Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include <trace/events/dlm.h>
57#include <trace/events/sock.h>
58
59#include "dlm_internal.h"
60#include "lowcomms.h"
61#include "midcomms.h"
62#include "memory.h"
63#include "config.h"
64
65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66#define DLM_MAX_PROCESS_BUFFERS 24
67#define NEEDED_RMEM (4*1024*1024)
68
69struct connection {
70 struct socket *sock; /* NULL if not connected */
71 uint32_t nodeid; /* So we know who we are in the list */
72 /* this semaphore is used to allow parallel recv/send in read
73 * lock mode. When we release a sock we need to held the write lock.
74 *
75 * However this is locking code and not nice. When we remove the
76 * othercon handling we can look into other mechanism to synchronize
77 * io handling to call sock_release() at the right time.
78 */
79 struct rw_semaphore sock_lock;
80 unsigned long flags;
81#define CF_APP_LIMITED 0
82#define CF_RECV_PENDING 1
83#define CF_SEND_PENDING 2
84#define CF_RECV_INTR 3
85#define CF_IO_STOP 4
86#define CF_IS_OTHERCON 5
87 struct list_head writequeue; /* List of outgoing writequeue_entries */
88 spinlock_t writequeue_lock;
89 int retries;
90 struct hlist_node list;
91 /* due some connect()/accept() races we currently have this cross over
92 * connection attempt second connection for one node.
93 *
94 * There is a solution to avoid the race by introducing a connect
95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 * connect. Otherside can connect but will only be considered that
97 * the other side wants to have a reconnect.
98 *
99 * However changing to this behaviour will break backwards compatible.
100 * In a DLM protocol major version upgrade we should remove this!
101 */
102 struct connection *othercon;
103 struct work_struct rwork; /* receive worker */
104 struct work_struct swork; /* send worker */
105 wait_queue_head_t shutdown_wait;
106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 int rx_leftover;
108 int mark;
109 int addr_count;
110 int curr_addr_index;
111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 spinlock_t addrs_lock;
113 struct rcu_head rcu;
114};
115#define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117struct listen_connection {
118 struct socket *sock;
119 struct work_struct rwork;
120};
121
122#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125/* An entry waiting to be sent */
126struct writequeue_entry {
127 struct list_head list;
128 struct page *page;
129 int offset;
130 int len;
131 int end;
132 int users;
133 bool dirty;
134 struct connection *con;
135 struct list_head msgs;
136 struct kref ref;
137};
138
139struct dlm_msg {
140 struct writequeue_entry *entry;
141 struct dlm_msg *orig_msg;
142 bool retransmit;
143 void *ppc;
144 int len;
145 int idx; /* new()/commit() idx exchange */
146
147 struct list_head list;
148 struct kref ref;
149};
150
151struct processqueue_entry {
152 unsigned char *buf;
153 int nodeid;
154 int buflen;
155
156 struct list_head list;
157};
158
159struct dlm_proto_ops {
160 bool try_new_addr;
161 const char *name;
162 int proto;
163
164 int (*connect)(struct connection *con, struct socket *sock,
165 struct sockaddr *addr, int addr_len);
166 void (*sockopts)(struct socket *sock);
167 int (*bind)(struct socket *sock);
168 int (*listen_validate)(void);
169 void (*listen_sockopts)(struct socket *sock);
170 int (*listen_bind)(struct socket *sock);
171};
172
173static struct listen_sock_callbacks {
174 void (*sk_error_report)(struct sock *);
175 void (*sk_data_ready)(struct sock *);
176 void (*sk_state_change)(struct sock *);
177 void (*sk_write_space)(struct sock *);
178} listen_sock;
179
180static struct listen_connection listen_con;
181static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
182static int dlm_local_count;
183
184/* Work queues */
185static struct workqueue_struct *io_workqueue;
186static struct workqueue_struct *process_workqueue;
187
188static struct hlist_head connection_hash[CONN_HASH_SIZE];
189static DEFINE_SPINLOCK(connections_lock);
190DEFINE_STATIC_SRCU(connections_srcu);
191
192static const struct dlm_proto_ops *dlm_proto_ops;
193
194#define DLM_IO_SUCCESS 0
195#define DLM_IO_END 1
196#define DLM_IO_EOF 2
197#define DLM_IO_RESCHED 3
198#define DLM_IO_FLUSH 4
199
200static void process_recv_sockets(struct work_struct *work);
201static void process_send_sockets(struct work_struct *work);
202static void process_dlm_messages(struct work_struct *work);
203
204static DECLARE_WORK(process_work, process_dlm_messages);
205static DEFINE_SPINLOCK(processqueue_lock);
206static bool process_dlm_messages_pending;
207static atomic_t processqueue_count;
208static LIST_HEAD(processqueue);
209
210bool dlm_lowcomms_is_running(void)
211{
212 return !!listen_con.sock;
213}
214
215static void lowcomms_queue_swork(struct connection *con)
216{
217 assert_spin_locked(&con->writequeue_lock);
218
219 if (!test_bit(CF_IO_STOP, &con->flags) &&
220 !test_bit(CF_APP_LIMITED, &con->flags) &&
221 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
222 queue_work(io_workqueue, &con->swork);
223}
224
225static void lowcomms_queue_rwork(struct connection *con)
226{
227#ifdef CONFIG_LOCKDEP
228 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
229#endif
230
231 if (!test_bit(CF_IO_STOP, &con->flags) &&
232 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
233 queue_work(io_workqueue, &con->rwork);
234}
235
236static void writequeue_entry_ctor(void *data)
237{
238 struct writequeue_entry *entry = data;
239
240 INIT_LIST_HEAD(&entry->msgs);
241}
242
243struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
244{
245 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
246 0, 0, writequeue_entry_ctor);
247}
248
249struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
250{
251 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
252}
253
254/* need to held writequeue_lock */
255static struct writequeue_entry *con_next_wq(struct connection *con)
256{
257 struct writequeue_entry *e;
258
259 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
260 list);
261 /* if len is zero nothing is to send, if there are users filling
262 * buffers we wait until the users are done so we can send more.
263 */
264 if (!e || e->users || e->len == 0)
265 return NULL;
266
267 return e;
268}
269
270static struct connection *__find_con(int nodeid, int r)
271{
272 struct connection *con;
273
274 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
275 if (con->nodeid == nodeid)
276 return con;
277 }
278
279 return NULL;
280}
281
282static void dlm_con_init(struct connection *con, int nodeid)
283{
284 con->nodeid = nodeid;
285 init_rwsem(&con->sock_lock);
286 INIT_LIST_HEAD(&con->writequeue);
287 spin_lock_init(&con->writequeue_lock);
288 INIT_WORK(&con->swork, process_send_sockets);
289 INIT_WORK(&con->rwork, process_recv_sockets);
290 spin_lock_init(&con->addrs_lock);
291 init_waitqueue_head(&con->shutdown_wait);
292}
293
294/*
295 * If 'allocation' is zero then we don't attempt to create a new
296 * connection structure for this node.
297 */
298static struct connection *nodeid2con(int nodeid, gfp_t alloc)
299{
300 struct connection *con, *tmp;
301 int r;
302
303 r = nodeid_hash(nodeid);
304 con = __find_con(nodeid, r);
305 if (con || !alloc)
306 return con;
307
308 con = kzalloc(sizeof(*con), alloc);
309 if (!con)
310 return NULL;
311
312 dlm_con_init(con, nodeid);
313
314 spin_lock(&connections_lock);
315 /* Because multiple workqueues/threads calls this function it can
316 * race on multiple cpu's. Instead of locking hot path __find_con()
317 * we just check in rare cases of recently added nodes again
318 * under protection of connections_lock. If this is the case we
319 * abort our connection creation and return the existing connection.
320 */
321 tmp = __find_con(nodeid, r);
322 if (tmp) {
323 spin_unlock(&connections_lock);
324 kfree(con);
325 return tmp;
326 }
327
328 hlist_add_head_rcu(&con->list, &connection_hash[r]);
329 spin_unlock(&connections_lock);
330
331 return con;
332}
333
334static int addr_compare(const struct sockaddr_storage *x,
335 const struct sockaddr_storage *y)
336{
337 switch (x->ss_family) {
338 case AF_INET: {
339 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
340 struct sockaddr_in *siny = (struct sockaddr_in *)y;
341 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
342 return 0;
343 if (sinx->sin_port != siny->sin_port)
344 return 0;
345 break;
346 }
347 case AF_INET6: {
348 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
349 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
350 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
351 return 0;
352 if (sinx->sin6_port != siny->sin6_port)
353 return 0;
354 break;
355 }
356 default:
357 return 0;
358 }
359 return 1;
360}
361
362static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
363 struct sockaddr *sa_out, bool try_new_addr,
364 unsigned int *mark)
365{
366 struct sockaddr_storage sas;
367 struct connection *con;
368 int idx;
369
370 if (!dlm_local_count)
371 return -1;
372
373 idx = srcu_read_lock(&connections_srcu);
374 con = nodeid2con(nodeid, 0);
375 if (!con) {
376 srcu_read_unlock(&connections_srcu, idx);
377 return -ENOENT;
378 }
379
380 spin_lock(&con->addrs_lock);
381 if (!con->addr_count) {
382 spin_unlock(&con->addrs_lock);
383 srcu_read_unlock(&connections_srcu, idx);
384 return -ENOENT;
385 }
386
387 memcpy(&sas, &con->addr[con->curr_addr_index],
388 sizeof(struct sockaddr_storage));
389
390 if (try_new_addr) {
391 con->curr_addr_index++;
392 if (con->curr_addr_index == con->addr_count)
393 con->curr_addr_index = 0;
394 }
395
396 *mark = con->mark;
397 spin_unlock(&con->addrs_lock);
398
399 if (sas_out)
400 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
401
402 if (!sa_out) {
403 srcu_read_unlock(&connections_srcu, idx);
404 return 0;
405 }
406
407 if (dlm_local_addr[0].ss_family == AF_INET) {
408 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
409 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
410 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
411 } else {
412 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
413 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
414 ret6->sin6_addr = in6->sin6_addr;
415 }
416
417 srcu_read_unlock(&connections_srcu, idx);
418 return 0;
419}
420
421static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
422 unsigned int *mark)
423{
424 struct connection *con;
425 int i, idx, addr_i;
426
427 idx = srcu_read_lock(&connections_srcu);
428 for (i = 0; i < CONN_HASH_SIZE; i++) {
429 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
430 WARN_ON_ONCE(!con->addr_count);
431
432 spin_lock(&con->addrs_lock);
433 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
434 if (addr_compare(&con->addr[addr_i], addr)) {
435 *nodeid = con->nodeid;
436 *mark = con->mark;
437 spin_unlock(&con->addrs_lock);
438 srcu_read_unlock(&connections_srcu, idx);
439 return 0;
440 }
441 }
442 spin_unlock(&con->addrs_lock);
443 }
444 }
445 srcu_read_unlock(&connections_srcu, idx);
446
447 return -ENOENT;
448}
449
450static bool dlm_lowcomms_con_has_addr(const struct connection *con,
451 const struct sockaddr_storage *addr)
452{
453 int i;
454
455 for (i = 0; i < con->addr_count; i++) {
456 if (addr_compare(&con->addr[i], addr))
457 return true;
458 }
459
460 return false;
461}
462
463int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
464{
465 struct connection *con;
466 bool ret, idx;
467
468 idx = srcu_read_lock(&connections_srcu);
469 con = nodeid2con(nodeid, GFP_NOFS);
470 if (!con) {
471 srcu_read_unlock(&connections_srcu, idx);
472 return -ENOMEM;
473 }
474
475 spin_lock(&con->addrs_lock);
476 if (!con->addr_count) {
477 memcpy(&con->addr[0], addr, sizeof(*addr));
478 con->addr_count = 1;
479 con->mark = dlm_config.ci_mark;
480 spin_unlock(&con->addrs_lock);
481 srcu_read_unlock(&connections_srcu, idx);
482 return 0;
483 }
484
485 ret = dlm_lowcomms_con_has_addr(con, addr);
486 if (ret) {
487 spin_unlock(&con->addrs_lock);
488 srcu_read_unlock(&connections_srcu, idx);
489 return -EEXIST;
490 }
491
492 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493 spin_unlock(&con->addrs_lock);
494 srcu_read_unlock(&connections_srcu, idx);
495 return -ENOSPC;
496 }
497
498 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499 srcu_read_unlock(&connections_srcu, idx);
500 spin_unlock(&con->addrs_lock);
501 return 0;
502}
503
504/* Data available on socket or listen socket received a connect */
505static void lowcomms_data_ready(struct sock *sk)
506{
507 struct connection *con = sock2con(sk);
508
509 trace_sk_data_ready(sk);
510
511 set_bit(CF_RECV_INTR, &con->flags);
512 lowcomms_queue_rwork(con);
513}
514
515static void lowcomms_write_space(struct sock *sk)
516{
517 struct connection *con = sock2con(sk);
518
519 clear_bit(SOCK_NOSPACE, &con->sock->flags);
520
521 spin_lock_bh(&con->writequeue_lock);
522 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523 con->sock->sk->sk_write_pending--;
524 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
525 }
526
527 lowcomms_queue_swork(con);
528 spin_unlock_bh(&con->writequeue_lock);
529}
530
531static void lowcomms_state_change(struct sock *sk)
532{
533 /* SCTP layer is not calling sk_data_ready when the connection
534 * is done, so we catch the signal through here.
535 */
536 if (sk->sk_shutdown == RCV_SHUTDOWN)
537 lowcomms_data_ready(sk);
538}
539
540static void lowcomms_listen_data_ready(struct sock *sk)
541{
542 trace_sk_data_ready(sk);
543
544 queue_work(io_workqueue, &listen_con.rwork);
545}
546
547int dlm_lowcomms_connect_node(int nodeid)
548{
549 struct connection *con;
550 int idx;
551
552 idx = srcu_read_lock(&connections_srcu);
553 con = nodeid2con(nodeid, 0);
554 if (WARN_ON_ONCE(!con)) {
555 srcu_read_unlock(&connections_srcu, idx);
556 return -ENOENT;
557 }
558
559 down_read(&con->sock_lock);
560 if (!con->sock) {
561 spin_lock_bh(&con->writequeue_lock);
562 lowcomms_queue_swork(con);
563 spin_unlock_bh(&con->writequeue_lock);
564 }
565 up_read(&con->sock_lock);
566 srcu_read_unlock(&connections_srcu, idx);
567
568 cond_resched();
569 return 0;
570}
571
572int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573{
574 struct connection *con;
575 int idx;
576
577 idx = srcu_read_lock(&connections_srcu);
578 con = nodeid2con(nodeid, 0);
579 if (!con) {
580 srcu_read_unlock(&connections_srcu, idx);
581 return -ENOENT;
582 }
583
584 spin_lock(&con->addrs_lock);
585 con->mark = mark;
586 spin_unlock(&con->addrs_lock);
587 srcu_read_unlock(&connections_srcu, idx);
588 return 0;
589}
590
591static void lowcomms_error_report(struct sock *sk)
592{
593 struct connection *con = sock2con(sk);
594 struct inet_sock *inet;
595
596 inet = inet_sk(sk);
597 switch (sk->sk_family) {
598 case AF_INET:
599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600 "sending to node %d at %pI4, dport %d, "
601 "sk_err=%d/%d\n", dlm_our_nodeid(),
602 con->nodeid, &inet->inet_daddr,
603 ntohs(inet->inet_dport), sk->sk_err,
604 READ_ONCE(sk->sk_err_soft));
605 break;
606#if IS_ENABLED(CONFIG_IPV6)
607 case AF_INET6:
608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609 "sending to node %d at %pI6c, "
610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611 con->nodeid, &sk->sk_v6_daddr,
612 ntohs(inet->inet_dport), sk->sk_err,
613 READ_ONCE(sk->sk_err_soft));
614 break;
615#endif
616 default:
617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618 "invalid socket family %d set, "
619 "sk_err=%d/%d\n", dlm_our_nodeid(),
620 sk->sk_family, sk->sk_err,
621 READ_ONCE(sk->sk_err_soft));
622 break;
623 }
624
625 dlm_midcomms_unack_msg_resend(con->nodeid);
626
627 listen_sock.sk_error_report(sk);
628}
629
630static void restore_callbacks(struct sock *sk)
631{
632#ifdef CONFIG_LOCKDEP
633 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634#endif
635
636 sk->sk_user_data = NULL;
637 sk->sk_data_ready = listen_sock.sk_data_ready;
638 sk->sk_state_change = listen_sock.sk_state_change;
639 sk->sk_write_space = listen_sock.sk_write_space;
640 sk->sk_error_report = listen_sock.sk_error_report;
641}
642
643/* Make a socket active */
644static void add_sock(struct socket *sock, struct connection *con)
645{
646 struct sock *sk = sock->sk;
647
648 lock_sock(sk);
649 con->sock = sock;
650
651 sk->sk_user_data = con;
652 sk->sk_data_ready = lowcomms_data_ready;
653 sk->sk_write_space = lowcomms_write_space;
654 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655 sk->sk_state_change = lowcomms_state_change;
656 sk->sk_allocation = GFP_NOFS;
657 sk->sk_use_task_frag = false;
658 sk->sk_error_report = lowcomms_error_report;
659 release_sock(sk);
660}
661
662/* Add the port number to an IPv6 or 4 sockaddr and return the address
663 length */
664static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
665 int *addr_len)
666{
667 saddr->ss_family = dlm_local_addr[0].ss_family;
668 if (saddr->ss_family == AF_INET) {
669 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670 in4_addr->sin_port = cpu_to_be16(port);
671 *addr_len = sizeof(struct sockaddr_in);
672 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673 } else {
674 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675 in6_addr->sin6_port = cpu_to_be16(port);
676 *addr_len = sizeof(struct sockaddr_in6);
677 }
678 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679}
680
681static void dlm_page_release(struct kref *kref)
682{
683 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684 ref);
685
686 __free_page(e->page);
687 dlm_free_writequeue(e);
688}
689
690static void dlm_msg_release(struct kref *kref)
691{
692 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693
694 kref_put(&msg->entry->ref, dlm_page_release);
695 dlm_free_msg(msg);
696}
697
698static void free_entry(struct writequeue_entry *e)
699{
700 struct dlm_msg *msg, *tmp;
701
702 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703 if (msg->orig_msg) {
704 msg->orig_msg->retransmit = false;
705 kref_put(&msg->orig_msg->ref, dlm_msg_release);
706 }
707
708 list_del(&msg->list);
709 kref_put(&msg->ref, dlm_msg_release);
710 }
711
712 list_del(&e->list);
713 kref_put(&e->ref, dlm_page_release);
714}
715
716static void dlm_close_sock(struct socket **sock)
717{
718 lock_sock((*sock)->sk);
719 restore_callbacks((*sock)->sk);
720 release_sock((*sock)->sk);
721
722 sock_release(*sock);
723 *sock = NULL;
724}
725
726static void allow_connection_io(struct connection *con)
727{
728 if (con->othercon)
729 clear_bit(CF_IO_STOP, &con->othercon->flags);
730 clear_bit(CF_IO_STOP, &con->flags);
731}
732
733static void stop_connection_io(struct connection *con)
734{
735 if (con->othercon)
736 stop_connection_io(con->othercon);
737
738 spin_lock_bh(&con->writequeue_lock);
739 set_bit(CF_IO_STOP, &con->flags);
740 spin_unlock_bh(&con->writequeue_lock);
741
742 down_write(&con->sock_lock);
743 if (con->sock) {
744 lock_sock(con->sock->sk);
745 restore_callbacks(con->sock->sk);
746 release_sock(con->sock->sk);
747 }
748 up_write(&con->sock_lock);
749
750 cancel_work_sync(&con->swork);
751 cancel_work_sync(&con->rwork);
752}
753
754/* Close a remote connection and tidy up */
755static void close_connection(struct connection *con, bool and_other)
756{
757 struct writequeue_entry *e;
758
759 if (con->othercon && and_other)
760 close_connection(con->othercon, false);
761
762 down_write(&con->sock_lock);
763 if (!con->sock) {
764 up_write(&con->sock_lock);
765 return;
766 }
767
768 dlm_close_sock(&con->sock);
769
770 /* if we send a writequeue entry only a half way, we drop the
771 * whole entry because reconnection and that we not start of the
772 * middle of a msg which will confuse the other end.
773 *
774 * we can always drop messages because retransmits, but what we
775 * cannot allow is to transmit half messages which may be processed
776 * at the other side.
777 *
778 * our policy is to start on a clean state when disconnects, we don't
779 * know what's send/received on transport layer in this case.
780 */
781 spin_lock_bh(&con->writequeue_lock);
782 if (!list_empty(&con->writequeue)) {
783 e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 list);
785 if (e->dirty)
786 free_entry(e);
787 }
788 spin_unlock_bh(&con->writequeue_lock);
789
790 con->rx_leftover = 0;
791 con->retries = 0;
792 clear_bit(CF_APP_LIMITED, &con->flags);
793 clear_bit(CF_RECV_PENDING, &con->flags);
794 clear_bit(CF_SEND_PENDING, &con->flags);
795 up_write(&con->sock_lock);
796}
797
798static void shutdown_connection(struct connection *con, bool and_other)
799{
800 int ret;
801
802 if (con->othercon && and_other)
803 shutdown_connection(con->othercon, false);
804
805 flush_workqueue(io_workqueue);
806 down_read(&con->sock_lock);
807 /* nothing to shutdown */
808 if (!con->sock) {
809 up_read(&con->sock_lock);
810 return;
811 }
812
813 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814 up_read(&con->sock_lock);
815 if (ret) {
816 log_print("Connection %p failed to shutdown: %d will force close",
817 con, ret);
818 goto force_close;
819 } else {
820 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821 DLM_SHUTDOWN_WAIT_TIMEOUT);
822 if (ret == 0) {
823 log_print("Connection %p shutdown timed out, will force close",
824 con);
825 goto force_close;
826 }
827 }
828
829 return;
830
831force_close:
832 close_connection(con, false);
833}
834
835static struct processqueue_entry *new_processqueue_entry(int nodeid,
836 int buflen)
837{
838 struct processqueue_entry *pentry;
839
840 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841 if (!pentry)
842 return NULL;
843
844 pentry->buf = kmalloc(buflen, GFP_NOFS);
845 if (!pentry->buf) {
846 kfree(pentry);
847 return NULL;
848 }
849
850 pentry->nodeid = nodeid;
851 return pentry;
852}
853
854static void free_processqueue_entry(struct processqueue_entry *pentry)
855{
856 kfree(pentry->buf);
857 kfree(pentry);
858}
859
860struct dlm_processed_nodes {
861 int nodeid;
862
863 struct list_head list;
864};
865
866static void process_dlm_messages(struct work_struct *work)
867{
868 struct processqueue_entry *pentry;
869
870 spin_lock(&processqueue_lock);
871 pentry = list_first_entry_or_null(&processqueue,
872 struct processqueue_entry, list);
873 if (WARN_ON_ONCE(!pentry)) {
874 process_dlm_messages_pending = false;
875 spin_unlock(&processqueue_lock);
876 return;
877 }
878
879 list_del(&pentry->list);
880 atomic_dec(&processqueue_count);
881 spin_unlock(&processqueue_lock);
882
883 for (;;) {
884 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
885 pentry->buflen);
886 free_processqueue_entry(pentry);
887
888 spin_lock(&processqueue_lock);
889 pentry = list_first_entry_or_null(&processqueue,
890 struct processqueue_entry, list);
891 if (!pentry) {
892 process_dlm_messages_pending = false;
893 spin_unlock(&processqueue_lock);
894 break;
895 }
896
897 list_del(&pentry->list);
898 atomic_dec(&processqueue_count);
899 spin_unlock(&processqueue_lock);
900 }
901}
902
903/* Data received from remote end */
904static int receive_from_sock(struct connection *con, int buflen)
905{
906 struct processqueue_entry *pentry;
907 int ret, buflen_real;
908 struct msghdr msg;
909 struct kvec iov;
910
911 pentry = new_processqueue_entry(con->nodeid, buflen);
912 if (!pentry)
913 return DLM_IO_RESCHED;
914
915 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
916
917 /* calculate new buffer parameter regarding last receive and
918 * possible leftover bytes
919 */
920 iov.iov_base = pentry->buf + con->rx_leftover;
921 iov.iov_len = buflen - con->rx_leftover;
922
923 memset(&msg, 0, sizeof(msg));
924 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
925 clear_bit(CF_RECV_INTR, &con->flags);
926again:
927 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
928 msg.msg_flags);
929 trace_dlm_recv(con->nodeid, ret);
930 if (ret == -EAGAIN) {
931 lock_sock(con->sock->sk);
932 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
933 release_sock(con->sock->sk);
934 goto again;
935 }
936
937 clear_bit(CF_RECV_PENDING, &con->flags);
938 release_sock(con->sock->sk);
939 free_processqueue_entry(pentry);
940 return DLM_IO_END;
941 } else if (ret == 0) {
942 /* close will clear CF_RECV_PENDING */
943 free_processqueue_entry(pentry);
944 return DLM_IO_EOF;
945 } else if (ret < 0) {
946 free_processqueue_entry(pentry);
947 return ret;
948 }
949
950 /* new buflen according readed bytes and leftover from last receive */
951 buflen_real = ret + con->rx_leftover;
952 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
953 buflen_real);
954 if (ret < 0) {
955 free_processqueue_entry(pentry);
956 return ret;
957 }
958
959 pentry->buflen = ret;
960
961 /* calculate leftover bytes from process and put it into begin of
962 * the receive buffer, so next receive we have the full message
963 * at the start address of the receive buffer.
964 */
965 con->rx_leftover = buflen_real - ret;
966 memmove(con->rx_leftover_buf, pentry->buf + ret,
967 con->rx_leftover);
968
969 spin_lock(&processqueue_lock);
970 ret = atomic_inc_return(&processqueue_count);
971 list_add_tail(&pentry->list, &processqueue);
972 if (!process_dlm_messages_pending) {
973 process_dlm_messages_pending = true;
974 queue_work(process_workqueue, &process_work);
975 }
976 spin_unlock(&processqueue_lock);
977
978 if (ret > DLM_MAX_PROCESS_BUFFERS)
979 return DLM_IO_FLUSH;
980
981 return DLM_IO_SUCCESS;
982}
983
984/* Listening socket is busy, accept a connection */
985static int accept_from_sock(void)
986{
987 struct sockaddr_storage peeraddr;
988 int len, idx, result, nodeid;
989 struct connection *newcon;
990 struct socket *newsock;
991 unsigned int mark;
992
993 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
994 if (result == -EAGAIN)
995 return DLM_IO_END;
996 else if (result < 0)
997 goto accept_err;
998
999 /* Get the connected socket's peer */
1000 memset(&peeraddr, 0, sizeof(peeraddr));
1001 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1002 if (len < 0) {
1003 result = -ECONNABORTED;
1004 goto accept_err;
1005 }
1006
1007 /* Get the new node's NODEID */
1008 make_sockaddr(&peeraddr, 0, &len);
1009 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1010 switch (peeraddr.ss_family) {
1011 case AF_INET: {
1012 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1013
1014 log_print("connect from non cluster IPv4 node %pI4",
1015 &sin->sin_addr);
1016 break;
1017 }
1018#if IS_ENABLED(CONFIG_IPV6)
1019 case AF_INET6: {
1020 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1021
1022 log_print("connect from non cluster IPv6 node %pI6c",
1023 &sin6->sin6_addr);
1024 break;
1025 }
1026#endif
1027 default:
1028 log_print("invalid family from non cluster node");
1029 break;
1030 }
1031
1032 sock_release(newsock);
1033 return -1;
1034 }
1035
1036 log_print("got connection from %d", nodeid);
1037
1038 /* Check to see if we already have a connection to this node. This
1039 * could happen if the two nodes initiate a connection at roughly
1040 * the same time and the connections cross on the wire.
1041 * In this case we store the incoming one in "othercon"
1042 */
1043 idx = srcu_read_lock(&connections_srcu);
1044 newcon = nodeid2con(nodeid, 0);
1045 if (WARN_ON_ONCE(!newcon)) {
1046 srcu_read_unlock(&connections_srcu, idx);
1047 result = -ENOENT;
1048 goto accept_err;
1049 }
1050
1051 sock_set_mark(newsock->sk, mark);
1052
1053 down_write(&newcon->sock_lock);
1054 if (newcon->sock) {
1055 struct connection *othercon = newcon->othercon;
1056
1057 if (!othercon) {
1058 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1059 if (!othercon) {
1060 log_print("failed to allocate incoming socket");
1061 up_write(&newcon->sock_lock);
1062 srcu_read_unlock(&connections_srcu, idx);
1063 result = -ENOMEM;
1064 goto accept_err;
1065 }
1066
1067 dlm_con_init(othercon, nodeid);
1068 lockdep_set_subclass(&othercon->sock_lock, 1);
1069 newcon->othercon = othercon;
1070 set_bit(CF_IS_OTHERCON, &othercon->flags);
1071 } else {
1072 /* close other sock con if we have something new */
1073 close_connection(othercon, false);
1074 }
1075
1076 down_write(&othercon->sock_lock);
1077 add_sock(newsock, othercon);
1078
1079 /* check if we receved something while adding */
1080 lock_sock(othercon->sock->sk);
1081 lowcomms_queue_rwork(othercon);
1082 release_sock(othercon->sock->sk);
1083 up_write(&othercon->sock_lock);
1084 }
1085 else {
1086 /* accept copies the sk after we've saved the callbacks, so we
1087 don't want to save them a second time or comm errors will
1088 result in calling sk_error_report recursively. */
1089 add_sock(newsock, newcon);
1090
1091 /* check if we receved something while adding */
1092 lock_sock(newcon->sock->sk);
1093 lowcomms_queue_rwork(newcon);
1094 release_sock(newcon->sock->sk);
1095 }
1096 up_write(&newcon->sock_lock);
1097 srcu_read_unlock(&connections_srcu, idx);
1098
1099 return DLM_IO_SUCCESS;
1100
1101accept_err:
1102 if (newsock)
1103 sock_release(newsock);
1104
1105 return result;
1106}
1107
1108/*
1109 * writequeue_entry_complete - try to delete and free write queue entry
1110 * @e: write queue entry to try to delete
1111 * @completed: bytes completed
1112 *
1113 * writequeue_lock must be held.
1114 */
1115static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1116{
1117 e->offset += completed;
1118 e->len -= completed;
1119 /* signal that page was half way transmitted */
1120 e->dirty = true;
1121
1122 if (e->len == 0 && e->users == 0)
1123 free_entry(e);
1124}
1125
1126/*
1127 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1128 */
1129static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130{
1131 struct sockaddr_storage localaddr;
1132 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133 int i, addr_len, result = 0;
1134
1135 for (i = 0; i < dlm_local_count; i++) {
1136 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1137 make_sockaddr(&localaddr, port, &addr_len);
1138
1139 if (!i)
1140 result = kernel_bind(sock, addr, addr_len);
1141 else
1142 result = sock_bind_add(sock->sk, addr, addr_len);
1143
1144 if (result < 0) {
1145 log_print("Can't bind to %d addr number %d, %d.\n",
1146 port, i + 1, result);
1147 break;
1148 }
1149 }
1150 return result;
1151}
1152
1153/* Get local addresses */
1154static void init_local(void)
1155{
1156 struct sockaddr_storage sas;
1157 int i;
1158
1159 dlm_local_count = 0;
1160 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161 if (dlm_our_addr(&sas, i))
1162 break;
1163
1164 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1165 }
1166}
1167
1168static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1169{
1170 struct writequeue_entry *entry;
1171
1172 entry = dlm_allocate_writequeue();
1173 if (!entry)
1174 return NULL;
1175
1176 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1177 if (!entry->page) {
1178 dlm_free_writequeue(entry);
1179 return NULL;
1180 }
1181
1182 entry->offset = 0;
1183 entry->len = 0;
1184 entry->end = 0;
1185 entry->dirty = false;
1186 entry->con = con;
1187 entry->users = 1;
1188 kref_init(&entry->ref);
1189 return entry;
1190}
1191
1192static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1193 char **ppc, void (*cb)(void *data),
1194 void *data)
1195{
1196 struct writequeue_entry *e;
1197
1198 spin_lock_bh(&con->writequeue_lock);
1199 if (!list_empty(&con->writequeue)) {
1200 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1201 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1202 kref_get(&e->ref);
1203
1204 *ppc = page_address(e->page) + e->end;
1205 if (cb)
1206 cb(data);
1207
1208 e->end += len;
1209 e->users++;
1210 goto out;
1211 }
1212 }
1213
1214 e = new_writequeue_entry(con);
1215 if (!e)
1216 goto out;
1217
1218 kref_get(&e->ref);
1219 *ppc = page_address(e->page);
1220 e->end += len;
1221 if (cb)
1222 cb(data);
1223
1224 list_add_tail(&e->list, &con->writequeue);
1225
1226out:
1227 spin_unlock_bh(&con->writequeue_lock);
1228 return e;
1229};
1230
1231static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1232 gfp_t allocation, char **ppc,
1233 void (*cb)(void *data),
1234 void *data)
1235{
1236 struct writequeue_entry *e;
1237 struct dlm_msg *msg;
1238
1239 msg = dlm_allocate_msg(allocation);
1240 if (!msg)
1241 return NULL;
1242
1243 kref_init(&msg->ref);
1244
1245 e = new_wq_entry(con, len, ppc, cb, data);
1246 if (!e) {
1247 dlm_free_msg(msg);
1248 return NULL;
1249 }
1250
1251 msg->retransmit = false;
1252 msg->orig_msg = NULL;
1253 msg->ppc = *ppc;
1254 msg->len = len;
1255 msg->entry = e;
1256
1257 return msg;
1258}
1259
1260/* avoid false positive for nodes_srcu, unlock happens in
1261 * dlm_lowcomms_commit_msg which is a must call if success
1262 */
1263#ifndef __CHECKER__
1264struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1265 char **ppc, void (*cb)(void *data),
1266 void *data)
1267{
1268 struct connection *con;
1269 struct dlm_msg *msg;
1270 int idx;
1271
1272 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1273 len < sizeof(struct dlm_header)) {
1274 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1275 log_print("failed to allocate a buffer of size %d", len);
1276 WARN_ON_ONCE(1);
1277 return NULL;
1278 }
1279
1280 idx = srcu_read_lock(&connections_srcu);
1281 con = nodeid2con(nodeid, 0);
1282 if (WARN_ON_ONCE(!con)) {
1283 srcu_read_unlock(&connections_srcu, idx);
1284 return NULL;
1285 }
1286
1287 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1288 if (!msg) {
1289 srcu_read_unlock(&connections_srcu, idx);
1290 return NULL;
1291 }
1292
1293 /* for dlm_lowcomms_commit_msg() */
1294 kref_get(&msg->ref);
1295 /* we assume if successful commit must called */
1296 msg->idx = idx;
1297 return msg;
1298}
1299#endif
1300
1301static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1302{
1303 struct writequeue_entry *e = msg->entry;
1304 struct connection *con = e->con;
1305 int users;
1306
1307 spin_lock_bh(&con->writequeue_lock);
1308 kref_get(&msg->ref);
1309 list_add(&msg->list, &e->msgs);
1310
1311 users = --e->users;
1312 if (users)
1313 goto out;
1314
1315 e->len = DLM_WQ_LENGTH_BYTES(e);
1316
1317 lowcomms_queue_swork(con);
1318
1319out:
1320 spin_unlock_bh(&con->writequeue_lock);
1321 return;
1322}
1323
1324/* avoid false positive for nodes_srcu, lock was happen in
1325 * dlm_lowcomms_new_msg
1326 */
1327#ifndef __CHECKER__
1328void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1329{
1330 _dlm_lowcomms_commit_msg(msg);
1331 srcu_read_unlock(&connections_srcu, msg->idx);
1332 /* because dlm_lowcomms_new_msg() */
1333 kref_put(&msg->ref, dlm_msg_release);
1334}
1335#endif
1336
1337void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1338{
1339 kref_put(&msg->ref, dlm_msg_release);
1340}
1341
1342/* does not held connections_srcu, usage lowcomms_error_report only */
1343int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1344{
1345 struct dlm_msg *msg_resend;
1346 char *ppc;
1347
1348 if (msg->retransmit)
1349 return 1;
1350
1351 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1352 GFP_ATOMIC, &ppc, NULL, NULL);
1353 if (!msg_resend)
1354 return -ENOMEM;
1355
1356 msg->retransmit = true;
1357 kref_get(&msg->ref);
1358 msg_resend->orig_msg = msg;
1359
1360 memcpy(ppc, msg->ppc, msg->len);
1361 _dlm_lowcomms_commit_msg(msg_resend);
1362 dlm_lowcomms_put_msg(msg_resend);
1363
1364 return 0;
1365}
1366
1367/* Send a message */
1368static int send_to_sock(struct connection *con)
1369{
1370 struct writequeue_entry *e;
1371 struct bio_vec bvec;
1372 struct msghdr msg = {
1373 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1374 };
1375 int len, offset, ret;
1376
1377 spin_lock_bh(&con->writequeue_lock);
1378 e = con_next_wq(con);
1379 if (!e) {
1380 clear_bit(CF_SEND_PENDING, &con->flags);
1381 spin_unlock_bh(&con->writequeue_lock);
1382 return DLM_IO_END;
1383 }
1384
1385 len = e->len;
1386 offset = e->offset;
1387 WARN_ON_ONCE(len == 0 && e->users == 0);
1388 spin_unlock_bh(&con->writequeue_lock);
1389
1390 bvec_set_page(&bvec, e->page, len, offset);
1391 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1392 ret = sock_sendmsg(con->sock, &msg);
1393 trace_dlm_send(con->nodeid, ret);
1394 if (ret == -EAGAIN || ret == 0) {
1395 lock_sock(con->sock->sk);
1396 spin_lock_bh(&con->writequeue_lock);
1397 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1398 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1399 /* Notify TCP that we're limited by the
1400 * application window size.
1401 */
1402 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1403 con->sock->sk->sk_write_pending++;
1404
1405 clear_bit(CF_SEND_PENDING, &con->flags);
1406 spin_unlock_bh(&con->writequeue_lock);
1407 release_sock(con->sock->sk);
1408
1409 /* wait for write_space() event */
1410 return DLM_IO_END;
1411 }
1412 spin_unlock_bh(&con->writequeue_lock);
1413 release_sock(con->sock->sk);
1414
1415 return DLM_IO_RESCHED;
1416 } else if (ret < 0) {
1417 return ret;
1418 }
1419
1420 spin_lock_bh(&con->writequeue_lock);
1421 writequeue_entry_complete(e, ret);
1422 spin_unlock_bh(&con->writequeue_lock);
1423
1424 return DLM_IO_SUCCESS;
1425}
1426
1427static void clean_one_writequeue(struct connection *con)
1428{
1429 struct writequeue_entry *e, *safe;
1430
1431 spin_lock_bh(&con->writequeue_lock);
1432 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1433 free_entry(e);
1434 }
1435 spin_unlock_bh(&con->writequeue_lock);
1436}
1437
1438static void connection_release(struct rcu_head *rcu)
1439{
1440 struct connection *con = container_of(rcu, struct connection, rcu);
1441
1442 WARN_ON_ONCE(!list_empty(&con->writequeue));
1443 WARN_ON_ONCE(con->sock);
1444 kfree(con);
1445}
1446
1447/* Called from recovery when it knows that a node has
1448 left the cluster */
1449int dlm_lowcomms_close(int nodeid)
1450{
1451 struct connection *con;
1452 int idx;
1453
1454 log_print("closing connection to node %d", nodeid);
1455
1456 idx = srcu_read_lock(&connections_srcu);
1457 con = nodeid2con(nodeid, 0);
1458 if (WARN_ON_ONCE(!con)) {
1459 srcu_read_unlock(&connections_srcu, idx);
1460 return -ENOENT;
1461 }
1462
1463 stop_connection_io(con);
1464 log_print("io handling for node: %d stopped", nodeid);
1465 close_connection(con, true);
1466
1467 spin_lock(&connections_lock);
1468 hlist_del_rcu(&con->list);
1469 spin_unlock(&connections_lock);
1470
1471 clean_one_writequeue(con);
1472 call_srcu(&connections_srcu, &con->rcu, connection_release);
1473 if (con->othercon) {
1474 clean_one_writequeue(con->othercon);
1475 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1476 }
1477 srcu_read_unlock(&connections_srcu, idx);
1478
1479 /* for debugging we print when we are done to compare with other
1480 * messages in between. This function need to be correctly synchronized
1481 * with io handling
1482 */
1483 log_print("closing connection to node %d done", nodeid);
1484
1485 return 0;
1486}
1487
1488/* Receive worker function */
1489static void process_recv_sockets(struct work_struct *work)
1490{
1491 struct connection *con = container_of(work, struct connection, rwork);
1492 int ret, buflen;
1493
1494 down_read(&con->sock_lock);
1495 if (!con->sock) {
1496 up_read(&con->sock_lock);
1497 return;
1498 }
1499
1500 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1501 do {
1502 ret = receive_from_sock(con, buflen);
1503 } while (ret == DLM_IO_SUCCESS);
1504 up_read(&con->sock_lock);
1505
1506 switch (ret) {
1507 case DLM_IO_END:
1508 /* CF_RECV_PENDING cleared */
1509 break;
1510 case DLM_IO_EOF:
1511 close_connection(con, false);
1512 wake_up(&con->shutdown_wait);
1513 /* CF_RECV_PENDING cleared */
1514 break;
1515 case DLM_IO_FLUSH:
1516 flush_workqueue(process_workqueue);
1517 fallthrough;
1518 case DLM_IO_RESCHED:
1519 cond_resched();
1520 queue_work(io_workqueue, &con->rwork);
1521 /* CF_RECV_PENDING not cleared */
1522 break;
1523 default:
1524 if (ret < 0) {
1525 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1526 close_connection(con, false);
1527 } else {
1528 spin_lock_bh(&con->writequeue_lock);
1529 lowcomms_queue_swork(con);
1530 spin_unlock_bh(&con->writequeue_lock);
1531 }
1532
1533 /* CF_RECV_PENDING cleared for othercon
1534 * we trigger send queue if not already done
1535 * and process_send_sockets will handle it
1536 */
1537 break;
1538 }
1539
1540 WARN_ON_ONCE(1);
1541 break;
1542 }
1543}
1544
1545static void process_listen_recv_socket(struct work_struct *work)
1546{
1547 int ret;
1548
1549 if (WARN_ON_ONCE(!listen_con.sock))
1550 return;
1551
1552 do {
1553 ret = accept_from_sock();
1554 } while (ret == DLM_IO_SUCCESS);
1555
1556 if (ret < 0)
1557 log_print("critical error accepting connection: %d", ret);
1558}
1559
1560static int dlm_connect(struct connection *con)
1561{
1562 struct sockaddr_storage addr;
1563 int result, addr_len;
1564 struct socket *sock;
1565 unsigned int mark;
1566
1567 memset(&addr, 0, sizeof(addr));
1568 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1569 dlm_proto_ops->try_new_addr, &mark);
1570 if (result < 0) {
1571 log_print("no address for nodeid %d", con->nodeid);
1572 return result;
1573 }
1574
1575 /* Create a socket to communicate with */
1576 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1577 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1578 if (result < 0)
1579 return result;
1580
1581 sock_set_mark(sock->sk, mark);
1582 dlm_proto_ops->sockopts(sock);
1583
1584 result = dlm_proto_ops->bind(sock);
1585 if (result < 0) {
1586 sock_release(sock);
1587 return result;
1588 }
1589
1590 add_sock(sock, con);
1591
1592 log_print_ratelimited("connecting to %d", con->nodeid);
1593 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1594 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1595 addr_len);
1596 switch (result) {
1597 case -EINPROGRESS:
1598 /* not an error */
1599 fallthrough;
1600 case 0:
1601 break;
1602 default:
1603 if (result < 0)
1604 dlm_close_sock(&con->sock);
1605
1606 break;
1607 }
1608
1609 return result;
1610}
1611
1612/* Send worker function */
1613static void process_send_sockets(struct work_struct *work)
1614{
1615 struct connection *con = container_of(work, struct connection, swork);
1616 int ret;
1617
1618 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1619
1620 down_read(&con->sock_lock);
1621 if (!con->sock) {
1622 up_read(&con->sock_lock);
1623 down_write(&con->sock_lock);
1624 if (!con->sock) {
1625 ret = dlm_connect(con);
1626 switch (ret) {
1627 case 0:
1628 break;
1629 case -EINPROGRESS:
1630 /* avoid spamming resched on connection
1631 * we might can switch to a state_change
1632 * event based mechanism if established
1633 */
1634 msleep(100);
1635 break;
1636 default:
1637 /* CF_SEND_PENDING not cleared */
1638 up_write(&con->sock_lock);
1639 log_print("connect to node %d try %d error %d",
1640 con->nodeid, con->retries++, ret);
1641 msleep(1000);
1642 /* For now we try forever to reconnect. In
1643 * future we should send a event to cluster
1644 * manager to fence itself after certain amount
1645 * of retries.
1646 */
1647 queue_work(io_workqueue, &con->swork);
1648 return;
1649 }
1650 }
1651 downgrade_write(&con->sock_lock);
1652 }
1653
1654 do {
1655 ret = send_to_sock(con);
1656 } while (ret == DLM_IO_SUCCESS);
1657 up_read(&con->sock_lock);
1658
1659 switch (ret) {
1660 case DLM_IO_END:
1661 /* CF_SEND_PENDING cleared */
1662 break;
1663 case DLM_IO_RESCHED:
1664 /* CF_SEND_PENDING not cleared */
1665 cond_resched();
1666 queue_work(io_workqueue, &con->swork);
1667 break;
1668 default:
1669 if (ret < 0) {
1670 close_connection(con, false);
1671
1672 /* CF_SEND_PENDING cleared */
1673 spin_lock_bh(&con->writequeue_lock);
1674 lowcomms_queue_swork(con);
1675 spin_unlock_bh(&con->writequeue_lock);
1676 break;
1677 }
1678
1679 WARN_ON_ONCE(1);
1680 break;
1681 }
1682}
1683
1684static void work_stop(void)
1685{
1686 if (io_workqueue) {
1687 destroy_workqueue(io_workqueue);
1688 io_workqueue = NULL;
1689 }
1690
1691 if (process_workqueue) {
1692 destroy_workqueue(process_workqueue);
1693 process_workqueue = NULL;
1694 }
1695}
1696
1697static int work_start(void)
1698{
1699 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1700 WQ_UNBOUND, 0);
1701 if (!io_workqueue) {
1702 log_print("can't start dlm_io");
1703 return -ENOMEM;
1704 }
1705
1706 /* ordered dlm message process queue,
1707 * should be converted to a tasklet
1708 */
1709 process_workqueue = alloc_ordered_workqueue("dlm_process",
1710 WQ_HIGHPRI | WQ_MEM_RECLAIM);
1711 if (!process_workqueue) {
1712 log_print("can't start dlm_process");
1713 destroy_workqueue(io_workqueue);
1714 io_workqueue = NULL;
1715 return -ENOMEM;
1716 }
1717
1718 return 0;
1719}
1720
1721void dlm_lowcomms_shutdown(void)
1722{
1723 struct connection *con;
1724 int i, idx;
1725
1726 /* stop lowcomms_listen_data_ready calls */
1727 lock_sock(listen_con.sock->sk);
1728 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1729 release_sock(listen_con.sock->sk);
1730
1731 cancel_work_sync(&listen_con.rwork);
1732 dlm_close_sock(&listen_con.sock);
1733
1734 idx = srcu_read_lock(&connections_srcu);
1735 for (i = 0; i < CONN_HASH_SIZE; i++) {
1736 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1737 shutdown_connection(con, true);
1738 stop_connection_io(con);
1739 flush_workqueue(process_workqueue);
1740 close_connection(con, true);
1741
1742 clean_one_writequeue(con);
1743 if (con->othercon)
1744 clean_one_writequeue(con->othercon);
1745 allow_connection_io(con);
1746 }
1747 }
1748 srcu_read_unlock(&connections_srcu, idx);
1749}
1750
1751void dlm_lowcomms_stop(void)
1752{
1753 work_stop();
1754 dlm_proto_ops = NULL;
1755}
1756
1757static int dlm_listen_for_all(void)
1758{
1759 struct socket *sock;
1760 int result;
1761
1762 log_print("Using %s for communications",
1763 dlm_proto_ops->name);
1764
1765 result = dlm_proto_ops->listen_validate();
1766 if (result < 0)
1767 return result;
1768
1769 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1770 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1771 if (result < 0) {
1772 log_print("Can't create comms socket: %d", result);
1773 return result;
1774 }
1775
1776 sock_set_mark(sock->sk, dlm_config.ci_mark);
1777 dlm_proto_ops->listen_sockopts(sock);
1778
1779 result = dlm_proto_ops->listen_bind(sock);
1780 if (result < 0)
1781 goto out;
1782
1783 lock_sock(sock->sk);
1784 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1785 listen_sock.sk_write_space = sock->sk->sk_write_space;
1786 listen_sock.sk_error_report = sock->sk->sk_error_report;
1787 listen_sock.sk_state_change = sock->sk->sk_state_change;
1788
1789 listen_con.sock = sock;
1790
1791 sock->sk->sk_allocation = GFP_NOFS;
1792 sock->sk->sk_use_task_frag = false;
1793 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1794 release_sock(sock->sk);
1795
1796 result = sock->ops->listen(sock, 128);
1797 if (result < 0) {
1798 dlm_close_sock(&listen_con.sock);
1799 return result;
1800 }
1801
1802 return 0;
1803
1804out:
1805 sock_release(sock);
1806 return result;
1807}
1808
1809static int dlm_tcp_bind(struct socket *sock)
1810{
1811 struct sockaddr_storage src_addr;
1812 int result, addr_len;
1813
1814 /* Bind to our cluster-known address connecting to avoid
1815 * routing problems.
1816 */
1817 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1818 make_sockaddr(&src_addr, 0, &addr_len);
1819
1820 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1821 addr_len);
1822 if (result < 0) {
1823 /* This *may* not indicate a critical error */
1824 log_print("could not bind for connect: %d", result);
1825 }
1826
1827 return 0;
1828}
1829
1830static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1831 struct sockaddr *addr, int addr_len)
1832{
1833 return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1834}
1835
1836static int dlm_tcp_listen_validate(void)
1837{
1838 /* We don't support multi-homed hosts */
1839 if (dlm_local_count > 1) {
1840 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1841 return -EINVAL;
1842 }
1843
1844 return 0;
1845}
1846
1847static void dlm_tcp_sockopts(struct socket *sock)
1848{
1849 /* Turn off Nagle's algorithm */
1850 tcp_sock_set_nodelay(sock->sk);
1851}
1852
1853static void dlm_tcp_listen_sockopts(struct socket *sock)
1854{
1855 dlm_tcp_sockopts(sock);
1856 sock_set_reuseaddr(sock->sk);
1857}
1858
1859static int dlm_tcp_listen_bind(struct socket *sock)
1860{
1861 int addr_len;
1862
1863 /* Bind to our port */
1864 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1865 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1866 addr_len);
1867}
1868
1869static const struct dlm_proto_ops dlm_tcp_ops = {
1870 .name = "TCP",
1871 .proto = IPPROTO_TCP,
1872 .connect = dlm_tcp_connect,
1873 .sockopts = dlm_tcp_sockopts,
1874 .bind = dlm_tcp_bind,
1875 .listen_validate = dlm_tcp_listen_validate,
1876 .listen_sockopts = dlm_tcp_listen_sockopts,
1877 .listen_bind = dlm_tcp_listen_bind,
1878};
1879
1880static int dlm_sctp_bind(struct socket *sock)
1881{
1882 return sctp_bind_addrs(sock, 0);
1883}
1884
1885static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1886 struct sockaddr *addr, int addr_len)
1887{
1888 int ret;
1889
1890 /*
1891 * Make kernel_connect() function return in specified time,
1892 * since O_NONBLOCK argument in connect() function does not work here,
1893 * then, we should restore the default value of this attribute.
1894 */
1895 sock_set_sndtimeo(sock->sk, 5);
1896 ret = kernel_connect(sock, addr, addr_len, 0);
1897 sock_set_sndtimeo(sock->sk, 0);
1898 return ret;
1899}
1900
1901static int dlm_sctp_listen_validate(void)
1902{
1903 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1904 log_print("SCTP is not enabled by this kernel");
1905 return -EOPNOTSUPP;
1906 }
1907
1908 request_module("sctp");
1909 return 0;
1910}
1911
1912static int dlm_sctp_bind_listen(struct socket *sock)
1913{
1914 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1915}
1916
1917static void dlm_sctp_sockopts(struct socket *sock)
1918{
1919 /* Turn off Nagle's algorithm */
1920 sctp_sock_set_nodelay(sock->sk);
1921 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1922}
1923
1924static const struct dlm_proto_ops dlm_sctp_ops = {
1925 .name = "SCTP",
1926 .proto = IPPROTO_SCTP,
1927 .try_new_addr = true,
1928 .connect = dlm_sctp_connect,
1929 .sockopts = dlm_sctp_sockopts,
1930 .bind = dlm_sctp_bind,
1931 .listen_validate = dlm_sctp_listen_validate,
1932 .listen_sockopts = dlm_sctp_sockopts,
1933 .listen_bind = dlm_sctp_bind_listen,
1934};
1935
1936int dlm_lowcomms_start(void)
1937{
1938 int error;
1939
1940 init_local();
1941 if (!dlm_local_count) {
1942 error = -ENOTCONN;
1943 log_print("no local IP address has been set");
1944 goto fail;
1945 }
1946
1947 error = work_start();
1948 if (error)
1949 goto fail;
1950
1951 /* Start listening */
1952 switch (dlm_config.ci_protocol) {
1953 case DLM_PROTO_TCP:
1954 dlm_proto_ops = &dlm_tcp_ops;
1955 break;
1956 case DLM_PROTO_SCTP:
1957 dlm_proto_ops = &dlm_sctp_ops;
1958 break;
1959 default:
1960 log_print("Invalid protocol identifier %d set",
1961 dlm_config.ci_protocol);
1962 error = -EINVAL;
1963 goto fail_proto_ops;
1964 }
1965
1966 error = dlm_listen_for_all();
1967 if (error)
1968 goto fail_listen;
1969
1970 return 0;
1971
1972fail_listen:
1973 dlm_proto_ops = NULL;
1974fail_proto_ops:
1975 work_stop();
1976fail:
1977 return error;
1978}
1979
1980void dlm_lowcomms_init(void)
1981{
1982 int i;
1983
1984 for (i = 0; i < CONN_HASH_SIZE; i++)
1985 INIT_HLIST_HEAD(&connection_hash[i]);
1986
1987 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1988}
1989
1990void dlm_lowcomms_exit(void)
1991{
1992 struct connection *con;
1993 int i, idx;
1994
1995 idx = srcu_read_lock(&connections_srcu);
1996 for (i = 0; i < CONN_HASH_SIZE; i++) {
1997 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1998 spin_lock(&connections_lock);
1999 hlist_del_rcu(&con->list);
2000 spin_unlock(&connections_lock);
2001
2002 if (con->othercon)
2003 call_srcu(&connections_srcu, &con->othercon->rcu,
2004 connection_release);
2005 call_srcu(&connections_srcu, &con->rcu, connection_release);
2006 }
2007 }
2008 srcu_read_unlock(&connections_srcu, idx);
2009}
1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include <trace/events/dlm.h>
57#include <trace/events/sock.h>
58
59#include "dlm_internal.h"
60#include "lowcomms.h"
61#include "midcomms.h"
62#include "memory.h"
63#include "config.h"
64
65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66#define DLM_MAX_PROCESS_BUFFERS 24
67#define NEEDED_RMEM (4*1024*1024)
68
69struct connection {
70 struct socket *sock; /* NULL if not connected */
71 uint32_t nodeid; /* So we know who we are in the list */
72 /* this semaphore is used to allow parallel recv/send in read
73 * lock mode. When we release a sock we need to held the write lock.
74 *
75 * However this is locking code and not nice. When we remove the
76 * othercon handling we can look into other mechanism to synchronize
77 * io handling to call sock_release() at the right time.
78 */
79 struct rw_semaphore sock_lock;
80 unsigned long flags;
81#define CF_APP_LIMITED 0
82#define CF_RECV_PENDING 1
83#define CF_SEND_PENDING 2
84#define CF_RECV_INTR 3
85#define CF_IO_STOP 4
86#define CF_IS_OTHERCON 5
87 struct list_head writequeue; /* List of outgoing writequeue_entries */
88 spinlock_t writequeue_lock;
89 int retries;
90 struct hlist_node list;
91 /* due some connect()/accept() races we currently have this cross over
92 * connection attempt second connection for one node.
93 *
94 * There is a solution to avoid the race by introducing a connect
95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 * connect. Otherside can connect but will only be considered that
97 * the other side wants to have a reconnect.
98 *
99 * However changing to this behaviour will break backwards compatible.
100 * In a DLM protocol major version upgrade we should remove this!
101 */
102 struct connection *othercon;
103 struct work_struct rwork; /* receive worker */
104 struct work_struct swork; /* send worker */
105 wait_queue_head_t shutdown_wait;
106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 int rx_leftover;
108 int mark;
109 int addr_count;
110 int curr_addr_index;
111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 spinlock_t addrs_lock;
113 struct rcu_head rcu;
114};
115#define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117struct listen_connection {
118 struct socket *sock;
119 struct work_struct rwork;
120};
121
122#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125/* An entry waiting to be sent */
126struct writequeue_entry {
127 struct list_head list;
128 struct page *page;
129 int offset;
130 int len;
131 int end;
132 int users;
133 bool dirty;
134 struct connection *con;
135 struct list_head msgs;
136 struct kref ref;
137};
138
139struct dlm_msg {
140 struct writequeue_entry *entry;
141 struct dlm_msg *orig_msg;
142 bool retransmit;
143 void *ppc;
144 int len;
145 int idx; /* new()/commit() idx exchange */
146
147 struct list_head list;
148 struct kref ref;
149};
150
151struct processqueue_entry {
152 unsigned char *buf;
153 int nodeid;
154 int buflen;
155
156 struct list_head list;
157};
158
159struct dlm_proto_ops {
160 bool try_new_addr;
161 const char *name;
162 int proto;
163
164 void (*sockopts)(struct socket *sock);
165 int (*bind)(struct socket *sock);
166 int (*listen_validate)(void);
167 void (*listen_sockopts)(struct socket *sock);
168 int (*listen_bind)(struct socket *sock);
169};
170
171static struct listen_sock_callbacks {
172 void (*sk_error_report)(struct sock *);
173 void (*sk_data_ready)(struct sock *);
174 void (*sk_state_change)(struct sock *);
175 void (*sk_write_space)(struct sock *);
176} listen_sock;
177
178static struct listen_connection listen_con;
179static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180static int dlm_local_count;
181
182/* Work queues */
183static struct workqueue_struct *io_workqueue;
184static struct workqueue_struct *process_workqueue;
185
186static struct hlist_head connection_hash[CONN_HASH_SIZE];
187static DEFINE_SPINLOCK(connections_lock);
188DEFINE_STATIC_SRCU(connections_srcu);
189
190static const struct dlm_proto_ops *dlm_proto_ops;
191
192#define DLM_IO_SUCCESS 0
193#define DLM_IO_END 1
194#define DLM_IO_EOF 2
195#define DLM_IO_RESCHED 3
196#define DLM_IO_FLUSH 4
197
198static void process_recv_sockets(struct work_struct *work);
199static void process_send_sockets(struct work_struct *work);
200static void process_dlm_messages(struct work_struct *work);
201
202static DECLARE_WORK(process_work, process_dlm_messages);
203static DEFINE_SPINLOCK(processqueue_lock);
204static bool process_dlm_messages_pending;
205static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206static atomic_t processqueue_count;
207static LIST_HEAD(processqueue);
208
209bool dlm_lowcomms_is_running(void)
210{
211 return !!listen_con.sock;
212}
213
214static void lowcomms_queue_swork(struct connection *con)
215{
216 assert_spin_locked(&con->writequeue_lock);
217
218 if (!test_bit(CF_IO_STOP, &con->flags) &&
219 !test_bit(CF_APP_LIMITED, &con->flags) &&
220 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221 queue_work(io_workqueue, &con->swork);
222}
223
224static void lowcomms_queue_rwork(struct connection *con)
225{
226#ifdef CONFIG_LOCKDEP
227 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228#endif
229
230 if (!test_bit(CF_IO_STOP, &con->flags) &&
231 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232 queue_work(io_workqueue, &con->rwork);
233}
234
235static void writequeue_entry_ctor(void *data)
236{
237 struct writequeue_entry *entry = data;
238
239 INIT_LIST_HEAD(&entry->msgs);
240}
241
242struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
243{
244 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245 0, 0, writequeue_entry_ctor);
246}
247
248struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
249{
250 return KMEM_CACHE(dlm_msg, 0);
251}
252
253/* need to held writequeue_lock */
254static struct writequeue_entry *con_next_wq(struct connection *con)
255{
256 struct writequeue_entry *e;
257
258 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259 list);
260 /* if len is zero nothing is to send, if there are users filling
261 * buffers we wait until the users are done so we can send more.
262 */
263 if (!e || e->users || e->len == 0)
264 return NULL;
265
266 return e;
267}
268
269static struct connection *__find_con(int nodeid, int r)
270{
271 struct connection *con;
272
273 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274 if (con->nodeid == nodeid)
275 return con;
276 }
277
278 return NULL;
279}
280
281static void dlm_con_init(struct connection *con, int nodeid)
282{
283 con->nodeid = nodeid;
284 init_rwsem(&con->sock_lock);
285 INIT_LIST_HEAD(&con->writequeue);
286 spin_lock_init(&con->writequeue_lock);
287 INIT_WORK(&con->swork, process_send_sockets);
288 INIT_WORK(&con->rwork, process_recv_sockets);
289 spin_lock_init(&con->addrs_lock);
290 init_waitqueue_head(&con->shutdown_wait);
291}
292
293/*
294 * If 'allocation' is zero then we don't attempt to create a new
295 * connection structure for this node.
296 */
297static struct connection *nodeid2con(int nodeid, gfp_t alloc)
298{
299 struct connection *con, *tmp;
300 int r;
301
302 r = nodeid_hash(nodeid);
303 con = __find_con(nodeid, r);
304 if (con || !alloc)
305 return con;
306
307 con = kzalloc(sizeof(*con), alloc);
308 if (!con)
309 return NULL;
310
311 dlm_con_init(con, nodeid);
312
313 spin_lock(&connections_lock);
314 /* Because multiple workqueues/threads calls this function it can
315 * race on multiple cpu's. Instead of locking hot path __find_con()
316 * we just check in rare cases of recently added nodes again
317 * under protection of connections_lock. If this is the case we
318 * abort our connection creation and return the existing connection.
319 */
320 tmp = __find_con(nodeid, r);
321 if (tmp) {
322 spin_unlock(&connections_lock);
323 kfree(con);
324 return tmp;
325 }
326
327 hlist_add_head_rcu(&con->list, &connection_hash[r]);
328 spin_unlock(&connections_lock);
329
330 return con;
331}
332
333static int addr_compare(const struct sockaddr_storage *x,
334 const struct sockaddr_storage *y)
335{
336 switch (x->ss_family) {
337 case AF_INET: {
338 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339 struct sockaddr_in *siny = (struct sockaddr_in *)y;
340 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341 return 0;
342 if (sinx->sin_port != siny->sin_port)
343 return 0;
344 break;
345 }
346 case AF_INET6: {
347 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350 return 0;
351 if (sinx->sin6_port != siny->sin6_port)
352 return 0;
353 break;
354 }
355 default:
356 return 0;
357 }
358 return 1;
359}
360
361static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362 struct sockaddr *sa_out, bool try_new_addr,
363 unsigned int *mark)
364{
365 struct sockaddr_storage sas;
366 struct connection *con;
367 int idx;
368
369 if (!dlm_local_count)
370 return -1;
371
372 idx = srcu_read_lock(&connections_srcu);
373 con = nodeid2con(nodeid, 0);
374 if (!con) {
375 srcu_read_unlock(&connections_srcu, idx);
376 return -ENOENT;
377 }
378
379 spin_lock(&con->addrs_lock);
380 if (!con->addr_count) {
381 spin_unlock(&con->addrs_lock);
382 srcu_read_unlock(&connections_srcu, idx);
383 return -ENOENT;
384 }
385
386 memcpy(&sas, &con->addr[con->curr_addr_index],
387 sizeof(struct sockaddr_storage));
388
389 if (try_new_addr) {
390 con->curr_addr_index++;
391 if (con->curr_addr_index == con->addr_count)
392 con->curr_addr_index = 0;
393 }
394
395 *mark = con->mark;
396 spin_unlock(&con->addrs_lock);
397
398 if (sas_out)
399 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
400
401 if (!sa_out) {
402 srcu_read_unlock(&connections_srcu, idx);
403 return 0;
404 }
405
406 if (dlm_local_addr[0].ss_family == AF_INET) {
407 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
408 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410 } else {
411 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
412 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413 ret6->sin6_addr = in6->sin6_addr;
414 }
415
416 srcu_read_unlock(&connections_srcu, idx);
417 return 0;
418}
419
420static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421 unsigned int *mark)
422{
423 struct connection *con;
424 int i, idx, addr_i;
425
426 idx = srcu_read_lock(&connections_srcu);
427 for (i = 0; i < CONN_HASH_SIZE; i++) {
428 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429 WARN_ON_ONCE(!con->addr_count);
430
431 spin_lock(&con->addrs_lock);
432 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433 if (addr_compare(&con->addr[addr_i], addr)) {
434 *nodeid = con->nodeid;
435 *mark = con->mark;
436 spin_unlock(&con->addrs_lock);
437 srcu_read_unlock(&connections_srcu, idx);
438 return 0;
439 }
440 }
441 spin_unlock(&con->addrs_lock);
442 }
443 }
444 srcu_read_unlock(&connections_srcu, idx);
445
446 return -ENOENT;
447}
448
449static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450 const struct sockaddr_storage *addr)
451{
452 int i;
453
454 for (i = 0; i < con->addr_count; i++) {
455 if (addr_compare(&con->addr[i], addr))
456 return true;
457 }
458
459 return false;
460}
461
462int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
463{
464 struct connection *con;
465 bool ret;
466 int idx;
467
468 idx = srcu_read_lock(&connections_srcu);
469 con = nodeid2con(nodeid, GFP_NOFS);
470 if (!con) {
471 srcu_read_unlock(&connections_srcu, idx);
472 return -ENOMEM;
473 }
474
475 spin_lock(&con->addrs_lock);
476 if (!con->addr_count) {
477 memcpy(&con->addr[0], addr, sizeof(*addr));
478 con->addr_count = 1;
479 con->mark = dlm_config.ci_mark;
480 spin_unlock(&con->addrs_lock);
481 srcu_read_unlock(&connections_srcu, idx);
482 return 0;
483 }
484
485 ret = dlm_lowcomms_con_has_addr(con, addr);
486 if (ret) {
487 spin_unlock(&con->addrs_lock);
488 srcu_read_unlock(&connections_srcu, idx);
489 return -EEXIST;
490 }
491
492 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493 spin_unlock(&con->addrs_lock);
494 srcu_read_unlock(&connections_srcu, idx);
495 return -ENOSPC;
496 }
497
498 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499 srcu_read_unlock(&connections_srcu, idx);
500 spin_unlock(&con->addrs_lock);
501 return 0;
502}
503
504/* Data available on socket or listen socket received a connect */
505static void lowcomms_data_ready(struct sock *sk)
506{
507 struct connection *con = sock2con(sk);
508
509 trace_sk_data_ready(sk);
510
511 set_bit(CF_RECV_INTR, &con->flags);
512 lowcomms_queue_rwork(con);
513}
514
515static void lowcomms_write_space(struct sock *sk)
516{
517 struct connection *con = sock2con(sk);
518
519 clear_bit(SOCK_NOSPACE, &con->sock->flags);
520
521 spin_lock_bh(&con->writequeue_lock);
522 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523 con->sock->sk->sk_write_pending--;
524 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
525 }
526
527 lowcomms_queue_swork(con);
528 spin_unlock_bh(&con->writequeue_lock);
529}
530
531static void lowcomms_state_change(struct sock *sk)
532{
533 /* SCTP layer is not calling sk_data_ready when the connection
534 * is done, so we catch the signal through here.
535 */
536 if (sk->sk_shutdown == RCV_SHUTDOWN)
537 lowcomms_data_ready(sk);
538}
539
540static void lowcomms_listen_data_ready(struct sock *sk)
541{
542 trace_sk_data_ready(sk);
543
544 queue_work(io_workqueue, &listen_con.rwork);
545}
546
547int dlm_lowcomms_connect_node(int nodeid)
548{
549 struct connection *con;
550 int idx;
551
552 idx = srcu_read_lock(&connections_srcu);
553 con = nodeid2con(nodeid, 0);
554 if (WARN_ON_ONCE(!con)) {
555 srcu_read_unlock(&connections_srcu, idx);
556 return -ENOENT;
557 }
558
559 down_read(&con->sock_lock);
560 if (!con->sock) {
561 spin_lock_bh(&con->writequeue_lock);
562 lowcomms_queue_swork(con);
563 spin_unlock_bh(&con->writequeue_lock);
564 }
565 up_read(&con->sock_lock);
566 srcu_read_unlock(&connections_srcu, idx);
567
568 cond_resched();
569 return 0;
570}
571
572int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573{
574 struct connection *con;
575 int idx;
576
577 idx = srcu_read_lock(&connections_srcu);
578 con = nodeid2con(nodeid, 0);
579 if (!con) {
580 srcu_read_unlock(&connections_srcu, idx);
581 return -ENOENT;
582 }
583
584 spin_lock(&con->addrs_lock);
585 con->mark = mark;
586 spin_unlock(&con->addrs_lock);
587 srcu_read_unlock(&connections_srcu, idx);
588 return 0;
589}
590
591static void lowcomms_error_report(struct sock *sk)
592{
593 struct connection *con = sock2con(sk);
594 struct inet_sock *inet;
595
596 inet = inet_sk(sk);
597 switch (sk->sk_family) {
598 case AF_INET:
599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600 "sending to node %d at %pI4, dport %d, "
601 "sk_err=%d/%d\n", dlm_our_nodeid(),
602 con->nodeid, &inet->inet_daddr,
603 ntohs(inet->inet_dport), sk->sk_err,
604 READ_ONCE(sk->sk_err_soft));
605 break;
606#if IS_ENABLED(CONFIG_IPV6)
607 case AF_INET6:
608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609 "sending to node %d at %pI6c, "
610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611 con->nodeid, &sk->sk_v6_daddr,
612 ntohs(inet->inet_dport), sk->sk_err,
613 READ_ONCE(sk->sk_err_soft));
614 break;
615#endif
616 default:
617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618 "invalid socket family %d set, "
619 "sk_err=%d/%d\n", dlm_our_nodeid(),
620 sk->sk_family, sk->sk_err,
621 READ_ONCE(sk->sk_err_soft));
622 break;
623 }
624
625 dlm_midcomms_unack_msg_resend(con->nodeid);
626
627 listen_sock.sk_error_report(sk);
628}
629
630static void restore_callbacks(struct sock *sk)
631{
632#ifdef CONFIG_LOCKDEP
633 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634#endif
635
636 sk->sk_user_data = NULL;
637 sk->sk_data_ready = listen_sock.sk_data_ready;
638 sk->sk_state_change = listen_sock.sk_state_change;
639 sk->sk_write_space = listen_sock.sk_write_space;
640 sk->sk_error_report = listen_sock.sk_error_report;
641}
642
643/* Make a socket active */
644static void add_sock(struct socket *sock, struct connection *con)
645{
646 struct sock *sk = sock->sk;
647
648 lock_sock(sk);
649 con->sock = sock;
650
651 sk->sk_user_data = con;
652 sk->sk_data_ready = lowcomms_data_ready;
653 sk->sk_write_space = lowcomms_write_space;
654 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655 sk->sk_state_change = lowcomms_state_change;
656 sk->sk_allocation = GFP_NOFS;
657 sk->sk_use_task_frag = false;
658 sk->sk_error_report = lowcomms_error_report;
659 release_sock(sk);
660}
661
662/* Add the port number to an IPv6 or 4 sockaddr and return the address
663 length */
664static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port,
665 int *addr_len)
666{
667 saddr->ss_family = dlm_local_addr[0].ss_family;
668 if (saddr->ss_family == AF_INET) {
669 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670 in4_addr->sin_port = port;
671 *addr_len = sizeof(struct sockaddr_in);
672 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673 } else {
674 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675 in6_addr->sin6_port = port;
676 *addr_len = sizeof(struct sockaddr_in6);
677 }
678 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679}
680
681static void dlm_page_release(struct kref *kref)
682{
683 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684 ref);
685
686 __free_page(e->page);
687 dlm_free_writequeue(e);
688}
689
690static void dlm_msg_release(struct kref *kref)
691{
692 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693
694 kref_put(&msg->entry->ref, dlm_page_release);
695 dlm_free_msg(msg);
696}
697
698static void free_entry(struct writequeue_entry *e)
699{
700 struct dlm_msg *msg, *tmp;
701
702 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703 if (msg->orig_msg) {
704 msg->orig_msg->retransmit = false;
705 kref_put(&msg->orig_msg->ref, dlm_msg_release);
706 }
707
708 list_del(&msg->list);
709 kref_put(&msg->ref, dlm_msg_release);
710 }
711
712 list_del(&e->list);
713 kref_put(&e->ref, dlm_page_release);
714}
715
716static void dlm_close_sock(struct socket **sock)
717{
718 lock_sock((*sock)->sk);
719 restore_callbacks((*sock)->sk);
720 release_sock((*sock)->sk);
721
722 sock_release(*sock);
723 *sock = NULL;
724}
725
726static void allow_connection_io(struct connection *con)
727{
728 if (con->othercon)
729 clear_bit(CF_IO_STOP, &con->othercon->flags);
730 clear_bit(CF_IO_STOP, &con->flags);
731}
732
733static void stop_connection_io(struct connection *con)
734{
735 if (con->othercon)
736 stop_connection_io(con->othercon);
737
738 spin_lock_bh(&con->writequeue_lock);
739 set_bit(CF_IO_STOP, &con->flags);
740 spin_unlock_bh(&con->writequeue_lock);
741
742 down_write(&con->sock_lock);
743 if (con->sock) {
744 lock_sock(con->sock->sk);
745 restore_callbacks(con->sock->sk);
746 release_sock(con->sock->sk);
747 }
748 up_write(&con->sock_lock);
749
750 cancel_work_sync(&con->swork);
751 cancel_work_sync(&con->rwork);
752}
753
754/* Close a remote connection and tidy up */
755static void close_connection(struct connection *con, bool and_other)
756{
757 struct writequeue_entry *e;
758
759 if (con->othercon && and_other)
760 close_connection(con->othercon, false);
761
762 down_write(&con->sock_lock);
763 if (!con->sock) {
764 up_write(&con->sock_lock);
765 return;
766 }
767
768 dlm_close_sock(&con->sock);
769
770 /* if we send a writequeue entry only a half way, we drop the
771 * whole entry because reconnection and that we not start of the
772 * middle of a msg which will confuse the other end.
773 *
774 * we can always drop messages because retransmits, but what we
775 * cannot allow is to transmit half messages which may be processed
776 * at the other side.
777 *
778 * our policy is to start on a clean state when disconnects, we don't
779 * know what's send/received on transport layer in this case.
780 */
781 spin_lock_bh(&con->writequeue_lock);
782 if (!list_empty(&con->writequeue)) {
783 e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 list);
785 if (e->dirty)
786 free_entry(e);
787 }
788 spin_unlock_bh(&con->writequeue_lock);
789
790 con->rx_leftover = 0;
791 con->retries = 0;
792 clear_bit(CF_APP_LIMITED, &con->flags);
793 clear_bit(CF_RECV_PENDING, &con->flags);
794 clear_bit(CF_SEND_PENDING, &con->flags);
795 up_write(&con->sock_lock);
796}
797
798static void shutdown_connection(struct connection *con, bool and_other)
799{
800 int ret;
801
802 if (con->othercon && and_other)
803 shutdown_connection(con->othercon, false);
804
805 flush_workqueue(io_workqueue);
806 down_read(&con->sock_lock);
807 /* nothing to shutdown */
808 if (!con->sock) {
809 up_read(&con->sock_lock);
810 return;
811 }
812
813 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814 up_read(&con->sock_lock);
815 if (ret) {
816 log_print("Connection %p failed to shutdown: %d will force close",
817 con, ret);
818 goto force_close;
819 } else {
820 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821 DLM_SHUTDOWN_WAIT_TIMEOUT);
822 if (ret == 0) {
823 log_print("Connection %p shutdown timed out, will force close",
824 con);
825 goto force_close;
826 }
827 }
828
829 return;
830
831force_close:
832 close_connection(con, false);
833}
834
835static struct processqueue_entry *new_processqueue_entry(int nodeid,
836 int buflen)
837{
838 struct processqueue_entry *pentry;
839
840 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841 if (!pentry)
842 return NULL;
843
844 pentry->buf = kmalloc(buflen, GFP_NOFS);
845 if (!pentry->buf) {
846 kfree(pentry);
847 return NULL;
848 }
849
850 pentry->nodeid = nodeid;
851 return pentry;
852}
853
854static void free_processqueue_entry(struct processqueue_entry *pentry)
855{
856 kfree(pentry->buf);
857 kfree(pentry);
858}
859
860static void process_dlm_messages(struct work_struct *work)
861{
862 struct processqueue_entry *pentry;
863
864 spin_lock_bh(&processqueue_lock);
865 pentry = list_first_entry_or_null(&processqueue,
866 struct processqueue_entry, list);
867 if (WARN_ON_ONCE(!pentry)) {
868 process_dlm_messages_pending = false;
869 spin_unlock_bh(&processqueue_lock);
870 return;
871 }
872
873 list_del(&pentry->list);
874 if (atomic_dec_and_test(&processqueue_count))
875 wake_up(&processqueue_wq);
876 spin_unlock_bh(&processqueue_lock);
877
878 for (;;) {
879 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
880 pentry->buflen);
881 free_processqueue_entry(pentry);
882
883 spin_lock_bh(&processqueue_lock);
884 pentry = list_first_entry_or_null(&processqueue,
885 struct processqueue_entry, list);
886 if (!pentry) {
887 process_dlm_messages_pending = false;
888 spin_unlock_bh(&processqueue_lock);
889 break;
890 }
891
892 list_del(&pentry->list);
893 if (atomic_dec_and_test(&processqueue_count))
894 wake_up(&processqueue_wq);
895 spin_unlock_bh(&processqueue_lock);
896 }
897}
898
899/* Data received from remote end */
900static int receive_from_sock(struct connection *con, int buflen)
901{
902 struct processqueue_entry *pentry;
903 int ret, buflen_real;
904 struct msghdr msg;
905 struct kvec iov;
906
907 pentry = new_processqueue_entry(con->nodeid, buflen);
908 if (!pentry)
909 return DLM_IO_RESCHED;
910
911 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
912
913 /* calculate new buffer parameter regarding last receive and
914 * possible leftover bytes
915 */
916 iov.iov_base = pentry->buf + con->rx_leftover;
917 iov.iov_len = buflen - con->rx_leftover;
918
919 memset(&msg, 0, sizeof(msg));
920 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
921 clear_bit(CF_RECV_INTR, &con->flags);
922again:
923 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
924 msg.msg_flags);
925 trace_dlm_recv(con->nodeid, ret);
926 if (ret == -EAGAIN) {
927 lock_sock(con->sock->sk);
928 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
929 release_sock(con->sock->sk);
930 goto again;
931 }
932
933 clear_bit(CF_RECV_PENDING, &con->flags);
934 release_sock(con->sock->sk);
935 free_processqueue_entry(pentry);
936 return DLM_IO_END;
937 } else if (ret == 0) {
938 /* close will clear CF_RECV_PENDING */
939 free_processqueue_entry(pentry);
940 return DLM_IO_EOF;
941 } else if (ret < 0) {
942 free_processqueue_entry(pentry);
943 return ret;
944 }
945
946 /* new buflen according readed bytes and leftover from last receive */
947 buflen_real = ret + con->rx_leftover;
948 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
949 buflen_real);
950 if (ret < 0) {
951 free_processqueue_entry(pentry);
952 return ret;
953 }
954
955 pentry->buflen = ret;
956
957 /* calculate leftover bytes from process and put it into begin of
958 * the receive buffer, so next receive we have the full message
959 * at the start address of the receive buffer.
960 */
961 con->rx_leftover = buflen_real - ret;
962 memmove(con->rx_leftover_buf, pentry->buf + ret,
963 con->rx_leftover);
964
965 spin_lock_bh(&processqueue_lock);
966 ret = atomic_inc_return(&processqueue_count);
967 list_add_tail(&pentry->list, &processqueue);
968 if (!process_dlm_messages_pending) {
969 process_dlm_messages_pending = true;
970 queue_work(process_workqueue, &process_work);
971 }
972 spin_unlock_bh(&processqueue_lock);
973
974 if (ret > DLM_MAX_PROCESS_BUFFERS)
975 return DLM_IO_FLUSH;
976
977 return DLM_IO_SUCCESS;
978}
979
980/* Listening socket is busy, accept a connection */
981static int accept_from_sock(void)
982{
983 struct sockaddr_storage peeraddr;
984 int len, idx, result, nodeid;
985 struct connection *newcon;
986 struct socket *newsock;
987 unsigned int mark;
988
989 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
990 if (result == -EAGAIN)
991 return DLM_IO_END;
992 else if (result < 0)
993 goto accept_err;
994
995 /* Get the connected socket's peer */
996 memset(&peeraddr, 0, sizeof(peeraddr));
997 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
998 if (len < 0) {
999 result = -ECONNABORTED;
1000 goto accept_err;
1001 }
1002
1003 /* Get the new node's NODEID */
1004 make_sockaddr(&peeraddr, 0, &len);
1005 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1006 switch (peeraddr.ss_family) {
1007 case AF_INET: {
1008 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1009
1010 log_print("connect from non cluster IPv4 node %pI4",
1011 &sin->sin_addr);
1012 break;
1013 }
1014#if IS_ENABLED(CONFIG_IPV6)
1015 case AF_INET6: {
1016 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1017
1018 log_print("connect from non cluster IPv6 node %pI6c",
1019 &sin6->sin6_addr);
1020 break;
1021 }
1022#endif
1023 default:
1024 log_print("invalid family from non cluster node");
1025 break;
1026 }
1027
1028 sock_release(newsock);
1029 return -1;
1030 }
1031
1032 log_print("got connection from %d", nodeid);
1033
1034 /* Check to see if we already have a connection to this node. This
1035 * could happen if the two nodes initiate a connection at roughly
1036 * the same time and the connections cross on the wire.
1037 * In this case we store the incoming one in "othercon"
1038 */
1039 idx = srcu_read_lock(&connections_srcu);
1040 newcon = nodeid2con(nodeid, 0);
1041 if (WARN_ON_ONCE(!newcon)) {
1042 srcu_read_unlock(&connections_srcu, idx);
1043 result = -ENOENT;
1044 goto accept_err;
1045 }
1046
1047 sock_set_mark(newsock->sk, mark);
1048
1049 down_write(&newcon->sock_lock);
1050 if (newcon->sock) {
1051 struct connection *othercon = newcon->othercon;
1052
1053 if (!othercon) {
1054 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1055 if (!othercon) {
1056 log_print("failed to allocate incoming socket");
1057 up_write(&newcon->sock_lock);
1058 srcu_read_unlock(&connections_srcu, idx);
1059 result = -ENOMEM;
1060 goto accept_err;
1061 }
1062
1063 dlm_con_init(othercon, nodeid);
1064 lockdep_set_subclass(&othercon->sock_lock, 1);
1065 newcon->othercon = othercon;
1066 set_bit(CF_IS_OTHERCON, &othercon->flags);
1067 } else {
1068 /* close other sock con if we have something new */
1069 close_connection(othercon, false);
1070 }
1071
1072 down_write(&othercon->sock_lock);
1073 add_sock(newsock, othercon);
1074
1075 /* check if we receved something while adding */
1076 lock_sock(othercon->sock->sk);
1077 lowcomms_queue_rwork(othercon);
1078 release_sock(othercon->sock->sk);
1079 up_write(&othercon->sock_lock);
1080 }
1081 else {
1082 /* accept copies the sk after we've saved the callbacks, so we
1083 don't want to save them a second time or comm errors will
1084 result in calling sk_error_report recursively. */
1085 add_sock(newsock, newcon);
1086
1087 /* check if we receved something while adding */
1088 lock_sock(newcon->sock->sk);
1089 lowcomms_queue_rwork(newcon);
1090 release_sock(newcon->sock->sk);
1091 }
1092 up_write(&newcon->sock_lock);
1093 srcu_read_unlock(&connections_srcu, idx);
1094
1095 return DLM_IO_SUCCESS;
1096
1097accept_err:
1098 if (newsock)
1099 sock_release(newsock);
1100
1101 return result;
1102}
1103
1104/*
1105 * writequeue_entry_complete - try to delete and free write queue entry
1106 * @e: write queue entry to try to delete
1107 * @completed: bytes completed
1108 *
1109 * writequeue_lock must be held.
1110 */
1111static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1112{
1113 e->offset += completed;
1114 e->len -= completed;
1115 /* signal that page was half way transmitted */
1116 e->dirty = true;
1117
1118 if (e->len == 0 && e->users == 0)
1119 free_entry(e);
1120}
1121
1122/*
1123 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1124 */
1125static int sctp_bind_addrs(struct socket *sock, __be16 port)
1126{
1127 struct sockaddr_storage localaddr;
1128 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1129 int i, addr_len, result = 0;
1130
1131 for (i = 0; i < dlm_local_count; i++) {
1132 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1133 make_sockaddr(&localaddr, port, &addr_len);
1134
1135 if (!i)
1136 result = kernel_bind(sock, addr, addr_len);
1137 else
1138 result = sock_bind_add(sock->sk, addr, addr_len);
1139
1140 if (result < 0) {
1141 log_print("Can't bind to %d addr number %d, %d.\n",
1142 port, i + 1, result);
1143 break;
1144 }
1145 }
1146 return result;
1147}
1148
1149/* Get local addresses */
1150static void init_local(void)
1151{
1152 struct sockaddr_storage sas;
1153 int i;
1154
1155 dlm_local_count = 0;
1156 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1157 if (dlm_our_addr(&sas, i))
1158 break;
1159
1160 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1161 }
1162}
1163
1164static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1165{
1166 struct writequeue_entry *entry;
1167
1168 entry = dlm_allocate_writequeue();
1169 if (!entry)
1170 return NULL;
1171
1172 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1173 if (!entry->page) {
1174 dlm_free_writequeue(entry);
1175 return NULL;
1176 }
1177
1178 entry->offset = 0;
1179 entry->len = 0;
1180 entry->end = 0;
1181 entry->dirty = false;
1182 entry->con = con;
1183 entry->users = 1;
1184 kref_init(&entry->ref);
1185 return entry;
1186}
1187
1188static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1189 char **ppc, void (*cb)(void *data),
1190 void *data)
1191{
1192 struct writequeue_entry *e;
1193
1194 spin_lock_bh(&con->writequeue_lock);
1195 if (!list_empty(&con->writequeue)) {
1196 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1197 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1198 kref_get(&e->ref);
1199
1200 *ppc = page_address(e->page) + e->end;
1201 if (cb)
1202 cb(data);
1203
1204 e->end += len;
1205 e->users++;
1206 goto out;
1207 }
1208 }
1209
1210 e = new_writequeue_entry(con);
1211 if (!e)
1212 goto out;
1213
1214 kref_get(&e->ref);
1215 *ppc = page_address(e->page);
1216 e->end += len;
1217 if (cb)
1218 cb(data);
1219
1220 list_add_tail(&e->list, &con->writequeue);
1221
1222out:
1223 spin_unlock_bh(&con->writequeue_lock);
1224 return e;
1225};
1226
1227static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1228 char **ppc, void (*cb)(void *data),
1229 void *data)
1230{
1231 struct writequeue_entry *e;
1232 struct dlm_msg *msg;
1233
1234 msg = dlm_allocate_msg();
1235 if (!msg)
1236 return NULL;
1237
1238 kref_init(&msg->ref);
1239
1240 e = new_wq_entry(con, len, ppc, cb, data);
1241 if (!e) {
1242 dlm_free_msg(msg);
1243 return NULL;
1244 }
1245
1246 msg->retransmit = false;
1247 msg->orig_msg = NULL;
1248 msg->ppc = *ppc;
1249 msg->len = len;
1250 msg->entry = e;
1251
1252 return msg;
1253}
1254
1255/* avoid false positive for nodes_srcu, unlock happens in
1256 * dlm_lowcomms_commit_msg which is a must call if success
1257 */
1258#ifndef __CHECKER__
1259struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1260 void (*cb)(void *data), void *data)
1261{
1262 struct connection *con;
1263 struct dlm_msg *msg;
1264 int idx;
1265
1266 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1267 len < sizeof(struct dlm_header)) {
1268 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1269 log_print("failed to allocate a buffer of size %d", len);
1270 WARN_ON_ONCE(1);
1271 return NULL;
1272 }
1273
1274 idx = srcu_read_lock(&connections_srcu);
1275 con = nodeid2con(nodeid, 0);
1276 if (WARN_ON_ONCE(!con)) {
1277 srcu_read_unlock(&connections_srcu, idx);
1278 return NULL;
1279 }
1280
1281 msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1282 if (!msg) {
1283 srcu_read_unlock(&connections_srcu, idx);
1284 return NULL;
1285 }
1286
1287 /* for dlm_lowcomms_commit_msg() */
1288 kref_get(&msg->ref);
1289 /* we assume if successful commit must called */
1290 msg->idx = idx;
1291 return msg;
1292}
1293#endif
1294
1295static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1296{
1297 struct writequeue_entry *e = msg->entry;
1298 struct connection *con = e->con;
1299 int users;
1300
1301 spin_lock_bh(&con->writequeue_lock);
1302 kref_get(&msg->ref);
1303 list_add(&msg->list, &e->msgs);
1304
1305 users = --e->users;
1306 if (users)
1307 goto out;
1308
1309 e->len = DLM_WQ_LENGTH_BYTES(e);
1310
1311 lowcomms_queue_swork(con);
1312
1313out:
1314 spin_unlock_bh(&con->writequeue_lock);
1315 return;
1316}
1317
1318/* avoid false positive for nodes_srcu, lock was happen in
1319 * dlm_lowcomms_new_msg
1320 */
1321#ifndef __CHECKER__
1322void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1323{
1324 _dlm_lowcomms_commit_msg(msg);
1325 srcu_read_unlock(&connections_srcu, msg->idx);
1326 /* because dlm_lowcomms_new_msg() */
1327 kref_put(&msg->ref, dlm_msg_release);
1328}
1329#endif
1330
1331void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1332{
1333 kref_put(&msg->ref, dlm_msg_release);
1334}
1335
1336/* does not held connections_srcu, usage lowcomms_error_report only */
1337int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1338{
1339 struct dlm_msg *msg_resend;
1340 char *ppc;
1341
1342 if (msg->retransmit)
1343 return 1;
1344
1345 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1346 NULL, NULL);
1347 if (!msg_resend)
1348 return -ENOMEM;
1349
1350 msg->retransmit = true;
1351 kref_get(&msg->ref);
1352 msg_resend->orig_msg = msg;
1353
1354 memcpy(ppc, msg->ppc, msg->len);
1355 _dlm_lowcomms_commit_msg(msg_resend);
1356 dlm_lowcomms_put_msg(msg_resend);
1357
1358 return 0;
1359}
1360
1361/* Send a message */
1362static int send_to_sock(struct connection *con)
1363{
1364 struct writequeue_entry *e;
1365 struct bio_vec bvec;
1366 struct msghdr msg = {
1367 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1368 };
1369 int len, offset, ret;
1370
1371 spin_lock_bh(&con->writequeue_lock);
1372 e = con_next_wq(con);
1373 if (!e) {
1374 clear_bit(CF_SEND_PENDING, &con->flags);
1375 spin_unlock_bh(&con->writequeue_lock);
1376 return DLM_IO_END;
1377 }
1378
1379 len = e->len;
1380 offset = e->offset;
1381 WARN_ON_ONCE(len == 0 && e->users == 0);
1382 spin_unlock_bh(&con->writequeue_lock);
1383
1384 bvec_set_page(&bvec, e->page, len, offset);
1385 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1386 ret = sock_sendmsg(con->sock, &msg);
1387 trace_dlm_send(con->nodeid, ret);
1388 if (ret == -EAGAIN || ret == 0) {
1389 lock_sock(con->sock->sk);
1390 spin_lock_bh(&con->writequeue_lock);
1391 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1392 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1393 /* Notify TCP that we're limited by the
1394 * application window size.
1395 */
1396 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1397 con->sock->sk->sk_write_pending++;
1398
1399 clear_bit(CF_SEND_PENDING, &con->flags);
1400 spin_unlock_bh(&con->writequeue_lock);
1401 release_sock(con->sock->sk);
1402
1403 /* wait for write_space() event */
1404 return DLM_IO_END;
1405 }
1406 spin_unlock_bh(&con->writequeue_lock);
1407 release_sock(con->sock->sk);
1408
1409 return DLM_IO_RESCHED;
1410 } else if (ret < 0) {
1411 return ret;
1412 }
1413
1414 spin_lock_bh(&con->writequeue_lock);
1415 writequeue_entry_complete(e, ret);
1416 spin_unlock_bh(&con->writequeue_lock);
1417
1418 return DLM_IO_SUCCESS;
1419}
1420
1421static void clean_one_writequeue(struct connection *con)
1422{
1423 struct writequeue_entry *e, *safe;
1424
1425 spin_lock_bh(&con->writequeue_lock);
1426 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1427 free_entry(e);
1428 }
1429 spin_unlock_bh(&con->writequeue_lock);
1430}
1431
1432static void connection_release(struct rcu_head *rcu)
1433{
1434 struct connection *con = container_of(rcu, struct connection, rcu);
1435
1436 WARN_ON_ONCE(!list_empty(&con->writequeue));
1437 WARN_ON_ONCE(con->sock);
1438 kfree(con);
1439}
1440
1441/* Called from recovery when it knows that a node has
1442 left the cluster */
1443int dlm_lowcomms_close(int nodeid)
1444{
1445 struct connection *con;
1446 int idx;
1447
1448 log_print("closing connection to node %d", nodeid);
1449
1450 idx = srcu_read_lock(&connections_srcu);
1451 con = nodeid2con(nodeid, 0);
1452 if (WARN_ON_ONCE(!con)) {
1453 srcu_read_unlock(&connections_srcu, idx);
1454 return -ENOENT;
1455 }
1456
1457 stop_connection_io(con);
1458 log_print("io handling for node: %d stopped", nodeid);
1459 close_connection(con, true);
1460
1461 spin_lock(&connections_lock);
1462 hlist_del_rcu(&con->list);
1463 spin_unlock(&connections_lock);
1464
1465 clean_one_writequeue(con);
1466 call_srcu(&connections_srcu, &con->rcu, connection_release);
1467 if (con->othercon) {
1468 clean_one_writequeue(con->othercon);
1469 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1470 }
1471 srcu_read_unlock(&connections_srcu, idx);
1472
1473 /* for debugging we print when we are done to compare with other
1474 * messages in between. This function need to be correctly synchronized
1475 * with io handling
1476 */
1477 log_print("closing connection to node %d done", nodeid);
1478
1479 return 0;
1480}
1481
1482/* Receive worker function */
1483static void process_recv_sockets(struct work_struct *work)
1484{
1485 struct connection *con = container_of(work, struct connection, rwork);
1486 int ret, buflen;
1487
1488 down_read(&con->sock_lock);
1489 if (!con->sock) {
1490 up_read(&con->sock_lock);
1491 return;
1492 }
1493
1494 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1495 do {
1496 ret = receive_from_sock(con, buflen);
1497 } while (ret == DLM_IO_SUCCESS);
1498 up_read(&con->sock_lock);
1499
1500 switch (ret) {
1501 case DLM_IO_END:
1502 /* CF_RECV_PENDING cleared */
1503 break;
1504 case DLM_IO_EOF:
1505 close_connection(con, false);
1506 wake_up(&con->shutdown_wait);
1507 /* CF_RECV_PENDING cleared */
1508 break;
1509 case DLM_IO_FLUSH:
1510 /* we can't flush the process_workqueue here because a
1511 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1512 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1513 * we have a waitqueue to wait until all messages are
1514 * processed.
1515 *
1516 * This handling is only necessary to backoff the sender and
1517 * not queue all messages from the socket layer into DLM
1518 * processqueue. When DLM is capable to parse multiple messages
1519 * on an e.g. per socket basis this handling can might be
1520 * removed. Especially in a message burst we are too slow to
1521 * process messages and the queue will fill up memory.
1522 */
1523 wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1524 fallthrough;
1525 case DLM_IO_RESCHED:
1526 cond_resched();
1527 queue_work(io_workqueue, &con->rwork);
1528 /* CF_RECV_PENDING not cleared */
1529 break;
1530 default:
1531 if (ret < 0) {
1532 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1533 close_connection(con, false);
1534 } else {
1535 spin_lock_bh(&con->writequeue_lock);
1536 lowcomms_queue_swork(con);
1537 spin_unlock_bh(&con->writequeue_lock);
1538 }
1539
1540 /* CF_RECV_PENDING cleared for othercon
1541 * we trigger send queue if not already done
1542 * and process_send_sockets will handle it
1543 */
1544 break;
1545 }
1546
1547 WARN_ON_ONCE(1);
1548 break;
1549 }
1550}
1551
1552static void process_listen_recv_socket(struct work_struct *work)
1553{
1554 int ret;
1555
1556 if (WARN_ON_ONCE(!listen_con.sock))
1557 return;
1558
1559 do {
1560 ret = accept_from_sock();
1561 } while (ret == DLM_IO_SUCCESS);
1562
1563 if (ret < 0)
1564 log_print("critical error accepting connection: %d", ret);
1565}
1566
1567static int dlm_connect(struct connection *con)
1568{
1569 struct sockaddr_storage addr;
1570 int result, addr_len;
1571 struct socket *sock;
1572 unsigned int mark;
1573
1574 memset(&addr, 0, sizeof(addr));
1575 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1576 dlm_proto_ops->try_new_addr, &mark);
1577 if (result < 0) {
1578 log_print("no address for nodeid %d", con->nodeid);
1579 return result;
1580 }
1581
1582 /* Create a socket to communicate with */
1583 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1584 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1585 if (result < 0)
1586 return result;
1587
1588 sock_set_mark(sock->sk, mark);
1589 dlm_proto_ops->sockopts(sock);
1590
1591 result = dlm_proto_ops->bind(sock);
1592 if (result < 0) {
1593 sock_release(sock);
1594 return result;
1595 }
1596
1597 add_sock(sock, con);
1598
1599 log_print_ratelimited("connecting to %d", con->nodeid);
1600 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1601 result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1602 switch (result) {
1603 case -EINPROGRESS:
1604 /* not an error */
1605 fallthrough;
1606 case 0:
1607 break;
1608 default:
1609 if (result < 0)
1610 dlm_close_sock(&con->sock);
1611
1612 break;
1613 }
1614
1615 return result;
1616}
1617
1618/* Send worker function */
1619static void process_send_sockets(struct work_struct *work)
1620{
1621 struct connection *con = container_of(work, struct connection, swork);
1622 int ret;
1623
1624 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1625
1626 down_read(&con->sock_lock);
1627 if (!con->sock) {
1628 up_read(&con->sock_lock);
1629 down_write(&con->sock_lock);
1630 if (!con->sock) {
1631 ret = dlm_connect(con);
1632 switch (ret) {
1633 case 0:
1634 break;
1635 default:
1636 /* CF_SEND_PENDING not cleared */
1637 up_write(&con->sock_lock);
1638 log_print("connect to node %d try %d error %d",
1639 con->nodeid, con->retries++, ret);
1640 msleep(1000);
1641 /* For now we try forever to reconnect. In
1642 * future we should send a event to cluster
1643 * manager to fence itself after certain amount
1644 * of retries.
1645 */
1646 queue_work(io_workqueue, &con->swork);
1647 return;
1648 }
1649 }
1650 downgrade_write(&con->sock_lock);
1651 }
1652
1653 do {
1654 ret = send_to_sock(con);
1655 } while (ret == DLM_IO_SUCCESS);
1656 up_read(&con->sock_lock);
1657
1658 switch (ret) {
1659 case DLM_IO_END:
1660 /* CF_SEND_PENDING cleared */
1661 break;
1662 case DLM_IO_RESCHED:
1663 /* CF_SEND_PENDING not cleared */
1664 cond_resched();
1665 queue_work(io_workqueue, &con->swork);
1666 break;
1667 default:
1668 if (ret < 0) {
1669 close_connection(con, false);
1670
1671 /* CF_SEND_PENDING cleared */
1672 spin_lock_bh(&con->writequeue_lock);
1673 lowcomms_queue_swork(con);
1674 spin_unlock_bh(&con->writequeue_lock);
1675 break;
1676 }
1677
1678 WARN_ON_ONCE(1);
1679 break;
1680 }
1681}
1682
1683static void work_stop(void)
1684{
1685 if (io_workqueue) {
1686 destroy_workqueue(io_workqueue);
1687 io_workqueue = NULL;
1688 }
1689
1690 if (process_workqueue) {
1691 destroy_workqueue(process_workqueue);
1692 process_workqueue = NULL;
1693 }
1694}
1695
1696static int work_start(void)
1697{
1698 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1699 WQ_UNBOUND, 0);
1700 if (!io_workqueue) {
1701 log_print("can't start dlm_io");
1702 return -ENOMEM;
1703 }
1704
1705 process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1706 if (!process_workqueue) {
1707 log_print("can't start dlm_process");
1708 destroy_workqueue(io_workqueue);
1709 io_workqueue = NULL;
1710 return -ENOMEM;
1711 }
1712
1713 return 0;
1714}
1715
1716void dlm_lowcomms_shutdown(void)
1717{
1718 struct connection *con;
1719 int i, idx;
1720
1721 /* stop lowcomms_listen_data_ready calls */
1722 lock_sock(listen_con.sock->sk);
1723 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1724 release_sock(listen_con.sock->sk);
1725
1726 cancel_work_sync(&listen_con.rwork);
1727 dlm_close_sock(&listen_con.sock);
1728
1729 idx = srcu_read_lock(&connections_srcu);
1730 for (i = 0; i < CONN_HASH_SIZE; i++) {
1731 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1732 shutdown_connection(con, true);
1733 stop_connection_io(con);
1734 flush_workqueue(process_workqueue);
1735 close_connection(con, true);
1736
1737 clean_one_writequeue(con);
1738 if (con->othercon)
1739 clean_one_writequeue(con->othercon);
1740 allow_connection_io(con);
1741 }
1742 }
1743 srcu_read_unlock(&connections_srcu, idx);
1744}
1745
1746void dlm_lowcomms_stop(void)
1747{
1748 work_stop();
1749 dlm_proto_ops = NULL;
1750}
1751
1752static int dlm_listen_for_all(void)
1753{
1754 struct socket *sock;
1755 int result;
1756
1757 log_print("Using %s for communications",
1758 dlm_proto_ops->name);
1759
1760 result = dlm_proto_ops->listen_validate();
1761 if (result < 0)
1762 return result;
1763
1764 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1765 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1766 if (result < 0) {
1767 log_print("Can't create comms socket: %d", result);
1768 return result;
1769 }
1770
1771 sock_set_mark(sock->sk, dlm_config.ci_mark);
1772 dlm_proto_ops->listen_sockopts(sock);
1773
1774 result = dlm_proto_ops->listen_bind(sock);
1775 if (result < 0)
1776 goto out;
1777
1778 lock_sock(sock->sk);
1779 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1780 listen_sock.sk_write_space = sock->sk->sk_write_space;
1781 listen_sock.sk_error_report = sock->sk->sk_error_report;
1782 listen_sock.sk_state_change = sock->sk->sk_state_change;
1783
1784 listen_con.sock = sock;
1785
1786 sock->sk->sk_allocation = GFP_NOFS;
1787 sock->sk->sk_use_task_frag = false;
1788 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1789 release_sock(sock->sk);
1790
1791 result = sock->ops->listen(sock, 128);
1792 if (result < 0) {
1793 dlm_close_sock(&listen_con.sock);
1794 return result;
1795 }
1796
1797 return 0;
1798
1799out:
1800 sock_release(sock);
1801 return result;
1802}
1803
1804static int dlm_tcp_bind(struct socket *sock)
1805{
1806 struct sockaddr_storage src_addr;
1807 int result, addr_len;
1808
1809 /* Bind to our cluster-known address connecting to avoid
1810 * routing problems.
1811 */
1812 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1813 make_sockaddr(&src_addr, 0, &addr_len);
1814
1815 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1816 addr_len);
1817 if (result < 0) {
1818 /* This *may* not indicate a critical error */
1819 log_print("could not bind for connect: %d", result);
1820 }
1821
1822 return 0;
1823}
1824
1825static int dlm_tcp_listen_validate(void)
1826{
1827 /* We don't support multi-homed hosts */
1828 if (dlm_local_count > 1) {
1829 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1830 return -EINVAL;
1831 }
1832
1833 return 0;
1834}
1835
1836static void dlm_tcp_sockopts(struct socket *sock)
1837{
1838 /* Turn off Nagle's algorithm */
1839 tcp_sock_set_nodelay(sock->sk);
1840}
1841
1842static void dlm_tcp_listen_sockopts(struct socket *sock)
1843{
1844 dlm_tcp_sockopts(sock);
1845 sock_set_reuseaddr(sock->sk);
1846}
1847
1848static int dlm_tcp_listen_bind(struct socket *sock)
1849{
1850 int addr_len;
1851
1852 /* Bind to our port */
1853 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1854 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1855 addr_len);
1856}
1857
1858static const struct dlm_proto_ops dlm_tcp_ops = {
1859 .name = "TCP",
1860 .proto = IPPROTO_TCP,
1861 .sockopts = dlm_tcp_sockopts,
1862 .bind = dlm_tcp_bind,
1863 .listen_validate = dlm_tcp_listen_validate,
1864 .listen_sockopts = dlm_tcp_listen_sockopts,
1865 .listen_bind = dlm_tcp_listen_bind,
1866};
1867
1868static int dlm_sctp_bind(struct socket *sock)
1869{
1870 return sctp_bind_addrs(sock, 0);
1871}
1872
1873static int dlm_sctp_listen_validate(void)
1874{
1875 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1876 log_print("SCTP is not enabled by this kernel");
1877 return -EOPNOTSUPP;
1878 }
1879
1880 request_module("sctp");
1881 return 0;
1882}
1883
1884static int dlm_sctp_bind_listen(struct socket *sock)
1885{
1886 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1887}
1888
1889static void dlm_sctp_sockopts(struct socket *sock)
1890{
1891 /* Turn off Nagle's algorithm */
1892 sctp_sock_set_nodelay(sock->sk);
1893 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1894}
1895
1896static const struct dlm_proto_ops dlm_sctp_ops = {
1897 .name = "SCTP",
1898 .proto = IPPROTO_SCTP,
1899 .try_new_addr = true,
1900 .sockopts = dlm_sctp_sockopts,
1901 .bind = dlm_sctp_bind,
1902 .listen_validate = dlm_sctp_listen_validate,
1903 .listen_sockopts = dlm_sctp_sockopts,
1904 .listen_bind = dlm_sctp_bind_listen,
1905};
1906
1907int dlm_lowcomms_start(void)
1908{
1909 int error;
1910
1911 init_local();
1912 if (!dlm_local_count) {
1913 error = -ENOTCONN;
1914 log_print("no local IP address has been set");
1915 goto fail;
1916 }
1917
1918 error = work_start();
1919 if (error)
1920 goto fail;
1921
1922 /* Start listening */
1923 switch (dlm_config.ci_protocol) {
1924 case DLM_PROTO_TCP:
1925 dlm_proto_ops = &dlm_tcp_ops;
1926 break;
1927 case DLM_PROTO_SCTP:
1928 dlm_proto_ops = &dlm_sctp_ops;
1929 break;
1930 default:
1931 log_print("Invalid protocol identifier %d set",
1932 dlm_config.ci_protocol);
1933 error = -EINVAL;
1934 goto fail_proto_ops;
1935 }
1936
1937 error = dlm_listen_for_all();
1938 if (error)
1939 goto fail_listen;
1940
1941 return 0;
1942
1943fail_listen:
1944 dlm_proto_ops = NULL;
1945fail_proto_ops:
1946 work_stop();
1947fail:
1948 return error;
1949}
1950
1951void dlm_lowcomms_init(void)
1952{
1953 int i;
1954
1955 for (i = 0; i < CONN_HASH_SIZE; i++)
1956 INIT_HLIST_HEAD(&connection_hash[i]);
1957
1958 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1959}
1960
1961void dlm_lowcomms_exit(void)
1962{
1963 struct connection *con;
1964 int i, idx;
1965
1966 idx = srcu_read_lock(&connections_srcu);
1967 for (i = 0; i < CONN_HASH_SIZE; i++) {
1968 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1969 spin_lock(&connections_lock);
1970 hlist_del_rcu(&con->list);
1971 spin_unlock(&connections_lock);
1972
1973 if (con->othercon)
1974 call_srcu(&connections_srcu, &con->othercon->rcu,
1975 connection_release);
1976 call_srcu(&connections_srcu, &con->rcu, connection_release);
1977 }
1978 }
1979 srcu_read_unlock(&connections_srcu, idx);
1980}