Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8/*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12#include "ext4_jbd2.h"
13#include "mballoc.h"
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/nospec.h>
18#include <linux/backing-dev.h>
19#include <linux/freezer.h>
20#include <trace/events/ext4.h>
21#include <kunit/static_stub.h>
22
23/*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43/*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { page }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138 *
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
144 *
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148 *
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
154 *
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
158 *
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
165 *
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
170 *
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
180 *
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
184 *
185 * The regular allocator (using the buddy cache) supports a few tunables.
186 *
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_linear_limit
191 *
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
206 * checked.
207 *
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_linear_limit"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
217 *
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
222 */
223
224/*
225 * mballoc operates on the following data:
226 * - on-disk bitmap
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
229 *
230 * there are two types of preallocations:
231 * - inode
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
240 * - locality group
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
245 *
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
248 *
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
252 *
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
256 *
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259 *
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
270 *
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281 * block
282 *
283 * so, now we're building a concurrency table:
284 * - init buddy vs.
285 * - new PA
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
288 * - use inode PA
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
291 * - discard inode PA
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
297 * - new PA vs.
298 * - use inode PA
299 * i_data_sem serializes them
300 * - discard inode PA
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
306 * - use inode PA
307 * - use inode PA
308 * i_data_sem or another mutex should serializes them
309 * - discard inode PA
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
315 *
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
323 *
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
326 *
327 */
328
329 /*
330 * Logic in few words:
331 *
332 * - allocation:
333 * load group
334 * find blocks
335 * mark bits in on-disk bitmap
336 * release group
337 *
338 * - use preallocation:
339 * find proper PA (per-inode or group)
340 * load group
341 * mark bits in on-disk bitmap
342 * release group
343 * release PA
344 *
345 * - free:
346 * load group
347 * mark bits in on-disk bitmap
348 * release group
349 *
350 * - discard preallocations in group:
351 * mark PAs deleted
352 * move them onto local list
353 * load on-disk bitmap
354 * load group
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
357 *
358 * - discard inode's preallocations:
359 */
360
361/*
362 * Locking rules
363 *
364 * Locks:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
367 * - per-pa lock (pa)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
370 *
371 * Paths:
372 * - new pa
373 * object
374 * group
375 *
376 * - find and use pa:
377 * pa
378 *
379 * - release consumed pa:
380 * pa
381 * group
382 * object
383 *
384 * - generate in-core bitmap:
385 * group
386 * pa
387 *
388 * - discard all for given object (inode, locality group):
389 * object
390 * pa
391 * group
392 *
393 * - discard all for given group:
394 * group
395 * pa
396 * group
397 * object
398 *
399 * - allocation path (ext4_mb_regular_allocator)
400 * group
401 * cr_power2_aligned/cr_goal_len_fast
402 */
403static struct kmem_cache *ext4_pspace_cachep;
404static struct kmem_cache *ext4_ac_cachep;
405static struct kmem_cache *ext4_free_data_cachep;
406
407/* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410#define NR_GRPINFO_CACHES 8
411static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417};
418
419static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 ext4_group_t group);
421static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
425
426static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430/*
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
440 *
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447 */
448static DEFINE_PER_CPU(u64, discard_pa_seq);
449static inline u64 ext4_get_discard_pa_seq_sum(void)
450{
451 int __cpu;
452 u64 __seq = 0;
453
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
456 return __seq;
457}
458
459static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460{
461#if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464#elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
467#else
468#error "how many bits you are?!"
469#endif
470 return addr;
471}
472
473static inline int mb_test_bit(int bit, void *addr)
474{
475 /*
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
478 */
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
481}
482
483static inline void mb_set_bit(int bit, void *addr)
484{
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
487}
488
489static inline void mb_clear_bit(int bit, void *addr)
490{
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
493}
494
495static inline int mb_test_and_clear_bit(int bit, void *addr)
496{
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
499}
500
501static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502{
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
505 tmpmax = max + fix;
506 start += fix;
507
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 if (ret > max)
510 return max;
511 return ret;
512}
513
514static inline int mb_find_next_bit(void *addr, int max, int start)
515{
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
518 tmpmax = max + fix;
519 start += fix;
520
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 if (ret > max)
523 return max;
524 return ret;
525}
526
527static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528{
529 char *bb;
530
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 BUG_ON(max == NULL);
533
534 if (order > e4b->bd_blkbits + 1) {
535 *max = 0;
536 return NULL;
537 }
538
539 /* at order 0 we see each particular block */
540 if (order == 0) {
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
543 }
544
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548 return bb;
549}
550
551#ifdef DOUBLE_CHECK
552static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
554{
555 int i;
556 struct super_block *sb = e4b->bd_sb;
557
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 return;
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
564
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 ext4_grp_locked_error(sb, e4b->bd_group,
570 inode ? inode->i_ino : 0,
571 blocknr,
572 "freeing block already freed "
573 "(bit %u)",
574 first + i);
575 }
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 }
578}
579
580static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581{
582 int i;
583
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 return;
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 }
591}
592
593static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594{
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 return;
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
599 int i;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
607 "on disk/prealloc",
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 BUG();
610 }
611 }
612 }
613}
614
615static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
617{
618 struct buffer_head *bh;
619
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 if (!grp->bb_bitmap)
622 return;
623
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
628 return;
629 }
630
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 put_bh(bh);
633}
634
635static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636{
637 kfree(grp->bb_bitmap);
638}
639
640#else
641static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
643{
644 return;
645}
646static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
648{
649 return;
650}
651static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652{
653 return;
654}
655
656static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
658{
659 return;
660}
661
662static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663{
664 return;
665}
666#endif
667
668#ifdef AGGRESSIVE_CHECK
669
670#define MB_CHECK_ASSERT(assert) \
671do { \
672 if (!(assert)) { \
673 printk(KERN_EMERG \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
676 BUG(); \
677 } \
678} while (0)
679
680static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
682{
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
685 int max;
686 int max2;
687 int i;
688 int j;
689 int k;
690 int count;
691 struct ext4_group_info *grp;
692 int fragments = 0;
693 int fstart;
694 struct list_head *cur;
695 void *buddy;
696 void *buddy2;
697
698 if (e4b->bd_info->bb_check_counter++ % 10)
699 return;
700
701 while (order > 1) {
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
708
709 count = 0;
710 for (i = 0; i < max; i++) {
711
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
715 MB_CHECK_ASSERT(
716 mb_test_bit((i<<1)+1, buddy2));
717 }
718 continue;
719 }
720
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
727 MB_CHECK_ASSERT(
728 !mb_test_bit(k, e4b->bd_bitmap));
729 }
730 count++;
731 }
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 order--;
734 }
735
736 fstart = -1;
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 if (fstart == -1) {
742 fragments++;
743 fstart = i;
744 }
745 continue;
746 }
747 fstart = -1;
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
751 k = i >> j;
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 }
755 }
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759 grp = ext4_get_group_info(sb, e4b->bd_group);
760 if (!grp)
761 return;
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 }
771}
772#undef MB_CHECK_ASSERT
773#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
774 __FILE__, __func__, __LINE__)
775#else
776#define mb_check_buddy(e4b)
777#endif
778
779/*
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
784 */
785static void ext4_mb_mark_free_simple(struct super_block *sb,
786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 struct ext4_group_info *grp)
788{
789 struct ext4_sb_info *sbi = EXT4_SB(sb);
790 ext4_grpblk_t min;
791 ext4_grpblk_t max;
792 ext4_grpblk_t chunk;
793 unsigned int border;
794
795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797 border = 2 << sb->s_blocksize_bits;
798
799 while (len > 0) {
800 /* find how many blocks can be covered since this position */
801 max = ffs(first | border) - 1;
802
803 /* find how many blocks of power 2 we need to mark */
804 min = fls(len) - 1;
805
806 if (max < min)
807 min = max;
808 chunk = 1 << min;
809
810 /* mark multiblock chunks only */
811 grp->bb_counters[min]++;
812 if (min > 0)
813 mb_clear_bit(first >> min,
814 buddy + sbi->s_mb_offsets[min]);
815
816 len -= chunk;
817 first += chunk;
818 }
819}
820
821static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822{
823 int order;
824
825 /*
826 * We don't bother with a special lists groups with only 1 block free
827 * extents and for completely empty groups.
828 */
829 order = fls(len) - 2;
830 if (order < 0)
831 return 0;
832 if (order == MB_NUM_ORDERS(sb))
833 order--;
834 return order;
835}
836
837/* Move group to appropriate avg_fragment_size list */
838static void
839mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840{
841 struct ext4_sb_info *sbi = EXT4_SB(sb);
842 int new_order;
843
844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845 return;
846
847 new_order = mb_avg_fragment_size_order(sb,
848 grp->bb_free / grp->bb_fragments);
849 if (new_order == grp->bb_avg_fragment_size_order)
850 return;
851
852 if (grp->bb_avg_fragment_size_order != -1) {
853 write_lock(&sbi->s_mb_avg_fragment_size_locks[
854 grp->bb_avg_fragment_size_order]);
855 list_del(&grp->bb_avg_fragment_size_node);
856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857 grp->bb_avg_fragment_size_order]);
858 }
859 grp->bb_avg_fragment_size_order = new_order;
860 write_lock(&sbi->s_mb_avg_fragment_size_locks[
861 grp->bb_avg_fragment_size_order]);
862 list_add_tail(&grp->bb_avg_fragment_size_node,
863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865 grp->bb_avg_fragment_size_order]);
866}
867
868/*
869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870 * cr level needs an update.
871 */
872static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873 enum criteria *new_cr, ext4_group_t *group)
874{
875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876 struct ext4_group_info *iter;
877 int i;
878
879 if (ac->ac_status == AC_STATUS_FOUND)
880 return;
881
882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887 continue;
888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891 continue;
892 }
893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894 bb_largest_free_order_node) {
895 if (sbi->s_mb_stats)
896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898 *group = iter->bb_group;
899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901 return;
902 }
903 }
904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905 }
906
907 /* Increment cr and search again if no group is found */
908 *new_cr = CR_GOAL_LEN_FAST;
909}
910
911/*
912 * Find a suitable group of given order from the average fragments list.
913 */
914static struct ext4_group_info *
915ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916{
917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920 struct ext4_group_info *grp = NULL, *iter;
921 enum criteria cr = ac->ac_criteria;
922
923 if (list_empty(frag_list))
924 return NULL;
925 read_lock(frag_list_lock);
926 if (list_empty(frag_list)) {
927 read_unlock(frag_list_lock);
928 return NULL;
929 }
930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931 if (sbi->s_mb_stats)
932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934 grp = iter;
935 break;
936 }
937 }
938 read_unlock(frag_list_lock);
939 return grp;
940}
941
942/*
943 * Choose next group by traversing average fragment size list of suitable
944 * order. Updates *new_cr if cr level needs an update.
945 */
946static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947 enum criteria *new_cr, ext4_group_t *group)
948{
949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950 struct ext4_group_info *grp = NULL;
951 int i;
952
953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954 if (sbi->s_mb_stats)
955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956 }
957
958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961 if (grp) {
962 *group = grp->bb_group;
963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964 return;
965 }
966 }
967
968 /*
969 * CR_BEST_AVAIL_LEN works based on the concept that we have
970 * a larger normalized goal len request which can be trimmed to
971 * a smaller goal len such that it can still satisfy original
972 * request len. However, allocation request for non-regular
973 * files never gets normalized.
974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975 */
976 if (ac->ac_flags & EXT4_MB_HINT_DATA)
977 *new_cr = CR_BEST_AVAIL_LEN;
978 else
979 *new_cr = CR_GOAL_LEN_SLOW;
980}
981
982/*
983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984 * order we have and proactively trim the goal request length to that order to
985 * find a suitable group faster.
986 *
987 * This optimizes allocation speed at the cost of slightly reduced
988 * preallocations. However, we make sure that we don't trim the request too
989 * much and fall to CR_GOAL_LEN_SLOW in that case.
990 */
991static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992 enum criteria *new_cr, ext4_group_t *group)
993{
994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995 struct ext4_group_info *grp = NULL;
996 int i, order, min_order;
997 unsigned long num_stripe_clusters = 0;
998
999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000 if (sbi->s_mb_stats)
1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002 }
1003
1004 /*
1005 * mb_avg_fragment_size_order() returns order in a way that makes
1006 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007 * fls() instead since we need to know the actual length while modifying
1008 * goal length.
1009 */
1010 order = fls(ac->ac_g_ex.fe_len) - 1;
1011 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012 if (min_order < 0)
1013 min_order = 0;
1014
1015 if (sbi->s_stripe > 0) {
1016 /*
1017 * We are assuming that stripe size is always a multiple of
1018 * cluster ratio otherwise __ext4_fill_super exists early.
1019 */
1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021 if (1 << min_order < num_stripe_clusters)
1022 /*
1023 * We consider 1 order less because later we round
1024 * up the goal len to num_stripe_clusters
1025 */
1026 min_order = fls(num_stripe_clusters) - 1;
1027 }
1028
1029 if (1 << min_order < ac->ac_o_ex.fe_len)
1030 min_order = fls(ac->ac_o_ex.fe_len);
1031
1032 for (i = order; i >= min_order; i--) {
1033 int frag_order;
1034 /*
1035 * Scale down goal len to make sure we find something
1036 * in the free fragments list. Basically, reduce
1037 * preallocations.
1038 */
1039 ac->ac_g_ex.fe_len = 1 << i;
1040
1041 if (num_stripe_clusters > 0) {
1042 /*
1043 * Try to round up the adjusted goal length to
1044 * stripe size (in cluster units) multiple for
1045 * efficiency.
1046 */
1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048 num_stripe_clusters);
1049 }
1050
1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052 ac->ac_g_ex.fe_len);
1053
1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055 if (grp) {
1056 *group = grp->bb_group;
1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058 return;
1059 }
1060 }
1061
1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064 *new_cr = CR_GOAL_LEN_SLOW;
1065}
1066
1067static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068{
1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070 return 0;
1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072 return 0;
1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074 return 0;
1075 return 1;
1076}
1077
1078/*
1079 * Return next linear group for allocation. If linear traversal should not be
1080 * performed, this function just returns the same group
1081 */
1082static ext4_group_t
1083next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084 ext4_group_t ngroups)
1085{
1086 if (!should_optimize_scan(ac))
1087 goto inc_and_return;
1088
1089 if (ac->ac_groups_linear_remaining) {
1090 ac->ac_groups_linear_remaining--;
1091 goto inc_and_return;
1092 }
1093
1094 return group;
1095inc_and_return:
1096 /*
1097 * Artificially restricted ngroups for non-extent
1098 * files makes group > ngroups possible on first loop.
1099 */
1100 return group + 1 >= ngroups ? 0 : group + 1;
1101}
1102
1103/*
1104 * ext4_mb_choose_next_group: choose next group for allocation.
1105 *
1106 * @ac Allocation Context
1107 * @new_cr This is an output parameter. If the there is no good group
1108 * available at current CR level, this field is updated to indicate
1109 * the new cr level that should be used.
1110 * @group This is an input / output parameter. As an input it indicates the
1111 * next group that the allocator intends to use for allocation. As
1112 * output, this field indicates the next group that should be used as
1113 * determined by the optimization functions.
1114 * @ngroups Total number of groups
1115 */
1116static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118{
1119 *new_cr = ac->ac_criteria;
1120
1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122 *group = next_linear_group(ac, *group, ngroups);
1123 return;
1124 }
1125
1126 if (*new_cr == CR_POWER2_ALIGNED) {
1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132 } else {
1133 /*
1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135 * bb_free. But until that happens, we should never come here.
1136 */
1137 WARN_ON(1);
1138 }
1139}
1140
1141/*
1142 * Cache the order of the largest free extent we have available in this block
1143 * group.
1144 */
1145static void
1146mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147{
1148 struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 int i;
1150
1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152 if (grp->bb_counters[i] > 0)
1153 break;
1154 /* No need to move between order lists? */
1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156 i == grp->bb_largest_free_order) {
1157 grp->bb_largest_free_order = i;
1158 return;
1159 }
1160
1161 if (grp->bb_largest_free_order >= 0) {
1162 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163 grp->bb_largest_free_order]);
1164 list_del_init(&grp->bb_largest_free_order_node);
1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166 grp->bb_largest_free_order]);
1167 }
1168 grp->bb_largest_free_order = i;
1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171 grp->bb_largest_free_order]);
1172 list_add_tail(&grp->bb_largest_free_order_node,
1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175 grp->bb_largest_free_order]);
1176 }
1177}
1178
1179static noinline_for_stack
1180void ext4_mb_generate_buddy(struct super_block *sb,
1181 void *buddy, void *bitmap, ext4_group_t group,
1182 struct ext4_group_info *grp)
1183{
1184 struct ext4_sb_info *sbi = EXT4_SB(sb);
1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186 ext4_grpblk_t i = 0;
1187 ext4_grpblk_t first;
1188 ext4_grpblk_t len;
1189 unsigned free = 0;
1190 unsigned fragments = 0;
1191 unsigned long long period = get_cycles();
1192
1193 /* initialize buddy from bitmap which is aggregation
1194 * of on-disk bitmap and preallocations */
1195 i = mb_find_next_zero_bit(bitmap, max, 0);
1196 grp->bb_first_free = i;
1197 while (i < max) {
1198 fragments++;
1199 first = i;
1200 i = mb_find_next_bit(bitmap, max, i);
1201 len = i - first;
1202 free += len;
1203 if (len > 1)
1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205 else
1206 grp->bb_counters[0]++;
1207 if (i < max)
1208 i = mb_find_next_zero_bit(bitmap, max, i);
1209 }
1210 grp->bb_fragments = fragments;
1211
1212 if (free != grp->bb_free) {
1213 ext4_grp_locked_error(sb, group, 0, 0,
1214 "block bitmap and bg descriptor "
1215 "inconsistent: %u vs %u free clusters",
1216 free, grp->bb_free);
1217 /*
1218 * If we intend to continue, we consider group descriptor
1219 * corrupt and update bb_free using bitmap value
1220 */
1221 grp->bb_free = free;
1222 ext4_mark_group_bitmap_corrupted(sb, group,
1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224 }
1225 mb_set_largest_free_order(sb, grp);
1226 mb_update_avg_fragment_size(sb, grp);
1227
1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230 period = get_cycles() - period;
1231 atomic_inc(&sbi->s_mb_buddies_generated);
1232 atomic64_add(period, &sbi->s_mb_generation_time);
1233}
1234
1235static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236{
1237 int count;
1238 int order = 1;
1239 void *buddy;
1240
1241 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242 mb_set_bits(buddy, 0, count);
1243
1244 e4b->bd_info->bb_fragments = 0;
1245 memset(e4b->bd_info->bb_counters, 0,
1246 sizeof(*e4b->bd_info->bb_counters) *
1247 (e4b->bd_sb->s_blocksize_bits + 2));
1248
1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251}
1252
1253/* The buddy information is attached the buddy cache inode
1254 * for convenience. The information regarding each group
1255 * is loaded via ext4_mb_load_buddy. The information involve
1256 * block bitmap and buddy information. The information are
1257 * stored in the inode as
1258 *
1259 * { page }
1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261 *
1262 *
1263 * one block each for bitmap and buddy information.
1264 * So for each group we take up 2 blocks. A page can
1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1266 * So it can have information regarding groups_per_page which
1267 * is blocks_per_page/2
1268 *
1269 * Locking note: This routine takes the block group lock of all groups
1270 * for this page; do not hold this lock when calling this routine!
1271 */
1272
1273static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274{
1275 ext4_group_t ngroups;
1276 unsigned int blocksize;
1277 int blocks_per_page;
1278 int groups_per_page;
1279 int err = 0;
1280 int i;
1281 ext4_group_t first_group, group;
1282 int first_block;
1283 struct super_block *sb;
1284 struct buffer_head *bhs;
1285 struct buffer_head **bh = NULL;
1286 struct inode *inode;
1287 char *data;
1288 char *bitmap;
1289 struct ext4_group_info *grinfo;
1290
1291 inode = page->mapping->host;
1292 sb = inode->i_sb;
1293 ngroups = ext4_get_groups_count(sb);
1294 blocksize = i_blocksize(inode);
1295 blocks_per_page = PAGE_SIZE / blocksize;
1296
1297 mb_debug(sb, "init page %lu\n", page->index);
1298
1299 groups_per_page = blocks_per_page >> 1;
1300 if (groups_per_page == 0)
1301 groups_per_page = 1;
1302
1303 /* allocate buffer_heads to read bitmaps */
1304 if (groups_per_page > 1) {
1305 i = sizeof(struct buffer_head *) * groups_per_page;
1306 bh = kzalloc(i, gfp);
1307 if (bh == NULL)
1308 return -ENOMEM;
1309 } else
1310 bh = &bhs;
1311
1312 first_group = page->index * blocks_per_page / 2;
1313
1314 /* read all groups the page covers into the cache */
1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316 if (group >= ngroups)
1317 break;
1318
1319 grinfo = ext4_get_group_info(sb, group);
1320 if (!grinfo)
1321 continue;
1322 /*
1323 * If page is uptodate then we came here after online resize
1324 * which added some new uninitialized group info structs, so
1325 * we must skip all initialized uptodate buddies on the page,
1326 * which may be currently in use by an allocating task.
1327 */
1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329 bh[i] = NULL;
1330 continue;
1331 }
1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333 if (IS_ERR(bh[i])) {
1334 err = PTR_ERR(bh[i]);
1335 bh[i] = NULL;
1336 goto out;
1337 }
1338 mb_debug(sb, "read bitmap for group %u\n", group);
1339 }
1340
1341 /* wait for I/O completion */
1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343 int err2;
1344
1345 if (!bh[i])
1346 continue;
1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348 if (!err)
1349 err = err2;
1350 }
1351
1352 first_block = page->index * blocks_per_page;
1353 for (i = 0; i < blocks_per_page; i++) {
1354 group = (first_block + i) >> 1;
1355 if (group >= ngroups)
1356 break;
1357
1358 if (!bh[group - first_group])
1359 /* skip initialized uptodate buddy */
1360 continue;
1361
1362 if (!buffer_verified(bh[group - first_group]))
1363 /* Skip faulty bitmaps */
1364 continue;
1365 err = 0;
1366
1367 /*
1368 * data carry information regarding this
1369 * particular group in the format specified
1370 * above
1371 *
1372 */
1373 data = page_address(page) + (i * blocksize);
1374 bitmap = bh[group - first_group]->b_data;
1375
1376 /*
1377 * We place the buddy block and bitmap block
1378 * close together
1379 */
1380 grinfo = ext4_get_group_info(sb, group);
1381 if (!grinfo) {
1382 err = -EFSCORRUPTED;
1383 goto out;
1384 }
1385 if ((first_block + i) & 1) {
1386 /* this is block of buddy */
1387 BUG_ON(incore == NULL);
1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389 group, page->index, i * blocksize);
1390 trace_ext4_mb_buddy_bitmap_load(sb, group);
1391 grinfo->bb_fragments = 0;
1392 memset(grinfo->bb_counters, 0,
1393 sizeof(*grinfo->bb_counters) *
1394 (MB_NUM_ORDERS(sb)));
1395 /*
1396 * incore got set to the group block bitmap below
1397 */
1398 ext4_lock_group(sb, group);
1399 /* init the buddy */
1400 memset(data, 0xff, blocksize);
1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402 ext4_unlock_group(sb, group);
1403 incore = NULL;
1404 } else {
1405 /* this is block of bitmap */
1406 BUG_ON(incore != NULL);
1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408 group, page->index, i * blocksize);
1409 trace_ext4_mb_bitmap_load(sb, group);
1410
1411 /* see comments in ext4_mb_put_pa() */
1412 ext4_lock_group(sb, group);
1413 memcpy(data, bitmap, blocksize);
1414
1415 /* mark all preallocated blks used in in-core bitmap */
1416 ext4_mb_generate_from_pa(sb, data, group);
1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418 ext4_unlock_group(sb, group);
1419
1420 /* set incore so that the buddy information can be
1421 * generated using this
1422 */
1423 incore = data;
1424 }
1425 }
1426 SetPageUptodate(page);
1427
1428out:
1429 if (bh) {
1430 for (i = 0; i < groups_per_page; i++)
1431 brelse(bh[i]);
1432 if (bh != &bhs)
1433 kfree(bh);
1434 }
1435 return err;
1436}
1437
1438/*
1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440 * on the same buddy page doesn't happen whild holding the buddy page lock.
1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443 */
1444static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446{
1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448 int block, pnum, poff;
1449 int blocks_per_page;
1450 struct page *page;
1451
1452 e4b->bd_buddy_page = NULL;
1453 e4b->bd_bitmap_page = NULL;
1454
1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456 /*
1457 * the buddy cache inode stores the block bitmap
1458 * and buddy information in consecutive blocks.
1459 * So for each group we need two blocks.
1460 */
1461 block = group * 2;
1462 pnum = block / blocks_per_page;
1463 poff = block % blocks_per_page;
1464 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465 if (!page)
1466 return -ENOMEM;
1467 BUG_ON(page->mapping != inode->i_mapping);
1468 e4b->bd_bitmap_page = page;
1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471 if (blocks_per_page >= 2) {
1472 /* buddy and bitmap are on the same page */
1473 return 0;
1474 }
1475
1476 /* blocks_per_page == 1, hence we need another page for the buddy */
1477 page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1478 if (!page)
1479 return -ENOMEM;
1480 BUG_ON(page->mapping != inode->i_mapping);
1481 e4b->bd_buddy_page = page;
1482 return 0;
1483}
1484
1485static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486{
1487 if (e4b->bd_bitmap_page) {
1488 unlock_page(e4b->bd_bitmap_page);
1489 put_page(e4b->bd_bitmap_page);
1490 }
1491 if (e4b->bd_buddy_page) {
1492 unlock_page(e4b->bd_buddy_page);
1493 put_page(e4b->bd_buddy_page);
1494 }
1495}
1496
1497/*
1498 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1499 * block group lock of all groups for this page; do not hold the BG lock when
1500 * calling this routine!
1501 */
1502static noinline_for_stack
1503int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504{
1505
1506 struct ext4_group_info *this_grp;
1507 struct ext4_buddy e4b;
1508 struct page *page;
1509 int ret = 0;
1510
1511 might_sleep();
1512 mb_debug(sb, "init group %u\n", group);
1513 this_grp = ext4_get_group_info(sb, group);
1514 if (!this_grp)
1515 return -EFSCORRUPTED;
1516
1517 /*
1518 * This ensures that we don't reinit the buddy cache
1519 * page which map to the group from which we are already
1520 * allocating. If we are looking at the buddy cache we would
1521 * have taken a reference using ext4_mb_load_buddy and that
1522 * would have pinned buddy page to page cache.
1523 * The call to ext4_mb_get_buddy_page_lock will mark the
1524 * page accessed.
1525 */
1526 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528 /*
1529 * somebody initialized the group
1530 * return without doing anything
1531 */
1532 goto err;
1533 }
1534
1535 page = e4b.bd_bitmap_page;
1536 ret = ext4_mb_init_cache(page, NULL, gfp);
1537 if (ret)
1538 goto err;
1539 if (!PageUptodate(page)) {
1540 ret = -EIO;
1541 goto err;
1542 }
1543
1544 if (e4b.bd_buddy_page == NULL) {
1545 /*
1546 * If both the bitmap and buddy are in
1547 * the same page we don't need to force
1548 * init the buddy
1549 */
1550 ret = 0;
1551 goto err;
1552 }
1553 /* init buddy cache */
1554 page = e4b.bd_buddy_page;
1555 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556 if (ret)
1557 goto err;
1558 if (!PageUptodate(page)) {
1559 ret = -EIO;
1560 goto err;
1561 }
1562err:
1563 ext4_mb_put_buddy_page_lock(&e4b);
1564 return ret;
1565}
1566
1567/*
1568 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1569 * block group lock of all groups for this page; do not hold the BG lock when
1570 * calling this routine!
1571 */
1572static noinline_for_stack int
1573ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574 struct ext4_buddy *e4b, gfp_t gfp)
1575{
1576 int blocks_per_page;
1577 int block;
1578 int pnum;
1579 int poff;
1580 struct page *page;
1581 int ret;
1582 struct ext4_group_info *grp;
1583 struct ext4_sb_info *sbi = EXT4_SB(sb);
1584 struct inode *inode = sbi->s_buddy_cache;
1585
1586 might_sleep();
1587 mb_debug(sb, "load group %u\n", group);
1588
1589 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590 grp = ext4_get_group_info(sb, group);
1591 if (!grp)
1592 return -EFSCORRUPTED;
1593
1594 e4b->bd_blkbits = sb->s_blocksize_bits;
1595 e4b->bd_info = grp;
1596 e4b->bd_sb = sb;
1597 e4b->bd_group = group;
1598 e4b->bd_buddy_page = NULL;
1599 e4b->bd_bitmap_page = NULL;
1600
1601 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602 /*
1603 * we need full data about the group
1604 * to make a good selection
1605 */
1606 ret = ext4_mb_init_group(sb, group, gfp);
1607 if (ret)
1608 return ret;
1609 }
1610
1611 /*
1612 * the buddy cache inode stores the block bitmap
1613 * and buddy information in consecutive blocks.
1614 * So for each group we need two blocks.
1615 */
1616 block = group * 2;
1617 pnum = block / blocks_per_page;
1618 poff = block % blocks_per_page;
1619
1620 /* we could use find_or_create_page(), but it locks page
1621 * what we'd like to avoid in fast path ... */
1622 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623 if (page == NULL || !PageUptodate(page)) {
1624 if (page)
1625 /*
1626 * drop the page reference and try
1627 * to get the page with lock. If we
1628 * are not uptodate that implies
1629 * somebody just created the page but
1630 * is yet to initialize the same. So
1631 * wait for it to initialize.
1632 */
1633 put_page(page);
1634 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635 if (page) {
1636 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638 /* should never happen */
1639 unlock_page(page);
1640 ret = -EINVAL;
1641 goto err;
1642 }
1643 if (!PageUptodate(page)) {
1644 ret = ext4_mb_init_cache(page, NULL, gfp);
1645 if (ret) {
1646 unlock_page(page);
1647 goto err;
1648 }
1649 mb_cmp_bitmaps(e4b, page_address(page) +
1650 (poff * sb->s_blocksize));
1651 }
1652 unlock_page(page);
1653 }
1654 }
1655 if (page == NULL) {
1656 ret = -ENOMEM;
1657 goto err;
1658 }
1659 if (!PageUptodate(page)) {
1660 ret = -EIO;
1661 goto err;
1662 }
1663
1664 /* Pages marked accessed already */
1665 e4b->bd_bitmap_page = page;
1666 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667
1668 block++;
1669 pnum = block / blocks_per_page;
1670 poff = block % blocks_per_page;
1671
1672 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673 if (page == NULL || !PageUptodate(page)) {
1674 if (page)
1675 put_page(page);
1676 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677 if (page) {
1678 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680 /* should never happen */
1681 unlock_page(page);
1682 ret = -EINVAL;
1683 goto err;
1684 }
1685 if (!PageUptodate(page)) {
1686 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687 gfp);
1688 if (ret) {
1689 unlock_page(page);
1690 goto err;
1691 }
1692 }
1693 unlock_page(page);
1694 }
1695 }
1696 if (page == NULL) {
1697 ret = -ENOMEM;
1698 goto err;
1699 }
1700 if (!PageUptodate(page)) {
1701 ret = -EIO;
1702 goto err;
1703 }
1704
1705 /* Pages marked accessed already */
1706 e4b->bd_buddy_page = page;
1707 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708
1709 return 0;
1710
1711err:
1712 if (page)
1713 put_page(page);
1714 if (e4b->bd_bitmap_page)
1715 put_page(e4b->bd_bitmap_page);
1716
1717 e4b->bd_buddy = NULL;
1718 e4b->bd_bitmap = NULL;
1719 return ret;
1720}
1721
1722static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723 struct ext4_buddy *e4b)
1724{
1725 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726}
1727
1728static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729{
1730 if (e4b->bd_bitmap_page)
1731 put_page(e4b->bd_bitmap_page);
1732 if (e4b->bd_buddy_page)
1733 put_page(e4b->bd_buddy_page);
1734}
1735
1736
1737static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738{
1739 int order = 1, max;
1740 void *bb;
1741
1742 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744
1745 while (order <= e4b->bd_blkbits + 1) {
1746 bb = mb_find_buddy(e4b, order, &max);
1747 if (!mb_test_bit(block >> order, bb)) {
1748 /* this block is part of buddy of order 'order' */
1749 return order;
1750 }
1751 order++;
1752 }
1753 return 0;
1754}
1755
1756static void mb_clear_bits(void *bm, int cur, int len)
1757{
1758 __u32 *addr;
1759
1760 len = cur + len;
1761 while (cur < len) {
1762 if ((cur & 31) == 0 && (len - cur) >= 32) {
1763 /* fast path: clear whole word at once */
1764 addr = bm + (cur >> 3);
1765 *addr = 0;
1766 cur += 32;
1767 continue;
1768 }
1769 mb_clear_bit(cur, bm);
1770 cur++;
1771 }
1772}
1773
1774/* clear bits in given range
1775 * will return first found zero bit if any, -1 otherwise
1776 */
1777static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778{
1779 __u32 *addr;
1780 int zero_bit = -1;
1781
1782 len = cur + len;
1783 while (cur < len) {
1784 if ((cur & 31) == 0 && (len - cur) >= 32) {
1785 /* fast path: clear whole word at once */
1786 addr = bm + (cur >> 3);
1787 if (*addr != (__u32)(-1) && zero_bit == -1)
1788 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789 *addr = 0;
1790 cur += 32;
1791 continue;
1792 }
1793 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794 zero_bit = cur;
1795 cur++;
1796 }
1797
1798 return zero_bit;
1799}
1800
1801void mb_set_bits(void *bm, int cur, int len)
1802{
1803 __u32 *addr;
1804
1805 len = cur + len;
1806 while (cur < len) {
1807 if ((cur & 31) == 0 && (len - cur) >= 32) {
1808 /* fast path: set whole word at once */
1809 addr = bm + (cur >> 3);
1810 *addr = 0xffffffff;
1811 cur += 32;
1812 continue;
1813 }
1814 mb_set_bit(cur, bm);
1815 cur++;
1816 }
1817}
1818
1819static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820{
1821 if (mb_test_bit(*bit + side, bitmap)) {
1822 mb_clear_bit(*bit, bitmap);
1823 (*bit) -= side;
1824 return 1;
1825 }
1826 else {
1827 (*bit) += side;
1828 mb_set_bit(*bit, bitmap);
1829 return -1;
1830 }
1831}
1832
1833static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834{
1835 int max;
1836 int order = 1;
1837 void *buddy = mb_find_buddy(e4b, order, &max);
1838
1839 while (buddy) {
1840 void *buddy2;
1841
1842 /* Bits in range [first; last] are known to be set since
1843 * corresponding blocks were allocated. Bits in range
1844 * (first; last) will stay set because they form buddies on
1845 * upper layer. We just deal with borders if they don't
1846 * align with upper layer and then go up.
1847 * Releasing entire group is all about clearing
1848 * single bit of highest order buddy.
1849 */
1850
1851 /* Example:
1852 * ---------------------------------
1853 * | 1 | 1 | 1 | 1 |
1854 * ---------------------------------
1855 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856 * ---------------------------------
1857 * 0 1 2 3 4 5 6 7
1858 * \_____________________/
1859 *
1860 * Neither [1] nor [6] is aligned to above layer.
1861 * Left neighbour [0] is free, so mark it busy,
1862 * decrease bb_counters and extend range to
1863 * [0; 6]
1864 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865 * mark [6] free, increase bb_counters and shrink range to
1866 * [0; 5].
1867 * Then shift range to [0; 2], go up and do the same.
1868 */
1869
1870
1871 if (first & 1)
1872 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873 if (!(last & 1))
1874 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875 if (first > last)
1876 break;
1877 order++;
1878
1879 buddy2 = mb_find_buddy(e4b, order, &max);
1880 if (!buddy2) {
1881 mb_clear_bits(buddy, first, last - first + 1);
1882 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883 break;
1884 }
1885 first >>= 1;
1886 last >>= 1;
1887 buddy = buddy2;
1888 }
1889}
1890
1891static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892 int first, int count)
1893{
1894 int left_is_free = 0;
1895 int right_is_free = 0;
1896 int block;
1897 int last = first + count - 1;
1898 struct super_block *sb = e4b->bd_sb;
1899
1900 if (WARN_ON(count == 0))
1901 return;
1902 BUG_ON(last >= (sb->s_blocksize << 3));
1903 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904 /* Don't bother if the block group is corrupt. */
1905 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906 return;
1907
1908 mb_check_buddy(e4b);
1909 mb_free_blocks_double(inode, e4b, first, count);
1910
1911 /* access memory sequentially: check left neighbour,
1912 * clear range and then check right neighbour
1913 */
1914 if (first != 0)
1915 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919
1920 if (unlikely(block != -1)) {
1921 struct ext4_sb_info *sbi = EXT4_SB(sb);
1922 ext4_fsblk_t blocknr;
1923
1924 /*
1925 * Fastcommit replay can free already freed blocks which
1926 * corrupts allocation info. Regenerate it.
1927 */
1928 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929 mb_regenerate_buddy(e4b);
1930 goto check;
1931 }
1932
1933 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934 blocknr += EXT4_C2B(sbi, block);
1935 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937 ext4_grp_locked_error(sb, e4b->bd_group,
1938 inode ? inode->i_ino : 0, blocknr,
1939 "freeing already freed block (bit %u); block bitmap corrupt.",
1940 block);
1941 return;
1942 }
1943
1944 this_cpu_inc(discard_pa_seq);
1945 e4b->bd_info->bb_free += count;
1946 if (first < e4b->bd_info->bb_first_free)
1947 e4b->bd_info->bb_first_free = first;
1948
1949 /* let's maintain fragments counter */
1950 if (left_is_free && right_is_free)
1951 e4b->bd_info->bb_fragments--;
1952 else if (!left_is_free && !right_is_free)
1953 e4b->bd_info->bb_fragments++;
1954
1955 /* buddy[0] == bd_bitmap is a special case, so handle
1956 * it right away and let mb_buddy_mark_free stay free of
1957 * zero order checks.
1958 * Check if neighbours are to be coaleasced,
1959 * adjust bitmap bb_counters and borders appropriately.
1960 */
1961 if (first & 1) {
1962 first += !left_is_free;
1963 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964 }
1965 if (!(last & 1)) {
1966 last -= !right_is_free;
1967 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968 }
1969
1970 if (first <= last)
1971 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972
1973 mb_set_largest_free_order(sb, e4b->bd_info);
1974 mb_update_avg_fragment_size(sb, e4b->bd_info);
1975check:
1976 mb_check_buddy(e4b);
1977}
1978
1979static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980 int needed, struct ext4_free_extent *ex)
1981{
1982 int max, order, next;
1983 void *buddy;
1984
1985 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986 BUG_ON(ex == NULL);
1987
1988 buddy = mb_find_buddy(e4b, 0, &max);
1989 BUG_ON(buddy == NULL);
1990 BUG_ON(block >= max);
1991 if (mb_test_bit(block, buddy)) {
1992 ex->fe_len = 0;
1993 ex->fe_start = 0;
1994 ex->fe_group = 0;
1995 return 0;
1996 }
1997
1998 /* find actual order */
1999 order = mb_find_order_for_block(e4b, block);
2000
2001 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002 ex->fe_start = block;
2003 ex->fe_group = e4b->bd_group;
2004
2005 block = block >> order;
2006
2007 while (needed > ex->fe_len &&
2008 mb_find_buddy(e4b, order, &max)) {
2009
2010 if (block + 1 >= max)
2011 break;
2012
2013 next = (block + 1) * (1 << order);
2014 if (mb_test_bit(next, e4b->bd_bitmap))
2015 break;
2016
2017 order = mb_find_order_for_block(e4b, next);
2018
2019 block = next >> order;
2020 ex->fe_len += 1 << order;
2021 }
2022
2023 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024 /* Should never happen! (but apparently sometimes does?!?) */
2025 WARN_ON(1);
2026 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027 "corruption or bug in mb_find_extent "
2028 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029 block, order, needed, ex->fe_group, ex->fe_start,
2030 ex->fe_len, ex->fe_logical);
2031 ex->fe_len = 0;
2032 ex->fe_start = 0;
2033 ex->fe_group = 0;
2034 }
2035 return ex->fe_len;
2036}
2037
2038static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039{
2040 int ord;
2041 int mlen = 0;
2042 int max = 0;
2043 int cur;
2044 int start = ex->fe_start;
2045 int len = ex->fe_len;
2046 unsigned ret = 0;
2047 int len0 = len;
2048 void *buddy;
2049 bool split = false;
2050
2051 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052 BUG_ON(e4b->bd_group != ex->fe_group);
2053 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054 mb_check_buddy(e4b);
2055 mb_mark_used_double(e4b, start, len);
2056
2057 this_cpu_inc(discard_pa_seq);
2058 e4b->bd_info->bb_free -= len;
2059 if (e4b->bd_info->bb_first_free == start)
2060 e4b->bd_info->bb_first_free += len;
2061
2062 /* let's maintain fragments counter */
2063 if (start != 0)
2064 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067 if (mlen && max)
2068 e4b->bd_info->bb_fragments++;
2069 else if (!mlen && !max)
2070 e4b->bd_info->bb_fragments--;
2071
2072 /* let's maintain buddy itself */
2073 while (len) {
2074 if (!split)
2075 ord = mb_find_order_for_block(e4b, start);
2076
2077 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078 /* the whole chunk may be allocated at once! */
2079 mlen = 1 << ord;
2080 if (!split)
2081 buddy = mb_find_buddy(e4b, ord, &max);
2082 else
2083 split = false;
2084 BUG_ON((start >> ord) >= max);
2085 mb_set_bit(start >> ord, buddy);
2086 e4b->bd_info->bb_counters[ord]--;
2087 start += mlen;
2088 len -= mlen;
2089 BUG_ON(len < 0);
2090 continue;
2091 }
2092
2093 /* store for history */
2094 if (ret == 0)
2095 ret = len | (ord << 16);
2096
2097 /* we have to split large buddy */
2098 BUG_ON(ord <= 0);
2099 buddy = mb_find_buddy(e4b, ord, &max);
2100 mb_set_bit(start >> ord, buddy);
2101 e4b->bd_info->bb_counters[ord]--;
2102
2103 ord--;
2104 cur = (start >> ord) & ~1U;
2105 buddy = mb_find_buddy(e4b, ord, &max);
2106 mb_clear_bit(cur, buddy);
2107 mb_clear_bit(cur + 1, buddy);
2108 e4b->bd_info->bb_counters[ord]++;
2109 e4b->bd_info->bb_counters[ord]++;
2110 split = true;
2111 }
2112 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113
2114 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116 mb_check_buddy(e4b);
2117
2118 return ret;
2119}
2120
2121/*
2122 * Must be called under group lock!
2123 */
2124static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125 struct ext4_buddy *e4b)
2126{
2127 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128 int ret;
2129
2130 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132
2133 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136
2137 /* preallocation can change ac_b_ex, thus we store actually
2138 * allocated blocks for history */
2139 ac->ac_f_ex = ac->ac_b_ex;
2140
2141 ac->ac_status = AC_STATUS_FOUND;
2142 ac->ac_tail = ret & 0xffff;
2143 ac->ac_buddy = ret >> 16;
2144
2145 /*
2146 * take the page reference. We want the page to be pinned
2147 * so that we don't get a ext4_mb_init_cache_call for this
2148 * group until we update the bitmap. That would mean we
2149 * double allocate blocks. The reference is dropped
2150 * in ext4_mb_release_context
2151 */
2152 ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153 get_page(ac->ac_bitmap_page);
2154 ac->ac_buddy_page = e4b->bd_buddy_page;
2155 get_page(ac->ac_buddy_page);
2156 /* store last allocated for subsequent stream allocation */
2157 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158 spin_lock(&sbi->s_md_lock);
2159 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161 spin_unlock(&sbi->s_md_lock);
2162 }
2163 /*
2164 * As we've just preallocated more space than
2165 * user requested originally, we store allocated
2166 * space in a special descriptor.
2167 */
2168 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169 ext4_mb_new_preallocation(ac);
2170
2171}
2172
2173static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174 struct ext4_buddy *e4b,
2175 int finish_group)
2176{
2177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178 struct ext4_free_extent *bex = &ac->ac_b_ex;
2179 struct ext4_free_extent *gex = &ac->ac_g_ex;
2180
2181 if (ac->ac_status == AC_STATUS_FOUND)
2182 return;
2183 /*
2184 * We don't want to scan for a whole year
2185 */
2186 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188 ac->ac_status = AC_STATUS_BREAK;
2189 return;
2190 }
2191
2192 /*
2193 * Haven't found good chunk so far, let's continue
2194 */
2195 if (bex->fe_len < gex->fe_len)
2196 return;
2197
2198 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199 ext4_mb_use_best_found(ac, e4b);
2200}
2201
2202/*
2203 * The routine checks whether found extent is good enough. If it is,
2204 * then the extent gets marked used and flag is set to the context
2205 * to stop scanning. Otherwise, the extent is compared with the
2206 * previous found extent and if new one is better, then it's stored
2207 * in the context. Later, the best found extent will be used, if
2208 * mballoc can't find good enough extent.
2209 *
2210 * The algorithm used is roughly as follows:
2211 *
2212 * * If free extent found is exactly as big as goal, then
2213 * stop the scan and use it immediately
2214 *
2215 * * If free extent found is smaller than goal, then keep retrying
2216 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217 * that stop scanning and use whatever we have.
2218 *
2219 * * If free extent found is bigger than goal, then keep retrying
2220 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221 * stopping the scan and using the extent.
2222 *
2223 *
2224 * FIXME: real allocation policy is to be designed yet!
2225 */
2226static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227 struct ext4_free_extent *ex,
2228 struct ext4_buddy *e4b)
2229{
2230 struct ext4_free_extent *bex = &ac->ac_b_ex;
2231 struct ext4_free_extent *gex = &ac->ac_g_ex;
2232
2233 BUG_ON(ex->fe_len <= 0);
2234 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237
2238 ac->ac_found++;
2239 ac->ac_cX_found[ac->ac_criteria]++;
2240
2241 /*
2242 * The special case - take what you catch first
2243 */
2244 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245 *bex = *ex;
2246 ext4_mb_use_best_found(ac, e4b);
2247 return;
2248 }
2249
2250 /*
2251 * Let's check whether the chuck is good enough
2252 */
2253 if (ex->fe_len == gex->fe_len) {
2254 *bex = *ex;
2255 ext4_mb_use_best_found(ac, e4b);
2256 return;
2257 }
2258
2259 /*
2260 * If this is first found extent, just store it in the context
2261 */
2262 if (bex->fe_len == 0) {
2263 *bex = *ex;
2264 return;
2265 }
2266
2267 /*
2268 * If new found extent is better, store it in the context
2269 */
2270 if (bex->fe_len < gex->fe_len) {
2271 /* if the request isn't satisfied, any found extent
2272 * larger than previous best one is better */
2273 if (ex->fe_len > bex->fe_len)
2274 *bex = *ex;
2275 } else if (ex->fe_len > gex->fe_len) {
2276 /* if the request is satisfied, then we try to find
2277 * an extent that still satisfy the request, but is
2278 * smaller than previous one */
2279 if (ex->fe_len < bex->fe_len)
2280 *bex = *ex;
2281 }
2282
2283 ext4_mb_check_limits(ac, e4b, 0);
2284}
2285
2286static noinline_for_stack
2287void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288 struct ext4_buddy *e4b)
2289{
2290 struct ext4_free_extent ex = ac->ac_b_ex;
2291 ext4_group_t group = ex.fe_group;
2292 int max;
2293 int err;
2294
2295 BUG_ON(ex.fe_len <= 0);
2296 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297 if (err)
2298 return;
2299
2300 ext4_lock_group(ac->ac_sb, group);
2301 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302 goto out;
2303
2304 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305
2306 if (max > 0) {
2307 ac->ac_b_ex = ex;
2308 ext4_mb_use_best_found(ac, e4b);
2309 }
2310
2311out:
2312 ext4_unlock_group(ac->ac_sb, group);
2313 ext4_mb_unload_buddy(e4b);
2314}
2315
2316static noinline_for_stack
2317int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318 struct ext4_buddy *e4b)
2319{
2320 ext4_group_t group = ac->ac_g_ex.fe_group;
2321 int max;
2322 int err;
2323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325 struct ext4_free_extent ex;
2326
2327 if (!grp)
2328 return -EFSCORRUPTED;
2329 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330 return 0;
2331 if (grp->bb_free == 0)
2332 return 0;
2333
2334 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335 if (err)
2336 return err;
2337
2338 ext4_lock_group(ac->ac_sb, group);
2339 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340 goto out;
2341
2342 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343 ac->ac_g_ex.fe_len, &ex);
2344 ex.fe_logical = 0xDEADFA11; /* debug value */
2345
2346 if (max >= ac->ac_g_ex.fe_len &&
2347 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348 ext4_fsblk_t start;
2349
2350 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2351 /* use do_div to get remainder (would be 64-bit modulo) */
2352 if (do_div(start, sbi->s_stripe) == 0) {
2353 ac->ac_found++;
2354 ac->ac_b_ex = ex;
2355 ext4_mb_use_best_found(ac, e4b);
2356 }
2357 } else if (max >= ac->ac_g_ex.fe_len) {
2358 BUG_ON(ex.fe_len <= 0);
2359 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361 ac->ac_found++;
2362 ac->ac_b_ex = ex;
2363 ext4_mb_use_best_found(ac, e4b);
2364 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365 /* Sometimes, caller may want to merge even small
2366 * number of blocks to an existing extent */
2367 BUG_ON(ex.fe_len <= 0);
2368 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370 ac->ac_found++;
2371 ac->ac_b_ex = ex;
2372 ext4_mb_use_best_found(ac, e4b);
2373 }
2374out:
2375 ext4_unlock_group(ac->ac_sb, group);
2376 ext4_mb_unload_buddy(e4b);
2377
2378 return 0;
2379}
2380
2381/*
2382 * The routine scans buddy structures (not bitmap!) from given order
2383 * to max order and tries to find big enough chunk to satisfy the req
2384 */
2385static noinline_for_stack
2386void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387 struct ext4_buddy *e4b)
2388{
2389 struct super_block *sb = ac->ac_sb;
2390 struct ext4_group_info *grp = e4b->bd_info;
2391 void *buddy;
2392 int i;
2393 int k;
2394 int max;
2395
2396 BUG_ON(ac->ac_2order <= 0);
2397 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398 if (grp->bb_counters[i] == 0)
2399 continue;
2400
2401 buddy = mb_find_buddy(e4b, i, &max);
2402 if (WARN_RATELIMIT(buddy == NULL,
2403 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404 continue;
2405
2406 k = mb_find_next_zero_bit(buddy, max, 0);
2407 if (k >= max) {
2408 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409 e4b->bd_group,
2410 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412 "%d free clusters of order %d. But found 0",
2413 grp->bb_counters[i], i);
2414 break;
2415 }
2416 ac->ac_found++;
2417 ac->ac_cX_found[ac->ac_criteria]++;
2418
2419 ac->ac_b_ex.fe_len = 1 << i;
2420 ac->ac_b_ex.fe_start = k << i;
2421 ac->ac_b_ex.fe_group = e4b->bd_group;
2422
2423 ext4_mb_use_best_found(ac, e4b);
2424
2425 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426
2427 if (EXT4_SB(sb)->s_mb_stats)
2428 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429
2430 break;
2431 }
2432}
2433
2434/*
2435 * The routine scans the group and measures all found extents.
2436 * In order to optimize scanning, caller must pass number of
2437 * free blocks in the group, so the routine can know upper limit.
2438 */
2439static noinline_for_stack
2440void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441 struct ext4_buddy *e4b)
2442{
2443 struct super_block *sb = ac->ac_sb;
2444 void *bitmap = e4b->bd_bitmap;
2445 struct ext4_free_extent ex;
2446 int i, j, freelen;
2447 int free;
2448
2449 free = e4b->bd_info->bb_free;
2450 if (WARN_ON(free <= 0))
2451 return;
2452
2453 i = e4b->bd_info->bb_first_free;
2454
2455 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456 i = mb_find_next_zero_bit(bitmap,
2457 EXT4_CLUSTERS_PER_GROUP(sb), i);
2458 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459 /*
2460 * IF we have corrupt bitmap, we won't find any
2461 * free blocks even though group info says we
2462 * have free blocks
2463 */
2464 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467 "%d free clusters as per "
2468 "group info. But bitmap says 0",
2469 free);
2470 break;
2471 }
2472
2473 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474 /*
2475 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476 * sure that this group will have a large enough
2477 * continuous free extent, so skip over the smaller free
2478 * extents
2479 */
2480 j = mb_find_next_bit(bitmap,
2481 EXT4_CLUSTERS_PER_GROUP(sb), i);
2482 freelen = j - i;
2483
2484 if (freelen < ac->ac_g_ex.fe_len) {
2485 i = j;
2486 free -= freelen;
2487 continue;
2488 }
2489 }
2490
2491 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492 if (WARN_ON(ex.fe_len <= 0))
2493 break;
2494 if (free < ex.fe_len) {
2495 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498 "%d free clusters as per "
2499 "group info. But got %d blocks",
2500 free, ex.fe_len);
2501 /*
2502 * The number of free blocks differs. This mostly
2503 * indicate that the bitmap is corrupt. So exit
2504 * without claiming the space.
2505 */
2506 break;
2507 }
2508 ex.fe_logical = 0xDEADC0DE; /* debug value */
2509 ext4_mb_measure_extent(ac, &ex, e4b);
2510
2511 i += ex.fe_len;
2512 free -= ex.fe_len;
2513 }
2514
2515 ext4_mb_check_limits(ac, e4b, 1);
2516}
2517
2518/*
2519 * This is a special case for storages like raid5
2520 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521 */
2522static noinline_for_stack
2523void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524 struct ext4_buddy *e4b)
2525{
2526 struct super_block *sb = ac->ac_sb;
2527 struct ext4_sb_info *sbi = EXT4_SB(sb);
2528 void *bitmap = e4b->bd_bitmap;
2529 struct ext4_free_extent ex;
2530 ext4_fsblk_t first_group_block;
2531 ext4_fsblk_t a;
2532 ext4_grpblk_t i, stripe;
2533 int max;
2534
2535 BUG_ON(sbi->s_stripe == 0);
2536
2537 /* find first stripe-aligned block in group */
2538 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539
2540 a = first_group_block + sbi->s_stripe - 1;
2541 do_div(a, sbi->s_stripe);
2542 i = (a * sbi->s_stripe) - first_group_block;
2543
2544 stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545 i = EXT4_B2C(sbi, i);
2546 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547 if (!mb_test_bit(i, bitmap)) {
2548 max = mb_find_extent(e4b, i, stripe, &ex);
2549 if (max >= stripe) {
2550 ac->ac_found++;
2551 ac->ac_cX_found[ac->ac_criteria]++;
2552 ex.fe_logical = 0xDEADF00D; /* debug value */
2553 ac->ac_b_ex = ex;
2554 ext4_mb_use_best_found(ac, e4b);
2555 break;
2556 }
2557 }
2558 i += stripe;
2559 }
2560}
2561
2562/*
2563 * This is also called BEFORE we load the buddy bitmap.
2564 * Returns either 1 or 0 indicating that the group is either suitable
2565 * for the allocation or not.
2566 */
2567static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568 ext4_group_t group, enum criteria cr)
2569{
2570 ext4_grpblk_t free, fragments;
2571 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573
2574 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575
2576 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577 return false;
2578
2579 free = grp->bb_free;
2580 if (free == 0)
2581 return false;
2582
2583 fragments = grp->bb_fragments;
2584 if (fragments == 0)
2585 return false;
2586
2587 switch (cr) {
2588 case CR_POWER2_ALIGNED:
2589 BUG_ON(ac->ac_2order == 0);
2590
2591 /* Avoid using the first bg of a flexgroup for data files */
2592 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594 ((group % flex_size) == 0))
2595 return false;
2596
2597 if (free < ac->ac_g_ex.fe_len)
2598 return false;
2599
2600 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601 return true;
2602
2603 if (grp->bb_largest_free_order < ac->ac_2order)
2604 return false;
2605
2606 return true;
2607 case CR_GOAL_LEN_FAST:
2608 case CR_BEST_AVAIL_LEN:
2609 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610 return true;
2611 break;
2612 case CR_GOAL_LEN_SLOW:
2613 if (free >= ac->ac_g_ex.fe_len)
2614 return true;
2615 break;
2616 case CR_ANY_FREE:
2617 return true;
2618 default:
2619 BUG();
2620 }
2621
2622 return false;
2623}
2624
2625/*
2626 * This could return negative error code if something goes wrong
2627 * during ext4_mb_init_group(). This should not be called with
2628 * ext4_lock_group() held.
2629 *
2630 * Note: because we are conditionally operating with the group lock in
2631 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632 * function using __acquire and __release. This means we need to be
2633 * super careful before messing with the error path handling via "goto
2634 * out"!
2635 */
2636static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637 ext4_group_t group, enum criteria cr)
2638{
2639 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640 struct super_block *sb = ac->ac_sb;
2641 struct ext4_sb_info *sbi = EXT4_SB(sb);
2642 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643 ext4_grpblk_t free;
2644 int ret = 0;
2645
2646 if (!grp)
2647 return -EFSCORRUPTED;
2648 if (sbi->s_mb_stats)
2649 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650 if (should_lock) {
2651 ext4_lock_group(sb, group);
2652 __release(ext4_group_lock_ptr(sb, group));
2653 }
2654 free = grp->bb_free;
2655 if (free == 0)
2656 goto out;
2657 /*
2658 * In all criterias except CR_ANY_FREE we try to avoid groups that
2659 * can't possibly satisfy the full goal request due to insufficient
2660 * free blocks.
2661 */
2662 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663 goto out;
2664 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665 goto out;
2666 if (should_lock) {
2667 __acquire(ext4_group_lock_ptr(sb, group));
2668 ext4_unlock_group(sb, group);
2669 }
2670
2671 /* We only do this if the grp has never been initialized */
2672 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673 struct ext4_group_desc *gdp =
2674 ext4_get_group_desc(sb, group, NULL);
2675 int ret;
2676
2677 /*
2678 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679 * search to find large good chunks almost for free. If buddy
2680 * data is not ready, then this optimization makes no sense. But
2681 * we never skip the first block group in a flex_bg, since this
2682 * gets used for metadata block allocation, and we want to make
2683 * sure we locate metadata blocks in the first block group in
2684 * the flex_bg if possible.
2685 */
2686 if (!ext4_mb_cr_expensive(cr) &&
2687 (!sbi->s_log_groups_per_flex ||
2688 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689 !(ext4_has_group_desc_csum(sb) &&
2690 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691 return 0;
2692 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693 if (ret)
2694 return ret;
2695 }
2696
2697 if (should_lock) {
2698 ext4_lock_group(sb, group);
2699 __release(ext4_group_lock_ptr(sb, group));
2700 }
2701 ret = ext4_mb_good_group(ac, group, cr);
2702out:
2703 if (should_lock) {
2704 __acquire(ext4_group_lock_ptr(sb, group));
2705 ext4_unlock_group(sb, group);
2706 }
2707 return ret;
2708}
2709
2710/*
2711 * Start prefetching @nr block bitmaps starting at @group.
2712 * Return the next group which needs to be prefetched.
2713 */
2714ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715 unsigned int nr, int *cnt)
2716{
2717 ext4_group_t ngroups = ext4_get_groups_count(sb);
2718 struct buffer_head *bh;
2719 struct blk_plug plug;
2720
2721 blk_start_plug(&plug);
2722 while (nr-- > 0) {
2723 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724 NULL);
2725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726
2727 /*
2728 * Prefetch block groups with free blocks; but don't
2729 * bother if it is marked uninitialized on disk, since
2730 * it won't require I/O to read. Also only try to
2731 * prefetch once, so we avoid getblk() call, which can
2732 * be expensive.
2733 */
2734 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735 EXT4_MB_GRP_NEED_INIT(grp) &&
2736 ext4_free_group_clusters(sb, gdp) > 0 ) {
2737 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738 if (bh && !IS_ERR(bh)) {
2739 if (!buffer_uptodate(bh) && cnt)
2740 (*cnt)++;
2741 brelse(bh);
2742 }
2743 }
2744 if (++group >= ngroups)
2745 group = 0;
2746 }
2747 blk_finish_plug(&plug);
2748 return group;
2749}
2750
2751/*
2752 * Prefetching reads the block bitmap into the buffer cache; but we
2753 * need to make sure that the buddy bitmap in the page cache has been
2754 * initialized. Note that ext4_mb_init_group() will block if the I/O
2755 * is not yet completed, or indeed if it was not initiated by
2756 * ext4_mb_prefetch did not start the I/O.
2757 *
2758 * TODO: We should actually kick off the buddy bitmap setup in a work
2759 * queue when the buffer I/O is completed, so that we don't block
2760 * waiting for the block allocation bitmap read to finish when
2761 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762 */
2763void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764 unsigned int nr)
2765{
2766 struct ext4_group_desc *gdp;
2767 struct ext4_group_info *grp;
2768
2769 while (nr-- > 0) {
2770 if (!group)
2771 group = ext4_get_groups_count(sb);
2772 group--;
2773 gdp = ext4_get_group_desc(sb, group, NULL);
2774 grp = ext4_get_group_info(sb, group);
2775
2776 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777 ext4_free_group_clusters(sb, gdp) > 0) {
2778 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779 break;
2780 }
2781 }
2782}
2783
2784static noinline_for_stack int
2785ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786{
2787 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789 int err = 0, first_err = 0;
2790 unsigned int nr = 0, prefetch_ios = 0;
2791 struct ext4_sb_info *sbi;
2792 struct super_block *sb;
2793 struct ext4_buddy e4b;
2794 int lost;
2795
2796 sb = ac->ac_sb;
2797 sbi = EXT4_SB(sb);
2798 ngroups = ext4_get_groups_count(sb);
2799 /* non-extent files are limited to low blocks/groups */
2800 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801 ngroups = sbi->s_blockfile_groups;
2802
2803 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804
2805 /* first, try the goal */
2806 err = ext4_mb_find_by_goal(ac, &e4b);
2807 if (err || ac->ac_status == AC_STATUS_FOUND)
2808 goto out;
2809
2810 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811 goto out;
2812
2813 /*
2814 * ac->ac_2order is set only if the fe_len is a power of 2
2815 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816 * so that we try exact allocation using buddy.
2817 */
2818 i = fls(ac->ac_g_ex.fe_len);
2819 ac->ac_2order = 0;
2820 /*
2821 * We search using buddy data only if the order of the request
2822 * is greater than equal to the sbi_s_mb_order2_reqs
2823 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824 * We also support searching for power-of-two requests only for
2825 * requests upto maximum buddy size we have constructed.
2826 */
2827 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828 if (is_power_of_2(ac->ac_g_ex.fe_len))
2829 ac->ac_2order = array_index_nospec(i - 1,
2830 MB_NUM_ORDERS(sb));
2831 }
2832
2833 /* if stream allocation is enabled, use global goal */
2834 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835 /* TBD: may be hot point */
2836 spin_lock(&sbi->s_md_lock);
2837 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839 spin_unlock(&sbi->s_md_lock);
2840 }
2841
2842 /*
2843 * Let's just scan groups to find more-less suitable blocks We
2844 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845 * aligned, in which case let's do that faster approach first.
2846 */
2847 if (ac->ac_2order)
2848 cr = CR_POWER2_ALIGNED;
2849repeat:
2850 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851 ac->ac_criteria = cr;
2852 /*
2853 * searching for the right group start
2854 * from the goal value specified
2855 */
2856 group = ac->ac_g_ex.fe_group;
2857 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858 prefetch_grp = group;
2859
2860 for (i = 0, new_cr = cr; i < ngroups; i++,
2861 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862 int ret = 0;
2863
2864 cond_resched();
2865 if (new_cr != cr) {
2866 cr = new_cr;
2867 goto repeat;
2868 }
2869
2870 /*
2871 * Batch reads of the block allocation bitmaps
2872 * to get multiple READs in flight; limit
2873 * prefetching at inexpensive CR, otherwise mballoc
2874 * can spend a lot of time loading imperfect groups
2875 */
2876 if ((prefetch_grp == group) &&
2877 (ext4_mb_cr_expensive(cr) ||
2878 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879 nr = sbi->s_mb_prefetch;
2880 if (ext4_has_feature_flex_bg(sb)) {
2881 nr = 1 << sbi->s_log_groups_per_flex;
2882 nr -= group & (nr - 1);
2883 nr = min(nr, sbi->s_mb_prefetch);
2884 }
2885 prefetch_grp = ext4_mb_prefetch(sb, group,
2886 nr, &prefetch_ios);
2887 }
2888
2889 /* This now checks without needing the buddy page */
2890 ret = ext4_mb_good_group_nolock(ac, group, cr);
2891 if (ret <= 0) {
2892 if (!first_err)
2893 first_err = ret;
2894 continue;
2895 }
2896
2897 err = ext4_mb_load_buddy(sb, group, &e4b);
2898 if (err)
2899 goto out;
2900
2901 ext4_lock_group(sb, group);
2902
2903 /*
2904 * We need to check again after locking the
2905 * block group
2906 */
2907 ret = ext4_mb_good_group(ac, group, cr);
2908 if (ret == 0) {
2909 ext4_unlock_group(sb, group);
2910 ext4_mb_unload_buddy(&e4b);
2911 continue;
2912 }
2913
2914 ac->ac_groups_scanned++;
2915 if (cr == CR_POWER2_ALIGNED)
2916 ext4_mb_simple_scan_group(ac, &e4b);
2917 else {
2918 bool is_stripe_aligned = sbi->s_stripe &&
2919 !(ac->ac_g_ex.fe_len %
2920 EXT4_B2C(sbi, sbi->s_stripe));
2921
2922 if ((cr == CR_GOAL_LEN_FAST ||
2923 cr == CR_BEST_AVAIL_LEN) &&
2924 is_stripe_aligned)
2925 ext4_mb_scan_aligned(ac, &e4b);
2926
2927 if (ac->ac_status == AC_STATUS_CONTINUE)
2928 ext4_mb_complex_scan_group(ac, &e4b);
2929 }
2930
2931 ext4_unlock_group(sb, group);
2932 ext4_mb_unload_buddy(&e4b);
2933
2934 if (ac->ac_status != AC_STATUS_CONTINUE)
2935 break;
2936 }
2937 /* Processed all groups and haven't found blocks */
2938 if (sbi->s_mb_stats && i == ngroups)
2939 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940
2941 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942 /* Reset goal length to original goal length before
2943 * falling into CR_GOAL_LEN_SLOW */
2944 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945 }
2946
2947 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949 /*
2950 * We've been searching too long. Let's try to allocate
2951 * the best chunk we've found so far
2952 */
2953 ext4_mb_try_best_found(ac, &e4b);
2954 if (ac->ac_status != AC_STATUS_FOUND) {
2955 /*
2956 * Someone more lucky has already allocated it.
2957 * The only thing we can do is just take first
2958 * found block(s)
2959 */
2960 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963 ac->ac_b_ex.fe_len, lost);
2964
2965 ac->ac_b_ex.fe_group = 0;
2966 ac->ac_b_ex.fe_start = 0;
2967 ac->ac_b_ex.fe_len = 0;
2968 ac->ac_status = AC_STATUS_CONTINUE;
2969 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970 cr = CR_ANY_FREE;
2971 goto repeat;
2972 }
2973 }
2974
2975 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977out:
2978 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979 err = first_err;
2980
2981 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983 ac->ac_flags, cr, err);
2984
2985 if (nr)
2986 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987
2988 return err;
2989}
2990
2991static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992{
2993 struct super_block *sb = pde_data(file_inode(seq->file));
2994 ext4_group_t group;
2995
2996 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997 return NULL;
2998 group = *pos + 1;
2999 return (void *) ((unsigned long) group);
3000}
3001
3002static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003{
3004 struct super_block *sb = pde_data(file_inode(seq->file));
3005 ext4_group_t group;
3006
3007 ++*pos;
3008 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009 return NULL;
3010 group = *pos + 1;
3011 return (void *) ((unsigned long) group);
3012}
3013
3014static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015{
3016 struct super_block *sb = pde_data(file_inode(seq->file));
3017 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018 int i, err;
3019 char nbuf[16];
3020 struct ext4_buddy e4b;
3021 struct ext4_group_info *grinfo;
3022 unsigned char blocksize_bits = min_t(unsigned char,
3023 sb->s_blocksize_bits,
3024 EXT4_MAX_BLOCK_LOG_SIZE);
3025 struct sg {
3026 struct ext4_group_info info;
3027 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028 } sg;
3029
3030 group--;
3031 if (group == 0)
3032 seq_puts(seq, "#group: free frags first ["
3033 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3034 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3035
3036 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037 sizeof(struct ext4_group_info);
3038
3039 grinfo = ext4_get_group_info(sb, group);
3040 if (!grinfo)
3041 return 0;
3042 /* Load the group info in memory only if not already loaded. */
3043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044 err = ext4_mb_load_buddy(sb, group, &e4b);
3045 if (err) {
3046 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3047 return 0;
3048 }
3049 ext4_mb_unload_buddy(&e4b);
3050 }
3051
3052 /*
3053 * We care only about free space counters in the group info and
3054 * these are safe to access even after the buddy has been unloaded
3055 */
3056 memcpy(&sg, grinfo, i);
3057 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058 sg.info.bb_fragments, sg.info.bb_first_free);
3059 for (i = 0; i <= 13; i++)
3060 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061 sg.info.bb_counters[i] : 0);
3062 seq_puts(seq, " ]");
3063 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3064 seq_puts(seq, " Block bitmap corrupted!");
3065 seq_puts(seq, "\n");
3066
3067 return 0;
3068}
3069
3070static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3071{
3072}
3073
3074const struct seq_operations ext4_mb_seq_groups_ops = {
3075 .start = ext4_mb_seq_groups_start,
3076 .next = ext4_mb_seq_groups_next,
3077 .stop = ext4_mb_seq_groups_stop,
3078 .show = ext4_mb_seq_groups_show,
3079};
3080
3081int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3082{
3083 struct super_block *sb = seq->private;
3084 struct ext4_sb_info *sbi = EXT4_SB(sb);
3085
3086 seq_puts(seq, "mballoc:\n");
3087 if (!sbi->s_mb_stats) {
3088 seq_puts(seq, "\tmb stats collection turned off.\n");
3089 seq_puts(
3090 seq,
3091 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3092 return 0;
3093 }
3094 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3095 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3096
3097 seq_printf(seq, "\tgroups_scanned: %u\n",
3098 atomic_read(&sbi->s_bal_groups_scanned));
3099
3100 /* CR_POWER2_ALIGNED stats */
3101 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3102 seq_printf(seq, "\t\thits: %llu\n",
3103 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3104 seq_printf(
3105 seq, "\t\tgroups_considered: %llu\n",
3106 atomic64_read(
3107 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3108 seq_printf(seq, "\t\textents_scanned: %u\n",
3109 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3110 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3111 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3112 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3113 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3114
3115 /* CR_GOAL_LEN_FAST stats */
3116 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3117 seq_printf(seq, "\t\thits: %llu\n",
3118 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3119 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3120 atomic64_read(
3121 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3122 seq_printf(seq, "\t\textents_scanned: %u\n",
3123 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3124 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3125 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3126 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3127 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3128
3129 /* CR_BEST_AVAIL_LEN stats */
3130 seq_puts(seq, "\tcr_best_avail_stats:\n");
3131 seq_printf(seq, "\t\thits: %llu\n",
3132 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3133 seq_printf(
3134 seq, "\t\tgroups_considered: %llu\n",
3135 atomic64_read(
3136 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3137 seq_printf(seq, "\t\textents_scanned: %u\n",
3138 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3139 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3140 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3141 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3142 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3143
3144 /* CR_GOAL_LEN_SLOW stats */
3145 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3146 seq_printf(seq, "\t\thits: %llu\n",
3147 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3148 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3149 atomic64_read(
3150 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3151 seq_printf(seq, "\t\textents_scanned: %u\n",
3152 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3153 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3154 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3155
3156 /* CR_ANY_FREE stats */
3157 seq_puts(seq, "\tcr_any_free_stats:\n");
3158 seq_printf(seq, "\t\thits: %llu\n",
3159 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3160 seq_printf(
3161 seq, "\t\tgroups_considered: %llu\n",
3162 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3163 seq_printf(seq, "\t\textents_scanned: %u\n",
3164 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3165 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3166 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3167
3168 /* Aggregates */
3169 seq_printf(seq, "\textents_scanned: %u\n",
3170 atomic_read(&sbi->s_bal_ex_scanned));
3171 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3172 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3173 atomic_read(&sbi->s_bal_len_goals));
3174 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3175 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3176 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3177 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3178 atomic_read(&sbi->s_mb_buddies_generated),
3179 ext4_get_groups_count(sb));
3180 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3181 atomic64_read(&sbi->s_mb_generation_time));
3182 seq_printf(seq, "\tpreallocated: %u\n",
3183 atomic_read(&sbi->s_mb_preallocated));
3184 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3185 return 0;
3186}
3187
3188static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3189__acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3190{
3191 struct super_block *sb = pde_data(file_inode(seq->file));
3192 unsigned long position;
3193
3194 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3195 return NULL;
3196 position = *pos + 1;
3197 return (void *) ((unsigned long) position);
3198}
3199
3200static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3201{
3202 struct super_block *sb = pde_data(file_inode(seq->file));
3203 unsigned long position;
3204
3205 ++*pos;
3206 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3207 return NULL;
3208 position = *pos + 1;
3209 return (void *) ((unsigned long) position);
3210}
3211
3212static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3213{
3214 struct super_block *sb = pde_data(file_inode(seq->file));
3215 struct ext4_sb_info *sbi = EXT4_SB(sb);
3216 unsigned long position = ((unsigned long) v);
3217 struct ext4_group_info *grp;
3218 unsigned int count;
3219
3220 position--;
3221 if (position >= MB_NUM_ORDERS(sb)) {
3222 position -= MB_NUM_ORDERS(sb);
3223 if (position == 0)
3224 seq_puts(seq, "avg_fragment_size_lists:\n");
3225
3226 count = 0;
3227 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3228 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3229 bb_avg_fragment_size_node)
3230 count++;
3231 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3232 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3233 (unsigned int)position, count);
3234 return 0;
3235 }
3236
3237 if (position == 0) {
3238 seq_printf(seq, "optimize_scan: %d\n",
3239 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3240 seq_puts(seq, "max_free_order_lists:\n");
3241 }
3242 count = 0;
3243 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3244 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3245 bb_largest_free_order_node)
3246 count++;
3247 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3248 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3249 (unsigned int)position, count);
3250
3251 return 0;
3252}
3253
3254static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3255{
3256}
3257
3258const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3259 .start = ext4_mb_seq_structs_summary_start,
3260 .next = ext4_mb_seq_structs_summary_next,
3261 .stop = ext4_mb_seq_structs_summary_stop,
3262 .show = ext4_mb_seq_structs_summary_show,
3263};
3264
3265static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3266{
3267 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3268 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3269
3270 BUG_ON(!cachep);
3271 return cachep;
3272}
3273
3274/*
3275 * Allocate the top-level s_group_info array for the specified number
3276 * of groups
3277 */
3278int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3279{
3280 struct ext4_sb_info *sbi = EXT4_SB(sb);
3281 unsigned size;
3282 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3283
3284 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3285 EXT4_DESC_PER_BLOCK_BITS(sb);
3286 if (size <= sbi->s_group_info_size)
3287 return 0;
3288
3289 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3290 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3291 if (!new_groupinfo) {
3292 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3293 return -ENOMEM;
3294 }
3295 rcu_read_lock();
3296 old_groupinfo = rcu_dereference(sbi->s_group_info);
3297 if (old_groupinfo)
3298 memcpy(new_groupinfo, old_groupinfo,
3299 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3300 rcu_read_unlock();
3301 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3302 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3303 if (old_groupinfo)
3304 ext4_kvfree_array_rcu(old_groupinfo);
3305 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3306 sbi->s_group_info_size);
3307 return 0;
3308}
3309
3310/* Create and initialize ext4_group_info data for the given group. */
3311int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3312 struct ext4_group_desc *desc)
3313{
3314 int i;
3315 int metalen = 0;
3316 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3317 struct ext4_sb_info *sbi = EXT4_SB(sb);
3318 struct ext4_group_info **meta_group_info;
3319 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3320
3321 /*
3322 * First check if this group is the first of a reserved block.
3323 * If it's true, we have to allocate a new table of pointers
3324 * to ext4_group_info structures
3325 */
3326 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3327 metalen = sizeof(*meta_group_info) <<
3328 EXT4_DESC_PER_BLOCK_BITS(sb);
3329 meta_group_info = kmalloc(metalen, GFP_NOFS);
3330 if (meta_group_info == NULL) {
3331 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3332 "for a buddy group");
3333 return -ENOMEM;
3334 }
3335 rcu_read_lock();
3336 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3337 rcu_read_unlock();
3338 }
3339
3340 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3341 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3342
3343 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3344 if (meta_group_info[i] == NULL) {
3345 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3346 goto exit_group_info;
3347 }
3348 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3349 &(meta_group_info[i]->bb_state));
3350
3351 /*
3352 * initialize bb_free to be able to skip
3353 * empty groups without initialization
3354 */
3355 if (ext4_has_group_desc_csum(sb) &&
3356 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3357 meta_group_info[i]->bb_free =
3358 ext4_free_clusters_after_init(sb, group, desc);
3359 } else {
3360 meta_group_info[i]->bb_free =
3361 ext4_free_group_clusters(sb, desc);
3362 }
3363
3364 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3365 init_rwsem(&meta_group_info[i]->alloc_sem);
3366 meta_group_info[i]->bb_free_root = RB_ROOT;
3367 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3368 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3369 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3370 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3371 meta_group_info[i]->bb_group = group;
3372
3373 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3374 return 0;
3375
3376exit_group_info:
3377 /* If a meta_group_info table has been allocated, release it now */
3378 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3379 struct ext4_group_info ***group_info;
3380
3381 rcu_read_lock();
3382 group_info = rcu_dereference(sbi->s_group_info);
3383 kfree(group_info[idx]);
3384 group_info[idx] = NULL;
3385 rcu_read_unlock();
3386 }
3387 return -ENOMEM;
3388} /* ext4_mb_add_groupinfo */
3389
3390static int ext4_mb_init_backend(struct super_block *sb)
3391{
3392 ext4_group_t ngroups = ext4_get_groups_count(sb);
3393 ext4_group_t i;
3394 struct ext4_sb_info *sbi = EXT4_SB(sb);
3395 int err;
3396 struct ext4_group_desc *desc;
3397 struct ext4_group_info ***group_info;
3398 struct kmem_cache *cachep;
3399
3400 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3401 if (err)
3402 return err;
3403
3404 sbi->s_buddy_cache = new_inode(sb);
3405 if (sbi->s_buddy_cache == NULL) {
3406 ext4_msg(sb, KERN_ERR, "can't get new inode");
3407 goto err_freesgi;
3408 }
3409 /* To avoid potentially colliding with an valid on-disk inode number,
3410 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3411 * not in the inode hash, so it should never be found by iget(), but
3412 * this will avoid confusion if it ever shows up during debugging. */
3413 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3414 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3415 for (i = 0; i < ngroups; i++) {
3416 cond_resched();
3417 desc = ext4_get_group_desc(sb, i, NULL);
3418 if (desc == NULL) {
3419 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3420 goto err_freebuddy;
3421 }
3422 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3423 goto err_freebuddy;
3424 }
3425
3426 if (ext4_has_feature_flex_bg(sb)) {
3427 /* a single flex group is supposed to be read by a single IO.
3428 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3429 * unsigned integer, so the maximum shift is 32.
3430 */
3431 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3432 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3433 goto err_freebuddy;
3434 }
3435 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3436 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3437 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3438 } else {
3439 sbi->s_mb_prefetch = 32;
3440 }
3441 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3442 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3443 /* now many real IOs to prefetch within a single allocation at cr=0
3444 * given cr=0 is an CPU-related optimization we shouldn't try to
3445 * load too many groups, at some point we should start to use what
3446 * we've got in memory.
3447 * with an average random access time 5ms, it'd take a second to get
3448 * 200 groups (* N with flex_bg), so let's make this limit 4
3449 */
3450 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3451 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3452 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3453
3454 return 0;
3455
3456err_freebuddy:
3457 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3458 while (i-- > 0) {
3459 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3460
3461 if (grp)
3462 kmem_cache_free(cachep, grp);
3463 }
3464 i = sbi->s_group_info_size;
3465 rcu_read_lock();
3466 group_info = rcu_dereference(sbi->s_group_info);
3467 while (i-- > 0)
3468 kfree(group_info[i]);
3469 rcu_read_unlock();
3470 iput(sbi->s_buddy_cache);
3471err_freesgi:
3472 rcu_read_lock();
3473 kvfree(rcu_dereference(sbi->s_group_info));
3474 rcu_read_unlock();
3475 return -ENOMEM;
3476}
3477
3478static void ext4_groupinfo_destroy_slabs(void)
3479{
3480 int i;
3481
3482 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3483 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3484 ext4_groupinfo_caches[i] = NULL;
3485 }
3486}
3487
3488static int ext4_groupinfo_create_slab(size_t size)
3489{
3490 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3491 int slab_size;
3492 int blocksize_bits = order_base_2(size);
3493 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3494 struct kmem_cache *cachep;
3495
3496 if (cache_index >= NR_GRPINFO_CACHES)
3497 return -EINVAL;
3498
3499 if (unlikely(cache_index < 0))
3500 cache_index = 0;
3501
3502 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3503 if (ext4_groupinfo_caches[cache_index]) {
3504 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3505 return 0; /* Already created */
3506 }
3507
3508 slab_size = offsetof(struct ext4_group_info,
3509 bb_counters[blocksize_bits + 2]);
3510
3511 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3512 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3513 NULL);
3514
3515 ext4_groupinfo_caches[cache_index] = cachep;
3516
3517 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518 if (!cachep) {
3519 printk(KERN_EMERG
3520 "EXT4-fs: no memory for groupinfo slab cache\n");
3521 return -ENOMEM;
3522 }
3523
3524 return 0;
3525}
3526
3527static void ext4_discard_work(struct work_struct *work)
3528{
3529 struct ext4_sb_info *sbi = container_of(work,
3530 struct ext4_sb_info, s_discard_work);
3531 struct super_block *sb = sbi->s_sb;
3532 struct ext4_free_data *fd, *nfd;
3533 struct ext4_buddy e4b;
3534 LIST_HEAD(discard_list);
3535 ext4_group_t grp, load_grp;
3536 int err = 0;
3537
3538 spin_lock(&sbi->s_md_lock);
3539 list_splice_init(&sbi->s_discard_list, &discard_list);
3540 spin_unlock(&sbi->s_md_lock);
3541
3542 load_grp = UINT_MAX;
3543 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3544 /*
3545 * If filesystem is umounting or no memory or suffering
3546 * from no space, give up the discard
3547 */
3548 if ((sb->s_flags & SB_ACTIVE) && !err &&
3549 !atomic_read(&sbi->s_retry_alloc_pending)) {
3550 grp = fd->efd_group;
3551 if (grp != load_grp) {
3552 if (load_grp != UINT_MAX)
3553 ext4_mb_unload_buddy(&e4b);
3554
3555 err = ext4_mb_load_buddy(sb, grp, &e4b);
3556 if (err) {
3557 kmem_cache_free(ext4_free_data_cachep, fd);
3558 load_grp = UINT_MAX;
3559 continue;
3560 } else {
3561 load_grp = grp;
3562 }
3563 }
3564
3565 ext4_lock_group(sb, grp);
3566 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3567 fd->efd_start_cluster + fd->efd_count - 1, 1);
3568 ext4_unlock_group(sb, grp);
3569 }
3570 kmem_cache_free(ext4_free_data_cachep, fd);
3571 }
3572
3573 if (load_grp != UINT_MAX)
3574 ext4_mb_unload_buddy(&e4b);
3575}
3576
3577int ext4_mb_init(struct super_block *sb)
3578{
3579 struct ext4_sb_info *sbi = EXT4_SB(sb);
3580 unsigned i, j;
3581 unsigned offset, offset_incr;
3582 unsigned max;
3583 int ret;
3584
3585 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3586
3587 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3588 if (sbi->s_mb_offsets == NULL) {
3589 ret = -ENOMEM;
3590 goto out;
3591 }
3592
3593 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3594 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3595 if (sbi->s_mb_maxs == NULL) {
3596 ret = -ENOMEM;
3597 goto out;
3598 }
3599
3600 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3601 if (ret < 0)
3602 goto out;
3603
3604 /* order 0 is regular bitmap */
3605 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3606 sbi->s_mb_offsets[0] = 0;
3607
3608 i = 1;
3609 offset = 0;
3610 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3611 max = sb->s_blocksize << 2;
3612 do {
3613 sbi->s_mb_offsets[i] = offset;
3614 sbi->s_mb_maxs[i] = max;
3615 offset += offset_incr;
3616 offset_incr = offset_incr >> 1;
3617 max = max >> 1;
3618 i++;
3619 } while (i < MB_NUM_ORDERS(sb));
3620
3621 sbi->s_mb_avg_fragment_size =
3622 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3623 GFP_KERNEL);
3624 if (!sbi->s_mb_avg_fragment_size) {
3625 ret = -ENOMEM;
3626 goto out;
3627 }
3628 sbi->s_mb_avg_fragment_size_locks =
3629 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3630 GFP_KERNEL);
3631 if (!sbi->s_mb_avg_fragment_size_locks) {
3632 ret = -ENOMEM;
3633 goto out;
3634 }
3635 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3636 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3637 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3638 }
3639 sbi->s_mb_largest_free_orders =
3640 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3641 GFP_KERNEL);
3642 if (!sbi->s_mb_largest_free_orders) {
3643 ret = -ENOMEM;
3644 goto out;
3645 }
3646 sbi->s_mb_largest_free_orders_locks =
3647 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3648 GFP_KERNEL);
3649 if (!sbi->s_mb_largest_free_orders_locks) {
3650 ret = -ENOMEM;
3651 goto out;
3652 }
3653 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3654 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3655 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3656 }
3657
3658 spin_lock_init(&sbi->s_md_lock);
3659 sbi->s_mb_free_pending = 0;
3660 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3661 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3662 INIT_LIST_HEAD(&sbi->s_discard_list);
3663 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3664 atomic_set(&sbi->s_retry_alloc_pending, 0);
3665
3666 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3667 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3668 sbi->s_mb_stats = MB_DEFAULT_STATS;
3669 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3670 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3671 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3672
3673 /*
3674 * The default group preallocation is 512, which for 4k block
3675 * sizes translates to 2 megabytes. However for bigalloc file
3676 * systems, this is probably too big (i.e, if the cluster size
3677 * is 1 megabyte, then group preallocation size becomes half a
3678 * gigabyte!). As a default, we will keep a two megabyte
3679 * group pralloc size for cluster sizes up to 64k, and after
3680 * that, we will force a minimum group preallocation size of
3681 * 32 clusters. This translates to 8 megs when the cluster
3682 * size is 256k, and 32 megs when the cluster size is 1 meg,
3683 * which seems reasonable as a default.
3684 */
3685 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3686 sbi->s_cluster_bits, 32);
3687 /*
3688 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3689 * to the lowest multiple of s_stripe which is bigger than
3690 * the s_mb_group_prealloc as determined above. We want
3691 * the preallocation size to be an exact multiple of the
3692 * RAID stripe size so that preallocations don't fragment
3693 * the stripes.
3694 */
3695 if (sbi->s_stripe > 1) {
3696 sbi->s_mb_group_prealloc = roundup(
3697 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3698 }
3699
3700 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3701 if (sbi->s_locality_groups == NULL) {
3702 ret = -ENOMEM;
3703 goto out;
3704 }
3705 for_each_possible_cpu(i) {
3706 struct ext4_locality_group *lg;
3707 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3708 mutex_init(&lg->lg_mutex);
3709 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3710 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3711 spin_lock_init(&lg->lg_prealloc_lock);
3712 }
3713
3714 if (bdev_nonrot(sb->s_bdev))
3715 sbi->s_mb_max_linear_groups = 0;
3716 else
3717 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3718 /* init file for buddy data */
3719 ret = ext4_mb_init_backend(sb);
3720 if (ret != 0)
3721 goto out_free_locality_groups;
3722
3723 return 0;
3724
3725out_free_locality_groups:
3726 free_percpu(sbi->s_locality_groups);
3727 sbi->s_locality_groups = NULL;
3728out:
3729 kfree(sbi->s_mb_avg_fragment_size);
3730 kfree(sbi->s_mb_avg_fragment_size_locks);
3731 kfree(sbi->s_mb_largest_free_orders);
3732 kfree(sbi->s_mb_largest_free_orders_locks);
3733 kfree(sbi->s_mb_offsets);
3734 sbi->s_mb_offsets = NULL;
3735 kfree(sbi->s_mb_maxs);
3736 sbi->s_mb_maxs = NULL;
3737 return ret;
3738}
3739
3740/* need to called with the ext4 group lock held */
3741static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3742{
3743 struct ext4_prealloc_space *pa;
3744 struct list_head *cur, *tmp;
3745 int count = 0;
3746
3747 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3748 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3749 list_del(&pa->pa_group_list);
3750 count++;
3751 kmem_cache_free(ext4_pspace_cachep, pa);
3752 }
3753 return count;
3754}
3755
3756void ext4_mb_release(struct super_block *sb)
3757{
3758 ext4_group_t ngroups = ext4_get_groups_count(sb);
3759 ext4_group_t i;
3760 int num_meta_group_infos;
3761 struct ext4_group_info *grinfo, ***group_info;
3762 struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3764 int count;
3765
3766 if (test_opt(sb, DISCARD)) {
3767 /*
3768 * wait the discard work to drain all of ext4_free_data
3769 */
3770 flush_work(&sbi->s_discard_work);
3771 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3772 }
3773
3774 if (sbi->s_group_info) {
3775 for (i = 0; i < ngroups; i++) {
3776 cond_resched();
3777 grinfo = ext4_get_group_info(sb, i);
3778 if (!grinfo)
3779 continue;
3780 mb_group_bb_bitmap_free(grinfo);
3781 ext4_lock_group(sb, i);
3782 count = ext4_mb_cleanup_pa(grinfo);
3783 if (count)
3784 mb_debug(sb, "mballoc: %d PAs left\n",
3785 count);
3786 ext4_unlock_group(sb, i);
3787 kmem_cache_free(cachep, grinfo);
3788 }
3789 num_meta_group_infos = (ngroups +
3790 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3791 EXT4_DESC_PER_BLOCK_BITS(sb);
3792 rcu_read_lock();
3793 group_info = rcu_dereference(sbi->s_group_info);
3794 for (i = 0; i < num_meta_group_infos; i++)
3795 kfree(group_info[i]);
3796 kvfree(group_info);
3797 rcu_read_unlock();
3798 }
3799 kfree(sbi->s_mb_avg_fragment_size);
3800 kfree(sbi->s_mb_avg_fragment_size_locks);
3801 kfree(sbi->s_mb_largest_free_orders);
3802 kfree(sbi->s_mb_largest_free_orders_locks);
3803 kfree(sbi->s_mb_offsets);
3804 kfree(sbi->s_mb_maxs);
3805 iput(sbi->s_buddy_cache);
3806 if (sbi->s_mb_stats) {
3807 ext4_msg(sb, KERN_INFO,
3808 "mballoc: %u blocks %u reqs (%u success)",
3809 atomic_read(&sbi->s_bal_allocated),
3810 atomic_read(&sbi->s_bal_reqs),
3811 atomic_read(&sbi->s_bal_success));
3812 ext4_msg(sb, KERN_INFO,
3813 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3814 "%u 2^N hits, %u breaks, %u lost",
3815 atomic_read(&sbi->s_bal_ex_scanned),
3816 atomic_read(&sbi->s_bal_groups_scanned),
3817 atomic_read(&sbi->s_bal_goals),
3818 atomic_read(&sbi->s_bal_2orders),
3819 atomic_read(&sbi->s_bal_breaks),
3820 atomic_read(&sbi->s_mb_lost_chunks));
3821 ext4_msg(sb, KERN_INFO,
3822 "mballoc: %u generated and it took %llu",
3823 atomic_read(&sbi->s_mb_buddies_generated),
3824 atomic64_read(&sbi->s_mb_generation_time));
3825 ext4_msg(sb, KERN_INFO,
3826 "mballoc: %u preallocated, %u discarded",
3827 atomic_read(&sbi->s_mb_preallocated),
3828 atomic_read(&sbi->s_mb_discarded));
3829 }
3830
3831 free_percpu(sbi->s_locality_groups);
3832}
3833
3834static inline int ext4_issue_discard(struct super_block *sb,
3835 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3836{
3837 ext4_fsblk_t discard_block;
3838
3839 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3840 ext4_group_first_block_no(sb, block_group));
3841 count = EXT4_C2B(EXT4_SB(sb), count);
3842 trace_ext4_discard_blocks(sb,
3843 (unsigned long long) discard_block, count);
3844
3845 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3846}
3847
3848static void ext4_free_data_in_buddy(struct super_block *sb,
3849 struct ext4_free_data *entry)
3850{
3851 struct ext4_buddy e4b;
3852 struct ext4_group_info *db;
3853 int err, count = 0;
3854
3855 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3856 entry->efd_count, entry->efd_group, entry);
3857
3858 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3859 /* we expect to find existing buddy because it's pinned */
3860 BUG_ON(err != 0);
3861
3862 spin_lock(&EXT4_SB(sb)->s_md_lock);
3863 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3864 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3865
3866 db = e4b.bd_info;
3867 /* there are blocks to put in buddy to make them really free */
3868 count += entry->efd_count;
3869 ext4_lock_group(sb, entry->efd_group);
3870 /* Take it out of per group rb tree */
3871 rb_erase(&entry->efd_node, &(db->bb_free_root));
3872 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3873
3874 /*
3875 * Clear the trimmed flag for the group so that the next
3876 * ext4_trim_fs can trim it.
3877 * If the volume is mounted with -o discard, online discard
3878 * is supported and the free blocks will be trimmed online.
3879 */
3880 if (!test_opt(sb, DISCARD))
3881 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3882
3883 if (!db->bb_free_root.rb_node) {
3884 /* No more items in the per group rb tree
3885 * balance refcounts from ext4_mb_free_metadata()
3886 */
3887 put_page(e4b.bd_buddy_page);
3888 put_page(e4b.bd_bitmap_page);
3889 }
3890 ext4_unlock_group(sb, entry->efd_group);
3891 ext4_mb_unload_buddy(&e4b);
3892
3893 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3894}
3895
3896/*
3897 * This function is called by the jbd2 layer once the commit has finished,
3898 * so we know we can free the blocks that were released with that commit.
3899 */
3900void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3901{
3902 struct ext4_sb_info *sbi = EXT4_SB(sb);
3903 struct ext4_free_data *entry, *tmp;
3904 LIST_HEAD(freed_data_list);
3905 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3906 bool wake;
3907
3908 list_replace_init(s_freed_head, &freed_data_list);
3909
3910 list_for_each_entry(entry, &freed_data_list, efd_list)
3911 ext4_free_data_in_buddy(sb, entry);
3912
3913 if (test_opt(sb, DISCARD)) {
3914 spin_lock(&sbi->s_md_lock);
3915 wake = list_empty(&sbi->s_discard_list);
3916 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3917 spin_unlock(&sbi->s_md_lock);
3918 if (wake)
3919 queue_work(system_unbound_wq, &sbi->s_discard_work);
3920 } else {
3921 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3922 kmem_cache_free(ext4_free_data_cachep, entry);
3923 }
3924}
3925
3926int __init ext4_init_mballoc(void)
3927{
3928 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3929 SLAB_RECLAIM_ACCOUNT);
3930 if (ext4_pspace_cachep == NULL)
3931 goto out;
3932
3933 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3934 SLAB_RECLAIM_ACCOUNT);
3935 if (ext4_ac_cachep == NULL)
3936 goto out_pa_free;
3937
3938 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3939 SLAB_RECLAIM_ACCOUNT);
3940 if (ext4_free_data_cachep == NULL)
3941 goto out_ac_free;
3942
3943 return 0;
3944
3945out_ac_free:
3946 kmem_cache_destroy(ext4_ac_cachep);
3947out_pa_free:
3948 kmem_cache_destroy(ext4_pspace_cachep);
3949out:
3950 return -ENOMEM;
3951}
3952
3953void ext4_exit_mballoc(void)
3954{
3955 /*
3956 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3957 * before destroying the slab cache.
3958 */
3959 rcu_barrier();
3960 kmem_cache_destroy(ext4_pspace_cachep);
3961 kmem_cache_destroy(ext4_ac_cachep);
3962 kmem_cache_destroy(ext4_free_data_cachep);
3963 ext4_groupinfo_destroy_slabs();
3964}
3965
3966#define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3967#define EXT4_MB_SYNC_UPDATE 0x0002
3968static int
3969ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3970 ext4_group_t group, ext4_grpblk_t blkoff,
3971 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3972{
3973 struct ext4_sb_info *sbi = EXT4_SB(sb);
3974 struct buffer_head *bitmap_bh = NULL;
3975 struct ext4_group_desc *gdp;
3976 struct buffer_head *gdp_bh;
3977 int err;
3978 unsigned int i, already, changed = len;
3979
3980 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3981 handle, sb, state, group, blkoff, len,
3982 flags, ret_changed);
3983
3984 if (ret_changed)
3985 *ret_changed = 0;
3986 bitmap_bh = ext4_read_block_bitmap(sb, group);
3987 if (IS_ERR(bitmap_bh))
3988 return PTR_ERR(bitmap_bh);
3989
3990 if (handle) {
3991 BUFFER_TRACE(bitmap_bh, "getting write access");
3992 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3993 EXT4_JTR_NONE);
3994 if (err)
3995 goto out_err;
3996 }
3997
3998 err = -EIO;
3999 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4000 if (!gdp)
4001 goto out_err;
4002
4003 if (handle) {
4004 BUFFER_TRACE(gdp_bh, "get_write_access");
4005 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4006 EXT4_JTR_NONE);
4007 if (err)
4008 goto out_err;
4009 }
4010
4011 ext4_lock_group(sb, group);
4012 if (ext4_has_group_desc_csum(sb) &&
4013 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4014 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4015 ext4_free_group_clusters_set(sb, gdp,
4016 ext4_free_clusters_after_init(sb, group, gdp));
4017 }
4018
4019 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4020 already = 0;
4021 for (i = 0; i < len; i++)
4022 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4023 state)
4024 already++;
4025 changed = len - already;
4026 }
4027
4028 if (state) {
4029 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4030 ext4_free_group_clusters_set(sb, gdp,
4031 ext4_free_group_clusters(sb, gdp) - changed);
4032 } else {
4033 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4034 ext4_free_group_clusters_set(sb, gdp,
4035 ext4_free_group_clusters(sb, gdp) + changed);
4036 }
4037
4038 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4039 ext4_group_desc_csum_set(sb, group, gdp);
4040 ext4_unlock_group(sb, group);
4041 if (ret_changed)
4042 *ret_changed = changed;
4043
4044 if (sbi->s_log_groups_per_flex) {
4045 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4046 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4047 s_flex_groups, flex_group);
4048
4049 if (state)
4050 atomic64_sub(changed, &fg->free_clusters);
4051 else
4052 atomic64_add(changed, &fg->free_clusters);
4053 }
4054
4055 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4056 if (err)
4057 goto out_err;
4058 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4059 if (err)
4060 goto out_err;
4061
4062 if (flags & EXT4_MB_SYNC_UPDATE) {
4063 sync_dirty_buffer(bitmap_bh);
4064 sync_dirty_buffer(gdp_bh);
4065 }
4066
4067out_err:
4068 brelse(bitmap_bh);
4069 return err;
4070}
4071
4072/*
4073 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4074 * Returns 0 if success or error code
4075 */
4076static noinline_for_stack int
4077ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4078 handle_t *handle, unsigned int reserv_clstrs)
4079{
4080 struct ext4_group_desc *gdp;
4081 struct ext4_sb_info *sbi;
4082 struct super_block *sb;
4083 ext4_fsblk_t block;
4084 int err, len;
4085 int flags = 0;
4086 ext4_grpblk_t changed;
4087
4088 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4089 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4090
4091 sb = ac->ac_sb;
4092 sbi = EXT4_SB(sb);
4093
4094 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4095 if (!gdp)
4096 return -EIO;
4097 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4098 ext4_free_group_clusters(sb, gdp));
4099
4100 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4101 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4102 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4103 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4104 "fs metadata", block, block+len);
4105 /* File system mounted not to panic on error
4106 * Fix the bitmap and return EFSCORRUPTED
4107 * We leak some of the blocks here.
4108 */
4109 err = ext4_mb_mark_context(handle, sb, true,
4110 ac->ac_b_ex.fe_group,
4111 ac->ac_b_ex.fe_start,
4112 ac->ac_b_ex.fe_len,
4113 0, NULL);
4114 if (!err)
4115 err = -EFSCORRUPTED;
4116 return err;
4117 }
4118
4119#ifdef AGGRESSIVE_CHECK
4120 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4121#endif
4122 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4123 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4124 flags, &changed);
4125
4126 if (err && changed == 0)
4127 return err;
4128
4129#ifdef AGGRESSIVE_CHECK
4130 BUG_ON(changed != ac->ac_b_ex.fe_len);
4131#endif
4132 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4133 /*
4134 * Now reduce the dirty block count also. Should not go negative
4135 */
4136 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4137 /* release all the reserved blocks if non delalloc */
4138 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4139 reserv_clstrs);
4140
4141 return err;
4142}
4143
4144/*
4145 * Idempotent helper for Ext4 fast commit replay path to set the state of
4146 * blocks in bitmaps and update counters.
4147 */
4148void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4149 int len, bool state)
4150{
4151 struct ext4_sb_info *sbi = EXT4_SB(sb);
4152 ext4_group_t group;
4153 ext4_grpblk_t blkoff;
4154 int err = 0;
4155 unsigned int clen, thisgrp_len;
4156
4157 while (len > 0) {
4158 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4159
4160 /*
4161 * Check to see if we are freeing blocks across a group
4162 * boundary.
4163 * In case of flex_bg, this can happen that (block, len) may
4164 * span across more than one group. In that case we need to
4165 * get the corresponding group metadata to work with.
4166 * For this we have goto again loop.
4167 */
4168 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4169 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4170 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4171
4172 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4173 ext4_error(sb, "Marking blocks in system zone - "
4174 "Block = %llu, len = %u",
4175 block, thisgrp_len);
4176 break;
4177 }
4178
4179 err = ext4_mb_mark_context(NULL, sb, state,
4180 group, blkoff, clen,
4181 EXT4_MB_BITMAP_MARKED_CHECK |
4182 EXT4_MB_SYNC_UPDATE,
4183 NULL);
4184 if (err)
4185 break;
4186
4187 block += thisgrp_len;
4188 len -= thisgrp_len;
4189 BUG_ON(len < 0);
4190 }
4191}
4192
4193/*
4194 * here we normalize request for locality group
4195 * Group request are normalized to s_mb_group_prealloc, which goes to
4196 * s_strip if we set the same via mount option.
4197 * s_mb_group_prealloc can be configured via
4198 * /sys/fs/ext4/<partition>/mb_group_prealloc
4199 *
4200 * XXX: should we try to preallocate more than the group has now?
4201 */
4202static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4203{
4204 struct super_block *sb = ac->ac_sb;
4205 struct ext4_locality_group *lg = ac->ac_lg;
4206
4207 BUG_ON(lg == NULL);
4208 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4209 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4210}
4211
4212/*
4213 * This function returns the next element to look at during inode
4214 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4215 * (ei->i_prealloc_lock)
4216 *
4217 * new_start The start of the range we want to compare
4218 * cur_start The existing start that we are comparing against
4219 * node The node of the rb_tree
4220 */
4221static inline struct rb_node*
4222ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4223{
4224 if (new_start < cur_start)
4225 return node->rb_left;
4226 else
4227 return node->rb_right;
4228}
4229
4230static inline void
4231ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4232 ext4_lblk_t start, loff_t end)
4233{
4234 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4235 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4236 struct ext4_prealloc_space *tmp_pa;
4237 ext4_lblk_t tmp_pa_start;
4238 loff_t tmp_pa_end;
4239 struct rb_node *iter;
4240
4241 read_lock(&ei->i_prealloc_lock);
4242 for (iter = ei->i_prealloc_node.rb_node; iter;
4243 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4244 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4245 pa_node.inode_node);
4246 tmp_pa_start = tmp_pa->pa_lstart;
4247 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4248
4249 spin_lock(&tmp_pa->pa_lock);
4250 if (tmp_pa->pa_deleted == 0)
4251 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4252 spin_unlock(&tmp_pa->pa_lock);
4253 }
4254 read_unlock(&ei->i_prealloc_lock);
4255}
4256
4257/*
4258 * Given an allocation context "ac" and a range "start", "end", check
4259 * and adjust boundaries if the range overlaps with any of the existing
4260 * preallocatoins stored in the corresponding inode of the allocation context.
4261 *
4262 * Parameters:
4263 * ac allocation context
4264 * start start of the new range
4265 * end end of the new range
4266 */
4267static inline void
4268ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4269 ext4_lblk_t *start, loff_t *end)
4270{
4271 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4272 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4273 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4274 struct rb_node *iter;
4275 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4276 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4277
4278 new_start = *start;
4279 new_end = *end;
4280
4281 /*
4282 * Adjust the normalized range so that it doesn't overlap with any
4283 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4284 * so it doesn't change underneath us.
4285 */
4286 read_lock(&ei->i_prealloc_lock);
4287
4288 /* Step 1: find any one immediate neighboring PA of the normalized range */
4289 for (iter = ei->i_prealloc_node.rb_node; iter;
4290 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4291 tmp_pa_start, iter)) {
4292 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4293 pa_node.inode_node);
4294 tmp_pa_start = tmp_pa->pa_lstart;
4295 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4296
4297 /* PA must not overlap original request */
4298 spin_lock(&tmp_pa->pa_lock);
4299 if (tmp_pa->pa_deleted == 0)
4300 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4301 ac->ac_o_ex.fe_logical < tmp_pa_start));
4302 spin_unlock(&tmp_pa->pa_lock);
4303 }
4304
4305 /*
4306 * Step 2: check if the found PA is left or right neighbor and
4307 * get the other neighbor
4308 */
4309 if (tmp_pa) {
4310 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4311 struct rb_node *tmp;
4312
4313 left_pa = tmp_pa;
4314 tmp = rb_next(&left_pa->pa_node.inode_node);
4315 if (tmp) {
4316 right_pa = rb_entry(tmp,
4317 struct ext4_prealloc_space,
4318 pa_node.inode_node);
4319 }
4320 } else {
4321 struct rb_node *tmp;
4322
4323 right_pa = tmp_pa;
4324 tmp = rb_prev(&right_pa->pa_node.inode_node);
4325 if (tmp) {
4326 left_pa = rb_entry(tmp,
4327 struct ext4_prealloc_space,
4328 pa_node.inode_node);
4329 }
4330 }
4331 }
4332
4333 /* Step 3: get the non deleted neighbors */
4334 if (left_pa) {
4335 for (iter = &left_pa->pa_node.inode_node;;
4336 iter = rb_prev(iter)) {
4337 if (!iter) {
4338 left_pa = NULL;
4339 break;
4340 }
4341
4342 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4343 pa_node.inode_node);
4344 left_pa = tmp_pa;
4345 spin_lock(&tmp_pa->pa_lock);
4346 if (tmp_pa->pa_deleted == 0) {
4347 spin_unlock(&tmp_pa->pa_lock);
4348 break;
4349 }
4350 spin_unlock(&tmp_pa->pa_lock);
4351 }
4352 }
4353
4354 if (right_pa) {
4355 for (iter = &right_pa->pa_node.inode_node;;
4356 iter = rb_next(iter)) {
4357 if (!iter) {
4358 right_pa = NULL;
4359 break;
4360 }
4361
4362 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4363 pa_node.inode_node);
4364 right_pa = tmp_pa;
4365 spin_lock(&tmp_pa->pa_lock);
4366 if (tmp_pa->pa_deleted == 0) {
4367 spin_unlock(&tmp_pa->pa_lock);
4368 break;
4369 }
4370 spin_unlock(&tmp_pa->pa_lock);
4371 }
4372 }
4373
4374 if (left_pa) {
4375 left_pa_end = pa_logical_end(sbi, left_pa);
4376 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4377 }
4378
4379 if (right_pa) {
4380 right_pa_start = right_pa->pa_lstart;
4381 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4382 }
4383
4384 /* Step 4: trim our normalized range to not overlap with the neighbors */
4385 if (left_pa) {
4386 if (left_pa_end > new_start)
4387 new_start = left_pa_end;
4388 }
4389
4390 if (right_pa) {
4391 if (right_pa_start < new_end)
4392 new_end = right_pa_start;
4393 }
4394 read_unlock(&ei->i_prealloc_lock);
4395
4396 /* XXX: extra loop to check we really don't overlap preallocations */
4397 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4398
4399 *start = new_start;
4400 *end = new_end;
4401}
4402
4403/*
4404 * Normalization means making request better in terms of
4405 * size and alignment
4406 */
4407static noinline_for_stack void
4408ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4409 struct ext4_allocation_request *ar)
4410{
4411 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4412 struct ext4_super_block *es = sbi->s_es;
4413 int bsbits, max;
4414 loff_t size, start_off, end;
4415 loff_t orig_size __maybe_unused;
4416 ext4_lblk_t start;
4417
4418 /* do normalize only data requests, metadata requests
4419 do not need preallocation */
4420 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4421 return;
4422
4423 /* sometime caller may want exact blocks */
4424 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4425 return;
4426
4427 /* caller may indicate that preallocation isn't
4428 * required (it's a tail, for example) */
4429 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4430 return;
4431
4432 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4433 ext4_mb_normalize_group_request(ac);
4434 return ;
4435 }
4436
4437 bsbits = ac->ac_sb->s_blocksize_bits;
4438
4439 /* first, let's learn actual file size
4440 * given current request is allocated */
4441 size = extent_logical_end(sbi, &ac->ac_o_ex);
4442 size = size << bsbits;
4443 if (size < i_size_read(ac->ac_inode))
4444 size = i_size_read(ac->ac_inode);
4445 orig_size = size;
4446
4447 /* max size of free chunks */
4448 max = 2 << bsbits;
4449
4450#define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4451 (req <= (size) || max <= (chunk_size))
4452
4453 /* first, try to predict filesize */
4454 /* XXX: should this table be tunable? */
4455 start_off = 0;
4456 if (size <= 16 * 1024) {
4457 size = 16 * 1024;
4458 } else if (size <= 32 * 1024) {
4459 size = 32 * 1024;
4460 } else if (size <= 64 * 1024) {
4461 size = 64 * 1024;
4462 } else if (size <= 128 * 1024) {
4463 size = 128 * 1024;
4464 } else if (size <= 256 * 1024) {
4465 size = 256 * 1024;
4466 } else if (size <= 512 * 1024) {
4467 size = 512 * 1024;
4468 } else if (size <= 1024 * 1024) {
4469 size = 1024 * 1024;
4470 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4471 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4472 (21 - bsbits)) << 21;
4473 size = 2 * 1024 * 1024;
4474 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4475 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4476 (22 - bsbits)) << 22;
4477 size = 4 * 1024 * 1024;
4478 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4479 (8<<20)>>bsbits, max, 8 * 1024)) {
4480 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4481 (23 - bsbits)) << 23;
4482 size = 8 * 1024 * 1024;
4483 } else {
4484 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4485 size = (loff_t) EXT4_C2B(sbi,
4486 ac->ac_o_ex.fe_len) << bsbits;
4487 }
4488 size = size >> bsbits;
4489 start = start_off >> bsbits;
4490
4491 /*
4492 * For tiny groups (smaller than 8MB) the chosen allocation
4493 * alignment may be larger than group size. Make sure the
4494 * alignment does not move allocation to a different group which
4495 * makes mballoc fail assertions later.
4496 */
4497 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4498 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4499
4500 /* avoid unnecessary preallocation that may trigger assertions */
4501 if (start + size > EXT_MAX_BLOCKS)
4502 size = EXT_MAX_BLOCKS - start;
4503
4504 /* don't cover already allocated blocks in selected range */
4505 if (ar->pleft && start <= ar->lleft) {
4506 size -= ar->lleft + 1 - start;
4507 start = ar->lleft + 1;
4508 }
4509 if (ar->pright && start + size - 1 >= ar->lright)
4510 size -= start + size - ar->lright;
4511
4512 /*
4513 * Trim allocation request for filesystems with artificially small
4514 * groups.
4515 */
4516 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4517 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4518
4519 end = start + size;
4520
4521 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4522
4523 size = end - start;
4524
4525 /*
4526 * In this function "start" and "size" are normalized for better
4527 * alignment and length such that we could preallocate more blocks.
4528 * This normalization is done such that original request of
4529 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4530 * "size" boundaries.
4531 * (Note fe_len can be relaxed since FS block allocation API does not
4532 * provide gurantee on number of contiguous blocks allocation since that
4533 * depends upon free space left, etc).
4534 * In case of inode pa, later we use the allocated blocks
4535 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4536 * range of goal/best blocks [start, size] to put it at the
4537 * ac_o_ex.fe_logical extent of this inode.
4538 * (See ext4_mb_use_inode_pa() for more details)
4539 */
4540 if (start + size <= ac->ac_o_ex.fe_logical ||
4541 start > ac->ac_o_ex.fe_logical) {
4542 ext4_msg(ac->ac_sb, KERN_ERR,
4543 "start %lu, size %lu, fe_logical %lu",
4544 (unsigned long) start, (unsigned long) size,
4545 (unsigned long) ac->ac_o_ex.fe_logical);
4546 BUG();
4547 }
4548 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4549
4550 /* now prepare goal request */
4551
4552 /* XXX: is it better to align blocks WRT to logical
4553 * placement or satisfy big request as is */
4554 ac->ac_g_ex.fe_logical = start;
4555 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4556 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4557
4558 /* define goal start in order to merge */
4559 if (ar->pright && (ar->lright == (start + size)) &&
4560 ar->pright >= size &&
4561 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4562 /* merge to the right */
4563 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4564 &ac->ac_g_ex.fe_group,
4565 &ac->ac_g_ex.fe_start);
4566 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4567 }
4568 if (ar->pleft && (ar->lleft + 1 == start) &&
4569 ar->pleft + 1 < ext4_blocks_count(es)) {
4570 /* merge to the left */
4571 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4572 &ac->ac_g_ex.fe_group,
4573 &ac->ac_g_ex.fe_start);
4574 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4575 }
4576
4577 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4578 orig_size, start);
4579}
4580
4581static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4582{
4583 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4584
4585 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4586 atomic_inc(&sbi->s_bal_reqs);
4587 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4588 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4589 atomic_inc(&sbi->s_bal_success);
4590
4591 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4592 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4593 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4594 }
4595
4596 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4597 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4598 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4599 atomic_inc(&sbi->s_bal_goals);
4600 /* did we allocate as much as normalizer originally wanted? */
4601 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4602 atomic_inc(&sbi->s_bal_len_goals);
4603
4604 if (ac->ac_found > sbi->s_mb_max_to_scan)
4605 atomic_inc(&sbi->s_bal_breaks);
4606 }
4607
4608 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4609 trace_ext4_mballoc_alloc(ac);
4610 else
4611 trace_ext4_mballoc_prealloc(ac);
4612}
4613
4614/*
4615 * Called on failure; free up any blocks from the inode PA for this
4616 * context. We don't need this for MB_GROUP_PA because we only change
4617 * pa_free in ext4_mb_release_context(), but on failure, we've already
4618 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4619 */
4620static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4621{
4622 struct ext4_prealloc_space *pa = ac->ac_pa;
4623 struct ext4_buddy e4b;
4624 int err;
4625
4626 if (pa == NULL) {
4627 if (ac->ac_f_ex.fe_len == 0)
4628 return;
4629 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4630 if (WARN_RATELIMIT(err,
4631 "ext4: mb_load_buddy failed (%d)", err))
4632 /*
4633 * This should never happen since we pin the
4634 * pages in the ext4_allocation_context so
4635 * ext4_mb_load_buddy() should never fail.
4636 */
4637 return;
4638 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4639 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4640 ac->ac_f_ex.fe_len);
4641 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642 ext4_mb_unload_buddy(&e4b);
4643 return;
4644 }
4645 if (pa->pa_type == MB_INODE_PA) {
4646 spin_lock(&pa->pa_lock);
4647 pa->pa_free += ac->ac_b_ex.fe_len;
4648 spin_unlock(&pa->pa_lock);
4649 }
4650}
4651
4652/*
4653 * use blocks preallocated to inode
4654 */
4655static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4656 struct ext4_prealloc_space *pa)
4657{
4658 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4659 ext4_fsblk_t start;
4660 ext4_fsblk_t end;
4661 int len;
4662
4663 /* found preallocated blocks, use them */
4664 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4665 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4666 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4667 len = EXT4_NUM_B2C(sbi, end - start);
4668 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4669 &ac->ac_b_ex.fe_start);
4670 ac->ac_b_ex.fe_len = len;
4671 ac->ac_status = AC_STATUS_FOUND;
4672 ac->ac_pa = pa;
4673
4674 BUG_ON(start < pa->pa_pstart);
4675 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4676 BUG_ON(pa->pa_free < len);
4677 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4678 pa->pa_free -= len;
4679
4680 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4681}
4682
4683/*
4684 * use blocks preallocated to locality group
4685 */
4686static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4687 struct ext4_prealloc_space *pa)
4688{
4689 unsigned int len = ac->ac_o_ex.fe_len;
4690
4691 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4692 &ac->ac_b_ex.fe_group,
4693 &ac->ac_b_ex.fe_start);
4694 ac->ac_b_ex.fe_len = len;
4695 ac->ac_status = AC_STATUS_FOUND;
4696 ac->ac_pa = pa;
4697
4698 /* we don't correct pa_pstart or pa_len here to avoid
4699 * possible race when the group is being loaded concurrently
4700 * instead we correct pa later, after blocks are marked
4701 * in on-disk bitmap -- see ext4_mb_release_context()
4702 * Other CPUs are prevented from allocating from this pa by lg_mutex
4703 */
4704 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4705 pa->pa_lstart, len, pa);
4706}
4707
4708/*
4709 * Return the prealloc space that have minimal distance
4710 * from the goal block. @cpa is the prealloc
4711 * space that is having currently known minimal distance
4712 * from the goal block.
4713 */
4714static struct ext4_prealloc_space *
4715ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4716 struct ext4_prealloc_space *pa,
4717 struct ext4_prealloc_space *cpa)
4718{
4719 ext4_fsblk_t cur_distance, new_distance;
4720
4721 if (cpa == NULL) {
4722 atomic_inc(&pa->pa_count);
4723 return pa;
4724 }
4725 cur_distance = abs(goal_block - cpa->pa_pstart);
4726 new_distance = abs(goal_block - pa->pa_pstart);
4727
4728 if (cur_distance <= new_distance)
4729 return cpa;
4730
4731 /* drop the previous reference */
4732 atomic_dec(&cpa->pa_count);
4733 atomic_inc(&pa->pa_count);
4734 return pa;
4735}
4736
4737/*
4738 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4739 */
4740static bool
4741ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4742 struct ext4_prealloc_space *pa)
4743{
4744 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4745 ext4_fsblk_t start;
4746
4747 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4748 return true;
4749
4750 /*
4751 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4752 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4753 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4754 * consistent with ext4_mb_find_by_goal.
4755 */
4756 start = pa->pa_pstart +
4757 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4758 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4759 return false;
4760
4761 if (ac->ac_g_ex.fe_len > pa->pa_len -
4762 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4763 return false;
4764
4765 return true;
4766}
4767
4768/*
4769 * search goal blocks in preallocated space
4770 */
4771static noinline_for_stack bool
4772ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4773{
4774 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4775 int order, i;
4776 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4777 struct ext4_locality_group *lg;
4778 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4779 struct rb_node *iter;
4780 ext4_fsblk_t goal_block;
4781
4782 /* only data can be preallocated */
4783 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4784 return false;
4785
4786 /*
4787 * first, try per-file preallocation by searching the inode pa rbtree.
4788 *
4789 * Here, we can't do a direct traversal of the tree because
4790 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4791 * deleted and that can cause direct traversal to skip some entries.
4792 */
4793 read_lock(&ei->i_prealloc_lock);
4794
4795 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4796 goto try_group_pa;
4797 }
4798
4799 /*
4800 * Step 1: Find a pa with logical start immediately adjacent to the
4801 * original logical start. This could be on the left or right.
4802 *
4803 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4804 */
4805 for (iter = ei->i_prealloc_node.rb_node; iter;
4806 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4807 tmp_pa->pa_lstart, iter)) {
4808 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4809 pa_node.inode_node);
4810 }
4811
4812 /*
4813 * Step 2: The adjacent pa might be to the right of logical start, find
4814 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4815 * logical start is towards the left of original request's logical start
4816 */
4817 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4818 struct rb_node *tmp;
4819 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4820
4821 if (tmp) {
4822 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4823 pa_node.inode_node);
4824 } else {
4825 /*
4826 * If there is no adjacent pa to the left then finding
4827 * an overlapping pa is not possible hence stop searching
4828 * inode pa tree
4829 */
4830 goto try_group_pa;
4831 }
4832 }
4833
4834 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4835
4836 /*
4837 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4838 * the first non deleted adjacent pa. After this step we should have a
4839 * valid tmp_pa which is guaranteed to be non deleted.
4840 */
4841 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4842 if (!iter) {
4843 /*
4844 * no non deleted left adjacent pa, so stop searching
4845 * inode pa tree
4846 */
4847 goto try_group_pa;
4848 }
4849 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4850 pa_node.inode_node);
4851 spin_lock(&tmp_pa->pa_lock);
4852 if (tmp_pa->pa_deleted == 0) {
4853 /*
4854 * We will keep holding the pa_lock from
4855 * this point on because we don't want group discard
4856 * to delete this pa underneath us. Since group
4857 * discard is anyways an ENOSPC operation it
4858 * should be okay for it to wait a few more cycles.
4859 */
4860 break;
4861 } else {
4862 spin_unlock(&tmp_pa->pa_lock);
4863 }
4864 }
4865
4866 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4867 BUG_ON(tmp_pa->pa_deleted == 1);
4868
4869 /*
4870 * Step 4: We now have the non deleted left adjacent pa. Only this
4871 * pa can possibly satisfy the request hence check if it overlaps
4872 * original logical start and stop searching if it doesn't.
4873 */
4874 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4875 spin_unlock(&tmp_pa->pa_lock);
4876 goto try_group_pa;
4877 }
4878
4879 /* non-extent files can't have physical blocks past 2^32 */
4880 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4881 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4882 EXT4_MAX_BLOCK_FILE_PHYS)) {
4883 /*
4884 * Since PAs don't overlap, we won't find any other PA to
4885 * satisfy this.
4886 */
4887 spin_unlock(&tmp_pa->pa_lock);
4888 goto try_group_pa;
4889 }
4890
4891 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4892 atomic_inc(&tmp_pa->pa_count);
4893 ext4_mb_use_inode_pa(ac, tmp_pa);
4894 spin_unlock(&tmp_pa->pa_lock);
4895 read_unlock(&ei->i_prealloc_lock);
4896 return true;
4897 } else {
4898 /*
4899 * We found a valid overlapping pa but couldn't use it because
4900 * it had no free blocks. This should ideally never happen
4901 * because:
4902 *
4903 * 1. When a new inode pa is added to rbtree it must have
4904 * pa_free > 0 since otherwise we won't actually need
4905 * preallocation.
4906 *
4907 * 2. An inode pa that is in the rbtree can only have it's
4908 * pa_free become zero when another thread calls:
4909 * ext4_mb_new_blocks
4910 * ext4_mb_use_preallocated
4911 * ext4_mb_use_inode_pa
4912 *
4913 * 3. Further, after the above calls make pa_free == 0, we will
4914 * immediately remove it from the rbtree in:
4915 * ext4_mb_new_blocks
4916 * ext4_mb_release_context
4917 * ext4_mb_put_pa
4918 *
4919 * 4. Since the pa_free becoming 0 and pa_free getting removed
4920 * from tree both happen in ext4_mb_new_blocks, which is always
4921 * called with i_data_sem held for data allocations, we can be
4922 * sure that another process will never see a pa in rbtree with
4923 * pa_free == 0.
4924 */
4925 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4926 }
4927 spin_unlock(&tmp_pa->pa_lock);
4928try_group_pa:
4929 read_unlock(&ei->i_prealloc_lock);
4930
4931 /* can we use group allocation? */
4932 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4933 return false;
4934
4935 /* inode may have no locality group for some reason */
4936 lg = ac->ac_lg;
4937 if (lg == NULL)
4938 return false;
4939 order = fls(ac->ac_o_ex.fe_len) - 1;
4940 if (order > PREALLOC_TB_SIZE - 1)
4941 /* The max size of hash table is PREALLOC_TB_SIZE */
4942 order = PREALLOC_TB_SIZE - 1;
4943
4944 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4945 /*
4946 * search for the prealloc space that is having
4947 * minimal distance from the goal block.
4948 */
4949 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4950 rcu_read_lock();
4951 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4952 pa_node.lg_list) {
4953 spin_lock(&tmp_pa->pa_lock);
4954 if (tmp_pa->pa_deleted == 0 &&
4955 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4956
4957 cpa = ext4_mb_check_group_pa(goal_block,
4958 tmp_pa, cpa);
4959 }
4960 spin_unlock(&tmp_pa->pa_lock);
4961 }
4962 rcu_read_unlock();
4963 }
4964 if (cpa) {
4965 ext4_mb_use_group_pa(ac, cpa);
4966 return true;
4967 }
4968 return false;
4969}
4970
4971/*
4972 * the function goes through all preallocation in this group and marks them
4973 * used in in-core bitmap. buddy must be generated from this bitmap
4974 * Need to be called with ext4 group lock held
4975 */
4976static noinline_for_stack
4977void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4978 ext4_group_t group)
4979{
4980 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4981 struct ext4_prealloc_space *pa;
4982 struct list_head *cur;
4983 ext4_group_t groupnr;
4984 ext4_grpblk_t start;
4985 int preallocated = 0;
4986 int len;
4987
4988 if (!grp)
4989 return;
4990
4991 /* all form of preallocation discards first load group,
4992 * so the only competing code is preallocation use.
4993 * we don't need any locking here
4994 * notice we do NOT ignore preallocations with pa_deleted
4995 * otherwise we could leave used blocks available for
4996 * allocation in buddy when concurrent ext4_mb_put_pa()
4997 * is dropping preallocation
4998 */
4999 list_for_each(cur, &grp->bb_prealloc_list) {
5000 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5001 spin_lock(&pa->pa_lock);
5002 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5003 &groupnr, &start);
5004 len = pa->pa_len;
5005 spin_unlock(&pa->pa_lock);
5006 if (unlikely(len == 0))
5007 continue;
5008 BUG_ON(groupnr != group);
5009 mb_set_bits(bitmap, start, len);
5010 preallocated += len;
5011 }
5012 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5013}
5014
5015static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5016 struct ext4_prealloc_space *pa)
5017{
5018 struct ext4_inode_info *ei;
5019
5020 if (pa->pa_deleted) {
5021 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5022 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5023 pa->pa_len);
5024 return;
5025 }
5026
5027 pa->pa_deleted = 1;
5028
5029 if (pa->pa_type == MB_INODE_PA) {
5030 ei = EXT4_I(pa->pa_inode);
5031 atomic_dec(&ei->i_prealloc_active);
5032 }
5033}
5034
5035static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5036{
5037 BUG_ON(!pa);
5038 BUG_ON(atomic_read(&pa->pa_count));
5039 BUG_ON(pa->pa_deleted == 0);
5040 kmem_cache_free(ext4_pspace_cachep, pa);
5041}
5042
5043static void ext4_mb_pa_callback(struct rcu_head *head)
5044{
5045 struct ext4_prealloc_space *pa;
5046
5047 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5048 ext4_mb_pa_free(pa);
5049}
5050
5051/*
5052 * drops a reference to preallocated space descriptor
5053 * if this was the last reference and the space is consumed
5054 */
5055static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5056 struct super_block *sb, struct ext4_prealloc_space *pa)
5057{
5058 ext4_group_t grp;
5059 ext4_fsblk_t grp_blk;
5060 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5061
5062 /* in this short window concurrent discard can set pa_deleted */
5063 spin_lock(&pa->pa_lock);
5064 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5065 spin_unlock(&pa->pa_lock);
5066 return;
5067 }
5068
5069 if (pa->pa_deleted == 1) {
5070 spin_unlock(&pa->pa_lock);
5071 return;
5072 }
5073
5074 ext4_mb_mark_pa_deleted(sb, pa);
5075 spin_unlock(&pa->pa_lock);
5076
5077 grp_blk = pa->pa_pstart;
5078 /*
5079 * If doing group-based preallocation, pa_pstart may be in the
5080 * next group when pa is used up
5081 */
5082 if (pa->pa_type == MB_GROUP_PA)
5083 grp_blk--;
5084
5085 grp = ext4_get_group_number(sb, grp_blk);
5086
5087 /*
5088 * possible race:
5089 *
5090 * P1 (buddy init) P2 (regular allocation)
5091 * find block B in PA
5092 * copy on-disk bitmap to buddy
5093 * mark B in on-disk bitmap
5094 * drop PA from group
5095 * mark all PAs in buddy
5096 *
5097 * thus, P1 initializes buddy with B available. to prevent this
5098 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5099 * against that pair
5100 */
5101 ext4_lock_group(sb, grp);
5102 list_del(&pa->pa_group_list);
5103 ext4_unlock_group(sb, grp);
5104
5105 if (pa->pa_type == MB_INODE_PA) {
5106 write_lock(pa->pa_node_lock.inode_lock);
5107 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5108 write_unlock(pa->pa_node_lock.inode_lock);
5109 ext4_mb_pa_free(pa);
5110 } else {
5111 spin_lock(pa->pa_node_lock.lg_lock);
5112 list_del_rcu(&pa->pa_node.lg_list);
5113 spin_unlock(pa->pa_node_lock.lg_lock);
5114 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5115 }
5116}
5117
5118static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5119{
5120 struct rb_node **iter = &root->rb_node, *parent = NULL;
5121 struct ext4_prealloc_space *iter_pa, *new_pa;
5122 ext4_lblk_t iter_start, new_start;
5123
5124 while (*iter) {
5125 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5126 pa_node.inode_node);
5127 new_pa = rb_entry(new, struct ext4_prealloc_space,
5128 pa_node.inode_node);
5129 iter_start = iter_pa->pa_lstart;
5130 new_start = new_pa->pa_lstart;
5131
5132 parent = *iter;
5133 if (new_start < iter_start)
5134 iter = &((*iter)->rb_left);
5135 else
5136 iter = &((*iter)->rb_right);
5137 }
5138
5139 rb_link_node(new, parent, iter);
5140 rb_insert_color(new, root);
5141}
5142
5143/*
5144 * creates new preallocated space for given inode
5145 */
5146static noinline_for_stack void
5147ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5148{
5149 struct super_block *sb = ac->ac_sb;
5150 struct ext4_sb_info *sbi = EXT4_SB(sb);
5151 struct ext4_prealloc_space *pa;
5152 struct ext4_group_info *grp;
5153 struct ext4_inode_info *ei;
5154
5155 /* preallocate only when found space is larger then requested */
5156 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5157 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5158 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5159 BUG_ON(ac->ac_pa == NULL);
5160
5161 pa = ac->ac_pa;
5162
5163 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5164 struct ext4_free_extent ex = {
5165 .fe_logical = ac->ac_g_ex.fe_logical,
5166 .fe_len = ac->ac_orig_goal_len,
5167 };
5168 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5169 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5170
5171 /*
5172 * We can't allocate as much as normalizer wants, so we try
5173 * to get proper lstart to cover the original request, except
5174 * when the goal doesn't cover the original request as below:
5175 *
5176 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5177 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5178 */
5179 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5180 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5181
5182 /*
5183 * Use the below logic for adjusting best extent as it keeps
5184 * fragmentation in check while ensuring logical range of best
5185 * extent doesn't overflow out of goal extent:
5186 *
5187 * 1. Check if best ex can be kept at end of goal (before
5188 * cr_best_avail trimmed it) and still cover original start
5189 * 2. Else, check if best ex can be kept at start of goal and
5190 * still cover original end
5191 * 3. Else, keep the best ex at start of original request.
5192 */
5193 ex.fe_len = ac->ac_b_ex.fe_len;
5194
5195 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5196 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5197 goto adjust_bex;
5198
5199 ex.fe_logical = ac->ac_g_ex.fe_logical;
5200 if (o_ex_end <= extent_logical_end(sbi, &ex))
5201 goto adjust_bex;
5202
5203 ex.fe_logical = ac->ac_o_ex.fe_logical;
5204adjust_bex:
5205 ac->ac_b_ex.fe_logical = ex.fe_logical;
5206
5207 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5208 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5209 }
5210
5211 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5212 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5213 pa->pa_len = ac->ac_b_ex.fe_len;
5214 pa->pa_free = pa->pa_len;
5215 spin_lock_init(&pa->pa_lock);
5216 INIT_LIST_HEAD(&pa->pa_group_list);
5217 pa->pa_deleted = 0;
5218 pa->pa_type = MB_INODE_PA;
5219
5220 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5221 pa->pa_len, pa->pa_lstart);
5222 trace_ext4_mb_new_inode_pa(ac, pa);
5223
5224 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5225 ext4_mb_use_inode_pa(ac, pa);
5226
5227 ei = EXT4_I(ac->ac_inode);
5228 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5229 if (!grp)
5230 return;
5231
5232 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5233 pa->pa_inode = ac->ac_inode;
5234
5235 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5236
5237 write_lock(pa->pa_node_lock.inode_lock);
5238 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5239 write_unlock(pa->pa_node_lock.inode_lock);
5240 atomic_inc(&ei->i_prealloc_active);
5241}
5242
5243/*
5244 * creates new preallocated space for locality group inodes belongs to
5245 */
5246static noinline_for_stack void
5247ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5248{
5249 struct super_block *sb = ac->ac_sb;
5250 struct ext4_locality_group *lg;
5251 struct ext4_prealloc_space *pa;
5252 struct ext4_group_info *grp;
5253
5254 /* preallocate only when found space is larger then requested */
5255 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5256 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5257 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5258 BUG_ON(ac->ac_pa == NULL);
5259
5260 pa = ac->ac_pa;
5261
5262 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5263 pa->pa_lstart = pa->pa_pstart;
5264 pa->pa_len = ac->ac_b_ex.fe_len;
5265 pa->pa_free = pa->pa_len;
5266 spin_lock_init(&pa->pa_lock);
5267 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5268 INIT_LIST_HEAD(&pa->pa_group_list);
5269 pa->pa_deleted = 0;
5270 pa->pa_type = MB_GROUP_PA;
5271
5272 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5273 pa->pa_len, pa->pa_lstart);
5274 trace_ext4_mb_new_group_pa(ac, pa);
5275
5276 ext4_mb_use_group_pa(ac, pa);
5277 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5278
5279 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5280 if (!grp)
5281 return;
5282 lg = ac->ac_lg;
5283 BUG_ON(lg == NULL);
5284
5285 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5286 pa->pa_inode = NULL;
5287
5288 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5289
5290 /*
5291 * We will later add the new pa to the right bucket
5292 * after updating the pa_free in ext4_mb_release_context
5293 */
5294}
5295
5296static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5297{
5298 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5299 ext4_mb_new_group_pa(ac);
5300 else
5301 ext4_mb_new_inode_pa(ac);
5302}
5303
5304/*
5305 * finds all unused blocks in on-disk bitmap, frees them in
5306 * in-core bitmap and buddy.
5307 * @pa must be unlinked from inode and group lists, so that
5308 * nobody else can find/use it.
5309 * the caller MUST hold group/inode locks.
5310 * TODO: optimize the case when there are no in-core structures yet
5311 */
5312static noinline_for_stack void
5313ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5314 struct ext4_prealloc_space *pa)
5315{
5316 struct super_block *sb = e4b->bd_sb;
5317 struct ext4_sb_info *sbi = EXT4_SB(sb);
5318 unsigned int end;
5319 unsigned int next;
5320 ext4_group_t group;
5321 ext4_grpblk_t bit;
5322 unsigned long long grp_blk_start;
5323 int free = 0;
5324
5325 BUG_ON(pa->pa_deleted == 0);
5326 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5327 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5328 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5329 end = bit + pa->pa_len;
5330
5331 while (bit < end) {
5332 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5333 if (bit >= end)
5334 break;
5335 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5336 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5337 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5338 (unsigned) next - bit, (unsigned) group);
5339 free += next - bit;
5340
5341 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5342 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5343 EXT4_C2B(sbi, bit)),
5344 next - bit);
5345 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5346 bit = next + 1;
5347 }
5348 if (free != pa->pa_free) {
5349 ext4_msg(e4b->bd_sb, KERN_CRIT,
5350 "pa %p: logic %lu, phys. %lu, len %d",
5351 pa, (unsigned long) pa->pa_lstart,
5352 (unsigned long) pa->pa_pstart,
5353 pa->pa_len);
5354 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5355 free, pa->pa_free);
5356 /*
5357 * pa is already deleted so we use the value obtained
5358 * from the bitmap and continue.
5359 */
5360 }
5361 atomic_add(free, &sbi->s_mb_discarded);
5362}
5363
5364static noinline_for_stack void
5365ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5366 struct ext4_prealloc_space *pa)
5367{
5368 struct super_block *sb = e4b->bd_sb;
5369 ext4_group_t group;
5370 ext4_grpblk_t bit;
5371
5372 trace_ext4_mb_release_group_pa(sb, pa);
5373 BUG_ON(pa->pa_deleted == 0);
5374 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5375 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5376 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5377 e4b->bd_group, group, pa->pa_pstart);
5378 return;
5379 }
5380 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5381 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5382 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5383}
5384
5385/*
5386 * releases all preallocations in given group
5387 *
5388 * first, we need to decide discard policy:
5389 * - when do we discard
5390 * 1) ENOSPC
5391 * - how many do we discard
5392 * 1) how many requested
5393 */
5394static noinline_for_stack int
5395ext4_mb_discard_group_preallocations(struct super_block *sb,
5396 ext4_group_t group, int *busy)
5397{
5398 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5399 struct buffer_head *bitmap_bh = NULL;
5400 struct ext4_prealloc_space *pa, *tmp;
5401 LIST_HEAD(list);
5402 struct ext4_buddy e4b;
5403 struct ext4_inode_info *ei;
5404 int err;
5405 int free = 0;
5406
5407 if (!grp)
5408 return 0;
5409 mb_debug(sb, "discard preallocation for group %u\n", group);
5410 if (list_empty(&grp->bb_prealloc_list))
5411 goto out_dbg;
5412
5413 bitmap_bh = ext4_read_block_bitmap(sb, group);
5414 if (IS_ERR(bitmap_bh)) {
5415 err = PTR_ERR(bitmap_bh);
5416 ext4_error_err(sb, -err,
5417 "Error %d reading block bitmap for %u",
5418 err, group);
5419 goto out_dbg;
5420 }
5421
5422 err = ext4_mb_load_buddy(sb, group, &e4b);
5423 if (err) {
5424 ext4_warning(sb, "Error %d loading buddy information for %u",
5425 err, group);
5426 put_bh(bitmap_bh);
5427 goto out_dbg;
5428 }
5429
5430 ext4_lock_group(sb, group);
5431 list_for_each_entry_safe(pa, tmp,
5432 &grp->bb_prealloc_list, pa_group_list) {
5433 spin_lock(&pa->pa_lock);
5434 if (atomic_read(&pa->pa_count)) {
5435 spin_unlock(&pa->pa_lock);
5436 *busy = 1;
5437 continue;
5438 }
5439 if (pa->pa_deleted) {
5440 spin_unlock(&pa->pa_lock);
5441 continue;
5442 }
5443
5444 /* seems this one can be freed ... */
5445 ext4_mb_mark_pa_deleted(sb, pa);
5446
5447 if (!free)
5448 this_cpu_inc(discard_pa_seq);
5449
5450 /* we can trust pa_free ... */
5451 free += pa->pa_free;
5452
5453 spin_unlock(&pa->pa_lock);
5454
5455 list_del(&pa->pa_group_list);
5456 list_add(&pa->u.pa_tmp_list, &list);
5457 }
5458
5459 /* now free all selected PAs */
5460 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5461
5462 /* remove from object (inode or locality group) */
5463 if (pa->pa_type == MB_GROUP_PA) {
5464 spin_lock(pa->pa_node_lock.lg_lock);
5465 list_del_rcu(&pa->pa_node.lg_list);
5466 spin_unlock(pa->pa_node_lock.lg_lock);
5467 } else {
5468 write_lock(pa->pa_node_lock.inode_lock);
5469 ei = EXT4_I(pa->pa_inode);
5470 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5471 write_unlock(pa->pa_node_lock.inode_lock);
5472 }
5473
5474 list_del(&pa->u.pa_tmp_list);
5475
5476 if (pa->pa_type == MB_GROUP_PA) {
5477 ext4_mb_release_group_pa(&e4b, pa);
5478 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5479 } else {
5480 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5481 ext4_mb_pa_free(pa);
5482 }
5483 }
5484
5485 ext4_unlock_group(sb, group);
5486 ext4_mb_unload_buddy(&e4b);
5487 put_bh(bitmap_bh);
5488out_dbg:
5489 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5490 free, group, grp->bb_free);
5491 return free;
5492}
5493
5494/*
5495 * releases all non-used preallocated blocks for given inode
5496 *
5497 * It's important to discard preallocations under i_data_sem
5498 * We don't want another block to be served from the prealloc
5499 * space when we are discarding the inode prealloc space.
5500 *
5501 * FIXME!! Make sure it is valid at all the call sites
5502 */
5503void ext4_discard_preallocations(struct inode *inode)
5504{
5505 struct ext4_inode_info *ei = EXT4_I(inode);
5506 struct super_block *sb = inode->i_sb;
5507 struct buffer_head *bitmap_bh = NULL;
5508 struct ext4_prealloc_space *pa, *tmp;
5509 ext4_group_t group = 0;
5510 LIST_HEAD(list);
5511 struct ext4_buddy e4b;
5512 struct rb_node *iter;
5513 int err;
5514
5515 if (!S_ISREG(inode->i_mode))
5516 return;
5517
5518 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5519 return;
5520
5521 mb_debug(sb, "discard preallocation for inode %lu\n",
5522 inode->i_ino);
5523 trace_ext4_discard_preallocations(inode,
5524 atomic_read(&ei->i_prealloc_active));
5525
5526repeat:
5527 /* first, collect all pa's in the inode */
5528 write_lock(&ei->i_prealloc_lock);
5529 for (iter = rb_first(&ei->i_prealloc_node); iter;
5530 iter = rb_next(iter)) {
5531 pa = rb_entry(iter, struct ext4_prealloc_space,
5532 pa_node.inode_node);
5533 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5534
5535 spin_lock(&pa->pa_lock);
5536 if (atomic_read(&pa->pa_count)) {
5537 /* this shouldn't happen often - nobody should
5538 * use preallocation while we're discarding it */
5539 spin_unlock(&pa->pa_lock);
5540 write_unlock(&ei->i_prealloc_lock);
5541 ext4_msg(sb, KERN_ERR,
5542 "uh-oh! used pa while discarding");
5543 WARN_ON(1);
5544 schedule_timeout_uninterruptible(HZ);
5545 goto repeat;
5546
5547 }
5548 if (pa->pa_deleted == 0) {
5549 ext4_mb_mark_pa_deleted(sb, pa);
5550 spin_unlock(&pa->pa_lock);
5551 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5552 list_add(&pa->u.pa_tmp_list, &list);
5553 continue;
5554 }
5555
5556 /* someone is deleting pa right now */
5557 spin_unlock(&pa->pa_lock);
5558 write_unlock(&ei->i_prealloc_lock);
5559
5560 /* we have to wait here because pa_deleted
5561 * doesn't mean pa is already unlinked from
5562 * the list. as we might be called from
5563 * ->clear_inode() the inode will get freed
5564 * and concurrent thread which is unlinking
5565 * pa from inode's list may access already
5566 * freed memory, bad-bad-bad */
5567
5568 /* XXX: if this happens too often, we can
5569 * add a flag to force wait only in case
5570 * of ->clear_inode(), but not in case of
5571 * regular truncate */
5572 schedule_timeout_uninterruptible(HZ);
5573 goto repeat;
5574 }
5575 write_unlock(&ei->i_prealloc_lock);
5576
5577 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5578 BUG_ON(pa->pa_type != MB_INODE_PA);
5579 group = ext4_get_group_number(sb, pa->pa_pstart);
5580
5581 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5582 GFP_NOFS|__GFP_NOFAIL);
5583 if (err) {
5584 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5585 err, group);
5586 continue;
5587 }
5588
5589 bitmap_bh = ext4_read_block_bitmap(sb, group);
5590 if (IS_ERR(bitmap_bh)) {
5591 err = PTR_ERR(bitmap_bh);
5592 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5593 err, group);
5594 ext4_mb_unload_buddy(&e4b);
5595 continue;
5596 }
5597
5598 ext4_lock_group(sb, group);
5599 list_del(&pa->pa_group_list);
5600 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5601 ext4_unlock_group(sb, group);
5602
5603 ext4_mb_unload_buddy(&e4b);
5604 put_bh(bitmap_bh);
5605
5606 list_del(&pa->u.pa_tmp_list);
5607 ext4_mb_pa_free(pa);
5608 }
5609}
5610
5611static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5612{
5613 struct ext4_prealloc_space *pa;
5614
5615 BUG_ON(ext4_pspace_cachep == NULL);
5616 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5617 if (!pa)
5618 return -ENOMEM;
5619 atomic_set(&pa->pa_count, 1);
5620 ac->ac_pa = pa;
5621 return 0;
5622}
5623
5624static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5625{
5626 struct ext4_prealloc_space *pa = ac->ac_pa;
5627
5628 BUG_ON(!pa);
5629 ac->ac_pa = NULL;
5630 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5631 /*
5632 * current function is only called due to an error or due to
5633 * len of found blocks < len of requested blocks hence the PA has not
5634 * been added to grp->bb_prealloc_list. So we don't need to lock it
5635 */
5636 pa->pa_deleted = 1;
5637 ext4_mb_pa_free(pa);
5638}
5639
5640#ifdef CONFIG_EXT4_DEBUG
5641static inline void ext4_mb_show_pa(struct super_block *sb)
5642{
5643 ext4_group_t i, ngroups;
5644
5645 if (ext4_forced_shutdown(sb))
5646 return;
5647
5648 ngroups = ext4_get_groups_count(sb);
5649 mb_debug(sb, "groups: ");
5650 for (i = 0; i < ngroups; i++) {
5651 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5652 struct ext4_prealloc_space *pa;
5653 ext4_grpblk_t start;
5654 struct list_head *cur;
5655
5656 if (!grp)
5657 continue;
5658 ext4_lock_group(sb, i);
5659 list_for_each(cur, &grp->bb_prealloc_list) {
5660 pa = list_entry(cur, struct ext4_prealloc_space,
5661 pa_group_list);
5662 spin_lock(&pa->pa_lock);
5663 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5664 NULL, &start);
5665 spin_unlock(&pa->pa_lock);
5666 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5667 pa->pa_len);
5668 }
5669 ext4_unlock_group(sb, i);
5670 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5671 grp->bb_fragments);
5672 }
5673}
5674
5675static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5676{
5677 struct super_block *sb = ac->ac_sb;
5678
5679 if (ext4_forced_shutdown(sb))
5680 return;
5681
5682 mb_debug(sb, "Can't allocate:"
5683 " Allocation context details:");
5684 mb_debug(sb, "status %u flags 0x%x",
5685 ac->ac_status, ac->ac_flags);
5686 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5687 "goal %lu/%lu/%lu@%lu, "
5688 "best %lu/%lu/%lu@%lu cr %d",
5689 (unsigned long)ac->ac_o_ex.fe_group,
5690 (unsigned long)ac->ac_o_ex.fe_start,
5691 (unsigned long)ac->ac_o_ex.fe_len,
5692 (unsigned long)ac->ac_o_ex.fe_logical,
5693 (unsigned long)ac->ac_g_ex.fe_group,
5694 (unsigned long)ac->ac_g_ex.fe_start,
5695 (unsigned long)ac->ac_g_ex.fe_len,
5696 (unsigned long)ac->ac_g_ex.fe_logical,
5697 (unsigned long)ac->ac_b_ex.fe_group,
5698 (unsigned long)ac->ac_b_ex.fe_start,
5699 (unsigned long)ac->ac_b_ex.fe_len,
5700 (unsigned long)ac->ac_b_ex.fe_logical,
5701 (int)ac->ac_criteria);
5702 mb_debug(sb, "%u found", ac->ac_found);
5703 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5704 if (ac->ac_pa)
5705 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5706 "group pa" : "inode pa");
5707 ext4_mb_show_pa(sb);
5708}
5709#else
5710static inline void ext4_mb_show_pa(struct super_block *sb)
5711{
5712}
5713static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5714{
5715 ext4_mb_show_pa(ac->ac_sb);
5716}
5717#endif
5718
5719/*
5720 * We use locality group preallocation for small size file. The size of the
5721 * file is determined by the current size or the resulting size after
5722 * allocation which ever is larger
5723 *
5724 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5725 */
5726static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5727{
5728 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5729 int bsbits = ac->ac_sb->s_blocksize_bits;
5730 loff_t size, isize;
5731 bool inode_pa_eligible, group_pa_eligible;
5732
5733 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5734 return;
5735
5736 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5737 return;
5738
5739 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5740 inode_pa_eligible = true;
5741 size = extent_logical_end(sbi, &ac->ac_o_ex);
5742 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5743 >> bsbits;
5744
5745 /* No point in using inode preallocation for closed files */
5746 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5747 !inode_is_open_for_write(ac->ac_inode))
5748 inode_pa_eligible = false;
5749
5750 size = max(size, isize);
5751 /* Don't use group allocation for large files */
5752 if (size > sbi->s_mb_stream_request)
5753 group_pa_eligible = false;
5754
5755 if (!group_pa_eligible) {
5756 if (inode_pa_eligible)
5757 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5758 else
5759 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5760 return;
5761 }
5762
5763 BUG_ON(ac->ac_lg != NULL);
5764 /*
5765 * locality group prealloc space are per cpu. The reason for having
5766 * per cpu locality group is to reduce the contention between block
5767 * request from multiple CPUs.
5768 */
5769 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5770
5771 /* we're going to use group allocation */
5772 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5773
5774 /* serialize all allocations in the group */
5775 mutex_lock(&ac->ac_lg->lg_mutex);
5776}
5777
5778static noinline_for_stack void
5779ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5780 struct ext4_allocation_request *ar)
5781{
5782 struct super_block *sb = ar->inode->i_sb;
5783 struct ext4_sb_info *sbi = EXT4_SB(sb);
5784 struct ext4_super_block *es = sbi->s_es;
5785 ext4_group_t group;
5786 unsigned int len;
5787 ext4_fsblk_t goal;
5788 ext4_grpblk_t block;
5789
5790 /* we can't allocate > group size */
5791 len = ar->len;
5792
5793 /* just a dirty hack to filter too big requests */
5794 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5795 len = EXT4_CLUSTERS_PER_GROUP(sb);
5796
5797 /* start searching from the goal */
5798 goal = ar->goal;
5799 if (goal < le32_to_cpu(es->s_first_data_block) ||
5800 goal >= ext4_blocks_count(es))
5801 goal = le32_to_cpu(es->s_first_data_block);
5802 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5803
5804 /* set up allocation goals */
5805 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5806 ac->ac_status = AC_STATUS_CONTINUE;
5807 ac->ac_sb = sb;
5808 ac->ac_inode = ar->inode;
5809 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5810 ac->ac_o_ex.fe_group = group;
5811 ac->ac_o_ex.fe_start = block;
5812 ac->ac_o_ex.fe_len = len;
5813 ac->ac_g_ex = ac->ac_o_ex;
5814 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5815 ac->ac_flags = ar->flags;
5816
5817 /* we have to define context: we'll work with a file or
5818 * locality group. this is a policy, actually */
5819 ext4_mb_group_or_file(ac);
5820
5821 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5822 "left: %u/%u, right %u/%u to %swritable\n",
5823 (unsigned) ar->len, (unsigned) ar->logical,
5824 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5825 (unsigned) ar->lleft, (unsigned) ar->pleft,
5826 (unsigned) ar->lright, (unsigned) ar->pright,
5827 inode_is_open_for_write(ar->inode) ? "" : "non-");
5828}
5829
5830static noinline_for_stack void
5831ext4_mb_discard_lg_preallocations(struct super_block *sb,
5832 struct ext4_locality_group *lg,
5833 int order, int total_entries)
5834{
5835 ext4_group_t group = 0;
5836 struct ext4_buddy e4b;
5837 LIST_HEAD(discard_list);
5838 struct ext4_prealloc_space *pa, *tmp;
5839
5840 mb_debug(sb, "discard locality group preallocation\n");
5841
5842 spin_lock(&lg->lg_prealloc_lock);
5843 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5844 pa_node.lg_list,
5845 lockdep_is_held(&lg->lg_prealloc_lock)) {
5846 spin_lock(&pa->pa_lock);
5847 if (atomic_read(&pa->pa_count)) {
5848 /*
5849 * This is the pa that we just used
5850 * for block allocation. So don't
5851 * free that
5852 */
5853 spin_unlock(&pa->pa_lock);
5854 continue;
5855 }
5856 if (pa->pa_deleted) {
5857 spin_unlock(&pa->pa_lock);
5858 continue;
5859 }
5860 /* only lg prealloc space */
5861 BUG_ON(pa->pa_type != MB_GROUP_PA);
5862
5863 /* seems this one can be freed ... */
5864 ext4_mb_mark_pa_deleted(sb, pa);
5865 spin_unlock(&pa->pa_lock);
5866
5867 list_del_rcu(&pa->pa_node.lg_list);
5868 list_add(&pa->u.pa_tmp_list, &discard_list);
5869
5870 total_entries--;
5871 if (total_entries <= 5) {
5872 /*
5873 * we want to keep only 5 entries
5874 * allowing it to grow to 8. This
5875 * mak sure we don't call discard
5876 * soon for this list.
5877 */
5878 break;
5879 }
5880 }
5881 spin_unlock(&lg->lg_prealloc_lock);
5882
5883 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5884 int err;
5885
5886 group = ext4_get_group_number(sb, pa->pa_pstart);
5887 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5888 GFP_NOFS|__GFP_NOFAIL);
5889 if (err) {
5890 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5891 err, group);
5892 continue;
5893 }
5894 ext4_lock_group(sb, group);
5895 list_del(&pa->pa_group_list);
5896 ext4_mb_release_group_pa(&e4b, pa);
5897 ext4_unlock_group(sb, group);
5898
5899 ext4_mb_unload_buddy(&e4b);
5900 list_del(&pa->u.pa_tmp_list);
5901 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5902 }
5903}
5904
5905/*
5906 * We have incremented pa_count. So it cannot be freed at this
5907 * point. Also we hold lg_mutex. So no parallel allocation is
5908 * possible from this lg. That means pa_free cannot be updated.
5909 *
5910 * A parallel ext4_mb_discard_group_preallocations is possible.
5911 * which can cause the lg_prealloc_list to be updated.
5912 */
5913
5914static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5915{
5916 int order, added = 0, lg_prealloc_count = 1;
5917 struct super_block *sb = ac->ac_sb;
5918 struct ext4_locality_group *lg = ac->ac_lg;
5919 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5920
5921 order = fls(pa->pa_free) - 1;
5922 if (order > PREALLOC_TB_SIZE - 1)
5923 /* The max size of hash table is PREALLOC_TB_SIZE */
5924 order = PREALLOC_TB_SIZE - 1;
5925 /* Add the prealloc space to lg */
5926 spin_lock(&lg->lg_prealloc_lock);
5927 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5928 pa_node.lg_list,
5929 lockdep_is_held(&lg->lg_prealloc_lock)) {
5930 spin_lock(&tmp_pa->pa_lock);
5931 if (tmp_pa->pa_deleted) {
5932 spin_unlock(&tmp_pa->pa_lock);
5933 continue;
5934 }
5935 if (!added && pa->pa_free < tmp_pa->pa_free) {
5936 /* Add to the tail of the previous entry */
5937 list_add_tail_rcu(&pa->pa_node.lg_list,
5938 &tmp_pa->pa_node.lg_list);
5939 added = 1;
5940 /*
5941 * we want to count the total
5942 * number of entries in the list
5943 */
5944 }
5945 spin_unlock(&tmp_pa->pa_lock);
5946 lg_prealloc_count++;
5947 }
5948 if (!added)
5949 list_add_tail_rcu(&pa->pa_node.lg_list,
5950 &lg->lg_prealloc_list[order]);
5951 spin_unlock(&lg->lg_prealloc_lock);
5952
5953 /* Now trim the list to be not more than 8 elements */
5954 if (lg_prealloc_count > 8)
5955 ext4_mb_discard_lg_preallocations(sb, lg,
5956 order, lg_prealloc_count);
5957}
5958
5959/*
5960 * release all resource we used in allocation
5961 */
5962static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5963{
5964 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5965 struct ext4_prealloc_space *pa = ac->ac_pa;
5966 if (pa) {
5967 if (pa->pa_type == MB_GROUP_PA) {
5968 /* see comment in ext4_mb_use_group_pa() */
5969 spin_lock(&pa->pa_lock);
5970 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5971 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5972 pa->pa_free -= ac->ac_b_ex.fe_len;
5973 pa->pa_len -= ac->ac_b_ex.fe_len;
5974 spin_unlock(&pa->pa_lock);
5975
5976 /*
5977 * We want to add the pa to the right bucket.
5978 * Remove it from the list and while adding
5979 * make sure the list to which we are adding
5980 * doesn't grow big.
5981 */
5982 if (likely(pa->pa_free)) {
5983 spin_lock(pa->pa_node_lock.lg_lock);
5984 list_del_rcu(&pa->pa_node.lg_list);
5985 spin_unlock(pa->pa_node_lock.lg_lock);
5986 ext4_mb_add_n_trim(ac);
5987 }
5988 }
5989
5990 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5991 }
5992 if (ac->ac_bitmap_page)
5993 put_page(ac->ac_bitmap_page);
5994 if (ac->ac_buddy_page)
5995 put_page(ac->ac_buddy_page);
5996 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5997 mutex_unlock(&ac->ac_lg->lg_mutex);
5998 ext4_mb_collect_stats(ac);
5999}
6000
6001static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6002{
6003 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6004 int ret;
6005 int freed = 0, busy = 0;
6006 int retry = 0;
6007
6008 trace_ext4_mb_discard_preallocations(sb, needed);
6009
6010 if (needed == 0)
6011 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6012 repeat:
6013 for (i = 0; i < ngroups && needed > 0; i++) {
6014 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6015 freed += ret;
6016 needed -= ret;
6017 cond_resched();
6018 }
6019
6020 if (needed > 0 && busy && ++retry < 3) {
6021 busy = 0;
6022 goto repeat;
6023 }
6024
6025 return freed;
6026}
6027
6028static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6029 struct ext4_allocation_context *ac, u64 *seq)
6030{
6031 int freed;
6032 u64 seq_retry = 0;
6033 bool ret = false;
6034
6035 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6036 if (freed) {
6037 ret = true;
6038 goto out_dbg;
6039 }
6040 seq_retry = ext4_get_discard_pa_seq_sum();
6041 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6042 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6043 *seq = seq_retry;
6044 ret = true;
6045 }
6046
6047out_dbg:
6048 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6049 return ret;
6050}
6051
6052/*
6053 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6054 * linearly starting at the goal block and also excludes the blocks which
6055 * are going to be in use after fast commit replay.
6056 */
6057static ext4_fsblk_t
6058ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6059{
6060 struct buffer_head *bitmap_bh;
6061 struct super_block *sb = ar->inode->i_sb;
6062 struct ext4_sb_info *sbi = EXT4_SB(sb);
6063 ext4_group_t group, nr;
6064 ext4_grpblk_t blkoff;
6065 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6066 ext4_grpblk_t i = 0;
6067 ext4_fsblk_t goal, block;
6068 struct ext4_super_block *es = sbi->s_es;
6069
6070 goal = ar->goal;
6071 if (goal < le32_to_cpu(es->s_first_data_block) ||
6072 goal >= ext4_blocks_count(es))
6073 goal = le32_to_cpu(es->s_first_data_block);
6074
6075 ar->len = 0;
6076 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6077 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6078 bitmap_bh = ext4_read_block_bitmap(sb, group);
6079 if (IS_ERR(bitmap_bh)) {
6080 *errp = PTR_ERR(bitmap_bh);
6081 pr_warn("Failed to read block bitmap\n");
6082 return 0;
6083 }
6084
6085 while (1) {
6086 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6087 blkoff);
6088 if (i >= max)
6089 break;
6090 if (ext4_fc_replay_check_excluded(sb,
6091 ext4_group_first_block_no(sb, group) +
6092 EXT4_C2B(sbi, i))) {
6093 blkoff = i + 1;
6094 } else
6095 break;
6096 }
6097 brelse(bitmap_bh);
6098 if (i < max)
6099 break;
6100
6101 if (++group >= ext4_get_groups_count(sb))
6102 group = 0;
6103
6104 blkoff = 0;
6105 }
6106
6107 if (i >= max) {
6108 *errp = -ENOSPC;
6109 return 0;
6110 }
6111
6112 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6113 ext4_mb_mark_bb(sb, block, 1, true);
6114 ar->len = 1;
6115
6116 *errp = 0;
6117 return block;
6118}
6119
6120/*
6121 * Main entry point into mballoc to allocate blocks
6122 * it tries to use preallocation first, then falls back
6123 * to usual allocation
6124 */
6125ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6126 struct ext4_allocation_request *ar, int *errp)
6127{
6128 struct ext4_allocation_context *ac = NULL;
6129 struct ext4_sb_info *sbi;
6130 struct super_block *sb;
6131 ext4_fsblk_t block = 0;
6132 unsigned int inquota = 0;
6133 unsigned int reserv_clstrs = 0;
6134 int retries = 0;
6135 u64 seq;
6136
6137 might_sleep();
6138 sb = ar->inode->i_sb;
6139 sbi = EXT4_SB(sb);
6140
6141 trace_ext4_request_blocks(ar);
6142 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6143 return ext4_mb_new_blocks_simple(ar, errp);
6144
6145 /* Allow to use superuser reservation for quota file */
6146 if (ext4_is_quota_file(ar->inode))
6147 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6148
6149 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6150 /* Without delayed allocation we need to verify
6151 * there is enough free blocks to do block allocation
6152 * and verify allocation doesn't exceed the quota limits.
6153 */
6154 while (ar->len &&
6155 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6156
6157 /* let others to free the space */
6158 cond_resched();
6159 ar->len = ar->len >> 1;
6160 }
6161 if (!ar->len) {
6162 ext4_mb_show_pa(sb);
6163 *errp = -ENOSPC;
6164 return 0;
6165 }
6166 reserv_clstrs = ar->len;
6167 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6168 dquot_alloc_block_nofail(ar->inode,
6169 EXT4_C2B(sbi, ar->len));
6170 } else {
6171 while (ar->len &&
6172 dquot_alloc_block(ar->inode,
6173 EXT4_C2B(sbi, ar->len))) {
6174
6175 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6176 ar->len--;
6177 }
6178 }
6179 inquota = ar->len;
6180 if (ar->len == 0) {
6181 *errp = -EDQUOT;
6182 goto out;
6183 }
6184 }
6185
6186 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6187 if (!ac) {
6188 ar->len = 0;
6189 *errp = -ENOMEM;
6190 goto out;
6191 }
6192
6193 ext4_mb_initialize_context(ac, ar);
6194
6195 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6196 seq = this_cpu_read(discard_pa_seq);
6197 if (!ext4_mb_use_preallocated(ac)) {
6198 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6199 ext4_mb_normalize_request(ac, ar);
6200
6201 *errp = ext4_mb_pa_alloc(ac);
6202 if (*errp)
6203 goto errout;
6204repeat:
6205 /* allocate space in core */
6206 *errp = ext4_mb_regular_allocator(ac);
6207 /*
6208 * pa allocated above is added to grp->bb_prealloc_list only
6209 * when we were able to allocate some block i.e. when
6210 * ac->ac_status == AC_STATUS_FOUND.
6211 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6212 * So we have to free this pa here itself.
6213 */
6214 if (*errp) {
6215 ext4_mb_pa_put_free(ac);
6216 ext4_discard_allocated_blocks(ac);
6217 goto errout;
6218 }
6219 if (ac->ac_status == AC_STATUS_FOUND &&
6220 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6221 ext4_mb_pa_put_free(ac);
6222 }
6223 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6224 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6225 if (*errp) {
6226 ext4_discard_allocated_blocks(ac);
6227 goto errout;
6228 } else {
6229 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6230 ar->len = ac->ac_b_ex.fe_len;
6231 }
6232 } else {
6233 if (++retries < 3 &&
6234 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6235 goto repeat;
6236 /*
6237 * If block allocation fails then the pa allocated above
6238 * needs to be freed here itself.
6239 */
6240 ext4_mb_pa_put_free(ac);
6241 *errp = -ENOSPC;
6242 }
6243
6244 if (*errp) {
6245errout:
6246 ac->ac_b_ex.fe_len = 0;
6247 ar->len = 0;
6248 ext4_mb_show_ac(ac);
6249 }
6250 ext4_mb_release_context(ac);
6251 kmem_cache_free(ext4_ac_cachep, ac);
6252out:
6253 if (inquota && ar->len < inquota)
6254 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6255 if (!ar->len) {
6256 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6257 /* release all the reserved blocks if non delalloc */
6258 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6259 reserv_clstrs);
6260 }
6261
6262 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6263
6264 return block;
6265}
6266
6267/*
6268 * We can merge two free data extents only if the physical blocks
6269 * are contiguous, AND the extents were freed by the same transaction,
6270 * AND the blocks are associated with the same group.
6271 */
6272static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6273 struct ext4_free_data *entry,
6274 struct ext4_free_data *new_entry,
6275 struct rb_root *entry_rb_root)
6276{
6277 if ((entry->efd_tid != new_entry->efd_tid) ||
6278 (entry->efd_group != new_entry->efd_group))
6279 return;
6280 if (entry->efd_start_cluster + entry->efd_count ==
6281 new_entry->efd_start_cluster) {
6282 new_entry->efd_start_cluster = entry->efd_start_cluster;
6283 new_entry->efd_count += entry->efd_count;
6284 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6285 entry->efd_start_cluster) {
6286 new_entry->efd_count += entry->efd_count;
6287 } else
6288 return;
6289 spin_lock(&sbi->s_md_lock);
6290 list_del(&entry->efd_list);
6291 spin_unlock(&sbi->s_md_lock);
6292 rb_erase(&entry->efd_node, entry_rb_root);
6293 kmem_cache_free(ext4_free_data_cachep, entry);
6294}
6295
6296static noinline_for_stack void
6297ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6298 struct ext4_free_data *new_entry)
6299{
6300 ext4_group_t group = e4b->bd_group;
6301 ext4_grpblk_t cluster;
6302 ext4_grpblk_t clusters = new_entry->efd_count;
6303 struct ext4_free_data *entry;
6304 struct ext4_group_info *db = e4b->bd_info;
6305 struct super_block *sb = e4b->bd_sb;
6306 struct ext4_sb_info *sbi = EXT4_SB(sb);
6307 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6308 struct rb_node *parent = NULL, *new_node;
6309
6310 BUG_ON(!ext4_handle_valid(handle));
6311 BUG_ON(e4b->bd_bitmap_page == NULL);
6312 BUG_ON(e4b->bd_buddy_page == NULL);
6313
6314 new_node = &new_entry->efd_node;
6315 cluster = new_entry->efd_start_cluster;
6316
6317 if (!*n) {
6318 /* first free block exent. We need to
6319 protect buddy cache from being freed,
6320 * otherwise we'll refresh it from
6321 * on-disk bitmap and lose not-yet-available
6322 * blocks */
6323 get_page(e4b->bd_buddy_page);
6324 get_page(e4b->bd_bitmap_page);
6325 }
6326 while (*n) {
6327 parent = *n;
6328 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6329 if (cluster < entry->efd_start_cluster)
6330 n = &(*n)->rb_left;
6331 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6332 n = &(*n)->rb_right;
6333 else {
6334 ext4_grp_locked_error(sb, group, 0,
6335 ext4_group_first_block_no(sb, group) +
6336 EXT4_C2B(sbi, cluster),
6337 "Block already on to-be-freed list");
6338 kmem_cache_free(ext4_free_data_cachep, new_entry);
6339 return;
6340 }
6341 }
6342
6343 rb_link_node(new_node, parent, n);
6344 rb_insert_color(new_node, &db->bb_free_root);
6345
6346 /* Now try to see the extent can be merged to left and right */
6347 node = rb_prev(new_node);
6348 if (node) {
6349 entry = rb_entry(node, struct ext4_free_data, efd_node);
6350 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6351 &(db->bb_free_root));
6352 }
6353
6354 node = rb_next(new_node);
6355 if (node) {
6356 entry = rb_entry(node, struct ext4_free_data, efd_node);
6357 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6358 &(db->bb_free_root));
6359 }
6360
6361 spin_lock(&sbi->s_md_lock);
6362 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6363 sbi->s_mb_free_pending += clusters;
6364 spin_unlock(&sbi->s_md_lock);
6365}
6366
6367static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6368 unsigned long count)
6369{
6370 struct super_block *sb = inode->i_sb;
6371 ext4_group_t group;
6372 ext4_grpblk_t blkoff;
6373
6374 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6375 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6376 EXT4_MB_BITMAP_MARKED_CHECK |
6377 EXT4_MB_SYNC_UPDATE,
6378 NULL);
6379}
6380
6381/**
6382 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6383 * Used by ext4_free_blocks()
6384 * @handle: handle for this transaction
6385 * @inode: inode
6386 * @block: starting physical block to be freed
6387 * @count: number of blocks to be freed
6388 * @flags: flags used by ext4_free_blocks
6389 */
6390static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6391 ext4_fsblk_t block, unsigned long count,
6392 int flags)
6393{
6394 struct super_block *sb = inode->i_sb;
6395 struct ext4_group_info *grp;
6396 unsigned int overflow;
6397 ext4_grpblk_t bit;
6398 ext4_group_t block_group;
6399 struct ext4_sb_info *sbi;
6400 struct ext4_buddy e4b;
6401 unsigned int count_clusters;
6402 int err = 0;
6403 int mark_flags = 0;
6404 ext4_grpblk_t changed;
6405
6406 sbi = EXT4_SB(sb);
6407
6408 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6409 !ext4_inode_block_valid(inode, block, count)) {
6410 ext4_error(sb, "Freeing blocks in system zone - "
6411 "Block = %llu, count = %lu", block, count);
6412 /* err = 0. ext4_std_error should be a no op */
6413 goto error_out;
6414 }
6415 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6416
6417do_more:
6418 overflow = 0;
6419 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6420
6421 grp = ext4_get_group_info(sb, block_group);
6422 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6423 return;
6424
6425 /*
6426 * Check to see if we are freeing blocks across a group
6427 * boundary.
6428 */
6429 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6430 overflow = EXT4_C2B(sbi, bit) + count -
6431 EXT4_BLOCKS_PER_GROUP(sb);
6432 count -= overflow;
6433 /* The range changed so it's no longer validated */
6434 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6435 }
6436 count_clusters = EXT4_NUM_B2C(sbi, count);
6437 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6438
6439 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6440 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6441 GFP_NOFS|__GFP_NOFAIL);
6442 if (err)
6443 goto error_out;
6444
6445 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6446 !ext4_inode_block_valid(inode, block, count)) {
6447 ext4_error(sb, "Freeing blocks in system zone - "
6448 "Block = %llu, count = %lu", block, count);
6449 /* err = 0. ext4_std_error should be a no op */
6450 goto error_clean;
6451 }
6452
6453#ifdef AGGRESSIVE_CHECK
6454 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6455#endif
6456 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6457 count_clusters, mark_flags, &changed);
6458
6459
6460 if (err && changed == 0)
6461 goto error_clean;
6462
6463#ifdef AGGRESSIVE_CHECK
6464 BUG_ON(changed != count_clusters);
6465#endif
6466
6467 /*
6468 * We need to make sure we don't reuse the freed block until after the
6469 * transaction is committed. We make an exception if the inode is to be
6470 * written in writeback mode since writeback mode has weak data
6471 * consistency guarantees.
6472 */
6473 if (ext4_handle_valid(handle) &&
6474 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6475 !ext4_should_writeback_data(inode))) {
6476 struct ext4_free_data *new_entry;
6477 /*
6478 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6479 * to fail.
6480 */
6481 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6482 GFP_NOFS|__GFP_NOFAIL);
6483 new_entry->efd_start_cluster = bit;
6484 new_entry->efd_group = block_group;
6485 new_entry->efd_count = count_clusters;
6486 new_entry->efd_tid = handle->h_transaction->t_tid;
6487
6488 ext4_lock_group(sb, block_group);
6489 ext4_mb_free_metadata(handle, &e4b, new_entry);
6490 } else {
6491 if (test_opt(sb, DISCARD)) {
6492 err = ext4_issue_discard(sb, block_group, bit,
6493 count_clusters);
6494 /*
6495 * Ignore EOPNOTSUPP error. This is consistent with
6496 * what happens when using journal.
6497 */
6498 if (err == -EOPNOTSUPP)
6499 err = 0;
6500 if (err)
6501 ext4_msg(sb, KERN_WARNING, "discard request in"
6502 " group:%u block:%d count:%lu failed"
6503 " with %d", block_group, bit, count,
6504 err);
6505 } else
6506 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6507
6508 ext4_lock_group(sb, block_group);
6509 mb_free_blocks(inode, &e4b, bit, count_clusters);
6510 }
6511
6512 ext4_unlock_group(sb, block_group);
6513
6514 /*
6515 * on a bigalloc file system, defer the s_freeclusters_counter
6516 * update to the caller (ext4_remove_space and friends) so they
6517 * can determine if a cluster freed here should be rereserved
6518 */
6519 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6520 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6521 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6522 percpu_counter_add(&sbi->s_freeclusters_counter,
6523 count_clusters);
6524 }
6525
6526 if (overflow && !err) {
6527 block += count;
6528 count = overflow;
6529 ext4_mb_unload_buddy(&e4b);
6530 /* The range changed so it's no longer validated */
6531 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6532 goto do_more;
6533 }
6534
6535error_clean:
6536 ext4_mb_unload_buddy(&e4b);
6537error_out:
6538 ext4_std_error(sb, err);
6539}
6540
6541/**
6542 * ext4_free_blocks() -- Free given blocks and update quota
6543 * @handle: handle for this transaction
6544 * @inode: inode
6545 * @bh: optional buffer of the block to be freed
6546 * @block: starting physical block to be freed
6547 * @count: number of blocks to be freed
6548 * @flags: flags used by ext4_free_blocks
6549 */
6550void ext4_free_blocks(handle_t *handle, struct inode *inode,
6551 struct buffer_head *bh, ext4_fsblk_t block,
6552 unsigned long count, int flags)
6553{
6554 struct super_block *sb = inode->i_sb;
6555 unsigned int overflow;
6556 struct ext4_sb_info *sbi;
6557
6558 sbi = EXT4_SB(sb);
6559
6560 if (bh) {
6561 if (block)
6562 BUG_ON(block != bh->b_blocknr);
6563 else
6564 block = bh->b_blocknr;
6565 }
6566
6567 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6568 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6569 return;
6570 }
6571
6572 might_sleep();
6573
6574 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6575 !ext4_inode_block_valid(inode, block, count)) {
6576 ext4_error(sb, "Freeing blocks not in datazone - "
6577 "block = %llu, count = %lu", block, count);
6578 return;
6579 }
6580 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6581
6582 ext4_debug("freeing block %llu\n", block);
6583 trace_ext4_free_blocks(inode, block, count, flags);
6584
6585 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6586 BUG_ON(count > 1);
6587
6588 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6589 inode, bh, block);
6590 }
6591
6592 /*
6593 * If the extent to be freed does not begin on a cluster
6594 * boundary, we need to deal with partial clusters at the
6595 * beginning and end of the extent. Normally we will free
6596 * blocks at the beginning or the end unless we are explicitly
6597 * requested to avoid doing so.
6598 */
6599 overflow = EXT4_PBLK_COFF(sbi, block);
6600 if (overflow) {
6601 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6602 overflow = sbi->s_cluster_ratio - overflow;
6603 block += overflow;
6604 if (count > overflow)
6605 count -= overflow;
6606 else
6607 return;
6608 } else {
6609 block -= overflow;
6610 count += overflow;
6611 }
6612 /* The range changed so it's no longer validated */
6613 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6614 }
6615 overflow = EXT4_LBLK_COFF(sbi, count);
6616 if (overflow) {
6617 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6618 if (count > overflow)
6619 count -= overflow;
6620 else
6621 return;
6622 } else
6623 count += sbi->s_cluster_ratio - overflow;
6624 /* The range changed so it's no longer validated */
6625 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6626 }
6627
6628 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6629 int i;
6630 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6631
6632 for (i = 0; i < count; i++) {
6633 cond_resched();
6634 if (is_metadata)
6635 bh = sb_find_get_block(inode->i_sb, block + i);
6636 ext4_forget(handle, is_metadata, inode, bh, block + i);
6637 }
6638 }
6639
6640 ext4_mb_clear_bb(handle, inode, block, count, flags);
6641}
6642
6643/**
6644 * ext4_group_add_blocks() -- Add given blocks to an existing group
6645 * @handle: handle to this transaction
6646 * @sb: super block
6647 * @block: start physical block to add to the block group
6648 * @count: number of blocks to free
6649 *
6650 * This marks the blocks as free in the bitmap and buddy.
6651 */
6652int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6653 ext4_fsblk_t block, unsigned long count)
6654{
6655 ext4_group_t block_group;
6656 ext4_grpblk_t bit;
6657 struct ext4_sb_info *sbi = EXT4_SB(sb);
6658 struct ext4_buddy e4b;
6659 int err = 0;
6660 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6661 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6662 unsigned long cluster_count = last_cluster - first_cluster + 1;
6663 ext4_grpblk_t changed;
6664
6665 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6666
6667 if (cluster_count == 0)
6668 return 0;
6669
6670 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6671 /*
6672 * Check to see if we are freeing blocks across a group
6673 * boundary.
6674 */
6675 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6676 ext4_warning(sb, "too many blocks added to group %u",
6677 block_group);
6678 err = -EINVAL;
6679 goto error_out;
6680 }
6681
6682 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6683 if (err)
6684 goto error_out;
6685
6686 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6687 ext4_error(sb, "Adding blocks in system zones - "
6688 "Block = %llu, count = %lu",
6689 block, count);
6690 err = -EINVAL;
6691 goto error_clean;
6692 }
6693
6694 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6695 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6696 &changed);
6697 if (err && changed == 0)
6698 goto error_clean;
6699
6700 if (changed != cluster_count)
6701 ext4_error(sb, "bit already cleared in group %u", block_group);
6702
6703 ext4_lock_group(sb, block_group);
6704 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6705 ext4_unlock_group(sb, block_group);
6706 percpu_counter_add(&sbi->s_freeclusters_counter,
6707 changed);
6708
6709error_clean:
6710 ext4_mb_unload_buddy(&e4b);
6711error_out:
6712 ext4_std_error(sb, err);
6713 return err;
6714}
6715
6716/**
6717 * ext4_trim_extent -- function to TRIM one single free extent in the group
6718 * @sb: super block for the file system
6719 * @start: starting block of the free extent in the alloc. group
6720 * @count: number of blocks to TRIM
6721 * @e4b: ext4 buddy for the group
6722 *
6723 * Trim "count" blocks starting at "start" in the "group". To assure that no
6724 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6725 * be called with under the group lock.
6726 */
6727static int ext4_trim_extent(struct super_block *sb,
6728 int start, int count, struct ext4_buddy *e4b)
6729__releases(bitlock)
6730__acquires(bitlock)
6731{
6732 struct ext4_free_extent ex;
6733 ext4_group_t group = e4b->bd_group;
6734 int ret = 0;
6735
6736 trace_ext4_trim_extent(sb, group, start, count);
6737
6738 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6739
6740 ex.fe_start = start;
6741 ex.fe_group = group;
6742 ex.fe_len = count;
6743
6744 /*
6745 * Mark blocks used, so no one can reuse them while
6746 * being trimmed.
6747 */
6748 mb_mark_used(e4b, &ex);
6749 ext4_unlock_group(sb, group);
6750 ret = ext4_issue_discard(sb, group, start, count);
6751 ext4_lock_group(sb, group);
6752 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6753 return ret;
6754}
6755
6756static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6757 ext4_group_t grp)
6758{
6759 unsigned long nr_clusters_in_group;
6760
6761 if (grp < (ext4_get_groups_count(sb) - 1))
6762 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6763 else
6764 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6765 ext4_group_first_block_no(sb, grp))
6766 >> EXT4_CLUSTER_BITS(sb);
6767
6768 return nr_clusters_in_group - 1;
6769}
6770
6771static bool ext4_trim_interrupted(void)
6772{
6773 return fatal_signal_pending(current) || freezing(current);
6774}
6775
6776static int ext4_try_to_trim_range(struct super_block *sb,
6777 struct ext4_buddy *e4b, ext4_grpblk_t start,
6778 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6779__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6780__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6781{
6782 ext4_grpblk_t next, count, free_count, last, origin_start;
6783 bool set_trimmed = false;
6784 void *bitmap;
6785
6786 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6787 return 0;
6788
6789 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6790 bitmap = e4b->bd_bitmap;
6791 if (start == 0 && max >= last)
6792 set_trimmed = true;
6793 origin_start = start;
6794 start = max(e4b->bd_info->bb_first_free, start);
6795 count = 0;
6796 free_count = 0;
6797
6798 while (start <= max) {
6799 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6800 if (start > max)
6801 break;
6802
6803 next = mb_find_next_bit(bitmap, last + 1, start);
6804 if (origin_start == 0 && next >= last)
6805 set_trimmed = true;
6806
6807 if ((next - start) >= minblocks) {
6808 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6809
6810 if (ret && ret != -EOPNOTSUPP)
6811 return count;
6812 count += next - start;
6813 }
6814 free_count += next - start;
6815 start = next + 1;
6816
6817 if (ext4_trim_interrupted())
6818 return count;
6819
6820 if (need_resched()) {
6821 ext4_unlock_group(sb, e4b->bd_group);
6822 cond_resched();
6823 ext4_lock_group(sb, e4b->bd_group);
6824 }
6825
6826 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6827 break;
6828 }
6829
6830 if (set_trimmed)
6831 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6832
6833 return count;
6834}
6835
6836/**
6837 * ext4_trim_all_free -- function to trim all free space in alloc. group
6838 * @sb: super block for file system
6839 * @group: group to be trimmed
6840 * @start: first group block to examine
6841 * @max: last group block to examine
6842 * @minblocks: minimum extent block count
6843 *
6844 * ext4_trim_all_free walks through group's block bitmap searching for free
6845 * extents. When the free extent is found, mark it as used in group buddy
6846 * bitmap. Then issue a TRIM command on this extent and free the extent in
6847 * the group buddy bitmap.
6848 */
6849static ext4_grpblk_t
6850ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6851 ext4_grpblk_t start, ext4_grpblk_t max,
6852 ext4_grpblk_t minblocks)
6853{
6854 struct ext4_buddy e4b;
6855 int ret;
6856
6857 trace_ext4_trim_all_free(sb, group, start, max);
6858
6859 ret = ext4_mb_load_buddy(sb, group, &e4b);
6860 if (ret) {
6861 ext4_warning(sb, "Error %d loading buddy information for %u",
6862 ret, group);
6863 return ret;
6864 }
6865
6866 ext4_lock_group(sb, group);
6867
6868 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6869 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6870 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6871 else
6872 ret = 0;
6873
6874 ext4_unlock_group(sb, group);
6875 ext4_mb_unload_buddy(&e4b);
6876
6877 ext4_debug("trimmed %d blocks in the group %d\n",
6878 ret, group);
6879
6880 return ret;
6881}
6882
6883/**
6884 * ext4_trim_fs() -- trim ioctl handle function
6885 * @sb: superblock for filesystem
6886 * @range: fstrim_range structure
6887 *
6888 * start: First Byte to trim
6889 * len: number of Bytes to trim from start
6890 * minlen: minimum extent length in Bytes
6891 * ext4_trim_fs goes through all allocation groups containing Bytes from
6892 * start to start+len. For each such a group ext4_trim_all_free function
6893 * is invoked to trim all free space.
6894 */
6895int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6896{
6897 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6898 struct ext4_group_info *grp;
6899 ext4_group_t group, first_group, last_group;
6900 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6901 uint64_t start, end, minlen, trimmed = 0;
6902 ext4_fsblk_t first_data_blk =
6903 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6904 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6905 int ret = 0;
6906
6907 start = range->start >> sb->s_blocksize_bits;
6908 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6909 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6910 range->minlen >> sb->s_blocksize_bits);
6911
6912 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6913 start >= max_blks ||
6914 range->len < sb->s_blocksize)
6915 return -EINVAL;
6916 /* No point to try to trim less than discard granularity */
6917 if (range->minlen < discard_granularity) {
6918 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6919 discard_granularity >> sb->s_blocksize_bits);
6920 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6921 goto out;
6922 }
6923 if (end >= max_blks - 1)
6924 end = max_blks - 1;
6925 if (end <= first_data_blk)
6926 goto out;
6927 if (start < first_data_blk)
6928 start = first_data_blk;
6929
6930 /* Determine first and last group to examine based on start and end */
6931 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6932 &first_group, &first_cluster);
6933 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6934 &last_group, &last_cluster);
6935
6936 /* end now represents the last cluster to discard in this group */
6937 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6938
6939 for (group = first_group; group <= last_group; group++) {
6940 if (ext4_trim_interrupted())
6941 break;
6942 grp = ext4_get_group_info(sb, group);
6943 if (!grp)
6944 continue;
6945 /* We only do this if the grp has never been initialized */
6946 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6947 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6948 if (ret)
6949 break;
6950 }
6951
6952 /*
6953 * For all the groups except the last one, last cluster will
6954 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6955 * change it for the last group, note that last_cluster is
6956 * already computed earlier by ext4_get_group_no_and_offset()
6957 */
6958 if (group == last_group)
6959 end = last_cluster;
6960 if (grp->bb_free >= minlen) {
6961 cnt = ext4_trim_all_free(sb, group, first_cluster,
6962 end, minlen);
6963 if (cnt < 0) {
6964 ret = cnt;
6965 break;
6966 }
6967 trimmed += cnt;
6968 }
6969
6970 /*
6971 * For every group except the first one, we are sure
6972 * that the first cluster to discard will be cluster #0.
6973 */
6974 first_cluster = 0;
6975 }
6976
6977 if (!ret)
6978 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6979
6980out:
6981 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6982 return ret;
6983}
6984
6985/* Iterate all the free extents in the group. */
6986int
6987ext4_mballoc_query_range(
6988 struct super_block *sb,
6989 ext4_group_t group,
6990 ext4_grpblk_t start,
6991 ext4_grpblk_t end,
6992 ext4_mballoc_query_range_fn formatter,
6993 void *priv)
6994{
6995 void *bitmap;
6996 ext4_grpblk_t next;
6997 struct ext4_buddy e4b;
6998 int error;
6999
7000 error = ext4_mb_load_buddy(sb, group, &e4b);
7001 if (error)
7002 return error;
7003 bitmap = e4b.bd_bitmap;
7004
7005 ext4_lock_group(sb, group);
7006
7007 start = max(e4b.bd_info->bb_first_free, start);
7008 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7009 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7010
7011 while (start <= end) {
7012 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7013 if (start > end)
7014 break;
7015 next = mb_find_next_bit(bitmap, end + 1, start);
7016
7017 ext4_unlock_group(sb, group);
7018 error = formatter(sb, group, start, next - start, priv);
7019 if (error)
7020 goto out_unload;
7021 ext4_lock_group(sb, group);
7022
7023 start = next + 1;
7024 }
7025
7026 ext4_unlock_group(sb, group);
7027out_unload:
7028 ext4_mb_unload_buddy(&e4b);
7029
7030 return error;
7031}
7032
7033#ifdef CONFIG_EXT4_KUNIT_TESTS
7034#include "mballoc-test.c"
7035#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8/*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12#include "ext4_jbd2.h"
13#include "mballoc.h"
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/nospec.h>
18#include <linux/backing-dev.h>
19#include <linux/freezer.h>
20#include <trace/events/ext4.h>
21#include <kunit/static_stub.h>
22
23/*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43/*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { page }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138 *
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
144 *
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148 *
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
154 *
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
158 *
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
165 *
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
170 *
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
180 *
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
184 *
185 * The regular allocator (using the buddy cache) supports a few tunables.
186 *
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_linear_limit
191 *
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
206 * checked.
207 *
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_linear_limit"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
217 *
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
222 */
223
224/*
225 * mballoc operates on the following data:
226 * - on-disk bitmap
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
229 *
230 * there are two types of preallocations:
231 * - inode
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
240 * - locality group
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
245 *
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
248 *
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
252 *
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
256 *
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259 *
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
270 *
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281 * block
282 *
283 * so, now we're building a concurrency table:
284 * - init buddy vs.
285 * - new PA
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
288 * - use inode PA
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
291 * - discard inode PA
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
297 * - new PA vs.
298 * - use inode PA
299 * i_data_sem serializes them
300 * - discard inode PA
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
306 * - use inode PA
307 * - use inode PA
308 * i_data_sem or another mutex should serializes them
309 * - discard inode PA
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
315 *
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
323 *
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
326 *
327 */
328
329 /*
330 * Logic in few words:
331 *
332 * - allocation:
333 * load group
334 * find blocks
335 * mark bits in on-disk bitmap
336 * release group
337 *
338 * - use preallocation:
339 * find proper PA (per-inode or group)
340 * load group
341 * mark bits in on-disk bitmap
342 * release group
343 * release PA
344 *
345 * - free:
346 * load group
347 * mark bits in on-disk bitmap
348 * release group
349 *
350 * - discard preallocations in group:
351 * mark PAs deleted
352 * move them onto local list
353 * load on-disk bitmap
354 * load group
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
357 *
358 * - discard inode's preallocations:
359 */
360
361/*
362 * Locking rules
363 *
364 * Locks:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
367 * - per-pa lock (pa)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
370 *
371 * Paths:
372 * - new pa
373 * object
374 * group
375 *
376 * - find and use pa:
377 * pa
378 *
379 * - release consumed pa:
380 * pa
381 * group
382 * object
383 *
384 * - generate in-core bitmap:
385 * group
386 * pa
387 *
388 * - discard all for given object (inode, locality group):
389 * object
390 * pa
391 * group
392 *
393 * - discard all for given group:
394 * group
395 * pa
396 * group
397 * object
398 *
399 * - allocation path (ext4_mb_regular_allocator)
400 * group
401 * cr_power2_aligned/cr_goal_len_fast
402 */
403static struct kmem_cache *ext4_pspace_cachep;
404static struct kmem_cache *ext4_ac_cachep;
405static struct kmem_cache *ext4_free_data_cachep;
406
407/* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410#define NR_GRPINFO_CACHES 8
411static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417};
418
419static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 ext4_group_t group);
421static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
425
426static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430/*
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
440 *
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447 */
448static DEFINE_PER_CPU(u64, discard_pa_seq);
449static inline u64 ext4_get_discard_pa_seq_sum(void)
450{
451 int __cpu;
452 u64 __seq = 0;
453
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
456 return __seq;
457}
458
459static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460{
461#if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464#elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
467#else
468#error "how many bits you are?!"
469#endif
470 return addr;
471}
472
473static inline int mb_test_bit(int bit, void *addr)
474{
475 /*
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
478 */
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
481}
482
483static inline void mb_set_bit(int bit, void *addr)
484{
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
487}
488
489static inline void mb_clear_bit(int bit, void *addr)
490{
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
493}
494
495static inline int mb_test_and_clear_bit(int bit, void *addr)
496{
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
499}
500
501static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502{
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
505 tmpmax = max + fix;
506 start += fix;
507
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 if (ret > max)
510 return max;
511 return ret;
512}
513
514static inline int mb_find_next_bit(void *addr, int max, int start)
515{
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
518 tmpmax = max + fix;
519 start += fix;
520
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 if (ret > max)
523 return max;
524 return ret;
525}
526
527static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528{
529 char *bb;
530
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 BUG_ON(max == NULL);
533
534 if (order > e4b->bd_blkbits + 1) {
535 *max = 0;
536 return NULL;
537 }
538
539 /* at order 0 we see each particular block */
540 if (order == 0) {
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
543 }
544
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548 return bb;
549}
550
551#ifdef DOUBLE_CHECK
552static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
554{
555 int i;
556 struct super_block *sb = e4b->bd_sb;
557
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 return;
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
564
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 ext4_grp_locked_error(sb, e4b->bd_group,
570 inode ? inode->i_ino : 0,
571 blocknr,
572 "freeing block already freed "
573 "(bit %u)",
574 first + i);
575 }
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 }
578}
579
580static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581{
582 int i;
583
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 return;
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 }
591}
592
593static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594{
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 return;
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
599 int i;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
607 "on disk/prealloc",
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 BUG();
610 }
611 }
612 }
613}
614
615static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
617{
618 struct buffer_head *bh;
619
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 if (!grp->bb_bitmap)
622 return;
623
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
628 return;
629 }
630
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 put_bh(bh);
633}
634
635static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636{
637 kfree(grp->bb_bitmap);
638}
639
640#else
641static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
643{
644 return;
645}
646static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
648{
649 return;
650}
651static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652{
653 return;
654}
655
656static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
658{
659 return;
660}
661
662static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663{
664 return;
665}
666#endif
667
668#ifdef AGGRESSIVE_CHECK
669
670#define MB_CHECK_ASSERT(assert) \
671do { \
672 if (!(assert)) { \
673 printk(KERN_EMERG \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
676 BUG(); \
677 } \
678} while (0)
679
680static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
682{
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
685 int max;
686 int max2;
687 int i;
688 int j;
689 int k;
690 int count;
691 struct ext4_group_info *grp;
692 int fragments = 0;
693 int fstart;
694 struct list_head *cur;
695 void *buddy;
696 void *buddy2;
697
698 if (e4b->bd_info->bb_check_counter++ % 10)
699 return;
700
701 while (order > 1) {
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
708
709 count = 0;
710 for (i = 0; i < max; i++) {
711
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
715 MB_CHECK_ASSERT(
716 mb_test_bit((i<<1)+1, buddy2));
717 }
718 continue;
719 }
720
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
727 MB_CHECK_ASSERT(
728 !mb_test_bit(k, e4b->bd_bitmap));
729 }
730 count++;
731 }
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 order--;
734 }
735
736 fstart = -1;
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 if (fstart == -1) {
742 fragments++;
743 fstart = i;
744 }
745 continue;
746 }
747 fstart = -1;
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
751 k = i >> j;
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 }
755 }
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759 grp = ext4_get_group_info(sb, e4b->bd_group);
760 if (!grp)
761 return;
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 }
771}
772#undef MB_CHECK_ASSERT
773#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
774 __FILE__, __func__, __LINE__)
775#else
776#define mb_check_buddy(e4b)
777#endif
778
779/*
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
784 */
785static void ext4_mb_mark_free_simple(struct super_block *sb,
786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 struct ext4_group_info *grp)
788{
789 struct ext4_sb_info *sbi = EXT4_SB(sb);
790 ext4_grpblk_t min;
791 ext4_grpblk_t max;
792 ext4_grpblk_t chunk;
793 unsigned int border;
794
795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797 border = 2 << sb->s_blocksize_bits;
798
799 while (len > 0) {
800 /* find how many blocks can be covered since this position */
801 max = ffs(first | border) - 1;
802
803 /* find how many blocks of power 2 we need to mark */
804 min = fls(len) - 1;
805
806 if (max < min)
807 min = max;
808 chunk = 1 << min;
809
810 /* mark multiblock chunks only */
811 grp->bb_counters[min]++;
812 if (min > 0)
813 mb_clear_bit(first >> min,
814 buddy + sbi->s_mb_offsets[min]);
815
816 len -= chunk;
817 first += chunk;
818 }
819}
820
821static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822{
823 int order;
824
825 /*
826 * We don't bother with a special lists groups with only 1 block free
827 * extents and for completely empty groups.
828 */
829 order = fls(len) - 2;
830 if (order < 0)
831 return 0;
832 if (order == MB_NUM_ORDERS(sb))
833 order--;
834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 order = MB_NUM_ORDERS(sb) - 1;
836 return order;
837}
838
839/* Move group to appropriate avg_fragment_size list */
840static void
841mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842{
843 struct ext4_sb_info *sbi = EXT4_SB(sb);
844 int new_order;
845
846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
847 return;
848
849 new_order = mb_avg_fragment_size_order(sb,
850 grp->bb_free / grp->bb_fragments);
851 if (new_order == grp->bb_avg_fragment_size_order)
852 return;
853
854 if (grp->bb_avg_fragment_size_order != -1) {
855 write_lock(&sbi->s_mb_avg_fragment_size_locks[
856 grp->bb_avg_fragment_size_order]);
857 list_del(&grp->bb_avg_fragment_size_node);
858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859 grp->bb_avg_fragment_size_order]);
860 }
861 grp->bb_avg_fragment_size_order = new_order;
862 write_lock(&sbi->s_mb_avg_fragment_size_locks[
863 grp->bb_avg_fragment_size_order]);
864 list_add_tail(&grp->bb_avg_fragment_size_node,
865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867 grp->bb_avg_fragment_size_order]);
868}
869
870/*
871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872 * cr level needs an update.
873 */
874static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 enum criteria *new_cr, ext4_group_t *group)
876{
877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 struct ext4_group_info *iter;
879 int i;
880
881 if (ac->ac_status == AC_STATUS_FOUND)
882 return;
883
884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886
887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 continue;
890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 continue;
894 }
895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 bb_largest_free_order_node) {
897 if (sbi->s_mb_stats)
898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 *group = iter->bb_group;
901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 return;
904 }
905 }
906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907 }
908
909 /* Increment cr and search again if no group is found */
910 *new_cr = CR_GOAL_LEN_FAST;
911}
912
913/*
914 * Find a suitable group of given order from the average fragments list.
915 */
916static struct ext4_group_info *
917ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918{
919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 struct ext4_group_info *grp = NULL, *iter;
923 enum criteria cr = ac->ac_criteria;
924
925 if (list_empty(frag_list))
926 return NULL;
927 read_lock(frag_list_lock);
928 if (list_empty(frag_list)) {
929 read_unlock(frag_list_lock);
930 return NULL;
931 }
932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 if (sbi->s_mb_stats)
934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936 grp = iter;
937 break;
938 }
939 }
940 read_unlock(frag_list_lock);
941 return grp;
942}
943
944/*
945 * Choose next group by traversing average fragment size list of suitable
946 * order. Updates *new_cr if cr level needs an update.
947 */
948static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 enum criteria *new_cr, ext4_group_t *group)
950{
951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 struct ext4_group_info *grp = NULL;
953 int i;
954
955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 if (sbi->s_mb_stats)
957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958 }
959
960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 if (grp) {
964 *group = grp->bb_group;
965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966 return;
967 }
968 }
969
970 /*
971 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 * a larger normalized goal len request which can be trimmed to
973 * a smaller goal len such that it can still satisfy original
974 * request len. However, allocation request for non-regular
975 * files never gets normalized.
976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 */
978 if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 *new_cr = CR_BEST_AVAIL_LEN;
980 else
981 *new_cr = CR_GOAL_LEN_SLOW;
982}
983
984/*
985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986 * order we have and proactively trim the goal request length to that order to
987 * find a suitable group faster.
988 *
989 * This optimizes allocation speed at the cost of slightly reduced
990 * preallocations. However, we make sure that we don't trim the request too
991 * much and fall to CR_GOAL_LEN_SLOW in that case.
992 */
993static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 enum criteria *new_cr, ext4_group_t *group)
995{
996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 struct ext4_group_info *grp = NULL;
998 int i, order, min_order;
999 unsigned long num_stripe_clusters = 0;
1000
1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 if (sbi->s_mb_stats)
1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004 }
1005
1006 /*
1007 * mb_avg_fragment_size_order() returns order in a way that makes
1008 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 * fls() instead since we need to know the actual length while modifying
1010 * goal length.
1011 */
1012 order = fls(ac->ac_g_ex.fe_len) - 1;
1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 order = MB_NUM_ORDERS(ac->ac_sb);
1015 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 if (min_order < 0)
1017 min_order = 0;
1018
1019 if (sbi->s_stripe > 0) {
1020 /*
1021 * We are assuming that stripe size is always a multiple of
1022 * cluster ratio otherwise __ext4_fill_super exists early.
1023 */
1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 if (1 << min_order < num_stripe_clusters)
1026 /*
1027 * We consider 1 order less because later we round
1028 * up the goal len to num_stripe_clusters
1029 */
1030 min_order = fls(num_stripe_clusters) - 1;
1031 }
1032
1033 if (1 << min_order < ac->ac_o_ex.fe_len)
1034 min_order = fls(ac->ac_o_ex.fe_len);
1035
1036 for (i = order; i >= min_order; i--) {
1037 int frag_order;
1038 /*
1039 * Scale down goal len to make sure we find something
1040 * in the free fragments list. Basically, reduce
1041 * preallocations.
1042 */
1043 ac->ac_g_ex.fe_len = 1 << i;
1044
1045 if (num_stripe_clusters > 0) {
1046 /*
1047 * Try to round up the adjusted goal length to
1048 * stripe size (in cluster units) multiple for
1049 * efficiency.
1050 */
1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 num_stripe_clusters);
1053 }
1054
1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 ac->ac_g_ex.fe_len);
1057
1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059 if (grp) {
1060 *group = grp->bb_group;
1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062 return;
1063 }
1064 }
1065
1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 *new_cr = CR_GOAL_LEN_SLOW;
1069}
1070
1071static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072{
1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074 return 0;
1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076 return 0;
1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078 return 0;
1079 return 1;
1080}
1081
1082/*
1083 * Return next linear group for allocation.
1084 */
1085static ext4_group_t
1086next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1087{
1088 /*
1089 * Artificially restricted ngroups for non-extent
1090 * files makes group > ngroups possible on first loop.
1091 */
1092 return group + 1 >= ngroups ? 0 : group + 1;
1093}
1094
1095/*
1096 * ext4_mb_choose_next_group: choose next group for allocation.
1097 *
1098 * @ac Allocation Context
1099 * @new_cr This is an output parameter. If the there is no good group
1100 * available at current CR level, this field is updated to indicate
1101 * the new cr level that should be used.
1102 * @group This is an input / output parameter. As an input it indicates the
1103 * next group that the allocator intends to use for allocation. As
1104 * output, this field indicates the next group that should be used as
1105 * determined by the optimization functions.
1106 * @ngroups Total number of groups
1107 */
1108static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1110{
1111 *new_cr = ac->ac_criteria;
1112
1113 if (!should_optimize_scan(ac)) {
1114 *group = next_linear_group(*group, ngroups);
1115 return;
1116 }
1117
1118 /*
1119 * Optimized scanning can return non adjacent groups which can cause
1120 * seek overhead for rotational disks. So try few linear groups before
1121 * trying optimized scan.
1122 */
1123 if (ac->ac_groups_linear_remaining) {
1124 *group = next_linear_group(*group, ngroups);
1125 ac->ac_groups_linear_remaining--;
1126 return;
1127 }
1128
1129 if (*new_cr == CR_POWER2_ALIGNED) {
1130 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1132 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1135 } else {
1136 /*
1137 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138 * rb tree sorted by bb_free. But until that happens, we should
1139 * never come here.
1140 */
1141 WARN_ON(1);
1142 }
1143}
1144
1145/*
1146 * Cache the order of the largest free extent we have available in this block
1147 * group.
1148 */
1149static void
1150mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151{
1152 struct ext4_sb_info *sbi = EXT4_SB(sb);
1153 int i;
1154
1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156 if (grp->bb_counters[i] > 0)
1157 break;
1158 /* No need to move between order lists? */
1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160 i == grp->bb_largest_free_order) {
1161 grp->bb_largest_free_order = i;
1162 return;
1163 }
1164
1165 if (grp->bb_largest_free_order >= 0) {
1166 write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 grp->bb_largest_free_order]);
1168 list_del_init(&grp->bb_largest_free_order_node);
1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170 grp->bb_largest_free_order]);
1171 }
1172 grp->bb_largest_free_order = i;
1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174 write_lock(&sbi->s_mb_largest_free_orders_locks[
1175 grp->bb_largest_free_order]);
1176 list_add_tail(&grp->bb_largest_free_order_node,
1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179 grp->bb_largest_free_order]);
1180 }
1181}
1182
1183static noinline_for_stack
1184void ext4_mb_generate_buddy(struct super_block *sb,
1185 void *buddy, void *bitmap, ext4_group_t group,
1186 struct ext4_group_info *grp)
1187{
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190 ext4_grpblk_t i = 0;
1191 ext4_grpblk_t first;
1192 ext4_grpblk_t len;
1193 unsigned free = 0;
1194 unsigned fragments = 0;
1195 unsigned long long period = get_cycles();
1196
1197 /* initialize buddy from bitmap which is aggregation
1198 * of on-disk bitmap and preallocations */
1199 i = mb_find_next_zero_bit(bitmap, max, 0);
1200 grp->bb_first_free = i;
1201 while (i < max) {
1202 fragments++;
1203 first = i;
1204 i = mb_find_next_bit(bitmap, max, i);
1205 len = i - first;
1206 free += len;
1207 if (len > 1)
1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1209 else
1210 grp->bb_counters[0]++;
1211 if (i < max)
1212 i = mb_find_next_zero_bit(bitmap, max, i);
1213 }
1214 grp->bb_fragments = fragments;
1215
1216 if (free != grp->bb_free) {
1217 ext4_grp_locked_error(sb, group, 0, 0,
1218 "block bitmap and bg descriptor "
1219 "inconsistent: %u vs %u free clusters",
1220 free, grp->bb_free);
1221 /*
1222 * If we intend to continue, we consider group descriptor
1223 * corrupt and update bb_free using bitmap value
1224 */
1225 grp->bb_free = free;
1226 ext4_mark_group_bitmap_corrupted(sb, group,
1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1228 }
1229 mb_set_largest_free_order(sb, grp);
1230 mb_update_avg_fragment_size(sb, grp);
1231
1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1233
1234 period = get_cycles() - period;
1235 atomic_inc(&sbi->s_mb_buddies_generated);
1236 atomic64_add(period, &sbi->s_mb_generation_time);
1237}
1238
1239static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1240{
1241 int count;
1242 int order = 1;
1243 void *buddy;
1244
1245 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246 mb_set_bits(buddy, 0, count);
1247
1248 e4b->bd_info->bb_fragments = 0;
1249 memset(e4b->bd_info->bb_counters, 0,
1250 sizeof(*e4b->bd_info->bb_counters) *
1251 (e4b->bd_sb->s_blocksize_bits + 2));
1252
1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1255}
1256
1257/* The buddy information is attached the buddy cache inode
1258 * for convenience. The information regarding each group
1259 * is loaded via ext4_mb_load_buddy. The information involve
1260 * block bitmap and buddy information. The information are
1261 * stored in the inode as
1262 *
1263 * { page }
1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1265 *
1266 *
1267 * one block each for bitmap and buddy information.
1268 * So for each group we take up 2 blocks. A page can
1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1270 * So it can have information regarding groups_per_page which
1271 * is blocks_per_page/2
1272 *
1273 * Locking note: This routine takes the block group lock of all groups
1274 * for this page; do not hold this lock when calling this routine!
1275 */
1276
1277static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1278{
1279 ext4_group_t ngroups;
1280 unsigned int blocksize;
1281 int blocks_per_page;
1282 int groups_per_page;
1283 int err = 0;
1284 int i;
1285 ext4_group_t first_group, group;
1286 int first_block;
1287 struct super_block *sb;
1288 struct buffer_head *bhs;
1289 struct buffer_head **bh = NULL;
1290 struct inode *inode;
1291 char *data;
1292 char *bitmap;
1293 struct ext4_group_info *grinfo;
1294
1295 inode = folio->mapping->host;
1296 sb = inode->i_sb;
1297 ngroups = ext4_get_groups_count(sb);
1298 blocksize = i_blocksize(inode);
1299 blocks_per_page = PAGE_SIZE / blocksize;
1300
1301 mb_debug(sb, "init folio %lu\n", folio->index);
1302
1303 groups_per_page = blocks_per_page >> 1;
1304 if (groups_per_page == 0)
1305 groups_per_page = 1;
1306
1307 /* allocate buffer_heads to read bitmaps */
1308 if (groups_per_page > 1) {
1309 i = sizeof(struct buffer_head *) * groups_per_page;
1310 bh = kzalloc(i, gfp);
1311 if (bh == NULL)
1312 return -ENOMEM;
1313 } else
1314 bh = &bhs;
1315
1316 first_group = folio->index * blocks_per_page / 2;
1317
1318 /* read all groups the folio covers into the cache */
1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320 if (group >= ngroups)
1321 break;
1322
1323 grinfo = ext4_get_group_info(sb, group);
1324 if (!grinfo)
1325 continue;
1326 /*
1327 * If page is uptodate then we came here after online resize
1328 * which added some new uninitialized group info structs, so
1329 * we must skip all initialized uptodate buddies on the folio,
1330 * which may be currently in use by an allocating task.
1331 */
1332 if (folio_test_uptodate(folio) &&
1333 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1334 bh[i] = NULL;
1335 continue;
1336 }
1337 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1338 if (IS_ERR(bh[i])) {
1339 err = PTR_ERR(bh[i]);
1340 bh[i] = NULL;
1341 goto out;
1342 }
1343 mb_debug(sb, "read bitmap for group %u\n", group);
1344 }
1345
1346 /* wait for I/O completion */
1347 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1348 int err2;
1349
1350 if (!bh[i])
1351 continue;
1352 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1353 if (!err)
1354 err = err2;
1355 }
1356
1357 first_block = folio->index * blocks_per_page;
1358 for (i = 0; i < blocks_per_page; i++) {
1359 group = (first_block + i) >> 1;
1360 if (group >= ngroups)
1361 break;
1362
1363 if (!bh[group - first_group])
1364 /* skip initialized uptodate buddy */
1365 continue;
1366
1367 if (!buffer_verified(bh[group - first_group]))
1368 /* Skip faulty bitmaps */
1369 continue;
1370 err = 0;
1371
1372 /*
1373 * data carry information regarding this
1374 * particular group in the format specified
1375 * above
1376 *
1377 */
1378 data = folio_address(folio) + (i * blocksize);
1379 bitmap = bh[group - first_group]->b_data;
1380
1381 /*
1382 * We place the buddy block and bitmap block
1383 * close together
1384 */
1385 grinfo = ext4_get_group_info(sb, group);
1386 if (!grinfo) {
1387 err = -EFSCORRUPTED;
1388 goto out;
1389 }
1390 if ((first_block + i) & 1) {
1391 /* this is block of buddy */
1392 BUG_ON(incore == NULL);
1393 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1394 group, folio->index, i * blocksize);
1395 trace_ext4_mb_buddy_bitmap_load(sb, group);
1396 grinfo->bb_fragments = 0;
1397 memset(grinfo->bb_counters, 0,
1398 sizeof(*grinfo->bb_counters) *
1399 (MB_NUM_ORDERS(sb)));
1400 /*
1401 * incore got set to the group block bitmap below
1402 */
1403 ext4_lock_group(sb, group);
1404 /* init the buddy */
1405 memset(data, 0xff, blocksize);
1406 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1407 ext4_unlock_group(sb, group);
1408 incore = NULL;
1409 } else {
1410 /* this is block of bitmap */
1411 BUG_ON(incore != NULL);
1412 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1413 group, folio->index, i * blocksize);
1414 trace_ext4_mb_bitmap_load(sb, group);
1415
1416 /* see comments in ext4_mb_put_pa() */
1417 ext4_lock_group(sb, group);
1418 memcpy(data, bitmap, blocksize);
1419
1420 /* mark all preallocated blks used in in-core bitmap */
1421 ext4_mb_generate_from_pa(sb, data, group);
1422 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1423 ext4_unlock_group(sb, group);
1424
1425 /* set incore so that the buddy information can be
1426 * generated using this
1427 */
1428 incore = data;
1429 }
1430 }
1431 folio_mark_uptodate(folio);
1432
1433out:
1434 if (bh) {
1435 for (i = 0; i < groups_per_page; i++)
1436 brelse(bh[i]);
1437 if (bh != &bhs)
1438 kfree(bh);
1439 }
1440 return err;
1441}
1442
1443/*
1444 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1445 * on the same buddy page doesn't happen whild holding the buddy page lock.
1446 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1447 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1448 */
1449static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1450 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1451{
1452 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1453 int block, pnum, poff;
1454 int blocks_per_page;
1455 struct folio *folio;
1456
1457 e4b->bd_buddy_folio = NULL;
1458 e4b->bd_bitmap_folio = NULL;
1459
1460 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1461 /*
1462 * the buddy cache inode stores the block bitmap
1463 * and buddy information in consecutive blocks.
1464 * So for each group we need two blocks.
1465 */
1466 block = group * 2;
1467 pnum = block / blocks_per_page;
1468 poff = block % blocks_per_page;
1469 folio = __filemap_get_folio(inode->i_mapping, pnum,
1470 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1471 if (IS_ERR(folio))
1472 return PTR_ERR(folio);
1473 BUG_ON(folio->mapping != inode->i_mapping);
1474 e4b->bd_bitmap_folio = folio;
1475 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1476
1477 if (blocks_per_page >= 2) {
1478 /* buddy and bitmap are on the same page */
1479 return 0;
1480 }
1481
1482 /* blocks_per_page == 1, hence we need another page for the buddy */
1483 folio = __filemap_get_folio(inode->i_mapping, block + 1,
1484 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1485 if (IS_ERR(folio))
1486 return PTR_ERR(folio);
1487 BUG_ON(folio->mapping != inode->i_mapping);
1488 e4b->bd_buddy_folio = folio;
1489 return 0;
1490}
1491
1492static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1493{
1494 if (e4b->bd_bitmap_folio) {
1495 folio_unlock(e4b->bd_bitmap_folio);
1496 folio_put(e4b->bd_bitmap_folio);
1497 }
1498 if (e4b->bd_buddy_folio) {
1499 folio_unlock(e4b->bd_buddy_folio);
1500 folio_put(e4b->bd_buddy_folio);
1501 }
1502}
1503
1504/*
1505 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1506 * block group lock of all groups for this page; do not hold the BG lock when
1507 * calling this routine!
1508 */
1509static noinline_for_stack
1510int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1511{
1512
1513 struct ext4_group_info *this_grp;
1514 struct ext4_buddy e4b;
1515 struct folio *folio;
1516 int ret = 0;
1517
1518 might_sleep();
1519 mb_debug(sb, "init group %u\n", group);
1520 this_grp = ext4_get_group_info(sb, group);
1521 if (!this_grp)
1522 return -EFSCORRUPTED;
1523
1524 /*
1525 * This ensures that we don't reinit the buddy cache
1526 * page which map to the group from which we are already
1527 * allocating. If we are looking at the buddy cache we would
1528 * have taken a reference using ext4_mb_load_buddy and that
1529 * would have pinned buddy page to page cache.
1530 * The call to ext4_mb_get_buddy_page_lock will mark the
1531 * page accessed.
1532 */
1533 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1534 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1535 /*
1536 * somebody initialized the group
1537 * return without doing anything
1538 */
1539 goto err;
1540 }
1541
1542 folio = e4b.bd_bitmap_folio;
1543 ret = ext4_mb_init_cache(folio, NULL, gfp);
1544 if (ret)
1545 goto err;
1546 if (!folio_test_uptodate(folio)) {
1547 ret = -EIO;
1548 goto err;
1549 }
1550
1551 if (e4b.bd_buddy_folio == NULL) {
1552 /*
1553 * If both the bitmap and buddy are in
1554 * the same page we don't need to force
1555 * init the buddy
1556 */
1557 ret = 0;
1558 goto err;
1559 }
1560 /* init buddy cache */
1561 folio = e4b.bd_buddy_folio;
1562 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1563 if (ret)
1564 goto err;
1565 if (!folio_test_uptodate(folio)) {
1566 ret = -EIO;
1567 goto err;
1568 }
1569err:
1570 ext4_mb_put_buddy_page_lock(&e4b);
1571 return ret;
1572}
1573
1574/*
1575 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1576 * block group lock of all groups for this page; do not hold the BG lock when
1577 * calling this routine!
1578 */
1579static noinline_for_stack int
1580ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1581 struct ext4_buddy *e4b, gfp_t gfp)
1582{
1583 int blocks_per_page;
1584 int block;
1585 int pnum;
1586 int poff;
1587 struct folio *folio;
1588 int ret;
1589 struct ext4_group_info *grp;
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 struct inode *inode = sbi->s_buddy_cache;
1592
1593 might_sleep();
1594 mb_debug(sb, "load group %u\n", group);
1595
1596 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1597 grp = ext4_get_group_info(sb, group);
1598 if (!grp)
1599 return -EFSCORRUPTED;
1600
1601 e4b->bd_blkbits = sb->s_blocksize_bits;
1602 e4b->bd_info = grp;
1603 e4b->bd_sb = sb;
1604 e4b->bd_group = group;
1605 e4b->bd_buddy_folio = NULL;
1606 e4b->bd_bitmap_folio = NULL;
1607
1608 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1609 /*
1610 * we need full data about the group
1611 * to make a good selection
1612 */
1613 ret = ext4_mb_init_group(sb, group, gfp);
1614 if (ret)
1615 return ret;
1616 }
1617
1618 /*
1619 * the buddy cache inode stores the block bitmap
1620 * and buddy information in consecutive blocks.
1621 * So for each group we need two blocks.
1622 */
1623 block = group * 2;
1624 pnum = block / blocks_per_page;
1625 poff = block % blocks_per_page;
1626
1627 /* Avoid locking the folio in the fast path ... */
1628 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1629 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1630 if (!IS_ERR(folio))
1631 /*
1632 * drop the folio reference and try
1633 * to get the folio with lock. If we
1634 * are not uptodate that implies
1635 * somebody just created the folio but
1636 * is yet to initialize it. So
1637 * wait for it to initialize.
1638 */
1639 folio_put(folio);
1640 folio = __filemap_get_folio(inode->i_mapping, pnum,
1641 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1642 if (!IS_ERR(folio)) {
1643 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1644 "ext4: bitmap's mapping != inode->i_mapping\n")) {
1645 /* should never happen */
1646 folio_unlock(folio);
1647 ret = -EINVAL;
1648 goto err;
1649 }
1650 if (!folio_test_uptodate(folio)) {
1651 ret = ext4_mb_init_cache(folio, NULL, gfp);
1652 if (ret) {
1653 folio_unlock(folio);
1654 goto err;
1655 }
1656 mb_cmp_bitmaps(e4b, folio_address(folio) +
1657 (poff * sb->s_blocksize));
1658 }
1659 folio_unlock(folio);
1660 }
1661 }
1662 if (IS_ERR(folio)) {
1663 ret = PTR_ERR(folio);
1664 goto err;
1665 }
1666 if (!folio_test_uptodate(folio)) {
1667 ret = -EIO;
1668 goto err;
1669 }
1670
1671 /* Folios marked accessed already */
1672 e4b->bd_bitmap_folio = folio;
1673 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1674
1675 block++;
1676 pnum = block / blocks_per_page;
1677 poff = block % blocks_per_page;
1678
1679 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1680 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1681 if (!IS_ERR(folio))
1682 folio_put(folio);
1683 folio = __filemap_get_folio(inode->i_mapping, pnum,
1684 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1685 if (!IS_ERR(folio)) {
1686 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1687 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1688 /* should never happen */
1689 folio_unlock(folio);
1690 ret = -EINVAL;
1691 goto err;
1692 }
1693 if (!folio_test_uptodate(folio)) {
1694 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1695 gfp);
1696 if (ret) {
1697 folio_unlock(folio);
1698 goto err;
1699 }
1700 }
1701 folio_unlock(folio);
1702 }
1703 }
1704 if (IS_ERR(folio)) {
1705 ret = PTR_ERR(folio);
1706 goto err;
1707 }
1708 if (!folio_test_uptodate(folio)) {
1709 ret = -EIO;
1710 goto err;
1711 }
1712
1713 /* Folios marked accessed already */
1714 e4b->bd_buddy_folio = folio;
1715 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1716
1717 return 0;
1718
1719err:
1720 if (!IS_ERR_OR_NULL(folio))
1721 folio_put(folio);
1722 if (e4b->bd_bitmap_folio)
1723 folio_put(e4b->bd_bitmap_folio);
1724
1725 e4b->bd_buddy = NULL;
1726 e4b->bd_bitmap = NULL;
1727 return ret;
1728}
1729
1730static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1731 struct ext4_buddy *e4b)
1732{
1733 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1734}
1735
1736static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1737{
1738 if (e4b->bd_bitmap_folio)
1739 folio_put(e4b->bd_bitmap_folio);
1740 if (e4b->bd_buddy_folio)
1741 folio_put(e4b->bd_buddy_folio);
1742}
1743
1744
1745static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1746{
1747 int order = 1, max;
1748 void *bb;
1749
1750 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1751 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1752
1753 while (order <= e4b->bd_blkbits + 1) {
1754 bb = mb_find_buddy(e4b, order, &max);
1755 if (!mb_test_bit(block >> order, bb)) {
1756 /* this block is part of buddy of order 'order' */
1757 return order;
1758 }
1759 order++;
1760 }
1761 return 0;
1762}
1763
1764static void mb_clear_bits(void *bm, int cur, int len)
1765{
1766 __u32 *addr;
1767
1768 len = cur + len;
1769 while (cur < len) {
1770 if ((cur & 31) == 0 && (len - cur) >= 32) {
1771 /* fast path: clear whole word at once */
1772 addr = bm + (cur >> 3);
1773 *addr = 0;
1774 cur += 32;
1775 continue;
1776 }
1777 mb_clear_bit(cur, bm);
1778 cur++;
1779 }
1780}
1781
1782/* clear bits in given range
1783 * will return first found zero bit if any, -1 otherwise
1784 */
1785static int mb_test_and_clear_bits(void *bm, int cur, int len)
1786{
1787 __u32 *addr;
1788 int zero_bit = -1;
1789
1790 len = cur + len;
1791 while (cur < len) {
1792 if ((cur & 31) == 0 && (len - cur) >= 32) {
1793 /* fast path: clear whole word at once */
1794 addr = bm + (cur >> 3);
1795 if (*addr != (__u32)(-1) && zero_bit == -1)
1796 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1797 *addr = 0;
1798 cur += 32;
1799 continue;
1800 }
1801 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1802 zero_bit = cur;
1803 cur++;
1804 }
1805
1806 return zero_bit;
1807}
1808
1809void mb_set_bits(void *bm, int cur, int len)
1810{
1811 __u32 *addr;
1812
1813 len = cur + len;
1814 while (cur < len) {
1815 if ((cur & 31) == 0 && (len - cur) >= 32) {
1816 /* fast path: set whole word at once */
1817 addr = bm + (cur >> 3);
1818 *addr = 0xffffffff;
1819 cur += 32;
1820 continue;
1821 }
1822 mb_set_bit(cur, bm);
1823 cur++;
1824 }
1825}
1826
1827static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1828{
1829 if (mb_test_bit(*bit + side, bitmap)) {
1830 mb_clear_bit(*bit, bitmap);
1831 (*bit) -= side;
1832 return 1;
1833 }
1834 else {
1835 (*bit) += side;
1836 mb_set_bit(*bit, bitmap);
1837 return -1;
1838 }
1839}
1840
1841static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1842{
1843 int max;
1844 int order = 1;
1845 void *buddy = mb_find_buddy(e4b, order, &max);
1846
1847 while (buddy) {
1848 void *buddy2;
1849
1850 /* Bits in range [first; last] are known to be set since
1851 * corresponding blocks were allocated. Bits in range
1852 * (first; last) will stay set because they form buddies on
1853 * upper layer. We just deal with borders if they don't
1854 * align with upper layer and then go up.
1855 * Releasing entire group is all about clearing
1856 * single bit of highest order buddy.
1857 */
1858
1859 /* Example:
1860 * ---------------------------------
1861 * | 1 | 1 | 1 | 1 |
1862 * ---------------------------------
1863 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1864 * ---------------------------------
1865 * 0 1 2 3 4 5 6 7
1866 * \_____________________/
1867 *
1868 * Neither [1] nor [6] is aligned to above layer.
1869 * Left neighbour [0] is free, so mark it busy,
1870 * decrease bb_counters and extend range to
1871 * [0; 6]
1872 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1873 * mark [6] free, increase bb_counters and shrink range to
1874 * [0; 5].
1875 * Then shift range to [0; 2], go up and do the same.
1876 */
1877
1878
1879 if (first & 1)
1880 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1881 if (!(last & 1))
1882 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1883 if (first > last)
1884 break;
1885 order++;
1886
1887 buddy2 = mb_find_buddy(e4b, order, &max);
1888 if (!buddy2) {
1889 mb_clear_bits(buddy, first, last - first + 1);
1890 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1891 break;
1892 }
1893 first >>= 1;
1894 last >>= 1;
1895 buddy = buddy2;
1896 }
1897}
1898
1899static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1900 int first, int count)
1901{
1902 int left_is_free = 0;
1903 int right_is_free = 0;
1904 int block;
1905 int last = first + count - 1;
1906 struct super_block *sb = e4b->bd_sb;
1907
1908 if (WARN_ON(count == 0))
1909 return;
1910 BUG_ON(last >= (sb->s_blocksize << 3));
1911 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1912 /* Don't bother if the block group is corrupt. */
1913 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1914 return;
1915
1916 mb_check_buddy(e4b);
1917 mb_free_blocks_double(inode, e4b, first, count);
1918
1919 /* access memory sequentially: check left neighbour,
1920 * clear range and then check right neighbour
1921 */
1922 if (first != 0)
1923 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1924 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1925 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1926 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1927
1928 if (unlikely(block != -1)) {
1929 struct ext4_sb_info *sbi = EXT4_SB(sb);
1930 ext4_fsblk_t blocknr;
1931
1932 /*
1933 * Fastcommit replay can free already freed blocks which
1934 * corrupts allocation info. Regenerate it.
1935 */
1936 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1937 mb_regenerate_buddy(e4b);
1938 goto check;
1939 }
1940
1941 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1942 blocknr += EXT4_C2B(sbi, block);
1943 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1944 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1945 ext4_grp_locked_error(sb, e4b->bd_group,
1946 inode ? inode->i_ino : 0, blocknr,
1947 "freeing already freed block (bit %u); block bitmap corrupt.",
1948 block);
1949 return;
1950 }
1951
1952 this_cpu_inc(discard_pa_seq);
1953 e4b->bd_info->bb_free += count;
1954 if (first < e4b->bd_info->bb_first_free)
1955 e4b->bd_info->bb_first_free = first;
1956
1957 /* let's maintain fragments counter */
1958 if (left_is_free && right_is_free)
1959 e4b->bd_info->bb_fragments--;
1960 else if (!left_is_free && !right_is_free)
1961 e4b->bd_info->bb_fragments++;
1962
1963 /* buddy[0] == bd_bitmap is a special case, so handle
1964 * it right away and let mb_buddy_mark_free stay free of
1965 * zero order checks.
1966 * Check if neighbours are to be coaleasced,
1967 * adjust bitmap bb_counters and borders appropriately.
1968 */
1969 if (first & 1) {
1970 first += !left_is_free;
1971 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1972 }
1973 if (!(last & 1)) {
1974 last -= !right_is_free;
1975 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1976 }
1977
1978 if (first <= last)
1979 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1980
1981 mb_set_largest_free_order(sb, e4b->bd_info);
1982 mb_update_avg_fragment_size(sb, e4b->bd_info);
1983check:
1984 mb_check_buddy(e4b);
1985}
1986
1987static int mb_find_extent(struct ext4_buddy *e4b, int block,
1988 int needed, struct ext4_free_extent *ex)
1989{
1990 int max, order, next;
1991 void *buddy;
1992
1993 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1994 BUG_ON(ex == NULL);
1995
1996 buddy = mb_find_buddy(e4b, 0, &max);
1997 BUG_ON(buddy == NULL);
1998 BUG_ON(block >= max);
1999 if (mb_test_bit(block, buddy)) {
2000 ex->fe_len = 0;
2001 ex->fe_start = 0;
2002 ex->fe_group = 0;
2003 return 0;
2004 }
2005
2006 /* find actual order */
2007 order = mb_find_order_for_block(e4b, block);
2008
2009 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2010 ex->fe_start = block;
2011 ex->fe_group = e4b->bd_group;
2012
2013 block = block >> order;
2014
2015 while (needed > ex->fe_len &&
2016 mb_find_buddy(e4b, order, &max)) {
2017
2018 if (block + 1 >= max)
2019 break;
2020
2021 next = (block + 1) * (1 << order);
2022 if (mb_test_bit(next, e4b->bd_bitmap))
2023 break;
2024
2025 order = mb_find_order_for_block(e4b, next);
2026
2027 block = next >> order;
2028 ex->fe_len += 1 << order;
2029 }
2030
2031 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2032 /* Should never happen! (but apparently sometimes does?!?) */
2033 WARN_ON(1);
2034 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2035 "corruption or bug in mb_find_extent "
2036 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2037 block, order, needed, ex->fe_group, ex->fe_start,
2038 ex->fe_len, ex->fe_logical);
2039 ex->fe_len = 0;
2040 ex->fe_start = 0;
2041 ex->fe_group = 0;
2042 }
2043 return ex->fe_len;
2044}
2045
2046static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2047{
2048 int ord;
2049 int mlen = 0;
2050 int max = 0;
2051 int start = ex->fe_start;
2052 int len = ex->fe_len;
2053 unsigned ret = 0;
2054 int len0 = len;
2055 void *buddy;
2056 int ord_start, ord_end;
2057
2058 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059 BUG_ON(e4b->bd_group != ex->fe_group);
2060 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061 mb_check_buddy(e4b);
2062 mb_mark_used_double(e4b, start, len);
2063
2064 this_cpu_inc(discard_pa_seq);
2065 e4b->bd_info->bb_free -= len;
2066 if (e4b->bd_info->bb_first_free == start)
2067 e4b->bd_info->bb_first_free += len;
2068
2069 /* let's maintain fragments counter */
2070 if (start != 0)
2071 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2074 if (mlen && max)
2075 e4b->bd_info->bb_fragments++;
2076 else if (!mlen && !max)
2077 e4b->bd_info->bb_fragments--;
2078
2079 /* let's maintain buddy itself */
2080 while (len) {
2081 ord = mb_find_order_for_block(e4b, start);
2082
2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084 /* the whole chunk may be allocated at once! */
2085 mlen = 1 << ord;
2086 buddy = mb_find_buddy(e4b, ord, &max);
2087 BUG_ON((start >> ord) >= max);
2088 mb_set_bit(start >> ord, buddy);
2089 e4b->bd_info->bb_counters[ord]--;
2090 start += mlen;
2091 len -= mlen;
2092 BUG_ON(len < 0);
2093 continue;
2094 }
2095
2096 /* store for history */
2097 if (ret == 0)
2098 ret = len | (ord << 16);
2099
2100 BUG_ON(ord <= 0);
2101 buddy = mb_find_buddy(e4b, ord, &max);
2102 mb_set_bit(start >> ord, buddy);
2103 e4b->bd_info->bb_counters[ord]--;
2104
2105 ord_start = (start >> ord) << ord;
2106 ord_end = ord_start + (1 << ord);
2107 /* first chunk */
2108 if (start > ord_start)
2109 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2110 ord_start, start - ord_start,
2111 e4b->bd_info);
2112
2113 /* last chunk */
2114 if (start + len < ord_end) {
2115 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2116 start + len,
2117 ord_end - (start + len),
2118 e4b->bd_info);
2119 break;
2120 }
2121 len = start + len - ord_end;
2122 start = ord_end;
2123 }
2124 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2125
2126 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2127 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2128 mb_check_buddy(e4b);
2129
2130 return ret;
2131}
2132
2133/*
2134 * Must be called under group lock!
2135 */
2136static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2137 struct ext4_buddy *e4b)
2138{
2139 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2140 int ret;
2141
2142 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2143 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2144
2145 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2146 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2147 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2148
2149 /* preallocation can change ac_b_ex, thus we store actually
2150 * allocated blocks for history */
2151 ac->ac_f_ex = ac->ac_b_ex;
2152
2153 ac->ac_status = AC_STATUS_FOUND;
2154 ac->ac_tail = ret & 0xffff;
2155 ac->ac_buddy = ret >> 16;
2156
2157 /*
2158 * take the page reference. We want the page to be pinned
2159 * so that we don't get a ext4_mb_init_cache_call for this
2160 * group until we update the bitmap. That would mean we
2161 * double allocate blocks. The reference is dropped
2162 * in ext4_mb_release_context
2163 */
2164 ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2165 folio_get(ac->ac_bitmap_folio);
2166 ac->ac_buddy_folio = e4b->bd_buddy_folio;
2167 folio_get(ac->ac_buddy_folio);
2168 /* store last allocated for subsequent stream allocation */
2169 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2170 spin_lock(&sbi->s_md_lock);
2171 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2172 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2173 spin_unlock(&sbi->s_md_lock);
2174 }
2175 /*
2176 * As we've just preallocated more space than
2177 * user requested originally, we store allocated
2178 * space in a special descriptor.
2179 */
2180 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2181 ext4_mb_new_preallocation(ac);
2182
2183}
2184
2185static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2186 struct ext4_buddy *e4b,
2187 int finish_group)
2188{
2189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2190 struct ext4_free_extent *bex = &ac->ac_b_ex;
2191 struct ext4_free_extent *gex = &ac->ac_g_ex;
2192
2193 if (ac->ac_status == AC_STATUS_FOUND)
2194 return;
2195 /*
2196 * We don't want to scan for a whole year
2197 */
2198 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2199 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2200 ac->ac_status = AC_STATUS_BREAK;
2201 return;
2202 }
2203
2204 /*
2205 * Haven't found good chunk so far, let's continue
2206 */
2207 if (bex->fe_len < gex->fe_len)
2208 return;
2209
2210 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2211 ext4_mb_use_best_found(ac, e4b);
2212}
2213
2214/*
2215 * The routine checks whether found extent is good enough. If it is,
2216 * then the extent gets marked used and flag is set to the context
2217 * to stop scanning. Otherwise, the extent is compared with the
2218 * previous found extent and if new one is better, then it's stored
2219 * in the context. Later, the best found extent will be used, if
2220 * mballoc can't find good enough extent.
2221 *
2222 * The algorithm used is roughly as follows:
2223 *
2224 * * If free extent found is exactly as big as goal, then
2225 * stop the scan and use it immediately
2226 *
2227 * * If free extent found is smaller than goal, then keep retrying
2228 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2229 * that stop scanning and use whatever we have.
2230 *
2231 * * If free extent found is bigger than goal, then keep retrying
2232 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2233 * stopping the scan and using the extent.
2234 *
2235 *
2236 * FIXME: real allocation policy is to be designed yet!
2237 */
2238static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2239 struct ext4_free_extent *ex,
2240 struct ext4_buddy *e4b)
2241{
2242 struct ext4_free_extent *bex = &ac->ac_b_ex;
2243 struct ext4_free_extent *gex = &ac->ac_g_ex;
2244
2245 BUG_ON(ex->fe_len <= 0);
2246 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2247 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2248 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2249
2250 ac->ac_found++;
2251 ac->ac_cX_found[ac->ac_criteria]++;
2252
2253 /*
2254 * The special case - take what you catch first
2255 */
2256 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2257 *bex = *ex;
2258 ext4_mb_use_best_found(ac, e4b);
2259 return;
2260 }
2261
2262 /*
2263 * Let's check whether the chuck is good enough
2264 */
2265 if (ex->fe_len == gex->fe_len) {
2266 *bex = *ex;
2267 ext4_mb_use_best_found(ac, e4b);
2268 return;
2269 }
2270
2271 /*
2272 * If this is first found extent, just store it in the context
2273 */
2274 if (bex->fe_len == 0) {
2275 *bex = *ex;
2276 return;
2277 }
2278
2279 /*
2280 * If new found extent is better, store it in the context
2281 */
2282 if (bex->fe_len < gex->fe_len) {
2283 /* if the request isn't satisfied, any found extent
2284 * larger than previous best one is better */
2285 if (ex->fe_len > bex->fe_len)
2286 *bex = *ex;
2287 } else if (ex->fe_len > gex->fe_len) {
2288 /* if the request is satisfied, then we try to find
2289 * an extent that still satisfy the request, but is
2290 * smaller than previous one */
2291 if (ex->fe_len < bex->fe_len)
2292 *bex = *ex;
2293 }
2294
2295 ext4_mb_check_limits(ac, e4b, 0);
2296}
2297
2298static noinline_for_stack
2299void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2300 struct ext4_buddy *e4b)
2301{
2302 struct ext4_free_extent ex = ac->ac_b_ex;
2303 ext4_group_t group = ex.fe_group;
2304 int max;
2305 int err;
2306
2307 BUG_ON(ex.fe_len <= 0);
2308 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2309 if (err)
2310 return;
2311
2312 ext4_lock_group(ac->ac_sb, group);
2313 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2314 goto out;
2315
2316 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2317
2318 if (max > 0) {
2319 ac->ac_b_ex = ex;
2320 ext4_mb_use_best_found(ac, e4b);
2321 }
2322
2323out:
2324 ext4_unlock_group(ac->ac_sb, group);
2325 ext4_mb_unload_buddy(e4b);
2326}
2327
2328static noinline_for_stack
2329int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2330 struct ext4_buddy *e4b)
2331{
2332 ext4_group_t group = ac->ac_g_ex.fe_group;
2333 int max;
2334 int err;
2335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2336 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2337 struct ext4_free_extent ex;
2338
2339 if (!grp)
2340 return -EFSCORRUPTED;
2341 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2342 return 0;
2343 if (grp->bb_free == 0)
2344 return 0;
2345
2346 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2347 if (err)
2348 return err;
2349
2350 ext4_lock_group(ac->ac_sb, group);
2351 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2352 goto out;
2353
2354 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2355 ac->ac_g_ex.fe_len, &ex);
2356 ex.fe_logical = 0xDEADFA11; /* debug value */
2357
2358 if (max >= ac->ac_g_ex.fe_len &&
2359 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) {
2360 ext4_fsblk_t start;
2361
2362 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2363 /* use do_div to get remainder (would be 64-bit modulo) */
2364 if (do_div(start, sbi->s_stripe) == 0) {
2365 ac->ac_found++;
2366 ac->ac_b_ex = ex;
2367 ext4_mb_use_best_found(ac, e4b);
2368 }
2369 } else if (max >= ac->ac_g_ex.fe_len) {
2370 BUG_ON(ex.fe_len <= 0);
2371 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2372 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2373 ac->ac_found++;
2374 ac->ac_b_ex = ex;
2375 ext4_mb_use_best_found(ac, e4b);
2376 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2377 /* Sometimes, caller may want to merge even small
2378 * number of blocks to an existing extent */
2379 BUG_ON(ex.fe_len <= 0);
2380 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2381 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2382 ac->ac_found++;
2383 ac->ac_b_ex = ex;
2384 ext4_mb_use_best_found(ac, e4b);
2385 }
2386out:
2387 ext4_unlock_group(ac->ac_sb, group);
2388 ext4_mb_unload_buddy(e4b);
2389
2390 return 0;
2391}
2392
2393/*
2394 * The routine scans buddy structures (not bitmap!) from given order
2395 * to max order and tries to find big enough chunk to satisfy the req
2396 */
2397static noinline_for_stack
2398void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2399 struct ext4_buddy *e4b)
2400{
2401 struct super_block *sb = ac->ac_sb;
2402 struct ext4_group_info *grp = e4b->bd_info;
2403 void *buddy;
2404 int i;
2405 int k;
2406 int max;
2407
2408 BUG_ON(ac->ac_2order <= 0);
2409 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2410 if (grp->bb_counters[i] == 0)
2411 continue;
2412
2413 buddy = mb_find_buddy(e4b, i, &max);
2414 if (WARN_RATELIMIT(buddy == NULL,
2415 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2416 continue;
2417
2418 k = mb_find_next_zero_bit(buddy, max, 0);
2419 if (k >= max) {
2420 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2421 e4b->bd_group,
2422 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2423 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2424 "%d free clusters of order %d. But found 0",
2425 grp->bb_counters[i], i);
2426 break;
2427 }
2428 ac->ac_found++;
2429 ac->ac_cX_found[ac->ac_criteria]++;
2430
2431 ac->ac_b_ex.fe_len = 1 << i;
2432 ac->ac_b_ex.fe_start = k << i;
2433 ac->ac_b_ex.fe_group = e4b->bd_group;
2434
2435 ext4_mb_use_best_found(ac, e4b);
2436
2437 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2438
2439 if (EXT4_SB(sb)->s_mb_stats)
2440 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2441
2442 break;
2443 }
2444}
2445
2446/*
2447 * The routine scans the group and measures all found extents.
2448 * In order to optimize scanning, caller must pass number of
2449 * free blocks in the group, so the routine can know upper limit.
2450 */
2451static noinline_for_stack
2452void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2453 struct ext4_buddy *e4b)
2454{
2455 struct super_block *sb = ac->ac_sb;
2456 void *bitmap = e4b->bd_bitmap;
2457 struct ext4_free_extent ex;
2458 int i, j, freelen;
2459 int free;
2460
2461 free = e4b->bd_info->bb_free;
2462 if (WARN_ON(free <= 0))
2463 return;
2464
2465 i = e4b->bd_info->bb_first_free;
2466
2467 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2468 i = mb_find_next_zero_bit(bitmap,
2469 EXT4_CLUSTERS_PER_GROUP(sb), i);
2470 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2471 /*
2472 * IF we have corrupt bitmap, we won't find any
2473 * free blocks even though group info says we
2474 * have free blocks
2475 */
2476 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2477 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2478 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2479 "%d free clusters as per "
2480 "group info. But bitmap says 0",
2481 free);
2482 break;
2483 }
2484
2485 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2486 /*
2487 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2488 * sure that this group will have a large enough
2489 * continuous free extent, so skip over the smaller free
2490 * extents
2491 */
2492 j = mb_find_next_bit(bitmap,
2493 EXT4_CLUSTERS_PER_GROUP(sb), i);
2494 freelen = j - i;
2495
2496 if (freelen < ac->ac_g_ex.fe_len) {
2497 i = j;
2498 free -= freelen;
2499 continue;
2500 }
2501 }
2502
2503 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2504 if (WARN_ON(ex.fe_len <= 0))
2505 break;
2506 if (free < ex.fe_len) {
2507 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2508 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2509 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2510 "%d free clusters as per "
2511 "group info. But got %d blocks",
2512 free, ex.fe_len);
2513 /*
2514 * The number of free blocks differs. This mostly
2515 * indicate that the bitmap is corrupt. So exit
2516 * without claiming the space.
2517 */
2518 break;
2519 }
2520 ex.fe_logical = 0xDEADC0DE; /* debug value */
2521 ext4_mb_measure_extent(ac, &ex, e4b);
2522
2523 i += ex.fe_len;
2524 free -= ex.fe_len;
2525 }
2526
2527 ext4_mb_check_limits(ac, e4b, 1);
2528}
2529
2530/*
2531 * This is a special case for storages like raid5
2532 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2533 */
2534static noinline_for_stack
2535void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2536 struct ext4_buddy *e4b)
2537{
2538 struct super_block *sb = ac->ac_sb;
2539 struct ext4_sb_info *sbi = EXT4_SB(sb);
2540 void *bitmap = e4b->bd_bitmap;
2541 struct ext4_free_extent ex;
2542 ext4_fsblk_t first_group_block;
2543 ext4_fsblk_t a;
2544 ext4_grpblk_t i, stripe;
2545 int max;
2546
2547 BUG_ON(sbi->s_stripe == 0);
2548
2549 /* find first stripe-aligned block in group */
2550 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2551
2552 a = first_group_block + sbi->s_stripe - 1;
2553 do_div(a, sbi->s_stripe);
2554 i = (a * sbi->s_stripe) - first_group_block;
2555
2556 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe);
2557 i = EXT4_B2C(sbi, i);
2558 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2559 if (!mb_test_bit(i, bitmap)) {
2560 max = mb_find_extent(e4b, i, stripe, &ex);
2561 if (max >= stripe) {
2562 ac->ac_found++;
2563 ac->ac_cX_found[ac->ac_criteria]++;
2564 ex.fe_logical = 0xDEADF00D; /* debug value */
2565 ac->ac_b_ex = ex;
2566 ext4_mb_use_best_found(ac, e4b);
2567 break;
2568 }
2569 }
2570 i += stripe;
2571 }
2572}
2573
2574/*
2575 * This is also called BEFORE we load the buddy bitmap.
2576 * Returns either 1 or 0 indicating that the group is either suitable
2577 * for the allocation or not.
2578 */
2579static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2580 ext4_group_t group, enum criteria cr)
2581{
2582 ext4_grpblk_t free, fragments;
2583 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2584 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2585
2586 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2587
2588 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2589 return false;
2590
2591 free = grp->bb_free;
2592 if (free == 0)
2593 return false;
2594
2595 fragments = grp->bb_fragments;
2596 if (fragments == 0)
2597 return false;
2598
2599 switch (cr) {
2600 case CR_POWER2_ALIGNED:
2601 BUG_ON(ac->ac_2order == 0);
2602
2603 /* Avoid using the first bg of a flexgroup for data files */
2604 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2605 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2606 ((group % flex_size) == 0))
2607 return false;
2608
2609 if (free < ac->ac_g_ex.fe_len)
2610 return false;
2611
2612 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2613 return true;
2614
2615 if (grp->bb_largest_free_order < ac->ac_2order)
2616 return false;
2617
2618 return true;
2619 case CR_GOAL_LEN_FAST:
2620 case CR_BEST_AVAIL_LEN:
2621 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2622 return true;
2623 break;
2624 case CR_GOAL_LEN_SLOW:
2625 if (free >= ac->ac_g_ex.fe_len)
2626 return true;
2627 break;
2628 case CR_ANY_FREE:
2629 return true;
2630 default:
2631 BUG();
2632 }
2633
2634 return false;
2635}
2636
2637/*
2638 * This could return negative error code if something goes wrong
2639 * during ext4_mb_init_group(). This should not be called with
2640 * ext4_lock_group() held.
2641 *
2642 * Note: because we are conditionally operating with the group lock in
2643 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2644 * function using __acquire and __release. This means we need to be
2645 * super careful before messing with the error path handling via "goto
2646 * out"!
2647 */
2648static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2649 ext4_group_t group, enum criteria cr)
2650{
2651 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2652 struct super_block *sb = ac->ac_sb;
2653 struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2655 ext4_grpblk_t free;
2656 int ret = 0;
2657
2658 if (!grp)
2659 return -EFSCORRUPTED;
2660 if (sbi->s_mb_stats)
2661 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2662 if (should_lock) {
2663 ext4_lock_group(sb, group);
2664 __release(ext4_group_lock_ptr(sb, group));
2665 }
2666 free = grp->bb_free;
2667 if (free == 0)
2668 goto out;
2669 /*
2670 * In all criterias except CR_ANY_FREE we try to avoid groups that
2671 * can't possibly satisfy the full goal request due to insufficient
2672 * free blocks.
2673 */
2674 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2675 goto out;
2676 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2677 goto out;
2678 if (should_lock) {
2679 __acquire(ext4_group_lock_ptr(sb, group));
2680 ext4_unlock_group(sb, group);
2681 }
2682
2683 /* We only do this if the grp has never been initialized */
2684 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2685 struct ext4_group_desc *gdp =
2686 ext4_get_group_desc(sb, group, NULL);
2687 int ret;
2688
2689 /*
2690 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2691 * search to find large good chunks almost for free. If buddy
2692 * data is not ready, then this optimization makes no sense. But
2693 * we never skip the first block group in a flex_bg, since this
2694 * gets used for metadata block allocation, and we want to make
2695 * sure we locate metadata blocks in the first block group in
2696 * the flex_bg if possible.
2697 */
2698 if (!ext4_mb_cr_expensive(cr) &&
2699 (!sbi->s_log_groups_per_flex ||
2700 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2701 !(ext4_has_group_desc_csum(sb) &&
2702 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2703 return 0;
2704 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2705 if (ret)
2706 return ret;
2707 }
2708
2709 if (should_lock) {
2710 ext4_lock_group(sb, group);
2711 __release(ext4_group_lock_ptr(sb, group));
2712 }
2713 ret = ext4_mb_good_group(ac, group, cr);
2714out:
2715 if (should_lock) {
2716 __acquire(ext4_group_lock_ptr(sb, group));
2717 ext4_unlock_group(sb, group);
2718 }
2719 return ret;
2720}
2721
2722/*
2723 * Start prefetching @nr block bitmaps starting at @group.
2724 * Return the next group which needs to be prefetched.
2725 */
2726ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2727 unsigned int nr, int *cnt)
2728{
2729 ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 struct buffer_head *bh;
2731 struct blk_plug plug;
2732
2733 blk_start_plug(&plug);
2734 while (nr-- > 0) {
2735 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2736 NULL);
2737 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2738
2739 /*
2740 * Prefetch block groups with free blocks; but don't
2741 * bother if it is marked uninitialized on disk, since
2742 * it won't require I/O to read. Also only try to
2743 * prefetch once, so we avoid getblk() call, which can
2744 * be expensive.
2745 */
2746 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2747 EXT4_MB_GRP_NEED_INIT(grp) &&
2748 ext4_free_group_clusters(sb, gdp) > 0 ) {
2749 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2750 if (bh && !IS_ERR(bh)) {
2751 if (!buffer_uptodate(bh) && cnt)
2752 (*cnt)++;
2753 brelse(bh);
2754 }
2755 }
2756 if (++group >= ngroups)
2757 group = 0;
2758 }
2759 blk_finish_plug(&plug);
2760 return group;
2761}
2762
2763/*
2764 * Prefetching reads the block bitmap into the buffer cache; but we
2765 * need to make sure that the buddy bitmap in the page cache has been
2766 * initialized. Note that ext4_mb_init_group() will block if the I/O
2767 * is not yet completed, or indeed if it was not initiated by
2768 * ext4_mb_prefetch did not start the I/O.
2769 *
2770 * TODO: We should actually kick off the buddy bitmap setup in a work
2771 * queue when the buffer I/O is completed, so that we don't block
2772 * waiting for the block allocation bitmap read to finish when
2773 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2774 */
2775void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2776 unsigned int nr)
2777{
2778 struct ext4_group_desc *gdp;
2779 struct ext4_group_info *grp;
2780
2781 while (nr-- > 0) {
2782 if (!group)
2783 group = ext4_get_groups_count(sb);
2784 group--;
2785 gdp = ext4_get_group_desc(sb, group, NULL);
2786 grp = ext4_get_group_info(sb, group);
2787
2788 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2789 ext4_free_group_clusters(sb, gdp) > 0) {
2790 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2791 break;
2792 }
2793 }
2794}
2795
2796static noinline_for_stack int
2797ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2798{
2799 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2800 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2801 int err = 0, first_err = 0;
2802 unsigned int nr = 0, prefetch_ios = 0;
2803 struct ext4_sb_info *sbi;
2804 struct super_block *sb;
2805 struct ext4_buddy e4b;
2806 int lost;
2807
2808 sb = ac->ac_sb;
2809 sbi = EXT4_SB(sb);
2810 ngroups = ext4_get_groups_count(sb);
2811 /* non-extent files are limited to low blocks/groups */
2812 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2813 ngroups = sbi->s_blockfile_groups;
2814
2815 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2816
2817 /* first, try the goal */
2818 err = ext4_mb_find_by_goal(ac, &e4b);
2819 if (err || ac->ac_status == AC_STATUS_FOUND)
2820 goto out;
2821
2822 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2823 goto out;
2824
2825 /*
2826 * ac->ac_2order is set only if the fe_len is a power of 2
2827 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2828 * so that we try exact allocation using buddy.
2829 */
2830 i = fls(ac->ac_g_ex.fe_len);
2831 ac->ac_2order = 0;
2832 /*
2833 * We search using buddy data only if the order of the request
2834 * is greater than equal to the sbi_s_mb_order2_reqs
2835 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2836 * We also support searching for power-of-two requests only for
2837 * requests upto maximum buddy size we have constructed.
2838 */
2839 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2840 if (is_power_of_2(ac->ac_g_ex.fe_len))
2841 ac->ac_2order = array_index_nospec(i - 1,
2842 MB_NUM_ORDERS(sb));
2843 }
2844
2845 /* if stream allocation is enabled, use global goal */
2846 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2847 /* TBD: may be hot point */
2848 spin_lock(&sbi->s_md_lock);
2849 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2850 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2851 spin_unlock(&sbi->s_md_lock);
2852 }
2853
2854 /*
2855 * Let's just scan groups to find more-less suitable blocks We
2856 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2857 * aligned, in which case let's do that faster approach first.
2858 */
2859 if (ac->ac_2order)
2860 cr = CR_POWER2_ALIGNED;
2861repeat:
2862 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2863 ac->ac_criteria = cr;
2864 /*
2865 * searching for the right group start
2866 * from the goal value specified
2867 */
2868 group = ac->ac_g_ex.fe_group;
2869 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2870 prefetch_grp = group;
2871 nr = 0;
2872
2873 for (i = 0, new_cr = cr; i < ngroups; i++,
2874 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2875 int ret = 0;
2876
2877 cond_resched();
2878 if (new_cr != cr) {
2879 cr = new_cr;
2880 goto repeat;
2881 }
2882
2883 /*
2884 * Batch reads of the block allocation bitmaps
2885 * to get multiple READs in flight; limit
2886 * prefetching at inexpensive CR, otherwise mballoc
2887 * can spend a lot of time loading imperfect groups
2888 */
2889 if ((prefetch_grp == group) &&
2890 (ext4_mb_cr_expensive(cr) ||
2891 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2892 nr = sbi->s_mb_prefetch;
2893 if (ext4_has_feature_flex_bg(sb)) {
2894 nr = 1 << sbi->s_log_groups_per_flex;
2895 nr -= group & (nr - 1);
2896 nr = min(nr, sbi->s_mb_prefetch);
2897 }
2898 prefetch_grp = ext4_mb_prefetch(sb, group,
2899 nr, &prefetch_ios);
2900 }
2901
2902 /* This now checks without needing the buddy page */
2903 ret = ext4_mb_good_group_nolock(ac, group, cr);
2904 if (ret <= 0) {
2905 if (!first_err)
2906 first_err = ret;
2907 continue;
2908 }
2909
2910 err = ext4_mb_load_buddy(sb, group, &e4b);
2911 if (err)
2912 goto out;
2913
2914 ext4_lock_group(sb, group);
2915
2916 /*
2917 * We need to check again after locking the
2918 * block group
2919 */
2920 ret = ext4_mb_good_group(ac, group, cr);
2921 if (ret == 0) {
2922 ext4_unlock_group(sb, group);
2923 ext4_mb_unload_buddy(&e4b);
2924 continue;
2925 }
2926
2927 ac->ac_groups_scanned++;
2928 if (cr == CR_POWER2_ALIGNED)
2929 ext4_mb_simple_scan_group(ac, &e4b);
2930 else {
2931 bool is_stripe_aligned =
2932 (sbi->s_stripe >=
2933 sbi->s_cluster_ratio) &&
2934 !(ac->ac_g_ex.fe_len %
2935 EXT4_NUM_B2C(sbi, sbi->s_stripe));
2936
2937 if ((cr == CR_GOAL_LEN_FAST ||
2938 cr == CR_BEST_AVAIL_LEN) &&
2939 is_stripe_aligned)
2940 ext4_mb_scan_aligned(ac, &e4b);
2941
2942 if (ac->ac_status == AC_STATUS_CONTINUE)
2943 ext4_mb_complex_scan_group(ac, &e4b);
2944 }
2945
2946 ext4_unlock_group(sb, group);
2947 ext4_mb_unload_buddy(&e4b);
2948
2949 if (ac->ac_status != AC_STATUS_CONTINUE)
2950 break;
2951 }
2952 /* Processed all groups and haven't found blocks */
2953 if (sbi->s_mb_stats && i == ngroups)
2954 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2955
2956 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2957 /* Reset goal length to original goal length before
2958 * falling into CR_GOAL_LEN_SLOW */
2959 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2960 }
2961
2962 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2963 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2964 /*
2965 * We've been searching too long. Let's try to allocate
2966 * the best chunk we've found so far
2967 */
2968 ext4_mb_try_best_found(ac, &e4b);
2969 if (ac->ac_status != AC_STATUS_FOUND) {
2970 /*
2971 * Someone more lucky has already allocated it.
2972 * The only thing we can do is just take first
2973 * found block(s)
2974 */
2975 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2976 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2977 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2978 ac->ac_b_ex.fe_len, lost);
2979
2980 ac->ac_b_ex.fe_group = 0;
2981 ac->ac_b_ex.fe_start = 0;
2982 ac->ac_b_ex.fe_len = 0;
2983 ac->ac_status = AC_STATUS_CONTINUE;
2984 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2985 cr = CR_ANY_FREE;
2986 goto repeat;
2987 }
2988 }
2989
2990 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2991 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2992out:
2993 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2994 err = first_err;
2995
2996 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2997 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2998 ac->ac_flags, cr, err);
2999
3000 if (nr)
3001 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
3002
3003 return err;
3004}
3005
3006static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3007{
3008 struct super_block *sb = pde_data(file_inode(seq->file));
3009 ext4_group_t group;
3010
3011 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3012 return NULL;
3013 group = *pos + 1;
3014 return (void *) ((unsigned long) group);
3015}
3016
3017static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3018{
3019 struct super_block *sb = pde_data(file_inode(seq->file));
3020 ext4_group_t group;
3021
3022 ++*pos;
3023 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3024 return NULL;
3025 group = *pos + 1;
3026 return (void *) ((unsigned long) group);
3027}
3028
3029static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3030{
3031 struct super_block *sb = pde_data(file_inode(seq->file));
3032 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3033 int i, err;
3034 char nbuf[16];
3035 struct ext4_buddy e4b;
3036 struct ext4_group_info *grinfo;
3037 unsigned char blocksize_bits = min_t(unsigned char,
3038 sb->s_blocksize_bits,
3039 EXT4_MAX_BLOCK_LOG_SIZE);
3040 struct sg {
3041 struct ext4_group_info info;
3042 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3043 } sg;
3044
3045 group--;
3046 if (group == 0)
3047 seq_puts(seq, "#group: free frags first ["
3048 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3049 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3050
3051 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3052 sizeof(struct ext4_group_info);
3053
3054 grinfo = ext4_get_group_info(sb, group);
3055 if (!grinfo)
3056 return 0;
3057 /* Load the group info in memory only if not already loaded. */
3058 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3059 err = ext4_mb_load_buddy(sb, group, &e4b);
3060 if (err) {
3061 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3062 return 0;
3063 }
3064 ext4_mb_unload_buddy(&e4b);
3065 }
3066
3067 /*
3068 * We care only about free space counters in the group info and
3069 * these are safe to access even after the buddy has been unloaded
3070 */
3071 memcpy(&sg, grinfo, i);
3072 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3073 sg.info.bb_fragments, sg.info.bb_first_free);
3074 for (i = 0; i <= 13; i++)
3075 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3076 sg.info.bb_counters[i] : 0);
3077 seq_puts(seq, " ]");
3078 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3079 seq_puts(seq, " Block bitmap corrupted!");
3080 seq_putc(seq, '\n');
3081 return 0;
3082}
3083
3084static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3085{
3086}
3087
3088const struct seq_operations ext4_mb_seq_groups_ops = {
3089 .start = ext4_mb_seq_groups_start,
3090 .next = ext4_mb_seq_groups_next,
3091 .stop = ext4_mb_seq_groups_stop,
3092 .show = ext4_mb_seq_groups_show,
3093};
3094
3095int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3096{
3097 struct super_block *sb = seq->private;
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099
3100 seq_puts(seq, "mballoc:\n");
3101 if (!sbi->s_mb_stats) {
3102 seq_puts(seq, "\tmb stats collection turned off.\n");
3103 seq_puts(
3104 seq,
3105 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3106 return 0;
3107 }
3108 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3109 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3110
3111 seq_printf(seq, "\tgroups_scanned: %u\n",
3112 atomic_read(&sbi->s_bal_groups_scanned));
3113
3114 /* CR_POWER2_ALIGNED stats */
3115 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3116 seq_printf(seq, "\t\thits: %llu\n",
3117 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3118 seq_printf(
3119 seq, "\t\tgroups_considered: %llu\n",
3120 atomic64_read(
3121 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3122 seq_printf(seq, "\t\textents_scanned: %u\n",
3123 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3124 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3125 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3126 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3127 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3128
3129 /* CR_GOAL_LEN_FAST stats */
3130 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3131 seq_printf(seq, "\t\thits: %llu\n",
3132 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3133 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3134 atomic64_read(
3135 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3136 seq_printf(seq, "\t\textents_scanned: %u\n",
3137 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3138 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3139 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3140 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3141 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3142
3143 /* CR_BEST_AVAIL_LEN stats */
3144 seq_puts(seq, "\tcr_best_avail_stats:\n");
3145 seq_printf(seq, "\t\thits: %llu\n",
3146 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3147 seq_printf(
3148 seq, "\t\tgroups_considered: %llu\n",
3149 atomic64_read(
3150 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3151 seq_printf(seq, "\t\textents_scanned: %u\n",
3152 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3153 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3154 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3155 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3156 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3157
3158 /* CR_GOAL_LEN_SLOW stats */
3159 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3160 seq_printf(seq, "\t\thits: %llu\n",
3161 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3162 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3163 atomic64_read(
3164 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3165 seq_printf(seq, "\t\textents_scanned: %u\n",
3166 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3167 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3168 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3169
3170 /* CR_ANY_FREE stats */
3171 seq_puts(seq, "\tcr_any_free_stats:\n");
3172 seq_printf(seq, "\t\thits: %llu\n",
3173 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3174 seq_printf(
3175 seq, "\t\tgroups_considered: %llu\n",
3176 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3177 seq_printf(seq, "\t\textents_scanned: %u\n",
3178 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3179 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3180 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3181
3182 /* Aggregates */
3183 seq_printf(seq, "\textents_scanned: %u\n",
3184 atomic_read(&sbi->s_bal_ex_scanned));
3185 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3186 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3187 atomic_read(&sbi->s_bal_len_goals));
3188 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3189 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3190 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3191 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3192 atomic_read(&sbi->s_mb_buddies_generated),
3193 ext4_get_groups_count(sb));
3194 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3195 atomic64_read(&sbi->s_mb_generation_time));
3196 seq_printf(seq, "\tpreallocated: %u\n",
3197 atomic_read(&sbi->s_mb_preallocated));
3198 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3199 return 0;
3200}
3201
3202static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3203{
3204 struct super_block *sb = pde_data(file_inode(seq->file));
3205 unsigned long position;
3206
3207 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3208 return NULL;
3209 position = *pos + 1;
3210 return (void *) ((unsigned long) position);
3211}
3212
3213static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3214{
3215 struct super_block *sb = pde_data(file_inode(seq->file));
3216 unsigned long position;
3217
3218 ++*pos;
3219 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3220 return NULL;
3221 position = *pos + 1;
3222 return (void *) ((unsigned long) position);
3223}
3224
3225static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3226{
3227 struct super_block *sb = pde_data(file_inode(seq->file));
3228 struct ext4_sb_info *sbi = EXT4_SB(sb);
3229 unsigned long position = ((unsigned long) v);
3230 struct ext4_group_info *grp;
3231 unsigned int count;
3232
3233 position--;
3234 if (position >= MB_NUM_ORDERS(sb)) {
3235 position -= MB_NUM_ORDERS(sb);
3236 if (position == 0)
3237 seq_puts(seq, "avg_fragment_size_lists:\n");
3238
3239 count = 0;
3240 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3241 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3242 bb_avg_fragment_size_node)
3243 count++;
3244 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3245 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3246 (unsigned int)position, count);
3247 return 0;
3248 }
3249
3250 if (position == 0) {
3251 seq_printf(seq, "optimize_scan: %d\n",
3252 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3253 seq_puts(seq, "max_free_order_lists:\n");
3254 }
3255 count = 0;
3256 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3257 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3258 bb_largest_free_order_node)
3259 count++;
3260 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3261 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3262 (unsigned int)position, count);
3263
3264 return 0;
3265}
3266
3267static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3268{
3269}
3270
3271const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3272 .start = ext4_mb_seq_structs_summary_start,
3273 .next = ext4_mb_seq_structs_summary_next,
3274 .stop = ext4_mb_seq_structs_summary_stop,
3275 .show = ext4_mb_seq_structs_summary_show,
3276};
3277
3278static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3279{
3280 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3281 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3282
3283 BUG_ON(!cachep);
3284 return cachep;
3285}
3286
3287/*
3288 * Allocate the top-level s_group_info array for the specified number
3289 * of groups
3290 */
3291int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3292{
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 unsigned size;
3295 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3296
3297 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3298 EXT4_DESC_PER_BLOCK_BITS(sb);
3299 if (size <= sbi->s_group_info_size)
3300 return 0;
3301
3302 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3303 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3304 if (!new_groupinfo) {
3305 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3306 return -ENOMEM;
3307 }
3308 rcu_read_lock();
3309 old_groupinfo = rcu_dereference(sbi->s_group_info);
3310 if (old_groupinfo)
3311 memcpy(new_groupinfo, old_groupinfo,
3312 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3313 rcu_read_unlock();
3314 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3315 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3316 if (old_groupinfo)
3317 ext4_kvfree_array_rcu(old_groupinfo);
3318 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3319 sbi->s_group_info_size);
3320 return 0;
3321}
3322
3323/* Create and initialize ext4_group_info data for the given group. */
3324int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3325 struct ext4_group_desc *desc)
3326{
3327 int i;
3328 int metalen = 0;
3329 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3330 struct ext4_sb_info *sbi = EXT4_SB(sb);
3331 struct ext4_group_info **meta_group_info;
3332 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3333
3334 /*
3335 * First check if this group is the first of a reserved block.
3336 * If it's true, we have to allocate a new table of pointers
3337 * to ext4_group_info structures
3338 */
3339 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3340 metalen = sizeof(*meta_group_info) <<
3341 EXT4_DESC_PER_BLOCK_BITS(sb);
3342 meta_group_info = kmalloc(metalen, GFP_NOFS);
3343 if (meta_group_info == NULL) {
3344 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3345 "for a buddy group");
3346 return -ENOMEM;
3347 }
3348 rcu_read_lock();
3349 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3350 rcu_read_unlock();
3351 }
3352
3353 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3354 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3355
3356 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3357 if (meta_group_info[i] == NULL) {
3358 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3359 goto exit_group_info;
3360 }
3361 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3362 &(meta_group_info[i]->bb_state));
3363
3364 /*
3365 * initialize bb_free to be able to skip
3366 * empty groups without initialization
3367 */
3368 if (ext4_has_group_desc_csum(sb) &&
3369 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3370 meta_group_info[i]->bb_free =
3371 ext4_free_clusters_after_init(sb, group, desc);
3372 } else {
3373 meta_group_info[i]->bb_free =
3374 ext4_free_group_clusters(sb, desc);
3375 }
3376
3377 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3378 init_rwsem(&meta_group_info[i]->alloc_sem);
3379 meta_group_info[i]->bb_free_root = RB_ROOT;
3380 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3381 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3382 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3383 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3384 meta_group_info[i]->bb_group = group;
3385
3386 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3387 return 0;
3388
3389exit_group_info:
3390 /* If a meta_group_info table has been allocated, release it now */
3391 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3392 struct ext4_group_info ***group_info;
3393
3394 rcu_read_lock();
3395 group_info = rcu_dereference(sbi->s_group_info);
3396 kfree(group_info[idx]);
3397 group_info[idx] = NULL;
3398 rcu_read_unlock();
3399 }
3400 return -ENOMEM;
3401} /* ext4_mb_add_groupinfo */
3402
3403static int ext4_mb_init_backend(struct super_block *sb)
3404{
3405 ext4_group_t ngroups = ext4_get_groups_count(sb);
3406 ext4_group_t i;
3407 struct ext4_sb_info *sbi = EXT4_SB(sb);
3408 int err;
3409 struct ext4_group_desc *desc;
3410 struct ext4_group_info ***group_info;
3411 struct kmem_cache *cachep;
3412
3413 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3414 if (err)
3415 return err;
3416
3417 sbi->s_buddy_cache = new_inode(sb);
3418 if (sbi->s_buddy_cache == NULL) {
3419 ext4_msg(sb, KERN_ERR, "can't get new inode");
3420 goto err_freesgi;
3421 }
3422 /* To avoid potentially colliding with an valid on-disk inode number,
3423 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3424 * not in the inode hash, so it should never be found by iget(), but
3425 * this will avoid confusion if it ever shows up during debugging. */
3426 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3427 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3428 for (i = 0; i < ngroups; i++) {
3429 cond_resched();
3430 desc = ext4_get_group_desc(sb, i, NULL);
3431 if (desc == NULL) {
3432 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3433 goto err_freebuddy;
3434 }
3435 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3436 goto err_freebuddy;
3437 }
3438
3439 if (ext4_has_feature_flex_bg(sb)) {
3440 /* a single flex group is supposed to be read by a single IO.
3441 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3442 * unsigned integer, so the maximum shift is 32.
3443 */
3444 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3445 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3446 goto err_freebuddy;
3447 }
3448 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3449 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3450 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3451 } else {
3452 sbi->s_mb_prefetch = 32;
3453 }
3454 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3455 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3456 /*
3457 * now many real IOs to prefetch within a single allocation at
3458 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3459 * optimization we shouldn't try to load too many groups, at some point
3460 * we should start to use what we've got in memory.
3461 * with an average random access time 5ms, it'd take a second to get
3462 * 200 groups (* N with flex_bg), so let's make this limit 4
3463 */
3464 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3465 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3466 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3467
3468 return 0;
3469
3470err_freebuddy:
3471 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3472 while (i-- > 0) {
3473 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3474
3475 if (grp)
3476 kmem_cache_free(cachep, grp);
3477 }
3478 i = sbi->s_group_info_size;
3479 rcu_read_lock();
3480 group_info = rcu_dereference(sbi->s_group_info);
3481 while (i-- > 0)
3482 kfree(group_info[i]);
3483 rcu_read_unlock();
3484 iput(sbi->s_buddy_cache);
3485err_freesgi:
3486 rcu_read_lock();
3487 kvfree(rcu_dereference(sbi->s_group_info));
3488 rcu_read_unlock();
3489 return -ENOMEM;
3490}
3491
3492static void ext4_groupinfo_destroy_slabs(void)
3493{
3494 int i;
3495
3496 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3497 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3498 ext4_groupinfo_caches[i] = NULL;
3499 }
3500}
3501
3502static int ext4_groupinfo_create_slab(size_t size)
3503{
3504 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3505 int slab_size;
3506 int blocksize_bits = order_base_2(size);
3507 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3508 struct kmem_cache *cachep;
3509
3510 if (cache_index >= NR_GRPINFO_CACHES)
3511 return -EINVAL;
3512
3513 if (unlikely(cache_index < 0))
3514 cache_index = 0;
3515
3516 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3517 if (ext4_groupinfo_caches[cache_index]) {
3518 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3519 return 0; /* Already created */
3520 }
3521
3522 slab_size = offsetof(struct ext4_group_info,
3523 bb_counters[blocksize_bits + 2]);
3524
3525 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3526 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3527 NULL);
3528
3529 ext4_groupinfo_caches[cache_index] = cachep;
3530
3531 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3532 if (!cachep) {
3533 printk(KERN_EMERG
3534 "EXT4-fs: no memory for groupinfo slab cache\n");
3535 return -ENOMEM;
3536 }
3537
3538 return 0;
3539}
3540
3541static void ext4_discard_work(struct work_struct *work)
3542{
3543 struct ext4_sb_info *sbi = container_of(work,
3544 struct ext4_sb_info, s_discard_work);
3545 struct super_block *sb = sbi->s_sb;
3546 struct ext4_free_data *fd, *nfd;
3547 struct ext4_buddy e4b;
3548 LIST_HEAD(discard_list);
3549 ext4_group_t grp, load_grp;
3550 int err = 0;
3551
3552 spin_lock(&sbi->s_md_lock);
3553 list_splice_init(&sbi->s_discard_list, &discard_list);
3554 spin_unlock(&sbi->s_md_lock);
3555
3556 load_grp = UINT_MAX;
3557 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3558 /*
3559 * If filesystem is umounting or no memory or suffering
3560 * from no space, give up the discard
3561 */
3562 if ((sb->s_flags & SB_ACTIVE) && !err &&
3563 !atomic_read(&sbi->s_retry_alloc_pending)) {
3564 grp = fd->efd_group;
3565 if (grp != load_grp) {
3566 if (load_grp != UINT_MAX)
3567 ext4_mb_unload_buddy(&e4b);
3568
3569 err = ext4_mb_load_buddy(sb, grp, &e4b);
3570 if (err) {
3571 kmem_cache_free(ext4_free_data_cachep, fd);
3572 load_grp = UINT_MAX;
3573 continue;
3574 } else {
3575 load_grp = grp;
3576 }
3577 }
3578
3579 ext4_lock_group(sb, grp);
3580 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3581 fd->efd_start_cluster + fd->efd_count - 1, 1);
3582 ext4_unlock_group(sb, grp);
3583 }
3584 kmem_cache_free(ext4_free_data_cachep, fd);
3585 }
3586
3587 if (load_grp != UINT_MAX)
3588 ext4_mb_unload_buddy(&e4b);
3589}
3590
3591int ext4_mb_init(struct super_block *sb)
3592{
3593 struct ext4_sb_info *sbi = EXT4_SB(sb);
3594 unsigned i, j;
3595 unsigned offset, offset_incr;
3596 unsigned max;
3597 int ret;
3598
3599 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3600
3601 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3602 if (sbi->s_mb_offsets == NULL) {
3603 ret = -ENOMEM;
3604 goto out;
3605 }
3606
3607 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3608 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3609 if (sbi->s_mb_maxs == NULL) {
3610 ret = -ENOMEM;
3611 goto out;
3612 }
3613
3614 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3615 if (ret < 0)
3616 goto out;
3617
3618 /* order 0 is regular bitmap */
3619 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3620 sbi->s_mb_offsets[0] = 0;
3621
3622 i = 1;
3623 offset = 0;
3624 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3625 max = sb->s_blocksize << 2;
3626 do {
3627 sbi->s_mb_offsets[i] = offset;
3628 sbi->s_mb_maxs[i] = max;
3629 offset += offset_incr;
3630 offset_incr = offset_incr >> 1;
3631 max = max >> 1;
3632 i++;
3633 } while (i < MB_NUM_ORDERS(sb));
3634
3635 sbi->s_mb_avg_fragment_size =
3636 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3637 GFP_KERNEL);
3638 if (!sbi->s_mb_avg_fragment_size) {
3639 ret = -ENOMEM;
3640 goto out;
3641 }
3642 sbi->s_mb_avg_fragment_size_locks =
3643 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3644 GFP_KERNEL);
3645 if (!sbi->s_mb_avg_fragment_size_locks) {
3646 ret = -ENOMEM;
3647 goto out;
3648 }
3649 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3650 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3651 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3652 }
3653 sbi->s_mb_largest_free_orders =
3654 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3655 GFP_KERNEL);
3656 if (!sbi->s_mb_largest_free_orders) {
3657 ret = -ENOMEM;
3658 goto out;
3659 }
3660 sbi->s_mb_largest_free_orders_locks =
3661 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3662 GFP_KERNEL);
3663 if (!sbi->s_mb_largest_free_orders_locks) {
3664 ret = -ENOMEM;
3665 goto out;
3666 }
3667 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3668 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3669 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3670 }
3671
3672 spin_lock_init(&sbi->s_md_lock);
3673 sbi->s_mb_free_pending = 0;
3674 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3675 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3676 INIT_LIST_HEAD(&sbi->s_discard_list);
3677 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3678 atomic_set(&sbi->s_retry_alloc_pending, 0);
3679
3680 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3681 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3682 sbi->s_mb_stats = MB_DEFAULT_STATS;
3683 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3684 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3685 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3686
3687 /*
3688 * The default group preallocation is 512, which for 4k block
3689 * sizes translates to 2 megabytes. However for bigalloc file
3690 * systems, this is probably too big (i.e, if the cluster size
3691 * is 1 megabyte, then group preallocation size becomes half a
3692 * gigabyte!). As a default, we will keep a two megabyte
3693 * group pralloc size for cluster sizes up to 64k, and after
3694 * that, we will force a minimum group preallocation size of
3695 * 32 clusters. This translates to 8 megs when the cluster
3696 * size is 256k, and 32 megs when the cluster size is 1 meg,
3697 * which seems reasonable as a default.
3698 */
3699 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3700 sbi->s_cluster_bits, 32);
3701 /*
3702 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3703 * to the lowest multiple of s_stripe which is bigger than
3704 * the s_mb_group_prealloc as determined above. We want
3705 * the preallocation size to be an exact multiple of the
3706 * RAID stripe size so that preallocations don't fragment
3707 * the stripes.
3708 */
3709 if (sbi->s_stripe > 1) {
3710 sbi->s_mb_group_prealloc = roundup(
3711 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe));
3712 }
3713
3714 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3715 if (sbi->s_locality_groups == NULL) {
3716 ret = -ENOMEM;
3717 goto out;
3718 }
3719 for_each_possible_cpu(i) {
3720 struct ext4_locality_group *lg;
3721 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3722 mutex_init(&lg->lg_mutex);
3723 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3724 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3725 spin_lock_init(&lg->lg_prealloc_lock);
3726 }
3727
3728 if (bdev_nonrot(sb->s_bdev))
3729 sbi->s_mb_max_linear_groups = 0;
3730 else
3731 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3732 /* init file for buddy data */
3733 ret = ext4_mb_init_backend(sb);
3734 if (ret != 0)
3735 goto out_free_locality_groups;
3736
3737 return 0;
3738
3739out_free_locality_groups:
3740 free_percpu(sbi->s_locality_groups);
3741 sbi->s_locality_groups = NULL;
3742out:
3743 kfree(sbi->s_mb_avg_fragment_size);
3744 kfree(sbi->s_mb_avg_fragment_size_locks);
3745 kfree(sbi->s_mb_largest_free_orders);
3746 kfree(sbi->s_mb_largest_free_orders_locks);
3747 kfree(sbi->s_mb_offsets);
3748 sbi->s_mb_offsets = NULL;
3749 kfree(sbi->s_mb_maxs);
3750 sbi->s_mb_maxs = NULL;
3751 return ret;
3752}
3753
3754/* need to called with the ext4 group lock held */
3755static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3756{
3757 struct ext4_prealloc_space *pa;
3758 struct list_head *cur, *tmp;
3759 int count = 0;
3760
3761 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3762 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3763 list_del(&pa->pa_group_list);
3764 count++;
3765 kmem_cache_free(ext4_pspace_cachep, pa);
3766 }
3767 return count;
3768}
3769
3770void ext4_mb_release(struct super_block *sb)
3771{
3772 ext4_group_t ngroups = ext4_get_groups_count(sb);
3773 ext4_group_t i;
3774 int num_meta_group_infos;
3775 struct ext4_group_info *grinfo, ***group_info;
3776 struct ext4_sb_info *sbi = EXT4_SB(sb);
3777 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3778 int count;
3779
3780 if (test_opt(sb, DISCARD)) {
3781 /*
3782 * wait the discard work to drain all of ext4_free_data
3783 */
3784 flush_work(&sbi->s_discard_work);
3785 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3786 }
3787
3788 if (sbi->s_group_info) {
3789 for (i = 0; i < ngroups; i++) {
3790 cond_resched();
3791 grinfo = ext4_get_group_info(sb, i);
3792 if (!grinfo)
3793 continue;
3794 mb_group_bb_bitmap_free(grinfo);
3795 ext4_lock_group(sb, i);
3796 count = ext4_mb_cleanup_pa(grinfo);
3797 if (count)
3798 mb_debug(sb, "mballoc: %d PAs left\n",
3799 count);
3800 ext4_unlock_group(sb, i);
3801 kmem_cache_free(cachep, grinfo);
3802 }
3803 num_meta_group_infos = (ngroups +
3804 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3805 EXT4_DESC_PER_BLOCK_BITS(sb);
3806 rcu_read_lock();
3807 group_info = rcu_dereference(sbi->s_group_info);
3808 for (i = 0; i < num_meta_group_infos; i++)
3809 kfree(group_info[i]);
3810 kvfree(group_info);
3811 rcu_read_unlock();
3812 }
3813 kfree(sbi->s_mb_avg_fragment_size);
3814 kfree(sbi->s_mb_avg_fragment_size_locks);
3815 kfree(sbi->s_mb_largest_free_orders);
3816 kfree(sbi->s_mb_largest_free_orders_locks);
3817 kfree(sbi->s_mb_offsets);
3818 kfree(sbi->s_mb_maxs);
3819 iput(sbi->s_buddy_cache);
3820 if (sbi->s_mb_stats) {
3821 ext4_msg(sb, KERN_INFO,
3822 "mballoc: %u blocks %u reqs (%u success)",
3823 atomic_read(&sbi->s_bal_allocated),
3824 atomic_read(&sbi->s_bal_reqs),
3825 atomic_read(&sbi->s_bal_success));
3826 ext4_msg(sb, KERN_INFO,
3827 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3828 "%u 2^N hits, %u breaks, %u lost",
3829 atomic_read(&sbi->s_bal_ex_scanned),
3830 atomic_read(&sbi->s_bal_groups_scanned),
3831 atomic_read(&sbi->s_bal_goals),
3832 atomic_read(&sbi->s_bal_2orders),
3833 atomic_read(&sbi->s_bal_breaks),
3834 atomic_read(&sbi->s_mb_lost_chunks));
3835 ext4_msg(sb, KERN_INFO,
3836 "mballoc: %u generated and it took %llu",
3837 atomic_read(&sbi->s_mb_buddies_generated),
3838 atomic64_read(&sbi->s_mb_generation_time));
3839 ext4_msg(sb, KERN_INFO,
3840 "mballoc: %u preallocated, %u discarded",
3841 atomic_read(&sbi->s_mb_preallocated),
3842 atomic_read(&sbi->s_mb_discarded));
3843 }
3844
3845 free_percpu(sbi->s_locality_groups);
3846}
3847
3848static inline int ext4_issue_discard(struct super_block *sb,
3849 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3850{
3851 ext4_fsblk_t discard_block;
3852
3853 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3854 ext4_group_first_block_no(sb, block_group));
3855 count = EXT4_C2B(EXT4_SB(sb), count);
3856 trace_ext4_discard_blocks(sb,
3857 (unsigned long long) discard_block, count);
3858
3859 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3860}
3861
3862static void ext4_free_data_in_buddy(struct super_block *sb,
3863 struct ext4_free_data *entry)
3864{
3865 struct ext4_buddy e4b;
3866 struct ext4_group_info *db;
3867 int err, count = 0;
3868
3869 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3870 entry->efd_count, entry->efd_group, entry);
3871
3872 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3873 /* we expect to find existing buddy because it's pinned */
3874 BUG_ON(err != 0);
3875
3876 spin_lock(&EXT4_SB(sb)->s_md_lock);
3877 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3878 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3879
3880 db = e4b.bd_info;
3881 /* there are blocks to put in buddy to make them really free */
3882 count += entry->efd_count;
3883 ext4_lock_group(sb, entry->efd_group);
3884 /* Take it out of per group rb tree */
3885 rb_erase(&entry->efd_node, &(db->bb_free_root));
3886 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3887
3888 /*
3889 * Clear the trimmed flag for the group so that the next
3890 * ext4_trim_fs can trim it.
3891 */
3892 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3893
3894 if (!db->bb_free_root.rb_node) {
3895 /* No more items in the per group rb tree
3896 * balance refcounts from ext4_mb_free_metadata()
3897 */
3898 folio_put(e4b.bd_buddy_folio);
3899 folio_put(e4b.bd_bitmap_folio);
3900 }
3901 ext4_unlock_group(sb, entry->efd_group);
3902 ext4_mb_unload_buddy(&e4b);
3903
3904 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3905}
3906
3907/*
3908 * This function is called by the jbd2 layer once the commit has finished,
3909 * so we know we can free the blocks that were released with that commit.
3910 */
3911void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3912{
3913 struct ext4_sb_info *sbi = EXT4_SB(sb);
3914 struct ext4_free_data *entry, *tmp;
3915 LIST_HEAD(freed_data_list);
3916 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3917 bool wake;
3918
3919 list_replace_init(s_freed_head, &freed_data_list);
3920
3921 list_for_each_entry(entry, &freed_data_list, efd_list)
3922 ext4_free_data_in_buddy(sb, entry);
3923
3924 if (test_opt(sb, DISCARD)) {
3925 spin_lock(&sbi->s_md_lock);
3926 wake = list_empty(&sbi->s_discard_list);
3927 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3928 spin_unlock(&sbi->s_md_lock);
3929 if (wake)
3930 queue_work(system_unbound_wq, &sbi->s_discard_work);
3931 } else {
3932 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3933 kmem_cache_free(ext4_free_data_cachep, entry);
3934 }
3935}
3936
3937int __init ext4_init_mballoc(void)
3938{
3939 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3940 SLAB_RECLAIM_ACCOUNT);
3941 if (ext4_pspace_cachep == NULL)
3942 goto out;
3943
3944 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3945 SLAB_RECLAIM_ACCOUNT);
3946 if (ext4_ac_cachep == NULL)
3947 goto out_pa_free;
3948
3949 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3950 SLAB_RECLAIM_ACCOUNT);
3951 if (ext4_free_data_cachep == NULL)
3952 goto out_ac_free;
3953
3954 return 0;
3955
3956out_ac_free:
3957 kmem_cache_destroy(ext4_ac_cachep);
3958out_pa_free:
3959 kmem_cache_destroy(ext4_pspace_cachep);
3960out:
3961 return -ENOMEM;
3962}
3963
3964void ext4_exit_mballoc(void)
3965{
3966 /*
3967 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3968 * before destroying the slab cache.
3969 */
3970 rcu_barrier();
3971 kmem_cache_destroy(ext4_pspace_cachep);
3972 kmem_cache_destroy(ext4_ac_cachep);
3973 kmem_cache_destroy(ext4_free_data_cachep);
3974 ext4_groupinfo_destroy_slabs();
3975}
3976
3977#define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3978#define EXT4_MB_SYNC_UPDATE 0x0002
3979static int
3980ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3981 ext4_group_t group, ext4_grpblk_t blkoff,
3982 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3983{
3984 struct ext4_sb_info *sbi = EXT4_SB(sb);
3985 struct buffer_head *bitmap_bh = NULL;
3986 struct ext4_group_desc *gdp;
3987 struct buffer_head *gdp_bh;
3988 int err;
3989 unsigned int i, already, changed = len;
3990
3991 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3992 handle, sb, state, group, blkoff, len,
3993 flags, ret_changed);
3994
3995 if (ret_changed)
3996 *ret_changed = 0;
3997 bitmap_bh = ext4_read_block_bitmap(sb, group);
3998 if (IS_ERR(bitmap_bh))
3999 return PTR_ERR(bitmap_bh);
4000
4001 if (handle) {
4002 BUFFER_TRACE(bitmap_bh, "getting write access");
4003 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4004 EXT4_JTR_NONE);
4005 if (err)
4006 goto out_err;
4007 }
4008
4009 err = -EIO;
4010 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4011 if (!gdp)
4012 goto out_err;
4013
4014 if (handle) {
4015 BUFFER_TRACE(gdp_bh, "get_write_access");
4016 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4017 EXT4_JTR_NONE);
4018 if (err)
4019 goto out_err;
4020 }
4021
4022 ext4_lock_group(sb, group);
4023 if (ext4_has_group_desc_csum(sb) &&
4024 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4025 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4026 ext4_free_group_clusters_set(sb, gdp,
4027 ext4_free_clusters_after_init(sb, group, gdp));
4028 }
4029
4030 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4031 already = 0;
4032 for (i = 0; i < len; i++)
4033 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4034 state)
4035 already++;
4036 changed = len - already;
4037 }
4038
4039 if (state) {
4040 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4041 ext4_free_group_clusters_set(sb, gdp,
4042 ext4_free_group_clusters(sb, gdp) - changed);
4043 } else {
4044 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4045 ext4_free_group_clusters_set(sb, gdp,
4046 ext4_free_group_clusters(sb, gdp) + changed);
4047 }
4048
4049 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4050 ext4_group_desc_csum_set(sb, group, gdp);
4051 ext4_unlock_group(sb, group);
4052 if (ret_changed)
4053 *ret_changed = changed;
4054
4055 if (sbi->s_log_groups_per_flex) {
4056 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4057 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4058 s_flex_groups, flex_group);
4059
4060 if (state)
4061 atomic64_sub(changed, &fg->free_clusters);
4062 else
4063 atomic64_add(changed, &fg->free_clusters);
4064 }
4065
4066 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4067 if (err)
4068 goto out_err;
4069 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4070 if (err)
4071 goto out_err;
4072
4073 if (flags & EXT4_MB_SYNC_UPDATE) {
4074 sync_dirty_buffer(bitmap_bh);
4075 sync_dirty_buffer(gdp_bh);
4076 }
4077
4078out_err:
4079 brelse(bitmap_bh);
4080 return err;
4081}
4082
4083/*
4084 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4085 * Returns 0 if success or error code
4086 */
4087static noinline_for_stack int
4088ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4089 handle_t *handle, unsigned int reserv_clstrs)
4090{
4091 struct ext4_group_desc *gdp;
4092 struct ext4_sb_info *sbi;
4093 struct super_block *sb;
4094 ext4_fsblk_t block;
4095 int err, len;
4096 int flags = 0;
4097 ext4_grpblk_t changed;
4098
4099 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4100 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4101
4102 sb = ac->ac_sb;
4103 sbi = EXT4_SB(sb);
4104
4105 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4106 if (!gdp)
4107 return -EIO;
4108 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4109 ext4_free_group_clusters(sb, gdp));
4110
4111 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4112 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4113 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4114 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4115 "fs metadata", block, block+len);
4116 /* File system mounted not to panic on error
4117 * Fix the bitmap and return EFSCORRUPTED
4118 * We leak some of the blocks here.
4119 */
4120 err = ext4_mb_mark_context(handle, sb, true,
4121 ac->ac_b_ex.fe_group,
4122 ac->ac_b_ex.fe_start,
4123 ac->ac_b_ex.fe_len,
4124 0, NULL);
4125 if (!err)
4126 err = -EFSCORRUPTED;
4127 return err;
4128 }
4129
4130#ifdef AGGRESSIVE_CHECK
4131 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4132#endif
4133 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4134 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4135 flags, &changed);
4136
4137 if (err && changed == 0)
4138 return err;
4139
4140#ifdef AGGRESSIVE_CHECK
4141 BUG_ON(changed != ac->ac_b_ex.fe_len);
4142#endif
4143 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4144 /*
4145 * Now reduce the dirty block count also. Should not go negative
4146 */
4147 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4148 /* release all the reserved blocks if non delalloc */
4149 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4150 reserv_clstrs);
4151
4152 return err;
4153}
4154
4155/*
4156 * Idempotent helper for Ext4 fast commit replay path to set the state of
4157 * blocks in bitmaps and update counters.
4158 */
4159void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4160 int len, bool state)
4161{
4162 struct ext4_sb_info *sbi = EXT4_SB(sb);
4163 ext4_group_t group;
4164 ext4_grpblk_t blkoff;
4165 int err = 0;
4166 unsigned int clen, thisgrp_len;
4167
4168 while (len > 0) {
4169 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4170
4171 /*
4172 * Check to see if we are freeing blocks across a group
4173 * boundary.
4174 * In case of flex_bg, this can happen that (block, len) may
4175 * span across more than one group. In that case we need to
4176 * get the corresponding group metadata to work with.
4177 * For this we have goto again loop.
4178 */
4179 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4180 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4181 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4182
4183 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4184 ext4_error(sb, "Marking blocks in system zone - "
4185 "Block = %llu, len = %u",
4186 block, thisgrp_len);
4187 break;
4188 }
4189
4190 err = ext4_mb_mark_context(NULL, sb, state,
4191 group, blkoff, clen,
4192 EXT4_MB_BITMAP_MARKED_CHECK |
4193 EXT4_MB_SYNC_UPDATE,
4194 NULL);
4195 if (err)
4196 break;
4197
4198 block += thisgrp_len;
4199 len -= thisgrp_len;
4200 BUG_ON(len < 0);
4201 }
4202}
4203
4204/*
4205 * here we normalize request for locality group
4206 * Group request are normalized to s_mb_group_prealloc, which goes to
4207 * s_strip if we set the same via mount option.
4208 * s_mb_group_prealloc can be configured via
4209 * /sys/fs/ext4/<partition>/mb_group_prealloc
4210 *
4211 * XXX: should we try to preallocate more than the group has now?
4212 */
4213static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4214{
4215 struct super_block *sb = ac->ac_sb;
4216 struct ext4_locality_group *lg = ac->ac_lg;
4217
4218 BUG_ON(lg == NULL);
4219 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4220 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4221}
4222
4223/*
4224 * This function returns the next element to look at during inode
4225 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4226 * (ei->i_prealloc_lock)
4227 *
4228 * new_start The start of the range we want to compare
4229 * cur_start The existing start that we are comparing against
4230 * node The node of the rb_tree
4231 */
4232static inline struct rb_node*
4233ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4234{
4235 if (new_start < cur_start)
4236 return node->rb_left;
4237 else
4238 return node->rb_right;
4239}
4240
4241static inline void
4242ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4243 ext4_lblk_t start, loff_t end)
4244{
4245 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4246 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4247 struct ext4_prealloc_space *tmp_pa;
4248 ext4_lblk_t tmp_pa_start;
4249 loff_t tmp_pa_end;
4250 struct rb_node *iter;
4251
4252 read_lock(&ei->i_prealloc_lock);
4253 for (iter = ei->i_prealloc_node.rb_node; iter;
4254 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4255 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4256 pa_node.inode_node);
4257 tmp_pa_start = tmp_pa->pa_lstart;
4258 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4259
4260 spin_lock(&tmp_pa->pa_lock);
4261 if (tmp_pa->pa_deleted == 0)
4262 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4263 spin_unlock(&tmp_pa->pa_lock);
4264 }
4265 read_unlock(&ei->i_prealloc_lock);
4266}
4267
4268/*
4269 * Given an allocation context "ac" and a range "start", "end", check
4270 * and adjust boundaries if the range overlaps with any of the existing
4271 * preallocatoins stored in the corresponding inode of the allocation context.
4272 *
4273 * Parameters:
4274 * ac allocation context
4275 * start start of the new range
4276 * end end of the new range
4277 */
4278static inline void
4279ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4280 ext4_lblk_t *start, loff_t *end)
4281{
4282 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4283 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4284 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4285 struct rb_node *iter;
4286 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4287 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4288
4289 new_start = *start;
4290 new_end = *end;
4291
4292 /*
4293 * Adjust the normalized range so that it doesn't overlap with any
4294 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4295 * so it doesn't change underneath us.
4296 */
4297 read_lock(&ei->i_prealloc_lock);
4298
4299 /* Step 1: find any one immediate neighboring PA of the normalized range */
4300 for (iter = ei->i_prealloc_node.rb_node; iter;
4301 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4302 tmp_pa_start, iter)) {
4303 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4304 pa_node.inode_node);
4305 tmp_pa_start = tmp_pa->pa_lstart;
4306 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4307
4308 /* PA must not overlap original request */
4309 spin_lock(&tmp_pa->pa_lock);
4310 if (tmp_pa->pa_deleted == 0)
4311 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4312 ac->ac_o_ex.fe_logical < tmp_pa_start));
4313 spin_unlock(&tmp_pa->pa_lock);
4314 }
4315
4316 /*
4317 * Step 2: check if the found PA is left or right neighbor and
4318 * get the other neighbor
4319 */
4320 if (tmp_pa) {
4321 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4322 struct rb_node *tmp;
4323
4324 left_pa = tmp_pa;
4325 tmp = rb_next(&left_pa->pa_node.inode_node);
4326 if (tmp) {
4327 right_pa = rb_entry(tmp,
4328 struct ext4_prealloc_space,
4329 pa_node.inode_node);
4330 }
4331 } else {
4332 struct rb_node *tmp;
4333
4334 right_pa = tmp_pa;
4335 tmp = rb_prev(&right_pa->pa_node.inode_node);
4336 if (tmp) {
4337 left_pa = rb_entry(tmp,
4338 struct ext4_prealloc_space,
4339 pa_node.inode_node);
4340 }
4341 }
4342 }
4343
4344 /* Step 3: get the non deleted neighbors */
4345 if (left_pa) {
4346 for (iter = &left_pa->pa_node.inode_node;;
4347 iter = rb_prev(iter)) {
4348 if (!iter) {
4349 left_pa = NULL;
4350 break;
4351 }
4352
4353 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4354 pa_node.inode_node);
4355 left_pa = tmp_pa;
4356 spin_lock(&tmp_pa->pa_lock);
4357 if (tmp_pa->pa_deleted == 0) {
4358 spin_unlock(&tmp_pa->pa_lock);
4359 break;
4360 }
4361 spin_unlock(&tmp_pa->pa_lock);
4362 }
4363 }
4364
4365 if (right_pa) {
4366 for (iter = &right_pa->pa_node.inode_node;;
4367 iter = rb_next(iter)) {
4368 if (!iter) {
4369 right_pa = NULL;
4370 break;
4371 }
4372
4373 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4374 pa_node.inode_node);
4375 right_pa = tmp_pa;
4376 spin_lock(&tmp_pa->pa_lock);
4377 if (tmp_pa->pa_deleted == 0) {
4378 spin_unlock(&tmp_pa->pa_lock);
4379 break;
4380 }
4381 spin_unlock(&tmp_pa->pa_lock);
4382 }
4383 }
4384
4385 if (left_pa) {
4386 left_pa_end = pa_logical_end(sbi, left_pa);
4387 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4388 }
4389
4390 if (right_pa) {
4391 right_pa_start = right_pa->pa_lstart;
4392 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4393 }
4394
4395 /* Step 4: trim our normalized range to not overlap with the neighbors */
4396 if (left_pa) {
4397 if (left_pa_end > new_start)
4398 new_start = left_pa_end;
4399 }
4400
4401 if (right_pa) {
4402 if (right_pa_start < new_end)
4403 new_end = right_pa_start;
4404 }
4405 read_unlock(&ei->i_prealloc_lock);
4406
4407 /* XXX: extra loop to check we really don't overlap preallocations */
4408 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4409
4410 *start = new_start;
4411 *end = new_end;
4412}
4413
4414/*
4415 * Normalization means making request better in terms of
4416 * size and alignment
4417 */
4418static noinline_for_stack void
4419ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4420 struct ext4_allocation_request *ar)
4421{
4422 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4423 struct ext4_super_block *es = sbi->s_es;
4424 int bsbits, max;
4425 loff_t size, start_off, end;
4426 loff_t orig_size __maybe_unused;
4427 ext4_lblk_t start;
4428
4429 /* do normalize only data requests, metadata requests
4430 do not need preallocation */
4431 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4432 return;
4433
4434 /* sometime caller may want exact blocks */
4435 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4436 return;
4437
4438 /* caller may indicate that preallocation isn't
4439 * required (it's a tail, for example) */
4440 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4441 return;
4442
4443 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4444 ext4_mb_normalize_group_request(ac);
4445 return ;
4446 }
4447
4448 bsbits = ac->ac_sb->s_blocksize_bits;
4449
4450 /* first, let's learn actual file size
4451 * given current request is allocated */
4452 size = extent_logical_end(sbi, &ac->ac_o_ex);
4453 size = size << bsbits;
4454 if (size < i_size_read(ac->ac_inode))
4455 size = i_size_read(ac->ac_inode);
4456 orig_size = size;
4457
4458 /* max size of free chunks */
4459 max = 2 << bsbits;
4460
4461#define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4462 (req <= (size) || max <= (chunk_size))
4463
4464 /* first, try to predict filesize */
4465 /* XXX: should this table be tunable? */
4466 start_off = 0;
4467 if (size <= 16 * 1024) {
4468 size = 16 * 1024;
4469 } else if (size <= 32 * 1024) {
4470 size = 32 * 1024;
4471 } else if (size <= 64 * 1024) {
4472 size = 64 * 1024;
4473 } else if (size <= 128 * 1024) {
4474 size = 128 * 1024;
4475 } else if (size <= 256 * 1024) {
4476 size = 256 * 1024;
4477 } else if (size <= 512 * 1024) {
4478 size = 512 * 1024;
4479 } else if (size <= 1024 * 1024) {
4480 size = 1024 * 1024;
4481 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4482 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4483 (21 - bsbits)) << 21;
4484 size = 2 * 1024 * 1024;
4485 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4486 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4487 (22 - bsbits)) << 22;
4488 size = 4 * 1024 * 1024;
4489 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4490 (8<<20)>>bsbits, max, 8 * 1024)) {
4491 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4492 (23 - bsbits)) << 23;
4493 size = 8 * 1024 * 1024;
4494 } else {
4495 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4496 size = (loff_t) EXT4_C2B(sbi,
4497 ac->ac_o_ex.fe_len) << bsbits;
4498 }
4499 size = size >> bsbits;
4500 start = start_off >> bsbits;
4501
4502 /*
4503 * For tiny groups (smaller than 8MB) the chosen allocation
4504 * alignment may be larger than group size. Make sure the
4505 * alignment does not move allocation to a different group which
4506 * makes mballoc fail assertions later.
4507 */
4508 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4509 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4510
4511 /* avoid unnecessary preallocation that may trigger assertions */
4512 if (start + size > EXT_MAX_BLOCKS)
4513 size = EXT_MAX_BLOCKS - start;
4514
4515 /* don't cover already allocated blocks in selected range */
4516 if (ar->pleft && start <= ar->lleft) {
4517 size -= ar->lleft + 1 - start;
4518 start = ar->lleft + 1;
4519 }
4520 if (ar->pright && start + size - 1 >= ar->lright)
4521 size -= start + size - ar->lright;
4522
4523 /*
4524 * Trim allocation request for filesystems with artificially small
4525 * groups.
4526 */
4527 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4528 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4529
4530 end = start + size;
4531
4532 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4533
4534 size = end - start;
4535
4536 /*
4537 * In this function "start" and "size" are normalized for better
4538 * alignment and length such that we could preallocate more blocks.
4539 * This normalization is done such that original request of
4540 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4541 * "size" boundaries.
4542 * (Note fe_len can be relaxed since FS block allocation API does not
4543 * provide gurantee on number of contiguous blocks allocation since that
4544 * depends upon free space left, etc).
4545 * In case of inode pa, later we use the allocated blocks
4546 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4547 * range of goal/best blocks [start, size] to put it at the
4548 * ac_o_ex.fe_logical extent of this inode.
4549 * (See ext4_mb_use_inode_pa() for more details)
4550 */
4551 if (start + size <= ac->ac_o_ex.fe_logical ||
4552 start > ac->ac_o_ex.fe_logical) {
4553 ext4_msg(ac->ac_sb, KERN_ERR,
4554 "start %lu, size %lu, fe_logical %lu",
4555 (unsigned long) start, (unsigned long) size,
4556 (unsigned long) ac->ac_o_ex.fe_logical);
4557 BUG();
4558 }
4559 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4560
4561 /* now prepare goal request */
4562
4563 /* XXX: is it better to align blocks WRT to logical
4564 * placement or satisfy big request as is */
4565 ac->ac_g_ex.fe_logical = start;
4566 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4567 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4568
4569 /* define goal start in order to merge */
4570 if (ar->pright && (ar->lright == (start + size)) &&
4571 ar->pright >= size &&
4572 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4573 /* merge to the right */
4574 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4575 &ac->ac_g_ex.fe_group,
4576 &ac->ac_g_ex.fe_start);
4577 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4578 }
4579 if (ar->pleft && (ar->lleft + 1 == start) &&
4580 ar->pleft + 1 < ext4_blocks_count(es)) {
4581 /* merge to the left */
4582 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4583 &ac->ac_g_ex.fe_group,
4584 &ac->ac_g_ex.fe_start);
4585 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4586 }
4587
4588 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4589 orig_size, start);
4590}
4591
4592static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4593{
4594 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4595
4596 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4597 atomic_inc(&sbi->s_bal_reqs);
4598 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4599 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4600 atomic_inc(&sbi->s_bal_success);
4601
4602 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4603 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4604 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4605 }
4606
4607 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4608 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4609 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4610 atomic_inc(&sbi->s_bal_goals);
4611 /* did we allocate as much as normalizer originally wanted? */
4612 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4613 atomic_inc(&sbi->s_bal_len_goals);
4614
4615 if (ac->ac_found > sbi->s_mb_max_to_scan)
4616 atomic_inc(&sbi->s_bal_breaks);
4617 }
4618
4619 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4620 trace_ext4_mballoc_alloc(ac);
4621 else
4622 trace_ext4_mballoc_prealloc(ac);
4623}
4624
4625/*
4626 * Called on failure; free up any blocks from the inode PA for this
4627 * context. We don't need this for MB_GROUP_PA because we only change
4628 * pa_free in ext4_mb_release_context(), but on failure, we've already
4629 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4630 */
4631static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4632{
4633 struct ext4_prealloc_space *pa = ac->ac_pa;
4634 struct ext4_buddy e4b;
4635 int err;
4636
4637 if (pa == NULL) {
4638 if (ac->ac_f_ex.fe_len == 0)
4639 return;
4640 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4641 if (WARN_RATELIMIT(err,
4642 "ext4: mb_load_buddy failed (%d)", err))
4643 /*
4644 * This should never happen since we pin the
4645 * pages in the ext4_allocation_context so
4646 * ext4_mb_load_buddy() should never fail.
4647 */
4648 return;
4649 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4650 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4651 ac->ac_f_ex.fe_len);
4652 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4653 ext4_mb_unload_buddy(&e4b);
4654 return;
4655 }
4656 if (pa->pa_type == MB_INODE_PA) {
4657 spin_lock(&pa->pa_lock);
4658 pa->pa_free += ac->ac_b_ex.fe_len;
4659 spin_unlock(&pa->pa_lock);
4660 }
4661}
4662
4663/*
4664 * use blocks preallocated to inode
4665 */
4666static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4667 struct ext4_prealloc_space *pa)
4668{
4669 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4670 ext4_fsblk_t start;
4671 ext4_fsblk_t end;
4672 int len;
4673
4674 /* found preallocated blocks, use them */
4675 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4676 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4677 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4678 len = EXT4_NUM_B2C(sbi, end - start);
4679 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4680 &ac->ac_b_ex.fe_start);
4681 ac->ac_b_ex.fe_len = len;
4682 ac->ac_status = AC_STATUS_FOUND;
4683 ac->ac_pa = pa;
4684
4685 BUG_ON(start < pa->pa_pstart);
4686 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4687 BUG_ON(pa->pa_free < len);
4688 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4689 pa->pa_free -= len;
4690
4691 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4692}
4693
4694/*
4695 * use blocks preallocated to locality group
4696 */
4697static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4698 struct ext4_prealloc_space *pa)
4699{
4700 unsigned int len = ac->ac_o_ex.fe_len;
4701
4702 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4703 &ac->ac_b_ex.fe_group,
4704 &ac->ac_b_ex.fe_start);
4705 ac->ac_b_ex.fe_len = len;
4706 ac->ac_status = AC_STATUS_FOUND;
4707 ac->ac_pa = pa;
4708
4709 /* we don't correct pa_pstart or pa_len here to avoid
4710 * possible race when the group is being loaded concurrently
4711 * instead we correct pa later, after blocks are marked
4712 * in on-disk bitmap -- see ext4_mb_release_context()
4713 * Other CPUs are prevented from allocating from this pa by lg_mutex
4714 */
4715 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4716 pa->pa_lstart, len, pa);
4717}
4718
4719/*
4720 * Return the prealloc space that have minimal distance
4721 * from the goal block. @cpa is the prealloc
4722 * space that is having currently known minimal distance
4723 * from the goal block.
4724 */
4725static struct ext4_prealloc_space *
4726ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4727 struct ext4_prealloc_space *pa,
4728 struct ext4_prealloc_space *cpa)
4729{
4730 ext4_fsblk_t cur_distance, new_distance;
4731
4732 if (cpa == NULL) {
4733 atomic_inc(&pa->pa_count);
4734 return pa;
4735 }
4736 cur_distance = abs(goal_block - cpa->pa_pstart);
4737 new_distance = abs(goal_block - pa->pa_pstart);
4738
4739 if (cur_distance <= new_distance)
4740 return cpa;
4741
4742 /* drop the previous reference */
4743 atomic_dec(&cpa->pa_count);
4744 atomic_inc(&pa->pa_count);
4745 return pa;
4746}
4747
4748/*
4749 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4750 */
4751static bool
4752ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4753 struct ext4_prealloc_space *pa)
4754{
4755 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4756 ext4_fsblk_t start;
4757
4758 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4759 return true;
4760
4761 /*
4762 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4763 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4764 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4765 * consistent with ext4_mb_find_by_goal.
4766 */
4767 start = pa->pa_pstart +
4768 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4769 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4770 return false;
4771
4772 if (ac->ac_g_ex.fe_len > pa->pa_len -
4773 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4774 return false;
4775
4776 return true;
4777}
4778
4779/*
4780 * search goal blocks in preallocated space
4781 */
4782static noinline_for_stack bool
4783ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4784{
4785 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4786 int order, i;
4787 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4788 struct ext4_locality_group *lg;
4789 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4790 struct rb_node *iter;
4791 ext4_fsblk_t goal_block;
4792
4793 /* only data can be preallocated */
4794 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4795 return false;
4796
4797 /*
4798 * first, try per-file preallocation by searching the inode pa rbtree.
4799 *
4800 * Here, we can't do a direct traversal of the tree because
4801 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4802 * deleted and that can cause direct traversal to skip some entries.
4803 */
4804 read_lock(&ei->i_prealloc_lock);
4805
4806 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4807 goto try_group_pa;
4808 }
4809
4810 /*
4811 * Step 1: Find a pa with logical start immediately adjacent to the
4812 * original logical start. This could be on the left or right.
4813 *
4814 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4815 */
4816 for (iter = ei->i_prealloc_node.rb_node; iter;
4817 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4818 tmp_pa->pa_lstart, iter)) {
4819 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4820 pa_node.inode_node);
4821 }
4822
4823 /*
4824 * Step 2: The adjacent pa might be to the right of logical start, find
4825 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4826 * logical start is towards the left of original request's logical start
4827 */
4828 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4829 struct rb_node *tmp;
4830 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4831
4832 if (tmp) {
4833 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4834 pa_node.inode_node);
4835 } else {
4836 /*
4837 * If there is no adjacent pa to the left then finding
4838 * an overlapping pa is not possible hence stop searching
4839 * inode pa tree
4840 */
4841 goto try_group_pa;
4842 }
4843 }
4844
4845 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4846
4847 /*
4848 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4849 * the first non deleted adjacent pa. After this step we should have a
4850 * valid tmp_pa which is guaranteed to be non deleted.
4851 */
4852 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4853 if (!iter) {
4854 /*
4855 * no non deleted left adjacent pa, so stop searching
4856 * inode pa tree
4857 */
4858 goto try_group_pa;
4859 }
4860 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4861 pa_node.inode_node);
4862 spin_lock(&tmp_pa->pa_lock);
4863 if (tmp_pa->pa_deleted == 0) {
4864 /*
4865 * We will keep holding the pa_lock from
4866 * this point on because we don't want group discard
4867 * to delete this pa underneath us. Since group
4868 * discard is anyways an ENOSPC operation it
4869 * should be okay for it to wait a few more cycles.
4870 */
4871 break;
4872 } else {
4873 spin_unlock(&tmp_pa->pa_lock);
4874 }
4875 }
4876
4877 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4878 BUG_ON(tmp_pa->pa_deleted == 1);
4879
4880 /*
4881 * Step 4: We now have the non deleted left adjacent pa. Only this
4882 * pa can possibly satisfy the request hence check if it overlaps
4883 * original logical start and stop searching if it doesn't.
4884 */
4885 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4886 spin_unlock(&tmp_pa->pa_lock);
4887 goto try_group_pa;
4888 }
4889
4890 /* non-extent files can't have physical blocks past 2^32 */
4891 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4892 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4893 EXT4_MAX_BLOCK_FILE_PHYS)) {
4894 /*
4895 * Since PAs don't overlap, we won't find any other PA to
4896 * satisfy this.
4897 */
4898 spin_unlock(&tmp_pa->pa_lock);
4899 goto try_group_pa;
4900 }
4901
4902 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4903 atomic_inc(&tmp_pa->pa_count);
4904 ext4_mb_use_inode_pa(ac, tmp_pa);
4905 spin_unlock(&tmp_pa->pa_lock);
4906 read_unlock(&ei->i_prealloc_lock);
4907 return true;
4908 } else {
4909 /*
4910 * We found a valid overlapping pa but couldn't use it because
4911 * it had no free blocks. This should ideally never happen
4912 * because:
4913 *
4914 * 1. When a new inode pa is added to rbtree it must have
4915 * pa_free > 0 since otherwise we won't actually need
4916 * preallocation.
4917 *
4918 * 2. An inode pa that is in the rbtree can only have it's
4919 * pa_free become zero when another thread calls:
4920 * ext4_mb_new_blocks
4921 * ext4_mb_use_preallocated
4922 * ext4_mb_use_inode_pa
4923 *
4924 * 3. Further, after the above calls make pa_free == 0, we will
4925 * immediately remove it from the rbtree in:
4926 * ext4_mb_new_blocks
4927 * ext4_mb_release_context
4928 * ext4_mb_put_pa
4929 *
4930 * 4. Since the pa_free becoming 0 and pa_free getting removed
4931 * from tree both happen in ext4_mb_new_blocks, which is always
4932 * called with i_data_sem held for data allocations, we can be
4933 * sure that another process will never see a pa in rbtree with
4934 * pa_free == 0.
4935 */
4936 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4937 }
4938 spin_unlock(&tmp_pa->pa_lock);
4939try_group_pa:
4940 read_unlock(&ei->i_prealloc_lock);
4941
4942 /* can we use group allocation? */
4943 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4944 return false;
4945
4946 /* inode may have no locality group for some reason */
4947 lg = ac->ac_lg;
4948 if (lg == NULL)
4949 return false;
4950 order = fls(ac->ac_o_ex.fe_len) - 1;
4951 if (order > PREALLOC_TB_SIZE - 1)
4952 /* The max size of hash table is PREALLOC_TB_SIZE */
4953 order = PREALLOC_TB_SIZE - 1;
4954
4955 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4956 /*
4957 * search for the prealloc space that is having
4958 * minimal distance from the goal block.
4959 */
4960 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4961 rcu_read_lock();
4962 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4963 pa_node.lg_list) {
4964 spin_lock(&tmp_pa->pa_lock);
4965 if (tmp_pa->pa_deleted == 0 &&
4966 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4967
4968 cpa = ext4_mb_check_group_pa(goal_block,
4969 tmp_pa, cpa);
4970 }
4971 spin_unlock(&tmp_pa->pa_lock);
4972 }
4973 rcu_read_unlock();
4974 }
4975 if (cpa) {
4976 ext4_mb_use_group_pa(ac, cpa);
4977 return true;
4978 }
4979 return false;
4980}
4981
4982/*
4983 * the function goes through all preallocation in this group and marks them
4984 * used in in-core bitmap. buddy must be generated from this bitmap
4985 * Need to be called with ext4 group lock held
4986 */
4987static noinline_for_stack
4988void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4989 ext4_group_t group)
4990{
4991 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4992 struct ext4_prealloc_space *pa;
4993 struct list_head *cur;
4994 ext4_group_t groupnr;
4995 ext4_grpblk_t start;
4996 int preallocated = 0;
4997 int len;
4998
4999 if (!grp)
5000 return;
5001
5002 /* all form of preallocation discards first load group,
5003 * so the only competing code is preallocation use.
5004 * we don't need any locking here
5005 * notice we do NOT ignore preallocations with pa_deleted
5006 * otherwise we could leave used blocks available for
5007 * allocation in buddy when concurrent ext4_mb_put_pa()
5008 * is dropping preallocation
5009 */
5010 list_for_each(cur, &grp->bb_prealloc_list) {
5011 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5012 spin_lock(&pa->pa_lock);
5013 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5014 &groupnr, &start);
5015 len = pa->pa_len;
5016 spin_unlock(&pa->pa_lock);
5017 if (unlikely(len == 0))
5018 continue;
5019 BUG_ON(groupnr != group);
5020 mb_set_bits(bitmap, start, len);
5021 preallocated += len;
5022 }
5023 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5024}
5025
5026static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5027 struct ext4_prealloc_space *pa)
5028{
5029 struct ext4_inode_info *ei;
5030
5031 if (pa->pa_deleted) {
5032 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5033 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5034 pa->pa_len);
5035 return;
5036 }
5037
5038 pa->pa_deleted = 1;
5039
5040 if (pa->pa_type == MB_INODE_PA) {
5041 ei = EXT4_I(pa->pa_inode);
5042 atomic_dec(&ei->i_prealloc_active);
5043 }
5044}
5045
5046static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5047{
5048 BUG_ON(!pa);
5049 BUG_ON(atomic_read(&pa->pa_count));
5050 BUG_ON(pa->pa_deleted == 0);
5051 kmem_cache_free(ext4_pspace_cachep, pa);
5052}
5053
5054static void ext4_mb_pa_callback(struct rcu_head *head)
5055{
5056 struct ext4_prealloc_space *pa;
5057
5058 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5059 ext4_mb_pa_free(pa);
5060}
5061
5062/*
5063 * drops a reference to preallocated space descriptor
5064 * if this was the last reference and the space is consumed
5065 */
5066static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5067 struct super_block *sb, struct ext4_prealloc_space *pa)
5068{
5069 ext4_group_t grp;
5070 ext4_fsblk_t grp_blk;
5071 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5072
5073 /* in this short window concurrent discard can set pa_deleted */
5074 spin_lock(&pa->pa_lock);
5075 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5076 spin_unlock(&pa->pa_lock);
5077 return;
5078 }
5079
5080 if (pa->pa_deleted == 1) {
5081 spin_unlock(&pa->pa_lock);
5082 return;
5083 }
5084
5085 ext4_mb_mark_pa_deleted(sb, pa);
5086 spin_unlock(&pa->pa_lock);
5087
5088 grp_blk = pa->pa_pstart;
5089 /*
5090 * If doing group-based preallocation, pa_pstart may be in the
5091 * next group when pa is used up
5092 */
5093 if (pa->pa_type == MB_GROUP_PA)
5094 grp_blk--;
5095
5096 grp = ext4_get_group_number(sb, grp_blk);
5097
5098 /*
5099 * possible race:
5100 *
5101 * P1 (buddy init) P2 (regular allocation)
5102 * find block B in PA
5103 * copy on-disk bitmap to buddy
5104 * mark B in on-disk bitmap
5105 * drop PA from group
5106 * mark all PAs in buddy
5107 *
5108 * thus, P1 initializes buddy with B available. to prevent this
5109 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5110 * against that pair
5111 */
5112 ext4_lock_group(sb, grp);
5113 list_del(&pa->pa_group_list);
5114 ext4_unlock_group(sb, grp);
5115
5116 if (pa->pa_type == MB_INODE_PA) {
5117 write_lock(pa->pa_node_lock.inode_lock);
5118 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5119 write_unlock(pa->pa_node_lock.inode_lock);
5120 ext4_mb_pa_free(pa);
5121 } else {
5122 spin_lock(pa->pa_node_lock.lg_lock);
5123 list_del_rcu(&pa->pa_node.lg_list);
5124 spin_unlock(pa->pa_node_lock.lg_lock);
5125 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5126 }
5127}
5128
5129static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5130{
5131 struct rb_node **iter = &root->rb_node, *parent = NULL;
5132 struct ext4_prealloc_space *iter_pa, *new_pa;
5133 ext4_lblk_t iter_start, new_start;
5134
5135 while (*iter) {
5136 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5137 pa_node.inode_node);
5138 new_pa = rb_entry(new, struct ext4_prealloc_space,
5139 pa_node.inode_node);
5140 iter_start = iter_pa->pa_lstart;
5141 new_start = new_pa->pa_lstart;
5142
5143 parent = *iter;
5144 if (new_start < iter_start)
5145 iter = &((*iter)->rb_left);
5146 else
5147 iter = &((*iter)->rb_right);
5148 }
5149
5150 rb_link_node(new, parent, iter);
5151 rb_insert_color(new, root);
5152}
5153
5154/*
5155 * creates new preallocated space for given inode
5156 */
5157static noinline_for_stack void
5158ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5159{
5160 struct super_block *sb = ac->ac_sb;
5161 struct ext4_sb_info *sbi = EXT4_SB(sb);
5162 struct ext4_prealloc_space *pa;
5163 struct ext4_group_info *grp;
5164 struct ext4_inode_info *ei;
5165
5166 /* preallocate only when found space is larger then requested */
5167 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5168 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5169 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5170 BUG_ON(ac->ac_pa == NULL);
5171
5172 pa = ac->ac_pa;
5173
5174 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5175 struct ext4_free_extent ex = {
5176 .fe_logical = ac->ac_g_ex.fe_logical,
5177 .fe_len = ac->ac_orig_goal_len,
5178 };
5179 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5180 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5181
5182 /*
5183 * We can't allocate as much as normalizer wants, so we try
5184 * to get proper lstart to cover the original request, except
5185 * when the goal doesn't cover the original request as below:
5186 *
5187 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5188 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5189 */
5190 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5191 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5192
5193 /*
5194 * Use the below logic for adjusting best extent as it keeps
5195 * fragmentation in check while ensuring logical range of best
5196 * extent doesn't overflow out of goal extent:
5197 *
5198 * 1. Check if best ex can be kept at end of goal (before
5199 * cr_best_avail trimmed it) and still cover original start
5200 * 2. Else, check if best ex can be kept at start of goal and
5201 * still cover original end
5202 * 3. Else, keep the best ex at start of original request.
5203 */
5204 ex.fe_len = ac->ac_b_ex.fe_len;
5205
5206 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5207 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5208 goto adjust_bex;
5209
5210 ex.fe_logical = ac->ac_g_ex.fe_logical;
5211 if (o_ex_end <= extent_logical_end(sbi, &ex))
5212 goto adjust_bex;
5213
5214 ex.fe_logical = ac->ac_o_ex.fe_logical;
5215adjust_bex:
5216 ac->ac_b_ex.fe_logical = ex.fe_logical;
5217
5218 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5219 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5220 }
5221
5222 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5223 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5224 pa->pa_len = ac->ac_b_ex.fe_len;
5225 pa->pa_free = pa->pa_len;
5226 spin_lock_init(&pa->pa_lock);
5227 INIT_LIST_HEAD(&pa->pa_group_list);
5228 pa->pa_deleted = 0;
5229 pa->pa_type = MB_INODE_PA;
5230
5231 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5232 pa->pa_len, pa->pa_lstart);
5233 trace_ext4_mb_new_inode_pa(ac, pa);
5234
5235 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5236 ext4_mb_use_inode_pa(ac, pa);
5237
5238 ei = EXT4_I(ac->ac_inode);
5239 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5240 if (!grp)
5241 return;
5242
5243 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5244 pa->pa_inode = ac->ac_inode;
5245
5246 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5247
5248 write_lock(pa->pa_node_lock.inode_lock);
5249 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5250 write_unlock(pa->pa_node_lock.inode_lock);
5251 atomic_inc(&ei->i_prealloc_active);
5252}
5253
5254/*
5255 * creates new preallocated space for locality group inodes belongs to
5256 */
5257static noinline_for_stack void
5258ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5259{
5260 struct super_block *sb = ac->ac_sb;
5261 struct ext4_locality_group *lg;
5262 struct ext4_prealloc_space *pa;
5263 struct ext4_group_info *grp;
5264
5265 /* preallocate only when found space is larger then requested */
5266 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5267 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5268 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5269 BUG_ON(ac->ac_pa == NULL);
5270
5271 pa = ac->ac_pa;
5272
5273 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5274 pa->pa_lstart = pa->pa_pstart;
5275 pa->pa_len = ac->ac_b_ex.fe_len;
5276 pa->pa_free = pa->pa_len;
5277 spin_lock_init(&pa->pa_lock);
5278 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5279 INIT_LIST_HEAD(&pa->pa_group_list);
5280 pa->pa_deleted = 0;
5281 pa->pa_type = MB_GROUP_PA;
5282
5283 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5284 pa->pa_len, pa->pa_lstart);
5285 trace_ext4_mb_new_group_pa(ac, pa);
5286
5287 ext4_mb_use_group_pa(ac, pa);
5288 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5289
5290 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5291 if (!grp)
5292 return;
5293 lg = ac->ac_lg;
5294 BUG_ON(lg == NULL);
5295
5296 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5297 pa->pa_inode = NULL;
5298
5299 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5300
5301 /*
5302 * We will later add the new pa to the right bucket
5303 * after updating the pa_free in ext4_mb_release_context
5304 */
5305}
5306
5307static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5308{
5309 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5310 ext4_mb_new_group_pa(ac);
5311 else
5312 ext4_mb_new_inode_pa(ac);
5313}
5314
5315/*
5316 * finds all unused blocks in on-disk bitmap, frees them in
5317 * in-core bitmap and buddy.
5318 * @pa must be unlinked from inode and group lists, so that
5319 * nobody else can find/use it.
5320 * the caller MUST hold group/inode locks.
5321 * TODO: optimize the case when there are no in-core structures yet
5322 */
5323static noinline_for_stack void
5324ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5325 struct ext4_prealloc_space *pa)
5326{
5327 struct super_block *sb = e4b->bd_sb;
5328 struct ext4_sb_info *sbi = EXT4_SB(sb);
5329 unsigned int end;
5330 unsigned int next;
5331 ext4_group_t group;
5332 ext4_grpblk_t bit;
5333 unsigned long long grp_blk_start;
5334 int free = 0;
5335
5336 BUG_ON(pa->pa_deleted == 0);
5337 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5338 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5339 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5340 end = bit + pa->pa_len;
5341
5342 while (bit < end) {
5343 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5344 if (bit >= end)
5345 break;
5346 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5347 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5348 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5349 (unsigned) next - bit, (unsigned) group);
5350 free += next - bit;
5351
5352 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5353 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5354 EXT4_C2B(sbi, bit)),
5355 next - bit);
5356 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5357 bit = next + 1;
5358 }
5359 if (free != pa->pa_free) {
5360 ext4_msg(e4b->bd_sb, KERN_CRIT,
5361 "pa %p: logic %lu, phys. %lu, len %d",
5362 pa, (unsigned long) pa->pa_lstart,
5363 (unsigned long) pa->pa_pstart,
5364 pa->pa_len);
5365 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5366 free, pa->pa_free);
5367 /*
5368 * pa is already deleted so we use the value obtained
5369 * from the bitmap and continue.
5370 */
5371 }
5372 atomic_add(free, &sbi->s_mb_discarded);
5373}
5374
5375static noinline_for_stack void
5376ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5377 struct ext4_prealloc_space *pa)
5378{
5379 struct super_block *sb = e4b->bd_sb;
5380 ext4_group_t group;
5381 ext4_grpblk_t bit;
5382
5383 trace_ext4_mb_release_group_pa(sb, pa);
5384 BUG_ON(pa->pa_deleted == 0);
5385 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5386 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5387 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5388 e4b->bd_group, group, pa->pa_pstart);
5389 return;
5390 }
5391 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5392 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5393 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5394}
5395
5396/*
5397 * releases all preallocations in given group
5398 *
5399 * first, we need to decide discard policy:
5400 * - when do we discard
5401 * 1) ENOSPC
5402 * - how many do we discard
5403 * 1) how many requested
5404 */
5405static noinline_for_stack int
5406ext4_mb_discard_group_preallocations(struct super_block *sb,
5407 ext4_group_t group, int *busy)
5408{
5409 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5410 struct buffer_head *bitmap_bh = NULL;
5411 struct ext4_prealloc_space *pa, *tmp;
5412 LIST_HEAD(list);
5413 struct ext4_buddy e4b;
5414 struct ext4_inode_info *ei;
5415 int err;
5416 int free = 0;
5417
5418 if (!grp)
5419 return 0;
5420 mb_debug(sb, "discard preallocation for group %u\n", group);
5421 if (list_empty(&grp->bb_prealloc_list))
5422 goto out_dbg;
5423
5424 bitmap_bh = ext4_read_block_bitmap(sb, group);
5425 if (IS_ERR(bitmap_bh)) {
5426 err = PTR_ERR(bitmap_bh);
5427 ext4_error_err(sb, -err,
5428 "Error %d reading block bitmap for %u",
5429 err, group);
5430 goto out_dbg;
5431 }
5432
5433 err = ext4_mb_load_buddy(sb, group, &e4b);
5434 if (err) {
5435 ext4_warning(sb, "Error %d loading buddy information for %u",
5436 err, group);
5437 put_bh(bitmap_bh);
5438 goto out_dbg;
5439 }
5440
5441 ext4_lock_group(sb, group);
5442 list_for_each_entry_safe(pa, tmp,
5443 &grp->bb_prealloc_list, pa_group_list) {
5444 spin_lock(&pa->pa_lock);
5445 if (atomic_read(&pa->pa_count)) {
5446 spin_unlock(&pa->pa_lock);
5447 *busy = 1;
5448 continue;
5449 }
5450 if (pa->pa_deleted) {
5451 spin_unlock(&pa->pa_lock);
5452 continue;
5453 }
5454
5455 /* seems this one can be freed ... */
5456 ext4_mb_mark_pa_deleted(sb, pa);
5457
5458 if (!free)
5459 this_cpu_inc(discard_pa_seq);
5460
5461 /* we can trust pa_free ... */
5462 free += pa->pa_free;
5463
5464 spin_unlock(&pa->pa_lock);
5465
5466 list_del(&pa->pa_group_list);
5467 list_add(&pa->u.pa_tmp_list, &list);
5468 }
5469
5470 /* now free all selected PAs */
5471 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5472
5473 /* remove from object (inode or locality group) */
5474 if (pa->pa_type == MB_GROUP_PA) {
5475 spin_lock(pa->pa_node_lock.lg_lock);
5476 list_del_rcu(&pa->pa_node.lg_list);
5477 spin_unlock(pa->pa_node_lock.lg_lock);
5478 } else {
5479 write_lock(pa->pa_node_lock.inode_lock);
5480 ei = EXT4_I(pa->pa_inode);
5481 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5482 write_unlock(pa->pa_node_lock.inode_lock);
5483 }
5484
5485 list_del(&pa->u.pa_tmp_list);
5486
5487 if (pa->pa_type == MB_GROUP_PA) {
5488 ext4_mb_release_group_pa(&e4b, pa);
5489 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5490 } else {
5491 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5492 ext4_mb_pa_free(pa);
5493 }
5494 }
5495
5496 ext4_unlock_group(sb, group);
5497 ext4_mb_unload_buddy(&e4b);
5498 put_bh(bitmap_bh);
5499out_dbg:
5500 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5501 free, group, grp->bb_free);
5502 return free;
5503}
5504
5505/*
5506 * releases all non-used preallocated blocks for given inode
5507 *
5508 * It's important to discard preallocations under i_data_sem
5509 * We don't want another block to be served from the prealloc
5510 * space when we are discarding the inode prealloc space.
5511 *
5512 * FIXME!! Make sure it is valid at all the call sites
5513 */
5514void ext4_discard_preallocations(struct inode *inode)
5515{
5516 struct ext4_inode_info *ei = EXT4_I(inode);
5517 struct super_block *sb = inode->i_sb;
5518 struct buffer_head *bitmap_bh = NULL;
5519 struct ext4_prealloc_space *pa, *tmp;
5520 ext4_group_t group = 0;
5521 LIST_HEAD(list);
5522 struct ext4_buddy e4b;
5523 struct rb_node *iter;
5524 int err;
5525
5526 if (!S_ISREG(inode->i_mode))
5527 return;
5528
5529 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5530 return;
5531
5532 mb_debug(sb, "discard preallocation for inode %lu\n",
5533 inode->i_ino);
5534 trace_ext4_discard_preallocations(inode,
5535 atomic_read(&ei->i_prealloc_active));
5536
5537repeat:
5538 /* first, collect all pa's in the inode */
5539 write_lock(&ei->i_prealloc_lock);
5540 for (iter = rb_first(&ei->i_prealloc_node); iter;
5541 iter = rb_next(iter)) {
5542 pa = rb_entry(iter, struct ext4_prealloc_space,
5543 pa_node.inode_node);
5544 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5545
5546 spin_lock(&pa->pa_lock);
5547 if (atomic_read(&pa->pa_count)) {
5548 /* this shouldn't happen often - nobody should
5549 * use preallocation while we're discarding it */
5550 spin_unlock(&pa->pa_lock);
5551 write_unlock(&ei->i_prealloc_lock);
5552 ext4_msg(sb, KERN_ERR,
5553 "uh-oh! used pa while discarding");
5554 WARN_ON(1);
5555 schedule_timeout_uninterruptible(HZ);
5556 goto repeat;
5557
5558 }
5559 if (pa->pa_deleted == 0) {
5560 ext4_mb_mark_pa_deleted(sb, pa);
5561 spin_unlock(&pa->pa_lock);
5562 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5563 list_add(&pa->u.pa_tmp_list, &list);
5564 continue;
5565 }
5566
5567 /* someone is deleting pa right now */
5568 spin_unlock(&pa->pa_lock);
5569 write_unlock(&ei->i_prealloc_lock);
5570
5571 /* we have to wait here because pa_deleted
5572 * doesn't mean pa is already unlinked from
5573 * the list. as we might be called from
5574 * ->clear_inode() the inode will get freed
5575 * and concurrent thread which is unlinking
5576 * pa from inode's list may access already
5577 * freed memory, bad-bad-bad */
5578
5579 /* XXX: if this happens too often, we can
5580 * add a flag to force wait only in case
5581 * of ->clear_inode(), but not in case of
5582 * regular truncate */
5583 schedule_timeout_uninterruptible(HZ);
5584 goto repeat;
5585 }
5586 write_unlock(&ei->i_prealloc_lock);
5587
5588 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5589 BUG_ON(pa->pa_type != MB_INODE_PA);
5590 group = ext4_get_group_number(sb, pa->pa_pstart);
5591
5592 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5593 GFP_NOFS|__GFP_NOFAIL);
5594 if (err) {
5595 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5596 err, group);
5597 continue;
5598 }
5599
5600 bitmap_bh = ext4_read_block_bitmap(sb, group);
5601 if (IS_ERR(bitmap_bh)) {
5602 err = PTR_ERR(bitmap_bh);
5603 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5604 err, group);
5605 ext4_mb_unload_buddy(&e4b);
5606 continue;
5607 }
5608
5609 ext4_lock_group(sb, group);
5610 list_del(&pa->pa_group_list);
5611 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5612 ext4_unlock_group(sb, group);
5613
5614 ext4_mb_unload_buddy(&e4b);
5615 put_bh(bitmap_bh);
5616
5617 list_del(&pa->u.pa_tmp_list);
5618 ext4_mb_pa_free(pa);
5619 }
5620}
5621
5622static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5623{
5624 struct ext4_prealloc_space *pa;
5625
5626 BUG_ON(ext4_pspace_cachep == NULL);
5627 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5628 if (!pa)
5629 return -ENOMEM;
5630 atomic_set(&pa->pa_count, 1);
5631 ac->ac_pa = pa;
5632 return 0;
5633}
5634
5635static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5636{
5637 struct ext4_prealloc_space *pa = ac->ac_pa;
5638
5639 BUG_ON(!pa);
5640 ac->ac_pa = NULL;
5641 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5642 /*
5643 * current function is only called due to an error or due to
5644 * len of found blocks < len of requested blocks hence the PA has not
5645 * been added to grp->bb_prealloc_list. So we don't need to lock it
5646 */
5647 pa->pa_deleted = 1;
5648 ext4_mb_pa_free(pa);
5649}
5650
5651#ifdef CONFIG_EXT4_DEBUG
5652static inline void ext4_mb_show_pa(struct super_block *sb)
5653{
5654 ext4_group_t i, ngroups;
5655
5656 if (ext4_forced_shutdown(sb))
5657 return;
5658
5659 ngroups = ext4_get_groups_count(sb);
5660 mb_debug(sb, "groups: ");
5661 for (i = 0; i < ngroups; i++) {
5662 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5663 struct ext4_prealloc_space *pa;
5664 ext4_grpblk_t start;
5665 struct list_head *cur;
5666
5667 if (!grp)
5668 continue;
5669 ext4_lock_group(sb, i);
5670 list_for_each(cur, &grp->bb_prealloc_list) {
5671 pa = list_entry(cur, struct ext4_prealloc_space,
5672 pa_group_list);
5673 spin_lock(&pa->pa_lock);
5674 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5675 NULL, &start);
5676 spin_unlock(&pa->pa_lock);
5677 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5678 pa->pa_len);
5679 }
5680 ext4_unlock_group(sb, i);
5681 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5682 grp->bb_fragments);
5683 }
5684}
5685
5686static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5687{
5688 struct super_block *sb = ac->ac_sb;
5689
5690 if (ext4_forced_shutdown(sb))
5691 return;
5692
5693 mb_debug(sb, "Can't allocate:"
5694 " Allocation context details:");
5695 mb_debug(sb, "status %u flags 0x%x",
5696 ac->ac_status, ac->ac_flags);
5697 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5698 "goal %lu/%lu/%lu@%lu, "
5699 "best %lu/%lu/%lu@%lu cr %d",
5700 (unsigned long)ac->ac_o_ex.fe_group,
5701 (unsigned long)ac->ac_o_ex.fe_start,
5702 (unsigned long)ac->ac_o_ex.fe_len,
5703 (unsigned long)ac->ac_o_ex.fe_logical,
5704 (unsigned long)ac->ac_g_ex.fe_group,
5705 (unsigned long)ac->ac_g_ex.fe_start,
5706 (unsigned long)ac->ac_g_ex.fe_len,
5707 (unsigned long)ac->ac_g_ex.fe_logical,
5708 (unsigned long)ac->ac_b_ex.fe_group,
5709 (unsigned long)ac->ac_b_ex.fe_start,
5710 (unsigned long)ac->ac_b_ex.fe_len,
5711 (unsigned long)ac->ac_b_ex.fe_logical,
5712 (int)ac->ac_criteria);
5713 mb_debug(sb, "%u found", ac->ac_found);
5714 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa));
5715 if (ac->ac_pa)
5716 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5717 "group pa" : "inode pa");
5718 ext4_mb_show_pa(sb);
5719}
5720#else
5721static inline void ext4_mb_show_pa(struct super_block *sb)
5722{
5723}
5724static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5725{
5726 ext4_mb_show_pa(ac->ac_sb);
5727}
5728#endif
5729
5730/*
5731 * We use locality group preallocation for small size file. The size of the
5732 * file is determined by the current size or the resulting size after
5733 * allocation which ever is larger
5734 *
5735 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5736 */
5737static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5738{
5739 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5740 int bsbits = ac->ac_sb->s_blocksize_bits;
5741 loff_t size, isize;
5742 bool inode_pa_eligible, group_pa_eligible;
5743
5744 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5745 return;
5746
5747 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5748 return;
5749
5750 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5751 inode_pa_eligible = true;
5752 size = extent_logical_end(sbi, &ac->ac_o_ex);
5753 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5754 >> bsbits;
5755
5756 /* No point in using inode preallocation for closed files */
5757 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5758 !inode_is_open_for_write(ac->ac_inode))
5759 inode_pa_eligible = false;
5760
5761 size = max(size, isize);
5762 /* Don't use group allocation for large files */
5763 if (size > sbi->s_mb_stream_request)
5764 group_pa_eligible = false;
5765
5766 if (!group_pa_eligible) {
5767 if (inode_pa_eligible)
5768 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5769 else
5770 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5771 return;
5772 }
5773
5774 BUG_ON(ac->ac_lg != NULL);
5775 /*
5776 * locality group prealloc space are per cpu. The reason for having
5777 * per cpu locality group is to reduce the contention between block
5778 * request from multiple CPUs.
5779 */
5780 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5781
5782 /* we're going to use group allocation */
5783 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5784
5785 /* serialize all allocations in the group */
5786 mutex_lock(&ac->ac_lg->lg_mutex);
5787}
5788
5789static noinline_for_stack void
5790ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5791 struct ext4_allocation_request *ar)
5792{
5793 struct super_block *sb = ar->inode->i_sb;
5794 struct ext4_sb_info *sbi = EXT4_SB(sb);
5795 struct ext4_super_block *es = sbi->s_es;
5796 ext4_group_t group;
5797 unsigned int len;
5798 ext4_fsblk_t goal;
5799 ext4_grpblk_t block;
5800
5801 /* we can't allocate > group size */
5802 len = ar->len;
5803
5804 /* just a dirty hack to filter too big requests */
5805 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5806 len = EXT4_CLUSTERS_PER_GROUP(sb);
5807
5808 /* start searching from the goal */
5809 goal = ar->goal;
5810 if (goal < le32_to_cpu(es->s_first_data_block) ||
5811 goal >= ext4_blocks_count(es))
5812 goal = le32_to_cpu(es->s_first_data_block);
5813 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5814
5815 /* set up allocation goals */
5816 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5817 ac->ac_status = AC_STATUS_CONTINUE;
5818 ac->ac_sb = sb;
5819 ac->ac_inode = ar->inode;
5820 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5821 ac->ac_o_ex.fe_group = group;
5822 ac->ac_o_ex.fe_start = block;
5823 ac->ac_o_ex.fe_len = len;
5824 ac->ac_g_ex = ac->ac_o_ex;
5825 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5826 ac->ac_flags = ar->flags;
5827
5828 /* we have to define context: we'll work with a file or
5829 * locality group. this is a policy, actually */
5830 ext4_mb_group_or_file(ac);
5831
5832 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5833 "left: %u/%u, right %u/%u to %swritable\n",
5834 (unsigned) ar->len, (unsigned) ar->logical,
5835 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5836 (unsigned) ar->lleft, (unsigned) ar->pleft,
5837 (unsigned) ar->lright, (unsigned) ar->pright,
5838 inode_is_open_for_write(ar->inode) ? "" : "non-");
5839}
5840
5841static noinline_for_stack void
5842ext4_mb_discard_lg_preallocations(struct super_block *sb,
5843 struct ext4_locality_group *lg,
5844 int order, int total_entries)
5845{
5846 ext4_group_t group = 0;
5847 struct ext4_buddy e4b;
5848 LIST_HEAD(discard_list);
5849 struct ext4_prealloc_space *pa, *tmp;
5850
5851 mb_debug(sb, "discard locality group preallocation\n");
5852
5853 spin_lock(&lg->lg_prealloc_lock);
5854 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5855 pa_node.lg_list,
5856 lockdep_is_held(&lg->lg_prealloc_lock)) {
5857 spin_lock(&pa->pa_lock);
5858 if (atomic_read(&pa->pa_count)) {
5859 /*
5860 * This is the pa that we just used
5861 * for block allocation. So don't
5862 * free that
5863 */
5864 spin_unlock(&pa->pa_lock);
5865 continue;
5866 }
5867 if (pa->pa_deleted) {
5868 spin_unlock(&pa->pa_lock);
5869 continue;
5870 }
5871 /* only lg prealloc space */
5872 BUG_ON(pa->pa_type != MB_GROUP_PA);
5873
5874 /* seems this one can be freed ... */
5875 ext4_mb_mark_pa_deleted(sb, pa);
5876 spin_unlock(&pa->pa_lock);
5877
5878 list_del_rcu(&pa->pa_node.lg_list);
5879 list_add(&pa->u.pa_tmp_list, &discard_list);
5880
5881 total_entries--;
5882 if (total_entries <= 5) {
5883 /*
5884 * we want to keep only 5 entries
5885 * allowing it to grow to 8. This
5886 * mak sure we don't call discard
5887 * soon for this list.
5888 */
5889 break;
5890 }
5891 }
5892 spin_unlock(&lg->lg_prealloc_lock);
5893
5894 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5895 int err;
5896
5897 group = ext4_get_group_number(sb, pa->pa_pstart);
5898 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5899 GFP_NOFS|__GFP_NOFAIL);
5900 if (err) {
5901 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5902 err, group);
5903 continue;
5904 }
5905 ext4_lock_group(sb, group);
5906 list_del(&pa->pa_group_list);
5907 ext4_mb_release_group_pa(&e4b, pa);
5908 ext4_unlock_group(sb, group);
5909
5910 ext4_mb_unload_buddy(&e4b);
5911 list_del(&pa->u.pa_tmp_list);
5912 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5913 }
5914}
5915
5916/*
5917 * We have incremented pa_count. So it cannot be freed at this
5918 * point. Also we hold lg_mutex. So no parallel allocation is
5919 * possible from this lg. That means pa_free cannot be updated.
5920 *
5921 * A parallel ext4_mb_discard_group_preallocations is possible.
5922 * which can cause the lg_prealloc_list to be updated.
5923 */
5924
5925static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5926{
5927 int order, added = 0, lg_prealloc_count = 1;
5928 struct super_block *sb = ac->ac_sb;
5929 struct ext4_locality_group *lg = ac->ac_lg;
5930 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5931
5932 order = fls(pa->pa_free) - 1;
5933 if (order > PREALLOC_TB_SIZE - 1)
5934 /* The max size of hash table is PREALLOC_TB_SIZE */
5935 order = PREALLOC_TB_SIZE - 1;
5936 /* Add the prealloc space to lg */
5937 spin_lock(&lg->lg_prealloc_lock);
5938 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5939 pa_node.lg_list,
5940 lockdep_is_held(&lg->lg_prealloc_lock)) {
5941 spin_lock(&tmp_pa->pa_lock);
5942 if (tmp_pa->pa_deleted) {
5943 spin_unlock(&tmp_pa->pa_lock);
5944 continue;
5945 }
5946 if (!added && pa->pa_free < tmp_pa->pa_free) {
5947 /* Add to the tail of the previous entry */
5948 list_add_tail_rcu(&pa->pa_node.lg_list,
5949 &tmp_pa->pa_node.lg_list);
5950 added = 1;
5951 /*
5952 * we want to count the total
5953 * number of entries in the list
5954 */
5955 }
5956 spin_unlock(&tmp_pa->pa_lock);
5957 lg_prealloc_count++;
5958 }
5959 if (!added)
5960 list_add_tail_rcu(&pa->pa_node.lg_list,
5961 &lg->lg_prealloc_list[order]);
5962 spin_unlock(&lg->lg_prealloc_lock);
5963
5964 /* Now trim the list to be not more than 8 elements */
5965 if (lg_prealloc_count > 8)
5966 ext4_mb_discard_lg_preallocations(sb, lg,
5967 order, lg_prealloc_count);
5968}
5969
5970/*
5971 * release all resource we used in allocation
5972 */
5973static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5974{
5975 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5976 struct ext4_prealloc_space *pa = ac->ac_pa;
5977 if (pa) {
5978 if (pa->pa_type == MB_GROUP_PA) {
5979 /* see comment in ext4_mb_use_group_pa() */
5980 spin_lock(&pa->pa_lock);
5981 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5982 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5983 pa->pa_free -= ac->ac_b_ex.fe_len;
5984 pa->pa_len -= ac->ac_b_ex.fe_len;
5985 spin_unlock(&pa->pa_lock);
5986
5987 /*
5988 * We want to add the pa to the right bucket.
5989 * Remove it from the list and while adding
5990 * make sure the list to which we are adding
5991 * doesn't grow big.
5992 */
5993 if (likely(pa->pa_free)) {
5994 spin_lock(pa->pa_node_lock.lg_lock);
5995 list_del_rcu(&pa->pa_node.lg_list);
5996 spin_unlock(pa->pa_node_lock.lg_lock);
5997 ext4_mb_add_n_trim(ac);
5998 }
5999 }
6000
6001 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6002 }
6003 if (ac->ac_bitmap_folio)
6004 folio_put(ac->ac_bitmap_folio);
6005 if (ac->ac_buddy_folio)
6006 folio_put(ac->ac_buddy_folio);
6007 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6008 mutex_unlock(&ac->ac_lg->lg_mutex);
6009 ext4_mb_collect_stats(ac);
6010}
6011
6012static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6013{
6014 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6015 int ret;
6016 int freed = 0, busy = 0;
6017 int retry = 0;
6018
6019 trace_ext4_mb_discard_preallocations(sb, needed);
6020
6021 if (needed == 0)
6022 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6023 repeat:
6024 for (i = 0; i < ngroups && needed > 0; i++) {
6025 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6026 freed += ret;
6027 needed -= ret;
6028 cond_resched();
6029 }
6030
6031 if (needed > 0 && busy && ++retry < 3) {
6032 busy = 0;
6033 goto repeat;
6034 }
6035
6036 return freed;
6037}
6038
6039static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6040 struct ext4_allocation_context *ac, u64 *seq)
6041{
6042 int freed;
6043 u64 seq_retry = 0;
6044 bool ret = false;
6045
6046 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6047 if (freed) {
6048 ret = true;
6049 goto out_dbg;
6050 }
6051 seq_retry = ext4_get_discard_pa_seq_sum();
6052 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6053 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6054 *seq = seq_retry;
6055 ret = true;
6056 }
6057
6058out_dbg:
6059 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret));
6060 return ret;
6061}
6062
6063/*
6064 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6065 * linearly starting at the goal block and also excludes the blocks which
6066 * are going to be in use after fast commit replay.
6067 */
6068static ext4_fsblk_t
6069ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6070{
6071 struct buffer_head *bitmap_bh;
6072 struct super_block *sb = ar->inode->i_sb;
6073 struct ext4_sb_info *sbi = EXT4_SB(sb);
6074 ext4_group_t group, nr;
6075 ext4_grpblk_t blkoff;
6076 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6077 ext4_grpblk_t i = 0;
6078 ext4_fsblk_t goal, block;
6079 struct ext4_super_block *es = sbi->s_es;
6080
6081 goal = ar->goal;
6082 if (goal < le32_to_cpu(es->s_first_data_block) ||
6083 goal >= ext4_blocks_count(es))
6084 goal = le32_to_cpu(es->s_first_data_block);
6085
6086 ar->len = 0;
6087 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6088 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6089 bitmap_bh = ext4_read_block_bitmap(sb, group);
6090 if (IS_ERR(bitmap_bh)) {
6091 *errp = PTR_ERR(bitmap_bh);
6092 pr_warn("Failed to read block bitmap\n");
6093 return 0;
6094 }
6095
6096 while (1) {
6097 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6098 blkoff);
6099 if (i >= max)
6100 break;
6101 if (ext4_fc_replay_check_excluded(sb,
6102 ext4_group_first_block_no(sb, group) +
6103 EXT4_C2B(sbi, i))) {
6104 blkoff = i + 1;
6105 } else
6106 break;
6107 }
6108 brelse(bitmap_bh);
6109 if (i < max)
6110 break;
6111
6112 if (++group >= ext4_get_groups_count(sb))
6113 group = 0;
6114
6115 blkoff = 0;
6116 }
6117
6118 if (i >= max) {
6119 *errp = -ENOSPC;
6120 return 0;
6121 }
6122
6123 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6124 ext4_mb_mark_bb(sb, block, 1, true);
6125 ar->len = 1;
6126
6127 *errp = 0;
6128 return block;
6129}
6130
6131/*
6132 * Main entry point into mballoc to allocate blocks
6133 * it tries to use preallocation first, then falls back
6134 * to usual allocation
6135 */
6136ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6137 struct ext4_allocation_request *ar, int *errp)
6138{
6139 struct ext4_allocation_context *ac = NULL;
6140 struct ext4_sb_info *sbi;
6141 struct super_block *sb;
6142 ext4_fsblk_t block = 0;
6143 unsigned int inquota = 0;
6144 unsigned int reserv_clstrs = 0;
6145 int retries = 0;
6146 u64 seq;
6147
6148 might_sleep();
6149 sb = ar->inode->i_sb;
6150 sbi = EXT4_SB(sb);
6151
6152 trace_ext4_request_blocks(ar);
6153 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6154 return ext4_mb_new_blocks_simple(ar, errp);
6155
6156 /* Allow to use superuser reservation for quota file */
6157 if (ext4_is_quota_file(ar->inode))
6158 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6159
6160 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6161 /* Without delayed allocation we need to verify
6162 * there is enough free blocks to do block allocation
6163 * and verify allocation doesn't exceed the quota limits.
6164 */
6165 while (ar->len &&
6166 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6167
6168 /* let others to free the space */
6169 cond_resched();
6170 ar->len = ar->len >> 1;
6171 }
6172 if (!ar->len) {
6173 ext4_mb_show_pa(sb);
6174 *errp = -ENOSPC;
6175 return 0;
6176 }
6177 reserv_clstrs = ar->len;
6178 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6179 dquot_alloc_block_nofail(ar->inode,
6180 EXT4_C2B(sbi, ar->len));
6181 } else {
6182 while (ar->len &&
6183 dquot_alloc_block(ar->inode,
6184 EXT4_C2B(sbi, ar->len))) {
6185
6186 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6187 ar->len--;
6188 }
6189 }
6190 inquota = ar->len;
6191 if (ar->len == 0) {
6192 *errp = -EDQUOT;
6193 goto out;
6194 }
6195 }
6196
6197 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6198 if (!ac) {
6199 ar->len = 0;
6200 *errp = -ENOMEM;
6201 goto out;
6202 }
6203
6204 ext4_mb_initialize_context(ac, ar);
6205
6206 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6207 seq = this_cpu_read(discard_pa_seq);
6208 if (!ext4_mb_use_preallocated(ac)) {
6209 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6210 ext4_mb_normalize_request(ac, ar);
6211
6212 *errp = ext4_mb_pa_alloc(ac);
6213 if (*errp)
6214 goto errout;
6215repeat:
6216 /* allocate space in core */
6217 *errp = ext4_mb_regular_allocator(ac);
6218 /*
6219 * pa allocated above is added to grp->bb_prealloc_list only
6220 * when we were able to allocate some block i.e. when
6221 * ac->ac_status == AC_STATUS_FOUND.
6222 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6223 * So we have to free this pa here itself.
6224 */
6225 if (*errp) {
6226 ext4_mb_pa_put_free(ac);
6227 ext4_discard_allocated_blocks(ac);
6228 goto errout;
6229 }
6230 if (ac->ac_status == AC_STATUS_FOUND &&
6231 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6232 ext4_mb_pa_put_free(ac);
6233 }
6234 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6235 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6236 if (*errp) {
6237 ext4_discard_allocated_blocks(ac);
6238 goto errout;
6239 } else {
6240 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6241 ar->len = ac->ac_b_ex.fe_len;
6242 }
6243 } else {
6244 if (++retries < 3 &&
6245 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6246 goto repeat;
6247 /*
6248 * If block allocation fails then the pa allocated above
6249 * needs to be freed here itself.
6250 */
6251 ext4_mb_pa_put_free(ac);
6252 *errp = -ENOSPC;
6253 }
6254
6255 if (*errp) {
6256errout:
6257 ac->ac_b_ex.fe_len = 0;
6258 ar->len = 0;
6259 ext4_mb_show_ac(ac);
6260 }
6261 ext4_mb_release_context(ac);
6262 kmem_cache_free(ext4_ac_cachep, ac);
6263out:
6264 if (inquota && ar->len < inquota)
6265 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6266 if (!ar->len) {
6267 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6268 /* release all the reserved blocks if non delalloc */
6269 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6270 reserv_clstrs);
6271 }
6272
6273 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6274
6275 return block;
6276}
6277
6278/*
6279 * We can merge two free data extents only if the physical blocks
6280 * are contiguous, AND the extents were freed by the same transaction,
6281 * AND the blocks are associated with the same group.
6282 */
6283static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6284 struct ext4_free_data *entry,
6285 struct ext4_free_data *new_entry,
6286 struct rb_root *entry_rb_root)
6287{
6288 if ((entry->efd_tid != new_entry->efd_tid) ||
6289 (entry->efd_group != new_entry->efd_group))
6290 return;
6291 if (entry->efd_start_cluster + entry->efd_count ==
6292 new_entry->efd_start_cluster) {
6293 new_entry->efd_start_cluster = entry->efd_start_cluster;
6294 new_entry->efd_count += entry->efd_count;
6295 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6296 entry->efd_start_cluster) {
6297 new_entry->efd_count += entry->efd_count;
6298 } else
6299 return;
6300 spin_lock(&sbi->s_md_lock);
6301 list_del(&entry->efd_list);
6302 spin_unlock(&sbi->s_md_lock);
6303 rb_erase(&entry->efd_node, entry_rb_root);
6304 kmem_cache_free(ext4_free_data_cachep, entry);
6305}
6306
6307static noinline_for_stack void
6308ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6309 struct ext4_free_data *new_entry)
6310{
6311 ext4_group_t group = e4b->bd_group;
6312 ext4_grpblk_t cluster;
6313 ext4_grpblk_t clusters = new_entry->efd_count;
6314 struct ext4_free_data *entry;
6315 struct ext4_group_info *db = e4b->bd_info;
6316 struct super_block *sb = e4b->bd_sb;
6317 struct ext4_sb_info *sbi = EXT4_SB(sb);
6318 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6319 struct rb_node *parent = NULL, *new_node;
6320
6321 BUG_ON(!ext4_handle_valid(handle));
6322 BUG_ON(e4b->bd_bitmap_folio == NULL);
6323 BUG_ON(e4b->bd_buddy_folio == NULL);
6324
6325 new_node = &new_entry->efd_node;
6326 cluster = new_entry->efd_start_cluster;
6327
6328 if (!*n) {
6329 /* first free block exent. We need to
6330 protect buddy cache from being freed,
6331 * otherwise we'll refresh it from
6332 * on-disk bitmap and lose not-yet-available
6333 * blocks */
6334 folio_get(e4b->bd_buddy_folio);
6335 folio_get(e4b->bd_bitmap_folio);
6336 }
6337 while (*n) {
6338 parent = *n;
6339 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6340 if (cluster < entry->efd_start_cluster)
6341 n = &(*n)->rb_left;
6342 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6343 n = &(*n)->rb_right;
6344 else {
6345 ext4_grp_locked_error(sb, group, 0,
6346 ext4_group_first_block_no(sb, group) +
6347 EXT4_C2B(sbi, cluster),
6348 "Block already on to-be-freed list");
6349 kmem_cache_free(ext4_free_data_cachep, new_entry);
6350 return;
6351 }
6352 }
6353
6354 rb_link_node(new_node, parent, n);
6355 rb_insert_color(new_node, &db->bb_free_root);
6356
6357 /* Now try to see the extent can be merged to left and right */
6358 node = rb_prev(new_node);
6359 if (node) {
6360 entry = rb_entry(node, struct ext4_free_data, efd_node);
6361 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6362 &(db->bb_free_root));
6363 }
6364
6365 node = rb_next(new_node);
6366 if (node) {
6367 entry = rb_entry(node, struct ext4_free_data, efd_node);
6368 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6369 &(db->bb_free_root));
6370 }
6371
6372 spin_lock(&sbi->s_md_lock);
6373 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6374 sbi->s_mb_free_pending += clusters;
6375 spin_unlock(&sbi->s_md_lock);
6376}
6377
6378static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6379 unsigned long count)
6380{
6381 struct super_block *sb = inode->i_sb;
6382 ext4_group_t group;
6383 ext4_grpblk_t blkoff;
6384
6385 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6386 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6387 EXT4_MB_BITMAP_MARKED_CHECK |
6388 EXT4_MB_SYNC_UPDATE,
6389 NULL);
6390}
6391
6392/**
6393 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6394 * Used by ext4_free_blocks()
6395 * @handle: handle for this transaction
6396 * @inode: inode
6397 * @block: starting physical block to be freed
6398 * @count: number of blocks to be freed
6399 * @flags: flags used by ext4_free_blocks
6400 */
6401static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6402 ext4_fsblk_t block, unsigned long count,
6403 int flags)
6404{
6405 struct super_block *sb = inode->i_sb;
6406 struct ext4_group_info *grp;
6407 unsigned int overflow;
6408 ext4_grpblk_t bit;
6409 ext4_group_t block_group;
6410 struct ext4_sb_info *sbi;
6411 struct ext4_buddy e4b;
6412 unsigned int count_clusters;
6413 int err = 0;
6414 int mark_flags = 0;
6415 ext4_grpblk_t changed;
6416
6417 sbi = EXT4_SB(sb);
6418
6419 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6420 !ext4_inode_block_valid(inode, block, count)) {
6421 ext4_error(sb, "Freeing blocks in system zone - "
6422 "Block = %llu, count = %lu", block, count);
6423 /* err = 0. ext4_std_error should be a no op */
6424 goto error_out;
6425 }
6426 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6427
6428do_more:
6429 overflow = 0;
6430 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6431
6432 grp = ext4_get_group_info(sb, block_group);
6433 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6434 return;
6435
6436 /*
6437 * Check to see if we are freeing blocks across a group
6438 * boundary.
6439 */
6440 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6441 overflow = EXT4_C2B(sbi, bit) + count -
6442 EXT4_BLOCKS_PER_GROUP(sb);
6443 count -= overflow;
6444 /* The range changed so it's no longer validated */
6445 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6446 }
6447 count_clusters = EXT4_NUM_B2C(sbi, count);
6448 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6449
6450 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6451 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6452 GFP_NOFS|__GFP_NOFAIL);
6453 if (err)
6454 goto error_out;
6455
6456 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6457 !ext4_inode_block_valid(inode, block, count)) {
6458 ext4_error(sb, "Freeing blocks in system zone - "
6459 "Block = %llu, count = %lu", block, count);
6460 /* err = 0. ext4_std_error should be a no op */
6461 goto error_clean;
6462 }
6463
6464#ifdef AGGRESSIVE_CHECK
6465 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6466#endif
6467 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6468 count_clusters, mark_flags, &changed);
6469
6470
6471 if (err && changed == 0)
6472 goto error_clean;
6473
6474#ifdef AGGRESSIVE_CHECK
6475 BUG_ON(changed != count_clusters);
6476#endif
6477
6478 /*
6479 * We need to make sure we don't reuse the freed block until after the
6480 * transaction is committed. We make an exception if the inode is to be
6481 * written in writeback mode since writeback mode has weak data
6482 * consistency guarantees.
6483 */
6484 if (ext4_handle_valid(handle) &&
6485 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6486 !ext4_should_writeback_data(inode))) {
6487 struct ext4_free_data *new_entry;
6488 /*
6489 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6490 * to fail.
6491 */
6492 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6493 GFP_NOFS|__GFP_NOFAIL);
6494 new_entry->efd_start_cluster = bit;
6495 new_entry->efd_group = block_group;
6496 new_entry->efd_count = count_clusters;
6497 new_entry->efd_tid = handle->h_transaction->t_tid;
6498
6499 ext4_lock_group(sb, block_group);
6500 ext4_mb_free_metadata(handle, &e4b, new_entry);
6501 } else {
6502 if (test_opt(sb, DISCARD)) {
6503 err = ext4_issue_discard(sb, block_group, bit,
6504 count_clusters);
6505 /*
6506 * Ignore EOPNOTSUPP error. This is consistent with
6507 * what happens when using journal.
6508 */
6509 if (err == -EOPNOTSUPP)
6510 err = 0;
6511 if (err)
6512 ext4_msg(sb, KERN_WARNING, "discard request in"
6513 " group:%u block:%d count:%lu failed"
6514 " with %d", block_group, bit, count,
6515 err);
6516 }
6517
6518 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6519
6520 ext4_lock_group(sb, block_group);
6521 mb_free_blocks(inode, &e4b, bit, count_clusters);
6522 }
6523
6524 ext4_unlock_group(sb, block_group);
6525
6526 /*
6527 * on a bigalloc file system, defer the s_freeclusters_counter
6528 * update to the caller (ext4_remove_space and friends) so they
6529 * can determine if a cluster freed here should be rereserved
6530 */
6531 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6532 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6533 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6534 percpu_counter_add(&sbi->s_freeclusters_counter,
6535 count_clusters);
6536 }
6537
6538 if (overflow && !err) {
6539 block += count;
6540 count = overflow;
6541 ext4_mb_unload_buddy(&e4b);
6542 /* The range changed so it's no longer validated */
6543 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6544 goto do_more;
6545 }
6546
6547error_clean:
6548 ext4_mb_unload_buddy(&e4b);
6549error_out:
6550 ext4_std_error(sb, err);
6551}
6552
6553/**
6554 * ext4_free_blocks() -- Free given blocks and update quota
6555 * @handle: handle for this transaction
6556 * @inode: inode
6557 * @bh: optional buffer of the block to be freed
6558 * @block: starting physical block to be freed
6559 * @count: number of blocks to be freed
6560 * @flags: flags used by ext4_free_blocks
6561 */
6562void ext4_free_blocks(handle_t *handle, struct inode *inode,
6563 struct buffer_head *bh, ext4_fsblk_t block,
6564 unsigned long count, int flags)
6565{
6566 struct super_block *sb = inode->i_sb;
6567 unsigned int overflow;
6568 struct ext4_sb_info *sbi;
6569
6570 sbi = EXT4_SB(sb);
6571
6572 if (bh) {
6573 if (block)
6574 BUG_ON(block != bh->b_blocknr);
6575 else
6576 block = bh->b_blocknr;
6577 }
6578
6579 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6580 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6581 return;
6582 }
6583
6584 might_sleep();
6585
6586 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6587 !ext4_inode_block_valid(inode, block, count)) {
6588 ext4_error(sb, "Freeing blocks not in datazone - "
6589 "block = %llu, count = %lu", block, count);
6590 return;
6591 }
6592 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6593
6594 ext4_debug("freeing block %llu\n", block);
6595 trace_ext4_free_blocks(inode, block, count, flags);
6596
6597 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6598 BUG_ON(count > 1);
6599
6600 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6601 inode, bh, block);
6602 }
6603
6604 /*
6605 * If the extent to be freed does not begin on a cluster
6606 * boundary, we need to deal with partial clusters at the
6607 * beginning and end of the extent. Normally we will free
6608 * blocks at the beginning or the end unless we are explicitly
6609 * requested to avoid doing so.
6610 */
6611 overflow = EXT4_PBLK_COFF(sbi, block);
6612 if (overflow) {
6613 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6614 overflow = sbi->s_cluster_ratio - overflow;
6615 block += overflow;
6616 if (count > overflow)
6617 count -= overflow;
6618 else
6619 return;
6620 } else {
6621 block -= overflow;
6622 count += overflow;
6623 }
6624 /* The range changed so it's no longer validated */
6625 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6626 }
6627 overflow = EXT4_LBLK_COFF(sbi, count);
6628 if (overflow) {
6629 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6630 if (count > overflow)
6631 count -= overflow;
6632 else
6633 return;
6634 } else
6635 count += sbi->s_cluster_ratio - overflow;
6636 /* The range changed so it's no longer validated */
6637 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6638 }
6639
6640 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6641 int i;
6642 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6643
6644 for (i = 0; i < count; i++) {
6645 cond_resched();
6646 if (is_metadata)
6647 bh = sb_find_get_block(inode->i_sb, block + i);
6648 ext4_forget(handle, is_metadata, inode, bh, block + i);
6649 }
6650 }
6651
6652 ext4_mb_clear_bb(handle, inode, block, count, flags);
6653}
6654
6655/**
6656 * ext4_group_add_blocks() -- Add given blocks to an existing group
6657 * @handle: handle to this transaction
6658 * @sb: super block
6659 * @block: start physical block to add to the block group
6660 * @count: number of blocks to free
6661 *
6662 * This marks the blocks as free in the bitmap and buddy.
6663 */
6664int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6665 ext4_fsblk_t block, unsigned long count)
6666{
6667 ext4_group_t block_group;
6668 ext4_grpblk_t bit;
6669 struct ext4_sb_info *sbi = EXT4_SB(sb);
6670 struct ext4_buddy e4b;
6671 int err = 0;
6672 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6673 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6674 unsigned long cluster_count = last_cluster - first_cluster + 1;
6675 ext4_grpblk_t changed;
6676
6677 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6678
6679 if (cluster_count == 0)
6680 return 0;
6681
6682 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6683 /*
6684 * Check to see if we are freeing blocks across a group
6685 * boundary.
6686 */
6687 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6688 ext4_warning(sb, "too many blocks added to group %u",
6689 block_group);
6690 err = -EINVAL;
6691 goto error_out;
6692 }
6693
6694 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6695 if (err)
6696 goto error_out;
6697
6698 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6699 ext4_error(sb, "Adding blocks in system zones - "
6700 "Block = %llu, count = %lu",
6701 block, count);
6702 err = -EINVAL;
6703 goto error_clean;
6704 }
6705
6706 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6707 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6708 &changed);
6709 if (err && changed == 0)
6710 goto error_clean;
6711
6712 if (changed != cluster_count)
6713 ext4_error(sb, "bit already cleared in group %u", block_group);
6714
6715 ext4_lock_group(sb, block_group);
6716 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6717 ext4_unlock_group(sb, block_group);
6718 percpu_counter_add(&sbi->s_freeclusters_counter,
6719 changed);
6720
6721error_clean:
6722 ext4_mb_unload_buddy(&e4b);
6723error_out:
6724 ext4_std_error(sb, err);
6725 return err;
6726}
6727
6728/**
6729 * ext4_trim_extent -- function to TRIM one single free extent in the group
6730 * @sb: super block for the file system
6731 * @start: starting block of the free extent in the alloc. group
6732 * @count: number of blocks to TRIM
6733 * @e4b: ext4 buddy for the group
6734 *
6735 * Trim "count" blocks starting at "start" in the "group". To assure that no
6736 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6737 * be called with under the group lock.
6738 */
6739static int ext4_trim_extent(struct super_block *sb,
6740 int start, int count, struct ext4_buddy *e4b)
6741__releases(bitlock)
6742__acquires(bitlock)
6743{
6744 struct ext4_free_extent ex;
6745 ext4_group_t group = e4b->bd_group;
6746 int ret = 0;
6747
6748 trace_ext4_trim_extent(sb, group, start, count);
6749
6750 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6751
6752 ex.fe_start = start;
6753 ex.fe_group = group;
6754 ex.fe_len = count;
6755
6756 /*
6757 * Mark blocks used, so no one can reuse them while
6758 * being trimmed.
6759 */
6760 mb_mark_used(e4b, &ex);
6761 ext4_unlock_group(sb, group);
6762 ret = ext4_issue_discard(sb, group, start, count);
6763 ext4_lock_group(sb, group);
6764 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6765 return ret;
6766}
6767
6768static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6769 ext4_group_t grp)
6770{
6771 unsigned long nr_clusters_in_group;
6772
6773 if (grp < (ext4_get_groups_count(sb) - 1))
6774 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6775 else
6776 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6777 ext4_group_first_block_no(sb, grp))
6778 >> EXT4_CLUSTER_BITS(sb);
6779
6780 return nr_clusters_in_group - 1;
6781}
6782
6783static bool ext4_trim_interrupted(void)
6784{
6785 return fatal_signal_pending(current) || freezing(current);
6786}
6787
6788static int ext4_try_to_trim_range(struct super_block *sb,
6789 struct ext4_buddy *e4b, ext4_grpblk_t start,
6790 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6791__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6792__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6793{
6794 ext4_grpblk_t next, count, free_count, last, origin_start;
6795 bool set_trimmed = false;
6796 void *bitmap;
6797
6798 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6799 return 0;
6800
6801 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6802 bitmap = e4b->bd_bitmap;
6803 if (start == 0 && max >= last)
6804 set_trimmed = true;
6805 origin_start = start;
6806 start = max(e4b->bd_info->bb_first_free, start);
6807 count = 0;
6808 free_count = 0;
6809
6810 while (start <= max) {
6811 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6812 if (start > max)
6813 break;
6814
6815 next = mb_find_next_bit(bitmap, last + 1, start);
6816 if (origin_start == 0 && next >= last)
6817 set_trimmed = true;
6818
6819 if ((next - start) >= minblocks) {
6820 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6821
6822 if (ret && ret != -EOPNOTSUPP)
6823 return count;
6824 count += next - start;
6825 }
6826 free_count += next - start;
6827 start = next + 1;
6828
6829 if (ext4_trim_interrupted())
6830 return count;
6831
6832 if (need_resched()) {
6833 ext4_unlock_group(sb, e4b->bd_group);
6834 cond_resched();
6835 ext4_lock_group(sb, e4b->bd_group);
6836 }
6837
6838 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6839 break;
6840 }
6841
6842 if (set_trimmed)
6843 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6844
6845 return count;
6846}
6847
6848/**
6849 * ext4_trim_all_free -- function to trim all free space in alloc. group
6850 * @sb: super block for file system
6851 * @group: group to be trimmed
6852 * @start: first group block to examine
6853 * @max: last group block to examine
6854 * @minblocks: minimum extent block count
6855 *
6856 * ext4_trim_all_free walks through group's block bitmap searching for free
6857 * extents. When the free extent is found, mark it as used in group buddy
6858 * bitmap. Then issue a TRIM command on this extent and free the extent in
6859 * the group buddy bitmap.
6860 */
6861static ext4_grpblk_t
6862ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6863 ext4_grpblk_t start, ext4_grpblk_t max,
6864 ext4_grpblk_t minblocks)
6865{
6866 struct ext4_buddy e4b;
6867 int ret;
6868
6869 trace_ext4_trim_all_free(sb, group, start, max);
6870
6871 ret = ext4_mb_load_buddy(sb, group, &e4b);
6872 if (ret) {
6873 ext4_warning(sb, "Error %d loading buddy information for %u",
6874 ret, group);
6875 return ret;
6876 }
6877
6878 ext4_lock_group(sb, group);
6879
6880 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6881 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6882 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6883 else
6884 ret = 0;
6885
6886 ext4_unlock_group(sb, group);
6887 ext4_mb_unload_buddy(&e4b);
6888
6889 ext4_debug("trimmed %d blocks in the group %d\n",
6890 ret, group);
6891
6892 return ret;
6893}
6894
6895/**
6896 * ext4_trim_fs() -- trim ioctl handle function
6897 * @sb: superblock for filesystem
6898 * @range: fstrim_range structure
6899 *
6900 * start: First Byte to trim
6901 * len: number of Bytes to trim from start
6902 * minlen: minimum extent length in Bytes
6903 * ext4_trim_fs goes through all allocation groups containing Bytes from
6904 * start to start+len. For each such a group ext4_trim_all_free function
6905 * is invoked to trim all free space.
6906 */
6907int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6908{
6909 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6910 struct ext4_group_info *grp;
6911 ext4_group_t group, first_group, last_group;
6912 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6913 uint64_t start, end, minlen, trimmed = 0;
6914 ext4_fsblk_t first_data_blk =
6915 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6916 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6917 int ret = 0;
6918
6919 start = range->start >> sb->s_blocksize_bits;
6920 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6921 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6922 range->minlen >> sb->s_blocksize_bits);
6923
6924 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6925 start >= max_blks ||
6926 range->len < sb->s_blocksize)
6927 return -EINVAL;
6928 /* No point to try to trim less than discard granularity */
6929 if (range->minlen < discard_granularity) {
6930 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6931 discard_granularity >> sb->s_blocksize_bits);
6932 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6933 goto out;
6934 }
6935 if (end >= max_blks - 1)
6936 end = max_blks - 1;
6937 if (end <= first_data_blk)
6938 goto out;
6939 if (start < first_data_blk)
6940 start = first_data_blk;
6941
6942 /* Determine first and last group to examine based on start and end */
6943 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6944 &first_group, &first_cluster);
6945 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6946 &last_group, &last_cluster);
6947
6948 /* end now represents the last cluster to discard in this group */
6949 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6950
6951 for (group = first_group; group <= last_group; group++) {
6952 if (ext4_trim_interrupted())
6953 break;
6954 grp = ext4_get_group_info(sb, group);
6955 if (!grp)
6956 continue;
6957 /* We only do this if the grp has never been initialized */
6958 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6959 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6960 if (ret)
6961 break;
6962 }
6963
6964 /*
6965 * For all the groups except the last one, last cluster will
6966 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6967 * change it for the last group, note that last_cluster is
6968 * already computed earlier by ext4_get_group_no_and_offset()
6969 */
6970 if (group == last_group)
6971 end = last_cluster;
6972 if (grp->bb_free >= minlen) {
6973 cnt = ext4_trim_all_free(sb, group, first_cluster,
6974 end, minlen);
6975 if (cnt < 0) {
6976 ret = cnt;
6977 break;
6978 }
6979 trimmed += cnt;
6980 }
6981
6982 /*
6983 * For every group except the first one, we are sure
6984 * that the first cluster to discard will be cluster #0.
6985 */
6986 first_cluster = 0;
6987 }
6988
6989 if (!ret)
6990 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6991
6992out:
6993 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6994 return ret;
6995}
6996
6997/* Iterate all the free extents in the group. */
6998int
6999ext4_mballoc_query_range(
7000 struct super_block *sb,
7001 ext4_group_t group,
7002 ext4_grpblk_t first,
7003 ext4_grpblk_t end,
7004 ext4_mballoc_query_range_fn meta_formatter,
7005 ext4_mballoc_query_range_fn formatter,
7006 void *priv)
7007{
7008 void *bitmap;
7009 ext4_grpblk_t start, next;
7010 struct ext4_buddy e4b;
7011 int error;
7012
7013 error = ext4_mb_load_buddy(sb, group, &e4b);
7014 if (error)
7015 return error;
7016 bitmap = e4b.bd_bitmap;
7017
7018 ext4_lock_group(sb, group);
7019
7020 start = max(e4b.bd_info->bb_first_free, first);
7021 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7022 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7023 if (meta_formatter && start != first) {
7024 if (start > end)
7025 start = end;
7026 ext4_unlock_group(sb, group);
7027 error = meta_formatter(sb, group, first, start - first,
7028 priv);
7029 if (error)
7030 goto out_unload;
7031 ext4_lock_group(sb, group);
7032 }
7033 while (start <= end) {
7034 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7035 if (start > end)
7036 break;
7037 next = mb_find_next_bit(bitmap, end + 1, start);
7038
7039 ext4_unlock_group(sb, group);
7040 error = formatter(sb, group, start, next - start, priv);
7041 if (error)
7042 goto out_unload;
7043 ext4_lock_group(sb, group);
7044
7045 start = next + 1;
7046 }
7047
7048 ext4_unlock_group(sb, group);
7049out_unload:
7050 ext4_mb_unload_buddy(&e4b);
7051
7052 return error;
7053}
7054
7055#ifdef CONFIG_EXT4_KUNIT_TESTS
7056#include "mballoc-test.c"
7057#endif