms;
1811
1812 /* For io latency related statistics info in one iostat period */
1813 spinlock_t iostat_lat_lock;
1814 struct iostat_lat_info *iostat_io_lat;
1815#endif
1816};
1817
1818/* Definitions to access f2fs_sb_info */
1819#define SEGS_TO_BLKS(sbi, segs) \
1820 ((segs) << (sbi)->log_blocks_per_seg)
1821#define BLKS_TO_SEGS(sbi, blks) \
1822 ((blks) >> (sbi)->log_blocks_per_seg)
1823
1824#define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1825#define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1826#define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1827
1828__printf(3, 4)
1829void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1830
1831#define f2fs_err(sbi, fmt, ...) \
1832 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1833#define f2fs_warn(sbi, fmt, ...) \
1834 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1835#define f2fs_notice(sbi, fmt, ...) \
1836 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1837#define f2fs_info(sbi, fmt, ...) \
1838 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1839#define f2fs_debug(sbi, fmt, ...) \
1840 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1841
1842#define f2fs_err_ratelimited(sbi, fmt, ...) \
1843 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1844#define f2fs_warn_ratelimited(sbi, fmt, ...) \
1845 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1846#define f2fs_info_ratelimited(sbi, fmt, ...) \
1847 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1848
1849#ifdef CONFIG_F2FS_FAULT_INJECTION
1850#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1851 __builtin_return_address(0))
1852static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1853 const char *func, const char *parent_func)
1854{
1855 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1856
1857 if (!ffi->inject_rate)
1858 return false;
1859
1860 if (!IS_FAULT_SET(ffi, type))
1861 return false;
1862
1863 atomic_inc(&ffi->inject_ops);
1864 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1865 atomic_set(&ffi->inject_ops, 0);
1866 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1867 f2fs_fault_name[type], func, parent_func);
1868 return true;
1869 }
1870 return false;
1871}
1872#else
1873static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1874{
1875 return false;
1876}
1877#endif
1878
1879/*
1880 * Test if the mounted volume is a multi-device volume.
1881 * - For a single regular disk volume, sbi->s_ndevs is 0.
1882 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1883 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1884 */
1885static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1886{
1887 return sbi->s_ndevs > 1;
1888}
1889
1890static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1891{
1892 unsigned long now = jiffies;
1893
1894 sbi->last_time[type] = now;
1895
1896 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1897 if (type == REQ_TIME) {
1898 sbi->last_time[DISCARD_TIME] = now;
1899 sbi->last_time[GC_TIME] = now;
1900 }
1901}
1902
1903static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1904{
1905 unsigned long interval = sbi->interval_time[type] * HZ;
1906
1907 return time_after(jiffies, sbi->last_time[type] + interval);
1908}
1909
1910static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1911 int type)
1912{
1913 unsigned long interval = sbi->interval_time[type] * HZ;
1914 unsigned int wait_ms = 0;
1915 long delta;
1916
1917 delta = (sbi->last_time[type] + interval) - jiffies;
1918 if (delta > 0)
1919 wait_ms = jiffies_to_msecs(delta);
1920
1921 return wait_ms;
1922}
1923
1924/*
1925 * Inline functions
1926 */
1927static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1928 const void *address, unsigned int length)
1929{
1930 struct {
1931 struct shash_desc shash;
1932 char ctx[4];
1933 } desc;
1934 int err;
1935
1936 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1937
1938 desc.shash.tfm = sbi->s_chksum_driver;
1939 *(u32 *)desc.ctx = crc;
1940
1941 err = crypto_shash_update(&desc.shash, address, length);
1942 BUG_ON(err);
1943
1944 return *(u32 *)desc.ctx;
1945}
1946
1947static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1948 unsigned int length)
1949{
1950 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1951}
1952
1953static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1954 void *buf, size_t buf_size)
1955{
1956 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1957}
1958
1959static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1960 const void *address, unsigned int length)
1961{
1962 return __f2fs_crc32(sbi, crc, address, length);
1963}
1964
1965static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1966{
1967 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1968}
1969
1970static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1971{
1972 return sb->s_fs_info;
1973}
1974
1975static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1976{
1977 return F2FS_SB(inode->i_sb);
1978}
1979
1980static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1981{
1982 return F2FS_I_SB(mapping->host);
1983}
1984
1985static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1986{
1987 return F2FS_M_SB(page_file_mapping(page));
1988}
1989
1990static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1991{
1992 return (struct f2fs_super_block *)(sbi->raw_super);
1993}
1994
1995static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1996{
1997 return (struct f2fs_checkpoint *)(sbi->ckpt);
1998}
1999
2000static inline struct f2fs_node *F2FS_NODE(struct page *page)
2001{
2002 return (struct f2fs_node *)page_address(page);
2003}
2004
2005static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2006{
2007 return &((struct f2fs_node *)page_address(page))->i;
2008}
2009
2010static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2011{
2012 return (struct f2fs_nm_info *)(sbi->nm_info);
2013}
2014
2015static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2016{
2017 return (struct f2fs_sm_info *)(sbi->sm_info);
2018}
2019
2020static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2021{
2022 return (struct sit_info *)(SM_I(sbi)->sit_info);
2023}
2024
2025static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2026{
2027 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2028}
2029
2030static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2031{
2032 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2033}
2034
2035static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2036{
2037 return sbi->meta_inode->i_mapping;
2038}
2039
2040static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2041{
2042 return sbi->node_inode->i_mapping;
2043}
2044
2045static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2046{
2047 return test_bit(type, &sbi->s_flag);
2048}
2049
2050static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2051{
2052 set_bit(type, &sbi->s_flag);
2053}
2054
2055static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2056{
2057 clear_bit(type, &sbi->s_flag);
2058}
2059
2060static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2061{
2062 return le64_to_cpu(cp->checkpoint_ver);
2063}
2064
2065static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2066{
2067 if (type < F2FS_MAX_QUOTAS)
2068 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2069 return 0;
2070}
2071
2072static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2073{
2074 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2075 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2076}
2077
2078static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2079{
2080 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2081
2082 return ckpt_flags & f;
2083}
2084
2085static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2086{
2087 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2088}
2089
2090static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2091{
2092 unsigned int ckpt_flags;
2093
2094 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2095 ckpt_flags |= f;
2096 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2097}
2098
2099static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2100{
2101 unsigned long flags;
2102
2103 spin_lock_irqsave(&sbi->cp_lock, flags);
2104 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2105 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2106}
2107
2108static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2109{
2110 unsigned int ckpt_flags;
2111
2112 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2113 ckpt_flags &= (~f);
2114 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2115}
2116
2117static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2118{
2119 unsigned long flags;
2120
2121 spin_lock_irqsave(&sbi->cp_lock, flags);
2122 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2123 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2124}
2125
2126#define init_f2fs_rwsem(sem) \
2127do { \
2128 static struct lock_class_key __key; \
2129 \
2130 __init_f2fs_rwsem((sem), #sem, &__key); \
2131} while (0)
2132
2133static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2134 const char *sem_name, struct lock_class_key *key)
2135{
2136 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2137#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2138 init_waitqueue_head(&sem->read_waiters);
2139#endif
2140}
2141
2142static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2143{
2144 return rwsem_is_locked(&sem->internal_rwsem);
2145}
2146
2147static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2148{
2149 return rwsem_is_contended(&sem->internal_rwsem);
2150}
2151
2152static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2153{
2154#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2155 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2156#else
2157 down_read(&sem->internal_rwsem);
2158#endif
2159}
2160
2161static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2162{
2163 return down_read_trylock(&sem->internal_rwsem);
2164}
2165
2166static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2167{
2168 up_read(&sem->internal_rwsem);
2169}
2170
2171static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2172{
2173 down_write(&sem->internal_rwsem);
2174}
2175
2176#ifdef CONFIG_DEBUG_LOCK_ALLOC
2177static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2178{
2179 down_read_nested(&sem->internal_rwsem, subclass);
2180}
2181
2182static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2183{
2184 down_write_nested(&sem->internal_rwsem, subclass);
2185}
2186#else
2187#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2188#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2189#endif
2190
2191static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2192{
2193 return down_write_trylock(&sem->internal_rwsem);
2194}
2195
2196static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2197{
2198 up_write(&sem->internal_rwsem);
2199#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2200 wake_up_all(&sem->read_waiters);
2201#endif
2202}
2203
2204static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2205{
2206 f2fs_down_read(&sbi->cp_rwsem);
2207}
2208
2209static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2210{
2211 if (time_to_inject(sbi, FAULT_LOCK_OP))
2212 return 0;
2213 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2214}
2215
2216static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2217{
2218 f2fs_up_read(&sbi->cp_rwsem);
2219}
2220
2221static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2222{
2223 f2fs_down_write(&sbi->cp_rwsem);
2224}
2225
2226static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2227{
2228 f2fs_up_write(&sbi->cp_rwsem);
2229}
2230
2231static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2232{
2233 int reason = CP_SYNC;
2234
2235 if (test_opt(sbi, FASTBOOT))
2236 reason = CP_FASTBOOT;
2237 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2238 reason = CP_UMOUNT;
2239 return reason;
2240}
2241
2242static inline bool __remain_node_summaries(int reason)
2243{
2244 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2245}
2246
2247static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2248{
2249 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2250 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2251}
2252
2253/*
2254 * Check whether the inode has blocks or not
2255 */
2256static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2257{
2258 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2259
2260 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2261}
2262
2263static inline bool f2fs_has_xattr_block(unsigned int ofs)
2264{
2265 return ofs == XATTR_NODE_OFFSET;
2266}
2267
2268static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2269 struct inode *inode, bool cap)
2270{
2271 if (!inode)
2272 return true;
2273 if (!test_opt(sbi, RESERVE_ROOT))
2274 return false;
2275 if (IS_NOQUOTA(inode))
2276 return true;
2277 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2278 return true;
2279 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2280 in_group_p(F2FS_OPTION(sbi).s_resgid))
2281 return true;
2282 if (cap && capable(CAP_SYS_RESOURCE))
2283 return true;
2284 return false;
2285}
2286
2287static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2288 struct inode *inode, bool cap)
2289{
2290 block_t avail_user_block_count;
2291
2292 avail_user_block_count = sbi->user_block_count -
2293 sbi->current_reserved_blocks;
2294
2295 if (!__allow_reserved_blocks(sbi, inode, cap))
2296 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2297
2298 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2299 if (avail_user_block_count > sbi->unusable_block_count)
2300 avail_user_block_count -= sbi->unusable_block_count;
2301 else
2302 avail_user_block_count = 0;
2303 }
2304
2305 return avail_user_block_count;
2306}
2307
2308static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2309static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2310 struct inode *inode, blkcnt_t *count, bool partial)
2311{
2312 long long diff = 0, release = 0;
2313 block_t avail_user_block_count;
2314 int ret;
2315
2316 ret = dquot_reserve_block(inode, *count);
2317 if (ret)
2318 return ret;
2319
2320 if (time_to_inject(sbi, FAULT_BLOCK)) {
2321 release = *count;
2322 goto release_quota;
2323 }
2324
2325 /*
2326 * let's increase this in prior to actual block count change in order
2327 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2328 */
2329 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2330
2331 spin_lock(&sbi->stat_lock);
2332
2333 avail_user_block_count = get_available_block_count(sbi, inode, true);
2334 diff = (long long)sbi->total_valid_block_count + *count -
2335 avail_user_block_count;
2336 if (unlikely(diff > 0)) {
2337 if (!partial) {
2338 spin_unlock(&sbi->stat_lock);
2339 release = *count;
2340 goto enospc;
2341 }
2342 if (diff > *count)
2343 diff = *count;
2344 *count -= diff;
2345 release = diff;
2346 if (!*count) {
2347 spin_unlock(&sbi->stat_lock);
2348 goto enospc;
2349 }
2350 }
2351 sbi->total_valid_block_count += (block_t)(*count);
2352
2353 spin_unlock(&sbi->stat_lock);
2354
2355 if (unlikely(release)) {
2356 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2357 dquot_release_reservation_block(inode, release);
2358 }
2359 f2fs_i_blocks_write(inode, *count, true, true);
2360 return 0;
2361
2362enospc:
2363 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2364release_quota:
2365 dquot_release_reservation_block(inode, release);
2366 return -ENOSPC;
2367}
2368
2369#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2370static inline bool page_private_##name(struct page *page) \
2371{ \
2372 return PagePrivate(page) && \
2373 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2374 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2375}
2376
2377#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2378static inline void set_page_private_##name(struct page *page) \
2379{ \
2380 if (!PagePrivate(page)) \
2381 attach_page_private(page, (void *)0); \
2382 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2383 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2384}
2385
2386#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2387static inline void clear_page_private_##name(struct page *page) \
2388{ \
2389 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2390 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2391 detach_page_private(page); \
2392}
2393
2394PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2395PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2396PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2397
2398PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2399PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2400PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2401
2402PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2403PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2404PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2405
2406static inline unsigned long get_page_private_data(struct page *page)
2407{
2408 unsigned long data = page_private(page);
2409
2410 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2411 return 0;
2412 return data >> PAGE_PRIVATE_MAX;
2413}
2414
2415static inline void set_page_private_data(struct page *page, unsigned long data)
2416{
2417 if (!PagePrivate(page))
2418 attach_page_private(page, (void *)0);
2419 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2420 page_private(page) |= data << PAGE_PRIVATE_MAX;
2421}
2422
2423static inline void clear_page_private_data(struct page *page)
2424{
2425 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2426 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2427 detach_page_private(page);
2428}
2429
2430static inline void clear_page_private_all(struct page *page)
2431{
2432 clear_page_private_data(page);
2433 clear_page_private_reference(page);
2434 clear_page_private_gcing(page);
2435 clear_page_private_inline(page);
2436
2437 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2438}
2439
2440static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2441 struct inode *inode,
2442 block_t count)
2443{
2444 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2445
2446 spin_lock(&sbi->stat_lock);
2447 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2448 sbi->total_valid_block_count -= (block_t)count;
2449 if (sbi->reserved_blocks &&
2450 sbi->current_reserved_blocks < sbi->reserved_blocks)
2451 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2452 sbi->current_reserved_blocks + count);
2453 spin_unlock(&sbi->stat_lock);
2454 if (unlikely(inode->i_blocks < sectors)) {
2455 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2456 inode->i_ino,
2457 (unsigned long long)inode->i_blocks,
2458 (unsigned long long)sectors);
2459 set_sbi_flag(sbi, SBI_NEED_FSCK);
2460 return;
2461 }
2462 f2fs_i_blocks_write(inode, count, false, true);
2463}
2464
2465static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2466{
2467 atomic_inc(&sbi->nr_pages[count_type]);
2468
2469 if (count_type == F2FS_DIRTY_DENTS ||
2470 count_type == F2FS_DIRTY_NODES ||
2471 count_type == F2FS_DIRTY_META ||
2472 count_type == F2FS_DIRTY_QDATA ||
2473 count_type == F2FS_DIRTY_IMETA)
2474 set_sbi_flag(sbi, SBI_IS_DIRTY);
2475}
2476
2477static inline void inode_inc_dirty_pages(struct inode *inode)
2478{
2479 atomic_inc(&F2FS_I(inode)->dirty_pages);
2480 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2481 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2482 if (IS_NOQUOTA(inode))
2483 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2484}
2485
2486static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2487{
2488 atomic_dec(&sbi->nr_pages[count_type]);
2489}
2490
2491static inline void inode_dec_dirty_pages(struct inode *inode)
2492{
2493 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2494 !S_ISLNK(inode->i_mode))
2495 return;
2496
2497 atomic_dec(&F2FS_I(inode)->dirty_pages);
2498 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2499 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2500 if (IS_NOQUOTA(inode))
2501 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2502}
2503
2504static inline void inc_atomic_write_cnt(struct inode *inode)
2505{
2506 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2507 struct f2fs_inode_info *fi = F2FS_I(inode);
2508 u64 current_write;
2509
2510 fi->atomic_write_cnt++;
2511 atomic64_inc(&sbi->current_atomic_write);
2512 current_write = atomic64_read(&sbi->current_atomic_write);
2513 if (current_write > sbi->peak_atomic_write)
2514 sbi->peak_atomic_write = current_write;
2515}
2516
2517static inline void release_atomic_write_cnt(struct inode *inode)
2518{
2519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2520 struct f2fs_inode_info *fi = F2FS_I(inode);
2521
2522 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2523 fi->atomic_write_cnt = 0;
2524}
2525
2526static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2527{
2528 return atomic_read(&sbi->nr_pages[count_type]);
2529}
2530
2531static inline int get_dirty_pages(struct inode *inode)
2532{
2533 return atomic_read(&F2FS_I(inode)->dirty_pages);
2534}
2535
2536static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2537{
2538 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2539 BLKS_PER_SEC(sbi));
2540}
2541
2542static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2543{
2544 return sbi->total_valid_block_count;
2545}
2546
2547static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2548{
2549 return sbi->discard_blks;
2550}
2551
2552static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2553{
2554 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2555
2556 /* return NAT or SIT bitmap */
2557 if (flag == NAT_BITMAP)
2558 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2559 else if (flag == SIT_BITMAP)
2560 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2561
2562 return 0;
2563}
2564
2565static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2566{
2567 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2568}
2569
2570static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2571{
2572 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2573 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2574 int offset;
2575
2576 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2577 offset = (flag == SIT_BITMAP) ?
2578 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2579 /*
2580 * if large_nat_bitmap feature is enabled, leave checksum
2581 * protection for all nat/sit bitmaps.
2582 */
2583 return tmp_ptr + offset + sizeof(__le32);
2584 }
2585
2586 if (__cp_payload(sbi) > 0) {
2587 if (flag == NAT_BITMAP)
2588 return tmp_ptr;
2589 else
2590 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2591 } else {
2592 offset = (flag == NAT_BITMAP) ?
2593 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2594 return tmp_ptr + offset;
2595 }
2596}
2597
2598static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2599{
2600 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2601
2602 if (sbi->cur_cp_pack == 2)
2603 start_addr += BLKS_PER_SEG(sbi);
2604 return start_addr;
2605}
2606
2607static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2608{
2609 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2610
2611 if (sbi->cur_cp_pack == 1)
2612 start_addr += BLKS_PER_SEG(sbi);
2613 return start_addr;
2614}
2615
2616static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2617{
2618 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2619}
2620
2621static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2622{
2623 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2624}
2625
2626extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2627static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2628 struct inode *inode, bool is_inode)
2629{
2630 block_t valid_block_count;
2631 unsigned int valid_node_count;
2632 unsigned int avail_user_block_count;
2633 int err;
2634
2635 if (is_inode) {
2636 if (inode) {
2637 err = dquot_alloc_inode(inode);
2638 if (err)
2639 return err;
2640 }
2641 } else {
2642 err = dquot_reserve_block(inode, 1);
2643 if (err)
2644 return err;
2645 }
2646
2647 if (time_to_inject(sbi, FAULT_BLOCK))
2648 goto enospc;
2649
2650 spin_lock(&sbi->stat_lock);
2651
2652 valid_block_count = sbi->total_valid_block_count + 1;
2653 avail_user_block_count = get_available_block_count(sbi, inode, false);
2654
2655 if (unlikely(valid_block_count > avail_user_block_count)) {
2656 spin_unlock(&sbi->stat_lock);
2657 goto enospc;
2658 }
2659
2660 valid_node_count = sbi->total_valid_node_count + 1;
2661 if (unlikely(valid_node_count > sbi->total_node_count)) {
2662 spin_unlock(&sbi->stat_lock);
2663 goto enospc;
2664 }
2665
2666 sbi->total_valid_node_count++;
2667 sbi->total_valid_block_count++;
2668 spin_unlock(&sbi->stat_lock);
2669
2670 if (inode) {
2671 if (is_inode)
2672 f2fs_mark_inode_dirty_sync(inode, true);
2673 else
2674 f2fs_i_blocks_write(inode, 1, true, true);
2675 }
2676
2677 percpu_counter_inc(&sbi->alloc_valid_block_count);
2678 return 0;
2679
2680enospc:
2681 if (is_inode) {
2682 if (inode)
2683 dquot_free_inode(inode);
2684 } else {
2685 dquot_release_reservation_block(inode, 1);
2686 }
2687 return -ENOSPC;
2688}
2689
2690static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2691 struct inode *inode, bool is_inode)
2692{
2693 spin_lock(&sbi->stat_lock);
2694
2695 if (unlikely(!sbi->total_valid_block_count ||
2696 !sbi->total_valid_node_count)) {
2697 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2698 sbi->total_valid_block_count,
2699 sbi->total_valid_node_count);
2700 set_sbi_flag(sbi, SBI_NEED_FSCK);
2701 } else {
2702 sbi->total_valid_block_count--;
2703 sbi->total_valid_node_count--;
2704 }
2705
2706 if (sbi->reserved_blocks &&
2707 sbi->current_reserved_blocks < sbi->reserved_blocks)
2708 sbi->current_reserved_blocks++;
2709
2710 spin_unlock(&sbi->stat_lock);
2711
2712 if (is_inode) {
2713 dquot_free_inode(inode);
2714 } else {
2715 if (unlikely(inode->i_blocks == 0)) {
2716 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2717 inode->i_ino,
2718 (unsigned long long)inode->i_blocks);
2719 set_sbi_flag(sbi, SBI_NEED_FSCK);
2720 return;
2721 }
2722 f2fs_i_blocks_write(inode, 1, false, true);
2723 }
2724}
2725
2726static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2727{
2728 return sbi->total_valid_node_count;
2729}
2730
2731static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2732{
2733 percpu_counter_inc(&sbi->total_valid_inode_count);
2734}
2735
2736static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2737{
2738 percpu_counter_dec(&sbi->total_valid_inode_count);
2739}
2740
2741static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2742{
2743 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2744}
2745
2746static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2747 pgoff_t index, bool for_write)
2748{
2749 struct page *page;
2750 unsigned int flags;
2751
2752 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2753 if (!for_write)
2754 page = find_get_page_flags(mapping, index,
2755 FGP_LOCK | FGP_ACCESSED);
2756 else
2757 page = find_lock_page(mapping, index);
2758 if (page)
2759 return page;
2760
2761 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2762 return NULL;
2763 }
2764
2765 if (!for_write)
2766 return grab_cache_page(mapping, index);
2767
2768 flags = memalloc_nofs_save();
2769 page = grab_cache_page_write_begin(mapping, index);
2770 memalloc_nofs_restore(flags);
2771
2772 return page;
2773}
2774
2775static inline struct page *f2fs_pagecache_get_page(
2776 struct address_space *mapping, pgoff_t index,
2777 fgf_t fgp_flags, gfp_t gfp_mask)
2778{
2779 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2780 return NULL;
2781
2782 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2783}
2784
2785static inline void f2fs_put_page(struct page *page, int unlock)
2786{
2787 if (!page)
2788 return;
2789
2790 if (unlock) {
2791 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2792 unlock_page(page);
2793 }
2794 put_page(page);
2795}
2796
2797static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2798{
2799 if (dn->node_page)
2800 f2fs_put_page(dn->node_page, 1);
2801 if (dn->inode_page && dn->node_page != dn->inode_page)
2802 f2fs_put_page(dn->inode_page, 0);
2803 dn->node_page = NULL;
2804 dn->inode_page = NULL;
2805}
2806
2807static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2808 size_t size)
2809{
2810 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2811}
2812
2813static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2814 gfp_t flags)
2815{
2816 void *entry;
2817
2818 entry = kmem_cache_alloc(cachep, flags);
2819 if (!entry)
2820 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2821 return entry;
2822}
2823
2824static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2825 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2826{
2827 if (nofail)
2828 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2829
2830 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2831 return NULL;
2832
2833 return kmem_cache_alloc(cachep, flags);
2834}
2835
2836static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2837{
2838 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2839 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2840 get_pages(sbi, F2FS_WB_CP_DATA) ||
2841 get_pages(sbi, F2FS_DIO_READ) ||
2842 get_pages(sbi, F2FS_DIO_WRITE))
2843 return true;
2844
2845 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2846 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2847 return true;
2848
2849 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2850 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2851 return true;
2852 return false;
2853}
2854
2855static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2856{
2857 if (sbi->gc_mode == GC_URGENT_HIGH)
2858 return true;
2859
2860 if (is_inflight_io(sbi, type))
2861 return false;
2862
2863 if (sbi->gc_mode == GC_URGENT_MID)
2864 return true;
2865
2866 if (sbi->gc_mode == GC_URGENT_LOW &&
2867 (type == DISCARD_TIME || type == GC_TIME))
2868 return true;
2869
2870 return f2fs_time_over(sbi, type);
2871}
2872
2873static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2874 unsigned long index, void *item)
2875{
2876 while (radix_tree_insert(root, index, item))
2877 cond_resched();
2878}
2879
2880#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2881
2882static inline bool IS_INODE(struct page *page)
2883{
2884 struct f2fs_node *p = F2FS_NODE(page);
2885
2886 return RAW_IS_INODE(p);
2887}
2888
2889static inline int offset_in_addr(struct f2fs_inode *i)
2890{
2891 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2892 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2893}
2894
2895static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2896{
2897 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2898}
2899
2900static inline int f2fs_has_extra_attr(struct inode *inode);
2901static inline block_t data_blkaddr(struct inode *inode,
2902 struct page *node_page, unsigned int offset)
2903{
2904 struct f2fs_node *raw_node;
2905 __le32 *addr_array;
2906 int base = 0;
2907 bool is_inode = IS_INODE(node_page);
2908
2909 raw_node = F2FS_NODE(node_page);
2910
2911 if (is_inode) {
2912 if (!inode)
2913 /* from GC path only */
2914 base = offset_in_addr(&raw_node->i);
2915 else if (f2fs_has_extra_attr(inode))
2916 base = get_extra_isize(inode);
2917 }
2918
2919 addr_array = blkaddr_in_node(raw_node);
2920 return le32_to_cpu(addr_array[base + offset]);
2921}
2922
2923static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2924{
2925 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2926}
2927
2928static inline int f2fs_test_bit(unsigned int nr, char *addr)
2929{
2930 int mask;
2931
2932 addr += (nr >> 3);
2933 mask = BIT(7 - (nr & 0x07));
2934 return mask & *addr;
2935}
2936
2937static inline void f2fs_set_bit(unsigned int nr, char *addr)
2938{
2939 int mask;
2940
2941 addr += (nr >> 3);
2942 mask = BIT(7 - (nr & 0x07));
2943 *addr |= mask;
2944}
2945
2946static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2947{
2948 int mask;
2949
2950 addr += (nr >> 3);
2951 mask = BIT(7 - (nr & 0x07));
2952 *addr &= ~mask;
2953}
2954
2955static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2956{
2957 int mask;
2958 int ret;
2959
2960 addr += (nr >> 3);
2961 mask = BIT(7 - (nr & 0x07));
2962 ret = mask & *addr;
2963 *addr |= mask;
2964 return ret;
2965}
2966
2967static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2968{
2969 int mask;
2970 int ret;
2971
2972 addr += (nr >> 3);
2973 mask = BIT(7 - (nr & 0x07));
2974 ret = mask & *addr;
2975 *addr &= ~mask;
2976 return ret;
2977}
2978
2979static inline void f2fs_change_bit(unsigned int nr, char *addr)
2980{
2981 int mask;
2982
2983 addr += (nr >> 3);
2984 mask = BIT(7 - (nr & 0x07));
2985 *addr ^= mask;
2986}
2987
2988/*
2989 * On-disk inode flags (f2fs_inode::i_flags)
2990 */
2991#define F2FS_COMPR_FL 0x00000004 /* Compress file */
2992#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2993#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2994#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2995#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2996#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2997#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2998#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2999#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3000#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3001#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3002
3003#define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3004
3005/* Flags that should be inherited by new inodes from their parent. */
3006#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3007 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3008 F2FS_CASEFOLD_FL)
3009
3010/* Flags that are appropriate for regular files (all but dir-specific ones). */
3011#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3012 F2FS_CASEFOLD_FL))
3013
3014/* Flags that are appropriate for non-directories/regular files. */
3015#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3016
3017static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3018{
3019 if (S_ISDIR(mode))
3020 return flags;
3021 else if (S_ISREG(mode))
3022 return flags & F2FS_REG_FLMASK;
3023 else
3024 return flags & F2FS_OTHER_FLMASK;
3025}
3026
3027static inline void __mark_inode_dirty_flag(struct inode *inode,
3028 int flag, bool set)
3029{
3030 switch (flag) {
3031 case FI_INLINE_XATTR:
3032 case FI_INLINE_DATA:
3033 case FI_INLINE_DENTRY:
3034 case FI_NEW_INODE:
3035 if (set)
3036 return;
3037 fallthrough;
3038 case FI_DATA_EXIST:
3039 case FI_INLINE_DOTS:
3040 case FI_PIN_FILE:
3041 case FI_COMPRESS_RELEASED:
3042 case FI_ATOMIC_COMMITTED:
3043 f2fs_mark_inode_dirty_sync(inode, true);
3044 }
3045}
3046
3047static inline void set_inode_flag(struct inode *inode, int flag)
3048{
3049 set_bit(flag, F2FS_I(inode)->flags);
3050 __mark_inode_dirty_flag(inode, flag, true);
3051}
3052
3053static inline int is_inode_flag_set(struct inode *inode, int flag)
3054{
3055 return test_bit(flag, F2FS_I(inode)->flags);
3056}
3057
3058static inline void clear_inode_flag(struct inode *inode, int flag)
3059{
3060 clear_bit(flag, F2FS_I(inode)->flags);
3061 __mark_inode_dirty_flag(inode, flag, false);
3062}
3063
3064static inline bool f2fs_verity_in_progress(struct inode *inode)
3065{
3066 return IS_ENABLED(CONFIG_FS_VERITY) &&
3067 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3068}
3069
3070static inline void set_acl_inode(struct inode *inode, umode_t mode)
3071{
3072 F2FS_I(inode)->i_acl_mode = mode;
3073 set_inode_flag(inode, FI_ACL_MODE);
3074 f2fs_mark_inode_dirty_sync(inode, false);
3075}
3076
3077static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3078{
3079 if (inc)
3080 inc_nlink(inode);
3081 else
3082 drop_nlink(inode);
3083 f2fs_mark_inode_dirty_sync(inode, true);
3084}
3085
3086static inline void f2fs_i_blocks_write(struct inode *inode,
3087 block_t diff, bool add, bool claim)
3088{
3089 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3090 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3091
3092 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3093 if (add) {
3094 if (claim)
3095 dquot_claim_block(inode, diff);
3096 else
3097 dquot_alloc_block_nofail(inode, diff);
3098 } else {
3099 dquot_free_block(inode, diff);
3100 }
3101
3102 f2fs_mark_inode_dirty_sync(inode, true);
3103 if (clean || recover)
3104 set_inode_flag(inode, FI_AUTO_RECOVER);
3105}
3106
3107static inline bool f2fs_is_atomic_file(struct inode *inode);
3108
3109static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3110{
3111 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3112 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3113
3114 if (i_size_read(inode) == i_size)
3115 return;
3116
3117 i_size_write(inode, i_size);
3118
3119 if (f2fs_is_atomic_file(inode))
3120 return;
3121
3122 f2fs_mark_inode_dirty_sync(inode, true);
3123 if (clean || recover)
3124 set_inode_flag(inode, FI_AUTO_RECOVER);
3125}
3126
3127static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3128{
3129 F2FS_I(inode)->i_current_depth = depth;
3130 f2fs_mark_inode_dirty_sync(inode, true);
3131}
3132
3133static inline void f2fs_i_gc_failures_write(struct inode *inode,
3134 unsigned int count)
3135{
3136 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3137 f2fs_mark_inode_dirty_sync(inode, true);
3138}
3139
3140static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3141{
3142 F2FS_I(inode)->i_xattr_nid = xnid;
3143 f2fs_mark_inode_dirty_sync(inode, true);
3144}
3145
3146static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3147{
3148 F2FS_I(inode)->i_pino = pino;
3149 f2fs_mark_inode_dirty_sync(inode, true);
3150}
3151
3152static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3153{
3154 struct f2fs_inode_info *fi = F2FS_I(inode);
3155
3156 if (ri->i_inline & F2FS_INLINE_XATTR)
3157 set_bit(FI_INLINE_XATTR, fi->flags);
3158 if (ri->i_inline & F2FS_INLINE_DATA)
3159 set_bit(FI_INLINE_DATA, fi->flags);
3160 if (ri->i_inline & F2FS_INLINE_DENTRY)
3161 set_bit(FI_INLINE_DENTRY, fi->flags);
3162 if (ri->i_inline & F2FS_DATA_EXIST)
3163 set_bit(FI_DATA_EXIST, fi->flags);
3164 if (ri->i_inline & F2FS_INLINE_DOTS)
3165 set_bit(FI_INLINE_DOTS, fi->flags);
3166 if (ri->i_inline & F2FS_EXTRA_ATTR)
3167 set_bit(FI_EXTRA_ATTR, fi->flags);
3168 if (ri->i_inline & F2FS_PIN_FILE)
3169 set_bit(FI_PIN_FILE, fi->flags);
3170 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3171 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3172}
3173
3174static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3175{
3176 ri->i_inline = 0;
3177
3178 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3179 ri->i_inline |= F2FS_INLINE_XATTR;
3180 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3181 ri->i_inline |= F2FS_INLINE_DATA;
3182 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3183 ri->i_inline |= F2FS_INLINE_DENTRY;
3184 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3185 ri->i_inline |= F2FS_DATA_EXIST;
3186 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3187 ri->i_inline |= F2FS_INLINE_DOTS;
3188 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3189 ri->i_inline |= F2FS_EXTRA_ATTR;
3190 if (is_inode_flag_set(inode, FI_PIN_FILE))
3191 ri->i_inline |= F2FS_PIN_FILE;
3192 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3193 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3194}
3195
3196static inline int f2fs_has_extra_attr(struct inode *inode)
3197{
3198 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3199}
3200
3201static inline int f2fs_has_inline_xattr(struct inode *inode)
3202{
3203 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3204}
3205
3206static inline int f2fs_compressed_file(struct inode *inode)
3207{
3208 return S_ISREG(inode->i_mode) &&
3209 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3210}
3211
3212static inline bool f2fs_need_compress_data(struct inode *inode)
3213{
3214 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3215
3216 if (!f2fs_compressed_file(inode))
3217 return false;
3218
3219 if (compress_mode == COMPR_MODE_FS)
3220 return true;
3221 else if (compress_mode == COMPR_MODE_USER &&
3222 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3223 return true;
3224
3225 return false;
3226}
3227
3228static inline unsigned int addrs_per_inode(struct inode *inode)
3229{
3230 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3231 get_inline_xattr_addrs(inode);
3232
3233 if (!f2fs_compressed_file(inode))
3234 return addrs;
3235 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3236}
3237
3238static inline unsigned int addrs_per_block(struct inode *inode)
3239{
3240 if (!f2fs_compressed_file(inode))
3241 return DEF_ADDRS_PER_BLOCK;
3242 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3243}
3244
3245static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3246{
3247 struct f2fs_inode *ri = F2FS_INODE(page);
3248
3249 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3250 get_inline_xattr_addrs(inode)]);
3251}
3252
3253static inline int inline_xattr_size(struct inode *inode)
3254{
3255 if (f2fs_has_inline_xattr(inode))
3256 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3257 return 0;
3258}
3259
3260/*
3261 * Notice: check inline_data flag without inode page lock is unsafe.
3262 * It could change at any time by f2fs_convert_inline_page().
3263 */
3264static inline int f2fs_has_inline_data(struct inode *inode)
3265{
3266 return is_inode_flag_set(inode, FI_INLINE_DATA);
3267}
3268
3269static inline int f2fs_exist_data(struct inode *inode)
3270{
3271 return is_inode_flag_set(inode, FI_DATA_EXIST);
3272}
3273
3274static inline int f2fs_has_inline_dots(struct inode *inode)
3275{
3276 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3277}
3278
3279static inline int f2fs_is_mmap_file(struct inode *inode)
3280{
3281 return is_inode_flag_set(inode, FI_MMAP_FILE);
3282}
3283
3284static inline bool f2fs_is_pinned_file(struct inode *inode)
3285{
3286 return is_inode_flag_set(inode, FI_PIN_FILE);
3287}
3288
3289static inline bool f2fs_is_atomic_file(struct inode *inode)
3290{
3291 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3292}
3293
3294static inline bool f2fs_is_cow_file(struct inode *inode)
3295{
3296 return is_inode_flag_set(inode, FI_COW_FILE);
3297}
3298
3299static inline __le32 *get_dnode_addr(struct inode *inode,
3300 struct page *node_page);
3301static inline void *inline_data_addr(struct inode *inode, struct page *page)
3302{
3303 __le32 *addr = get_dnode_addr(inode, page);
3304
3305 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3306}
3307
3308static inline int f2fs_has_inline_dentry(struct inode *inode)
3309{
3310 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3311}
3312
3313static inline int is_file(struct inode *inode, int type)
3314{
3315 return F2FS_I(inode)->i_advise & type;
3316}
3317
3318static inline void set_file(struct inode *inode, int type)
3319{
3320 if (is_file(inode, type))
3321 return;
3322 F2FS_I(inode)->i_advise |= type;
3323 f2fs_mark_inode_dirty_sync(inode, true);
3324}
3325
3326static inline void clear_file(struct inode *inode, int type)
3327{
3328 if (!is_file(inode, type))
3329 return;
3330 F2FS_I(inode)->i_advise &= ~type;
3331 f2fs_mark_inode_dirty_sync(inode, true);
3332}
3333
3334static inline bool f2fs_is_time_consistent(struct inode *inode)
3335{
3336 struct timespec64 ts = inode_get_atime(inode);
3337
3338 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3339 return false;
3340 ts = inode_get_ctime(inode);
3341 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3342 return false;
3343 ts = inode_get_mtime(inode);
3344 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3345 return false;
3346 return true;
3347}
3348
3349static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3350{
3351 bool ret;
3352
3353 if (dsync) {
3354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3355
3356 spin_lock(&sbi->inode_lock[DIRTY_META]);
3357 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3358 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3359 return ret;
3360 }
3361 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3362 file_keep_isize(inode) ||
3363 i_size_read(inode) & ~PAGE_MASK)
3364 return false;
3365
3366 if (!f2fs_is_time_consistent(inode))
3367 return false;
3368
3369 spin_lock(&F2FS_I(inode)->i_size_lock);
3370 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3371 spin_unlock(&F2FS_I(inode)->i_size_lock);
3372
3373 return ret;
3374}
3375
3376static inline bool f2fs_readonly(struct super_block *sb)
3377{
3378 return sb_rdonly(sb);
3379}
3380
3381static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3382{
3383 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3384}
3385
3386static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3387 size_t size, gfp_t flags)
3388{
3389 if (time_to_inject(sbi, FAULT_KMALLOC))
3390 return NULL;
3391
3392 return kmalloc(size, flags);
3393}
3394
3395static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3396{
3397 if (time_to_inject(sbi, FAULT_KMALLOC))
3398 return NULL;
3399
3400 return __getname();
3401}
3402
3403static inline void f2fs_putname(char *buf)
3404{
3405 __putname(buf);
3406}
3407
3408static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3409 size_t size, gfp_t flags)
3410{
3411 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3412}
3413
3414static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3415 size_t size, gfp_t flags)
3416{
3417 if (time_to_inject(sbi, FAULT_KVMALLOC))
3418 return NULL;
3419
3420 return kvmalloc(size, flags);
3421}
3422
3423static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3424 size_t size, gfp_t flags)
3425{
3426 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3427}
3428
3429static inline int get_extra_isize(struct inode *inode)
3430{
3431 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3432}
3433
3434static inline int get_inline_xattr_addrs(struct inode *inode)
3435{
3436 return F2FS_I(inode)->i_inline_xattr_size;
3437}
3438
3439static inline __le32 *get_dnode_addr(struct inode *inode,
3440 struct page *node_page)
3441{
3442 int base = 0;
3443
3444 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3445 base = get_extra_isize(inode);
3446
3447 return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3448}
3449
3450#define f2fs_get_inode_mode(i) \
3451 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3452 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3453
3454#define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3455
3456#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3457 (offsetof(struct f2fs_inode, i_extra_end) - \
3458 offsetof(struct f2fs_inode, i_extra_isize)) \
3459
3460#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3461#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3462 ((offsetof(typeof(*(f2fs_inode)), field) + \
3463 sizeof((f2fs_inode)->field)) \
3464 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3465
3466#define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3467
3468#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3469
3470bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3471 block_t blkaddr, int type);
3472static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3473 block_t blkaddr, int type)
3474{
3475 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3476 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3477 blkaddr, type);
3478}
3479
3480static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3481{
3482 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3483 blkaddr == COMPRESS_ADDR)
3484 return false;
3485 return true;
3486}
3487
3488/*
3489 * file.c
3490 */
3491int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3492int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3493int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3494int f2fs_truncate(struct inode *inode);
3495int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3496 struct kstat *stat, u32 request_mask, unsigned int flags);
3497int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3498 struct iattr *attr);
3499int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3500void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3501int f2fs_precache_extents(struct inode *inode);
3502int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3503int f2fs_fileattr_set(struct mnt_idmap *idmap,
3504 struct dentry *dentry, struct fileattr *fa);
3505long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3506long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3507int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3508int f2fs_pin_file_control(struct inode *inode, bool inc);
3509
3510/*
3511 * inode.c
3512 */
3513void f2fs_set_inode_flags(struct inode *inode);
3514bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3515void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3516struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3517struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3518int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3519void f2fs_update_inode(struct inode *inode, struct page *node_page);
3520void f2fs_update_inode_page(struct inode *inode);
3521int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3522void f2fs_evict_inode(struct inode *inode);
3523void f2fs_handle_failed_inode(struct inode *inode);
3524
3525/*
3526 * namei.c
3527 */
3528int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3529 bool hot, bool set);
3530struct dentry *f2fs_get_parent(struct dentry *child);
3531int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3532 struct inode **new_inode);
3533
3534/*
3535 * dir.c
3536 */
3537int f2fs_init_casefolded_name(const struct inode *dir,
3538 struct f2fs_filename *fname);
3539int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3540 int lookup, struct f2fs_filename *fname);
3541int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3542 struct f2fs_filename *fname);
3543void f2fs_free_filename(struct f2fs_filename *fname);
3544struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3545 const struct f2fs_filename *fname, int *max_slots);
3546int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3547 unsigned int start_pos, struct fscrypt_str *fstr);
3548void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3549 struct f2fs_dentry_ptr *d);
3550struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3551 const struct f2fs_filename *fname, struct page *dpage);
3552void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3553 unsigned int current_depth);
3554int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3555void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3556struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3557 const struct f2fs_filename *fname,
3558 struct page **res_page);
3559struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3560 const struct qstr *child, struct page **res_page);
3561struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3562ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3563 struct page **page);
3564void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3565 struct page *page, struct inode *inode);
3566bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3567 const struct f2fs_filename *fname);
3568void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3569 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3570 unsigned int bit_pos);
3571int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3572 struct inode *inode, nid_t ino, umode_t mode);
3573int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3574 struct inode *inode, nid_t ino, umode_t mode);
3575int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3576 struct inode *inode, nid_t ino, umode_t mode);
3577void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3578 struct inode *dir, struct inode *inode);
3579int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3580 struct f2fs_filename *fname);
3581bool f2fs_empty_dir(struct inode *dir);
3582
3583static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3584{
3585 if (fscrypt_is_nokey_name(dentry))
3586 return -ENOKEY;
3587 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3588 inode, inode->i_ino, inode->i_mode);
3589}
3590
3591/*
3592 * super.c
3593 */
3594int f2fs_inode_dirtied(struct inode *inode, bool sync);
3595void f2fs_inode_synced(struct inode *inode);
3596int f2fs_dquot_initialize(struct inode *inode);
3597int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3598int f2fs_quota_sync(struct super_block *sb, int type);
3599loff_t max_file_blocks(struct inode *inode);
3600void f2fs_quota_off_umount(struct super_block *sb);
3601void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3602void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3603 bool irq_context);
3604void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3605void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3606int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3607int f2fs_sync_fs(struct super_block *sb, int sync);
3608int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3609
3610/*
3611 * hash.c
3612 */
3613void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3614
3615/*
3616 * node.c
3617 */
3618struct node_info;
3619
3620int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3621bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3622bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3623void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3624void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3625void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3626int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3627bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3628bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3629int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3630 struct node_info *ni, bool checkpoint_context);
3631pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3632int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3633int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3634int f2fs_truncate_xattr_node(struct inode *inode);
3635int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3636 unsigned int seq_id);
3637bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3638int f2fs_remove_inode_page(struct inode *inode);
3639struct page *f2fs_new_inode_page(struct inode *inode);
3640struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3641void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3642struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3643struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3644int f2fs_move_node_page(struct page *node_page, int gc_type);
3645void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3646int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3647 struct writeback_control *wbc, bool atomic,
3648 unsigned int *seq_id);
3649int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3650 struct writeback_control *wbc,
3651 bool do_balance, enum iostat_type io_type);
3652int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3653bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3654void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3655void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3656int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3657int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3658int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3659int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3660int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3661 unsigned int segno, struct f2fs_summary_block *sum);
3662void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3663int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3664int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3665void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3666int __init f2fs_create_node_manager_caches(void);
3667void f2fs_destroy_node_manager_caches(void);
3668
3669/*
3670 * segment.c
3671 */
3672bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3673int f2fs_commit_atomic_write(struct inode *inode);
3674void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3675void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3676void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3677int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3678int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3679int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3680void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3681void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3682bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3683int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3684void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3685void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3686bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3687void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3688 struct cp_control *cpc);
3689void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3690block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3691int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3692void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3693int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3694bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3695int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3696void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3697void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3698int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3699 unsigned int start, unsigned int end);
3700int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3701int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3702int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3703int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3704bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3705 struct cp_control *cpc);
3706struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3707void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3708 block_t blk_addr);
3709void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3710 enum iostat_type io_type);
3711void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3712void f2fs_outplace_write_data(struct dnode_of_data *dn,
3713 struct f2fs_io_info *fio);
3714int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3715void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3716 block_t old_blkaddr, block_t new_blkaddr,
3717 bool recover_curseg, bool recover_newaddr,
3718 bool from_gc);
3719void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3720 block_t old_addr, block_t new_addr,
3721 unsigned char version, bool recover_curseg,
3722 bool recover_newaddr);
3723int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3724 block_t old_blkaddr, block_t *new_blkaddr,
3725 struct f2fs_summary *sum, int type,
3726 struct f2fs_io_info *fio);
3727void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3728 block_t blkaddr, unsigned int blkcnt);
3729void f2fs_wait_on_page_writeback(struct page *page,
3730 enum page_type type, bool ordered, bool locked);
3731void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3732void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3733 block_t len);
3734void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3735void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3736int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3737 unsigned int val, int alloc);
3738void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3739int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3740int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3741int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3742void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3743int __init f2fs_create_segment_manager_caches(void);
3744void f2fs_destroy_segment_manager_caches(void);
3745int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3746unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3747 unsigned int segno);
3748unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3749 unsigned int segno);
3750
3751#define DEF_FRAGMENT_SIZE 4
3752#define MIN_FRAGMENT_SIZE 1
3753#define MAX_FRAGMENT_SIZE 512
3754
3755static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3756{
3757 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3758 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3759}
3760
3761/*
3762 * checkpoint.c
3763 */
3764void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3765 unsigned char reason);
3766void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3767struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3768struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3769struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3770struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3771bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3772 block_t blkaddr, int type);
3773bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3774 block_t blkaddr, int type);
3775int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3776 int type, bool sync);
3777void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3778 unsigned int ra_blocks);
3779long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3780 long nr_to_write, enum iostat_type io_type);
3781void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3782void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3783void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3784bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3785void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3786 unsigned int devidx, int type);
3787bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3788 unsigned int devidx, int type);
3789int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3790void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3791void f2fs_add_orphan_inode(struct inode *inode);
3792void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3793int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3794int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3795void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3796void f2fs_remove_dirty_inode(struct inode *inode);
3797int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3798 bool from_cp);
3799void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3800u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3801int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3802void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3803int __init f2fs_create_checkpoint_caches(void);
3804void f2fs_destroy_checkpoint_caches(void);
3805int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3806int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3807void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3808void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3809
3810/*
3811 * data.c
3812 */
3813int __init f2fs_init_bioset(void);
3814void f2fs_destroy_bioset(void);
3815bool f2fs_is_cp_guaranteed(struct page *page);
3816int f2fs_init_bio_entry_cache(void);
3817void f2fs_destroy_bio_entry_cache(void);
3818void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3819 enum page_type type);
3820int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3821void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3822void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3823 struct inode *inode, struct page *page,
3824 nid_t ino, enum page_type type);
3825void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3826 struct bio **bio, struct page *page);
3827void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3828int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3829int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3830void f2fs_submit_page_write(struct f2fs_io_info *fio);
3831struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3832 block_t blk_addr, sector_t *sector);
3833int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3834void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3835void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3836int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3837int f2fs_reserve_new_block(struct dnode_of_data *dn);
3838int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3839int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3840struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3841 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3842struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3843 pgoff_t *next_pgofs);
3844struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3845 bool for_write);
3846struct page *f2fs_get_new_data_page(struct inode *inode,
3847 struct page *ipage, pgoff_t index, bool new_i_size);
3848int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3849int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3850int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3851 u64 start, u64 len);
3852int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3853bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3854bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3855int f2fs_write_single_data_page(struct page *page, int *submitted,
3856 struct bio **bio, sector_t *last_block,
3857 struct writeback_control *wbc,
3858 enum iostat_type io_type,
3859 int compr_blocks, bool allow_balance);
3860void f2fs_write_failed(struct inode *inode, loff_t to);
3861void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3862bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3863bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3864void f2fs_clear_page_cache_dirty_tag(struct page *page);
3865int f2fs_init_post_read_processing(void);
3866void f2fs_destroy_post_read_processing(void);
3867int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3868void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3869extern const struct iomap_ops f2fs_iomap_ops;
3870
3871/*
3872 * gc.c
3873 */
3874int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3875void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3876block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3877int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3878void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3879int f2fs_gc_range(struct f2fs_sb_info *sbi,
3880 unsigned int start_seg, unsigned int end_seg,
3881 bool dry_run, unsigned int dry_run_sections);
3882int f2fs_resize_fs(struct file *filp, __u64 block_count);
3883int __init f2fs_create_garbage_collection_cache(void);
3884void f2fs_destroy_garbage_collection_cache(void);
3885/* victim selection function for cleaning and SSR */
3886int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3887 int gc_type, int type, char alloc_mode,
3888 unsigned long long age);
3889
3890/*
3891 * recovery.c
3892 */
3893int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3894bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3895int __init f2fs_create_recovery_cache(void);
3896void f2fs_destroy_recovery_cache(void);
3897
3898/*
3899 * debug.c
3900 */
3901#ifdef CONFIG_F2FS_STAT_FS
3902struct f2fs_stat_info {
3903 struct list_head stat_list;
3904 struct f2fs_sb_info *sbi;
3905 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3906 int main_area_segs, main_area_sections, main_area_zones;
3907 unsigned long long hit_cached[NR_EXTENT_CACHES];
3908 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3909 unsigned long long total_ext[NR_EXTENT_CACHES];
3910 unsigned long long hit_total[NR_EXTENT_CACHES];
3911 int ext_tree[NR_EXTENT_CACHES];
3912 int zombie_tree[NR_EXTENT_CACHES];
3913 int ext_node[NR_EXTENT_CACHES];
3914 /* to count memory footprint */
3915 unsigned long long ext_mem[NR_EXTENT_CACHES];
3916 /* for read extent cache */
3917 unsigned long long hit_largest;
3918 /* for block age extent cache */
3919 unsigned long long allocated_data_blocks;
3920 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3921 int ndirty_data, ndirty_qdata;
3922 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3923 int nats, dirty_nats, sits, dirty_sits;
3924 int free_nids, avail_nids, alloc_nids;
3925 int total_count, utilization;
3926 int nr_wb_cp_data, nr_wb_data;
3927 int nr_rd_data, nr_rd_node, nr_rd_meta;
3928 int nr_dio_read, nr_dio_write;
3929 unsigned int io_skip_bggc, other_skip_bggc;
3930 int nr_flushing, nr_flushed, flush_list_empty;
3931 int nr_discarding, nr_discarded;
3932 int nr_discard_cmd;
3933 unsigned int undiscard_blks;
3934 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3935 unsigned int cur_ckpt_time, peak_ckpt_time;
3936 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3937 int compr_inode, swapfile_inode;
3938 unsigned long long compr_blocks;
3939 int aw_cnt, max_aw_cnt;
3940 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3941 unsigned int bimodal, avg_vblocks;
3942 int util_free, util_valid, util_invalid;
3943 int rsvd_segs, overp_segs;
3944 int dirty_count, node_pages, meta_pages, compress_pages;
3945 int compress_page_hit;
3946 int prefree_count, free_segs, free_secs;
3947 int cp_call_count[MAX_CALL_TYPE], cp_count;
3948 int gc_call_count[MAX_CALL_TYPE];
3949 int gc_segs[2][2];
3950 int gc_secs[2][2];
3951 int tot_blks, data_blks, node_blks;
3952 int bg_data_blks, bg_node_blks;
3953 int curseg[NR_CURSEG_TYPE];
3954 int cursec[NR_CURSEG_TYPE];
3955 int curzone[NR_CURSEG_TYPE];
3956 unsigned int dirty_seg[NR_CURSEG_TYPE];
3957 unsigned int full_seg[NR_CURSEG_TYPE];
3958 unsigned int valid_blks[NR_CURSEG_TYPE];
3959
3960 unsigned int meta_count[META_MAX];
3961 unsigned int segment_count[2];
3962 unsigned int block_count[2];
3963 unsigned int inplace_count;
3964 unsigned long long base_mem, cache_mem, page_mem;
3965};
3966
3967static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3968{
3969 return (struct f2fs_stat_info *)sbi->stat_info;
3970}
3971
3972#define stat_inc_cp_call_count(sbi, foreground) \
3973 atomic_inc(&sbi->cp_call_count[(foreground)])
3974#define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
3975#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3976#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3977#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3978#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3979#define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3980#define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3981#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3982#define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3983#define stat_inc_inline_xattr(inode) \
3984 do { \
3985 if (f2fs_has_inline_xattr(inode)) \
3986 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3987 } while (0)
3988#define stat_dec_inline_xattr(inode) \
3989 do { \
3990 if (f2fs_has_inline_xattr(inode)) \
3991 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3992 } while (0)
3993#define stat_inc_inline_inode(inode) \
3994 do { \
3995 if (f2fs_has_inline_data(inode)) \
3996 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3997 } while (0)
3998#define stat_dec_inline_inode(inode) \
3999 do { \
4000 if (f2fs_has_inline_data(inode)) \
4001 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4002 } while (0)
4003#define stat_inc_inline_dir(inode) \
4004 do { \
4005 if (f2fs_has_inline_dentry(inode)) \
4006 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4007 } while (0)
4008#define stat_dec_inline_dir(inode) \
4009 do { \
4010 if (f2fs_has_inline_dentry(inode)) \
4011 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4012 } while (0)
4013#define stat_inc_compr_inode(inode) \
4014 do { \
4015 if (f2fs_compressed_file(inode)) \
4016 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4017 } while (0)
4018#define stat_dec_compr_inode(inode) \
4019 do { \
4020 if (f2fs_compressed_file(inode)) \
4021 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4022 } while (0)
4023#define stat_add_compr_blocks(inode, blocks) \
4024 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4025#define stat_sub_compr_blocks(inode, blocks) \
4026 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4027#define stat_inc_swapfile_inode(inode) \
4028 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4029#define stat_dec_swapfile_inode(inode) \
4030 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4031#define stat_inc_atomic_inode(inode) \
4032 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4033#define stat_dec_atomic_inode(inode) \
4034 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4035#define stat_inc_meta_count(sbi, blkaddr) \
4036 do { \
4037 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4038 atomic_inc(&(sbi)->meta_count[META_CP]); \
4039 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4040 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4041 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4042 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4043 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4044 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4045 } while (0)
4046#define stat_inc_seg_type(sbi, curseg) \
4047 ((sbi)->segment_count[(curseg)->alloc_type]++)
4048#define stat_inc_block_count(sbi, curseg) \
4049 ((sbi)->block_count[(curseg)->alloc_type]++)
4050#define stat_inc_inplace_blocks(sbi) \
4051 (atomic_inc(&(sbi)->inplace_count))
4052#define stat_update_max_atomic_write(inode) \
4053 do { \
4054 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4055 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4056 if (cur > max) \
4057 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4058 } while (0)
4059#define stat_inc_gc_call_count(sbi, foreground) \
4060 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4061#define stat_inc_gc_sec_count(sbi, type, gc_type) \
4062 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4063#define stat_inc_gc_seg_count(sbi, type, gc_type) \
4064 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4065
4066#define stat_inc_tot_blk_count(si, blks) \
4067 ((si)->tot_blks += (blks))
4068
4069#define stat_inc_data_blk_count(sbi, blks, gc_type) \
4070 do { \
4071 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4072 stat_inc_tot_blk_count(si, blks); \
4073 si->data_blks += (blks); \
4074 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4075 } while (0)
4076
4077#define stat_inc_node_blk_count(sbi, blks, gc_type) \
4078 do { \
4079 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4080 stat_inc_tot_blk_count(si, blks); \
4081 si->node_blks += (blks); \
4082 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4083 } while (0)
4084
4085int f2fs_build_stats(struct f2fs_sb_info *sbi);
4086void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4087void __init f2fs_create_root_stats(void);
4088void f2fs_destroy_root_stats(void);
4089void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4090#else
4091#define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4092#define stat_inc_cp_count(sbi) do { } while (0)
4093#define stat_io_skip_bggc_count(sbi) do { } while (0)
4094#define stat_other_skip_bggc_count(sbi) do { } while (0)
4095#define stat_inc_dirty_inode(sbi, type) do { } while (0)
4096#define stat_dec_dirty_inode(sbi, type) do { } while (0)
4097#define stat_inc_total_hit(sbi, type) do { } while (0)
4098#define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4099#define stat_inc_largest_node_hit(sbi) do { } while (0)
4100#define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4101#define stat_inc_inline_xattr(inode) do { } while (0)
4102#define stat_dec_inline_xattr(inode) do { } while (0)
4103#define stat_inc_inline_inode(inode) do { } while (0)
4104#define stat_dec_inline_inode(inode) do { } while (0)
4105#define stat_inc_inline_dir(inode) do { } while (0)
4106#define stat_dec_inline_dir(inode) do { } while (0)
4107#define stat_inc_compr_inode(inode) do { } while (0)
4108#define stat_dec_compr_inode(inode) do { } while (0)
4109#define stat_add_compr_blocks(inode, blocks) do { } while (0)
4110#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4111#define stat_inc_swapfile_inode(inode) do { } while (0)
4112#define stat_dec_swapfile_inode(inode) do { } while (0)
4113#define stat_inc_atomic_inode(inode) do { } while (0)
4114#define stat_dec_atomic_inode(inode) do { } while (0)
4115#define stat_update_max_atomic_write(inode) do { } while (0)
4116#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4117#define stat_inc_seg_type(sbi, curseg) do { } while (0)
4118#define stat_inc_block_count(sbi, curseg) do { } while (0)
4119#define stat_inc_inplace_blocks(sbi) do { } while (0)
4120#define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4121#define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4122#define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4123#define stat_inc_tot_blk_count(si, blks) do { } while (0)
4124#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4125#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4126
4127static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4128static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4129static inline void __init f2fs_create_root_stats(void) { }
4130static inline void f2fs_destroy_root_stats(void) { }
4131static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4132#endif
4133
4134extern const struct file_operations f2fs_dir_operations;
4135extern const struct file_operations f2fs_file_operations;
4136extern const struct inode_operations f2fs_file_inode_operations;
4137extern const struct address_space_operations f2fs_dblock_aops;
4138extern const struct address_space_operations f2fs_node_aops;
4139extern const struct address_space_operations f2fs_meta_aops;
4140extern const struct inode_operations f2fs_dir_inode_operations;
4141extern const struct inode_operations f2fs_symlink_inode_operations;
4142extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4143extern const struct inode_operations f2fs_special_inode_operations;
4144extern struct kmem_cache *f2fs_inode_entry_slab;
4145
4146/*
4147 * inline.c
4148 */
4149bool f2fs_may_inline_data(struct inode *inode);
4150bool f2fs_sanity_check_inline_data(struct inode *inode);
4151bool f2fs_may_inline_dentry(struct inode *inode);
4152void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4153void f2fs_truncate_inline_inode(struct inode *inode,
4154 struct page *ipage, u64 from);
4155int f2fs_read_inline_data(struct inode *inode, struct page *page);
4156int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4157int f2fs_convert_inline_inode(struct inode *inode);
4158int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4159int f2fs_write_inline_data(struct inode *inode, struct page *page);
4160int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4161struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4162 const struct f2fs_filename *fname,
4163 struct page **res_page);
4164int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4165 struct page *ipage);
4166int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4167 struct inode *inode, nid_t ino, umode_t mode);
4168void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4169 struct page *page, struct inode *dir,
4170 struct inode *inode);
4171bool f2fs_empty_inline_dir(struct inode *dir);
4172int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4173 struct fscrypt_str *fstr);
4174int f2fs_inline_data_fiemap(struct inode *inode,
4175 struct fiemap_extent_info *fieinfo,
4176 __u64 start, __u64 len);
4177
4178/*
4179 * shrinker.c
4180 */
4181unsigned long f2fs_shrink_count(struct shrinker *shrink,
4182 struct shrink_control *sc);
4183unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4184 struct shrink_control *sc);
4185void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4186void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4187
4188/*
4189 * extent_cache.c
4190 */
4191bool sanity_check_extent_cache(struct inode *inode);
4192void f2fs_init_extent_tree(struct inode *inode);
4193void f2fs_drop_extent_tree(struct inode *inode);
4194void f2fs_destroy_extent_node(struct inode *inode);
4195void f2fs_destroy_extent_tree(struct inode *inode);
4196void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4197int __init f2fs_create_extent_cache(void);
4198void f2fs_destroy_extent_cache(void);
4199
4200/* read extent cache ops */
4201void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4202bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4203 struct extent_info *ei);
4204bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4205 block_t *blkaddr);
4206void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4207void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4208 pgoff_t fofs, block_t blkaddr, unsigned int len);
4209unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4210 int nr_shrink);
4211
4212/* block age extent cache ops */
4213void f2fs_init_age_extent_tree(struct inode *inode);
4214bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4215 struct extent_info *ei);
4216void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4217void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4218 pgoff_t fofs, unsigned int len);
4219unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4220 int nr_shrink);
4221
4222/*
4223 * sysfs.c
4224 */
4225#define MIN_RA_MUL 2
4226#define MAX_RA_MUL 256
4227
4228int __init f2fs_init_sysfs(void);
4229void f2fs_exit_sysfs(void);
4230int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4231void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4232
4233/* verity.c */
4234extern const struct fsverity_operations f2fs_verityops;
4235
4236/*
4237 * crypto support
4238 */
4239static inline bool f2fs_encrypted_file(struct inode *inode)
4240{
4241 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4242}
4243
4244static inline void f2fs_set_encrypted_inode(struct inode *inode)
4245{
4246#ifdef CONFIG_FS_ENCRYPTION
4247 file_set_encrypt(inode);
4248 f2fs_set_inode_flags(inode);
4249#endif
4250}
4251
4252/*
4253 * Returns true if the reads of the inode's data need to undergo some
4254 * postprocessing step, like decryption or authenticity verification.
4255 */
4256static inline bool f2fs_post_read_required(struct inode *inode)
4257{
4258 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4259 f2fs_compressed_file(inode);
4260}
4261
4262/*
4263 * compress.c
4264 */
4265#ifdef CONFIG_F2FS_FS_COMPRESSION
4266bool f2fs_is_compressed_page(struct page *page);
4267struct page *f2fs_compress_control_page(struct page *page);
4268int f2fs_prepare_compress_overwrite(struct inode *inode,
4269 struct page **pagep, pgoff_t index, void **fsdata);
4270bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4271 pgoff_t index, unsigned copied);
4272int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4273void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4274bool f2fs_is_compress_backend_ready(struct inode *inode);
4275bool f2fs_is_compress_level_valid(int alg, int lvl);
4276int __init f2fs_init_compress_mempool(void);
4277void f2fs_destroy_compress_mempool(void);
4278void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4279void f2fs_end_read_compressed_page(struct page *page, bool failed,
4280 block_t blkaddr, bool in_task);
4281bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4282bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4283bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4284 int index, int nr_pages, bool uptodate);
4285bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4286void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4287int f2fs_write_multi_pages(struct compress_ctx *cc,
4288 int *submitted,
4289 struct writeback_control *wbc,
4290 enum iostat_type io_type);
4291int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4292void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4293 pgoff_t fofs, block_t blkaddr,
4294 unsigned int llen, unsigned int c_len);
4295int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4296 unsigned nr_pages, sector_t *last_block_in_bio,
4297 bool is_readahead, bool for_write);
4298struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4299void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4300 bool in_task);
4301void f2fs_put_page_dic(struct page *page, bool in_task);
4302unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4303 unsigned int ofs_in_node);
4304int f2fs_init_compress_ctx(struct compress_ctx *cc);
4305void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4306void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4307int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4308void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4309int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4310void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4311int __init f2fs_init_compress_cache(void);
4312void f2fs_destroy_compress_cache(void);
4313struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4314void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4315void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4316 nid_t ino, block_t blkaddr);
4317bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4318 block_t blkaddr);
4319void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4320#define inc_compr_inode_stat(inode) \
4321 do { \
4322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4323 sbi->compr_new_inode++; \
4324 } while (0)
4325#define add_compr_block_stat(inode, blocks) \
4326 do { \
4327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4328 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4329 sbi->compr_written_block += blocks; \
4330 sbi->compr_saved_block += diff; \
4331 } while (0)
4332#else
4333static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4334static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4335{
4336 if (!f2fs_compressed_file(inode))
4337 return true;
4338 /* not support compression */
4339 return false;
4340}
4341static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4342static inline struct page *f2fs_compress_control_page(struct page *page)
4343{
4344 WARN_ON_ONCE(1);
4345 return ERR_PTR(-EINVAL);
4346}
4347static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4348static inline void f2fs_destroy_compress_mempool(void) { }
4349static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4350 bool in_task) { }
4351static inline void f2fs_end_read_compressed_page(struct page *page,
4352 bool failed, block_t blkaddr, bool in_task)
4353{
4354 WARN_ON_ONCE(1);
4355}
4356static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4357{
4358 WARN_ON_ONCE(1);
4359}
4360static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4361 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4362static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4363static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4364static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4365static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4366static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4367static inline int __init f2fs_init_compress_cache(void) { return 0; }
4368static inline void f2fs_destroy_compress_cache(void) { }
4369static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4370 block_t blkaddr) { }
4371static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4372 struct page *page, nid_t ino, block_t blkaddr) { }
4373static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4374 struct page *page, block_t blkaddr) { return false; }
4375static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4376 nid_t ino) { }
4377#define inc_compr_inode_stat(inode) do { } while (0)
4378static inline void f2fs_update_read_extent_tree_range_compressed(
4379 struct inode *inode,
4380 pgoff_t fofs, block_t blkaddr,
4381 unsigned int llen, unsigned int c_len) { }
4382#endif
4383
4384static inline int set_compress_context(struct inode *inode)
4385{
4386#ifdef CONFIG_F2FS_FS_COMPRESSION
4387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4388
4389 F2FS_I(inode)->i_compress_algorithm =
4390 F2FS_OPTION(sbi).compress_algorithm;
4391 F2FS_I(inode)->i_log_cluster_size =
4392 F2FS_OPTION(sbi).compress_log_size;
4393 F2FS_I(inode)->i_compress_flag =
4394 F2FS_OPTION(sbi).compress_chksum ?
4395 BIT(COMPRESS_CHKSUM) : 0;
4396 F2FS_I(inode)->i_cluster_size =
4397 BIT(F2FS_I(inode)->i_log_cluster_size);
4398 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4399 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4400 F2FS_OPTION(sbi).compress_level)
4401 F2FS_I(inode)->i_compress_level =
4402 F2FS_OPTION(sbi).compress_level;
4403 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4404 set_inode_flag(inode, FI_COMPRESSED_FILE);
4405 stat_inc_compr_inode(inode);
4406 inc_compr_inode_stat(inode);
4407 f2fs_mark_inode_dirty_sync(inode, true);
4408 return 0;
4409#else
4410 return -EOPNOTSUPP;
4411#endif
4412}
4413
4414static inline bool f2fs_disable_compressed_file(struct inode *inode)
4415{
4416 struct f2fs_inode_info *fi = F2FS_I(inode);
4417
4418 f2fs_down_write(&F2FS_I(inode)->i_sem);
4419
4420 if (!f2fs_compressed_file(inode)) {
4421 f2fs_up_write(&F2FS_I(inode)->i_sem);
4422 return true;
4423 }
4424 if (f2fs_is_mmap_file(inode) ||
4425 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4426 f2fs_up_write(&F2FS_I(inode)->i_sem);
4427 return false;
4428 }
4429
4430 fi->i_flags &= ~F2FS_COMPR_FL;
4431 stat_dec_compr_inode(inode);
4432 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4433 f2fs_mark_inode_dirty_sync(inode, true);
4434
4435 f2fs_up_write(&F2FS_I(inode)->i_sem);
4436 return true;
4437}
4438
4439#define F2FS_FEATURE_FUNCS(name, flagname) \
4440static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4441{ \
4442 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4443}
4444
4445F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4446F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4447F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4448F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4449F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4450F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4451F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4452F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4453F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4454F2FS_FEATURE_FUNCS(verity, VERITY);
4455F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4456F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4457F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4458F2FS_FEATURE_FUNCS(readonly, RO);
4459
4460#ifdef CONFIG_BLK_DEV_ZONED
4461static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4462 block_t blkaddr)
4463{
4464 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4465
4466 return test_bit(zno, FDEV(devi).blkz_seq);
4467}
4468#endif
4469
4470static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4471 struct block_device *bdev)
4472{
4473 int i;
4474
4475 if (!f2fs_is_multi_device(sbi))
4476 return 0;
4477
4478 for (i = 0; i < sbi->s_ndevs; i++)
4479 if (FDEV(i).bdev == bdev)
4480 return i;
4481
4482 WARN_ON(1);
4483 return -1;
4484}
4485
4486static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4487{
4488 return f2fs_sb_has_blkzoned(sbi);
4489}
4490
4491static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4492{
4493 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4494}
4495
4496static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4497{
4498 int i;
4499
4500 if (!f2fs_is_multi_device(sbi))
4501 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4502
4503 for (i = 0; i < sbi->s_ndevs; i++)
4504 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4505 return true;
4506 return false;
4507}
4508
4509static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4510{
4511 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4512 f2fs_hw_should_discard(sbi);
4513}
4514
4515static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4516{
4517 int i;
4518
4519 if (!f2fs_is_multi_device(sbi))
4520 return bdev_read_only(sbi->sb->s_bdev);
4521
4522 for (i = 0; i < sbi->s_ndevs; i++)
4523 if (bdev_read_only(FDEV(i).bdev))
4524 return true;
4525 return false;
4526}
4527
4528static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4529{
4530 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4531}
4532
4533static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4534{
4535 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4536}
4537
4538static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4539 block_t blkaddr)
4540{
4541 if (f2fs_sb_has_blkzoned(sbi)) {
4542 int devi = f2fs_target_device_index(sbi, blkaddr);
4543
4544 return !bdev_is_zoned(FDEV(devi).bdev);
4545 }
4546 return true;
4547}
4548
4549static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4550{
4551 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4552}
4553
4554static inline bool f2fs_may_compress(struct inode *inode)
4555{
4556 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4557 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4558 f2fs_is_mmap_file(inode))
4559 return false;
4560 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4561}
4562
4563static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4564 u64 blocks, bool add)
4565{
4566 struct f2fs_inode_info *fi = F2FS_I(inode);
4567 int diff = fi->i_cluster_size - blocks;
4568
4569 /* don't update i_compr_blocks if saved blocks were released */
4570 if (!add && !atomic_read(&fi->i_compr_blocks))
4571 return;
4572
4573 if (add) {
4574 atomic_add(diff, &fi->i_compr_blocks);
4575 stat_add_compr_blocks(inode, diff);
4576 } else {
4577 atomic_sub(diff, &fi->i_compr_blocks);
4578 stat_sub_compr_blocks(inode, diff);
4579 }
4580 f2fs_mark_inode_dirty_sync(inode, true);
4581}
4582
4583static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4584 int flag)
4585{
4586 if (!f2fs_is_multi_device(sbi))
4587 return false;
4588 if (flag != F2FS_GET_BLOCK_DIO)
4589 return false;
4590 return sbi->aligned_blksize;
4591}
4592
4593static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4594{
4595 return fsverity_active(inode) &&
4596 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4597}
4598
4599#ifdef CONFIG_F2FS_FAULT_INJECTION
4600extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4601 unsigned int type);
4602#else
4603#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4604#endif
4605
4606static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4607{
4608#ifdef CONFIG_QUOTA
4609 if (f2fs_sb_has_quota_ino(sbi))
4610 return true;
4611 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4612 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4613 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4614 return true;
4615#endif
4616 return false;
4617}
4618
4619static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4620{
4621 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4622}
4623
4624static inline void f2fs_io_schedule_timeout(long timeout)
4625{
4626 set_current_state(TASK_UNINTERRUPTIBLE);
4627 io_schedule_timeout(timeout);
4628}
4629
4630static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4631 enum page_type type)
4632{
4633 if (unlikely(f2fs_cp_error(sbi)))
4634 return;
4635
4636 if (ofs == sbi->page_eio_ofs[type]) {
4637 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4638 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4639 } else {
4640 sbi->page_eio_ofs[type] = ofs;
4641 sbi->page_eio_cnt[type] = 0;
4642 }
4643}
4644
4645static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4646{
4647 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4648}
4649
4650static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4651 block_t blkaddr, unsigned int cnt)
4652{
4653 bool need_submit = false;
4654 int i = 0;
4655
4656 do {
4657 struct page *page;
4658
4659 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4660 if (page) {
4661 if (PageWriteback(page))
4662 need_submit = true;
4663 f2fs_put_page(page, 0);
4664 }
4665 } while (++i < cnt && !need_submit);
4666
4667 if (need_submit)
4668 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4669 NULL, 0, DATA);
4670
4671 truncate_inode_pages_range(META_MAPPING(sbi),
4672 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4673 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4674}
4675
4676static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4677 block_t blkaddr)
4678{
4679 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4680 f2fs_invalidate_compress_page(sbi, blkaddr);
4681}
4682
4683#define EFSBADCRC EBADMSG /* Bad CRC detected */
4684#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4685
4686#endif /* _LINUX_F2FS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/slab.h>
15#include <linux/crc32.h>
16#include <linux/magic.h>
17#include <linux/kobject.h>
18#include <linux/sched.h>
19#include <linux/cred.h>
20#include <linux/sched/mm.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <linux/part_stat.h>
26#include <linux/rw_hint.h>
27#include <crypto/hash.h>
28
29#include <linux/fscrypt.h>
30#include <linux/fsverity.h>
31
32struct pagevec;
33
34#ifdef CONFIG_F2FS_CHECK_FS
35#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36#else
37#define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42#endif
43
44enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR_VALIDITY,
64 FAULT_BLKADDR_CONSISTENCE,
65 FAULT_NO_SEGMENT,
66 FAULT_MAX,
67};
68
69#ifdef CONFIG_F2FS_FAULT_INJECTION
70#define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
71
72struct f2fs_fault_info {
73 atomic_t inject_ops;
74 int inject_rate;
75 unsigned int inject_type;
76};
77
78extern const char *f2fs_fault_name[FAULT_MAX];
79#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80
81/* maximum retry count for injected failure */
82#define DEFAULT_FAILURE_RETRY_COUNT 8
83#else
84#define DEFAULT_FAILURE_RETRY_COUNT 1
85#endif
86
87/*
88 * For mount options
89 */
90#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
91#define F2FS_MOUNT_DISCARD 0x00000002
92#define F2FS_MOUNT_NOHEAP 0x00000004
93#define F2FS_MOUNT_XATTR_USER 0x00000008
94#define F2FS_MOUNT_POSIX_ACL 0x00000010
95#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
96#define F2FS_MOUNT_INLINE_XATTR 0x00000040
97#define F2FS_MOUNT_INLINE_DATA 0x00000080
98#define F2FS_MOUNT_INLINE_DENTRY 0x00000100
99#define F2FS_MOUNT_FLUSH_MERGE 0x00000200
100#define F2FS_MOUNT_NOBARRIER 0x00000400
101#define F2FS_MOUNT_FASTBOOT 0x00000800
102#define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
103#define F2FS_MOUNT_DATA_FLUSH 0x00002000
104#define F2FS_MOUNT_FAULT_INJECTION 0x00004000
105#define F2FS_MOUNT_USRQUOTA 0x00008000
106#define F2FS_MOUNT_GRPQUOTA 0x00010000
107#define F2FS_MOUNT_PRJQUOTA 0x00020000
108#define F2FS_MOUNT_QUOTA 0x00040000
109#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
110#define F2FS_MOUNT_RESERVE_ROOT 0x00100000
111#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
112#define F2FS_MOUNT_NORECOVERY 0x00400000
113#define F2FS_MOUNT_ATGC 0x00800000
114#define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
115#define F2FS_MOUNT_GC_MERGE 0x02000000
116#define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
117#define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
118
119#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
120#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
121#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
122#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
123
124#define ver_after(a, b) (typecheck(unsigned long long, a) && \
125 typecheck(unsigned long long, b) && \
126 ((long long)((a) - (b)) > 0))
127
128typedef u32 block_t; /*
129 * should not change u32, since it is the on-disk block
130 * address format, __le32.
131 */
132typedef u32 nid_t;
133
134#define COMPRESS_EXT_NUM 16
135
136enum blkzone_allocation_policy {
137 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
138 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
139 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
140};
141
142/*
143 * An implementation of an rwsem that is explicitly unfair to readers. This
144 * prevents priority inversion when a low-priority reader acquires the read lock
145 * while sleeping on the write lock but the write lock is needed by
146 * higher-priority clients.
147 */
148
149struct f2fs_rwsem {
150 struct rw_semaphore internal_rwsem;
151#ifdef CONFIG_F2FS_UNFAIR_RWSEM
152 wait_queue_head_t read_waiters;
153#endif
154};
155
156struct f2fs_mount_info {
157 unsigned int opt;
158 block_t root_reserved_blocks; /* root reserved blocks */
159 kuid_t s_resuid; /* reserved blocks for uid */
160 kgid_t s_resgid; /* reserved blocks for gid */
161 int active_logs; /* # of active logs */
162 int inline_xattr_size; /* inline xattr size */
163#ifdef CONFIG_F2FS_FAULT_INJECTION
164 struct f2fs_fault_info fault_info; /* For fault injection */
165#endif
166#ifdef CONFIG_QUOTA
167 /* Names of quota files with journalled quota */
168 char *s_qf_names[MAXQUOTAS];
169 int s_jquota_fmt; /* Format of quota to use */
170#endif
171 /* For which write hints are passed down to block layer */
172 int alloc_mode; /* segment allocation policy */
173 int fsync_mode; /* fsync policy */
174 int fs_mode; /* fs mode: LFS or ADAPTIVE */
175 int bggc_mode; /* bggc mode: off, on or sync */
176 int memory_mode; /* memory mode */
177 int errors; /* errors parameter */
178 int discard_unit; /*
179 * discard command's offset/size should
180 * be aligned to this unit: block,
181 * segment or section
182 */
183 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
184 block_t unusable_cap_perc; /* percentage for cap */
185 block_t unusable_cap; /* Amount of space allowed to be
186 * unusable when disabling checkpoint
187 */
188
189 /* For compression */
190 unsigned char compress_algorithm; /* algorithm type */
191 unsigned char compress_log_size; /* cluster log size */
192 unsigned char compress_level; /* compress level */
193 bool compress_chksum; /* compressed data chksum */
194 unsigned char compress_ext_cnt; /* extension count */
195 unsigned char nocompress_ext_cnt; /* nocompress extension count */
196 int compress_mode; /* compression mode */
197 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
198 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
199};
200
201#define F2FS_FEATURE_ENCRYPT 0x00000001
202#define F2FS_FEATURE_BLKZONED 0x00000002
203#define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
204#define F2FS_FEATURE_EXTRA_ATTR 0x00000008
205#define F2FS_FEATURE_PRJQUOTA 0x00000010
206#define F2FS_FEATURE_INODE_CHKSUM 0x00000020
207#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
208#define F2FS_FEATURE_QUOTA_INO 0x00000080
209#define F2FS_FEATURE_INODE_CRTIME 0x00000100
210#define F2FS_FEATURE_LOST_FOUND 0x00000200
211#define F2FS_FEATURE_VERITY 0x00000400
212#define F2FS_FEATURE_SB_CHKSUM 0x00000800
213#define F2FS_FEATURE_CASEFOLD 0x00001000
214#define F2FS_FEATURE_COMPRESSION 0x00002000
215#define F2FS_FEATURE_RO 0x00004000
216#define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
217
218#define __F2FS_HAS_FEATURE(raw_super, mask) \
219 ((raw_super->feature & cpu_to_le32(mask)) != 0)
220#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
221
222/*
223 * Default values for user and/or group using reserved blocks
224 */
225#define F2FS_DEF_RESUID 0
226#define F2FS_DEF_RESGID 0
227
228/*
229 * For checkpoint manager
230 */
231enum {
232 NAT_BITMAP,
233 SIT_BITMAP
234};
235
236#define CP_UMOUNT 0x00000001
237#define CP_FASTBOOT 0x00000002
238#define CP_SYNC 0x00000004
239#define CP_RECOVERY 0x00000008
240#define CP_DISCARD 0x00000010
241#define CP_TRIMMED 0x00000020
242#define CP_PAUSE 0x00000040
243#define CP_RESIZE 0x00000080
244
245#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
246#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
247#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
248#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
249#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
250#define DEF_CP_INTERVAL 60 /* 60 secs */
251#define DEF_IDLE_INTERVAL 5 /* 5 secs */
252#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
253#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
254#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
255
256struct cp_control {
257 int reason;
258 __u64 trim_start;
259 __u64 trim_end;
260 __u64 trim_minlen;
261};
262
263/*
264 * indicate meta/data type
265 */
266enum {
267 META_CP,
268 META_NAT,
269 META_SIT,
270 META_SSA,
271 META_MAX,
272 META_POR,
273 DATA_GENERIC, /* check range only */
274 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
275 DATA_GENERIC_ENHANCE_READ, /*
276 * strong check on range and segment
277 * bitmap but no warning due to race
278 * condition of read on truncated area
279 * by extent_cache
280 */
281 DATA_GENERIC_ENHANCE_UPDATE, /*
282 * strong check on range and segment
283 * bitmap for update case
284 */
285 META_GENERIC,
286};
287
288/* for the list of ino */
289enum {
290 ORPHAN_INO, /* for orphan ino list */
291 APPEND_INO, /* for append ino list */
292 UPDATE_INO, /* for update ino list */
293 TRANS_DIR_INO, /* for transactions dir ino list */
294 XATTR_DIR_INO, /* for xattr updated dir ino list */
295 FLUSH_INO, /* for multiple device flushing */
296 MAX_INO_ENTRY, /* max. list */
297};
298
299struct ino_entry {
300 struct list_head list; /* list head */
301 nid_t ino; /* inode number */
302 unsigned int dirty_device; /* dirty device bitmap */
303};
304
305/* for the list of inodes to be GCed */
306struct inode_entry {
307 struct list_head list; /* list head */
308 struct inode *inode; /* vfs inode pointer */
309};
310
311struct fsync_node_entry {
312 struct list_head list; /* list head */
313 struct page *page; /* warm node page pointer */
314 unsigned int seq_id; /* sequence id */
315};
316
317struct ckpt_req {
318 struct completion wait; /* completion for checkpoint done */
319 struct llist_node llnode; /* llist_node to be linked in wait queue */
320 int ret; /* return code of checkpoint */
321 ktime_t queue_time; /* request queued time */
322};
323
324struct ckpt_req_control {
325 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
326 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
327 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
328 atomic_t issued_ckpt; /* # of actually issued ckpts */
329 atomic_t total_ckpt; /* # of total ckpts */
330 atomic_t queued_ckpt; /* # of queued ckpts */
331 struct llist_head issue_list; /* list for command issue */
332 spinlock_t stat_lock; /* lock for below checkpoint time stats */
333 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
334 unsigned int peak_time; /* peak wait time in msec until now */
335};
336
337/* for the bitmap indicate blocks to be discarded */
338struct discard_entry {
339 struct list_head list; /* list head */
340 block_t start_blkaddr; /* start blockaddr of current segment */
341 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
342};
343
344/* minimum discard granularity, unit: block count */
345#define MIN_DISCARD_GRANULARITY 1
346/* default discard granularity of inner discard thread, unit: block count */
347#define DEFAULT_DISCARD_GRANULARITY 16
348/* default maximum discard granularity of ordered discard, unit: block count */
349#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
350
351/* max discard pend list number */
352#define MAX_PLIST_NUM 512
353#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
354 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
355
356enum {
357 D_PREP, /* initial */
358 D_PARTIAL, /* partially submitted */
359 D_SUBMIT, /* all submitted */
360 D_DONE, /* finished */
361};
362
363struct discard_info {
364 block_t lstart; /* logical start address */
365 block_t len; /* length */
366 block_t start; /* actual start address in dev */
367};
368
369struct discard_cmd {
370 struct rb_node rb_node; /* rb node located in rb-tree */
371 struct discard_info di; /* discard info */
372 struct list_head list; /* command list */
373 struct completion wait; /* compleation */
374 struct block_device *bdev; /* bdev */
375 unsigned short ref; /* reference count */
376 unsigned char state; /* state */
377 unsigned char queued; /* queued discard */
378 int error; /* bio error */
379 spinlock_t lock; /* for state/bio_ref updating */
380 unsigned short bio_ref; /* bio reference count */
381};
382
383enum {
384 DPOLICY_BG,
385 DPOLICY_FORCE,
386 DPOLICY_FSTRIM,
387 DPOLICY_UMOUNT,
388 MAX_DPOLICY,
389};
390
391enum {
392 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
393 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
394 DPOLICY_IO_AWARE_MAX,
395};
396
397struct discard_policy {
398 int type; /* type of discard */
399 unsigned int min_interval; /* used for candidates exist */
400 unsigned int mid_interval; /* used for device busy */
401 unsigned int max_interval; /* used for candidates not exist */
402 unsigned int max_requests; /* # of discards issued per round */
403 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
404 bool io_aware; /* issue discard in idle time */
405 bool sync; /* submit discard with REQ_SYNC flag */
406 bool ordered; /* issue discard by lba order */
407 bool timeout; /* discard timeout for put_super */
408 unsigned int granularity; /* discard granularity */
409};
410
411struct discard_cmd_control {
412 struct task_struct *f2fs_issue_discard; /* discard thread */
413 struct list_head entry_list; /* 4KB discard entry list */
414 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
415 struct list_head wait_list; /* store on-flushing entries */
416 struct list_head fstrim_list; /* in-flight discard from fstrim */
417 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
418 struct mutex cmd_lock;
419 unsigned int nr_discards; /* # of discards in the list */
420 unsigned int max_discards; /* max. discards to be issued */
421 unsigned int max_discard_request; /* max. discard request per round */
422 unsigned int min_discard_issue_time; /* min. interval between discard issue */
423 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
424 unsigned int max_discard_issue_time; /* max. interval between discard issue */
425 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
426 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
427 unsigned int discard_granularity; /* discard granularity */
428 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
429 unsigned int discard_io_aware; /* io_aware policy */
430 unsigned int undiscard_blks; /* # of undiscard blocks */
431 unsigned int next_pos; /* next discard position */
432 atomic_t issued_discard; /* # of issued discard */
433 atomic_t queued_discard; /* # of queued discard */
434 atomic_t discard_cmd_cnt; /* # of cached cmd count */
435 struct rb_root_cached root; /* root of discard rb-tree */
436 bool rbtree_check; /* config for consistence check */
437 bool discard_wake; /* to wake up discard thread */
438};
439
440/* for the list of fsync inodes, used only during recovery */
441struct fsync_inode_entry {
442 struct list_head list; /* list head */
443 struct inode *inode; /* vfs inode pointer */
444 block_t blkaddr; /* block address locating the last fsync */
445 block_t last_dentry; /* block address locating the last dentry */
446};
447
448#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
449#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
450
451#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
452#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
453#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
454#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
455
456#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
457#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
458
459static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
460{
461 int before = nats_in_cursum(journal);
462
463 journal->n_nats = cpu_to_le16(before + i);
464 return before;
465}
466
467static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
468{
469 int before = sits_in_cursum(journal);
470
471 journal->n_sits = cpu_to_le16(before + i);
472 return before;
473}
474
475static inline bool __has_cursum_space(struct f2fs_journal *journal,
476 int size, int type)
477{
478 if (type == NAT_JOURNAL)
479 return size <= MAX_NAT_JENTRIES(journal);
480 return size <= MAX_SIT_JENTRIES(journal);
481}
482
483/* for inline stuff */
484#define DEF_INLINE_RESERVED_SIZE 1
485static inline int get_extra_isize(struct inode *inode);
486static inline int get_inline_xattr_addrs(struct inode *inode);
487#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
488 (CUR_ADDRS_PER_INODE(inode) - \
489 get_inline_xattr_addrs(inode) - \
490 DEF_INLINE_RESERVED_SIZE))
491
492/* for inline dir */
493#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
494 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 BITS_PER_BYTE + 1))
496#define INLINE_DENTRY_BITMAP_SIZE(inode) \
497 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
498#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
499 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
500 NR_INLINE_DENTRY(inode) + \
501 INLINE_DENTRY_BITMAP_SIZE(inode)))
502
503/*
504 * For INODE and NODE manager
505 */
506/* for directory operations */
507
508struct f2fs_filename {
509 /*
510 * The filename the user specified. This is NULL for some
511 * filesystem-internal operations, e.g. converting an inline directory
512 * to a non-inline one, or roll-forward recovering an encrypted dentry.
513 */
514 const struct qstr *usr_fname;
515
516 /*
517 * The on-disk filename. For encrypted directories, this is encrypted.
518 * This may be NULL for lookups in an encrypted dir without the key.
519 */
520 struct fscrypt_str disk_name;
521
522 /* The dirhash of this filename */
523 f2fs_hash_t hash;
524
525#ifdef CONFIG_FS_ENCRYPTION
526 /*
527 * For lookups in encrypted directories: either the buffer backing
528 * disk_name, or a buffer that holds the decoded no-key name.
529 */
530 struct fscrypt_str crypto_buf;
531#endif
532#if IS_ENABLED(CONFIG_UNICODE)
533 /*
534 * For casefolded directories: the casefolded name, but it's left NULL
535 * if the original name is not valid Unicode, if the original name is
536 * "." or "..", if the directory is both casefolded and encrypted and
537 * its encryption key is unavailable, or if the filesystem is doing an
538 * internal operation where usr_fname is also NULL. In all these cases
539 * we fall back to treating the name as an opaque byte sequence.
540 */
541 struct qstr cf_name;
542#endif
543};
544
545struct f2fs_dentry_ptr {
546 struct inode *inode;
547 void *bitmap;
548 struct f2fs_dir_entry *dentry;
549 __u8 (*filename)[F2FS_SLOT_LEN];
550 int max;
551 int nr_bitmap;
552};
553
554static inline void make_dentry_ptr_block(struct inode *inode,
555 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
556{
557 d->inode = inode;
558 d->max = NR_DENTRY_IN_BLOCK;
559 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
560 d->bitmap = t->dentry_bitmap;
561 d->dentry = t->dentry;
562 d->filename = t->filename;
563}
564
565static inline void make_dentry_ptr_inline(struct inode *inode,
566 struct f2fs_dentry_ptr *d, void *t)
567{
568 int entry_cnt = NR_INLINE_DENTRY(inode);
569 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
570 int reserved_size = INLINE_RESERVED_SIZE(inode);
571
572 d->inode = inode;
573 d->max = entry_cnt;
574 d->nr_bitmap = bitmap_size;
575 d->bitmap = t;
576 d->dentry = t + bitmap_size + reserved_size;
577 d->filename = t + bitmap_size + reserved_size +
578 SIZE_OF_DIR_ENTRY * entry_cnt;
579}
580
581/*
582 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
583 * as its node offset to distinguish from index node blocks.
584 * But some bits are used to mark the node block.
585 */
586#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
587 >> OFFSET_BIT_SHIFT)
588enum {
589 ALLOC_NODE, /* allocate a new node page if needed */
590 LOOKUP_NODE, /* look up a node without readahead */
591 LOOKUP_NODE_RA, /*
592 * look up a node with readahead called
593 * by get_data_block.
594 */
595};
596
597#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
598
599/* congestion wait timeout value, default: 20ms */
600#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
601
602/* maximum retry quota flush count */
603#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
604
605/* maximum retry of EIO'ed page */
606#define MAX_RETRY_PAGE_EIO 100
607
608#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
609
610#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
611
612/* dirty segments threshold for triggering CP */
613#define DEFAULT_DIRTY_THRESHOLD 4
614
615#define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
616#define RECOVERY_MIN_RA_BLOCKS 1
617
618#define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
619
620/* for in-memory extent cache entry */
621#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
622
623/* number of extent info in extent cache we try to shrink */
624#define READ_EXTENT_CACHE_SHRINK_NUMBER 128
625
626/* number of age extent info in extent cache we try to shrink */
627#define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
628#define LAST_AGE_WEIGHT 30
629#define SAME_AGE_REGION 1024
630
631/*
632 * Define data block with age less than 1GB as hot data
633 * define data block with age less than 10GB but more than 1GB as warm data
634 */
635#define DEF_HOT_DATA_AGE_THRESHOLD 262144
636#define DEF_WARM_DATA_AGE_THRESHOLD 2621440
637
638/* default max read extent count per inode */
639#define DEF_MAX_READ_EXTENT_COUNT 10240
640
641/* extent cache type */
642enum extent_type {
643 EX_READ,
644 EX_BLOCK_AGE,
645 NR_EXTENT_CACHES,
646};
647
648struct extent_info {
649 unsigned int fofs; /* start offset in a file */
650 unsigned int len; /* length of the extent */
651 union {
652 /* read extent_cache */
653 struct {
654 /* start block address of the extent */
655 block_t blk;
656#ifdef CONFIG_F2FS_FS_COMPRESSION
657 /* physical extent length of compressed blocks */
658 unsigned int c_len;
659#endif
660 };
661 /* block age extent_cache */
662 struct {
663 /* block age of the extent */
664 unsigned long long age;
665 /* last total blocks allocated */
666 unsigned long long last_blocks;
667 };
668 };
669};
670
671struct extent_node {
672 struct rb_node rb_node; /* rb node located in rb-tree */
673 struct extent_info ei; /* extent info */
674 struct list_head list; /* node in global extent list of sbi */
675 struct extent_tree *et; /* extent tree pointer */
676};
677
678struct extent_tree {
679 nid_t ino; /* inode number */
680 enum extent_type type; /* keep the extent tree type */
681 struct rb_root_cached root; /* root of extent info rb-tree */
682 struct extent_node *cached_en; /* recently accessed extent node */
683 struct list_head list; /* to be used by sbi->zombie_list */
684 rwlock_t lock; /* protect extent info rb-tree */
685 atomic_t node_cnt; /* # of extent node in rb-tree*/
686 bool largest_updated; /* largest extent updated */
687 struct extent_info largest; /* largest cached extent for EX_READ */
688};
689
690struct extent_tree_info {
691 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
692 struct mutex extent_tree_lock; /* locking extent radix tree */
693 struct list_head extent_list; /* lru list for shrinker */
694 spinlock_t extent_lock; /* locking extent lru list */
695 atomic_t total_ext_tree; /* extent tree count */
696 struct list_head zombie_list; /* extent zombie tree list */
697 atomic_t total_zombie_tree; /* extent zombie tree count */
698 atomic_t total_ext_node; /* extent info count */
699};
700
701/*
702 * State of block returned by f2fs_map_blocks.
703 */
704#define F2FS_MAP_NEW (1U << 0)
705#define F2FS_MAP_MAPPED (1U << 1)
706#define F2FS_MAP_DELALLOC (1U << 2)
707#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
708 F2FS_MAP_DELALLOC)
709
710struct f2fs_map_blocks {
711 struct block_device *m_bdev; /* for multi-device dio */
712 block_t m_pblk;
713 block_t m_lblk;
714 unsigned int m_len;
715 unsigned int m_flags;
716 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
717 pgoff_t *m_next_extent; /* point to next possible extent */
718 int m_seg_type;
719 bool m_may_create; /* indicate it is from write path */
720 bool m_multidev_dio; /* indicate it allows multi-device dio */
721};
722
723/* for flag in get_data_block */
724enum {
725 F2FS_GET_BLOCK_DEFAULT,
726 F2FS_GET_BLOCK_FIEMAP,
727 F2FS_GET_BLOCK_BMAP,
728 F2FS_GET_BLOCK_DIO,
729 F2FS_GET_BLOCK_PRE_DIO,
730 F2FS_GET_BLOCK_PRE_AIO,
731 F2FS_GET_BLOCK_PRECACHE,
732};
733
734/*
735 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
736 */
737#define FADVISE_COLD_BIT 0x01
738#define FADVISE_LOST_PINO_BIT 0x02
739#define FADVISE_ENCRYPT_BIT 0x04
740#define FADVISE_ENC_NAME_BIT 0x08
741#define FADVISE_KEEP_SIZE_BIT 0x10
742#define FADVISE_HOT_BIT 0x20
743#define FADVISE_VERITY_BIT 0x40
744#define FADVISE_TRUNC_BIT 0x80
745
746#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
747
748#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
749#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
750#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
751
752#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
753#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
754#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
755
756#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
757#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
758
759#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
760#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
761
762#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
763#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
764
765#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
766#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
767#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
768
769#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
770#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
771
772#define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
773#define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
774#define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
775
776#define DEF_DIR_LEVEL 0
777
778/* used for f2fs_inode_info->flags */
779enum {
780 FI_NEW_INODE, /* indicate newly allocated inode */
781 FI_DIRTY_INODE, /* indicate inode is dirty or not */
782 FI_AUTO_RECOVER, /* indicate inode is recoverable */
783 FI_DIRTY_DIR, /* indicate directory has dirty pages */
784 FI_INC_LINK, /* need to increment i_nlink */
785 FI_ACL_MODE, /* indicate acl mode */
786 FI_NO_ALLOC, /* should not allocate any blocks */
787 FI_FREE_NID, /* free allocated nide */
788 FI_NO_EXTENT, /* not to use the extent cache */
789 FI_INLINE_XATTR, /* used for inline xattr */
790 FI_INLINE_DATA, /* used for inline data*/
791 FI_INLINE_DENTRY, /* used for inline dentry */
792 FI_APPEND_WRITE, /* inode has appended data */
793 FI_UPDATE_WRITE, /* inode has in-place-update data */
794 FI_NEED_IPU, /* used for ipu per file */
795 FI_ATOMIC_FILE, /* indicate atomic file */
796 FI_DATA_EXIST, /* indicate data exists */
797 FI_SKIP_WRITES, /* should skip data page writeback */
798 FI_OPU_WRITE, /* used for opu per file */
799 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
800 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
801 FI_HOT_DATA, /* indicate file is hot */
802 FI_EXTRA_ATTR, /* indicate file has extra attribute */
803 FI_PROJ_INHERIT, /* indicate file inherits projectid */
804 FI_PIN_FILE, /* indicate file should not be gced */
805 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
806 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
807 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
808 FI_MMAP_FILE, /* indicate file was mmapped */
809 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
810 FI_COMPRESS_RELEASED, /* compressed blocks were released */
811 FI_ALIGNED_WRITE, /* enable aligned write */
812 FI_COW_FILE, /* indicate COW file */
813 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
814 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
815 FI_ATOMIC_REPLACE, /* indicate atomic replace */
816 FI_OPENED_FILE, /* indicate file has been opened */
817 FI_MAX, /* max flag, never be used */
818};
819
820struct f2fs_inode_info {
821 struct inode vfs_inode; /* serve a vfs inode */
822 unsigned long i_flags; /* keep an inode flags for ioctl */
823 unsigned char i_advise; /* use to give file attribute hints */
824 unsigned char i_dir_level; /* use for dentry level for large dir */
825 union {
826 unsigned int i_current_depth; /* only for directory depth */
827 unsigned short i_gc_failures; /* for gc failure statistic */
828 };
829 unsigned int i_pino; /* parent inode number */
830 umode_t i_acl_mode; /* keep file acl mode temporarily */
831
832 /* Use below internally in f2fs*/
833 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
834 struct f2fs_rwsem i_sem; /* protect fi info */
835 atomic_t dirty_pages; /* # of dirty pages */
836 f2fs_hash_t chash; /* hash value of given file name */
837 unsigned int clevel; /* maximum level of given file name */
838 struct task_struct *task; /* lookup and create consistency */
839 struct task_struct *cp_task; /* separate cp/wb IO stats*/
840 struct task_struct *wb_task; /* indicate inode is in context of writeback */
841 nid_t i_xattr_nid; /* node id that contains xattrs */
842 loff_t last_disk_size; /* lastly written file size */
843 spinlock_t i_size_lock; /* protect last_disk_size */
844
845#ifdef CONFIG_QUOTA
846 struct dquot __rcu *i_dquot[MAXQUOTAS];
847
848 /* quota space reservation, managed internally by quota code */
849 qsize_t i_reserved_quota;
850#endif
851 struct list_head dirty_list; /* dirty list for dirs and files */
852 struct list_head gdirty_list; /* linked in global dirty list */
853 struct task_struct *atomic_write_task; /* store atomic write task */
854 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
855 /* cached extent_tree entry */
856 union {
857 struct inode *cow_inode; /* copy-on-write inode for atomic write */
858 struct inode *atomic_inode;
859 /* point to atomic_inode, available only for cow_inode */
860 };
861
862 /* avoid racing between foreground op and gc */
863 struct f2fs_rwsem i_gc_rwsem[2];
864 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
865
866 int i_extra_isize; /* size of extra space located in i_addr */
867 kprojid_t i_projid; /* id for project quota */
868 int i_inline_xattr_size; /* inline xattr size */
869 struct timespec64 i_crtime; /* inode creation time */
870 struct timespec64 i_disk_time[3];/* inode disk times */
871
872 /* for file compress */
873 atomic_t i_compr_blocks; /* # of compressed blocks */
874 unsigned char i_compress_algorithm; /* algorithm type */
875 unsigned char i_log_cluster_size; /* log of cluster size */
876 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
877 unsigned char i_compress_flag; /* compress flag */
878 unsigned int i_cluster_size; /* cluster size */
879
880 unsigned int atomic_write_cnt;
881 loff_t original_i_size; /* original i_size before atomic write */
882};
883
884static inline void get_read_extent_info(struct extent_info *ext,
885 struct f2fs_extent *i_ext)
886{
887 ext->fofs = le32_to_cpu(i_ext->fofs);
888 ext->blk = le32_to_cpu(i_ext->blk);
889 ext->len = le32_to_cpu(i_ext->len);
890}
891
892static inline void set_raw_read_extent(struct extent_info *ext,
893 struct f2fs_extent *i_ext)
894{
895 i_ext->fofs = cpu_to_le32(ext->fofs);
896 i_ext->blk = cpu_to_le32(ext->blk);
897 i_ext->len = cpu_to_le32(ext->len);
898}
899
900static inline bool __is_discard_mergeable(struct discard_info *back,
901 struct discard_info *front, unsigned int max_len)
902{
903 return (back->lstart + back->len == front->lstart) &&
904 (back->len + front->len <= max_len);
905}
906
907static inline bool __is_discard_back_mergeable(struct discard_info *cur,
908 struct discard_info *back, unsigned int max_len)
909{
910 return __is_discard_mergeable(back, cur, max_len);
911}
912
913static inline bool __is_discard_front_mergeable(struct discard_info *cur,
914 struct discard_info *front, unsigned int max_len)
915{
916 return __is_discard_mergeable(cur, front, max_len);
917}
918
919/*
920 * For free nid management
921 */
922enum nid_state {
923 FREE_NID, /* newly added to free nid list */
924 PREALLOC_NID, /* it is preallocated */
925 MAX_NID_STATE,
926};
927
928enum nat_state {
929 TOTAL_NAT,
930 DIRTY_NAT,
931 RECLAIMABLE_NAT,
932 MAX_NAT_STATE,
933};
934
935struct f2fs_nm_info {
936 block_t nat_blkaddr; /* base disk address of NAT */
937 nid_t max_nid; /* maximum possible node ids */
938 nid_t available_nids; /* # of available node ids */
939 nid_t next_scan_nid; /* the next nid to be scanned */
940 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
941 unsigned int ram_thresh; /* control the memory footprint */
942 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
943 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
944
945 /* NAT cache management */
946 struct radix_tree_root nat_root;/* root of the nat entry cache */
947 struct radix_tree_root nat_set_root;/* root of the nat set cache */
948 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
949 struct list_head nat_entries; /* cached nat entry list (clean) */
950 spinlock_t nat_list_lock; /* protect clean nat entry list */
951 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
952 unsigned int nat_blocks; /* # of nat blocks */
953
954 /* free node ids management */
955 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
956 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
957 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
958 spinlock_t nid_list_lock; /* protect nid lists ops */
959 struct mutex build_lock; /* lock for build free nids */
960 unsigned char **free_nid_bitmap;
961 unsigned char *nat_block_bitmap;
962 unsigned short *free_nid_count; /* free nid count of NAT block */
963
964 /* for checkpoint */
965 char *nat_bitmap; /* NAT bitmap pointer */
966
967 unsigned int nat_bits_blocks; /* # of nat bits blocks */
968 unsigned char *nat_bits; /* NAT bits blocks */
969 unsigned char *full_nat_bits; /* full NAT pages */
970 unsigned char *empty_nat_bits; /* empty NAT pages */
971#ifdef CONFIG_F2FS_CHECK_FS
972 char *nat_bitmap_mir; /* NAT bitmap mirror */
973#endif
974 int bitmap_size; /* bitmap size */
975};
976
977/*
978 * this structure is used as one of function parameters.
979 * all the information are dedicated to a given direct node block determined
980 * by the data offset in a file.
981 */
982struct dnode_of_data {
983 struct inode *inode; /* vfs inode pointer */
984 struct page *inode_page; /* its inode page, NULL is possible */
985 struct page *node_page; /* cached direct node page */
986 nid_t nid; /* node id of the direct node block */
987 unsigned int ofs_in_node; /* data offset in the node page */
988 bool inode_page_locked; /* inode page is locked or not */
989 bool node_changed; /* is node block changed */
990 char cur_level; /* level of hole node page */
991 char max_level; /* level of current page located */
992 block_t data_blkaddr; /* block address of the node block */
993};
994
995static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
996 struct page *ipage, struct page *npage, nid_t nid)
997{
998 memset(dn, 0, sizeof(*dn));
999 dn->inode = inode;
1000 dn->inode_page = ipage;
1001 dn->node_page = npage;
1002 dn->nid = nid;
1003}
1004
1005/*
1006 * For SIT manager
1007 *
1008 * By default, there are 6 active log areas across the whole main area.
1009 * When considering hot and cold data separation to reduce cleaning overhead,
1010 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1011 * respectively.
1012 * In the current design, you should not change the numbers intentionally.
1013 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1014 * logs individually according to the underlying devices. (default: 6)
1015 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1016 * data and 8 for node logs.
1017 */
1018#define NR_CURSEG_DATA_TYPE (3)
1019#define NR_CURSEG_NODE_TYPE (3)
1020#define NR_CURSEG_INMEM_TYPE (2)
1021#define NR_CURSEG_RO_TYPE (2)
1022#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1023#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1024
1025enum log_type {
1026 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1027 CURSEG_WARM_DATA, /* data blocks */
1028 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1029 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1030 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1031 CURSEG_COLD_NODE, /* indirect node blocks */
1032 NR_PERSISTENT_LOG, /* number of persistent log */
1033 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1034 /* pinned file that needs consecutive block address */
1035 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1036 NO_CHECK_TYPE, /* number of persistent & inmem log */
1037};
1038
1039struct flush_cmd {
1040 struct completion wait;
1041 struct llist_node llnode;
1042 nid_t ino;
1043 int ret;
1044};
1045
1046struct flush_cmd_control {
1047 struct task_struct *f2fs_issue_flush; /* flush thread */
1048 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1049 atomic_t issued_flush; /* # of issued flushes */
1050 atomic_t queued_flush; /* # of queued flushes */
1051 struct llist_head issue_list; /* list for command issue */
1052 struct llist_node *dispatch_list; /* list for command dispatch */
1053};
1054
1055struct f2fs_sm_info {
1056 struct sit_info *sit_info; /* whole segment information */
1057 struct free_segmap_info *free_info; /* free segment information */
1058 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1059 struct curseg_info *curseg_array; /* active segment information */
1060
1061 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1062
1063 block_t seg0_blkaddr; /* block address of 0'th segment */
1064 block_t main_blkaddr; /* start block address of main area */
1065 block_t ssa_blkaddr; /* start block address of SSA area */
1066
1067 unsigned int segment_count; /* total # of segments */
1068 unsigned int main_segments; /* # of segments in main area */
1069 unsigned int reserved_segments; /* # of reserved segments */
1070 unsigned int ovp_segments; /* # of overprovision segments */
1071
1072 /* a threshold to reclaim prefree segments */
1073 unsigned int rec_prefree_segments;
1074
1075 struct list_head sit_entry_set; /* sit entry set list */
1076
1077 unsigned int ipu_policy; /* in-place-update policy */
1078 unsigned int min_ipu_util; /* in-place-update threshold */
1079 unsigned int min_fsync_blocks; /* threshold for fsync */
1080 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1081 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1082 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1083
1084 /* for flush command control */
1085 struct flush_cmd_control *fcc_info;
1086
1087 /* for discard command control */
1088 struct discard_cmd_control *dcc_info;
1089};
1090
1091/*
1092 * For superblock
1093 */
1094/*
1095 * COUNT_TYPE for monitoring
1096 *
1097 * f2fs monitors the number of several block types such as on-writeback,
1098 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1099 */
1100#define WB_DATA_TYPE(p, f) \
1101 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1102enum count_type {
1103 F2FS_DIRTY_DENTS,
1104 F2FS_DIRTY_DATA,
1105 F2FS_DIRTY_QDATA,
1106 F2FS_DIRTY_NODES,
1107 F2FS_DIRTY_META,
1108 F2FS_DIRTY_IMETA,
1109 F2FS_WB_CP_DATA,
1110 F2FS_WB_DATA,
1111 F2FS_RD_DATA,
1112 F2FS_RD_NODE,
1113 F2FS_RD_META,
1114 F2FS_DIO_WRITE,
1115 F2FS_DIO_READ,
1116 NR_COUNT_TYPE,
1117};
1118
1119/*
1120 * The below are the page types of bios used in submit_bio().
1121 * The available types are:
1122 * DATA User data pages. It operates as async mode.
1123 * NODE Node pages. It operates as async mode.
1124 * META FS metadata pages such as SIT, NAT, CP.
1125 * NR_PAGE_TYPE The number of page types.
1126 * META_FLUSH Make sure the previous pages are written
1127 * with waiting the bio's completion
1128 * ... Only can be used with META.
1129 */
1130#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1131#define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1132enum page_type {
1133 DATA = 0,
1134 NODE = 1, /* should not change this */
1135 META,
1136 NR_PAGE_TYPE,
1137 META_FLUSH,
1138 IPU, /* the below types are used by tracepoints only. */
1139 OPU,
1140};
1141
1142enum temp_type {
1143 HOT = 0, /* must be zero for meta bio */
1144 WARM,
1145 COLD,
1146 NR_TEMP_TYPE,
1147};
1148
1149enum need_lock_type {
1150 LOCK_REQ = 0,
1151 LOCK_DONE,
1152 LOCK_RETRY,
1153};
1154
1155enum cp_reason_type {
1156 CP_NO_NEEDED,
1157 CP_NON_REGULAR,
1158 CP_COMPRESSED,
1159 CP_HARDLINK,
1160 CP_SB_NEED_CP,
1161 CP_WRONG_PINO,
1162 CP_NO_SPC_ROLL,
1163 CP_NODE_NEED_CP,
1164 CP_FASTBOOT_MODE,
1165 CP_SPEC_LOG_NUM,
1166 CP_RECOVER_DIR,
1167 CP_XATTR_DIR,
1168};
1169
1170enum iostat_type {
1171 /* WRITE IO */
1172 APP_DIRECT_IO, /* app direct write IOs */
1173 APP_BUFFERED_IO, /* app buffered write IOs */
1174 APP_WRITE_IO, /* app write IOs */
1175 APP_MAPPED_IO, /* app mapped IOs */
1176 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1177 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1178 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1179 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1180 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1181 FS_META_IO, /* meta IOs from kworker/reclaimer */
1182 FS_GC_DATA_IO, /* data IOs from forground gc */
1183 FS_GC_NODE_IO, /* node IOs from forground gc */
1184 FS_CP_DATA_IO, /* data IOs from checkpoint */
1185 FS_CP_NODE_IO, /* node IOs from checkpoint */
1186 FS_CP_META_IO, /* meta IOs from checkpoint */
1187
1188 /* READ IO */
1189 APP_DIRECT_READ_IO, /* app direct read IOs */
1190 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1191 APP_READ_IO, /* app read IOs */
1192 APP_MAPPED_READ_IO, /* app mapped read IOs */
1193 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1194 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1195 FS_DATA_READ_IO, /* data read IOs */
1196 FS_GDATA_READ_IO, /* data read IOs from background gc */
1197 FS_CDATA_READ_IO, /* compressed data read IOs */
1198 FS_NODE_READ_IO, /* node read IOs */
1199 FS_META_READ_IO, /* meta read IOs */
1200
1201 /* other */
1202 FS_DISCARD_IO, /* discard */
1203 FS_FLUSH_IO, /* flush */
1204 FS_ZONE_RESET_IO, /* zone reset */
1205 NR_IO_TYPE,
1206};
1207
1208struct f2fs_io_info {
1209 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1210 nid_t ino; /* inode number */
1211 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1212 enum temp_type temp; /* contains HOT/WARM/COLD */
1213 enum req_op op; /* contains REQ_OP_ */
1214 blk_opf_t op_flags; /* req_flag_bits */
1215 block_t new_blkaddr; /* new block address to be written */
1216 block_t old_blkaddr; /* old block address before Cow */
1217 struct page *page; /* page to be written */
1218 struct page *encrypted_page; /* encrypted page */
1219 struct page *compressed_page; /* compressed page */
1220 struct list_head list; /* serialize IOs */
1221 unsigned int compr_blocks; /* # of compressed block addresses */
1222 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1223 unsigned int version:8; /* version of the node */
1224 unsigned int submitted:1; /* indicate IO submission */
1225 unsigned int in_list:1; /* indicate fio is in io_list */
1226 unsigned int is_por:1; /* indicate IO is from recovery or not */
1227 unsigned int encrypted:1; /* indicate file is encrypted */
1228 unsigned int meta_gc:1; /* require meta inode GC */
1229 enum iostat_type io_type; /* io type */
1230 struct writeback_control *io_wbc; /* writeback control */
1231 struct bio **bio; /* bio for ipu */
1232 sector_t *last_block; /* last block number in bio */
1233};
1234
1235struct bio_entry {
1236 struct bio *bio;
1237 struct list_head list;
1238};
1239
1240#define is_read_io(rw) ((rw) == READ)
1241struct f2fs_bio_info {
1242 struct f2fs_sb_info *sbi; /* f2fs superblock */
1243 struct bio *bio; /* bios to merge */
1244 sector_t last_block_in_bio; /* last block number */
1245 struct f2fs_io_info fio; /* store buffered io info. */
1246#ifdef CONFIG_BLK_DEV_ZONED
1247 struct completion zone_wait; /* condition value for the previous open zone to close */
1248 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1249 void *bi_private; /* previous bi_private for pending bio */
1250#endif
1251 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1252 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1253 struct list_head io_list; /* track fios */
1254 struct list_head bio_list; /* bio entry list head */
1255 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1256};
1257
1258#define FDEV(i) (sbi->devs[i])
1259#define RDEV(i) (raw_super->devs[i])
1260struct f2fs_dev_info {
1261 struct file *bdev_file;
1262 struct block_device *bdev;
1263 char path[MAX_PATH_LEN];
1264 unsigned int total_segments;
1265 block_t start_blk;
1266 block_t end_blk;
1267#ifdef CONFIG_BLK_DEV_ZONED
1268 unsigned int nr_blkz; /* Total number of zones */
1269 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1270#endif
1271};
1272
1273enum inode_type {
1274 DIR_INODE, /* for dirty dir inode */
1275 FILE_INODE, /* for dirty regular/symlink inode */
1276 DIRTY_META, /* for all dirtied inode metadata */
1277 NR_INODE_TYPE,
1278};
1279
1280/* for inner inode cache management */
1281struct inode_management {
1282 struct radix_tree_root ino_root; /* ino entry array */
1283 spinlock_t ino_lock; /* for ino entry lock */
1284 struct list_head ino_list; /* inode list head */
1285 unsigned long ino_num; /* number of entries */
1286};
1287
1288/* for GC_AT */
1289struct atgc_management {
1290 bool atgc_enabled; /* ATGC is enabled or not */
1291 struct rb_root_cached root; /* root of victim rb-tree */
1292 struct list_head victim_list; /* linked with all victim entries */
1293 unsigned int victim_count; /* victim count in rb-tree */
1294 unsigned int candidate_ratio; /* candidate ratio */
1295 unsigned int max_candidate_count; /* max candidate count */
1296 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1297 unsigned long long age_threshold; /* age threshold */
1298};
1299
1300struct f2fs_gc_control {
1301 unsigned int victim_segno; /* target victim segment number */
1302 int init_gc_type; /* FG_GC or BG_GC */
1303 bool no_bg_gc; /* check the space and stop bg_gc */
1304 bool should_migrate_blocks; /* should migrate blocks */
1305 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1306 bool one_time; /* require one time GC in one migration unit */
1307 unsigned int nr_free_secs; /* # of free sections to do GC */
1308};
1309
1310/*
1311 * For s_flag in struct f2fs_sb_info
1312 * Modification on enum should be synchronized with s_flag array
1313 */
1314enum {
1315 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1316 SBI_IS_CLOSE, /* specify unmounting */
1317 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1318 SBI_POR_DOING, /* recovery is doing or not */
1319 SBI_NEED_SB_WRITE, /* need to recover superblock */
1320 SBI_NEED_CP, /* need to checkpoint */
1321 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1322 SBI_IS_RECOVERED, /* recovered orphan/data */
1323 SBI_CP_DISABLED, /* CP was disabled last mount */
1324 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1325 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1326 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1327 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1328 SBI_IS_RESIZEFS, /* resizefs is in process */
1329 SBI_IS_FREEZING, /* freezefs is in process */
1330 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1331 MAX_SBI_FLAG,
1332};
1333
1334enum {
1335 CP_TIME,
1336 REQ_TIME,
1337 DISCARD_TIME,
1338 GC_TIME,
1339 DISABLE_TIME,
1340 UMOUNT_DISCARD_TIMEOUT,
1341 MAX_TIME,
1342};
1343
1344/* Note that you need to keep synchronization with this gc_mode_names array */
1345enum {
1346 GC_NORMAL,
1347 GC_IDLE_CB,
1348 GC_IDLE_GREEDY,
1349 GC_IDLE_AT,
1350 GC_URGENT_HIGH,
1351 GC_URGENT_LOW,
1352 GC_URGENT_MID,
1353 MAX_GC_MODE,
1354};
1355
1356enum {
1357 BGGC_MODE_ON, /* background gc is on */
1358 BGGC_MODE_OFF, /* background gc is off */
1359 BGGC_MODE_SYNC, /*
1360 * background gc is on, migrating blocks
1361 * like foreground gc
1362 */
1363};
1364
1365enum {
1366 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1367 FS_MODE_LFS, /* use lfs allocation only */
1368 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1369 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1370};
1371
1372enum {
1373 ALLOC_MODE_DEFAULT, /* stay default */
1374 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1375};
1376
1377enum fsync_mode {
1378 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1379 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1380 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1381};
1382
1383enum {
1384 COMPR_MODE_FS, /*
1385 * automatically compress compression
1386 * enabled files
1387 */
1388 COMPR_MODE_USER, /*
1389 * automatical compression is disabled.
1390 * user can control the file compression
1391 * using ioctls
1392 */
1393};
1394
1395enum {
1396 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1397 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1398 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1399};
1400
1401enum {
1402 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1403 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1404};
1405
1406enum errors_option {
1407 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1408 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1409 MOUNT_ERRORS_PANIC, /* panic on errors */
1410};
1411
1412enum {
1413 BACKGROUND,
1414 FOREGROUND,
1415 MAX_CALL_TYPE,
1416 TOTAL_CALL = FOREGROUND,
1417};
1418
1419static inline int f2fs_test_bit(unsigned int nr, char *addr);
1420static inline void f2fs_set_bit(unsigned int nr, char *addr);
1421static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1422
1423/*
1424 * Layout of f2fs page.private:
1425 *
1426 * Layout A: lowest bit should be 1
1427 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1428 * bit 0 PAGE_PRIVATE_NOT_POINTER
1429 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1430 * bit 2 PAGE_PRIVATE_INLINE_INODE
1431 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1432 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1433 * bit 5- f2fs private data
1434 *
1435 * Layout B: lowest bit should be 0
1436 * page.private is a wrapped pointer.
1437 */
1438enum {
1439 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1440 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1441 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1442 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1443 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1444 PAGE_PRIVATE_MAX
1445};
1446
1447/* For compression */
1448enum compress_algorithm_type {
1449 COMPRESS_LZO,
1450 COMPRESS_LZ4,
1451 COMPRESS_ZSTD,
1452 COMPRESS_LZORLE,
1453 COMPRESS_MAX,
1454};
1455
1456enum compress_flag {
1457 COMPRESS_CHKSUM,
1458 COMPRESS_MAX_FLAG,
1459};
1460
1461#define COMPRESS_WATERMARK 20
1462#define COMPRESS_PERCENT 20
1463
1464#define COMPRESS_DATA_RESERVED_SIZE 4
1465struct compress_data {
1466 __le32 clen; /* compressed data size */
1467 __le32 chksum; /* compressed data chksum */
1468 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1469 u8 cdata[]; /* compressed data */
1470};
1471
1472#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1473
1474#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1475
1476#define F2FS_ZSTD_DEFAULT_CLEVEL 1
1477
1478#define COMPRESS_LEVEL_OFFSET 8
1479
1480/* compress context */
1481struct compress_ctx {
1482 struct inode *inode; /* inode the context belong to */
1483 pgoff_t cluster_idx; /* cluster index number */
1484 unsigned int cluster_size; /* page count in cluster */
1485 unsigned int log_cluster_size; /* log of cluster size */
1486 struct page **rpages; /* pages store raw data in cluster */
1487 unsigned int nr_rpages; /* total page number in rpages */
1488 struct page **cpages; /* pages store compressed data in cluster */
1489 unsigned int nr_cpages; /* total page number in cpages */
1490 unsigned int valid_nr_cpages; /* valid page number in cpages */
1491 void *rbuf; /* virtual mapped address on rpages */
1492 struct compress_data *cbuf; /* virtual mapped address on cpages */
1493 size_t rlen; /* valid data length in rbuf */
1494 size_t clen; /* valid data length in cbuf */
1495 void *private; /* payload buffer for specified compression algorithm */
1496 void *private2; /* extra payload buffer */
1497};
1498
1499/* compress context for write IO path */
1500struct compress_io_ctx {
1501 u32 magic; /* magic number to indicate page is compressed */
1502 struct inode *inode; /* inode the context belong to */
1503 struct page **rpages; /* pages store raw data in cluster */
1504 unsigned int nr_rpages; /* total page number in rpages */
1505 atomic_t pending_pages; /* in-flight compressed page count */
1506};
1507
1508/* Context for decompressing one cluster on the read IO path */
1509struct decompress_io_ctx {
1510 u32 magic; /* magic number to indicate page is compressed */
1511 struct inode *inode; /* inode the context belong to */
1512 pgoff_t cluster_idx; /* cluster index number */
1513 unsigned int cluster_size; /* page count in cluster */
1514 unsigned int log_cluster_size; /* log of cluster size */
1515 struct page **rpages; /* pages store raw data in cluster */
1516 unsigned int nr_rpages; /* total page number in rpages */
1517 struct page **cpages; /* pages store compressed data in cluster */
1518 unsigned int nr_cpages; /* total page number in cpages */
1519 struct page **tpages; /* temp pages to pad holes in cluster */
1520 void *rbuf; /* virtual mapped address on rpages */
1521 struct compress_data *cbuf; /* virtual mapped address on cpages */
1522 size_t rlen; /* valid data length in rbuf */
1523 size_t clen; /* valid data length in cbuf */
1524
1525 /*
1526 * The number of compressed pages remaining to be read in this cluster.
1527 * This is initially nr_cpages. It is decremented by 1 each time a page
1528 * has been read (or failed to be read). When it reaches 0, the cluster
1529 * is decompressed (or an error is reported).
1530 *
1531 * If an error occurs before all the pages have been submitted for I/O,
1532 * then this will never reach 0. In this case the I/O submitter is
1533 * responsible for calling f2fs_decompress_end_io() instead.
1534 */
1535 atomic_t remaining_pages;
1536
1537 /*
1538 * Number of references to this decompress_io_ctx.
1539 *
1540 * One reference is held for I/O completion. This reference is dropped
1541 * after the pagecache pages are updated and unlocked -- either after
1542 * decompression (and verity if enabled), or after an error.
1543 *
1544 * In addition, each compressed page holds a reference while it is in a
1545 * bio. These references are necessary prevent compressed pages from
1546 * being freed while they are still in a bio.
1547 */
1548 refcount_t refcnt;
1549
1550 bool failed; /* IO error occurred before decompression? */
1551 bool need_verity; /* need fs-verity verification after decompression? */
1552 void *private; /* payload buffer for specified decompression algorithm */
1553 void *private2; /* extra payload buffer */
1554 struct work_struct verity_work; /* work to verify the decompressed pages */
1555 struct work_struct free_work; /* work for late free this structure itself */
1556};
1557
1558#define NULL_CLUSTER ((unsigned int)(~0))
1559#define MIN_COMPRESS_LOG_SIZE 2
1560#define MAX_COMPRESS_LOG_SIZE 8
1561#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1562
1563struct f2fs_sb_info {
1564 struct super_block *sb; /* pointer to VFS super block */
1565 struct proc_dir_entry *s_proc; /* proc entry */
1566 struct f2fs_super_block *raw_super; /* raw super block pointer */
1567 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1568 int valid_super_block; /* valid super block no */
1569 unsigned long s_flag; /* flags for sbi */
1570 struct mutex writepages; /* mutex for writepages() */
1571
1572#ifdef CONFIG_BLK_DEV_ZONED
1573 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1574 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1575 /* For adjust the priority writing position of data in zone UFS */
1576 unsigned int blkzone_alloc_policy;
1577#endif
1578
1579 /* for node-related operations */
1580 struct f2fs_nm_info *nm_info; /* node manager */
1581 struct inode *node_inode; /* cache node blocks */
1582
1583 /* for segment-related operations */
1584 struct f2fs_sm_info *sm_info; /* segment manager */
1585
1586 /* for bio operations */
1587 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1588 /* keep migration IO order for LFS mode */
1589 struct f2fs_rwsem io_order_lock;
1590 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1591 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1592
1593 /* for checkpoint */
1594 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1595 int cur_cp_pack; /* remain current cp pack */
1596 spinlock_t cp_lock; /* for flag in ckpt */
1597 struct inode *meta_inode; /* cache meta blocks */
1598 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1599 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1600 struct f2fs_rwsem node_write; /* locking node writes */
1601 struct f2fs_rwsem node_change; /* locking node change */
1602 wait_queue_head_t cp_wait;
1603 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1604 long interval_time[MAX_TIME]; /* to store thresholds */
1605 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1606
1607 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1608
1609 spinlock_t fsync_node_lock; /* for node entry lock */
1610 struct list_head fsync_node_list; /* node list head */
1611 unsigned int fsync_seg_id; /* sequence id */
1612 unsigned int fsync_node_num; /* number of node entries */
1613
1614 /* for orphan inode, use 0'th array */
1615 unsigned int max_orphans; /* max orphan inodes */
1616
1617 /* for inode management */
1618 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1619 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1620 struct mutex flush_lock; /* for flush exclusion */
1621
1622 /* for extent tree cache */
1623 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1624 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1625 unsigned int max_read_extent_count; /* max read extent count per inode */
1626
1627 /* The threshold used for hot and warm data seperation*/
1628 unsigned int hot_data_age_threshold;
1629 unsigned int warm_data_age_threshold;
1630 unsigned int last_age_weight;
1631
1632 /* basic filesystem units */
1633 unsigned int log_sectors_per_block; /* log2 sectors per block */
1634 unsigned int log_blocksize; /* log2 block size */
1635 unsigned int blocksize; /* block size */
1636 unsigned int root_ino_num; /* root inode number*/
1637 unsigned int node_ino_num; /* node inode number*/
1638 unsigned int meta_ino_num; /* meta inode number*/
1639 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1640 unsigned int blocks_per_seg; /* blocks per segment */
1641 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1642 unsigned int segs_per_sec; /* segments per section */
1643 unsigned int secs_per_zone; /* sections per zone */
1644 unsigned int total_sections; /* total section count */
1645 unsigned int total_node_count; /* total node block count */
1646 unsigned int total_valid_node_count; /* valid node block count */
1647 int dir_level; /* directory level */
1648 bool readdir_ra; /* readahead inode in readdir */
1649 u64 max_io_bytes; /* max io bytes to merge IOs */
1650
1651 block_t user_block_count; /* # of user blocks */
1652 block_t total_valid_block_count; /* # of valid blocks */
1653 block_t discard_blks; /* discard command candidats */
1654 block_t last_valid_block_count; /* for recovery */
1655 block_t reserved_blocks; /* configurable reserved blocks */
1656 block_t current_reserved_blocks; /* current reserved blocks */
1657
1658 /* Additional tracking for no checkpoint mode */
1659 block_t unusable_block_count; /* # of blocks saved by last cp */
1660
1661 unsigned int nquota_files; /* # of quota sysfile */
1662 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1663
1664 /* # of pages, see count_type */
1665 atomic_t nr_pages[NR_COUNT_TYPE];
1666 /* # of allocated blocks */
1667 struct percpu_counter alloc_valid_block_count;
1668 /* # of node block writes as roll forward recovery */
1669 struct percpu_counter rf_node_block_count;
1670
1671 /* writeback control */
1672 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1673
1674 /* valid inode count */
1675 struct percpu_counter total_valid_inode_count;
1676
1677 struct f2fs_mount_info mount_opt; /* mount options */
1678
1679 /* for cleaning operations */
1680 struct f2fs_rwsem gc_lock; /*
1681 * semaphore for GC, avoid
1682 * race between GC and GC or CP
1683 */
1684 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1685 struct atgc_management am; /* atgc management */
1686 unsigned int cur_victim_sec; /* current victim section num */
1687 unsigned int gc_mode; /* current GC state */
1688 unsigned int next_victim_seg[2]; /* next segment in victim section */
1689 spinlock_t gc_remaining_trials_lock;
1690 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1691 unsigned int gc_remaining_trials;
1692
1693 /* for skip statistic */
1694 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1695
1696 /* threshold for gc trials on pinned files */
1697 unsigned short gc_pin_file_threshold;
1698 struct f2fs_rwsem pin_sem;
1699
1700 /* maximum # of trials to find a victim segment for SSR and GC */
1701 unsigned int max_victim_search;
1702 /* migration granularity of garbage collection, unit: segment */
1703 unsigned int migration_granularity;
1704 /* migration window granularity of garbage collection, unit: segment */
1705 unsigned int migration_window_granularity;
1706
1707 /*
1708 * for stat information.
1709 * one is for the LFS mode, and the other is for the SSR mode.
1710 */
1711#ifdef CONFIG_F2FS_STAT_FS
1712 struct f2fs_stat_info *stat_info; /* FS status information */
1713 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1714 unsigned int segment_count[2]; /* # of allocated segments */
1715 unsigned int block_count[2]; /* # of allocated blocks */
1716 atomic_t inplace_count; /* # of inplace update */
1717 /* # of lookup extent cache */
1718 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1719 /* # of hit rbtree extent node */
1720 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1721 /* # of hit cached extent node */
1722 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1723 /* # of hit largest extent node in read extent cache */
1724 atomic64_t read_hit_largest;
1725 atomic_t inline_xattr; /* # of inline_xattr inodes */
1726 atomic_t inline_inode; /* # of inline_data inodes */
1727 atomic_t inline_dir; /* # of inline_dentry inodes */
1728 atomic_t compr_inode; /* # of compressed inodes */
1729 atomic64_t compr_blocks; /* # of compressed blocks */
1730 atomic_t swapfile_inode; /* # of swapfile inodes */
1731 atomic_t atomic_files; /* # of opened atomic file */
1732 atomic_t max_aw_cnt; /* max # of atomic writes */
1733 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1734 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1735 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1736 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1737#endif
1738 spinlock_t stat_lock; /* lock for stat operations */
1739
1740 /* to attach REQ_META|REQ_FUA flags */
1741 unsigned int data_io_flag;
1742 unsigned int node_io_flag;
1743
1744 /* For sysfs support */
1745 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1746 struct completion s_kobj_unregister;
1747
1748 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1749 struct completion s_stat_kobj_unregister;
1750
1751 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1752 struct completion s_feature_list_kobj_unregister;
1753
1754 /* For shrinker support */
1755 struct list_head s_list;
1756 struct mutex umount_mutex;
1757 unsigned int shrinker_run_no;
1758
1759 /* For multi devices */
1760 int s_ndevs; /* number of devices */
1761 struct f2fs_dev_info *devs; /* for device list */
1762 unsigned int dirty_device; /* for checkpoint data flush */
1763 spinlock_t dev_lock; /* protect dirty_device */
1764 bool aligned_blksize; /* all devices has the same logical blksize */
1765 unsigned int first_zoned_segno; /* first zoned segno */
1766
1767 /* For write statistics */
1768 u64 sectors_written_start;
1769 u64 kbytes_written;
1770
1771 /* Reference to checksum algorithm driver via cryptoapi */
1772 struct crypto_shash *s_chksum_driver;
1773
1774 /* Precomputed FS UUID checksum for seeding other checksums */
1775 __u32 s_chksum_seed;
1776
1777 struct workqueue_struct *post_read_wq; /* post read workqueue */
1778
1779 /*
1780 * If we are in irq context, let's update error information into
1781 * on-disk superblock in the work.
1782 */
1783 struct work_struct s_error_work;
1784 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1785 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1786 spinlock_t error_lock; /* protect errors/stop_reason array */
1787 bool error_dirty; /* errors of sb is dirty */
1788
1789 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1790 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1791
1792 /* For reclaimed segs statistics per each GC mode */
1793 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1794 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1795
1796 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1797
1798 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1799 int max_fragment_hole; /* max hole size for block fragmentation mode */
1800
1801 /* For atomic write statistics */
1802 atomic64_t current_atomic_write;
1803 s64 peak_atomic_write;
1804 u64 committed_atomic_block;
1805 u64 revoked_atomic_block;
1806
1807#ifdef CONFIG_F2FS_FS_COMPRESSION
1808 struct kmem_cache *page_array_slab; /* page array entry */
1809 unsigned int page_array_slab_size; /* default page array slab size */
1810
1811 /* For runtime compression statistics */
1812 u64 compr_written_block;
1813 u64 compr_saved_block;
1814 u32 compr_new_inode;
1815
1816 /* For compressed block cache */
1817 struct inode *compress_inode; /* cache compressed blocks */
1818 unsigned int compress_percent; /* cache page percentage */
1819 unsigned int compress_watermark; /* cache page watermark */
1820 atomic_t compress_page_hit; /* cache hit count */
1821#endif
1822
1823#ifdef CONFIG_F2FS_IOSTAT
1824 /* For app/fs IO statistics */
1825 spinlock_t iostat_lock;
1826 unsigned long long iostat_count[NR_IO_TYPE];
1827 unsigned long long iostat_bytes[NR_IO_TYPE];
1828 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1829 bool iostat_enable;
1830 unsigned long iostat_next_period;
1831 unsigned int iostat_period_ms;
1832
1833 /* For io latency related statistics info in one iostat period */
1834 spinlock_t iostat_lat_lock;
1835 struct iostat_lat_info *iostat_io_lat;
1836#endif
1837};
1838
1839/* Definitions to access f2fs_sb_info */
1840#define SEGS_TO_BLKS(sbi, segs) \
1841 ((segs) << (sbi)->log_blocks_per_seg)
1842#define BLKS_TO_SEGS(sbi, blks) \
1843 ((blks) >> (sbi)->log_blocks_per_seg)
1844
1845#define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1846#define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1847#define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1848
1849__printf(3, 4)
1850void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1851
1852#define f2fs_err(sbi, fmt, ...) \
1853 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1854#define f2fs_warn(sbi, fmt, ...) \
1855 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1856#define f2fs_notice(sbi, fmt, ...) \
1857 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1858#define f2fs_info(sbi, fmt, ...) \
1859 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1860#define f2fs_debug(sbi, fmt, ...) \
1861 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1862
1863#define f2fs_err_ratelimited(sbi, fmt, ...) \
1864 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1865#define f2fs_warn_ratelimited(sbi, fmt, ...) \
1866 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1867#define f2fs_info_ratelimited(sbi, fmt, ...) \
1868 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1869
1870#ifdef CONFIG_F2FS_FAULT_INJECTION
1871#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1872 __builtin_return_address(0))
1873static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1874 const char *func, const char *parent_func)
1875{
1876 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1877
1878 if (!ffi->inject_rate)
1879 return false;
1880
1881 if (!IS_FAULT_SET(ffi, type))
1882 return false;
1883
1884 atomic_inc(&ffi->inject_ops);
1885 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1886 atomic_set(&ffi->inject_ops, 0);
1887 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1888 f2fs_fault_name[type], func, parent_func);
1889 return true;
1890 }
1891 return false;
1892}
1893#else
1894static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1895{
1896 return false;
1897}
1898#endif
1899
1900/*
1901 * Test if the mounted volume is a multi-device volume.
1902 * - For a single regular disk volume, sbi->s_ndevs is 0.
1903 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1904 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1905 */
1906static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1907{
1908 return sbi->s_ndevs > 1;
1909}
1910
1911static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1912{
1913 unsigned long now = jiffies;
1914
1915 sbi->last_time[type] = now;
1916
1917 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1918 if (type == REQ_TIME) {
1919 sbi->last_time[DISCARD_TIME] = now;
1920 sbi->last_time[GC_TIME] = now;
1921 }
1922}
1923
1924static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1925{
1926 unsigned long interval = sbi->interval_time[type] * HZ;
1927
1928 return time_after(jiffies, sbi->last_time[type] + interval);
1929}
1930
1931static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1932 int type)
1933{
1934 unsigned long interval = sbi->interval_time[type] * HZ;
1935 unsigned int wait_ms = 0;
1936 long delta;
1937
1938 delta = (sbi->last_time[type] + interval) - jiffies;
1939 if (delta > 0)
1940 wait_ms = jiffies_to_msecs(delta);
1941
1942 return wait_ms;
1943}
1944
1945/*
1946 * Inline functions
1947 */
1948static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1949 const void *address, unsigned int length)
1950{
1951 struct {
1952 struct shash_desc shash;
1953 char ctx[4];
1954 } desc;
1955 int err;
1956
1957 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1958
1959 desc.shash.tfm = sbi->s_chksum_driver;
1960 *(u32 *)desc.ctx = crc;
1961
1962 err = crypto_shash_update(&desc.shash, address, length);
1963 BUG_ON(err);
1964
1965 return *(u32 *)desc.ctx;
1966}
1967
1968static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1969 unsigned int length)
1970{
1971 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1972}
1973
1974static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1975 void *buf, size_t buf_size)
1976{
1977 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1978}
1979
1980static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1981 const void *address, unsigned int length)
1982{
1983 return __f2fs_crc32(sbi, crc, address, length);
1984}
1985
1986static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1987{
1988 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1989}
1990
1991static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1992{
1993 return sb->s_fs_info;
1994}
1995
1996static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1997{
1998 return F2FS_SB(inode->i_sb);
1999}
2000
2001static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2002{
2003 return F2FS_I_SB(mapping->host);
2004}
2005
2006static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2007{
2008 return F2FS_M_SB(page_file_mapping(page));
2009}
2010
2011static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2012{
2013 return (struct f2fs_super_block *)(sbi->raw_super);
2014}
2015
2016static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2017 pgoff_t index)
2018{
2019 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2020
2021 return (struct f2fs_super_block *)
2022 (page_address(folio_page(folio, idx_in_folio)) +
2023 F2FS_SUPER_OFFSET);
2024}
2025
2026static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2027{
2028 return (struct f2fs_checkpoint *)(sbi->ckpt);
2029}
2030
2031static inline struct f2fs_node *F2FS_NODE(struct page *page)
2032{
2033 return (struct f2fs_node *)page_address(page);
2034}
2035
2036static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2037{
2038 return &((struct f2fs_node *)page_address(page))->i;
2039}
2040
2041static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2042{
2043 return (struct f2fs_nm_info *)(sbi->nm_info);
2044}
2045
2046static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2047{
2048 return (struct f2fs_sm_info *)(sbi->sm_info);
2049}
2050
2051static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2052{
2053 return (struct sit_info *)(SM_I(sbi)->sit_info);
2054}
2055
2056static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2057{
2058 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2059}
2060
2061static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2062{
2063 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2064}
2065
2066static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2067{
2068 return sbi->meta_inode->i_mapping;
2069}
2070
2071static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2072{
2073 return sbi->node_inode->i_mapping;
2074}
2075
2076static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2077{
2078 return test_bit(type, &sbi->s_flag);
2079}
2080
2081static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082{
2083 set_bit(type, &sbi->s_flag);
2084}
2085
2086static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2087{
2088 clear_bit(type, &sbi->s_flag);
2089}
2090
2091static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2092{
2093 return le64_to_cpu(cp->checkpoint_ver);
2094}
2095
2096static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2097{
2098 if (type < F2FS_MAX_QUOTAS)
2099 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2100 return 0;
2101}
2102
2103static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2104{
2105 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2106 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2107}
2108
2109static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110{
2111 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2112
2113 return ckpt_flags & f;
2114}
2115
2116static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2117{
2118 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2119}
2120
2121static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2122{
2123 unsigned int ckpt_flags;
2124
2125 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2126 ckpt_flags |= f;
2127 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2128}
2129
2130static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2131{
2132 unsigned long flags;
2133
2134 spin_lock_irqsave(&sbi->cp_lock, flags);
2135 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2136 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2137}
2138
2139static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2140{
2141 unsigned int ckpt_flags;
2142
2143 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2144 ckpt_flags &= (~f);
2145 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2146}
2147
2148static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2149{
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(&sbi->cp_lock, flags);
2153 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2154 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2155}
2156
2157#define init_f2fs_rwsem(sem) \
2158do { \
2159 static struct lock_class_key __key; \
2160 \
2161 __init_f2fs_rwsem((sem), #sem, &__key); \
2162} while (0)
2163
2164static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2165 const char *sem_name, struct lock_class_key *key)
2166{
2167 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2168#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2169 init_waitqueue_head(&sem->read_waiters);
2170#endif
2171}
2172
2173static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2174{
2175 return rwsem_is_locked(&sem->internal_rwsem);
2176}
2177
2178static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2179{
2180 return rwsem_is_contended(&sem->internal_rwsem);
2181}
2182
2183static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2184{
2185#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2186 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2187#else
2188 down_read(&sem->internal_rwsem);
2189#endif
2190}
2191
2192static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2193{
2194 return down_read_trylock(&sem->internal_rwsem);
2195}
2196
2197static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2198{
2199 up_read(&sem->internal_rwsem);
2200}
2201
2202static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2203{
2204 down_write(&sem->internal_rwsem);
2205}
2206
2207#ifdef CONFIG_DEBUG_LOCK_ALLOC
2208static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2209{
2210 down_read_nested(&sem->internal_rwsem, subclass);
2211}
2212
2213static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2214{
2215 down_write_nested(&sem->internal_rwsem, subclass);
2216}
2217#else
2218#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2219#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2220#endif
2221
2222static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2223{
2224 return down_write_trylock(&sem->internal_rwsem);
2225}
2226
2227static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2228{
2229 up_write(&sem->internal_rwsem);
2230#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2231 wake_up_all(&sem->read_waiters);
2232#endif
2233}
2234
2235static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2236{
2237 f2fs_down_read(&sbi->cp_rwsem);
2238}
2239
2240static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2241{
2242 if (time_to_inject(sbi, FAULT_LOCK_OP))
2243 return 0;
2244 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2245}
2246
2247static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2248{
2249 f2fs_up_read(&sbi->cp_rwsem);
2250}
2251
2252static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2253{
2254 f2fs_down_write(&sbi->cp_rwsem);
2255}
2256
2257static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2258{
2259 f2fs_up_write(&sbi->cp_rwsem);
2260}
2261
2262static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2263{
2264 int reason = CP_SYNC;
2265
2266 if (test_opt(sbi, FASTBOOT))
2267 reason = CP_FASTBOOT;
2268 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2269 reason = CP_UMOUNT;
2270 return reason;
2271}
2272
2273static inline bool __remain_node_summaries(int reason)
2274{
2275 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2276}
2277
2278static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2279{
2280 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2281 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2282}
2283
2284/*
2285 * Check whether the inode has blocks or not
2286 */
2287static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2288{
2289 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2290
2291 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2292}
2293
2294static inline bool f2fs_has_xattr_block(unsigned int ofs)
2295{
2296 return ofs == XATTR_NODE_OFFSET;
2297}
2298
2299static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2300 struct inode *inode, bool cap)
2301{
2302 if (!inode)
2303 return true;
2304 if (!test_opt(sbi, RESERVE_ROOT))
2305 return false;
2306 if (IS_NOQUOTA(inode))
2307 return true;
2308 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2309 return true;
2310 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2311 in_group_p(F2FS_OPTION(sbi).s_resgid))
2312 return true;
2313 if (cap && capable(CAP_SYS_RESOURCE))
2314 return true;
2315 return false;
2316}
2317
2318static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2319 struct inode *inode, bool cap)
2320{
2321 block_t avail_user_block_count;
2322
2323 avail_user_block_count = sbi->user_block_count -
2324 sbi->current_reserved_blocks;
2325
2326 if (!__allow_reserved_blocks(sbi, inode, cap))
2327 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2328
2329 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 if (avail_user_block_count > sbi->unusable_block_count)
2331 avail_user_block_count -= sbi->unusable_block_count;
2332 else
2333 avail_user_block_count = 0;
2334 }
2335
2336 return avail_user_block_count;
2337}
2338
2339static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2340static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2341 struct inode *inode, blkcnt_t *count, bool partial)
2342{
2343 long long diff = 0, release = 0;
2344 block_t avail_user_block_count;
2345 int ret;
2346
2347 ret = dquot_reserve_block(inode, *count);
2348 if (ret)
2349 return ret;
2350
2351 if (time_to_inject(sbi, FAULT_BLOCK)) {
2352 release = *count;
2353 goto release_quota;
2354 }
2355
2356 /*
2357 * let's increase this in prior to actual block count change in order
2358 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2359 */
2360 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2361
2362 spin_lock(&sbi->stat_lock);
2363
2364 avail_user_block_count = get_available_block_count(sbi, inode, true);
2365 diff = (long long)sbi->total_valid_block_count + *count -
2366 avail_user_block_count;
2367 if (unlikely(diff > 0)) {
2368 if (!partial) {
2369 spin_unlock(&sbi->stat_lock);
2370 release = *count;
2371 goto enospc;
2372 }
2373 if (diff > *count)
2374 diff = *count;
2375 *count -= diff;
2376 release = diff;
2377 if (!*count) {
2378 spin_unlock(&sbi->stat_lock);
2379 goto enospc;
2380 }
2381 }
2382 sbi->total_valid_block_count += (block_t)(*count);
2383
2384 spin_unlock(&sbi->stat_lock);
2385
2386 if (unlikely(release)) {
2387 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2388 dquot_release_reservation_block(inode, release);
2389 }
2390 f2fs_i_blocks_write(inode, *count, true, true);
2391 return 0;
2392
2393enospc:
2394 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2395release_quota:
2396 dquot_release_reservation_block(inode, release);
2397 return -ENOSPC;
2398}
2399
2400#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2401static inline bool page_private_##name(struct page *page) \
2402{ \
2403 return PagePrivate(page) && \
2404 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2405 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2406}
2407
2408#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2409static inline void set_page_private_##name(struct page *page) \
2410{ \
2411 if (!PagePrivate(page)) \
2412 attach_page_private(page, (void *)0); \
2413 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2414 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2415}
2416
2417#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2418static inline void clear_page_private_##name(struct page *page) \
2419{ \
2420 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2421 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2422 detach_page_private(page); \
2423}
2424
2425PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2426PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2427PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2428PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2429
2430PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2431PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2432PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2433PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2434
2435PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2436PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2437PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2438PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2439
2440static inline unsigned long get_page_private_data(struct page *page)
2441{
2442 unsigned long data = page_private(page);
2443
2444 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2445 return 0;
2446 return data >> PAGE_PRIVATE_MAX;
2447}
2448
2449static inline void set_page_private_data(struct page *page, unsigned long data)
2450{
2451 if (!PagePrivate(page))
2452 attach_page_private(page, (void *)0);
2453 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2454 page_private(page) |= data << PAGE_PRIVATE_MAX;
2455}
2456
2457static inline void clear_page_private_data(struct page *page)
2458{
2459 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2460 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2461 detach_page_private(page);
2462}
2463
2464static inline void clear_page_private_all(struct page *page)
2465{
2466 clear_page_private_data(page);
2467 clear_page_private_reference(page);
2468 clear_page_private_gcing(page);
2469 clear_page_private_inline(page);
2470 clear_page_private_atomic(page);
2471
2472 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2473}
2474
2475static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2476 struct inode *inode,
2477 block_t count)
2478{
2479 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2480
2481 spin_lock(&sbi->stat_lock);
2482 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2483 sbi->total_valid_block_count -= (block_t)count;
2484 if (sbi->reserved_blocks &&
2485 sbi->current_reserved_blocks < sbi->reserved_blocks)
2486 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2487 sbi->current_reserved_blocks + count);
2488 spin_unlock(&sbi->stat_lock);
2489 if (unlikely(inode->i_blocks < sectors)) {
2490 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2491 inode->i_ino,
2492 (unsigned long long)inode->i_blocks,
2493 (unsigned long long)sectors);
2494 set_sbi_flag(sbi, SBI_NEED_FSCK);
2495 return;
2496 }
2497 f2fs_i_blocks_write(inode, count, false, true);
2498}
2499
2500static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2501{
2502 atomic_inc(&sbi->nr_pages[count_type]);
2503
2504 if (count_type == F2FS_DIRTY_DENTS ||
2505 count_type == F2FS_DIRTY_NODES ||
2506 count_type == F2FS_DIRTY_META ||
2507 count_type == F2FS_DIRTY_QDATA ||
2508 count_type == F2FS_DIRTY_IMETA)
2509 set_sbi_flag(sbi, SBI_IS_DIRTY);
2510}
2511
2512static inline void inode_inc_dirty_pages(struct inode *inode)
2513{
2514 atomic_inc(&F2FS_I(inode)->dirty_pages);
2515 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2516 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2517 if (IS_NOQUOTA(inode))
2518 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2519}
2520
2521static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2522{
2523 atomic_dec(&sbi->nr_pages[count_type]);
2524}
2525
2526static inline void inode_dec_dirty_pages(struct inode *inode)
2527{
2528 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2529 !S_ISLNK(inode->i_mode))
2530 return;
2531
2532 atomic_dec(&F2FS_I(inode)->dirty_pages);
2533 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2534 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2535 if (IS_NOQUOTA(inode))
2536 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2537}
2538
2539static inline void inc_atomic_write_cnt(struct inode *inode)
2540{
2541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542 struct f2fs_inode_info *fi = F2FS_I(inode);
2543 u64 current_write;
2544
2545 fi->atomic_write_cnt++;
2546 atomic64_inc(&sbi->current_atomic_write);
2547 current_write = atomic64_read(&sbi->current_atomic_write);
2548 if (current_write > sbi->peak_atomic_write)
2549 sbi->peak_atomic_write = current_write;
2550}
2551
2552static inline void release_atomic_write_cnt(struct inode *inode)
2553{
2554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555 struct f2fs_inode_info *fi = F2FS_I(inode);
2556
2557 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2558 fi->atomic_write_cnt = 0;
2559}
2560
2561static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2562{
2563 return atomic_read(&sbi->nr_pages[count_type]);
2564}
2565
2566static inline int get_dirty_pages(struct inode *inode)
2567{
2568 return atomic_read(&F2FS_I(inode)->dirty_pages);
2569}
2570
2571static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2572{
2573 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2574 BLKS_PER_SEC(sbi));
2575}
2576
2577static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2578{
2579 return sbi->total_valid_block_count;
2580}
2581
2582static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2583{
2584 return sbi->discard_blks;
2585}
2586
2587static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2588{
2589 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2590
2591 /* return NAT or SIT bitmap */
2592 if (flag == NAT_BITMAP)
2593 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2594 else if (flag == SIT_BITMAP)
2595 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2596
2597 return 0;
2598}
2599
2600static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2601{
2602 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2603}
2604
2605static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2606{
2607 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2608 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2609 int offset;
2610
2611 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2612 offset = (flag == SIT_BITMAP) ?
2613 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2614 /*
2615 * if large_nat_bitmap feature is enabled, leave checksum
2616 * protection for all nat/sit bitmaps.
2617 */
2618 return tmp_ptr + offset + sizeof(__le32);
2619 }
2620
2621 if (__cp_payload(sbi) > 0) {
2622 if (flag == NAT_BITMAP)
2623 return tmp_ptr;
2624 else
2625 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2626 } else {
2627 offset = (flag == NAT_BITMAP) ?
2628 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2629 return tmp_ptr + offset;
2630 }
2631}
2632
2633static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2634{
2635 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2636
2637 if (sbi->cur_cp_pack == 2)
2638 start_addr += BLKS_PER_SEG(sbi);
2639 return start_addr;
2640}
2641
2642static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2643{
2644 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2645
2646 if (sbi->cur_cp_pack == 1)
2647 start_addr += BLKS_PER_SEG(sbi);
2648 return start_addr;
2649}
2650
2651static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2652{
2653 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2654}
2655
2656static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2657{
2658 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2659}
2660
2661extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2662static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2663 struct inode *inode, bool is_inode)
2664{
2665 block_t valid_block_count;
2666 unsigned int valid_node_count;
2667 unsigned int avail_user_block_count;
2668 int err;
2669
2670 if (is_inode) {
2671 if (inode) {
2672 err = dquot_alloc_inode(inode);
2673 if (err)
2674 return err;
2675 }
2676 } else {
2677 err = dquot_reserve_block(inode, 1);
2678 if (err)
2679 return err;
2680 }
2681
2682 if (time_to_inject(sbi, FAULT_BLOCK))
2683 goto enospc;
2684
2685 spin_lock(&sbi->stat_lock);
2686
2687 valid_block_count = sbi->total_valid_block_count + 1;
2688 avail_user_block_count = get_available_block_count(sbi, inode, false);
2689
2690 if (unlikely(valid_block_count > avail_user_block_count)) {
2691 spin_unlock(&sbi->stat_lock);
2692 goto enospc;
2693 }
2694
2695 valid_node_count = sbi->total_valid_node_count + 1;
2696 if (unlikely(valid_node_count > sbi->total_node_count)) {
2697 spin_unlock(&sbi->stat_lock);
2698 goto enospc;
2699 }
2700
2701 sbi->total_valid_node_count++;
2702 sbi->total_valid_block_count++;
2703 spin_unlock(&sbi->stat_lock);
2704
2705 if (inode) {
2706 if (is_inode)
2707 f2fs_mark_inode_dirty_sync(inode, true);
2708 else
2709 f2fs_i_blocks_write(inode, 1, true, true);
2710 }
2711
2712 percpu_counter_inc(&sbi->alloc_valid_block_count);
2713 return 0;
2714
2715enospc:
2716 if (is_inode) {
2717 if (inode)
2718 dquot_free_inode(inode);
2719 } else {
2720 dquot_release_reservation_block(inode, 1);
2721 }
2722 return -ENOSPC;
2723}
2724
2725static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2726 struct inode *inode, bool is_inode)
2727{
2728 spin_lock(&sbi->stat_lock);
2729
2730 if (unlikely(!sbi->total_valid_block_count ||
2731 !sbi->total_valid_node_count)) {
2732 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2733 sbi->total_valid_block_count,
2734 sbi->total_valid_node_count);
2735 set_sbi_flag(sbi, SBI_NEED_FSCK);
2736 } else {
2737 sbi->total_valid_block_count--;
2738 sbi->total_valid_node_count--;
2739 }
2740
2741 if (sbi->reserved_blocks &&
2742 sbi->current_reserved_blocks < sbi->reserved_blocks)
2743 sbi->current_reserved_blocks++;
2744
2745 spin_unlock(&sbi->stat_lock);
2746
2747 if (is_inode) {
2748 dquot_free_inode(inode);
2749 } else {
2750 if (unlikely(inode->i_blocks == 0)) {
2751 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2752 inode->i_ino,
2753 (unsigned long long)inode->i_blocks);
2754 set_sbi_flag(sbi, SBI_NEED_FSCK);
2755 return;
2756 }
2757 f2fs_i_blocks_write(inode, 1, false, true);
2758 }
2759}
2760
2761static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2762{
2763 return sbi->total_valid_node_count;
2764}
2765
2766static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2767{
2768 percpu_counter_inc(&sbi->total_valid_inode_count);
2769}
2770
2771static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2772{
2773 percpu_counter_dec(&sbi->total_valid_inode_count);
2774}
2775
2776static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2777{
2778 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2779}
2780
2781static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2782 pgoff_t index, bool for_write)
2783{
2784 struct page *page;
2785 unsigned int flags;
2786
2787 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2788 if (!for_write)
2789 page = find_get_page_flags(mapping, index,
2790 FGP_LOCK | FGP_ACCESSED);
2791 else
2792 page = find_lock_page(mapping, index);
2793 if (page)
2794 return page;
2795
2796 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2797 return NULL;
2798 }
2799
2800 if (!for_write)
2801 return grab_cache_page(mapping, index);
2802
2803 flags = memalloc_nofs_save();
2804 page = grab_cache_page_write_begin(mapping, index);
2805 memalloc_nofs_restore(flags);
2806
2807 return page;
2808}
2809
2810static inline struct page *f2fs_pagecache_get_page(
2811 struct address_space *mapping, pgoff_t index,
2812 fgf_t fgp_flags, gfp_t gfp_mask)
2813{
2814 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2815 return NULL;
2816
2817 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2818}
2819
2820static inline void f2fs_put_page(struct page *page, int unlock)
2821{
2822 if (!page)
2823 return;
2824
2825 if (unlock) {
2826 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2827 unlock_page(page);
2828 }
2829 put_page(page);
2830}
2831
2832static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2833{
2834 if (dn->node_page)
2835 f2fs_put_page(dn->node_page, 1);
2836 if (dn->inode_page && dn->node_page != dn->inode_page)
2837 f2fs_put_page(dn->inode_page, 0);
2838 dn->node_page = NULL;
2839 dn->inode_page = NULL;
2840}
2841
2842static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2843 size_t size)
2844{
2845 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2846}
2847
2848static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2849 gfp_t flags)
2850{
2851 void *entry;
2852
2853 entry = kmem_cache_alloc(cachep, flags);
2854 if (!entry)
2855 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2856 return entry;
2857}
2858
2859static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2860 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2861{
2862 if (nofail)
2863 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2864
2865 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2866 return NULL;
2867
2868 return kmem_cache_alloc(cachep, flags);
2869}
2870
2871static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2872{
2873 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2874 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2875 get_pages(sbi, F2FS_WB_CP_DATA) ||
2876 get_pages(sbi, F2FS_DIO_READ) ||
2877 get_pages(sbi, F2FS_DIO_WRITE))
2878 return true;
2879
2880 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2881 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2882 return true;
2883
2884 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2885 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2886 return true;
2887 return false;
2888}
2889
2890static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2891{
2892 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2893}
2894
2895static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2896{
2897 bool zoned_gc = (type == GC_TIME &&
2898 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2899
2900 if (sbi->gc_mode == GC_URGENT_HIGH)
2901 return true;
2902
2903 if (zoned_gc) {
2904 if (is_inflight_read_io(sbi))
2905 return false;
2906 } else {
2907 if (is_inflight_io(sbi, type))
2908 return false;
2909 }
2910
2911 if (sbi->gc_mode == GC_URGENT_MID)
2912 return true;
2913
2914 if (sbi->gc_mode == GC_URGENT_LOW &&
2915 (type == DISCARD_TIME || type == GC_TIME))
2916 return true;
2917
2918 if (zoned_gc)
2919 return true;
2920
2921 return f2fs_time_over(sbi, type);
2922}
2923
2924static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2925 unsigned long index, void *item)
2926{
2927 while (radix_tree_insert(root, index, item))
2928 cond_resched();
2929}
2930
2931#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2932
2933static inline bool IS_INODE(struct page *page)
2934{
2935 struct f2fs_node *p = F2FS_NODE(page);
2936
2937 return RAW_IS_INODE(p);
2938}
2939
2940static inline int offset_in_addr(struct f2fs_inode *i)
2941{
2942 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2943 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2944}
2945
2946static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2947{
2948 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2949}
2950
2951static inline int f2fs_has_extra_attr(struct inode *inode);
2952static inline unsigned int get_dnode_base(struct inode *inode,
2953 struct page *node_page)
2954{
2955 if (!IS_INODE(node_page))
2956 return 0;
2957
2958 return inode ? get_extra_isize(inode) :
2959 offset_in_addr(&F2FS_NODE(node_page)->i);
2960}
2961
2962static inline __le32 *get_dnode_addr(struct inode *inode,
2963 struct page *node_page)
2964{
2965 return blkaddr_in_node(F2FS_NODE(node_page)) +
2966 get_dnode_base(inode, node_page);
2967}
2968
2969static inline block_t data_blkaddr(struct inode *inode,
2970 struct page *node_page, unsigned int offset)
2971{
2972 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2973}
2974
2975static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2976{
2977 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2978}
2979
2980static inline int f2fs_test_bit(unsigned int nr, char *addr)
2981{
2982 int mask;
2983
2984 addr += (nr >> 3);
2985 mask = BIT(7 - (nr & 0x07));
2986 return mask & *addr;
2987}
2988
2989static inline void f2fs_set_bit(unsigned int nr, char *addr)
2990{
2991 int mask;
2992
2993 addr += (nr >> 3);
2994 mask = BIT(7 - (nr & 0x07));
2995 *addr |= mask;
2996}
2997
2998static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2999{
3000 int mask;
3001
3002 addr += (nr >> 3);
3003 mask = BIT(7 - (nr & 0x07));
3004 *addr &= ~mask;
3005}
3006
3007static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3008{
3009 int mask;
3010 int ret;
3011
3012 addr += (nr >> 3);
3013 mask = BIT(7 - (nr & 0x07));
3014 ret = mask & *addr;
3015 *addr |= mask;
3016 return ret;
3017}
3018
3019static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3020{
3021 int mask;
3022 int ret;
3023
3024 addr += (nr >> 3);
3025 mask = BIT(7 - (nr & 0x07));
3026 ret = mask & *addr;
3027 *addr &= ~mask;
3028 return ret;
3029}
3030
3031static inline void f2fs_change_bit(unsigned int nr, char *addr)
3032{
3033 int mask;
3034
3035 addr += (nr >> 3);
3036 mask = BIT(7 - (nr & 0x07));
3037 *addr ^= mask;
3038}
3039
3040/*
3041 * On-disk inode flags (f2fs_inode::i_flags)
3042 */
3043#define F2FS_COMPR_FL 0x00000004 /* Compress file */
3044#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3045#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3046#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3047#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3048#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3049#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3050#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3051#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3052#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3053#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3054#define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3055
3056#define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3057
3058/* Flags that should be inherited by new inodes from their parent. */
3059#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3060 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3061 F2FS_CASEFOLD_FL)
3062
3063/* Flags that are appropriate for regular files (all but dir-specific ones). */
3064#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3065 F2FS_CASEFOLD_FL))
3066
3067/* Flags that are appropriate for non-directories/regular files. */
3068#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3069
3070#define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3071
3072static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3073{
3074 if (S_ISDIR(mode))
3075 return flags;
3076 else if (S_ISREG(mode))
3077 return flags & F2FS_REG_FLMASK;
3078 else
3079 return flags & F2FS_OTHER_FLMASK;
3080}
3081
3082static inline void __mark_inode_dirty_flag(struct inode *inode,
3083 int flag, bool set)
3084{
3085 switch (flag) {
3086 case FI_INLINE_XATTR:
3087 case FI_INLINE_DATA:
3088 case FI_INLINE_DENTRY:
3089 case FI_NEW_INODE:
3090 if (set)
3091 return;
3092 fallthrough;
3093 case FI_DATA_EXIST:
3094 case FI_PIN_FILE:
3095 case FI_COMPRESS_RELEASED:
3096 f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098}
3099
3100static inline void set_inode_flag(struct inode *inode, int flag)
3101{
3102 set_bit(flag, F2FS_I(inode)->flags);
3103 __mark_inode_dirty_flag(inode, flag, true);
3104}
3105
3106static inline int is_inode_flag_set(struct inode *inode, int flag)
3107{
3108 return test_bit(flag, F2FS_I(inode)->flags);
3109}
3110
3111static inline void clear_inode_flag(struct inode *inode, int flag)
3112{
3113 clear_bit(flag, F2FS_I(inode)->flags);
3114 __mark_inode_dirty_flag(inode, flag, false);
3115}
3116
3117static inline bool f2fs_verity_in_progress(struct inode *inode)
3118{
3119 return IS_ENABLED(CONFIG_FS_VERITY) &&
3120 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3121}
3122
3123static inline void set_acl_inode(struct inode *inode, umode_t mode)
3124{
3125 F2FS_I(inode)->i_acl_mode = mode;
3126 set_inode_flag(inode, FI_ACL_MODE);
3127 f2fs_mark_inode_dirty_sync(inode, false);
3128}
3129
3130static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3131{
3132 if (inc)
3133 inc_nlink(inode);
3134 else
3135 drop_nlink(inode);
3136 f2fs_mark_inode_dirty_sync(inode, true);
3137}
3138
3139static inline void f2fs_i_blocks_write(struct inode *inode,
3140 block_t diff, bool add, bool claim)
3141{
3142 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3143 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3144
3145 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3146 if (add) {
3147 if (claim)
3148 dquot_claim_block(inode, diff);
3149 else
3150 dquot_alloc_block_nofail(inode, diff);
3151 } else {
3152 dquot_free_block(inode, diff);
3153 }
3154
3155 f2fs_mark_inode_dirty_sync(inode, true);
3156 if (clean || recover)
3157 set_inode_flag(inode, FI_AUTO_RECOVER);
3158}
3159
3160static inline bool f2fs_is_atomic_file(struct inode *inode);
3161
3162static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3163{
3164 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3165 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3166
3167 if (i_size_read(inode) == i_size)
3168 return;
3169
3170 i_size_write(inode, i_size);
3171
3172 if (f2fs_is_atomic_file(inode))
3173 return;
3174
3175 f2fs_mark_inode_dirty_sync(inode, true);
3176 if (clean || recover)
3177 set_inode_flag(inode, FI_AUTO_RECOVER);
3178}
3179
3180static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3181{
3182 F2FS_I(inode)->i_current_depth = depth;
3183 f2fs_mark_inode_dirty_sync(inode, true);
3184}
3185
3186static inline void f2fs_i_gc_failures_write(struct inode *inode,
3187 unsigned int count)
3188{
3189 F2FS_I(inode)->i_gc_failures = count;
3190 f2fs_mark_inode_dirty_sync(inode, true);
3191}
3192
3193static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3194{
3195 F2FS_I(inode)->i_xattr_nid = xnid;
3196 f2fs_mark_inode_dirty_sync(inode, true);
3197}
3198
3199static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3200{
3201 F2FS_I(inode)->i_pino = pino;
3202 f2fs_mark_inode_dirty_sync(inode, true);
3203}
3204
3205static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3206{
3207 struct f2fs_inode_info *fi = F2FS_I(inode);
3208
3209 if (ri->i_inline & F2FS_INLINE_XATTR)
3210 set_bit(FI_INLINE_XATTR, fi->flags);
3211 if (ri->i_inline & F2FS_INLINE_DATA)
3212 set_bit(FI_INLINE_DATA, fi->flags);
3213 if (ri->i_inline & F2FS_INLINE_DENTRY)
3214 set_bit(FI_INLINE_DENTRY, fi->flags);
3215 if (ri->i_inline & F2FS_DATA_EXIST)
3216 set_bit(FI_DATA_EXIST, fi->flags);
3217 if (ri->i_inline & F2FS_EXTRA_ATTR)
3218 set_bit(FI_EXTRA_ATTR, fi->flags);
3219 if (ri->i_inline & F2FS_PIN_FILE)
3220 set_bit(FI_PIN_FILE, fi->flags);
3221 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3222 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3223}
3224
3225static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3226{
3227 ri->i_inline = 0;
3228
3229 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3230 ri->i_inline |= F2FS_INLINE_XATTR;
3231 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3232 ri->i_inline |= F2FS_INLINE_DATA;
3233 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3234 ri->i_inline |= F2FS_INLINE_DENTRY;
3235 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3236 ri->i_inline |= F2FS_DATA_EXIST;
3237 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3238 ri->i_inline |= F2FS_EXTRA_ATTR;
3239 if (is_inode_flag_set(inode, FI_PIN_FILE))
3240 ri->i_inline |= F2FS_PIN_FILE;
3241 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3242 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3243}
3244
3245static inline int f2fs_has_extra_attr(struct inode *inode)
3246{
3247 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3248}
3249
3250static inline int f2fs_has_inline_xattr(struct inode *inode)
3251{
3252 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3253}
3254
3255static inline int f2fs_compressed_file(struct inode *inode)
3256{
3257 return S_ISREG(inode->i_mode) &&
3258 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3259}
3260
3261static inline bool f2fs_need_compress_data(struct inode *inode)
3262{
3263 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3264
3265 if (!f2fs_compressed_file(inode))
3266 return false;
3267
3268 if (compress_mode == COMPR_MODE_FS)
3269 return true;
3270 else if (compress_mode == COMPR_MODE_USER &&
3271 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3272 return true;
3273
3274 return false;
3275}
3276
3277static inline unsigned int addrs_per_page(struct inode *inode,
3278 bool is_inode)
3279{
3280 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3281 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3282
3283 if (f2fs_compressed_file(inode))
3284 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3285 return addrs;
3286}
3287
3288static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3289{
3290 struct f2fs_inode *ri = F2FS_INODE(page);
3291
3292 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3293 get_inline_xattr_addrs(inode)]);
3294}
3295
3296static inline int inline_xattr_size(struct inode *inode)
3297{
3298 if (f2fs_has_inline_xattr(inode))
3299 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3300 return 0;
3301}
3302
3303/*
3304 * Notice: check inline_data flag without inode page lock is unsafe.
3305 * It could change at any time by f2fs_convert_inline_page().
3306 */
3307static inline int f2fs_has_inline_data(struct inode *inode)
3308{
3309 return is_inode_flag_set(inode, FI_INLINE_DATA);
3310}
3311
3312static inline int f2fs_exist_data(struct inode *inode)
3313{
3314 return is_inode_flag_set(inode, FI_DATA_EXIST);
3315}
3316
3317static inline int f2fs_is_mmap_file(struct inode *inode)
3318{
3319 return is_inode_flag_set(inode, FI_MMAP_FILE);
3320}
3321
3322static inline bool f2fs_is_pinned_file(struct inode *inode)
3323{
3324 return is_inode_flag_set(inode, FI_PIN_FILE);
3325}
3326
3327static inline bool f2fs_is_atomic_file(struct inode *inode)
3328{
3329 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3330}
3331
3332static inline bool f2fs_is_cow_file(struct inode *inode)
3333{
3334 return is_inode_flag_set(inode, FI_COW_FILE);
3335}
3336
3337static inline void *inline_data_addr(struct inode *inode, struct page *page)
3338{
3339 __le32 *addr = get_dnode_addr(inode, page);
3340
3341 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3342}
3343
3344static inline int f2fs_has_inline_dentry(struct inode *inode)
3345{
3346 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3347}
3348
3349static inline int is_file(struct inode *inode, int type)
3350{
3351 return F2FS_I(inode)->i_advise & type;
3352}
3353
3354static inline void set_file(struct inode *inode, int type)
3355{
3356 if (is_file(inode, type))
3357 return;
3358 F2FS_I(inode)->i_advise |= type;
3359 f2fs_mark_inode_dirty_sync(inode, true);
3360}
3361
3362static inline void clear_file(struct inode *inode, int type)
3363{
3364 if (!is_file(inode, type))
3365 return;
3366 F2FS_I(inode)->i_advise &= ~type;
3367 f2fs_mark_inode_dirty_sync(inode, true);
3368}
3369
3370static inline bool f2fs_is_time_consistent(struct inode *inode)
3371{
3372 struct timespec64 ts = inode_get_atime(inode);
3373
3374 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3375 return false;
3376 ts = inode_get_ctime(inode);
3377 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3378 return false;
3379 ts = inode_get_mtime(inode);
3380 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3381 return false;
3382 return true;
3383}
3384
3385static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3386{
3387 bool ret;
3388
3389 if (dsync) {
3390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3391
3392 spin_lock(&sbi->inode_lock[DIRTY_META]);
3393 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3394 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3395 return ret;
3396 }
3397 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3398 file_keep_isize(inode) ||
3399 i_size_read(inode) & ~PAGE_MASK)
3400 return false;
3401
3402 if (!f2fs_is_time_consistent(inode))
3403 return false;
3404
3405 spin_lock(&F2FS_I(inode)->i_size_lock);
3406 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3407 spin_unlock(&F2FS_I(inode)->i_size_lock);
3408
3409 return ret;
3410}
3411
3412static inline bool f2fs_readonly(struct super_block *sb)
3413{
3414 return sb_rdonly(sb);
3415}
3416
3417static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3418{
3419 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3420}
3421
3422static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3423 size_t size, gfp_t flags)
3424{
3425 if (time_to_inject(sbi, FAULT_KMALLOC))
3426 return NULL;
3427
3428 return kmalloc(size, flags);
3429}
3430
3431static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3432{
3433 if (time_to_inject(sbi, FAULT_KMALLOC))
3434 return NULL;
3435
3436 return __getname();
3437}
3438
3439static inline void f2fs_putname(char *buf)
3440{
3441 __putname(buf);
3442}
3443
3444static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3445 size_t size, gfp_t flags)
3446{
3447 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3448}
3449
3450static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3451 size_t size, gfp_t flags)
3452{
3453 if (time_to_inject(sbi, FAULT_KVMALLOC))
3454 return NULL;
3455
3456 return kvmalloc(size, flags);
3457}
3458
3459static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3460 size_t size, gfp_t flags)
3461{
3462 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3463}
3464
3465static inline int get_extra_isize(struct inode *inode)
3466{
3467 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3468}
3469
3470static inline int get_inline_xattr_addrs(struct inode *inode)
3471{
3472 return F2FS_I(inode)->i_inline_xattr_size;
3473}
3474
3475#define f2fs_get_inode_mode(i) \
3476 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3477 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3478
3479#define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3480
3481#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3482 (offsetof(struct f2fs_inode, i_extra_end) - \
3483 offsetof(struct f2fs_inode, i_extra_isize)) \
3484
3485#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3486#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3487 ((offsetof(typeof(*(f2fs_inode)), field) + \
3488 sizeof((f2fs_inode)->field)) \
3489 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3490
3491#define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3492
3493#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3494
3495bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3496 block_t blkaddr, int type);
3497static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3498 block_t blkaddr, int type)
3499{
3500 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3501 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3502 blkaddr, type);
3503}
3504
3505static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3506{
3507 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3508 blkaddr == COMPRESS_ADDR)
3509 return false;
3510 return true;
3511}
3512
3513/*
3514 * file.c
3515 */
3516int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3517int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3518int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3519int f2fs_truncate(struct inode *inode);
3520int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3521 struct kstat *stat, u32 request_mask, unsigned int flags);
3522int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3523 struct iattr *attr);
3524int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3525void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3526int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3527 bool readonly, bool need_lock);
3528int f2fs_precache_extents(struct inode *inode);
3529int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3530int f2fs_fileattr_set(struct mnt_idmap *idmap,
3531 struct dentry *dentry, struct fileattr *fa);
3532long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3533long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3534int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3535int f2fs_pin_file_control(struct inode *inode, bool inc);
3536
3537/*
3538 * inode.c
3539 */
3540void f2fs_set_inode_flags(struct inode *inode);
3541bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3542void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3543struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3544struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3545int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3546void f2fs_update_inode(struct inode *inode, struct page *node_page);
3547void f2fs_update_inode_page(struct inode *inode);
3548int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3549void f2fs_evict_inode(struct inode *inode);
3550void f2fs_handle_failed_inode(struct inode *inode);
3551
3552/*
3553 * namei.c
3554 */
3555int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3556 bool hot, bool set);
3557struct dentry *f2fs_get_parent(struct dentry *child);
3558int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3559 struct inode **new_inode);
3560
3561/*
3562 * dir.c
3563 */
3564#if IS_ENABLED(CONFIG_UNICODE)
3565int f2fs_init_casefolded_name(const struct inode *dir,
3566 struct f2fs_filename *fname);
3567void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3568#else
3569static inline int f2fs_init_casefolded_name(const struct inode *dir,
3570 struct f2fs_filename *fname)
3571{
3572 return 0;
3573}
3574
3575static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3576{
3577}
3578#endif /* CONFIG_UNICODE */
3579
3580int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3581 int lookup, struct f2fs_filename *fname);
3582int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3583 struct f2fs_filename *fname);
3584void f2fs_free_filename(struct f2fs_filename *fname);
3585struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3586 const struct f2fs_filename *fname, int *max_slots,
3587 bool use_hash);
3588int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3589 unsigned int start_pos, struct fscrypt_str *fstr);
3590void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3591 struct f2fs_dentry_ptr *d);
3592struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3593 const struct f2fs_filename *fname, struct page *dpage);
3594void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3595 unsigned int current_depth);
3596int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3597void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3598struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3599 const struct f2fs_filename *fname,
3600 struct page **res_page);
3601struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3602 const struct qstr *child, struct page **res_page);
3603struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3604ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3605 struct page **page);
3606void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3607 struct page *page, struct inode *inode);
3608bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3609 const struct f2fs_filename *fname);
3610void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3611 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3612 unsigned int bit_pos);
3613int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3614 struct inode *inode, nid_t ino, umode_t mode);
3615int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3616 struct inode *inode, nid_t ino, umode_t mode);
3617int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3618 struct inode *inode, nid_t ino, umode_t mode);
3619void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3620 struct inode *dir, struct inode *inode);
3621int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3622 struct f2fs_filename *fname);
3623bool f2fs_empty_dir(struct inode *dir);
3624
3625static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3626{
3627 if (fscrypt_is_nokey_name(dentry))
3628 return -ENOKEY;
3629 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3630 inode, inode->i_ino, inode->i_mode);
3631}
3632
3633/*
3634 * super.c
3635 */
3636int f2fs_inode_dirtied(struct inode *inode, bool sync);
3637void f2fs_inode_synced(struct inode *inode);
3638int f2fs_dquot_initialize(struct inode *inode);
3639int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3640int f2fs_quota_sync(struct super_block *sb, int type);
3641loff_t max_file_blocks(struct inode *inode);
3642void f2fs_quota_off_umount(struct super_block *sb);
3643void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3644void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3645void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3646void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3647int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3648int f2fs_sync_fs(struct super_block *sb, int sync);
3649int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3650
3651/*
3652 * hash.c
3653 */
3654void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3655
3656/*
3657 * node.c
3658 */
3659struct node_info;
3660
3661int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3662bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3663bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3664void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3665void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3666void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3667int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3668bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3669bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3670int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3671 struct node_info *ni, bool checkpoint_context);
3672pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3673int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3674int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3675int f2fs_truncate_xattr_node(struct inode *inode);
3676int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3677 unsigned int seq_id);
3678bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3679int f2fs_remove_inode_page(struct inode *inode);
3680struct page *f2fs_new_inode_page(struct inode *inode);
3681struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3682void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3683struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3684struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3685int f2fs_move_node_page(struct page *node_page, int gc_type);
3686void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3687int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3688 struct writeback_control *wbc, bool atomic,
3689 unsigned int *seq_id);
3690int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3691 struct writeback_control *wbc,
3692 bool do_balance, enum iostat_type io_type);
3693int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3694bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3695void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3696void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3697int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3698int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3699int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3700int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3701int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3702 unsigned int segno, struct f2fs_summary_block *sum);
3703void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3704int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3705int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3706void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3707int __init f2fs_create_node_manager_caches(void);
3708void f2fs_destroy_node_manager_caches(void);
3709
3710/*
3711 * segment.c
3712 */
3713bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3714int f2fs_commit_atomic_write(struct inode *inode);
3715void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3716void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3717void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3718int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3719int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3720int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3721void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3722void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3723bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3724int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3725void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3726void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3727bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3728void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3729 struct cp_control *cpc);
3730void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3731block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3732int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3733void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3734int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3735bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3736int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3737int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3738void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3739void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3740int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3741 unsigned int start, unsigned int end);
3742int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3743int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3744int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3745int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3746bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3747 struct cp_control *cpc);
3748struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3749void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3750 block_t blk_addr);
3751void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3752 enum iostat_type io_type);
3753void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3754void f2fs_outplace_write_data(struct dnode_of_data *dn,
3755 struct f2fs_io_info *fio);
3756int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3757void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3758 block_t old_blkaddr, block_t new_blkaddr,
3759 bool recover_curseg, bool recover_newaddr,
3760 bool from_gc);
3761void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3762 block_t old_addr, block_t new_addr,
3763 unsigned char version, bool recover_curseg,
3764 bool recover_newaddr);
3765enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3766 enum log_type seg_type);
3767int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3768 block_t old_blkaddr, block_t *new_blkaddr,
3769 struct f2fs_summary *sum, int type,
3770 struct f2fs_io_info *fio);
3771void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3772 block_t blkaddr, unsigned int blkcnt);
3773void f2fs_wait_on_page_writeback(struct page *page,
3774 enum page_type type, bool ordered, bool locked);
3775void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3776void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3777 block_t len);
3778void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3779void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3780int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3781 unsigned int val, int alloc);
3782void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3783int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3784int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3785void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3786int __init f2fs_create_segment_manager_caches(void);
3787void f2fs_destroy_segment_manager_caches(void);
3788int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3789enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3790 enum page_type type, enum temp_type temp);
3791unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3792unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3793 unsigned int segno);
3794unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3795 unsigned int segno);
3796
3797#define DEF_FRAGMENT_SIZE 4
3798#define MIN_FRAGMENT_SIZE 1
3799#define MAX_FRAGMENT_SIZE 512
3800
3801static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3802{
3803 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3804 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3805}
3806
3807/*
3808 * checkpoint.c
3809 */
3810void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3811 unsigned char reason);
3812void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3813struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3814struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3815struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3816struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3817bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3818 block_t blkaddr, int type);
3819bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3820 block_t blkaddr, int type);
3821int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3822 int type, bool sync);
3823void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3824 unsigned int ra_blocks);
3825long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3826 long nr_to_write, enum iostat_type io_type);
3827void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3828void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3829void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3830bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3831void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3832 unsigned int devidx, int type);
3833bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3834 unsigned int devidx, int type);
3835int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3836void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3837void f2fs_add_orphan_inode(struct inode *inode);
3838void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3839int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3840int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3841void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3842void f2fs_remove_dirty_inode(struct inode *inode);
3843int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3844 bool from_cp);
3845void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3846u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3847int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3848void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3849int __init f2fs_create_checkpoint_caches(void);
3850void f2fs_destroy_checkpoint_caches(void);
3851int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3852int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3853void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3854void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3855
3856/*
3857 * data.c
3858 */
3859int __init f2fs_init_bioset(void);
3860void f2fs_destroy_bioset(void);
3861bool f2fs_is_cp_guaranteed(struct page *page);
3862int f2fs_init_bio_entry_cache(void);
3863void f2fs_destroy_bio_entry_cache(void);
3864void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3865 enum page_type type);
3866int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3867void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3868void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3869 struct inode *inode, struct page *page,
3870 nid_t ino, enum page_type type);
3871void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3872 struct bio **bio, struct page *page);
3873void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3874int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3875int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3876void f2fs_submit_page_write(struct f2fs_io_info *fio);
3877struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3878 block_t blk_addr, sector_t *sector);
3879int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3880void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3881void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3882int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3883int f2fs_reserve_new_block(struct dnode_of_data *dn);
3884int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3885int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3886struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3887 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3888struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3889 pgoff_t *next_pgofs);
3890struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3891 bool for_write);
3892struct page *f2fs_get_new_data_page(struct inode *inode,
3893 struct page *ipage, pgoff_t index, bool new_i_size);
3894int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3895int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3896int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3897 u64 start, u64 len);
3898int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3899bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3900bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3901int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3902 struct bio **bio, sector_t *last_block,
3903 struct writeback_control *wbc,
3904 enum iostat_type io_type,
3905 int compr_blocks, bool allow_balance);
3906void f2fs_write_failed(struct inode *inode, loff_t to);
3907void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3908bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3909bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3910void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3911int f2fs_init_post_read_processing(void);
3912void f2fs_destroy_post_read_processing(void);
3913int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3914void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3915extern const struct iomap_ops f2fs_iomap_ops;
3916
3917/*
3918 * gc.c
3919 */
3920int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3921void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3922block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3923int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3924void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3925int f2fs_gc_range(struct f2fs_sb_info *sbi,
3926 unsigned int start_seg, unsigned int end_seg,
3927 bool dry_run, unsigned int dry_run_sections);
3928int f2fs_resize_fs(struct file *filp, __u64 block_count);
3929int __init f2fs_create_garbage_collection_cache(void);
3930void f2fs_destroy_garbage_collection_cache(void);
3931/* victim selection function for cleaning and SSR */
3932int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3933 int gc_type, int type, char alloc_mode,
3934 unsigned long long age, bool one_time);
3935
3936/*
3937 * recovery.c
3938 */
3939int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3940bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3941int __init f2fs_create_recovery_cache(void);
3942void f2fs_destroy_recovery_cache(void);
3943
3944/*
3945 * debug.c
3946 */
3947#ifdef CONFIG_F2FS_STAT_FS
3948enum {
3949 DEVSTAT_INUSE,
3950 DEVSTAT_DIRTY,
3951 DEVSTAT_FULL,
3952 DEVSTAT_FREE,
3953 DEVSTAT_PREFREE,
3954 DEVSTAT_MAX,
3955};
3956
3957struct f2fs_dev_stats {
3958 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
3959};
3960
3961struct f2fs_stat_info {
3962 struct list_head stat_list;
3963 struct f2fs_sb_info *sbi;
3964 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3965 int main_area_segs, main_area_sections, main_area_zones;
3966 unsigned long long hit_cached[NR_EXTENT_CACHES];
3967 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3968 unsigned long long total_ext[NR_EXTENT_CACHES];
3969 unsigned long long hit_total[NR_EXTENT_CACHES];
3970 int ext_tree[NR_EXTENT_CACHES];
3971 int zombie_tree[NR_EXTENT_CACHES];
3972 int ext_node[NR_EXTENT_CACHES];
3973 /* to count memory footprint */
3974 unsigned long long ext_mem[NR_EXTENT_CACHES];
3975 /* for read extent cache */
3976 unsigned long long hit_largest;
3977 /* for block age extent cache */
3978 unsigned long long allocated_data_blocks;
3979 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3980 int ndirty_data, ndirty_qdata;
3981 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3982 int nats, dirty_nats, sits, dirty_sits;
3983 int free_nids, avail_nids, alloc_nids;
3984 int total_count, utilization;
3985 int nr_wb_cp_data, nr_wb_data;
3986 int nr_rd_data, nr_rd_node, nr_rd_meta;
3987 int nr_dio_read, nr_dio_write;
3988 unsigned int io_skip_bggc, other_skip_bggc;
3989 int nr_flushing, nr_flushed, flush_list_empty;
3990 int nr_discarding, nr_discarded;
3991 int nr_discard_cmd;
3992 unsigned int undiscard_blks;
3993 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3994 unsigned int cur_ckpt_time, peak_ckpt_time;
3995 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3996 int compr_inode, swapfile_inode;
3997 unsigned long long compr_blocks;
3998 int aw_cnt, max_aw_cnt;
3999 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4000 unsigned int bimodal, avg_vblocks;
4001 int util_free, util_valid, util_invalid;
4002 int rsvd_segs, overp_segs;
4003 int dirty_count, node_pages, meta_pages, compress_pages;
4004 int compress_page_hit;
4005 int prefree_count, free_segs, free_secs;
4006 int cp_call_count[MAX_CALL_TYPE], cp_count;
4007 int gc_call_count[MAX_CALL_TYPE];
4008 int gc_segs[2][2];
4009 int gc_secs[2][2];
4010 int tot_blks, data_blks, node_blks;
4011 int bg_data_blks, bg_node_blks;
4012 int curseg[NR_CURSEG_TYPE];
4013 int cursec[NR_CURSEG_TYPE];
4014 int curzone[NR_CURSEG_TYPE];
4015 unsigned int dirty_seg[NR_CURSEG_TYPE];
4016 unsigned int full_seg[NR_CURSEG_TYPE];
4017 unsigned int valid_blks[NR_CURSEG_TYPE];
4018
4019 unsigned int meta_count[META_MAX];
4020 unsigned int segment_count[2];
4021 unsigned int block_count[2];
4022 unsigned int inplace_count;
4023 unsigned long long base_mem, cache_mem, page_mem;
4024 struct f2fs_dev_stats *dev_stats;
4025};
4026
4027static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4028{
4029 return (struct f2fs_stat_info *)sbi->stat_info;
4030}
4031
4032#define stat_inc_cp_call_count(sbi, foreground) \
4033 atomic_inc(&sbi->cp_call_count[(foreground)])
4034#define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4035#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4036#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4037#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4038#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4039#define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4040#define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4041#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4042#define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4043#define stat_inc_inline_xattr(inode) \
4044 do { \
4045 if (f2fs_has_inline_xattr(inode)) \
4046 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4047 } while (0)
4048#define stat_dec_inline_xattr(inode) \
4049 do { \
4050 if (f2fs_has_inline_xattr(inode)) \
4051 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4052 } while (0)
4053#define stat_inc_inline_inode(inode) \
4054 do { \
4055 if (f2fs_has_inline_data(inode)) \
4056 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4057 } while (0)
4058#define stat_dec_inline_inode(inode) \
4059 do { \
4060 if (f2fs_has_inline_data(inode)) \
4061 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4062 } while (0)
4063#define stat_inc_inline_dir(inode) \
4064 do { \
4065 if (f2fs_has_inline_dentry(inode)) \
4066 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4067 } while (0)
4068#define stat_dec_inline_dir(inode) \
4069 do { \
4070 if (f2fs_has_inline_dentry(inode)) \
4071 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4072 } while (0)
4073#define stat_inc_compr_inode(inode) \
4074 do { \
4075 if (f2fs_compressed_file(inode)) \
4076 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4077 } while (0)
4078#define stat_dec_compr_inode(inode) \
4079 do { \
4080 if (f2fs_compressed_file(inode)) \
4081 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4082 } while (0)
4083#define stat_add_compr_blocks(inode, blocks) \
4084 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4085#define stat_sub_compr_blocks(inode, blocks) \
4086 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4087#define stat_inc_swapfile_inode(inode) \
4088 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4089#define stat_dec_swapfile_inode(inode) \
4090 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4091#define stat_inc_atomic_inode(inode) \
4092 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4093#define stat_dec_atomic_inode(inode) \
4094 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4095#define stat_inc_meta_count(sbi, blkaddr) \
4096 do { \
4097 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4098 atomic_inc(&(sbi)->meta_count[META_CP]); \
4099 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4100 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4101 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4102 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4103 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4104 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4105 } while (0)
4106#define stat_inc_seg_type(sbi, curseg) \
4107 ((sbi)->segment_count[(curseg)->alloc_type]++)
4108#define stat_inc_block_count(sbi, curseg) \
4109 ((sbi)->block_count[(curseg)->alloc_type]++)
4110#define stat_inc_inplace_blocks(sbi) \
4111 (atomic_inc(&(sbi)->inplace_count))
4112#define stat_update_max_atomic_write(inode) \
4113 do { \
4114 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4115 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4116 if (cur > max) \
4117 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4118 } while (0)
4119#define stat_inc_gc_call_count(sbi, foreground) \
4120 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4121#define stat_inc_gc_sec_count(sbi, type, gc_type) \
4122 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4123#define stat_inc_gc_seg_count(sbi, type, gc_type) \
4124 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4125
4126#define stat_inc_tot_blk_count(si, blks) \
4127 ((si)->tot_blks += (blks))
4128
4129#define stat_inc_data_blk_count(sbi, blks, gc_type) \
4130 do { \
4131 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4132 stat_inc_tot_blk_count(si, blks); \
4133 si->data_blks += (blks); \
4134 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4135 } while (0)
4136
4137#define stat_inc_node_blk_count(sbi, blks, gc_type) \
4138 do { \
4139 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4140 stat_inc_tot_blk_count(si, blks); \
4141 si->node_blks += (blks); \
4142 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4143 } while (0)
4144
4145int f2fs_build_stats(struct f2fs_sb_info *sbi);
4146void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4147void __init f2fs_create_root_stats(void);
4148void f2fs_destroy_root_stats(void);
4149void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4150#else
4151#define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4152#define stat_inc_cp_count(sbi) do { } while (0)
4153#define stat_io_skip_bggc_count(sbi) do { } while (0)
4154#define stat_other_skip_bggc_count(sbi) do { } while (0)
4155#define stat_inc_dirty_inode(sbi, type) do { } while (0)
4156#define stat_dec_dirty_inode(sbi, type) do { } while (0)
4157#define stat_inc_total_hit(sbi, type) do { } while (0)
4158#define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4159#define stat_inc_largest_node_hit(sbi) do { } while (0)
4160#define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4161#define stat_inc_inline_xattr(inode) do { } while (0)
4162#define stat_dec_inline_xattr(inode) do { } while (0)
4163#define stat_inc_inline_inode(inode) do { } while (0)
4164#define stat_dec_inline_inode(inode) do { } while (0)
4165#define stat_inc_inline_dir(inode) do { } while (0)
4166#define stat_dec_inline_dir(inode) do { } while (0)
4167#define stat_inc_compr_inode(inode) do { } while (0)
4168#define stat_dec_compr_inode(inode) do { } while (0)
4169#define stat_add_compr_blocks(inode, blocks) do { } while (0)
4170#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4171#define stat_inc_swapfile_inode(inode) do { } while (0)
4172#define stat_dec_swapfile_inode(inode) do { } while (0)
4173#define stat_inc_atomic_inode(inode) do { } while (0)
4174#define stat_dec_atomic_inode(inode) do { } while (0)
4175#define stat_update_max_atomic_write(inode) do { } while (0)
4176#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4177#define stat_inc_seg_type(sbi, curseg) do { } while (0)
4178#define stat_inc_block_count(sbi, curseg) do { } while (0)
4179#define stat_inc_inplace_blocks(sbi) do { } while (0)
4180#define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4181#define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4182#define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4183#define stat_inc_tot_blk_count(si, blks) do { } while (0)
4184#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4185#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4186
4187static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4188static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4189static inline void __init f2fs_create_root_stats(void) { }
4190static inline void f2fs_destroy_root_stats(void) { }
4191static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4192#endif
4193
4194extern const struct file_operations f2fs_dir_operations;
4195extern const struct file_operations f2fs_file_operations;
4196extern const struct inode_operations f2fs_file_inode_operations;
4197extern const struct address_space_operations f2fs_dblock_aops;
4198extern const struct address_space_operations f2fs_node_aops;
4199extern const struct address_space_operations f2fs_meta_aops;
4200extern const struct inode_operations f2fs_dir_inode_operations;
4201extern const struct inode_operations f2fs_symlink_inode_operations;
4202extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4203extern const struct inode_operations f2fs_special_inode_operations;
4204extern struct kmem_cache *f2fs_inode_entry_slab;
4205
4206/*
4207 * inline.c
4208 */
4209bool f2fs_may_inline_data(struct inode *inode);
4210bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4211bool f2fs_may_inline_dentry(struct inode *inode);
4212void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4213void f2fs_truncate_inline_inode(struct inode *inode,
4214 struct page *ipage, u64 from);
4215int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4216int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4217int f2fs_convert_inline_inode(struct inode *inode);
4218int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4219int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4220int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4221struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4222 const struct f2fs_filename *fname,
4223 struct page **res_page,
4224 bool use_hash);
4225int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4226 struct page *ipage);
4227int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4228 struct inode *inode, nid_t ino, umode_t mode);
4229void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4230 struct page *page, struct inode *dir,
4231 struct inode *inode);
4232bool f2fs_empty_inline_dir(struct inode *dir);
4233int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4234 struct fscrypt_str *fstr);
4235int f2fs_inline_data_fiemap(struct inode *inode,
4236 struct fiemap_extent_info *fieinfo,
4237 __u64 start, __u64 len);
4238
4239/*
4240 * shrinker.c
4241 */
4242unsigned long f2fs_shrink_count(struct shrinker *shrink,
4243 struct shrink_control *sc);
4244unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4245 struct shrink_control *sc);
4246void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4247void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4248
4249/*
4250 * extent_cache.c
4251 */
4252bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4253void f2fs_init_extent_tree(struct inode *inode);
4254void f2fs_drop_extent_tree(struct inode *inode);
4255void f2fs_destroy_extent_node(struct inode *inode);
4256void f2fs_destroy_extent_tree(struct inode *inode);
4257void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4258int __init f2fs_create_extent_cache(void);
4259void f2fs_destroy_extent_cache(void);
4260
4261/* read extent cache ops */
4262void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4263bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4264 struct extent_info *ei);
4265bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4266 block_t *blkaddr);
4267void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4268void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4269 pgoff_t fofs, block_t blkaddr, unsigned int len);
4270unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4271 int nr_shrink);
4272
4273/* block age extent cache ops */
4274void f2fs_init_age_extent_tree(struct inode *inode);
4275bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4276 struct extent_info *ei);
4277void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4278void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4279 pgoff_t fofs, unsigned int len);
4280unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4281 int nr_shrink);
4282
4283/*
4284 * sysfs.c
4285 */
4286#define MIN_RA_MUL 2
4287#define MAX_RA_MUL 256
4288
4289int __init f2fs_init_sysfs(void);
4290void f2fs_exit_sysfs(void);
4291int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4292void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4293
4294/* verity.c */
4295extern const struct fsverity_operations f2fs_verityops;
4296
4297/*
4298 * crypto support
4299 */
4300static inline bool f2fs_encrypted_file(struct inode *inode)
4301{
4302 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4303}
4304
4305static inline void f2fs_set_encrypted_inode(struct inode *inode)
4306{
4307#ifdef CONFIG_FS_ENCRYPTION
4308 file_set_encrypt(inode);
4309 f2fs_set_inode_flags(inode);
4310#endif
4311}
4312
4313/*
4314 * Returns true if the reads of the inode's data need to undergo some
4315 * postprocessing step, like decryption or authenticity verification.
4316 */
4317static inline bool f2fs_post_read_required(struct inode *inode)
4318{
4319 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4320 f2fs_compressed_file(inode);
4321}
4322
4323static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4324{
4325 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4326}
4327
4328static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4329{
4330 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4331}
4332
4333/*
4334 * compress.c
4335 */
4336#ifdef CONFIG_F2FS_FS_COMPRESSION
4337enum cluster_check_type {
4338 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4339 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4340 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4341};
4342bool f2fs_is_compressed_page(struct page *page);
4343struct page *f2fs_compress_control_page(struct page *page);
4344int f2fs_prepare_compress_overwrite(struct inode *inode,
4345 struct page **pagep, pgoff_t index, void **fsdata);
4346bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4347 pgoff_t index, unsigned copied);
4348int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4349void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4350bool f2fs_is_compress_backend_ready(struct inode *inode);
4351bool f2fs_is_compress_level_valid(int alg, int lvl);
4352int __init f2fs_init_compress_mempool(void);
4353void f2fs_destroy_compress_mempool(void);
4354void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4355void f2fs_end_read_compressed_page(struct page *page, bool failed,
4356 block_t blkaddr, bool in_task);
4357bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4358bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4359bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4360 int index, int nr_pages, bool uptodate);
4361bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4362void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4363int f2fs_write_multi_pages(struct compress_ctx *cc,
4364 int *submitted,
4365 struct writeback_control *wbc,
4366 enum iostat_type io_type);
4367int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4368bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4369void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4370 pgoff_t fofs, block_t blkaddr,
4371 unsigned int llen, unsigned int c_len);
4372int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4373 unsigned nr_pages, sector_t *last_block_in_bio,
4374 struct readahead_control *rac, bool for_write);
4375struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4376void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4377 bool in_task);
4378void f2fs_put_page_dic(struct page *page, bool in_task);
4379unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4380 unsigned int ofs_in_node);
4381int f2fs_init_compress_ctx(struct compress_ctx *cc);
4382void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4383void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4384int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4385void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4386int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4387void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4388int __init f2fs_init_compress_cache(void);
4389void f2fs_destroy_compress_cache(void);
4390struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4391void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4392void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4393 nid_t ino, block_t blkaddr);
4394bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4395 block_t blkaddr);
4396void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4397#define inc_compr_inode_stat(inode) \
4398 do { \
4399 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4400 sbi->compr_new_inode++; \
4401 } while (0)
4402#define add_compr_block_stat(inode, blocks) \
4403 do { \
4404 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4405 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4406 sbi->compr_written_block += blocks; \
4407 sbi->compr_saved_block += diff; \
4408 } while (0)
4409#else
4410static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4411static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4412{
4413 if (!f2fs_compressed_file(inode))
4414 return true;
4415 /* not support compression */
4416 return false;
4417}
4418static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4419static inline struct page *f2fs_compress_control_page(struct page *page)
4420{
4421 WARN_ON_ONCE(1);
4422 return ERR_PTR(-EINVAL);
4423}
4424static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4425static inline void f2fs_destroy_compress_mempool(void) { }
4426static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4427 bool in_task) { }
4428static inline void f2fs_end_read_compressed_page(struct page *page,
4429 bool failed, block_t blkaddr, bool in_task)
4430{
4431 WARN_ON_ONCE(1);
4432}
4433static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4434{
4435 WARN_ON_ONCE(1);
4436}
4437static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4438 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4439static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4440static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4441static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4442static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4443static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4444static inline int __init f2fs_init_compress_cache(void) { return 0; }
4445static inline void f2fs_destroy_compress_cache(void) { }
4446static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4447 block_t blkaddr) { }
4448static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4449 struct page *page, nid_t ino, block_t blkaddr) { }
4450static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4451 struct page *page, block_t blkaddr) { return false; }
4452static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4453 nid_t ino) { }
4454#define inc_compr_inode_stat(inode) do { } while (0)
4455static inline int f2fs_is_compressed_cluster(
4456 struct inode *inode,
4457 pgoff_t index) { return 0; }
4458static inline bool f2fs_is_sparse_cluster(
4459 struct inode *inode,
4460 pgoff_t index) { return true; }
4461static inline void f2fs_update_read_extent_tree_range_compressed(
4462 struct inode *inode,
4463 pgoff_t fofs, block_t blkaddr,
4464 unsigned int llen, unsigned int c_len) { }
4465#endif
4466
4467static inline int set_compress_context(struct inode *inode)
4468{
4469#ifdef CONFIG_F2FS_FS_COMPRESSION
4470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4471 struct f2fs_inode_info *fi = F2FS_I(inode);
4472
4473 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4474 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4475 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4476 BIT(COMPRESS_CHKSUM) : 0;
4477 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4478 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4479 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4480 F2FS_OPTION(sbi).compress_level)
4481 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4482 fi->i_flags |= F2FS_COMPR_FL;
4483 set_inode_flag(inode, FI_COMPRESSED_FILE);
4484 stat_inc_compr_inode(inode);
4485 inc_compr_inode_stat(inode);
4486 f2fs_mark_inode_dirty_sync(inode, true);
4487 return 0;
4488#else
4489 return -EOPNOTSUPP;
4490#endif
4491}
4492
4493static inline bool f2fs_disable_compressed_file(struct inode *inode)
4494{
4495 struct f2fs_inode_info *fi = F2FS_I(inode);
4496
4497 f2fs_down_write(&fi->i_sem);
4498
4499 if (!f2fs_compressed_file(inode)) {
4500 f2fs_up_write(&fi->i_sem);
4501 return true;
4502 }
4503 if (f2fs_is_mmap_file(inode) ||
4504 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4505 f2fs_up_write(&fi->i_sem);
4506 return false;
4507 }
4508
4509 fi->i_flags &= ~F2FS_COMPR_FL;
4510 stat_dec_compr_inode(inode);
4511 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4512 f2fs_mark_inode_dirty_sync(inode, true);
4513
4514 f2fs_up_write(&fi->i_sem);
4515 return true;
4516}
4517
4518#define F2FS_FEATURE_FUNCS(name, flagname) \
4519static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4520{ \
4521 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4522}
4523
4524F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4525F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4526F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4527F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4528F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4529F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4530F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4531F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4532F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4533F2FS_FEATURE_FUNCS(verity, VERITY);
4534F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4535F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4536F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4537F2FS_FEATURE_FUNCS(readonly, RO);
4538F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4539
4540#ifdef CONFIG_BLK_DEV_ZONED
4541static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4542 block_t blkaddr)
4543{
4544 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4545
4546 return test_bit(zno, FDEV(devi).blkz_seq);
4547}
4548#endif
4549
4550static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4551 struct block_device *bdev)
4552{
4553 int i;
4554
4555 if (!f2fs_is_multi_device(sbi))
4556 return 0;
4557
4558 for (i = 0; i < sbi->s_ndevs; i++)
4559 if (FDEV(i).bdev == bdev)
4560 return i;
4561
4562 WARN_ON(1);
4563 return -1;
4564}
4565
4566static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4567{
4568 return f2fs_sb_has_blkzoned(sbi);
4569}
4570
4571static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4572{
4573 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4574}
4575
4576static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4577{
4578 int i;
4579
4580 if (!f2fs_is_multi_device(sbi))
4581 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4582
4583 for (i = 0; i < sbi->s_ndevs; i++)
4584 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4585 return true;
4586 return false;
4587}
4588
4589static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4590{
4591 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4592 f2fs_hw_should_discard(sbi);
4593}
4594
4595static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4596{
4597 int i;
4598
4599 if (!f2fs_is_multi_device(sbi))
4600 return bdev_read_only(sbi->sb->s_bdev);
4601
4602 for (i = 0; i < sbi->s_ndevs; i++)
4603 if (bdev_read_only(FDEV(i).bdev))
4604 return true;
4605 return false;
4606}
4607
4608static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4609{
4610 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4611}
4612
4613static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4614{
4615 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4616}
4617
4618static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4619 block_t blkaddr)
4620{
4621 if (f2fs_sb_has_blkzoned(sbi)) {
4622 int devi = f2fs_target_device_index(sbi, blkaddr);
4623
4624 return !bdev_is_zoned(FDEV(devi).bdev);
4625 }
4626 return true;
4627}
4628
4629static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4630{
4631 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4632}
4633
4634static inline bool f2fs_may_compress(struct inode *inode)
4635{
4636 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4637 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4638 f2fs_is_mmap_file(inode))
4639 return false;
4640 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4641}
4642
4643static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4644 u64 blocks, bool add)
4645{
4646 struct f2fs_inode_info *fi = F2FS_I(inode);
4647 int diff = fi->i_cluster_size - blocks;
4648
4649 /* don't update i_compr_blocks if saved blocks were released */
4650 if (!add && !atomic_read(&fi->i_compr_blocks))
4651 return;
4652
4653 if (add) {
4654 atomic_add(diff, &fi->i_compr_blocks);
4655 stat_add_compr_blocks(inode, diff);
4656 } else {
4657 atomic_sub(diff, &fi->i_compr_blocks);
4658 stat_sub_compr_blocks(inode, diff);
4659 }
4660 f2fs_mark_inode_dirty_sync(inode, true);
4661}
4662
4663static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4664 int flag)
4665{
4666 if (!f2fs_is_multi_device(sbi))
4667 return false;
4668 if (flag != F2FS_GET_BLOCK_DIO)
4669 return false;
4670 return sbi->aligned_blksize;
4671}
4672
4673static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4674{
4675 return fsverity_active(inode) &&
4676 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4677}
4678
4679#ifdef CONFIG_F2FS_FAULT_INJECTION
4680extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4681 unsigned long type);
4682#else
4683static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4684 unsigned long rate, unsigned long type)
4685{
4686 return 0;
4687}
4688#endif
4689
4690static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4691{
4692#ifdef CONFIG_QUOTA
4693 if (f2fs_sb_has_quota_ino(sbi))
4694 return true;
4695 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4696 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4697 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4698 return true;
4699#endif
4700 return false;
4701}
4702
4703static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4704{
4705 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4706}
4707
4708static inline void f2fs_io_schedule_timeout(long timeout)
4709{
4710 set_current_state(TASK_UNINTERRUPTIBLE);
4711 io_schedule_timeout(timeout);
4712}
4713
4714static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4715 struct folio *folio, enum page_type type)
4716{
4717 pgoff_t ofs = folio->index;
4718
4719 if (unlikely(f2fs_cp_error(sbi)))
4720 return;
4721
4722 if (ofs == sbi->page_eio_ofs[type]) {
4723 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4724 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4725 } else {
4726 sbi->page_eio_ofs[type] = ofs;
4727 sbi->page_eio_cnt[type] = 0;
4728 }
4729}
4730
4731static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4732{
4733 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4734}
4735
4736static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4737 block_t blkaddr, unsigned int cnt)
4738{
4739 bool need_submit = false;
4740 int i = 0;
4741
4742 do {
4743 struct page *page;
4744
4745 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4746 if (page) {
4747 if (folio_test_writeback(page_folio(page)))
4748 need_submit = true;
4749 f2fs_put_page(page, 0);
4750 }
4751 } while (++i < cnt && !need_submit);
4752
4753 if (need_submit)
4754 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4755 NULL, 0, DATA);
4756
4757 truncate_inode_pages_range(META_MAPPING(sbi),
4758 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4759 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4760}
4761
4762static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4763 block_t blkaddr)
4764{
4765 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4766 f2fs_invalidate_compress_page(sbi, blkaddr);
4767}
4768
4769#define EFSBADCRC EBADMSG /* Bad CRC detected */
4770#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4771
4772#endif /* _LINUX_F2FS_H */