Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "messages.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "bio.h"
  17#include "compression.h"
  18#include "fs.h"
  19#include "accessors.h"
  20#include "file-item.h"
  21
  22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  23				   sizeof(struct btrfs_item) * 2) / \
  24				  size) - 1))
  25
  26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  27				       PAGE_SIZE))
  28
  29/*
  30 * Set inode's size according to filesystem options.
  31 *
  32 * @inode:      inode we want to update the disk_i_size for
  33 * @new_i_size: i_size we want to set to, 0 if we use i_size
  34 *
  35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  36 * returns as it is perfectly fine with a file that has holes without hole file
  37 * extent items.
  38 *
  39 * However without NO_HOLES we need to only return the area that is contiguous
  40 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  41 * to an extent that has a gap in between.
  42 *
  43 * Finally new_i_size should only be set in the case of truncate where we're not
  44 * ready to use i_size_read() as the limiter yet.
  45 */
  46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  47{
  48	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  49	u64 start, end, i_size;
  50	int ret;
  51
  52	spin_lock(&inode->lock);
  53	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  54	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  55		inode->disk_i_size = i_size;
  56		goto out_unlock;
  57	}
  58
  59	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
  60					 &end, EXTENT_DIRTY);
  61	if (!ret && start == 0)
  62		i_size = min(i_size, end + 1);
  63	else
  64		i_size = 0;
  65	inode->disk_i_size = i_size;
  66out_unlock:
  67	spin_unlock(&inode->lock);
  68}
  69
  70/*
  71 * Mark range within a file as having a new extent inserted.
  72 *
  73 * @inode: inode being modified
  74 * @start: start file offset of the file extent we've inserted
  75 * @len:   logical length of the file extent item
  76 *
  77 * Call when we are inserting a new file extent where there was none before.
  78 * Does not need to call this in the case where we're replacing an existing file
  79 * extent, however if not sure it's fine to call this multiple times.
  80 *
  81 * The start and len must match the file extent item, so thus must be sectorsize
  82 * aligned.
  83 */
  84int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  85				      u64 len)
  86{
 
 
 
  87	if (len == 0)
  88		return 0;
  89
  90	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  91
  92	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  93		return 0;
  94	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
  95			      EXTENT_DIRTY, NULL);
  96}
  97
  98/*
  99 * Mark an inode range as not having a backing extent.
 100 *
 101 * @inode: inode being modified
 102 * @start: start file offset of the file extent we've inserted
 103 * @len:   logical length of the file extent item
 104 *
 105 * Called when we drop a file extent, for example when we truncate.  Doesn't
 106 * need to be called for cases where we're replacing a file extent, like when
 107 * we've COWed a file extent.
 108 *
 109 * The start and len must match the file extent item, so thus must be sectorsize
 110 * aligned.
 111 */
 112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 113					u64 len)
 114{
 
 
 
 115	if (len == 0)
 116		return 0;
 117
 118	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 119	       len == (u64)-1);
 120
 121	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 122		return 0;
 123	return clear_extent_bit(inode->file_extent_tree, start,
 124				start + len - 1, EXTENT_DIRTY, NULL);
 125}
 126
 127static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 128{
 129	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 130
 131	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 132}
 133
 134static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 135{
 136	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 137
 138	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 139}
 140
 141static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 142{
 143	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 144				       fs_info->csum_size);
 145
 146	return csum_size_to_bytes(fs_info, max_csum_size);
 147}
 148
 149/*
 150 * Calculate the total size needed to allocate for an ordered sum structure
 151 * spanning @bytes in the file.
 152 */
 153static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
 154{
 155	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 156}
 157
 158int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 159			     struct btrfs_root *root,
 160			     u64 objectid, u64 pos, u64 num_bytes)
 161{
 162	int ret = 0;
 163	struct btrfs_file_extent_item *item;
 164	struct btrfs_key file_key;
 165	struct btrfs_path *path;
 166	struct extent_buffer *leaf;
 167
 168	path = btrfs_alloc_path();
 169	if (!path)
 170		return -ENOMEM;
 171	file_key.objectid = objectid;
 172	file_key.offset = pos;
 173	file_key.type = BTRFS_EXTENT_DATA_KEY;
 174
 175	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 176				      sizeof(*item));
 177	if (ret < 0)
 178		goto out;
 179	leaf = path->nodes[0];
 180	item = btrfs_item_ptr(leaf, path->slots[0],
 181			      struct btrfs_file_extent_item);
 182	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 183	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 184	btrfs_set_file_extent_offset(leaf, item, 0);
 185	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 186	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 187	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 188	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 189	btrfs_set_file_extent_compression(leaf, item, 0);
 190	btrfs_set_file_extent_encryption(leaf, item, 0);
 191	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 192
 193	btrfs_mark_buffer_dirty(trans, leaf);
 194out:
 195	btrfs_free_path(path);
 196	return ret;
 197}
 198
 199static struct btrfs_csum_item *
 200btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 201		  struct btrfs_root *root,
 202		  struct btrfs_path *path,
 203		  u64 bytenr, int cow)
 204{
 205	struct btrfs_fs_info *fs_info = root->fs_info;
 206	int ret;
 207	struct btrfs_key file_key;
 208	struct btrfs_key found_key;
 209	struct btrfs_csum_item *item;
 210	struct extent_buffer *leaf;
 211	u64 csum_offset = 0;
 212	const u32 csum_size = fs_info->csum_size;
 213	int csums_in_item;
 214
 215	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 216	file_key.offset = bytenr;
 217	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 218	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 219	if (ret < 0)
 220		goto fail;
 221	leaf = path->nodes[0];
 222	if (ret > 0) {
 223		ret = 1;
 224		if (path->slots[0] == 0)
 225			goto fail;
 226		path->slots[0]--;
 227		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 228		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 229			goto fail;
 230
 231		csum_offset = (bytenr - found_key.offset) >>
 232				fs_info->sectorsize_bits;
 233		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 234		csums_in_item /= csum_size;
 235
 236		if (csum_offset == csums_in_item) {
 237			ret = -EFBIG;
 238			goto fail;
 239		} else if (csum_offset > csums_in_item) {
 240			goto fail;
 241		}
 242	}
 243	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 244	item = (struct btrfs_csum_item *)((unsigned char *)item +
 245					  csum_offset * csum_size);
 246	return item;
 247fail:
 248	if (ret > 0)
 249		ret = -ENOENT;
 250	return ERR_PTR(ret);
 251}
 252
 253int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 254			     struct btrfs_root *root,
 255			     struct btrfs_path *path, u64 objectid,
 256			     u64 offset, int mod)
 257{
 258	struct btrfs_key file_key;
 259	int ins_len = mod < 0 ? -1 : 0;
 260	int cow = mod != 0;
 261
 262	file_key.objectid = objectid;
 263	file_key.offset = offset;
 264	file_key.type = BTRFS_EXTENT_DATA_KEY;
 265
 266	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 267}
 268
 269/*
 270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 271 * store the result to @dst.
 272 *
 273 * Return >0 for the number of sectors we found.
 274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 275 * for it. Caller may want to try next sector until one range is hit.
 276 * Return <0 for fatal error.
 277 */
 278static int search_csum_tree(struct btrfs_fs_info *fs_info,
 279			    struct btrfs_path *path, u64 disk_bytenr,
 280			    u64 len, u8 *dst)
 281{
 282	struct btrfs_root *csum_root;
 283	struct btrfs_csum_item *item = NULL;
 284	struct btrfs_key key;
 285	const u32 sectorsize = fs_info->sectorsize;
 286	const u32 csum_size = fs_info->csum_size;
 287	u32 itemsize;
 288	int ret;
 289	u64 csum_start;
 290	u64 csum_len;
 291
 292	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 293	       IS_ALIGNED(len, sectorsize));
 294
 295	/* Check if the current csum item covers disk_bytenr */
 296	if (path->nodes[0]) {
 297		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 298				      struct btrfs_csum_item);
 299		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 300		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 301
 302		csum_start = key.offset;
 303		csum_len = (itemsize / csum_size) * sectorsize;
 304
 305		if (in_range(disk_bytenr, csum_start, csum_len))
 306			goto found;
 307	}
 308
 309	/* Current item doesn't contain the desired range, search again */
 310	btrfs_release_path(path);
 311	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 312	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 313	if (IS_ERR(item)) {
 314		ret = PTR_ERR(item);
 315		goto out;
 316	}
 317	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 318	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 319
 320	csum_start = key.offset;
 321	csum_len = (itemsize / csum_size) * sectorsize;
 322	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 323
 324found:
 325	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 326		   disk_bytenr) >> fs_info->sectorsize_bits;
 327	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 328			ret * csum_size);
 329out:
 330	if (ret == -ENOENT || ret == -EFBIG)
 331		ret = 0;
 332	return ret;
 333}
 334
 335/*
 336 * Lookup the checksum for the read bio in csum tree.
 337 *
 338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 339 */
 340blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
 341{
 342	struct btrfs_inode *inode = bbio->inode;
 343	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 344	struct bio *bio = &bbio->bio;
 345	struct btrfs_path *path;
 346	const u32 sectorsize = fs_info->sectorsize;
 347	const u32 csum_size = fs_info->csum_size;
 348	u32 orig_len = bio->bi_iter.bi_size;
 349	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 350	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 351	blk_status_t ret = BLK_STS_OK;
 352	u32 bio_offset = 0;
 353
 354	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 355	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
 356		return BLK_STS_OK;
 357
 358	/*
 359	 * This function is only called for read bio.
 360	 *
 361	 * This means two things:
 362	 * - All our csums should only be in csum tree
 363	 *   No ordered extents csums, as ordered extents are only for write
 364	 *   path.
 365	 * - No need to bother any other info from bvec
 366	 *   Since we're looking up csums, the only important info is the
 367	 *   disk_bytenr and the length, which can be extracted from bi_iter
 368	 *   directly.
 369	 */
 370	ASSERT(bio_op(bio) == REQ_OP_READ);
 371	path = btrfs_alloc_path();
 372	if (!path)
 373		return BLK_STS_RESOURCE;
 374
 375	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 376		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 377		if (!bbio->csum) {
 378			btrfs_free_path(path);
 379			return BLK_STS_RESOURCE;
 380		}
 381	} else {
 382		bbio->csum = bbio->csum_inline;
 383	}
 384
 385	/*
 386	 * If requested number of sectors is larger than one leaf can contain,
 387	 * kick the readahead for csum tree.
 388	 */
 389	if (nblocks > fs_info->csums_per_leaf)
 390		path->reada = READA_FORWARD;
 391
 392	/*
 393	 * the free space stuff is only read when it hasn't been
 394	 * updated in the current transaction.  So, we can safely
 395	 * read from the commit root and sidestep a nasty deadlock
 396	 * between reading the free space cache and updating the csum tree.
 397	 */
 398	if (btrfs_is_free_space_inode(inode)) {
 399		path->search_commit_root = 1;
 400		path->skip_locking = 1;
 401	}
 402
 403	while (bio_offset < orig_len) {
 404		int count;
 405		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
 406		u8 *csum_dst = bbio->csum +
 407			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
 408
 409		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 410					 orig_len - bio_offset, csum_dst);
 411		if (count < 0) {
 412			ret = errno_to_blk_status(count);
 413			if (bbio->csum != bbio->csum_inline)
 414				kfree(bbio->csum);
 415			bbio->csum = NULL;
 416			break;
 417		}
 418
 419		/*
 420		 * We didn't find a csum for this range.  We need to make sure
 421		 * we complain loudly about this, because we are not NODATASUM.
 422		 *
 423		 * However for the DATA_RELOC inode we could potentially be
 424		 * relocating data extents for a NODATASUM inode, so the inode
 425		 * itself won't be marked with NODATASUM, but the extent we're
 426		 * copying is in fact NODATASUM.  If we don't find a csum we
 427		 * assume this is the case.
 428		 */
 429		if (count == 0) {
 430			memset(csum_dst, 0, csum_size);
 431			count = 1;
 432
 433			if (inode->root->root_key.objectid ==
 434			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 435				u64 file_offset = bbio->file_offset + bio_offset;
 436
 437				set_extent_bit(&inode->io_tree, file_offset,
 438					       file_offset + sectorsize - 1,
 439					       EXTENT_NODATASUM, NULL);
 440			} else {
 441				btrfs_warn_rl(fs_info,
 442			"csum hole found for disk bytenr range [%llu, %llu)",
 443				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 444			}
 445		}
 446		bio_offset += count * sectorsize;
 447	}
 448
 449	btrfs_free_path(path);
 450	return ret;
 451}
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 454			    struct list_head *list, int search_commit,
 455			    bool nowait)
 456{
 457	struct btrfs_fs_info *fs_info = root->fs_info;
 458	struct btrfs_key key;
 459	struct btrfs_path *path;
 460	struct extent_buffer *leaf;
 461	struct btrfs_ordered_sum *sums;
 462	struct btrfs_csum_item *item;
 463	LIST_HEAD(tmplist);
 464	int ret;
 
 465
 466	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 467	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 468
 469	path = btrfs_alloc_path();
 470	if (!path)
 471		return -ENOMEM;
 472
 473	path->nowait = nowait;
 474	if (search_commit) {
 475		path->skip_locking = 1;
 476		path->reada = READA_FORWARD;
 477		path->search_commit_root = 1;
 478	}
 479
 480	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 481	key.offset = start;
 482	key.type = BTRFS_EXTENT_CSUM_KEY;
 483
 484	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 485	if (ret < 0)
 486		goto fail;
 487	if (ret > 0 && path->slots[0] > 0) {
 488		leaf = path->nodes[0];
 489		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 490
 491		/*
 492		 * There are two cases we can hit here for the previous csum
 493		 * item:
 494		 *
 495		 *		|<- search range ->|
 496		 *	|<- csum item ->|
 497		 *
 498		 * Or
 499		 *				|<- search range ->|
 500		 *	|<- csum item ->|
 501		 *
 502		 * Check if the previous csum item covers the leading part of
 503		 * the search range.  If so we have to start from previous csum
 504		 * item.
 505		 */
 506		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 507		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 508			if (bytes_to_csum_size(fs_info, start - key.offset) <
 509			    btrfs_item_size(leaf, path->slots[0] - 1))
 510				path->slots[0]--;
 511		}
 512	}
 513
 514	while (start <= end) {
 515		u64 csum_end;
 516
 517		leaf = path->nodes[0];
 518		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 519			ret = btrfs_next_leaf(root, path);
 520			if (ret < 0)
 521				goto fail;
 522			if (ret > 0)
 523				break;
 524			leaf = path->nodes[0];
 525		}
 526
 527		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 528		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 529		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 530		    key.offset > end)
 531			break;
 532
 533		if (key.offset > start)
 534			start = key.offset;
 535
 536		csum_end = key.offset + csum_size_to_bytes(fs_info,
 537					btrfs_item_size(leaf, path->slots[0]));
 538		if (csum_end <= start) {
 539			path->slots[0]++;
 540			continue;
 541		}
 542
 
 
 
 
 543		csum_end = min(csum_end, end + 1);
 544		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 545				      struct btrfs_csum_item);
 546		while (start < csum_end) {
 547			unsigned long offset;
 548			size_t size;
 549
 550			size = min_t(size_t, csum_end - start,
 551				     max_ordered_sum_bytes(fs_info));
 552			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 553				       GFP_NOFS);
 554			if (!sums) {
 555				ret = -ENOMEM;
 556				goto fail;
 557			}
 558
 559			sums->logical = start;
 560			sums->len = size;
 561
 562			offset = bytes_to_csum_size(fs_info, start - key.offset);
 563
 564			read_extent_buffer(path->nodes[0],
 565					   sums->sums,
 566					   ((unsigned long)item) + offset,
 567					   bytes_to_csum_size(fs_info, size));
 568
 569			start += size;
 570			list_add_tail(&sums->list, &tmplist);
 571		}
 572		path->slots[0]++;
 573	}
 574	ret = 0;
 575fail:
 576	while (ret < 0 && !list_empty(&tmplist)) {
 577		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 578		list_del(&sums->list);
 579		kfree(sums);
 
 
 
 
 
 580	}
 581	list_splice_tail(&tmplist, list);
 582
 583	btrfs_free_path(path);
 584	return ret;
 585}
 586
 587/*
 588 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 589 * we return the result.
 590 *
 591 * This version will set the corresponding bits in @csum_bitmap to represent
 592 * that there is a csum found.
 593 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 594 * in is large enough to contain all csums.
 595 */
 596int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
 597			      u64 start, u64 end, u8 *csum_buf,
 598			      unsigned long *csum_bitmap)
 599{
 600	struct btrfs_fs_info *fs_info = root->fs_info;
 601	struct btrfs_key key;
 602	struct extent_buffer *leaf;
 603	struct btrfs_csum_item *item;
 604	const u64 orig_start = start;
 605	bool free_path = false;
 606	int ret;
 607
 608	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 609	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 610
 611	if (!path) {
 612		path = btrfs_alloc_path();
 613		if (!path)
 614			return -ENOMEM;
 615		free_path = true;
 616	}
 617
 618	/* Check if we can reuse the previous path. */
 619	if (path->nodes[0]) {
 620		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 621
 622		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 623		    key.type == BTRFS_EXTENT_CSUM_KEY &&
 624		    key.offset <= start)
 625			goto search_forward;
 626		btrfs_release_path(path);
 627	}
 628
 629	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 630	key.type = BTRFS_EXTENT_CSUM_KEY;
 631	key.offset = start;
 632
 633	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 634	if (ret < 0)
 635		goto fail;
 636	if (ret > 0 && path->slots[0] > 0) {
 637		leaf = path->nodes[0];
 638		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 639
 640		/*
 641		 * There are two cases we can hit here for the previous csum
 642		 * item:
 643		 *
 644		 *		|<- search range ->|
 645		 *	|<- csum item ->|
 646		 *
 647		 * Or
 648		 *				|<- search range ->|
 649		 *	|<- csum item ->|
 650		 *
 651		 * Check if the previous csum item covers the leading part of
 652		 * the search range.  If so we have to start from previous csum
 653		 * item.
 654		 */
 655		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 656		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 657			if (bytes_to_csum_size(fs_info, start - key.offset) <
 658			    btrfs_item_size(leaf, path->slots[0] - 1))
 659				path->slots[0]--;
 660		}
 661	}
 662
 663search_forward:
 664	while (start <= end) {
 665		u64 csum_end;
 666
 667		leaf = path->nodes[0];
 668		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 669			ret = btrfs_next_leaf(root, path);
 670			if (ret < 0)
 671				goto fail;
 672			if (ret > 0)
 673				break;
 674			leaf = path->nodes[0];
 675		}
 676
 677		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 678		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 679		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 680		    key.offset > end)
 681			break;
 682
 683		if (key.offset > start)
 684			start = key.offset;
 685
 686		csum_end = key.offset + csum_size_to_bytes(fs_info,
 687					btrfs_item_size(leaf, path->slots[0]));
 688		if (csum_end <= start) {
 689			path->slots[0]++;
 690			continue;
 691		}
 692
 693		csum_end = min(csum_end, end + 1);
 694		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 695				      struct btrfs_csum_item);
 696		while (start < csum_end) {
 697			unsigned long offset;
 698			size_t size;
 699			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 700						start - orig_start);
 701
 702			size = min_t(size_t, csum_end - start, end + 1 - start);
 703
 704			offset = bytes_to_csum_size(fs_info, start - key.offset);
 705
 706			read_extent_buffer(path->nodes[0], csum_dest,
 707					   ((unsigned long)item) + offset,
 708					   bytes_to_csum_size(fs_info, size));
 709
 710			bitmap_set(csum_bitmap,
 711				(start - orig_start) >> fs_info->sectorsize_bits,
 712				size >> fs_info->sectorsize_bits);
 713
 714			start += size;
 715		}
 716		path->slots[0]++;
 717	}
 718	ret = 0;
 719fail:
 720	if (free_path)
 721		btrfs_free_path(path);
 722	return ret;
 723}
 724
 725/*
 726 * Calculate checksums of the data contained inside a bio.
 727 */
 728blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
 729{
 730	struct btrfs_ordered_extent *ordered = bbio->ordered;
 731	struct btrfs_inode *inode = bbio->inode;
 732	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 733	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 734	struct bio *bio = &bbio->bio;
 735	struct btrfs_ordered_sum *sums;
 736	char *data;
 737	struct bvec_iter iter;
 738	struct bio_vec bvec;
 739	int index;
 740	unsigned int blockcount;
 741	int i;
 742	unsigned nofs_flag;
 743
 744	nofs_flag = memalloc_nofs_save();
 745	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 746		       GFP_KERNEL);
 747	memalloc_nofs_restore(nofs_flag);
 748
 749	if (!sums)
 750		return BLK_STS_RESOURCE;
 751
 752	sums->len = bio->bi_iter.bi_size;
 753	INIT_LIST_HEAD(&sums->list);
 754
 755	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 756	index = 0;
 757
 758	shash->tfm = fs_info->csum_shash;
 759
 760	bio_for_each_segment(bvec, bio, iter) {
 761		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 762						 bvec.bv_len + fs_info->sectorsize
 763						 - 1);
 764
 765		for (i = 0; i < blockcount; i++) {
 766			data = bvec_kmap_local(&bvec);
 767			crypto_shash_digest(shash,
 768					    data + (i * fs_info->sectorsize),
 769					    fs_info->sectorsize,
 770					    sums->sums + index);
 771			kunmap_local(data);
 772			index += fs_info->csum_size;
 773		}
 774
 775	}
 776
 777	bbio->sums = sums;
 778	btrfs_add_ordered_sum(ordered, sums);
 779	return 0;
 780}
 781
 782/*
 783 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 784 * record the updated logical address on Zone Append completion.
 785 * Allocate just the structure with an empty sums array here for that case.
 786 */
 787blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
 788{
 789	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
 790	if (!bbio->sums)
 791		return BLK_STS_RESOURCE;
 792	bbio->sums->len = bbio->bio.bi_iter.bi_size;
 793	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 794	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
 795	return 0;
 796}
 797
 798/*
 799 * Remove one checksum overlapping a range.
 800 *
 801 * This expects the key to describe the csum pointed to by the path, and it
 802 * expects the csum to overlap the range [bytenr, len]
 803 *
 804 * The csum should not be entirely contained in the range and the range should
 805 * not be entirely contained in the csum.
 806 *
 807 * This calls btrfs_truncate_item with the correct args based on the overlap,
 808 * and fixes up the key as required.
 809 */
 810static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
 811				       struct btrfs_path *path,
 812				       struct btrfs_key *key,
 813				       u64 bytenr, u64 len)
 814{
 815	struct btrfs_fs_info *fs_info = trans->fs_info;
 816	struct extent_buffer *leaf;
 817	const u32 csum_size = fs_info->csum_size;
 818	u64 csum_end;
 819	u64 end_byte = bytenr + len;
 820	u32 blocksize_bits = fs_info->sectorsize_bits;
 821
 822	leaf = path->nodes[0];
 823	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 824	csum_end <<= blocksize_bits;
 825	csum_end += key->offset;
 826
 827	if (key->offset < bytenr && csum_end <= end_byte) {
 828		/*
 829		 *         [ bytenr - len ]
 830		 *         [   ]
 831		 *   [csum     ]
 832		 *   A simple truncate off the end of the item
 833		 */
 834		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 835		new_size *= csum_size;
 836		btrfs_truncate_item(trans, path, new_size, 1);
 837	} else if (key->offset >= bytenr && csum_end > end_byte &&
 838		   end_byte > key->offset) {
 839		/*
 840		 *         [ bytenr - len ]
 841		 *                 [ ]
 842		 *                 [csum     ]
 843		 * we need to truncate from the beginning of the csum
 844		 */
 845		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 846		new_size *= csum_size;
 847
 848		btrfs_truncate_item(trans, path, new_size, 0);
 849
 850		key->offset = end_byte;
 851		btrfs_set_item_key_safe(trans, path, key);
 852	} else {
 853		BUG();
 854	}
 855}
 856
 857/*
 858 * Delete the csum items from the csum tree for a given range of bytes.
 859 */
 860int btrfs_del_csums(struct btrfs_trans_handle *trans,
 861		    struct btrfs_root *root, u64 bytenr, u64 len)
 862{
 863	struct btrfs_fs_info *fs_info = trans->fs_info;
 864	struct btrfs_path *path;
 865	struct btrfs_key key;
 866	u64 end_byte = bytenr + len;
 867	u64 csum_end;
 868	struct extent_buffer *leaf;
 869	int ret = 0;
 870	const u32 csum_size = fs_info->csum_size;
 871	u32 blocksize_bits = fs_info->sectorsize_bits;
 872
 873	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
 874	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 875
 876	path = btrfs_alloc_path();
 877	if (!path)
 878		return -ENOMEM;
 879
 880	while (1) {
 881		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 882		key.offset = end_byte - 1;
 883		key.type = BTRFS_EXTENT_CSUM_KEY;
 884
 885		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 886		if (ret > 0) {
 887			ret = 0;
 888			if (path->slots[0] == 0)
 889				break;
 890			path->slots[0]--;
 891		} else if (ret < 0) {
 892			break;
 893		}
 894
 895		leaf = path->nodes[0];
 896		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 897
 898		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 899		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 900			break;
 901		}
 902
 903		if (key.offset >= end_byte)
 904			break;
 905
 906		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 907		csum_end <<= blocksize_bits;
 908		csum_end += key.offset;
 909
 910		/* this csum ends before we start, we're done */
 911		if (csum_end <= bytenr)
 912			break;
 913
 914		/* delete the entire item, it is inside our range */
 915		if (key.offset >= bytenr && csum_end <= end_byte) {
 916			int del_nr = 1;
 917
 918			/*
 919			 * Check how many csum items preceding this one in this
 920			 * leaf correspond to our range and then delete them all
 921			 * at once.
 922			 */
 923			if (key.offset > bytenr && path->slots[0] > 0) {
 924				int slot = path->slots[0] - 1;
 925
 926				while (slot >= 0) {
 927					struct btrfs_key pk;
 928
 929					btrfs_item_key_to_cpu(leaf, &pk, slot);
 930					if (pk.offset < bytenr ||
 931					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 932					    pk.objectid !=
 933					    BTRFS_EXTENT_CSUM_OBJECTID)
 934						break;
 935					path->slots[0] = slot;
 936					del_nr++;
 937					key.offset = pk.offset;
 938					slot--;
 939				}
 940			}
 941			ret = btrfs_del_items(trans, root, path,
 942					      path->slots[0], del_nr);
 943			if (ret)
 944				break;
 945			if (key.offset == bytenr)
 946				break;
 947		} else if (key.offset < bytenr && csum_end > end_byte) {
 948			unsigned long offset;
 949			unsigned long shift_len;
 950			unsigned long item_offset;
 951			/*
 952			 *        [ bytenr - len ]
 953			 *     [csum                ]
 954			 *
 955			 * Our bytes are in the middle of the csum,
 956			 * we need to split this item and insert a new one.
 957			 *
 958			 * But we can't drop the path because the
 959			 * csum could change, get removed, extended etc.
 960			 *
 961			 * The trick here is the max size of a csum item leaves
 962			 * enough room in the tree block for a single
 963			 * item header.  So, we split the item in place,
 964			 * adding a new header pointing to the existing
 965			 * bytes.  Then we loop around again and we have
 966			 * a nicely formed csum item that we can neatly
 967			 * truncate.
 968			 */
 969			offset = (bytenr - key.offset) >> blocksize_bits;
 970			offset *= csum_size;
 971
 972			shift_len = (len >> blocksize_bits) * csum_size;
 973
 974			item_offset = btrfs_item_ptr_offset(leaf,
 975							    path->slots[0]);
 976
 977			memzero_extent_buffer(leaf, item_offset + offset,
 978					     shift_len);
 979			key.offset = bytenr;
 980
 981			/*
 982			 * btrfs_split_item returns -EAGAIN when the
 983			 * item changed size or key
 984			 */
 985			ret = btrfs_split_item(trans, root, path, &key, offset);
 986			if (ret && ret != -EAGAIN) {
 987				btrfs_abort_transaction(trans, ret);
 988				break;
 989			}
 990			ret = 0;
 991
 992			key.offset = end_byte - 1;
 993		} else {
 994			truncate_one_csum(trans, path, &key, bytenr, len);
 995			if (key.offset < bytenr)
 996				break;
 997		}
 998		btrfs_release_path(path);
 999	}
1000	btrfs_free_path(path);
1001	return ret;
1002}
1003
1004static int find_next_csum_offset(struct btrfs_root *root,
1005				 struct btrfs_path *path,
1006				 u64 *next_offset)
1007{
1008	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1009	struct btrfs_key found_key;
1010	int slot = path->slots[0] + 1;
1011	int ret;
1012
1013	if (nritems == 0 || slot >= nritems) {
1014		ret = btrfs_next_leaf(root, path);
1015		if (ret < 0) {
1016			return ret;
1017		} else if (ret > 0) {
1018			*next_offset = (u64)-1;
1019			return 0;
1020		}
1021		slot = path->slots[0];
1022	}
1023
1024	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1025
1026	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1027	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1028		*next_offset = (u64)-1;
1029	else
1030		*next_offset = found_key.offset;
1031
1032	return 0;
1033}
1034
1035int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1036			   struct btrfs_root *root,
1037			   struct btrfs_ordered_sum *sums)
1038{
1039	struct btrfs_fs_info *fs_info = root->fs_info;
1040	struct btrfs_key file_key;
1041	struct btrfs_key found_key;
1042	struct btrfs_path *path;
1043	struct btrfs_csum_item *item;
1044	struct btrfs_csum_item *item_end;
1045	struct extent_buffer *leaf = NULL;
1046	u64 next_offset;
1047	u64 total_bytes = 0;
1048	u64 csum_offset;
1049	u64 bytenr;
1050	u32 ins_size;
1051	int index = 0;
1052	int found_next;
1053	int ret;
1054	const u32 csum_size = fs_info->csum_size;
1055
1056	path = btrfs_alloc_path();
1057	if (!path)
1058		return -ENOMEM;
1059again:
1060	next_offset = (u64)-1;
1061	found_next = 0;
1062	bytenr = sums->logical + total_bytes;
1063	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1064	file_key.offset = bytenr;
1065	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1066
1067	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1068	if (!IS_ERR(item)) {
1069		ret = 0;
1070		leaf = path->nodes[0];
1071		item_end = btrfs_item_ptr(leaf, path->slots[0],
1072					  struct btrfs_csum_item);
1073		item_end = (struct btrfs_csum_item *)((char *)item_end +
1074			   btrfs_item_size(leaf, path->slots[0]));
1075		goto found;
1076	}
1077	ret = PTR_ERR(item);
1078	if (ret != -EFBIG && ret != -ENOENT)
1079		goto out;
1080
1081	if (ret == -EFBIG) {
1082		u32 item_size;
1083		/* we found one, but it isn't big enough yet */
1084		leaf = path->nodes[0];
1085		item_size = btrfs_item_size(leaf, path->slots[0]);
1086		if ((item_size / csum_size) >=
1087		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1088			/* already at max size, make a new one */
1089			goto insert;
1090		}
1091	} else {
1092		/* We didn't find a csum item, insert one. */
1093		ret = find_next_csum_offset(root, path, &next_offset);
1094		if (ret < 0)
1095			goto out;
1096		found_next = 1;
1097		goto insert;
1098	}
1099
1100	/*
1101	 * At this point, we know the tree has a checksum item that ends at an
1102	 * offset matching the start of the checksum range we want to insert.
1103	 * We try to extend that item as much as possible and then add as many
1104	 * checksums to it as they fit.
1105	 *
1106	 * First check if the leaf has enough free space for at least one
1107	 * checksum. If it has go directly to the item extension code, otherwise
1108	 * release the path and do a search for insertion before the extension.
1109	 */
1110	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1111		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1112		csum_offset = (bytenr - found_key.offset) >>
1113			fs_info->sectorsize_bits;
1114		goto extend_csum;
1115	}
1116
1117	btrfs_release_path(path);
1118	path->search_for_extension = 1;
1119	ret = btrfs_search_slot(trans, root, &file_key, path,
1120				csum_size, 1);
1121	path->search_for_extension = 0;
1122	if (ret < 0)
1123		goto out;
1124
1125	if (ret > 0) {
1126		if (path->slots[0] == 0)
1127			goto insert;
1128		path->slots[0]--;
1129	}
1130
1131	leaf = path->nodes[0];
1132	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1133	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1134
1135	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1136	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1137	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1138		goto insert;
1139	}
1140
1141extend_csum:
1142	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1143	    csum_size) {
1144		int extend_nr;
1145		u64 tmp;
1146		u32 diff;
1147
1148		tmp = sums->len - total_bytes;
1149		tmp >>= fs_info->sectorsize_bits;
1150		WARN_ON(tmp < 1);
1151		extend_nr = max_t(int, 1, tmp);
1152
1153		/*
1154		 * A log tree can already have checksum items with a subset of
1155		 * the checksums we are trying to log. This can happen after
1156		 * doing a sequence of partial writes into prealloc extents and
1157		 * fsyncs in between, with a full fsync logging a larger subrange
1158		 * of an extent for which a previous fast fsync logged a smaller
1159		 * subrange. And this happens in particular due to merging file
1160		 * extent items when we complete an ordered extent for a range
1161		 * covered by a prealloc extent - this is done at
1162		 * btrfs_mark_extent_written().
1163		 *
1164		 * So if we try to extend the previous checksum item, which has
1165		 * a range that ends at the start of the range we want to insert,
1166		 * make sure we don't extend beyond the start offset of the next
1167		 * checksum item. If we are at the last item in the leaf, then
1168		 * forget the optimization of extending and add a new checksum
1169		 * item - it is not worth the complexity of releasing the path,
1170		 * getting the first key for the next leaf, repeat the btree
1171		 * search, etc, because log trees are temporary anyway and it
1172		 * would only save a few bytes of leaf space.
1173		 */
1174		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1175			if (path->slots[0] + 1 >=
1176			    btrfs_header_nritems(path->nodes[0])) {
1177				ret = find_next_csum_offset(root, path, &next_offset);
1178				if (ret < 0)
1179					goto out;
1180				found_next = 1;
1181				goto insert;
1182			}
1183
1184			ret = find_next_csum_offset(root, path, &next_offset);
1185			if (ret < 0)
1186				goto out;
1187
1188			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1189			if (tmp <= INT_MAX)
1190				extend_nr = min_t(int, extend_nr, tmp);
1191		}
1192
1193		diff = (csum_offset + extend_nr) * csum_size;
1194		diff = min(diff,
1195			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1196
1197		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1198		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1199		diff /= csum_size;
1200		diff *= csum_size;
1201
1202		btrfs_extend_item(trans, path, diff);
1203		ret = 0;
1204		goto csum;
1205	}
1206
1207insert:
1208	btrfs_release_path(path);
1209	csum_offset = 0;
1210	if (found_next) {
1211		u64 tmp;
1212
1213		tmp = sums->len - total_bytes;
1214		tmp >>= fs_info->sectorsize_bits;
1215		tmp = min(tmp, (next_offset - file_key.offset) >>
1216					 fs_info->sectorsize_bits);
1217
1218		tmp = max_t(u64, 1, tmp);
1219		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1220		ins_size = csum_size * tmp;
1221	} else {
1222		ins_size = csum_size;
1223	}
1224	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1225				      ins_size);
1226	if (ret < 0)
1227		goto out;
1228	leaf = path->nodes[0];
1229csum:
1230	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1231	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1232				      btrfs_item_size(leaf, path->slots[0]));
1233	item = (struct btrfs_csum_item *)((unsigned char *)item +
1234					  csum_offset * csum_size);
1235found:
1236	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1237	ins_size *= csum_size;
1238	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1239			      ins_size);
1240	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1241			    ins_size);
1242
1243	index += ins_size;
1244	ins_size /= csum_size;
1245	total_bytes += ins_size * fs_info->sectorsize;
1246
1247	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1248	if (total_bytes < sums->len) {
1249		btrfs_release_path(path);
1250		cond_resched();
1251		goto again;
1252	}
1253out:
1254	btrfs_free_path(path);
1255	return ret;
1256}
1257
1258void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1259				     const struct btrfs_path *path,
1260				     struct btrfs_file_extent_item *fi,
1261				     struct extent_map *em)
1262{
1263	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264	struct btrfs_root *root = inode->root;
1265	struct extent_buffer *leaf = path->nodes[0];
1266	const int slot = path->slots[0];
1267	struct btrfs_key key;
1268	u64 extent_start, extent_end;
1269	u64 bytenr;
1270	u8 type = btrfs_file_extent_type(leaf, fi);
1271	int compress_type = btrfs_file_extent_compression(leaf, fi);
1272
1273	btrfs_item_key_to_cpu(leaf, &key, slot);
1274	extent_start = key.offset;
1275	extent_end = btrfs_file_extent_end(path);
1276	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1277	em->generation = btrfs_file_extent_generation(leaf, fi);
1278	if (type == BTRFS_FILE_EXTENT_REG ||
1279	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 
 
1280		em->start = extent_start;
1281		em->len = extent_end - extent_start;
1282		em->orig_start = extent_start -
1283			btrfs_file_extent_offset(leaf, fi);
1284		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1285		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1286		if (bytenr == 0) {
1287			em->block_start = EXTENT_MAP_HOLE;
1288			return;
1289		}
 
 
 
1290		if (compress_type != BTRFS_COMPRESS_NONE) {
1291			extent_map_set_compression(em, compress_type);
1292			em->block_start = bytenr;
1293			em->block_len = em->orig_block_len;
1294		} else {
1295			bytenr += btrfs_file_extent_offset(leaf, fi);
1296			em->block_start = bytenr;
1297			em->block_len = em->len;
 
 
 
 
1298			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1299				em->flags |= EXTENT_FLAG_PREALLOC;
1300		}
1301	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1302		em->block_start = EXTENT_MAP_INLINE;
1303		em->start = extent_start;
1304		em->len = extent_end - extent_start;
1305		/*
1306		 * Initialize orig_start and block_len with the same values
1307		 * as in inode.c:btrfs_get_extent().
1308		 */
1309		em->orig_start = EXTENT_MAP_HOLE;
1310		em->block_len = (u64)-1;
1311		extent_map_set_compression(em, compress_type);
1312	} else {
1313		btrfs_err(fs_info,
1314			  "unknown file extent item type %d, inode %llu, offset %llu, "
1315			  "root %llu", type, btrfs_ino(inode), extent_start,
1316			  root->root_key.objectid);
1317	}
1318}
1319
1320/*
1321 * Returns the end offset (non inclusive) of the file extent item the given path
1322 * points to. If it points to an inline extent, the returned offset is rounded
1323 * up to the sector size.
1324 */
1325u64 btrfs_file_extent_end(const struct btrfs_path *path)
1326{
1327	const struct extent_buffer *leaf = path->nodes[0];
1328	const int slot = path->slots[0];
1329	struct btrfs_file_extent_item *fi;
1330	struct btrfs_key key;
1331	u64 end;
1332
1333	btrfs_item_key_to_cpu(leaf, &key, slot);
1334	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1335	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1336
1337	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1338		end = btrfs_file_extent_ram_bytes(leaf, fi);
1339		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1340	} else {
1341		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1342	}
1343
1344	return end;
1345}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "messages.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "bio.h"
  17#include "compression.h"
  18#include "fs.h"
  19#include "accessors.h"
  20#include "file-item.h"
  21
  22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  23				   sizeof(struct btrfs_item) * 2) / \
  24				  size) - 1))
  25
  26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  27				       PAGE_SIZE))
  28
  29/*
  30 * Set inode's size according to filesystem options.
  31 *
  32 * @inode:      inode we want to update the disk_i_size for
  33 * @new_i_size: i_size we want to set to, 0 if we use i_size
  34 *
  35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  36 * returns as it is perfectly fine with a file that has holes without hole file
  37 * extent items.
  38 *
  39 * However without NO_HOLES we need to only return the area that is contiguous
  40 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  41 * to an extent that has a gap in between.
  42 *
  43 * Finally new_i_size should only be set in the case of truncate where we're not
  44 * ready to use i_size_read() as the limiter yet.
  45 */
  46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  47{
 
  48	u64 start, end, i_size;
  49	int ret;
  50
  51	spin_lock(&inode->lock);
  52	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  53	if (!inode->file_extent_tree) {
  54		inode->disk_i_size = i_size;
  55		goto out_unlock;
  56	}
  57
  58	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
  59					 &end, EXTENT_DIRTY);
  60	if (!ret && start == 0)
  61		i_size = min(i_size, end + 1);
  62	else
  63		i_size = 0;
  64	inode->disk_i_size = i_size;
  65out_unlock:
  66	spin_unlock(&inode->lock);
  67}
  68
  69/*
  70 * Mark range within a file as having a new extent inserted.
  71 *
  72 * @inode: inode being modified
  73 * @start: start file offset of the file extent we've inserted
  74 * @len:   logical length of the file extent item
  75 *
  76 * Call when we are inserting a new file extent where there was none before.
  77 * Does not need to call this in the case where we're replacing an existing file
  78 * extent, however if not sure it's fine to call this multiple times.
  79 *
  80 * The start and len must match the file extent item, so thus must be sectorsize
  81 * aligned.
  82 */
  83int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  84				      u64 len)
  85{
  86	if (!inode->file_extent_tree)
  87		return 0;
  88
  89	if (len == 0)
  90		return 0;
  91
  92	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  93
 
 
  94	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
  95			      EXTENT_DIRTY, NULL);
  96}
  97
  98/*
  99 * Mark an inode range as not having a backing extent.
 100 *
 101 * @inode: inode being modified
 102 * @start: start file offset of the file extent we've inserted
 103 * @len:   logical length of the file extent item
 104 *
 105 * Called when we drop a file extent, for example when we truncate.  Doesn't
 106 * need to be called for cases where we're replacing a file extent, like when
 107 * we've COWed a file extent.
 108 *
 109 * The start and len must match the file extent item, so thus must be sectorsize
 110 * aligned.
 111 */
 112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 113					u64 len)
 114{
 115	if (!inode->file_extent_tree)
 116		return 0;
 117
 118	if (len == 0)
 119		return 0;
 120
 121	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 122	       len == (u64)-1);
 123
 
 
 124	return clear_extent_bit(inode->file_extent_tree, start,
 125				start + len - 1, EXTENT_DIRTY, NULL);
 126}
 127
 128static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 129{
 130	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 131
 132	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 133}
 134
 135static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 136{
 137	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 138
 139	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 140}
 141
 142static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 143{
 144	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 145				       fs_info->csum_size);
 146
 147	return csum_size_to_bytes(fs_info, max_csum_size);
 148}
 149
 150/*
 151 * Calculate the total size needed to allocate for an ordered sum structure
 152 * spanning @bytes in the file.
 153 */
 154static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
 155{
 156	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 157}
 158
 159int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 160			     struct btrfs_root *root,
 161			     u64 objectid, u64 pos, u64 num_bytes)
 162{
 163	int ret = 0;
 164	struct btrfs_file_extent_item *item;
 165	struct btrfs_key file_key;
 166	struct btrfs_path *path;
 167	struct extent_buffer *leaf;
 168
 169	path = btrfs_alloc_path();
 170	if (!path)
 171		return -ENOMEM;
 172	file_key.objectid = objectid;
 173	file_key.offset = pos;
 174	file_key.type = BTRFS_EXTENT_DATA_KEY;
 175
 176	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 177				      sizeof(*item));
 178	if (ret < 0)
 179		goto out;
 180	leaf = path->nodes[0];
 181	item = btrfs_item_ptr(leaf, path->slots[0],
 182			      struct btrfs_file_extent_item);
 183	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 184	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 185	btrfs_set_file_extent_offset(leaf, item, 0);
 186	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 187	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 188	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 189	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 190	btrfs_set_file_extent_compression(leaf, item, 0);
 191	btrfs_set_file_extent_encryption(leaf, item, 0);
 192	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 193
 194	btrfs_mark_buffer_dirty(trans, leaf);
 195out:
 196	btrfs_free_path(path);
 197	return ret;
 198}
 199
 200static struct btrfs_csum_item *
 201btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 202		  struct btrfs_root *root,
 203		  struct btrfs_path *path,
 204		  u64 bytenr, int cow)
 205{
 206	struct btrfs_fs_info *fs_info = root->fs_info;
 207	int ret;
 208	struct btrfs_key file_key;
 209	struct btrfs_key found_key;
 210	struct btrfs_csum_item *item;
 211	struct extent_buffer *leaf;
 212	u64 csum_offset = 0;
 213	const u32 csum_size = fs_info->csum_size;
 214	int csums_in_item;
 215
 216	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 217	file_key.offset = bytenr;
 218	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 219	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 220	if (ret < 0)
 221		goto fail;
 222	leaf = path->nodes[0];
 223	if (ret > 0) {
 224		ret = 1;
 225		if (path->slots[0] == 0)
 226			goto fail;
 227		path->slots[0]--;
 228		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 229		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 230			goto fail;
 231
 232		csum_offset = (bytenr - found_key.offset) >>
 233				fs_info->sectorsize_bits;
 234		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 235		csums_in_item /= csum_size;
 236
 237		if (csum_offset == csums_in_item) {
 238			ret = -EFBIG;
 239			goto fail;
 240		} else if (csum_offset > csums_in_item) {
 241			goto fail;
 242		}
 243	}
 244	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 245	item = (struct btrfs_csum_item *)((unsigned char *)item +
 246					  csum_offset * csum_size);
 247	return item;
 248fail:
 249	if (ret > 0)
 250		ret = -ENOENT;
 251	return ERR_PTR(ret);
 252}
 253
 254int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 255			     struct btrfs_root *root,
 256			     struct btrfs_path *path, u64 objectid,
 257			     u64 offset, int mod)
 258{
 259	struct btrfs_key file_key;
 260	int ins_len = mod < 0 ? -1 : 0;
 261	int cow = mod != 0;
 262
 263	file_key.objectid = objectid;
 264	file_key.offset = offset;
 265	file_key.type = BTRFS_EXTENT_DATA_KEY;
 266
 267	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 268}
 269
 270/*
 271 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 272 * store the result to @dst.
 273 *
 274 * Return >0 for the number of sectors we found.
 275 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 276 * for it. Caller may want to try next sector until one range is hit.
 277 * Return <0 for fatal error.
 278 */
 279static int search_csum_tree(struct btrfs_fs_info *fs_info,
 280			    struct btrfs_path *path, u64 disk_bytenr,
 281			    u64 len, u8 *dst)
 282{
 283	struct btrfs_root *csum_root;
 284	struct btrfs_csum_item *item = NULL;
 285	struct btrfs_key key;
 286	const u32 sectorsize = fs_info->sectorsize;
 287	const u32 csum_size = fs_info->csum_size;
 288	u32 itemsize;
 289	int ret;
 290	u64 csum_start;
 291	u64 csum_len;
 292
 293	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 294	       IS_ALIGNED(len, sectorsize));
 295
 296	/* Check if the current csum item covers disk_bytenr */
 297	if (path->nodes[0]) {
 298		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 299				      struct btrfs_csum_item);
 300		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 301		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 302
 303		csum_start = key.offset;
 304		csum_len = (itemsize / csum_size) * sectorsize;
 305
 306		if (in_range(disk_bytenr, csum_start, csum_len))
 307			goto found;
 308	}
 309
 310	/* Current item doesn't contain the desired range, search again */
 311	btrfs_release_path(path);
 312	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 313	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 314	if (IS_ERR(item)) {
 315		ret = PTR_ERR(item);
 316		goto out;
 317	}
 318	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 319	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 320
 321	csum_start = key.offset;
 322	csum_len = (itemsize / csum_size) * sectorsize;
 323	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 324
 325found:
 326	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 327		   disk_bytenr) >> fs_info->sectorsize_bits;
 328	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 329			ret * csum_size);
 330out:
 331	if (ret == -ENOENT || ret == -EFBIG)
 332		ret = 0;
 333	return ret;
 334}
 335
 336/*
 337 * Lookup the checksum for the read bio in csum tree.
 338 *
 339 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 340 */
 341blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
 342{
 343	struct btrfs_inode *inode = bbio->inode;
 344	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 345	struct bio *bio = &bbio->bio;
 346	struct btrfs_path *path;
 347	const u32 sectorsize = fs_info->sectorsize;
 348	const u32 csum_size = fs_info->csum_size;
 349	u32 orig_len = bio->bi_iter.bi_size;
 350	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 351	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 352	blk_status_t ret = BLK_STS_OK;
 353	u32 bio_offset = 0;
 354
 355	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 356	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
 357		return BLK_STS_OK;
 358
 359	/*
 360	 * This function is only called for read bio.
 361	 *
 362	 * This means two things:
 363	 * - All our csums should only be in csum tree
 364	 *   No ordered extents csums, as ordered extents are only for write
 365	 *   path.
 366	 * - No need to bother any other info from bvec
 367	 *   Since we're looking up csums, the only important info is the
 368	 *   disk_bytenr and the length, which can be extracted from bi_iter
 369	 *   directly.
 370	 */
 371	ASSERT(bio_op(bio) == REQ_OP_READ);
 372	path = btrfs_alloc_path();
 373	if (!path)
 374		return BLK_STS_RESOURCE;
 375
 376	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 377		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 378		if (!bbio->csum) {
 379			btrfs_free_path(path);
 380			return BLK_STS_RESOURCE;
 381		}
 382	} else {
 383		bbio->csum = bbio->csum_inline;
 384	}
 385
 386	/*
 387	 * If requested number of sectors is larger than one leaf can contain,
 388	 * kick the readahead for csum tree.
 389	 */
 390	if (nblocks > fs_info->csums_per_leaf)
 391		path->reada = READA_FORWARD;
 392
 393	/*
 394	 * the free space stuff is only read when it hasn't been
 395	 * updated in the current transaction.  So, we can safely
 396	 * read from the commit root and sidestep a nasty deadlock
 397	 * between reading the free space cache and updating the csum tree.
 398	 */
 399	if (btrfs_is_free_space_inode(inode)) {
 400		path->search_commit_root = 1;
 401		path->skip_locking = 1;
 402	}
 403
 404	while (bio_offset < orig_len) {
 405		int count;
 406		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
 407		u8 *csum_dst = bbio->csum +
 408			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
 409
 410		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 411					 orig_len - bio_offset, csum_dst);
 412		if (count < 0) {
 413			ret = errno_to_blk_status(count);
 414			if (bbio->csum != bbio->csum_inline)
 415				kfree(bbio->csum);
 416			bbio->csum = NULL;
 417			break;
 418		}
 419
 420		/*
 421		 * We didn't find a csum for this range.  We need to make sure
 422		 * we complain loudly about this, because we are not NODATASUM.
 423		 *
 424		 * However for the DATA_RELOC inode we could potentially be
 425		 * relocating data extents for a NODATASUM inode, so the inode
 426		 * itself won't be marked with NODATASUM, but the extent we're
 427		 * copying is in fact NODATASUM.  If we don't find a csum we
 428		 * assume this is the case.
 429		 */
 430		if (count == 0) {
 431			memset(csum_dst, 0, csum_size);
 432			count = 1;
 433
 434			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
 
 435				u64 file_offset = bbio->file_offset + bio_offset;
 436
 437				set_extent_bit(&inode->io_tree, file_offset,
 438					       file_offset + sectorsize - 1,
 439					       EXTENT_NODATASUM, NULL);
 440			} else {
 441				btrfs_warn_rl(fs_info,
 442			"csum hole found for disk bytenr range [%llu, %llu)",
 443				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 444			}
 445		}
 446		bio_offset += count * sectorsize;
 447	}
 448
 449	btrfs_free_path(path);
 450	return ret;
 451}
 452
 453/*
 454 * Search for checksums for a given logical range.
 455 *
 456 * @root:		The root where to look for checksums.
 457 * @start:		Logical address of target checksum range.
 458 * @end:		End offset (inclusive) of the target checksum range.
 459 * @list:		List for adding each checksum that was found.
 460 *			Can be NULL in case the caller only wants to check if
 461 *			there any checksums for the range.
 462 * @nowait:		Indicate if the search must be non-blocking or not.
 463 *
 464 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
 465 * found.
 466 */
 467int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 468			    struct list_head *list, bool nowait)
 
 469{
 470	struct btrfs_fs_info *fs_info = root->fs_info;
 471	struct btrfs_key key;
 472	struct btrfs_path *path;
 473	struct extent_buffer *leaf;
 474	struct btrfs_ordered_sum *sums;
 475	struct btrfs_csum_item *item;
 
 476	int ret;
 477	bool found_csums = false;
 478
 479	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 480	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 481
 482	path = btrfs_alloc_path();
 483	if (!path)
 484		return -ENOMEM;
 485
 486	path->nowait = nowait;
 
 
 
 
 
 487
 488	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 489	key.offset = start;
 490	key.type = BTRFS_EXTENT_CSUM_KEY;
 491
 492	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 493	if (ret < 0)
 494		goto out;
 495	if (ret > 0 && path->slots[0] > 0) {
 496		leaf = path->nodes[0];
 497		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 498
 499		/*
 500		 * There are two cases we can hit here for the previous csum
 501		 * item:
 502		 *
 503		 *		|<- search range ->|
 504		 *	|<- csum item ->|
 505		 *
 506		 * Or
 507		 *				|<- search range ->|
 508		 *	|<- csum item ->|
 509		 *
 510		 * Check if the previous csum item covers the leading part of
 511		 * the search range.  If so we have to start from previous csum
 512		 * item.
 513		 */
 514		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 515		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 516			if (bytes_to_csum_size(fs_info, start - key.offset) <
 517			    btrfs_item_size(leaf, path->slots[0] - 1))
 518				path->slots[0]--;
 519		}
 520	}
 521
 522	while (start <= end) {
 523		u64 csum_end;
 524
 525		leaf = path->nodes[0];
 526		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 527			ret = btrfs_next_leaf(root, path);
 528			if (ret < 0)
 529				goto out;
 530			if (ret > 0)
 531				break;
 532			leaf = path->nodes[0];
 533		}
 534
 535		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 536		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 537		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 538		    key.offset > end)
 539			break;
 540
 541		if (key.offset > start)
 542			start = key.offset;
 543
 544		csum_end = key.offset + csum_size_to_bytes(fs_info,
 545					btrfs_item_size(leaf, path->slots[0]));
 546		if (csum_end <= start) {
 547			path->slots[0]++;
 548			continue;
 549		}
 550
 551		found_csums = true;
 552		if (!list)
 553			goto out;
 554
 555		csum_end = min(csum_end, end + 1);
 556		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 557				      struct btrfs_csum_item);
 558		while (start < csum_end) {
 559			unsigned long offset;
 560			size_t size;
 561
 562			size = min_t(size_t, csum_end - start,
 563				     max_ordered_sum_bytes(fs_info));
 564			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 565				       GFP_NOFS);
 566			if (!sums) {
 567				ret = -ENOMEM;
 568				goto out;
 569			}
 570
 571			sums->logical = start;
 572			sums->len = size;
 573
 574			offset = bytes_to_csum_size(fs_info, start - key.offset);
 575
 576			read_extent_buffer(path->nodes[0],
 577					   sums->sums,
 578					   ((unsigned long)item) + offset,
 579					   bytes_to_csum_size(fs_info, size));
 580
 581			start += size;
 582			list_add_tail(&sums->list, list);
 583		}
 584		path->slots[0]++;
 585	}
 586out:
 587	btrfs_free_path(path);
 588	if (ret < 0) {
 589		if (list) {
 590			struct btrfs_ordered_sum *tmp_sums;
 591
 592			list_for_each_entry_safe(sums, tmp_sums, list, list)
 593				kfree(sums);
 594		}
 595
 596		return ret;
 597	}
 
 598
 599	return found_csums ? 1 : 0;
 
 600}
 601
 602/*
 603 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 604 * we return the result.
 605 *
 606 * This version will set the corresponding bits in @csum_bitmap to represent
 607 * that there is a csum found.
 608 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 609 * in is large enough to contain all csums.
 610 */
 611int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
 612			      u64 start, u64 end, u8 *csum_buf,
 613			      unsigned long *csum_bitmap)
 614{
 615	struct btrfs_fs_info *fs_info = root->fs_info;
 616	struct btrfs_key key;
 617	struct extent_buffer *leaf;
 618	struct btrfs_csum_item *item;
 619	const u64 orig_start = start;
 620	bool free_path = false;
 621	int ret;
 622
 623	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 624	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 625
 626	if (!path) {
 627		path = btrfs_alloc_path();
 628		if (!path)
 629			return -ENOMEM;
 630		free_path = true;
 631	}
 632
 633	/* Check if we can reuse the previous path. */
 634	if (path->nodes[0]) {
 635		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 636
 637		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 638		    key.type == BTRFS_EXTENT_CSUM_KEY &&
 639		    key.offset <= start)
 640			goto search_forward;
 641		btrfs_release_path(path);
 642	}
 643
 644	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 645	key.type = BTRFS_EXTENT_CSUM_KEY;
 646	key.offset = start;
 647
 648	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 649	if (ret < 0)
 650		goto fail;
 651	if (ret > 0 && path->slots[0] > 0) {
 652		leaf = path->nodes[0];
 653		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 654
 655		/*
 656		 * There are two cases we can hit here for the previous csum
 657		 * item:
 658		 *
 659		 *		|<- search range ->|
 660		 *	|<- csum item ->|
 661		 *
 662		 * Or
 663		 *				|<- search range ->|
 664		 *	|<- csum item ->|
 665		 *
 666		 * Check if the previous csum item covers the leading part of
 667		 * the search range.  If so we have to start from previous csum
 668		 * item.
 669		 */
 670		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 671		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 672			if (bytes_to_csum_size(fs_info, start - key.offset) <
 673			    btrfs_item_size(leaf, path->slots[0] - 1))
 674				path->slots[0]--;
 675		}
 676	}
 677
 678search_forward:
 679	while (start <= end) {
 680		u64 csum_end;
 681
 682		leaf = path->nodes[0];
 683		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 684			ret = btrfs_next_leaf(root, path);
 685			if (ret < 0)
 686				goto fail;
 687			if (ret > 0)
 688				break;
 689			leaf = path->nodes[0];
 690		}
 691
 692		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 693		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 694		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 695		    key.offset > end)
 696			break;
 697
 698		if (key.offset > start)
 699			start = key.offset;
 700
 701		csum_end = key.offset + csum_size_to_bytes(fs_info,
 702					btrfs_item_size(leaf, path->slots[0]));
 703		if (csum_end <= start) {
 704			path->slots[0]++;
 705			continue;
 706		}
 707
 708		csum_end = min(csum_end, end + 1);
 709		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 710				      struct btrfs_csum_item);
 711		while (start < csum_end) {
 712			unsigned long offset;
 713			size_t size;
 714			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 715						start - orig_start);
 716
 717			size = min_t(size_t, csum_end - start, end + 1 - start);
 718
 719			offset = bytes_to_csum_size(fs_info, start - key.offset);
 720
 721			read_extent_buffer(path->nodes[0], csum_dest,
 722					   ((unsigned long)item) + offset,
 723					   bytes_to_csum_size(fs_info, size));
 724
 725			bitmap_set(csum_bitmap,
 726				(start - orig_start) >> fs_info->sectorsize_bits,
 727				size >> fs_info->sectorsize_bits);
 728
 729			start += size;
 730		}
 731		path->slots[0]++;
 732	}
 733	ret = 0;
 734fail:
 735	if (free_path)
 736		btrfs_free_path(path);
 737	return ret;
 738}
 739
 740/*
 741 * Calculate checksums of the data contained inside a bio.
 742 */
 743blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
 744{
 745	struct btrfs_ordered_extent *ordered = bbio->ordered;
 746	struct btrfs_inode *inode = bbio->inode;
 747	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 748	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 749	struct bio *bio = &bbio->bio;
 750	struct btrfs_ordered_sum *sums;
 751	char *data;
 752	struct bvec_iter iter;
 753	struct bio_vec bvec;
 754	int index;
 755	unsigned int blockcount;
 756	int i;
 757	unsigned nofs_flag;
 758
 759	nofs_flag = memalloc_nofs_save();
 760	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 761		       GFP_KERNEL);
 762	memalloc_nofs_restore(nofs_flag);
 763
 764	if (!sums)
 765		return BLK_STS_RESOURCE;
 766
 767	sums->len = bio->bi_iter.bi_size;
 768	INIT_LIST_HEAD(&sums->list);
 769
 770	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 771	index = 0;
 772
 773	shash->tfm = fs_info->csum_shash;
 774
 775	bio_for_each_segment(bvec, bio, iter) {
 776		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 777						 bvec.bv_len + fs_info->sectorsize
 778						 - 1);
 779
 780		for (i = 0; i < blockcount; i++) {
 781			data = bvec_kmap_local(&bvec);
 782			crypto_shash_digest(shash,
 783					    data + (i * fs_info->sectorsize),
 784					    fs_info->sectorsize,
 785					    sums->sums + index);
 786			kunmap_local(data);
 787			index += fs_info->csum_size;
 788		}
 789
 790	}
 791
 792	bbio->sums = sums;
 793	btrfs_add_ordered_sum(ordered, sums);
 794	return 0;
 795}
 796
 797/*
 798 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 799 * record the updated logical address on Zone Append completion.
 800 * Allocate just the structure with an empty sums array here for that case.
 801 */
 802blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
 803{
 804	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
 805	if (!bbio->sums)
 806		return BLK_STS_RESOURCE;
 807	bbio->sums->len = bbio->bio.bi_iter.bi_size;
 808	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 809	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
 810	return 0;
 811}
 812
 813/*
 814 * Remove one checksum overlapping a range.
 815 *
 816 * This expects the key to describe the csum pointed to by the path, and it
 817 * expects the csum to overlap the range [bytenr, len]
 818 *
 819 * The csum should not be entirely contained in the range and the range should
 820 * not be entirely contained in the csum.
 821 *
 822 * This calls btrfs_truncate_item with the correct args based on the overlap,
 823 * and fixes up the key as required.
 824 */
 825static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
 826				       struct btrfs_path *path,
 827				       struct btrfs_key *key,
 828				       u64 bytenr, u64 len)
 829{
 830	struct btrfs_fs_info *fs_info = trans->fs_info;
 831	struct extent_buffer *leaf;
 832	const u32 csum_size = fs_info->csum_size;
 833	u64 csum_end;
 834	u64 end_byte = bytenr + len;
 835	u32 blocksize_bits = fs_info->sectorsize_bits;
 836
 837	leaf = path->nodes[0];
 838	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 839	csum_end <<= blocksize_bits;
 840	csum_end += key->offset;
 841
 842	if (key->offset < bytenr && csum_end <= end_byte) {
 843		/*
 844		 *         [ bytenr - len ]
 845		 *         [   ]
 846		 *   [csum     ]
 847		 *   A simple truncate off the end of the item
 848		 */
 849		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 850		new_size *= csum_size;
 851		btrfs_truncate_item(trans, path, new_size, 1);
 852	} else if (key->offset >= bytenr && csum_end > end_byte &&
 853		   end_byte > key->offset) {
 854		/*
 855		 *         [ bytenr - len ]
 856		 *                 [ ]
 857		 *                 [csum     ]
 858		 * we need to truncate from the beginning of the csum
 859		 */
 860		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 861		new_size *= csum_size;
 862
 863		btrfs_truncate_item(trans, path, new_size, 0);
 864
 865		key->offset = end_byte;
 866		btrfs_set_item_key_safe(trans, path, key);
 867	} else {
 868		BUG();
 869	}
 870}
 871
 872/*
 873 * Delete the csum items from the csum tree for a given range of bytes.
 874 */
 875int btrfs_del_csums(struct btrfs_trans_handle *trans,
 876		    struct btrfs_root *root, u64 bytenr, u64 len)
 877{
 878	struct btrfs_fs_info *fs_info = trans->fs_info;
 879	struct btrfs_path *path;
 880	struct btrfs_key key;
 881	u64 end_byte = bytenr + len;
 882	u64 csum_end;
 883	struct extent_buffer *leaf;
 884	int ret = 0;
 885	const u32 csum_size = fs_info->csum_size;
 886	u32 blocksize_bits = fs_info->sectorsize_bits;
 887
 888	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
 889	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
 890
 891	path = btrfs_alloc_path();
 892	if (!path)
 893		return -ENOMEM;
 894
 895	while (1) {
 896		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 897		key.offset = end_byte - 1;
 898		key.type = BTRFS_EXTENT_CSUM_KEY;
 899
 900		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 901		if (ret > 0) {
 902			ret = 0;
 903			if (path->slots[0] == 0)
 904				break;
 905			path->slots[0]--;
 906		} else if (ret < 0) {
 907			break;
 908		}
 909
 910		leaf = path->nodes[0];
 911		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 912
 913		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 914		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 915			break;
 916		}
 917
 918		if (key.offset >= end_byte)
 919			break;
 920
 921		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 922		csum_end <<= blocksize_bits;
 923		csum_end += key.offset;
 924
 925		/* this csum ends before we start, we're done */
 926		if (csum_end <= bytenr)
 927			break;
 928
 929		/* delete the entire item, it is inside our range */
 930		if (key.offset >= bytenr && csum_end <= end_byte) {
 931			int del_nr = 1;
 932
 933			/*
 934			 * Check how many csum items preceding this one in this
 935			 * leaf correspond to our range and then delete them all
 936			 * at once.
 937			 */
 938			if (key.offset > bytenr && path->slots[0] > 0) {
 939				int slot = path->slots[0] - 1;
 940
 941				while (slot >= 0) {
 942					struct btrfs_key pk;
 943
 944					btrfs_item_key_to_cpu(leaf, &pk, slot);
 945					if (pk.offset < bytenr ||
 946					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 947					    pk.objectid !=
 948					    BTRFS_EXTENT_CSUM_OBJECTID)
 949						break;
 950					path->slots[0] = slot;
 951					del_nr++;
 952					key.offset = pk.offset;
 953					slot--;
 954				}
 955			}
 956			ret = btrfs_del_items(trans, root, path,
 957					      path->slots[0], del_nr);
 958			if (ret)
 959				break;
 960			if (key.offset == bytenr)
 961				break;
 962		} else if (key.offset < bytenr && csum_end > end_byte) {
 963			unsigned long offset;
 964			unsigned long shift_len;
 965			unsigned long item_offset;
 966			/*
 967			 *        [ bytenr - len ]
 968			 *     [csum                ]
 969			 *
 970			 * Our bytes are in the middle of the csum,
 971			 * we need to split this item and insert a new one.
 972			 *
 973			 * But we can't drop the path because the
 974			 * csum could change, get removed, extended etc.
 975			 *
 976			 * The trick here is the max size of a csum item leaves
 977			 * enough room in the tree block for a single
 978			 * item header.  So, we split the item in place,
 979			 * adding a new header pointing to the existing
 980			 * bytes.  Then we loop around again and we have
 981			 * a nicely formed csum item that we can neatly
 982			 * truncate.
 983			 */
 984			offset = (bytenr - key.offset) >> blocksize_bits;
 985			offset *= csum_size;
 986
 987			shift_len = (len >> blocksize_bits) * csum_size;
 988
 989			item_offset = btrfs_item_ptr_offset(leaf,
 990							    path->slots[0]);
 991
 992			memzero_extent_buffer(leaf, item_offset + offset,
 993					     shift_len);
 994			key.offset = bytenr;
 995
 996			/*
 997			 * btrfs_split_item returns -EAGAIN when the
 998			 * item changed size or key
 999			 */
1000			ret = btrfs_split_item(trans, root, path, &key, offset);
1001			if (ret && ret != -EAGAIN) {
1002				btrfs_abort_transaction(trans, ret);
1003				break;
1004			}
1005			ret = 0;
1006
1007			key.offset = end_byte - 1;
1008		} else {
1009			truncate_one_csum(trans, path, &key, bytenr, len);
1010			if (key.offset < bytenr)
1011				break;
1012		}
1013		btrfs_release_path(path);
1014	}
1015	btrfs_free_path(path);
1016	return ret;
1017}
1018
1019static int find_next_csum_offset(struct btrfs_root *root,
1020				 struct btrfs_path *path,
1021				 u64 *next_offset)
1022{
1023	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1024	struct btrfs_key found_key;
1025	int slot = path->slots[0] + 1;
1026	int ret;
1027
1028	if (nritems == 0 || slot >= nritems) {
1029		ret = btrfs_next_leaf(root, path);
1030		if (ret < 0) {
1031			return ret;
1032		} else if (ret > 0) {
1033			*next_offset = (u64)-1;
1034			return 0;
1035		}
1036		slot = path->slots[0];
1037	}
1038
1039	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1040
1041	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1042	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1043		*next_offset = (u64)-1;
1044	else
1045		*next_offset = found_key.offset;
1046
1047	return 0;
1048}
1049
1050int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051			   struct btrfs_root *root,
1052			   struct btrfs_ordered_sum *sums)
1053{
1054	struct btrfs_fs_info *fs_info = root->fs_info;
1055	struct btrfs_key file_key;
1056	struct btrfs_key found_key;
1057	struct btrfs_path *path;
1058	struct btrfs_csum_item *item;
1059	struct btrfs_csum_item *item_end;
1060	struct extent_buffer *leaf = NULL;
1061	u64 next_offset;
1062	u64 total_bytes = 0;
1063	u64 csum_offset;
1064	u64 bytenr;
1065	u32 ins_size;
1066	int index = 0;
1067	int found_next;
1068	int ret;
1069	const u32 csum_size = fs_info->csum_size;
1070
1071	path = btrfs_alloc_path();
1072	if (!path)
1073		return -ENOMEM;
1074again:
1075	next_offset = (u64)-1;
1076	found_next = 0;
1077	bytenr = sums->logical + total_bytes;
1078	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079	file_key.offset = bytenr;
1080	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081
1082	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083	if (!IS_ERR(item)) {
1084		ret = 0;
1085		leaf = path->nodes[0];
1086		item_end = btrfs_item_ptr(leaf, path->slots[0],
1087					  struct btrfs_csum_item);
1088		item_end = (struct btrfs_csum_item *)((char *)item_end +
1089			   btrfs_item_size(leaf, path->slots[0]));
1090		goto found;
1091	}
1092	ret = PTR_ERR(item);
1093	if (ret != -EFBIG && ret != -ENOENT)
1094		goto out;
1095
1096	if (ret == -EFBIG) {
1097		u32 item_size;
1098		/* we found one, but it isn't big enough yet */
1099		leaf = path->nodes[0];
1100		item_size = btrfs_item_size(leaf, path->slots[0]);
1101		if ((item_size / csum_size) >=
1102		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103			/* already at max size, make a new one */
1104			goto insert;
1105		}
1106	} else {
1107		/* We didn't find a csum item, insert one. */
1108		ret = find_next_csum_offset(root, path, &next_offset);
1109		if (ret < 0)
1110			goto out;
1111		found_next = 1;
1112		goto insert;
1113	}
1114
1115	/*
1116	 * At this point, we know the tree has a checksum item that ends at an
1117	 * offset matching the start of the checksum range we want to insert.
1118	 * We try to extend that item as much as possible and then add as many
1119	 * checksums to it as they fit.
1120	 *
1121	 * First check if the leaf has enough free space for at least one
1122	 * checksum. If it has go directly to the item extension code, otherwise
1123	 * release the path and do a search for insertion before the extension.
1124	 */
1125	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1126		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1127		csum_offset = (bytenr - found_key.offset) >>
1128			fs_info->sectorsize_bits;
1129		goto extend_csum;
1130	}
1131
1132	btrfs_release_path(path);
1133	path->search_for_extension = 1;
1134	ret = btrfs_search_slot(trans, root, &file_key, path,
1135				csum_size, 1);
1136	path->search_for_extension = 0;
1137	if (ret < 0)
1138		goto out;
1139
1140	if (ret > 0) {
1141		if (path->slots[0] == 0)
1142			goto insert;
1143		path->slots[0]--;
1144	}
1145
1146	leaf = path->nodes[0];
1147	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149
1150	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153		goto insert;
1154	}
1155
1156extend_csum:
1157	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158	    csum_size) {
1159		int extend_nr;
1160		u64 tmp;
1161		u32 diff;
1162
1163		tmp = sums->len - total_bytes;
1164		tmp >>= fs_info->sectorsize_bits;
1165		WARN_ON(tmp < 1);
1166		extend_nr = max_t(int, 1, tmp);
1167
1168		/*
1169		 * A log tree can already have checksum items with a subset of
1170		 * the checksums we are trying to log. This can happen after
1171		 * doing a sequence of partial writes into prealloc extents and
1172		 * fsyncs in between, with a full fsync logging a larger subrange
1173		 * of an extent for which a previous fast fsync logged a smaller
1174		 * subrange. And this happens in particular due to merging file
1175		 * extent items when we complete an ordered extent for a range
1176		 * covered by a prealloc extent - this is done at
1177		 * btrfs_mark_extent_written().
1178		 *
1179		 * So if we try to extend the previous checksum item, which has
1180		 * a range that ends at the start of the range we want to insert,
1181		 * make sure we don't extend beyond the start offset of the next
1182		 * checksum item. If we are at the last item in the leaf, then
1183		 * forget the optimization of extending and add a new checksum
1184		 * item - it is not worth the complexity of releasing the path,
1185		 * getting the first key for the next leaf, repeat the btree
1186		 * search, etc, because log trees are temporary anyway and it
1187		 * would only save a few bytes of leaf space.
1188		 */
1189		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190			if (path->slots[0] + 1 >=
1191			    btrfs_header_nritems(path->nodes[0])) {
1192				ret = find_next_csum_offset(root, path, &next_offset);
1193				if (ret < 0)
1194					goto out;
1195				found_next = 1;
1196				goto insert;
1197			}
1198
1199			ret = find_next_csum_offset(root, path, &next_offset);
1200			if (ret < 0)
1201				goto out;
1202
1203			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1204			if (tmp <= INT_MAX)
1205				extend_nr = min_t(int, extend_nr, tmp);
1206		}
1207
1208		diff = (csum_offset + extend_nr) * csum_size;
1209		diff = min(diff,
1210			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211
1212		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214		diff /= csum_size;
1215		diff *= csum_size;
1216
1217		btrfs_extend_item(trans, path, diff);
1218		ret = 0;
1219		goto csum;
1220	}
1221
1222insert:
1223	btrfs_release_path(path);
1224	csum_offset = 0;
1225	if (found_next) {
1226		u64 tmp;
1227
1228		tmp = sums->len - total_bytes;
1229		tmp >>= fs_info->sectorsize_bits;
1230		tmp = min(tmp, (next_offset - file_key.offset) >>
1231					 fs_info->sectorsize_bits);
1232
1233		tmp = max_t(u64, 1, tmp);
1234		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235		ins_size = csum_size * tmp;
1236	} else {
1237		ins_size = csum_size;
1238	}
1239	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240				      ins_size);
1241	if (ret < 0)
1242		goto out;
1243	leaf = path->nodes[0];
1244csum:
1245	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247				      btrfs_item_size(leaf, path->slots[0]));
1248	item = (struct btrfs_csum_item *)((unsigned char *)item +
1249					  csum_offset * csum_size);
1250found:
1251	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252	ins_size *= csum_size;
1253	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1254			      ins_size);
1255	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1256			    ins_size);
1257
1258	index += ins_size;
1259	ins_size /= csum_size;
1260	total_bytes += ins_size * fs_info->sectorsize;
1261
1262	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263	if (total_bytes < sums->len) {
1264		btrfs_release_path(path);
1265		cond_resched();
1266		goto again;
1267	}
1268out:
1269	btrfs_free_path(path);
1270	return ret;
1271}
1272
1273void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274				     const struct btrfs_path *path,
1275				     const struct btrfs_file_extent_item *fi,
1276				     struct extent_map *em)
1277{
1278	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279	struct btrfs_root *root = inode->root;
1280	struct extent_buffer *leaf = path->nodes[0];
1281	const int slot = path->slots[0];
1282	struct btrfs_key key;
1283	u64 extent_start;
 
1284	u8 type = btrfs_file_extent_type(leaf, fi);
1285	int compress_type = btrfs_file_extent_compression(leaf, fi);
1286
1287	btrfs_item_key_to_cpu(leaf, &key, slot);
1288	extent_start = key.offset;
 
1289	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290	em->generation = btrfs_file_extent_generation(leaf, fi);
1291	if (type == BTRFS_FILE_EXTENT_REG ||
1292	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1293		const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1294
1295		em->start = extent_start;
1296		em->len = btrfs_file_extent_end(path) - extent_start;
1297		if (disk_bytenr == 0) {
1298			em->disk_bytenr = EXTENT_MAP_HOLE;
1299			em->disk_num_bytes = 0;
1300			em->offset = 0;
 
 
1301			return;
1302		}
1303		em->disk_bytenr = disk_bytenr;
1304		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1305		em->offset = btrfs_file_extent_offset(leaf, fi);
1306		if (compress_type != BTRFS_COMPRESS_NONE) {
1307			extent_map_set_compression(em, compress_type);
 
 
1308		} else {
1309			/*
1310			 * Older kernels can create regular non-hole data
1311			 * extents with ram_bytes smaller than disk_num_bytes.
1312			 * Not a big deal, just always use disk_num_bytes
1313			 * for ram_bytes.
1314			 */
1315			em->ram_bytes = em->disk_num_bytes;
1316			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1317				em->flags |= EXTENT_FLAG_PREALLOC;
1318		}
1319	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1320		/* Tree-checker has ensured this. */
1321		ASSERT(extent_start == 0);
1322
1323		em->disk_bytenr = EXTENT_MAP_INLINE;
1324		em->start = 0;
1325		em->len = fs_info->sectorsize;
1326		em->offset = 0;
 
 
1327		extent_map_set_compression(em, compress_type);
1328	} else {
1329		btrfs_err(fs_info,
1330			  "unknown file extent item type %d, inode %llu, offset %llu, "
1331			  "root %llu", type, btrfs_ino(inode), extent_start,
1332			  btrfs_root_id(root));
1333	}
1334}
1335
1336/*
1337 * Returns the end offset (non inclusive) of the file extent item the given path
1338 * points to. If it points to an inline extent, the returned offset is rounded
1339 * up to the sector size.
1340 */
1341u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342{
1343	const struct extent_buffer *leaf = path->nodes[0];
1344	const int slot = path->slots[0];
1345	struct btrfs_file_extent_item *fi;
1346	struct btrfs_key key;
1347	u64 end;
1348
1349	btrfs_item_key_to_cpu(leaf, &key, slot);
1350	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352
1353	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354		end = leaf->fs_info->sectorsize;
1355	else
 
1356		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 
1357
1358	return end;
1359}