Linux Audio

Check our new training course

Loading...
v6.9.4
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "sdma0/sdma0_4_1_default.h"
  50
  51#include "soc15_common.h"
  52#include "soc15.h"
  53#include "vega10_sdma_pkt_open.h"
  54
  55#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  56#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  57
  58#include "amdgpu_ras.h"
  59#include "sdma_v4_4.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
  73MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
  74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  76#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  77
  78#define WREG32_SDMA(instance, offset, value) \
  79	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  80#define RREG32_SDMA(instance, offset) \
  81	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  82
  83static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  85static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  86static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  87static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
  88
  89static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 100	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 101	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 102	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 112	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 113	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 114	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 115};
 116
 117static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 118	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 119	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 120	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 121	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 122	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 123	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 124	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 125};
 126
 127static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 128	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 129	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 130	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 131	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 132	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 133	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 134	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 135};
 136
 137static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 142	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 143	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 144	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 146	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 147	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 148	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 149};
 150
 151static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 152	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 153};
 154
 155static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 156{
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 176	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 177	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 178	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 179	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 180	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 181	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 182	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 183	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 184};
 185
 186static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 205	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 206	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 207	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 208	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 209	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 210	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 211	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 212	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 213	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 214};
 215
 216static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 217{
 218	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 219	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 220};
 221
 222static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 223{
 224	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 225	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 226};
 227
 228static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 229{
 230	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 231	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 232	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 233	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 234	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 235	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 236	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 237	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 238	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 239	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 240	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 241	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 242	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 243	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 244	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 245	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 246	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 247	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 248	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 249	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 250	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 251	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 252	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 253	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 254	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 255	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 256	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 257	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 258	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 259	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 260	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 261	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
 262};
 263
 264static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
 265	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 266	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 267	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 268	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 269	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 270	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 271	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 272	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 273	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 274	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 275	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 276	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 277	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 278	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 279	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 280};
 281
 282static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 283	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 284	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 285	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 286	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 287	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 288	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 289	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 290	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 291	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 292	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
 293};
 294
 295static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
 296	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 297	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
 298	0, 0,
 299	},
 300	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 301	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
 302	0, 0,
 303	},
 304	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 305	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
 306	0, 0,
 307	},
 308	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 309	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
 310	0, 0,
 311	},
 312	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 313	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
 314	0, 0,
 315	},
 316	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 317	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
 318	0, 0,
 319	},
 320	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 321	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
 322	0, 0,
 323	},
 324	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 325	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
 326	0, 0,
 327	},
 328	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 329	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
 330	0, 0,
 331	},
 332	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 333	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
 334	0, 0,
 335	},
 336	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 337	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
 338	0, 0,
 339	},
 340	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 341	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
 342	0, 0,
 343	},
 344	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 345	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
 346	0, 0,
 347	},
 348	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 349	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
 350	0, 0,
 351	},
 352	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 353	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
 354	0, 0,
 355	},
 356	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 357	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
 358	0, 0,
 359	},
 360	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 361	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
 362	0, 0,
 363	},
 364	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 365	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
 366	0, 0,
 367	},
 368	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 369	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
 370	0, 0,
 371	},
 372	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 373	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
 374	0, 0,
 375	},
 376	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 377	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
 378	0, 0,
 379	},
 380	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 381	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
 382	0, 0,
 383	},
 384	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 385	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
 386	0, 0,
 387	},
 388	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 389	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
 390	0, 0,
 391	},
 392};
 393
 394static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 395		u32 instance, u32 offset)
 396{
 397	switch (instance) {
 398	case 0:
 399		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 400	case 1:
 401		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 402	case 2:
 403		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 404	case 3:
 405		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 406	case 4:
 407		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 408	case 5:
 409		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 410	case 6:
 411		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 412	case 7:
 413		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 414	default:
 415		break;
 416	}
 417	return 0;
 418}
 419
 420static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 421{
 422	switch (seq_num) {
 423	case 0:
 424		return SOC15_IH_CLIENTID_SDMA0;
 425	case 1:
 426		return SOC15_IH_CLIENTID_SDMA1;
 427	case 2:
 428		return SOC15_IH_CLIENTID_SDMA2;
 429	case 3:
 430		return SOC15_IH_CLIENTID_SDMA3;
 431	case 4:
 432		return SOC15_IH_CLIENTID_SDMA4;
 433	case 5:
 434		return SOC15_IH_CLIENTID_SDMA5;
 435	case 6:
 436		return SOC15_IH_CLIENTID_SDMA6;
 437	case 7:
 438		return SOC15_IH_CLIENTID_SDMA7;
 439	default:
 440		break;
 441	}
 442	return -EINVAL;
 443}
 444
 445static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 446{
 447	switch (client_id) {
 448	case SOC15_IH_CLIENTID_SDMA0:
 449		return 0;
 450	case SOC15_IH_CLIENTID_SDMA1:
 451		return 1;
 452	case SOC15_IH_CLIENTID_SDMA2:
 453		return 2;
 454	case SOC15_IH_CLIENTID_SDMA3:
 455		return 3;
 456	case SOC15_IH_CLIENTID_SDMA4:
 457		return 4;
 458	case SOC15_IH_CLIENTID_SDMA5:
 459		return 5;
 460	case SOC15_IH_CLIENTID_SDMA6:
 461		return 6;
 462	case SOC15_IH_CLIENTID_SDMA7:
 463		return 7;
 464	default:
 465		break;
 466	}
 467	return -EINVAL;
 468}
 469
 470static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 471{
 472	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 473	case IP_VERSION(4, 0, 0):
 474		soc15_program_register_sequence(adev,
 475						golden_settings_sdma_4,
 476						ARRAY_SIZE(golden_settings_sdma_4));
 477		soc15_program_register_sequence(adev,
 478						golden_settings_sdma_vg10,
 479						ARRAY_SIZE(golden_settings_sdma_vg10));
 480		break;
 481	case IP_VERSION(4, 0, 1):
 482		soc15_program_register_sequence(adev,
 483						golden_settings_sdma_4,
 484						ARRAY_SIZE(golden_settings_sdma_4));
 485		soc15_program_register_sequence(adev,
 486						golden_settings_sdma_vg12,
 487						ARRAY_SIZE(golden_settings_sdma_vg12));
 488		break;
 489	case IP_VERSION(4, 2, 0):
 490		soc15_program_register_sequence(adev,
 491						golden_settings_sdma0_4_2_init,
 492						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 493		soc15_program_register_sequence(adev,
 494						golden_settings_sdma0_4_2,
 495						ARRAY_SIZE(golden_settings_sdma0_4_2));
 496		soc15_program_register_sequence(adev,
 497						golden_settings_sdma1_4_2,
 498						ARRAY_SIZE(golden_settings_sdma1_4_2));
 499		break;
 500	case IP_VERSION(4, 2, 2):
 501		soc15_program_register_sequence(adev,
 502						golden_settings_sdma_arct,
 503						ARRAY_SIZE(golden_settings_sdma_arct));
 504		break;
 505	case IP_VERSION(4, 4, 0):
 506		soc15_program_register_sequence(adev,
 507						golden_settings_sdma_aldebaran,
 508						ARRAY_SIZE(golden_settings_sdma_aldebaran));
 509		break;
 510	case IP_VERSION(4, 1, 0):
 511	case IP_VERSION(4, 1, 1):
 512		soc15_program_register_sequence(adev,
 513						golden_settings_sdma_4_1,
 514						ARRAY_SIZE(golden_settings_sdma_4_1));
 515		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 516			soc15_program_register_sequence(adev,
 517							golden_settings_sdma_rv2,
 518							ARRAY_SIZE(golden_settings_sdma_rv2));
 519		else
 520			soc15_program_register_sequence(adev,
 521							golden_settings_sdma_rv1,
 522							ARRAY_SIZE(golden_settings_sdma_rv1));
 523		break;
 524	case IP_VERSION(4, 1, 2):
 525		soc15_program_register_sequence(adev,
 526						golden_settings_sdma_4_3,
 527						ARRAY_SIZE(golden_settings_sdma_4_3));
 528		break;
 529	default:
 530		break;
 531	}
 532}
 533
 534static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
 535{
 536	int i;
 537
 538	/*
 539	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
 540	 * Server SKUs take a different hysteresis setting from other SKUs.
 541	 */
 542	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 543	case IP_VERSION(4, 0, 0):
 544		if (adev->pdev->device == 0x6860)
 545			break;
 546		return;
 547	case IP_VERSION(4, 2, 0):
 548		if (adev->pdev->device == 0x66a1)
 549			break;
 550		return;
 551	default:
 552		return;
 553	}
 554
 555	for (i = 0; i < adev->sdma.num_instances; i++) {
 556		uint32_t temp;
 557
 558		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
 559		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
 560		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
 561	}
 562}
 563
 564/**
 565 * sdma_v4_0_init_microcode - load ucode images from disk
 566 *
 567 * @adev: amdgpu_device pointer
 568 *
 569 * Use the firmware interface to load the ucode images into
 570 * the driver (not loaded into hw).
 571 * Returns 0 on success, error on failure.
 572 */
 573
 574// emulation only, won't work on real chip
 575// vega10 real chip need to use PSP to load firmware
 576static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 577{
 578	int ret, i;
 579
 580	for (i = 0; i < adev->sdma.num_instances; i++) {
 581		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 582			    IP_VERSION(4, 2, 2) ||
 583		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 584			    IP_VERSION(4, 4, 0)) {
 585			/* Acturus & Aldebaran will leverage the same FW memory
 586			   for every SDMA instance */
 587			ret = amdgpu_sdma_init_microcode(adev, 0, true);
 588			break;
 589		} else {
 590			ret = amdgpu_sdma_init_microcode(adev, i, false);
 591			if (ret)
 592				return ret;
 593		}
 594	}
 595
 596	return ret;
 597}
 598
 599/**
 600 * sdma_v4_0_ring_get_rptr - get the current read pointer
 601 *
 602 * @ring: amdgpu ring pointer
 603 *
 604 * Get the current rptr from the hardware (VEGA10+).
 605 */
 606static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 607{
 608	u64 *rptr;
 609
 610	/* XXX check if swapping is necessary on BE */
 611	rptr = ((u64 *)ring->rptr_cpu_addr);
 612
 613	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 614	return ((*rptr) >> 2);
 615}
 616
 617/**
 618 * sdma_v4_0_ring_get_wptr - get the current write pointer
 619 *
 620 * @ring: amdgpu ring pointer
 621 *
 622 * Get the current wptr from the hardware (VEGA10+).
 623 */
 624static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 625{
 626	struct amdgpu_device *adev = ring->adev;
 627	u64 wptr;
 628
 629	if (ring->use_doorbell) {
 630		/* XXX check if swapping is necessary on BE */
 631		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 632		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 633	} else {
 634		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 635		wptr = wptr << 32;
 636		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 637		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 638				ring->me, wptr);
 639	}
 640
 641	return wptr >> 2;
 642}
 643
 644/**
 645 * sdma_v4_0_ring_set_wptr - commit the write pointer
 646 *
 647 * @ring: amdgpu ring pointer
 648 *
 649 * Write the wptr back to the hardware (VEGA10+).
 650 */
 651static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 652{
 653	struct amdgpu_device *adev = ring->adev;
 654
 655	DRM_DEBUG("Setting write pointer\n");
 656	if (ring->use_doorbell) {
 657		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 658
 659		DRM_DEBUG("Using doorbell -- "
 660				"wptr_offs == 0x%08x "
 661				"lower_32_bits(ring->wptr << 2) == 0x%08x "
 662				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
 663				ring->wptr_offs,
 664				lower_32_bits(ring->wptr << 2),
 665				upper_32_bits(ring->wptr << 2));
 666		/* XXX check if swapping is necessary on BE */
 667		WRITE_ONCE(*wb, (ring->wptr << 2));
 668		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 669				ring->doorbell_index, ring->wptr << 2);
 670		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 671	} else {
 672		DRM_DEBUG("Not using doorbell -- "
 673				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 674				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 675				ring->me,
 676				lower_32_bits(ring->wptr << 2),
 677				ring->me,
 678				upper_32_bits(ring->wptr << 2));
 679		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 680			    lower_32_bits(ring->wptr << 2));
 681		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 682			    upper_32_bits(ring->wptr << 2));
 683	}
 684}
 685
 686/**
 687 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 688 *
 689 * @ring: amdgpu ring pointer
 690 *
 691 * Get the current wptr from the hardware (VEGA10+).
 692 */
 693static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 694{
 695	struct amdgpu_device *adev = ring->adev;
 696	u64 wptr;
 697
 698	if (ring->use_doorbell) {
 699		/* XXX check if swapping is necessary on BE */
 700		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 701	} else {
 702		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 703		wptr = wptr << 32;
 704		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 705	}
 706
 707	return wptr >> 2;
 708}
 709
 710/**
 711 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
 712 *
 713 * @ring: amdgpu ring pointer
 714 *
 715 * Write the wptr back to the hardware (VEGA10+).
 716 */
 717static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 718{
 719	struct amdgpu_device *adev = ring->adev;
 720
 721	if (ring->use_doorbell) {
 722		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 723
 724		/* XXX check if swapping is necessary on BE */
 725		WRITE_ONCE(*wb, (ring->wptr << 2));
 726		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 727	} else {
 728		uint64_t wptr = ring->wptr << 2;
 729
 730		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 731			    lower_32_bits(wptr));
 732		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 733			    upper_32_bits(wptr));
 734	}
 735}
 736
 737static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 738{
 739	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 740	int i;
 741
 742	for (i = 0; i < count; i++)
 743		if (sdma && sdma->burst_nop && (i == 0))
 744			amdgpu_ring_write(ring, ring->funcs->nop |
 745				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 746		else
 747			amdgpu_ring_write(ring, ring->funcs->nop);
 748}
 749
 750/**
 751 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 752 *
 753 * @ring: amdgpu ring pointer
 754 * @job: job to retrieve vmid from
 755 * @ib: IB object to schedule
 756 * @flags: unused
 757 *
 758 * Schedule an IB in the DMA ring (VEGA10).
 759 */
 760static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 761				   struct amdgpu_job *job,
 762				   struct amdgpu_ib *ib,
 763				   uint32_t flags)
 764{
 765	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 766
 767	/* IB packet must end on a 8 DW boundary */
 768	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
 769
 770	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 771			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 772	/* base must be 32 byte aligned */
 773	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 774	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 775	amdgpu_ring_write(ring, ib->length_dw);
 776	amdgpu_ring_write(ring, 0);
 777	amdgpu_ring_write(ring, 0);
 778
 779}
 780
 781static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 782				   int mem_space, int hdp,
 783				   uint32_t addr0, uint32_t addr1,
 784				   uint32_t ref, uint32_t mask,
 785				   uint32_t inv)
 786{
 787	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 788			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 789			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 790			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 791	if (mem_space) {
 792		/* memory */
 793		amdgpu_ring_write(ring, addr0);
 794		amdgpu_ring_write(ring, addr1);
 795	} else {
 796		/* registers */
 797		amdgpu_ring_write(ring, addr0 << 2);
 798		amdgpu_ring_write(ring, addr1 << 2);
 799	}
 800	amdgpu_ring_write(ring, ref); /* reference */
 801	amdgpu_ring_write(ring, mask); /* mask */
 802	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 803			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 804}
 805
 806/**
 807 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 808 *
 809 * @ring: amdgpu ring pointer
 810 *
 811 * Emit an hdp flush packet on the requested DMA ring.
 812 */
 813static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 814{
 815	struct amdgpu_device *adev = ring->adev;
 816	u32 ref_and_mask = 0;
 817	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
 818
 819	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 820
 821	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 822			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
 823			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
 824			       ref_and_mask, ref_and_mask, 10);
 825}
 826
 827/**
 828 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 829 *
 830 * @ring: amdgpu ring pointer
 831 * @addr: address
 832 * @seq: sequence number
 833 * @flags: fence related flags
 834 *
 835 * Add a DMA fence packet to the ring to write
 836 * the fence seq number and DMA trap packet to generate
 837 * an interrupt if needed (VEGA10).
 838 */
 839static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 840				      unsigned flags)
 841{
 842	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 843	/* write the fence */
 844	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 845	/* zero in first two bits */
 846	BUG_ON(addr & 0x3);
 847	amdgpu_ring_write(ring, lower_32_bits(addr));
 848	amdgpu_ring_write(ring, upper_32_bits(addr));
 849	amdgpu_ring_write(ring, lower_32_bits(seq));
 850
 851	/* optionally write high bits as well */
 852	if (write64bit) {
 853		addr += 4;
 854		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 855		/* zero in first two bits */
 856		BUG_ON(addr & 0x3);
 857		amdgpu_ring_write(ring, lower_32_bits(addr));
 858		amdgpu_ring_write(ring, upper_32_bits(addr));
 859		amdgpu_ring_write(ring, upper_32_bits(seq));
 860	}
 861
 862	/* generate an interrupt */
 863	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 864	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 865}
 866
 867
 868/**
 869 * sdma_v4_0_gfx_enable - enable the gfx async dma engines
 870 *
 871 * @adev: amdgpu_device pointer
 872 * @enable: enable SDMA RB/IB
 873 * control the gfx async dma ring buffers (VEGA10).
 874 */
 875static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
 876{
 877	u32 rb_cntl, ib_cntl;
 878	int i;
 879
 880	for (i = 0; i < adev->sdma.num_instances; i++) {
 881		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 882		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
 883		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 884		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 885		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
 886		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 887	}
 888}
 889
 890/**
 891 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 892 *
 893 * @adev: amdgpu_device pointer
 894 *
 895 * Stop the compute async dma queues (VEGA10).
 896 */
 897static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 898{
 899	/* XXX todo */
 900}
 901
 902/**
 903 * sdma_v4_0_page_stop - stop the page async dma engines
 904 *
 905 * @adev: amdgpu_device pointer
 906 *
 907 * Stop the page async dma ring buffers (VEGA10).
 908 */
 909static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 910{
 911	u32 rb_cntl, ib_cntl;
 912	int i;
 913
 914	for (i = 0; i < adev->sdma.num_instances; i++) {
 915		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
 916		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
 917					RB_ENABLE, 0);
 918		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
 919		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
 920		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
 921					IB_ENABLE, 0);
 922		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 923	}
 924}
 925
 926/**
 927 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
 928 *
 929 * @adev: amdgpu_device pointer
 930 * @enable: enable/disable the DMA MEs context switch.
 931 *
 932 * Halt or unhalt the async dma engines context switch (VEGA10).
 933 */
 934static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 935{
 936	u32 f32_cntl, phase_quantum = 0;
 937	int i;
 938
 939	if (amdgpu_sdma_phase_quantum) {
 940		unsigned value = amdgpu_sdma_phase_quantum;
 941		unsigned unit = 0;
 942
 943		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 944				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 945			value = (value + 1) >> 1;
 946			unit++;
 947		}
 948		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 949			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 950			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 951				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 952			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 953				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
 954			WARN_ONCE(1,
 955			"clamping sdma_phase_quantum to %uK clock cycles\n",
 956				  value << unit);
 957		}
 958		phase_quantum =
 959			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
 960			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
 961	}
 962
 963	for (i = 0; i < adev->sdma.num_instances; i++) {
 964		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
 965		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 966				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
 967		if (enable && amdgpu_sdma_phase_quantum) {
 968			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
 969			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
 970			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
 971		}
 972		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
 973
 974		/*
 975		 * Enable SDMA utilization. Its only supported on
 976		 * Arcturus for the moment and firmware version 14
 977		 * and above.
 978		 */
 979		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 980			    IP_VERSION(4, 2, 2) &&
 981		    adev->sdma.instance[i].fw_version >= 14)
 982			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
 983		/* Extend page fault timeout to avoid interrupt storm */
 984		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
 985	}
 986
 987}
 988
 989/**
 990 * sdma_v4_0_enable - stop the async dma engines
 991 *
 992 * @adev: amdgpu_device pointer
 993 * @enable: enable/disable the DMA MEs.
 994 *
 995 * Halt or unhalt the async dma engines (VEGA10).
 996 */
 997static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
 998{
 999	u32 f32_cntl;
1000	int i;
1001
1002	if (!enable) {
1003		sdma_v4_0_gfx_enable(adev, enable);
1004		sdma_v4_0_rlc_stop(adev);
1005		if (adev->sdma.has_page_queue)
1006			sdma_v4_0_page_stop(adev);
1007	}
1008
1009	for (i = 0; i < adev->sdma.num_instances; i++) {
1010		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1011		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1012		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1013	}
1014}
1015
1016/*
1017 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1018 */
1019static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1020{
1021	/* Set ring buffer size in dwords */
1022	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1023
1024	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1025#ifdef __BIG_ENDIAN
1026	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1027	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1028				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1029#endif
1030	return rb_cntl;
1031}
1032
1033/**
1034 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1035 *
1036 * @adev: amdgpu_device pointer
1037 * @i: instance to resume
1038 *
1039 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1040 * Returns 0 for success, error for failure.
1041 */
1042static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1043{
1044	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1045	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1046	u32 doorbell;
1047	u32 doorbell_offset;
1048	u64 wptr_gpu_addr;
1049
1050	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1051	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1052	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1053
1054	/* Initialize the ring buffer's read and write pointers */
1055	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1056	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1057	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1058	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1059
1060	/* set the wb address whether it's enabled or not */
1061	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1062	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1063	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1064	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1065
1066	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1067				RPTR_WRITEBACK_ENABLE, 1);
1068
1069	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1070	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1071
1072	ring->wptr = 0;
1073
1074	/* before programing wptr to a less value, need set minor_ptr_update first */
1075	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1076
1077	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1078	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1079
1080	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1081				 ring->use_doorbell);
1082	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1083					SDMA0_GFX_DOORBELL_OFFSET,
1084					OFFSET, ring->doorbell_index);
1085	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1086	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1087
1088	sdma_v4_0_ring_set_wptr(ring);
1089
1090	/* set minor_ptr_update to 0 after wptr programed */
1091	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1092
1093	/* setup the wptr shadow polling */
1094	wptr_gpu_addr = ring->wptr_gpu_addr;
1095	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1096		    lower_32_bits(wptr_gpu_addr));
1097	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1098		    upper_32_bits(wptr_gpu_addr));
1099	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1100	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1101				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1102				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1103	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1104
1105	/* enable DMA RB */
1106	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1107	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1108
1109	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1110	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1111#ifdef __BIG_ENDIAN
1112	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1113#endif
1114	/* enable DMA IBs */
1115	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1116}
1117
1118/**
1119 * sdma_v4_0_page_resume - setup and start the async dma engines
1120 *
1121 * @adev: amdgpu_device pointer
1122 * @i: instance to resume
1123 *
1124 * Set up the page DMA ring buffers and enable them (VEGA10).
1125 * Returns 0 for success, error for failure.
1126 */
1127static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1128{
1129	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1130	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1131	u32 doorbell;
1132	u32 doorbell_offset;
1133	u64 wptr_gpu_addr;
1134
1135	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1136	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1137	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1138
1139	/* Initialize the ring buffer's read and write pointers */
1140	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1141	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1142	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1143	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1144
1145	/* set the wb address whether it's enabled or not */
1146	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1147	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1148	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1149	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1150
1151	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1152				RPTR_WRITEBACK_ENABLE, 1);
1153
1154	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1155	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1156
1157	ring->wptr = 0;
1158
1159	/* before programing wptr to a less value, need set minor_ptr_update first */
1160	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1161
1162	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1163	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1164
1165	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1166				 ring->use_doorbell);
1167	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1168					SDMA0_PAGE_DOORBELL_OFFSET,
1169					OFFSET, ring->doorbell_index);
1170	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1171	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1172
1173	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1174	sdma_v4_0_page_ring_set_wptr(ring);
1175
1176	/* set minor_ptr_update to 0 after wptr programed */
1177	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1178
1179	/* setup the wptr shadow polling */
1180	wptr_gpu_addr = ring->wptr_gpu_addr;
1181	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1182		    lower_32_bits(wptr_gpu_addr));
1183	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1184		    upper_32_bits(wptr_gpu_addr));
1185	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1186	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1187				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1188				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1189	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1190
1191	/* enable DMA RB */
1192	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1193	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1194
1195	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1196	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1197#ifdef __BIG_ENDIAN
1198	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1199#endif
1200	/* enable DMA IBs */
1201	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1202}
1203
1204static void
1205sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1206{
1207	uint32_t def, data;
1208
1209	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1210		/* enable idle interrupt */
1211		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1212		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1213
1214		if (data != def)
1215			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1216	} else {
1217		/* disable idle interrupt */
1218		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1219		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1220		if (data != def)
1221			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1222	}
1223}
1224
1225static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1226{
1227	uint32_t def, data;
1228
1229	/* Enable HW based PG. */
1230	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1231	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1232	if (data != def)
1233		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1234
1235	/* enable interrupt */
1236	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1237	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1238	if (data != def)
1239		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1240
1241	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1242	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1243	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1244	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1245	/* Configure switch time for hysteresis purpose. Use default right now */
1246	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1247	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1248	if(data != def)
1249		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1250}
1251
1252static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1253{
1254	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1255		return;
1256
1257	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1258	case IP_VERSION(4, 1, 0):
1259        case IP_VERSION(4, 1, 1):
1260	case IP_VERSION(4, 1, 2):
1261		sdma_v4_1_init_power_gating(adev);
1262		sdma_v4_1_update_power_gating(adev, true);
1263		break;
1264	default:
1265		break;
1266	}
1267}
1268
1269/**
1270 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1271 *
1272 * @adev: amdgpu_device pointer
1273 *
1274 * Set up the compute DMA queues and enable them (VEGA10).
1275 * Returns 0 for success, error for failure.
1276 */
1277static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1278{
1279	sdma_v4_0_init_pg(adev);
1280
1281	return 0;
1282}
1283
1284/**
1285 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1286 *
1287 * @adev: amdgpu_device pointer
1288 *
1289 * Loads the sDMA0/1 ucode.
1290 * Returns 0 for success, -EINVAL if the ucode is not available.
1291 */
1292static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1293{
1294	const struct sdma_firmware_header_v1_0 *hdr;
1295	const __le32 *fw_data;
1296	u32 fw_size;
1297	int i, j;
1298
1299	/* halt the MEs */
1300	sdma_v4_0_enable(adev, false);
1301
1302	for (i = 0; i < adev->sdma.num_instances; i++) {
1303		if (!adev->sdma.instance[i].fw)
1304			return -EINVAL;
1305
1306		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1307		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1308		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1309
1310		fw_data = (const __le32 *)
1311			(adev->sdma.instance[i].fw->data +
1312				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1313
1314		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1315
1316		for (j = 0; j < fw_size; j++)
1317			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1318				    le32_to_cpup(fw_data++));
1319
1320		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1321			    adev->sdma.instance[i].fw_version);
1322	}
1323
1324	return 0;
1325}
1326
1327/**
1328 * sdma_v4_0_start - setup and start the async dma engines
1329 *
1330 * @adev: amdgpu_device pointer
1331 *
1332 * Set up the DMA engines and enable them (VEGA10).
1333 * Returns 0 for success, error for failure.
1334 */
1335static int sdma_v4_0_start(struct amdgpu_device *adev)
1336{
1337	struct amdgpu_ring *ring;
1338	int i, r = 0;
1339
1340	if (amdgpu_sriov_vf(adev)) {
1341		sdma_v4_0_ctx_switch_enable(adev, false);
1342		sdma_v4_0_enable(adev, false);
1343	} else {
1344
1345		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1346			r = sdma_v4_0_load_microcode(adev);
1347			if (r)
1348				return r;
1349		}
1350
1351		/* unhalt the MEs */
1352		sdma_v4_0_enable(adev, true);
1353		/* enable sdma ring preemption */
1354		sdma_v4_0_ctx_switch_enable(adev, true);
1355	}
1356
1357	/* start the gfx rings and rlc compute queues */
1358	for (i = 0; i < adev->sdma.num_instances; i++) {
1359		uint32_t temp;
1360
1361		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1362		sdma_v4_0_gfx_resume(adev, i);
1363		if (adev->sdma.has_page_queue)
1364			sdma_v4_0_page_resume(adev, i);
1365
1366		/* set utc l1 enable flag always to 1 */
1367		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1368		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1369		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1370
1371		if (!amdgpu_sriov_vf(adev)) {
1372			/* unhalt engine */
1373			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1374			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1375			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1376		}
1377	}
1378
1379	if (amdgpu_sriov_vf(adev)) {
1380		sdma_v4_0_ctx_switch_enable(adev, true);
1381		sdma_v4_0_enable(adev, true);
1382	} else {
1383		r = sdma_v4_0_rlc_resume(adev);
1384		if (r)
1385			return r;
1386	}
1387
1388	for (i = 0; i < adev->sdma.num_instances; i++) {
1389		ring = &adev->sdma.instance[i].ring;
1390
1391		r = amdgpu_ring_test_helper(ring);
1392		if (r)
1393			return r;
1394
1395		if (adev->sdma.has_page_queue) {
1396			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1397
1398			r = amdgpu_ring_test_helper(page);
1399			if (r)
1400				return r;
1401		}
1402	}
1403
1404	return r;
1405}
1406
1407/**
1408 * sdma_v4_0_ring_test_ring - simple async dma engine test
1409 *
1410 * @ring: amdgpu_ring structure holding ring information
1411 *
1412 * Test the DMA engine by writing using it to write an
1413 * value to memory. (VEGA10).
1414 * Returns 0 for success, error for failure.
1415 */
1416static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1417{
1418	struct amdgpu_device *adev = ring->adev;
1419	unsigned i;
1420	unsigned index;
1421	int r;
1422	u32 tmp;
1423	u64 gpu_addr;
1424
1425	r = amdgpu_device_wb_get(adev, &index);
1426	if (r)
1427		return r;
1428
1429	gpu_addr = adev->wb.gpu_addr + (index * 4);
1430	tmp = 0xCAFEDEAD;
1431	adev->wb.wb[index] = cpu_to_le32(tmp);
1432
1433	r = amdgpu_ring_alloc(ring, 5);
1434	if (r)
1435		goto error_free_wb;
1436
1437	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1438			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1439	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1440	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1441	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1442	amdgpu_ring_write(ring, 0xDEADBEEF);
1443	amdgpu_ring_commit(ring);
1444
1445	for (i = 0; i < adev->usec_timeout; i++) {
1446		tmp = le32_to_cpu(adev->wb.wb[index]);
1447		if (tmp == 0xDEADBEEF)
1448			break;
1449		udelay(1);
1450	}
1451
1452	if (i >= adev->usec_timeout)
1453		r = -ETIMEDOUT;
1454
1455error_free_wb:
1456	amdgpu_device_wb_free(adev, index);
1457	return r;
1458}
1459
1460/**
1461 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1462 *
1463 * @ring: amdgpu_ring structure holding ring information
1464 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1465 *
1466 * Test a simple IB in the DMA ring (VEGA10).
1467 * Returns 0 on success, error on failure.
1468 */
1469static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1470{
1471	struct amdgpu_device *adev = ring->adev;
1472	struct amdgpu_ib ib;
1473	struct dma_fence *f = NULL;
1474	unsigned index;
1475	long r;
1476	u32 tmp = 0;
1477	u64 gpu_addr;
1478
1479	r = amdgpu_device_wb_get(adev, &index);
1480	if (r)
1481		return r;
1482
1483	gpu_addr = adev->wb.gpu_addr + (index * 4);
1484	tmp = 0xCAFEDEAD;
1485	adev->wb.wb[index] = cpu_to_le32(tmp);
1486	memset(&ib, 0, sizeof(ib));
1487	r = amdgpu_ib_get(adev, NULL, 256,
1488					AMDGPU_IB_POOL_DIRECT, &ib);
1489	if (r)
1490		goto err0;
1491
1492	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1493		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1494	ib.ptr[1] = lower_32_bits(gpu_addr);
1495	ib.ptr[2] = upper_32_bits(gpu_addr);
1496	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1497	ib.ptr[4] = 0xDEADBEEF;
1498	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1499	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1500	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1501	ib.length_dw = 8;
1502
1503	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1504	if (r)
1505		goto err1;
1506
1507	r = dma_fence_wait_timeout(f, false, timeout);
1508	if (r == 0) {
1509		r = -ETIMEDOUT;
1510		goto err1;
1511	} else if (r < 0) {
1512		goto err1;
1513	}
1514	tmp = le32_to_cpu(adev->wb.wb[index]);
1515	if (tmp == 0xDEADBEEF)
1516		r = 0;
1517	else
1518		r = -EINVAL;
1519
1520err1:
1521	amdgpu_ib_free(adev, &ib, NULL);
1522	dma_fence_put(f);
1523err0:
1524	amdgpu_device_wb_free(adev, index);
1525	return r;
1526}
1527
1528
1529/**
1530 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1531 *
1532 * @ib: indirect buffer to fill with commands
1533 * @pe: addr of the page entry
1534 * @src: src addr to copy from
1535 * @count: number of page entries to update
1536 *
1537 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1538 */
1539static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1540				  uint64_t pe, uint64_t src,
1541				  unsigned count)
1542{
1543	unsigned bytes = count * 8;
1544
1545	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1546		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1547	ib->ptr[ib->length_dw++] = bytes - 1;
1548	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1549	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1550	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1551	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1552	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1553
1554}
1555
1556/**
1557 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1558 *
1559 * @ib: indirect buffer to fill with commands
1560 * @pe: addr of the page entry
1561 * @value: dst addr to write into pe
1562 * @count: number of page entries to update
1563 * @incr: increase next addr by incr bytes
1564 *
1565 * Update PTEs by writing them manually using sDMA (VEGA10).
1566 */
1567static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1568				   uint64_t value, unsigned count,
1569				   uint32_t incr)
1570{
1571	unsigned ndw = count * 2;
1572
1573	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1574		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1575	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1576	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1577	ib->ptr[ib->length_dw++] = ndw - 1;
1578	for (; ndw > 0; ndw -= 2) {
1579		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1580		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1581		value += incr;
1582	}
1583}
1584
1585/**
1586 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1587 *
1588 * @ib: indirect buffer to fill with commands
1589 * @pe: addr of the page entry
1590 * @addr: dst addr to write into pe
1591 * @count: number of page entries to update
1592 * @incr: increase next addr by incr bytes
1593 * @flags: access flags
1594 *
1595 * Update the page tables using sDMA (VEGA10).
1596 */
1597static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1598				     uint64_t pe,
1599				     uint64_t addr, unsigned count,
1600				     uint32_t incr, uint64_t flags)
1601{
1602	/* for physically contiguous pages (vram) */
1603	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1604	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1605	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1606	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1607	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1608	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1609	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1610	ib->ptr[ib->length_dw++] = incr; /* increment size */
1611	ib->ptr[ib->length_dw++] = 0;
1612	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1613}
1614
1615/**
1616 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1617 *
1618 * @ring: amdgpu_ring structure holding ring information
1619 * @ib: indirect buffer to fill with padding
1620 */
1621static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1622{
1623	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1624	u32 pad_count;
1625	int i;
1626
1627	pad_count = (-ib->length_dw) & 7;
1628	for (i = 0; i < pad_count; i++)
1629		if (sdma && sdma->burst_nop && (i == 0))
1630			ib->ptr[ib->length_dw++] =
1631				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1632				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1633		else
1634			ib->ptr[ib->length_dw++] =
1635				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1636}
1637
1638
1639/**
1640 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1641 *
1642 * @ring: amdgpu_ring pointer
1643 *
1644 * Make sure all previous operations are completed (CIK).
1645 */
1646static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1647{
1648	uint32_t seq = ring->fence_drv.sync_seq;
1649	uint64_t addr = ring->fence_drv.gpu_addr;
1650
1651	/* wait for idle */
1652	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1653			       addr & 0xfffffffc,
1654			       upper_32_bits(addr) & 0xffffffff,
1655			       seq, 0xffffffff, 4);
1656}
1657
1658
1659/**
1660 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1661 *
1662 * @ring: amdgpu_ring pointer
1663 * @vmid: vmid number to use
1664 * @pd_addr: address
1665 *
1666 * Update the page table base and flush the VM TLB
1667 * using sDMA (VEGA10).
1668 */
1669static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1670					 unsigned vmid, uint64_t pd_addr)
1671{
1672	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1673}
1674
1675static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1676				     uint32_t reg, uint32_t val)
1677{
1678	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1679			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1680	amdgpu_ring_write(ring, reg);
1681	amdgpu_ring_write(ring, val);
1682}
1683
1684static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1685					 uint32_t val, uint32_t mask)
1686{
1687	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1688}
1689
1690static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1691{
1692	uint fw_version = adev->sdma.instance[0].fw_version;
1693
1694	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1695	case IP_VERSION(4, 0, 0):
1696		return fw_version >= 430;
1697	case IP_VERSION(4, 0, 1):
1698		/*return fw_version >= 31;*/
1699		return false;
1700	case IP_VERSION(4, 2, 0):
1701		return fw_version >= 123;
1702	default:
1703		return false;
1704	}
1705}
1706
1707static int sdma_v4_0_early_init(void *handle)
1708{
1709	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1710	int r;
1711
1712	r = sdma_v4_0_init_microcode(adev);
1713	if (r)
1714		return r;
1715
1716	/* TODO: Page queue breaks driver reload under SRIOV */
1717	if ((amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 0, 0)) &&
1718	    amdgpu_sriov_vf((adev)))
1719		adev->sdma.has_page_queue = false;
1720	else if (sdma_v4_0_fw_support_paging_queue(adev))
1721		adev->sdma.has_page_queue = true;
1722
1723	sdma_v4_0_set_ring_funcs(adev);
1724	sdma_v4_0_set_buffer_funcs(adev);
1725	sdma_v4_0_set_vm_pte_funcs(adev);
1726	sdma_v4_0_set_irq_funcs(adev);
1727	sdma_v4_0_set_ras_funcs(adev);
1728
1729	return 0;
1730}
1731
1732static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1733		void *err_data,
1734		struct amdgpu_iv_entry *entry);
1735
1736static int sdma_v4_0_late_init(void *handle)
1737{
1738	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1739
1740	sdma_v4_0_setup_ulv(adev);
1741
1742	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1743		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1744
1745	return 0;
1746}
1747
1748static int sdma_v4_0_sw_init(void *handle)
1749{
1750	struct amdgpu_ring *ring;
1751	int r, i;
1752	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
 
 
1753
1754	/* SDMA trap event */
1755	for (i = 0; i < adev->sdma.num_instances; i++) {
1756		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1757				      SDMA0_4_0__SRCID__SDMA_TRAP,
1758				      &adev->sdma.trap_irq);
1759		if (r)
1760			return r;
1761	}
1762
1763	/* SDMA SRAM ECC event */
1764	for (i = 0; i < adev->sdma.num_instances; i++) {
1765		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1766				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1767				      &adev->sdma.ecc_irq);
1768		if (r)
1769			return r;
1770	}
1771
1772	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1773	for (i = 0; i < adev->sdma.num_instances; i++) {
1774		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1775				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1776				      &adev->sdma.vm_hole_irq);
1777		if (r)
1778			return r;
1779
1780		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1781				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1782				      &adev->sdma.doorbell_invalid_irq);
1783		if (r)
1784			return r;
1785
1786		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1787				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1788				      &adev->sdma.pool_timeout_irq);
1789		if (r)
1790			return r;
1791
1792		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1793				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1794				      &adev->sdma.srbm_write_irq);
1795		if (r)
1796			return r;
1797	}
1798
1799	for (i = 0; i < adev->sdma.num_instances; i++) {
1800		ring = &adev->sdma.instance[i].ring;
1801		ring->ring_obj = NULL;
1802		ring->use_doorbell = true;
1803
1804		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1805				ring->use_doorbell?"true":"false");
1806
1807		/* doorbell size is 2 dwords, get DWORD offset */
1808		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1809
1810		/*
1811		 * On Arcturus, SDMA instance 5~7 has a different vmhub
1812		 * type(AMDGPU_MMHUB1).
1813		 */
1814		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1815			    IP_VERSION(4, 2, 2) &&
1816		    i >= 5)
1817			ring->vm_hub = AMDGPU_MMHUB1(0);
1818		else
1819			ring->vm_hub = AMDGPU_MMHUB0(0);
1820
1821		sprintf(ring->name, "sdma%d", i);
1822		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1823				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1824				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1825		if (r)
1826			return r;
1827
1828		if (adev->sdma.has_page_queue) {
1829			ring = &adev->sdma.instance[i].page;
1830			ring->ring_obj = NULL;
1831			ring->use_doorbell = true;
1832
1833			/* paging queue use same doorbell index/routing as gfx queue
1834			 * with 0x400 (4096 dwords) offset on second doorbell page
1835			 */
1836			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) >=
1837				    IP_VERSION(4, 0, 0) &&
1838			    amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
1839				    IP_VERSION(4, 2, 0)) {
1840				ring->doorbell_index =
1841					adev->doorbell_index.sdma_engine[i] << 1;
1842				ring->doorbell_index += 0x400;
1843			} else {
1844				/* From vega20, the sdma_doorbell_range in 1st
1845				 * doorbell page is reserved for page queue.
1846				 */
1847				ring->doorbell_index =
1848					(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1849			}
1850
1851			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1852				    IP_VERSION(4, 2, 2) &&
1853			    i >= 5)
1854				ring->vm_hub = AMDGPU_MMHUB1(0);
1855			else
1856				ring->vm_hub = AMDGPU_MMHUB0(0);
1857
1858			sprintf(ring->name, "page%d", i);
1859			r = amdgpu_ring_init(adev, ring, 1024,
1860					     &adev->sdma.trap_irq,
1861					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1862					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1863			if (r)
1864				return r;
1865		}
1866	}
1867
1868	if (amdgpu_sdma_ras_sw_init(adev)) {
1869		dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1870		return -EINVAL;
1871	}
1872
 
 
 
 
 
 
 
1873	return r;
1874}
1875
1876static int sdma_v4_0_sw_fini(void *handle)
1877{
1878	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879	int i;
1880
1881	for (i = 0; i < adev->sdma.num_instances; i++) {
1882		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1883		if (adev->sdma.has_page_queue)
1884			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1885	}
1886
1887	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 2, 2) ||
1888	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 0))
1889		amdgpu_sdma_destroy_inst_ctx(adev, true);
1890	else
1891		amdgpu_sdma_destroy_inst_ctx(adev, false);
1892
 
 
1893	return 0;
1894}
1895
1896static int sdma_v4_0_hw_init(void *handle)
1897{
1898	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899
1900	if (adev->flags & AMD_IS_APU)
1901		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1902
1903	if (!amdgpu_sriov_vf(adev))
1904		sdma_v4_0_init_golden_registers(adev);
1905
1906	return sdma_v4_0_start(adev);
1907}
1908
1909static int sdma_v4_0_hw_fini(void *handle)
1910{
1911	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1912	int i;
1913
1914	if (amdgpu_sriov_vf(adev))
1915		return 0;
1916
1917	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1918		for (i = 0; i < adev->sdma.num_instances; i++) {
1919			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1920				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1921		}
1922	}
1923
1924	sdma_v4_0_ctx_switch_enable(adev, false);
1925	sdma_v4_0_enable(adev, false);
1926
1927	if (adev->flags & AMD_IS_APU)
1928		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1929
1930	return 0;
1931}
1932
1933static int sdma_v4_0_suspend(void *handle)
1934{
1935	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1936
1937	/* SMU saves SDMA state for us */
1938	if (adev->in_s0ix) {
1939		sdma_v4_0_gfx_enable(adev, false);
1940		return 0;
1941	}
1942
1943	return sdma_v4_0_hw_fini(adev);
1944}
1945
1946static int sdma_v4_0_resume(void *handle)
1947{
1948	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1949
1950	/* SMU restores SDMA state for us */
1951	if (adev->in_s0ix) {
1952		sdma_v4_0_enable(adev, true);
1953		sdma_v4_0_gfx_enable(adev, true);
1954		return 0;
1955	}
1956
1957	return sdma_v4_0_hw_init(adev);
1958}
1959
1960static bool sdma_v4_0_is_idle(void *handle)
1961{
1962	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1963	u32 i;
1964
1965	for (i = 0; i < adev->sdma.num_instances; i++) {
1966		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1967
1968		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1969			return false;
1970	}
1971
1972	return true;
1973}
1974
1975static int sdma_v4_0_wait_for_idle(void *handle)
1976{
1977	unsigned i, j;
1978	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1979	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1980
1981	for (i = 0; i < adev->usec_timeout; i++) {
1982		for (j = 0; j < adev->sdma.num_instances; j++) {
1983			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1984			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1985				break;
1986		}
1987		if (j == adev->sdma.num_instances)
1988			return 0;
1989		udelay(1);
1990	}
1991	return -ETIMEDOUT;
1992}
1993
1994static int sdma_v4_0_soft_reset(void *handle)
1995{
1996	/* todo */
1997
1998	return 0;
1999}
2000
2001static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2002					struct amdgpu_irq_src *source,
2003					unsigned type,
2004					enum amdgpu_interrupt_state state)
2005{
2006	u32 sdma_cntl;
2007
2008	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2009	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2010		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2011	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2012
2013	return 0;
2014}
2015
2016static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2017				      struct amdgpu_irq_src *source,
2018				      struct amdgpu_iv_entry *entry)
2019{
2020	uint32_t instance;
2021
2022	DRM_DEBUG("IH: SDMA trap\n");
2023	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
 
 
 
2024	switch (entry->ring_id) {
2025	case 0:
2026		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2027		break;
2028	case 1:
2029		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
2030		    IP_VERSION(4, 2, 0))
2031			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2032		break;
2033	case 2:
2034		/* XXX compute */
2035		break;
2036	case 3:
2037		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) !=
2038		    IP_VERSION(4, 2, 0))
2039			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2040		break;
2041	}
2042	return 0;
2043}
2044
2045static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2046		void *err_data,
2047		struct amdgpu_iv_entry *entry)
2048{
2049	int instance;
2050
2051	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2052	 * be disabled and the driver should only look for the aggregated
2053	 * interrupt via sync flood
2054	 */
2055	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2056		goto out;
2057
2058	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2059	if (instance < 0)
2060		goto out;
2061
2062	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2063
2064out:
2065	return AMDGPU_RAS_SUCCESS;
2066}
2067
2068static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2069					      struct amdgpu_irq_src *source,
2070					      struct amdgpu_iv_entry *entry)
2071{
2072	int instance;
2073
2074	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2075
2076	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2077	if (instance < 0)
2078		return 0;
2079
2080	switch (entry->ring_id) {
2081	case 0:
2082		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2083		break;
2084	}
2085	return 0;
2086}
2087
2088static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2089					struct amdgpu_irq_src *source,
2090					unsigned type,
2091					enum amdgpu_interrupt_state state)
2092{
2093	u32 sdma_edc_config;
2094
2095	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2096	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2097		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2098	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2099
2100	return 0;
2101}
2102
2103static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2104					      struct amdgpu_iv_entry *entry)
2105{
2106	int instance;
2107	struct amdgpu_task_info *task_info;
2108	u64 addr;
2109
2110	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2111	if (instance < 0 || instance >= adev->sdma.num_instances) {
2112		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2113		return -EINVAL;
2114	}
2115
2116	addr = (u64)entry->src_data[0] << 12;
2117	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2118
2119	dev_dbg_ratelimited(adev->dev,
2120			   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
2121			   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2122			   entry->pasid);
2123
2124	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
2125	if (task_info) {
2126		dev_dbg_ratelimited(adev->dev,
2127				    " for process %s pid %d thread %s pid %d\n",
2128				    task_info->process_name, task_info->tgid,
2129				    task_info->task_name, task_info->pid);
2130		amdgpu_vm_put_task_info(task_info);
2131	}
2132
2133	return 0;
2134}
2135
2136static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2137					      struct amdgpu_irq_src *source,
2138					      struct amdgpu_iv_entry *entry)
2139{
2140	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2141	sdma_v4_0_print_iv_entry(adev, entry);
2142	return 0;
2143}
2144
2145static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2146					      struct amdgpu_irq_src *source,
2147					      struct amdgpu_iv_entry *entry)
2148{
2149	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2150	sdma_v4_0_print_iv_entry(adev, entry);
2151	return 0;
2152}
2153
2154static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2155					      struct amdgpu_irq_src *source,
2156					      struct amdgpu_iv_entry *entry)
2157{
2158	dev_dbg_ratelimited(adev->dev,
2159		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2160	sdma_v4_0_print_iv_entry(adev, entry);
2161	return 0;
2162}
2163
2164static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2165					      struct amdgpu_irq_src *source,
2166					      struct amdgpu_iv_entry *entry)
2167{
2168	dev_dbg_ratelimited(adev->dev,
2169		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2170	sdma_v4_0_print_iv_entry(adev, entry);
2171	return 0;
2172}
2173
2174static void sdma_v4_0_update_medium_grain_clock_gating(
2175		struct amdgpu_device *adev,
2176		bool enable)
2177{
2178	uint32_t data, def;
2179	int i;
2180
2181	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2182		for (i = 0; i < adev->sdma.num_instances; i++) {
2183			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2184			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2185				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2186				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2187				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2188				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2189				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2190				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2191				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2192			if (def != data)
2193				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2194		}
2195	} else {
2196		for (i = 0; i < adev->sdma.num_instances; i++) {
2197			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2198			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2199				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2200				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2201				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2202				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2203				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2204				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2205				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2206			if (def != data)
2207				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2208		}
2209	}
2210}
2211
2212
2213static void sdma_v4_0_update_medium_grain_light_sleep(
2214		struct amdgpu_device *adev,
2215		bool enable)
2216{
2217	uint32_t data, def;
2218	int i;
2219
2220	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2221		for (i = 0; i < adev->sdma.num_instances; i++) {
2222			/* 1-not override: enable sdma mem light sleep */
2223			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2224			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2225			if (def != data)
2226				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2227		}
2228	} else {
2229		for (i = 0; i < adev->sdma.num_instances; i++) {
2230		/* 0-override:disable sdma mem light sleep */
2231			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2232			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2233			if (def != data)
2234				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2235		}
2236	}
2237}
2238
2239static int sdma_v4_0_set_clockgating_state(void *handle,
2240					  enum amd_clockgating_state state)
2241{
2242	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2243
2244	if (amdgpu_sriov_vf(adev))
2245		return 0;
2246
2247	sdma_v4_0_update_medium_grain_clock_gating(adev,
2248			state == AMD_CG_STATE_GATE);
2249	sdma_v4_0_update_medium_grain_light_sleep(adev,
2250			state == AMD_CG_STATE_GATE);
2251	return 0;
2252}
2253
2254static int sdma_v4_0_set_powergating_state(void *handle,
2255					  enum amd_powergating_state state)
2256{
2257	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2258
2259	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2260	case IP_VERSION(4, 1, 0):
2261	case IP_VERSION(4, 1, 1):
2262	case IP_VERSION(4, 1, 2):
2263		sdma_v4_1_update_power_gating(adev,
2264				state == AMD_PG_STATE_GATE);
2265		break;
2266	default:
2267		break;
2268	}
2269
2270	return 0;
2271}
2272
2273static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2274{
2275	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2276	int data;
2277
2278	if (amdgpu_sriov_vf(adev))
2279		*flags = 0;
2280
2281	/* AMD_CG_SUPPORT_SDMA_MGCG */
2282	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2283	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2284		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2285
2286	/* AMD_CG_SUPPORT_SDMA_LS */
2287	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2288	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2289		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2293	.name = "sdma_v4_0",
2294	.early_init = sdma_v4_0_early_init,
2295	.late_init = sdma_v4_0_late_init,
2296	.sw_init = sdma_v4_0_sw_init,
2297	.sw_fini = sdma_v4_0_sw_fini,
2298	.hw_init = sdma_v4_0_hw_init,
2299	.hw_fini = sdma_v4_0_hw_fini,
2300	.suspend = sdma_v4_0_suspend,
2301	.resume = sdma_v4_0_resume,
2302	.is_idle = sdma_v4_0_is_idle,
2303	.wait_for_idle = sdma_v4_0_wait_for_idle,
2304	.soft_reset = sdma_v4_0_soft_reset,
2305	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2306	.set_powergating_state = sdma_v4_0_set_powergating_state,
2307	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
 
 
2308};
2309
2310static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2311	.type = AMDGPU_RING_TYPE_SDMA,
2312	.align_mask = 0xff,
2313	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2314	.support_64bit_ptrs = true,
2315	.secure_submission_supported = true,
2316	.get_rptr = sdma_v4_0_ring_get_rptr,
2317	.get_wptr = sdma_v4_0_ring_get_wptr,
2318	.set_wptr = sdma_v4_0_ring_set_wptr,
2319	.emit_frame_size =
2320		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2321		3 + /* hdp invalidate */
2322		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2323		/* sdma_v4_0_ring_emit_vm_flush */
2324		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2325		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2326		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2327	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2328	.emit_ib = sdma_v4_0_ring_emit_ib,
2329	.emit_fence = sdma_v4_0_ring_emit_fence,
2330	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2331	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2332	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2333	.test_ring = sdma_v4_0_ring_test_ring,
2334	.test_ib = sdma_v4_0_ring_test_ib,
2335	.insert_nop = sdma_v4_0_ring_insert_nop,
2336	.pad_ib = sdma_v4_0_ring_pad_ib,
2337	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2338	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2339	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2340};
2341
2342static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2343	.type = AMDGPU_RING_TYPE_SDMA,
2344	.align_mask = 0xff,
2345	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2346	.support_64bit_ptrs = true,
2347	.secure_submission_supported = true,
2348	.get_rptr = sdma_v4_0_ring_get_rptr,
2349	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2350	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2351	.emit_frame_size =
2352		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2353		3 + /* hdp invalidate */
2354		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2355		/* sdma_v4_0_ring_emit_vm_flush */
2356		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2357		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2358		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2359	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2360	.emit_ib = sdma_v4_0_ring_emit_ib,
2361	.emit_fence = sdma_v4_0_ring_emit_fence,
2362	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2363	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2364	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2365	.test_ring = sdma_v4_0_ring_test_ring,
2366	.test_ib = sdma_v4_0_ring_test_ib,
2367	.insert_nop = sdma_v4_0_ring_insert_nop,
2368	.pad_ib = sdma_v4_0_ring_pad_ib,
2369	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2370	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2371	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2372};
2373
2374static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2375{
2376	int i;
2377
2378	for (i = 0; i < adev->sdma.num_instances; i++) {
2379		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2380		adev->sdma.instance[i].ring.me = i;
2381		if (adev->sdma.has_page_queue) {
2382			adev->sdma.instance[i].page.funcs =
2383					&sdma_v4_0_page_ring_funcs;
2384			adev->sdma.instance[i].page.me = i;
2385		}
2386	}
2387}
2388
2389static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2390	.set = sdma_v4_0_set_trap_irq_state,
2391	.process = sdma_v4_0_process_trap_irq,
2392};
2393
2394static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2395	.process = sdma_v4_0_process_illegal_inst_irq,
2396};
2397
2398static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2399	.set = sdma_v4_0_set_ecc_irq_state,
2400	.process = amdgpu_sdma_process_ecc_irq,
2401};
2402
2403static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2404	.process = sdma_v4_0_process_vm_hole_irq,
2405};
2406
2407static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2408	.process = sdma_v4_0_process_doorbell_invalid_irq,
2409};
2410
2411static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2412	.process = sdma_v4_0_process_pool_timeout_irq,
2413};
2414
2415static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2416	.process = sdma_v4_0_process_srbm_write_irq,
2417};
2418
2419static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2420{
2421	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2422	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2423	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2424	switch (adev->sdma.num_instances) {
2425	case 5:
2426	case 8:
2427		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2428		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2429		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2430		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2431		break;
2432	default:
2433		break;
2434	}
2435	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2436	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2437	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2438	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2439	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2440	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2441	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2442}
2443
2444/**
2445 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2446 *
2447 * @ib: indirect buffer to copy to
2448 * @src_offset: src GPU address
2449 * @dst_offset: dst GPU address
2450 * @byte_count: number of bytes to xfer
2451 * @tmz: if a secure copy should be used
2452 *
2453 * Copy GPU buffers using the DMA engine (VEGA10/12).
2454 * Used by the amdgpu ttm implementation to move pages if
2455 * registered as the asic copy callback.
2456 */
2457static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2458				       uint64_t src_offset,
2459				       uint64_t dst_offset,
2460				       uint32_t byte_count,
2461				       bool tmz)
2462{
2463	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2464		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2465		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2466	ib->ptr[ib->length_dw++] = byte_count - 1;
2467	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2468	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2469	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2470	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2471	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2472}
2473
2474/**
2475 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2476 *
2477 * @ib: indirect buffer to copy to
2478 * @src_data: value to write to buffer
2479 * @dst_offset: dst GPU address
2480 * @byte_count: number of bytes to xfer
2481 *
2482 * Fill GPU buffers using the DMA engine (VEGA10/12).
2483 */
2484static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2485				       uint32_t src_data,
2486				       uint64_t dst_offset,
2487				       uint32_t byte_count)
2488{
2489	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2490	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2491	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2492	ib->ptr[ib->length_dw++] = src_data;
2493	ib->ptr[ib->length_dw++] = byte_count - 1;
2494}
2495
2496static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2497	.copy_max_bytes = 0x400000,
2498	.copy_num_dw = 7,
2499	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2500
2501	.fill_max_bytes = 0x400000,
2502	.fill_num_dw = 5,
2503	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2504};
2505
2506static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2507{
2508	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2509	if (adev->sdma.has_page_queue)
2510		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2511	else
2512		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2513}
2514
2515static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2516	.copy_pte_num_dw = 7,
2517	.copy_pte = sdma_v4_0_vm_copy_pte,
2518
2519	.write_pte = sdma_v4_0_vm_write_pte,
2520	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2521};
2522
2523static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2524{
2525	struct drm_gpu_scheduler *sched;
2526	unsigned i;
2527
2528	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2529	for (i = 0; i < adev->sdma.num_instances; i++) {
2530		if (adev->sdma.has_page_queue)
2531			sched = &adev->sdma.instance[i].page.sched;
2532		else
2533			sched = &adev->sdma.instance[i].ring.sched;
2534		adev->vm_manager.vm_pte_scheds[i] = sched;
2535	}
2536	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2537}
2538
2539static void sdma_v4_0_get_ras_error_count(uint32_t value,
2540					uint32_t instance,
2541					uint32_t *sec_count)
2542{
2543	uint32_t i;
2544	uint32_t sec_cnt;
2545
2546	/* double bits error (multiple bits) error detection is not supported */
2547	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2548		/* the SDMA_EDC_COUNTER register in each sdma instance
2549		 * shares the same sed shift_mask
2550		 * */
2551		sec_cnt = (value &
2552			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2553			sdma_v4_0_ras_fields[i].sec_count_shift;
2554		if (sec_cnt) {
2555			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2556				sdma_v4_0_ras_fields[i].name,
2557				instance, sec_cnt);
2558			*sec_count += sec_cnt;
2559		}
2560	}
2561}
2562
2563static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2564			uint32_t instance, void *ras_error_status)
2565{
2566	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2567	uint32_t sec_count = 0;
2568	uint32_t reg_value = 0;
2569
2570	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2571	/* double bit error is not supported */
2572	if (reg_value)
2573		sdma_v4_0_get_ras_error_count(reg_value,
2574				instance, &sec_count);
2575	/* err_data->ce_count should be initialized to 0
2576	 * before calling into this function */
2577	err_data->ce_count += sec_count;
2578	/* double bit error is not supported
2579	 * set ue count to 0 */
2580	err_data->ue_count = 0;
2581
2582	return 0;
2583};
2584
2585static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2586{
2587	int i = 0;
2588
2589	for (i = 0; i < adev->sdma.num_instances; i++) {
2590		if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2591			dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2592			return;
2593		}
2594	}
2595}
2596
2597static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2598{
2599	int i;
2600
2601	/* read back edc counter registers to clear the counters */
2602	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2603		for (i = 0; i < adev->sdma.num_instances; i++)
2604			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2605	}
2606}
2607
2608const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2609	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2610	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2611};
2612
2613static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2614	.ras_block = {
2615		.hw_ops = &sdma_v4_0_ras_hw_ops,
2616		.ras_cb = sdma_v4_0_process_ras_data_cb,
2617	},
2618};
2619
2620static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2621{
2622	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2623	case IP_VERSION(4, 2, 0):
2624	case IP_VERSION(4, 2, 2):
2625		adev->sdma.ras = &sdma_v4_0_ras;
2626		break;
2627	case IP_VERSION(4, 4, 0):
2628		adev->sdma.ras = &sdma_v4_4_ras;
2629		break;
2630	default:
2631		break;
2632	}
2633}
2634
2635const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2636	.type = AMD_IP_BLOCK_TYPE_SDMA,
2637	.major = 4,
2638	.minor = 0,
2639	.rev = 0,
2640	.funcs = &sdma_v4_0_ip_funcs,
2641};
v6.13.7
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "sdma0/sdma0_4_1_default.h"
  50
  51#include "soc15_common.h"
  52#include "soc15.h"
  53#include "vega10_sdma_pkt_open.h"
  54
  55#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  56#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  57
  58#include "amdgpu_ras.h"
  59#include "sdma_v4_4.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
  73MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
  74
  75static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_0[] = {
  76	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS_REG),
  77	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS1_REG),
  78	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS2_REG),
  79	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS3_REG),
  80	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UCODE_CHECKSUM),
  81	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH_HI),
  82	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH),
  83	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_STATUS),
  84	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_STATUS),
  85	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK0),
  86	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK1),
  87	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK0),
  88	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK1),
  89	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_CNTL),
  90	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR),
  91	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR_HI),
  92	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR),
  93	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR_HI),
  94	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_OFFSET),
  95	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_LO),
  96	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_HI),
  97	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_CNTL),
  98	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_RPTR),
  99	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_SUB_REMAIN),
 100	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_DUMMY_REG),
 101	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_CNTL),
 102	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR),
 103	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR_HI),
 104	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR),
 105	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR_HI),
 106	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_OFFSET),
 107	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_LO),
 108	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_HI),
 109	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_DUMMY_REG),
 110	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_CNTL),
 111	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR),
 112	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR_HI),
 113	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR),
 114	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR_HI),
 115	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_OFFSET),
 116	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_LO),
 117	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_HI),
 118	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_DUMMY_REG),
 119	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_VM_CNTL)
 120};
 121
 122#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
 123#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
 124
 125#define WREG32_SDMA(instance, offset, value) \
 126	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
 127#define RREG32_SDMA(instance, offset) \
 128	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
 129
 130static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
 131static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
 132static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
 133static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
 134static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
 135
 136static const struct soc15_reg_golden golden_settings_sdma_4[] = {
 137	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 142	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 143	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
 144	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 146	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 147	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 148	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 149	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 150	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 151	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 152	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 153	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 154	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 155	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 156	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 157	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 158	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 159	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 160	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 161	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 162};
 163
 164static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 168	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 169	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 170	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 171	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 172};
 173
 174static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 176	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 177	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 178	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 179	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 180	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 181	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 182};
 183
 184static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 185	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 186	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 187	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 188	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 189	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 190	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 191	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 192	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 193	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 194	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 195	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 196};
 197
 198static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 199	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 200};
 201
 202static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 203{
 204	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 205	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 206	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 207	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 208	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 209	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 210	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 211	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 212	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 213	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 214	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 215	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 216	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 217	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 218	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 219	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 220	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 221	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 222	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 223	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 224	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 225	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 226	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 227	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 228	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 229	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 230	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 231};
 232
 233static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 234	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 235	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 236	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 237	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 238	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 239	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 240	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 241	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 242	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 243	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 244	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 245	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 246	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 247	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 248	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 249	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 250	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 251	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 252	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 253	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 254	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 255	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 256	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 257	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 258	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 259	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 260	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 261};
 262
 263static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 264{
 265	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 266	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 267};
 268
 269static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 270{
 271	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 272	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 273};
 274
 275static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 276{
 277	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 278	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 279	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 280	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 281	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 282	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 283	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 284	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 285	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 286	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 287	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 288	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 289	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 290	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 291	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 292	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 293	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 294	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 295	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 296	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 297	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 298	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 299	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 300	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 301	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 302	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 303	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 304	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 305	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 306	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 307	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 308	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
 309};
 310
 311static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
 312	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 313	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 314	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 315	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 316	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 317	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 318	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 319	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 320	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 321	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 322	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 323	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 324	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 325	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 326	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 327};
 328
 329static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 330	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 331	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 332	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 333	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 334	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 335	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 336	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 337	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 338	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 339	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
 340};
 341
 342static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
 343	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 344	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
 345	0, 0,
 346	},
 347	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 348	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
 349	0, 0,
 350	},
 351	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 352	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
 353	0, 0,
 354	},
 355	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 356	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
 357	0, 0,
 358	},
 359	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 360	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
 361	0, 0,
 362	},
 363	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 364	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
 365	0, 0,
 366	},
 367	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 368	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
 369	0, 0,
 370	},
 371	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 372	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
 373	0, 0,
 374	},
 375	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 376	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
 377	0, 0,
 378	},
 379	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 380	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
 381	0, 0,
 382	},
 383	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 384	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
 385	0, 0,
 386	},
 387	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 388	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
 389	0, 0,
 390	},
 391	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 392	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
 393	0, 0,
 394	},
 395	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 396	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
 397	0, 0,
 398	},
 399	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 400	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
 401	0, 0,
 402	},
 403	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 404	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
 405	0, 0,
 406	},
 407	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 408	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
 409	0, 0,
 410	},
 411	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 412	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
 413	0, 0,
 414	},
 415	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 416	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
 417	0, 0,
 418	},
 419	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 420	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
 421	0, 0,
 422	},
 423	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 424	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
 425	0, 0,
 426	},
 427	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 428	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
 429	0, 0,
 430	},
 431	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 432	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
 433	0, 0,
 434	},
 435	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 436	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
 437	0, 0,
 438	},
 439};
 440
 441static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 442		u32 instance, u32 offset)
 443{
 444	switch (instance) {
 445	case 0:
 446		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 447	case 1:
 448		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 449	case 2:
 450		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 451	case 3:
 452		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 453	case 4:
 454		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 455	case 5:
 456		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 457	case 6:
 458		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 459	case 7:
 460		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 461	default:
 462		break;
 463	}
 464	return 0;
 465}
 466
 467static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 468{
 469	switch (seq_num) {
 470	case 0:
 471		return SOC15_IH_CLIENTID_SDMA0;
 472	case 1:
 473		return SOC15_IH_CLIENTID_SDMA1;
 474	case 2:
 475		return SOC15_IH_CLIENTID_SDMA2;
 476	case 3:
 477		return SOC15_IH_CLIENTID_SDMA3;
 478	case 4:
 479		return SOC15_IH_CLIENTID_SDMA4;
 480	case 5:
 481		return SOC15_IH_CLIENTID_SDMA5;
 482	case 6:
 483		return SOC15_IH_CLIENTID_SDMA6;
 484	case 7:
 485		return SOC15_IH_CLIENTID_SDMA7;
 486	default:
 487		break;
 488	}
 489	return -EINVAL;
 490}
 491
 492static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 493{
 494	switch (client_id) {
 495	case SOC15_IH_CLIENTID_SDMA0:
 496		return 0;
 497	case SOC15_IH_CLIENTID_SDMA1:
 498		return 1;
 499	case SOC15_IH_CLIENTID_SDMA2:
 500		return 2;
 501	case SOC15_IH_CLIENTID_SDMA3:
 502		return 3;
 503	case SOC15_IH_CLIENTID_SDMA4:
 504		return 4;
 505	case SOC15_IH_CLIENTID_SDMA5:
 506		return 5;
 507	case SOC15_IH_CLIENTID_SDMA6:
 508		return 6;
 509	case SOC15_IH_CLIENTID_SDMA7:
 510		return 7;
 511	default:
 512		break;
 513	}
 514	return -EINVAL;
 515}
 516
 517static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 518{
 519	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 520	case IP_VERSION(4, 0, 0):
 521		soc15_program_register_sequence(adev,
 522						golden_settings_sdma_4,
 523						ARRAY_SIZE(golden_settings_sdma_4));
 524		soc15_program_register_sequence(adev,
 525						golden_settings_sdma_vg10,
 526						ARRAY_SIZE(golden_settings_sdma_vg10));
 527		break;
 528	case IP_VERSION(4, 0, 1):
 529		soc15_program_register_sequence(adev,
 530						golden_settings_sdma_4,
 531						ARRAY_SIZE(golden_settings_sdma_4));
 532		soc15_program_register_sequence(adev,
 533						golden_settings_sdma_vg12,
 534						ARRAY_SIZE(golden_settings_sdma_vg12));
 535		break;
 536	case IP_VERSION(4, 2, 0):
 537		soc15_program_register_sequence(adev,
 538						golden_settings_sdma0_4_2_init,
 539						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 540		soc15_program_register_sequence(adev,
 541						golden_settings_sdma0_4_2,
 542						ARRAY_SIZE(golden_settings_sdma0_4_2));
 543		soc15_program_register_sequence(adev,
 544						golden_settings_sdma1_4_2,
 545						ARRAY_SIZE(golden_settings_sdma1_4_2));
 546		break;
 547	case IP_VERSION(4, 2, 2):
 548		soc15_program_register_sequence(adev,
 549						golden_settings_sdma_arct,
 550						ARRAY_SIZE(golden_settings_sdma_arct));
 551		break;
 552	case IP_VERSION(4, 4, 0):
 553		soc15_program_register_sequence(adev,
 554						golden_settings_sdma_aldebaran,
 555						ARRAY_SIZE(golden_settings_sdma_aldebaran));
 556		break;
 557	case IP_VERSION(4, 1, 0):
 558	case IP_VERSION(4, 1, 1):
 559		soc15_program_register_sequence(adev,
 560						golden_settings_sdma_4_1,
 561						ARRAY_SIZE(golden_settings_sdma_4_1));
 562		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 563			soc15_program_register_sequence(adev,
 564							golden_settings_sdma_rv2,
 565							ARRAY_SIZE(golden_settings_sdma_rv2));
 566		else
 567			soc15_program_register_sequence(adev,
 568							golden_settings_sdma_rv1,
 569							ARRAY_SIZE(golden_settings_sdma_rv1));
 570		break;
 571	case IP_VERSION(4, 1, 2):
 572		soc15_program_register_sequence(adev,
 573						golden_settings_sdma_4_3,
 574						ARRAY_SIZE(golden_settings_sdma_4_3));
 575		break;
 576	default:
 577		break;
 578	}
 579}
 580
 581static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
 582{
 583	int i;
 584
 585	/*
 586	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
 587	 * Server SKUs take a different hysteresis setting from other SKUs.
 588	 */
 589	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
 590	case IP_VERSION(4, 0, 0):
 591		if (adev->pdev->device == 0x6860)
 592			break;
 593		return;
 594	case IP_VERSION(4, 2, 0):
 595		if (adev->pdev->device == 0x66a1)
 596			break;
 597		return;
 598	default:
 599		return;
 600	}
 601
 602	for (i = 0; i < adev->sdma.num_instances; i++) {
 603		uint32_t temp;
 604
 605		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
 606		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
 607		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
 608	}
 609}
 610
 611/**
 612 * sdma_v4_0_init_microcode - load ucode images from disk
 613 *
 614 * @adev: amdgpu_device pointer
 615 *
 616 * Use the firmware interface to load the ucode images into
 617 * the driver (not loaded into hw).
 618 * Returns 0 on success, error on failure.
 619 */
 620
 621// emulation only, won't work on real chip
 622// vega10 real chip need to use PSP to load firmware
 623static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 624{
 625	int ret, i;
 626
 627	for (i = 0; i < adev->sdma.num_instances; i++) {
 628		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 629			    IP_VERSION(4, 2, 2) ||
 630		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
 631			    IP_VERSION(4, 4, 0)) {
 632			/* Acturus & Aldebaran will leverage the same FW memory
 633			   for every SDMA instance */
 634			ret = amdgpu_sdma_init_microcode(adev, 0, true);
 635			break;
 636		} else {
 637			ret = amdgpu_sdma_init_microcode(adev, i, false);
 638			if (ret)
 639				return ret;
 640		}
 641	}
 642
 643	return ret;
 644}
 645
 646/**
 647 * sdma_v4_0_ring_get_rptr - get the current read pointer
 648 *
 649 * @ring: amdgpu ring pointer
 650 *
 651 * Get the current rptr from the hardware (VEGA10+).
 652 */
 653static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 654{
 655	u64 *rptr;
 656
 657	/* XXX check if swapping is necessary on BE */
 658	rptr = ((u64 *)ring->rptr_cpu_addr);
 659
 660	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 661	return ((*rptr) >> 2);
 662}
 663
 664/**
 665 * sdma_v4_0_ring_get_wptr - get the current write pointer
 666 *
 667 * @ring: amdgpu ring pointer
 668 *
 669 * Get the current wptr from the hardware (VEGA10+).
 670 */
 671static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 672{
 673	struct amdgpu_device *adev = ring->adev;
 674	u64 wptr;
 675
 676	if (ring->use_doorbell) {
 677		/* XXX check if swapping is necessary on BE */
 678		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 679		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 680	} else {
 681		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 682		wptr = wptr << 32;
 683		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 684		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 685				ring->me, wptr);
 686	}
 687
 688	return wptr >> 2;
 689}
 690
 691/**
 692 * sdma_v4_0_ring_set_wptr - commit the write pointer
 693 *
 694 * @ring: amdgpu ring pointer
 695 *
 696 * Write the wptr back to the hardware (VEGA10+).
 697 */
 698static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 699{
 700	struct amdgpu_device *adev = ring->adev;
 701
 702	DRM_DEBUG("Setting write pointer\n");
 703	if (ring->use_doorbell) {
 704		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 705
 706		DRM_DEBUG("Using doorbell -- "
 707				"wptr_offs == 0x%08x "
 708				"lower_32_bits(ring->wptr << 2) == 0x%08x "
 709				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
 710				ring->wptr_offs,
 711				lower_32_bits(ring->wptr << 2),
 712				upper_32_bits(ring->wptr << 2));
 713		/* XXX check if swapping is necessary on BE */
 714		WRITE_ONCE(*wb, (ring->wptr << 2));
 715		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 716				ring->doorbell_index, ring->wptr << 2);
 717		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 718	} else {
 719		DRM_DEBUG("Not using doorbell -- "
 720				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 721				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 722				ring->me,
 723				lower_32_bits(ring->wptr << 2),
 724				ring->me,
 725				upper_32_bits(ring->wptr << 2));
 726		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 727			    lower_32_bits(ring->wptr << 2));
 728		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 729			    upper_32_bits(ring->wptr << 2));
 730	}
 731}
 732
 733/**
 734 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 735 *
 736 * @ring: amdgpu ring pointer
 737 *
 738 * Get the current wptr from the hardware (VEGA10+).
 739 */
 740static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 741{
 742	struct amdgpu_device *adev = ring->adev;
 743	u64 wptr;
 744
 745	if (ring->use_doorbell) {
 746		/* XXX check if swapping is necessary on BE */
 747		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
 748	} else {
 749		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 750		wptr = wptr << 32;
 751		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 752	}
 753
 754	return wptr >> 2;
 755}
 756
 757/**
 758 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
 759 *
 760 * @ring: amdgpu ring pointer
 761 *
 762 * Write the wptr back to the hardware (VEGA10+).
 763 */
 764static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 765{
 766	struct amdgpu_device *adev = ring->adev;
 767
 768	if (ring->use_doorbell) {
 769		u64 *wb = (u64 *)ring->wptr_cpu_addr;
 770
 771		/* XXX check if swapping is necessary on BE */
 772		WRITE_ONCE(*wb, (ring->wptr << 2));
 773		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 774	} else {
 775		uint64_t wptr = ring->wptr << 2;
 776
 777		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 778			    lower_32_bits(wptr));
 779		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 780			    upper_32_bits(wptr));
 781	}
 782}
 783
 784static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 785{
 786	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 787	int i;
 788
 789	for (i = 0; i < count; i++)
 790		if (sdma && sdma->burst_nop && (i == 0))
 791			amdgpu_ring_write(ring, ring->funcs->nop |
 792				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 793		else
 794			amdgpu_ring_write(ring, ring->funcs->nop);
 795}
 796
 797/**
 798 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 799 *
 800 * @ring: amdgpu ring pointer
 801 * @job: job to retrieve vmid from
 802 * @ib: IB object to schedule
 803 * @flags: unused
 804 *
 805 * Schedule an IB in the DMA ring (VEGA10).
 806 */
 807static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 808				   struct amdgpu_job *job,
 809				   struct amdgpu_ib *ib,
 810				   uint32_t flags)
 811{
 812	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 813
 814	/* IB packet must end on a 8 DW boundary */
 815	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
 816
 817	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 818			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 819	/* base must be 32 byte aligned */
 820	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 821	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 822	amdgpu_ring_write(ring, ib->length_dw);
 823	amdgpu_ring_write(ring, 0);
 824	amdgpu_ring_write(ring, 0);
 825
 826}
 827
 828static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 829				   int mem_space, int hdp,
 830				   uint32_t addr0, uint32_t addr1,
 831				   uint32_t ref, uint32_t mask,
 832				   uint32_t inv)
 833{
 834	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 835			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 836			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 837			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 838	if (mem_space) {
 839		/* memory */
 840		amdgpu_ring_write(ring, addr0);
 841		amdgpu_ring_write(ring, addr1);
 842	} else {
 843		/* registers */
 844		amdgpu_ring_write(ring, addr0 << 2);
 845		amdgpu_ring_write(ring, addr1 << 2);
 846	}
 847	amdgpu_ring_write(ring, ref); /* reference */
 848	amdgpu_ring_write(ring, mask); /* mask */
 849	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 850			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 851}
 852
 853/**
 854 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 855 *
 856 * @ring: amdgpu ring pointer
 857 *
 858 * Emit an hdp flush packet on the requested DMA ring.
 859 */
 860static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 861{
 862	struct amdgpu_device *adev = ring->adev;
 863	u32 ref_and_mask = 0;
 864	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
 865
 866	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 867
 868	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 869			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
 870			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
 871			       ref_and_mask, ref_and_mask, 10);
 872}
 873
 874/**
 875 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 876 *
 877 * @ring: amdgpu ring pointer
 878 * @addr: address
 879 * @seq: sequence number
 880 * @flags: fence related flags
 881 *
 882 * Add a DMA fence packet to the ring to write
 883 * the fence seq number and DMA trap packet to generate
 884 * an interrupt if needed (VEGA10).
 885 */
 886static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 887				      unsigned flags)
 888{
 889	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 890	/* write the fence */
 891	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 892	/* zero in first two bits */
 893	BUG_ON(addr & 0x3);
 894	amdgpu_ring_write(ring, lower_32_bits(addr));
 895	amdgpu_ring_write(ring, upper_32_bits(addr));
 896	amdgpu_ring_write(ring, lower_32_bits(seq));
 897
 898	/* optionally write high bits as well */
 899	if (write64bit) {
 900		addr += 4;
 901		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 902		/* zero in first two bits */
 903		BUG_ON(addr & 0x3);
 904		amdgpu_ring_write(ring, lower_32_bits(addr));
 905		amdgpu_ring_write(ring, upper_32_bits(addr));
 906		amdgpu_ring_write(ring, upper_32_bits(seq));
 907	}
 908
 909	/* generate an interrupt */
 910	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 911	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 912}
 913
 914
 915/**
 916 * sdma_v4_0_gfx_enable - enable the gfx async dma engines
 917 *
 918 * @adev: amdgpu_device pointer
 919 * @enable: enable SDMA RB/IB
 920 * control the gfx async dma ring buffers (VEGA10).
 921 */
 922static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
 923{
 924	u32 rb_cntl, ib_cntl;
 925	int i;
 926
 927	for (i = 0; i < adev->sdma.num_instances; i++) {
 928		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 929		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
 930		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 931		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 932		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
 933		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 934	}
 935}
 936
 937/**
 938 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 939 *
 940 * @adev: amdgpu_device pointer
 941 *
 942 * Stop the compute async dma queues (VEGA10).
 943 */
 944static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 945{
 946	/* XXX todo */
 947}
 948
 949/**
 950 * sdma_v4_0_page_stop - stop the page async dma engines
 951 *
 952 * @adev: amdgpu_device pointer
 953 *
 954 * Stop the page async dma ring buffers (VEGA10).
 955 */
 956static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 957{
 958	u32 rb_cntl, ib_cntl;
 959	int i;
 960
 961	for (i = 0; i < adev->sdma.num_instances; i++) {
 962		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
 963		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
 964					RB_ENABLE, 0);
 965		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
 966		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
 967		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
 968					IB_ENABLE, 0);
 969		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 970	}
 971}
 972
 973/**
 974 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
 975 *
 976 * @adev: amdgpu_device pointer
 977 * @enable: enable/disable the DMA MEs context switch.
 978 *
 979 * Halt or unhalt the async dma engines context switch (VEGA10).
 980 */
 981static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 982{
 983	u32 f32_cntl, phase_quantum = 0;
 984	int i;
 985
 986	if (amdgpu_sdma_phase_quantum) {
 987		unsigned value = amdgpu_sdma_phase_quantum;
 988		unsigned unit = 0;
 989
 990		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 991				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 992			value = (value + 1) >> 1;
 993			unit++;
 994		}
 995		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 996			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 997			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 998				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 999			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1000				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1001			WARN_ONCE(1,
1002			"clamping sdma_phase_quantum to %uK clock cycles\n",
1003				  value << unit);
1004		}
1005		phase_quantum =
1006			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1007			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1008	}
1009
1010	for (i = 0; i < adev->sdma.num_instances; i++) {
1011		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1012		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1013				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1014		if (enable && amdgpu_sdma_phase_quantum) {
1015			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1016			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1017			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1018		}
1019		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1020
1021		/*
1022		 * Enable SDMA utilization. Its only supported on
1023		 * Arcturus for the moment and firmware version 14
1024		 * and above.
1025		 */
1026		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1027			    IP_VERSION(4, 2, 2) &&
1028		    adev->sdma.instance[i].fw_version >= 14)
1029			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1030		/* Extend page fault timeout to avoid interrupt storm */
1031		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1032	}
1033
1034}
1035
1036/**
1037 * sdma_v4_0_enable - stop the async dma engines
1038 *
1039 * @adev: amdgpu_device pointer
1040 * @enable: enable/disable the DMA MEs.
1041 *
1042 * Halt or unhalt the async dma engines (VEGA10).
1043 */
1044static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1045{
1046	u32 f32_cntl;
1047	int i;
1048
1049	if (!enable) {
1050		sdma_v4_0_gfx_enable(adev, enable);
1051		sdma_v4_0_rlc_stop(adev);
1052		if (adev->sdma.has_page_queue)
1053			sdma_v4_0_page_stop(adev);
1054	}
1055
1056	for (i = 0; i < adev->sdma.num_instances; i++) {
1057		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1058		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1059		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1060	}
1061}
1062
1063/*
1064 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1065 */
1066static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1067{
1068	/* Set ring buffer size in dwords */
1069	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1070
1071	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1072#ifdef __BIG_ENDIAN
1073	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1074	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1075				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1076#endif
1077	return rb_cntl;
1078}
1079
1080/**
1081 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1082 *
1083 * @adev: amdgpu_device pointer
1084 * @i: instance to resume
1085 *
1086 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1087 * Returns 0 for success, error for failure.
1088 */
1089static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1090{
1091	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1092	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1093	u32 doorbell;
1094	u32 doorbell_offset;
1095	u64 wptr_gpu_addr;
1096
1097	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1098	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1099	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1100
1101	/* Initialize the ring buffer's read and write pointers */
1102	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1103	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1104	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1105	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1106
1107	/* set the wb address whether it's enabled or not */
1108	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1109	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1110	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1111	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1112
1113	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1114				RPTR_WRITEBACK_ENABLE, 1);
1115
1116	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1117	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1118
1119	ring->wptr = 0;
1120
1121	/* before programing wptr to a less value, need set minor_ptr_update first */
1122	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1123
1124	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1125	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1126
1127	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1128				 ring->use_doorbell);
1129	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1130					SDMA0_GFX_DOORBELL_OFFSET,
1131					OFFSET, ring->doorbell_index);
1132	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1133	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1134
1135	sdma_v4_0_ring_set_wptr(ring);
1136
1137	/* set minor_ptr_update to 0 after wptr programed */
1138	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1139
1140	/* setup the wptr shadow polling */
1141	wptr_gpu_addr = ring->wptr_gpu_addr;
1142	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1143		    lower_32_bits(wptr_gpu_addr));
1144	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1145		    upper_32_bits(wptr_gpu_addr));
1146	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1147	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1148				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1149				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1150	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1151
1152	/* enable DMA RB */
1153	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1154	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1155
1156	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1157	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1158#ifdef __BIG_ENDIAN
1159	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1160#endif
1161	/* enable DMA IBs */
1162	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1163}
1164
1165/**
1166 * sdma_v4_0_page_resume - setup and start the async dma engines
1167 *
1168 * @adev: amdgpu_device pointer
1169 * @i: instance to resume
1170 *
1171 * Set up the page DMA ring buffers and enable them (VEGA10).
1172 * Returns 0 for success, error for failure.
1173 */
1174static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1175{
1176	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1177	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1178	u32 doorbell;
1179	u32 doorbell_offset;
1180	u64 wptr_gpu_addr;
1181
1182	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1183	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1184	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1185
1186	/* Initialize the ring buffer's read and write pointers */
1187	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1188	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1189	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1190	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1191
1192	/* set the wb address whether it's enabled or not */
1193	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1194	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1195	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1196	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1197
1198	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1199				RPTR_WRITEBACK_ENABLE, 1);
1200
1201	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1202	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1203
1204	ring->wptr = 0;
1205
1206	/* before programing wptr to a less value, need set minor_ptr_update first */
1207	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1208
1209	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1210	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1211
1212	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1213				 ring->use_doorbell);
1214	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1215					SDMA0_PAGE_DOORBELL_OFFSET,
1216					OFFSET, ring->doorbell_index);
1217	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1218	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1219
1220	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1221	sdma_v4_0_page_ring_set_wptr(ring);
1222
1223	/* set minor_ptr_update to 0 after wptr programed */
1224	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1225
1226	/* setup the wptr shadow polling */
1227	wptr_gpu_addr = ring->wptr_gpu_addr;
1228	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1229		    lower_32_bits(wptr_gpu_addr));
1230	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1231		    upper_32_bits(wptr_gpu_addr));
1232	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1233	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1234				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1235				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1236	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1237
1238	/* enable DMA RB */
1239	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1240	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1241
1242	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1243	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1244#ifdef __BIG_ENDIAN
1245	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1246#endif
1247	/* enable DMA IBs */
1248	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1249}
1250
1251static void
1252sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1253{
1254	uint32_t def, data;
1255
1256	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1257		/* enable idle interrupt */
1258		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1259		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1260
1261		if (data != def)
1262			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1263	} else {
1264		/* disable idle interrupt */
1265		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1266		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1267		if (data != def)
1268			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1269	}
1270}
1271
1272static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1273{
1274	uint32_t def, data;
1275
1276	/* Enable HW based PG. */
1277	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1278	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1279	if (data != def)
1280		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1281
1282	/* enable interrupt */
1283	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1284	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1285	if (data != def)
1286		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1287
1288	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1289	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1290	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1291	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1292	/* Configure switch time for hysteresis purpose. Use default right now */
1293	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1294	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1295	if(data != def)
1296		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1297}
1298
1299static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1300{
1301	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1302		return;
1303
1304	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1305	case IP_VERSION(4, 1, 0):
1306        case IP_VERSION(4, 1, 1):
1307	case IP_VERSION(4, 1, 2):
1308		sdma_v4_1_init_power_gating(adev);
1309		sdma_v4_1_update_power_gating(adev, true);
1310		break;
1311	default:
1312		break;
1313	}
1314}
1315
1316/**
1317 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1318 *
1319 * @adev: amdgpu_device pointer
1320 *
1321 * Set up the compute DMA queues and enable them (VEGA10).
1322 * Returns 0 for success, error for failure.
1323 */
1324static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1325{
1326	sdma_v4_0_init_pg(adev);
1327
1328	return 0;
1329}
1330
1331/**
1332 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1333 *
1334 * @adev: amdgpu_device pointer
1335 *
1336 * Loads the sDMA0/1 ucode.
1337 * Returns 0 for success, -EINVAL if the ucode is not available.
1338 */
1339static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1340{
1341	const struct sdma_firmware_header_v1_0 *hdr;
1342	const __le32 *fw_data;
1343	u32 fw_size;
1344	int i, j;
1345
1346	/* halt the MEs */
1347	sdma_v4_0_enable(adev, false);
1348
1349	for (i = 0; i < adev->sdma.num_instances; i++) {
1350		if (!adev->sdma.instance[i].fw)
1351			return -EINVAL;
1352
1353		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1354		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1355		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1356
1357		fw_data = (const __le32 *)
1358			(adev->sdma.instance[i].fw->data +
1359				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1360
1361		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1362
1363		for (j = 0; j < fw_size; j++)
1364			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1365				    le32_to_cpup(fw_data++));
1366
1367		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1368			    adev->sdma.instance[i].fw_version);
1369	}
1370
1371	return 0;
1372}
1373
1374/**
1375 * sdma_v4_0_start - setup and start the async dma engines
1376 *
1377 * @adev: amdgpu_device pointer
1378 *
1379 * Set up the DMA engines and enable them (VEGA10).
1380 * Returns 0 for success, error for failure.
1381 */
1382static int sdma_v4_0_start(struct amdgpu_device *adev)
1383{
1384	struct amdgpu_ring *ring;
1385	int i, r = 0;
1386
1387	if (amdgpu_sriov_vf(adev)) {
1388		sdma_v4_0_ctx_switch_enable(adev, false);
1389		sdma_v4_0_enable(adev, false);
1390	} else {
1391
1392		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1393			r = sdma_v4_0_load_microcode(adev);
1394			if (r)
1395				return r;
1396		}
1397
1398		/* unhalt the MEs */
1399		sdma_v4_0_enable(adev, true);
1400		/* enable sdma ring preemption */
1401		sdma_v4_0_ctx_switch_enable(adev, true);
1402	}
1403
1404	/* start the gfx rings and rlc compute queues */
1405	for (i = 0; i < adev->sdma.num_instances; i++) {
1406		uint32_t temp;
1407
1408		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1409		sdma_v4_0_gfx_resume(adev, i);
1410		if (adev->sdma.has_page_queue)
1411			sdma_v4_0_page_resume(adev, i);
1412
1413		/* set utc l1 enable flag always to 1 */
1414		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1415		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1416		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1417
1418		if (!amdgpu_sriov_vf(adev)) {
1419			/* unhalt engine */
1420			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1421			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1422			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1423		}
1424	}
1425
1426	if (amdgpu_sriov_vf(adev)) {
1427		sdma_v4_0_ctx_switch_enable(adev, true);
1428		sdma_v4_0_enable(adev, true);
1429	} else {
1430		r = sdma_v4_0_rlc_resume(adev);
1431		if (r)
1432			return r;
1433	}
1434
1435	for (i = 0; i < adev->sdma.num_instances; i++) {
1436		ring = &adev->sdma.instance[i].ring;
1437
1438		r = amdgpu_ring_test_helper(ring);
1439		if (r)
1440			return r;
1441
1442		if (adev->sdma.has_page_queue) {
1443			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1444
1445			r = amdgpu_ring_test_helper(page);
1446			if (r)
1447				return r;
1448		}
1449	}
1450
1451	return r;
1452}
1453
1454/**
1455 * sdma_v4_0_ring_test_ring - simple async dma engine test
1456 *
1457 * @ring: amdgpu_ring structure holding ring information
1458 *
1459 * Test the DMA engine by writing using it to write an
1460 * value to memory. (VEGA10).
1461 * Returns 0 for success, error for failure.
1462 */
1463static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1464{
1465	struct amdgpu_device *adev = ring->adev;
1466	unsigned i;
1467	unsigned index;
1468	int r;
1469	u32 tmp;
1470	u64 gpu_addr;
1471
1472	r = amdgpu_device_wb_get(adev, &index);
1473	if (r)
1474		return r;
1475
1476	gpu_addr = adev->wb.gpu_addr + (index * 4);
1477	tmp = 0xCAFEDEAD;
1478	adev->wb.wb[index] = cpu_to_le32(tmp);
1479
1480	r = amdgpu_ring_alloc(ring, 5);
1481	if (r)
1482		goto error_free_wb;
1483
1484	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1485			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1486	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1487	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1488	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1489	amdgpu_ring_write(ring, 0xDEADBEEF);
1490	amdgpu_ring_commit(ring);
1491
1492	for (i = 0; i < adev->usec_timeout; i++) {
1493		tmp = le32_to_cpu(adev->wb.wb[index]);
1494		if (tmp == 0xDEADBEEF)
1495			break;
1496		udelay(1);
1497	}
1498
1499	if (i >= adev->usec_timeout)
1500		r = -ETIMEDOUT;
1501
1502error_free_wb:
1503	amdgpu_device_wb_free(adev, index);
1504	return r;
1505}
1506
1507/**
1508 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1509 *
1510 * @ring: amdgpu_ring structure holding ring information
1511 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1512 *
1513 * Test a simple IB in the DMA ring (VEGA10).
1514 * Returns 0 on success, error on failure.
1515 */
1516static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1517{
1518	struct amdgpu_device *adev = ring->adev;
1519	struct amdgpu_ib ib;
1520	struct dma_fence *f = NULL;
1521	unsigned index;
1522	long r;
1523	u32 tmp = 0;
1524	u64 gpu_addr;
1525
1526	r = amdgpu_device_wb_get(adev, &index);
1527	if (r)
1528		return r;
1529
1530	gpu_addr = adev->wb.gpu_addr + (index * 4);
1531	tmp = 0xCAFEDEAD;
1532	adev->wb.wb[index] = cpu_to_le32(tmp);
1533	memset(&ib, 0, sizeof(ib));
1534	r = amdgpu_ib_get(adev, NULL, 256,
1535					AMDGPU_IB_POOL_DIRECT, &ib);
1536	if (r)
1537		goto err0;
1538
1539	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1540		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1541	ib.ptr[1] = lower_32_bits(gpu_addr);
1542	ib.ptr[2] = upper_32_bits(gpu_addr);
1543	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1544	ib.ptr[4] = 0xDEADBEEF;
1545	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1546	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1547	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1548	ib.length_dw = 8;
1549
1550	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1551	if (r)
1552		goto err1;
1553
1554	r = dma_fence_wait_timeout(f, false, timeout);
1555	if (r == 0) {
1556		r = -ETIMEDOUT;
1557		goto err1;
1558	} else if (r < 0) {
1559		goto err1;
1560	}
1561	tmp = le32_to_cpu(adev->wb.wb[index]);
1562	if (tmp == 0xDEADBEEF)
1563		r = 0;
1564	else
1565		r = -EINVAL;
1566
1567err1:
1568	amdgpu_ib_free(adev, &ib, NULL);
1569	dma_fence_put(f);
1570err0:
1571	amdgpu_device_wb_free(adev, index);
1572	return r;
1573}
1574
1575
1576/**
1577 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1578 *
1579 * @ib: indirect buffer to fill with commands
1580 * @pe: addr of the page entry
1581 * @src: src addr to copy from
1582 * @count: number of page entries to update
1583 *
1584 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1585 */
1586static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1587				  uint64_t pe, uint64_t src,
1588				  unsigned count)
1589{
1590	unsigned bytes = count * 8;
1591
1592	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1593		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1594	ib->ptr[ib->length_dw++] = bytes - 1;
1595	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1596	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1597	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1598	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1599	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1600
1601}
1602
1603/**
1604 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1605 *
1606 * @ib: indirect buffer to fill with commands
1607 * @pe: addr of the page entry
1608 * @value: dst addr to write into pe
1609 * @count: number of page entries to update
1610 * @incr: increase next addr by incr bytes
1611 *
1612 * Update PTEs by writing them manually using sDMA (VEGA10).
1613 */
1614static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1615				   uint64_t value, unsigned count,
1616				   uint32_t incr)
1617{
1618	unsigned ndw = count * 2;
1619
1620	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1621		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1622	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1623	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1624	ib->ptr[ib->length_dw++] = ndw - 1;
1625	for (; ndw > 0; ndw -= 2) {
1626		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1627		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1628		value += incr;
1629	}
1630}
1631
1632/**
1633 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1634 *
1635 * @ib: indirect buffer to fill with commands
1636 * @pe: addr of the page entry
1637 * @addr: dst addr to write into pe
1638 * @count: number of page entries to update
1639 * @incr: increase next addr by incr bytes
1640 * @flags: access flags
1641 *
1642 * Update the page tables using sDMA (VEGA10).
1643 */
1644static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1645				     uint64_t pe,
1646				     uint64_t addr, unsigned count,
1647				     uint32_t incr, uint64_t flags)
1648{
1649	/* for physically contiguous pages (vram) */
1650	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1651	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1652	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1653	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1654	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1655	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1656	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1657	ib->ptr[ib->length_dw++] = incr; /* increment size */
1658	ib->ptr[ib->length_dw++] = 0;
1659	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1660}
1661
1662/**
1663 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1664 *
1665 * @ring: amdgpu_ring structure holding ring information
1666 * @ib: indirect buffer to fill with padding
1667 */
1668static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1669{
1670	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1671	u32 pad_count;
1672	int i;
1673
1674	pad_count = (-ib->length_dw) & 7;
1675	for (i = 0; i < pad_count; i++)
1676		if (sdma && sdma->burst_nop && (i == 0))
1677			ib->ptr[ib->length_dw++] =
1678				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1679				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1680		else
1681			ib->ptr[ib->length_dw++] =
1682				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1683}
1684
1685
1686/**
1687 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1688 *
1689 * @ring: amdgpu_ring pointer
1690 *
1691 * Make sure all previous operations are completed (CIK).
1692 */
1693static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1694{
1695	uint32_t seq = ring->fence_drv.sync_seq;
1696	uint64_t addr = ring->fence_drv.gpu_addr;
1697
1698	/* wait for idle */
1699	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1700			       addr & 0xfffffffc,
1701			       upper_32_bits(addr) & 0xffffffff,
1702			       seq, 0xffffffff, 4);
1703}
1704
1705
1706/**
1707 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1708 *
1709 * @ring: amdgpu_ring pointer
1710 * @vmid: vmid number to use
1711 * @pd_addr: address
1712 *
1713 * Update the page table base and flush the VM TLB
1714 * using sDMA (VEGA10).
1715 */
1716static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1717					 unsigned vmid, uint64_t pd_addr)
1718{
1719	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1720}
1721
1722static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1723				     uint32_t reg, uint32_t val)
1724{
1725	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1726			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1727	amdgpu_ring_write(ring, reg);
1728	amdgpu_ring_write(ring, val);
1729}
1730
1731static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1732					 uint32_t val, uint32_t mask)
1733{
1734	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1735}
1736
1737static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1738{
1739	uint fw_version = adev->sdma.instance[0].fw_version;
1740
1741	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1742	case IP_VERSION(4, 0, 0):
1743		return fw_version >= 430;
1744	case IP_VERSION(4, 0, 1):
1745		/*return fw_version >= 31;*/
1746		return false;
1747	case IP_VERSION(4, 2, 0):
1748		return fw_version >= 123;
1749	default:
1750		return false;
1751	}
1752}
1753
1754static int sdma_v4_0_early_init(struct amdgpu_ip_block *ip_block)
1755{
1756	struct amdgpu_device *adev = ip_block->adev;
1757	int r;
1758
1759	r = sdma_v4_0_init_microcode(adev);
1760	if (r)
1761		return r;
1762
1763	/* TODO: Page queue breaks driver reload under SRIOV */
1764	if ((amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 0, 0)) &&
1765	    amdgpu_sriov_vf((adev)))
1766		adev->sdma.has_page_queue = false;
1767	else if (sdma_v4_0_fw_support_paging_queue(adev))
1768		adev->sdma.has_page_queue = true;
1769
1770	sdma_v4_0_set_ring_funcs(adev);
1771	sdma_v4_0_set_buffer_funcs(adev);
1772	sdma_v4_0_set_vm_pte_funcs(adev);
1773	sdma_v4_0_set_irq_funcs(adev);
1774	sdma_v4_0_set_ras_funcs(adev);
1775
1776	return 0;
1777}
1778
1779static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1780		void *err_data,
1781		struct amdgpu_iv_entry *entry);
1782
1783static int sdma_v4_0_late_init(struct amdgpu_ip_block *ip_block)
1784{
1785	struct amdgpu_device *adev = ip_block->adev;
1786
1787	sdma_v4_0_setup_ulv(adev);
1788
1789	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1790		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1791
1792	return 0;
1793}
1794
1795static int sdma_v4_0_sw_init(struct amdgpu_ip_block *ip_block)
1796{
1797	struct amdgpu_ring *ring;
1798	int r, i;
1799	struct amdgpu_device *adev = ip_block->adev;
1800	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
1801	uint32_t *ptr;
1802
1803	/* SDMA trap event */
1804	for (i = 0; i < adev->sdma.num_instances; i++) {
1805		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1806				      SDMA0_4_0__SRCID__SDMA_TRAP,
1807				      &adev->sdma.trap_irq);
1808		if (r)
1809			return r;
1810	}
1811
1812	/* SDMA SRAM ECC event */
1813	for (i = 0; i < adev->sdma.num_instances; i++) {
1814		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1815				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1816				      &adev->sdma.ecc_irq);
1817		if (r)
1818			return r;
1819	}
1820
1821	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1822	for (i = 0; i < adev->sdma.num_instances; i++) {
1823		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1824				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1825				      &adev->sdma.vm_hole_irq);
1826		if (r)
1827			return r;
1828
1829		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1830				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1831				      &adev->sdma.doorbell_invalid_irq);
1832		if (r)
1833			return r;
1834
1835		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1836				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1837				      &adev->sdma.pool_timeout_irq);
1838		if (r)
1839			return r;
1840
1841		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1842				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1843				      &adev->sdma.srbm_write_irq);
1844		if (r)
1845			return r;
1846	}
1847
1848	for (i = 0; i < adev->sdma.num_instances; i++) {
1849		ring = &adev->sdma.instance[i].ring;
1850		ring->ring_obj = NULL;
1851		ring->use_doorbell = true;
1852
1853		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1854				ring->use_doorbell?"true":"false");
1855
1856		/* doorbell size is 2 dwords, get DWORD offset */
1857		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1858
1859		/*
1860		 * On Arcturus, SDMA instance 5~7 has a different vmhub
1861		 * type(AMDGPU_MMHUB1).
1862		 */
1863		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1864			    IP_VERSION(4, 2, 2) &&
1865		    i >= 5)
1866			ring->vm_hub = AMDGPU_MMHUB1(0);
1867		else
1868			ring->vm_hub = AMDGPU_MMHUB0(0);
1869
1870		sprintf(ring->name, "sdma%d", i);
1871		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1872				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1873				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1874		if (r)
1875			return r;
1876
1877		if (adev->sdma.has_page_queue) {
1878			ring = &adev->sdma.instance[i].page;
1879			ring->ring_obj = NULL;
1880			ring->use_doorbell = true;
1881
1882			/* paging queue use same doorbell index/routing as gfx queue
1883			 * with 0x400 (4096 dwords) offset on second doorbell page
1884			 */
1885			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) >=
1886				    IP_VERSION(4, 0, 0) &&
1887			    amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
1888				    IP_VERSION(4, 2, 0)) {
1889				ring->doorbell_index =
1890					adev->doorbell_index.sdma_engine[i] << 1;
1891				ring->doorbell_index += 0x400;
1892			} else {
1893				/* From vega20, the sdma_doorbell_range in 1st
1894				 * doorbell page is reserved for page queue.
1895				 */
1896				ring->doorbell_index =
1897					(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1898			}
1899
1900			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1901				    IP_VERSION(4, 2, 2) &&
1902			    i >= 5)
1903				ring->vm_hub = AMDGPU_MMHUB1(0);
1904			else
1905				ring->vm_hub = AMDGPU_MMHUB0(0);
1906
1907			sprintf(ring->name, "page%d", i);
1908			r = amdgpu_ring_init(adev, ring, 1024,
1909					     &adev->sdma.trap_irq,
1910					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1911					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1912			if (r)
1913				return r;
1914		}
1915	}
1916
1917	if (amdgpu_sdma_ras_sw_init(adev)) {
1918		dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1919		return -EINVAL;
1920	}
1921
1922	/* Allocate memory for SDMA IP Dump buffer */
1923	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1924	if (ptr)
1925		adev->sdma.ip_dump = ptr;
1926	else
1927		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1928
1929	return r;
1930}
1931
1932static int sdma_v4_0_sw_fini(struct amdgpu_ip_block *ip_block)
1933{
1934	struct amdgpu_device *adev = ip_block->adev;
1935	int i;
1936
1937	for (i = 0; i < adev->sdma.num_instances; i++) {
1938		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1939		if (adev->sdma.has_page_queue)
1940			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1941	}
1942
1943	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 2, 2) ||
1944	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 0))
1945		amdgpu_sdma_destroy_inst_ctx(adev, true);
1946	else
1947		amdgpu_sdma_destroy_inst_ctx(adev, false);
1948
1949	kfree(adev->sdma.ip_dump);
1950
1951	return 0;
1952}
1953
1954static int sdma_v4_0_hw_init(struct amdgpu_ip_block *ip_block)
1955{
1956	struct amdgpu_device *adev = ip_block->adev;
1957
1958	if (adev->flags & AMD_IS_APU)
1959		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1960
1961	if (!amdgpu_sriov_vf(adev))
1962		sdma_v4_0_init_golden_registers(adev);
1963
1964	return sdma_v4_0_start(adev);
1965}
1966
1967static int sdma_v4_0_hw_fini(struct amdgpu_ip_block *ip_block)
1968{
1969	struct amdgpu_device *adev = ip_block->adev;
1970	int i;
1971
1972	if (amdgpu_sriov_vf(adev))
1973		return 0;
1974
1975	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1976		for (i = 0; i < adev->sdma.num_instances; i++) {
1977			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1978				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1979		}
1980	}
1981
1982	sdma_v4_0_ctx_switch_enable(adev, false);
1983	sdma_v4_0_enable(adev, false);
1984
1985	if (adev->flags & AMD_IS_APU)
1986		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1987
1988	return 0;
1989}
1990
1991static int sdma_v4_0_suspend(struct amdgpu_ip_block *ip_block)
1992{
1993	struct amdgpu_device *adev = ip_block->adev;
1994
1995	/* SMU saves SDMA state for us */
1996	if (adev->in_s0ix) {
1997		sdma_v4_0_gfx_enable(adev, false);
1998		return 0;
1999	}
2000
2001	return sdma_v4_0_hw_fini(ip_block);
2002}
2003
2004static int sdma_v4_0_resume(struct amdgpu_ip_block *ip_block)
2005{
2006	struct amdgpu_device *adev = ip_block->adev;
2007
2008	/* SMU restores SDMA state for us */
2009	if (adev->in_s0ix) {
2010		sdma_v4_0_enable(adev, true);
2011		sdma_v4_0_gfx_enable(adev, true);
2012		return 0;
2013	}
2014
2015	return sdma_v4_0_hw_init(ip_block);
2016}
2017
2018static bool sdma_v4_0_is_idle(void *handle)
2019{
2020	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2021	u32 i;
2022
2023	for (i = 0; i < adev->sdma.num_instances; i++) {
2024		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2025
2026		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2027			return false;
2028	}
2029
2030	return true;
2031}
2032
2033static int sdma_v4_0_wait_for_idle(struct amdgpu_ip_block *ip_block)
2034{
2035	unsigned i, j;
2036	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2037	struct amdgpu_device *adev = ip_block->adev;
2038
2039	for (i = 0; i < adev->usec_timeout; i++) {
2040		for (j = 0; j < adev->sdma.num_instances; j++) {
2041			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2042			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2043				break;
2044		}
2045		if (j == adev->sdma.num_instances)
2046			return 0;
2047		udelay(1);
2048	}
2049	return -ETIMEDOUT;
2050}
2051
2052static int sdma_v4_0_soft_reset(struct amdgpu_ip_block *ip_block)
2053{
2054	/* todo */
2055
2056	return 0;
2057}
2058
2059static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2060					struct amdgpu_irq_src *source,
2061					unsigned type,
2062					enum amdgpu_interrupt_state state)
2063{
2064	u32 sdma_cntl;
2065
2066	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2067	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2068		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2069	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2070
2071	return 0;
2072}
2073
2074static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2075				      struct amdgpu_irq_src *source,
2076				      struct amdgpu_iv_entry *entry)
2077{
2078	int instance;
2079
2080	DRM_DEBUG("IH: SDMA trap\n");
2081	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2082	if (instance < 0)
2083		return instance;
2084
2085	switch (entry->ring_id) {
2086	case 0:
2087		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2088		break;
2089	case 1:
2090		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
2091		    IP_VERSION(4, 2, 0))
2092			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2093		break;
2094	case 2:
2095		/* XXX compute */
2096		break;
2097	case 3:
2098		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) !=
2099		    IP_VERSION(4, 2, 0))
2100			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2101		break;
2102	}
2103	return 0;
2104}
2105
2106static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2107		void *err_data,
2108		struct amdgpu_iv_entry *entry)
2109{
2110	int instance;
2111
2112	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2113	 * be disabled and the driver should only look for the aggregated
2114	 * interrupt via sync flood
2115	 */
2116	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2117		goto out;
2118
2119	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2120	if (instance < 0)
2121		goto out;
2122
2123	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2124
2125out:
2126	return AMDGPU_RAS_SUCCESS;
2127}
2128
2129static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2130					      struct amdgpu_irq_src *source,
2131					      struct amdgpu_iv_entry *entry)
2132{
2133	int instance;
2134
2135	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2136
2137	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2138	if (instance < 0)
2139		return 0;
2140
2141	switch (entry->ring_id) {
2142	case 0:
2143		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2144		break;
2145	}
2146	return 0;
2147}
2148
2149static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2150					struct amdgpu_irq_src *source,
2151					unsigned type,
2152					enum amdgpu_interrupt_state state)
2153{
2154	u32 sdma_edc_config;
2155
2156	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2157	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2158		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2159	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2160
2161	return 0;
2162}
2163
2164static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2165					      struct amdgpu_iv_entry *entry)
2166{
2167	int instance;
2168	struct amdgpu_task_info *task_info;
2169	u64 addr;
2170
2171	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2172	if (instance < 0 || instance >= adev->sdma.num_instances) {
2173		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2174		return -EINVAL;
2175	}
2176
2177	addr = (u64)entry->src_data[0] << 12;
2178	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2179
2180	dev_dbg_ratelimited(adev->dev,
2181			   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
2182			   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2183			   entry->pasid);
2184
2185	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
2186	if (task_info) {
2187		dev_dbg_ratelimited(adev->dev,
2188				    " for process %s pid %d thread %s pid %d\n",
2189				    task_info->process_name, task_info->tgid,
2190				    task_info->task_name, task_info->pid);
2191		amdgpu_vm_put_task_info(task_info);
2192	}
2193
2194	return 0;
2195}
2196
2197static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2198					      struct amdgpu_irq_src *source,
2199					      struct amdgpu_iv_entry *entry)
2200{
2201	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2202	sdma_v4_0_print_iv_entry(adev, entry);
2203	return 0;
2204}
2205
2206static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2207					      struct amdgpu_irq_src *source,
2208					      struct amdgpu_iv_entry *entry)
2209{
2210	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2211	sdma_v4_0_print_iv_entry(adev, entry);
2212	return 0;
2213}
2214
2215static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2216					      struct amdgpu_irq_src *source,
2217					      struct amdgpu_iv_entry *entry)
2218{
2219	dev_dbg_ratelimited(adev->dev,
2220		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2221	sdma_v4_0_print_iv_entry(adev, entry);
2222	return 0;
2223}
2224
2225static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2226					      struct amdgpu_irq_src *source,
2227					      struct amdgpu_iv_entry *entry)
2228{
2229	dev_dbg_ratelimited(adev->dev,
2230		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2231	sdma_v4_0_print_iv_entry(adev, entry);
2232	return 0;
2233}
2234
2235static void sdma_v4_0_update_medium_grain_clock_gating(
2236		struct amdgpu_device *adev,
2237		bool enable)
2238{
2239	uint32_t data, def;
2240	int i;
2241
2242	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2243		for (i = 0; i < adev->sdma.num_instances; i++) {
2244			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2245			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2246				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2247				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2248				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2249				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2250				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2251				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2252				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2253			if (def != data)
2254				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2255		}
2256	} else {
2257		for (i = 0; i < adev->sdma.num_instances; i++) {
2258			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2259			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2260				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2261				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2262				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2263				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2264				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2265				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2266				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2267			if (def != data)
2268				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2269		}
2270	}
2271}
2272
2273
2274static void sdma_v4_0_update_medium_grain_light_sleep(
2275		struct amdgpu_device *adev,
2276		bool enable)
2277{
2278	uint32_t data, def;
2279	int i;
2280
2281	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2282		for (i = 0; i < adev->sdma.num_instances; i++) {
2283			/* 1-not override: enable sdma mem light sleep */
2284			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2285			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2286			if (def != data)
2287				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2288		}
2289	} else {
2290		for (i = 0; i < adev->sdma.num_instances; i++) {
2291		/* 0-override:disable sdma mem light sleep */
2292			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2293			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2294			if (def != data)
2295				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2296		}
2297	}
2298}
2299
2300static int sdma_v4_0_set_clockgating_state(void *handle,
2301					  enum amd_clockgating_state state)
2302{
2303	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2304
2305	if (amdgpu_sriov_vf(adev))
2306		return 0;
2307
2308	sdma_v4_0_update_medium_grain_clock_gating(adev,
2309			state == AMD_CG_STATE_GATE);
2310	sdma_v4_0_update_medium_grain_light_sleep(adev,
2311			state == AMD_CG_STATE_GATE);
2312	return 0;
2313}
2314
2315static int sdma_v4_0_set_powergating_state(void *handle,
2316					  enum amd_powergating_state state)
2317{
2318	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2319
2320	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2321	case IP_VERSION(4, 1, 0):
2322	case IP_VERSION(4, 1, 1):
2323	case IP_VERSION(4, 1, 2):
2324		sdma_v4_1_update_power_gating(adev,
2325				state == AMD_PG_STATE_GATE);
2326		break;
2327	default:
2328		break;
2329	}
2330
2331	return 0;
2332}
2333
2334static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2335{
2336	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2337	int data;
2338
2339	if (amdgpu_sriov_vf(adev))
2340		*flags = 0;
2341
2342	/* AMD_CG_SUPPORT_SDMA_MGCG */
2343	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2344	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2345		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2346
2347	/* AMD_CG_SUPPORT_SDMA_LS */
2348	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2349	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2350		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2351}
2352
2353static void sdma_v4_0_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p)
2354{
2355	struct amdgpu_device *adev = ip_block->adev;
2356	int i, j;
2357	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
2358	uint32_t instance_offset;
2359
2360	if (!adev->sdma.ip_dump)
2361		return;
2362
2363	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
2364	for (i = 0; i < adev->sdma.num_instances; i++) {
2365		instance_offset = i * reg_count;
2366		drm_printf(p, "\nInstance:%d\n", i);
2367
2368		for (j = 0; j < reg_count; j++)
2369			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_0[j].reg_name,
2370				   adev->sdma.ip_dump[instance_offset + j]);
2371	}
2372}
2373
2374static void sdma_v4_0_dump_ip_state(struct amdgpu_ip_block *ip_block)
2375{
2376	struct amdgpu_device *adev = ip_block->adev;
2377	int i, j;
2378	uint32_t instance_offset;
2379	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
2380
2381	if (!adev->sdma.ip_dump)
2382		return;
2383
2384	amdgpu_gfx_off_ctrl(adev, false);
2385	for (i = 0; i < adev->sdma.num_instances; i++) {
2386		instance_offset = i * reg_count;
2387		for (j = 0; j < reg_count; j++)
2388			adev->sdma.ip_dump[instance_offset + j] =
2389				RREG32(sdma_v4_0_get_reg_offset(adev, i,
2390				       sdma_reg_list_4_0[j].reg_offset));
2391	}
2392	amdgpu_gfx_off_ctrl(adev, true);
2393}
2394
2395const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2396	.name = "sdma_v4_0",
2397	.early_init = sdma_v4_0_early_init,
2398	.late_init = sdma_v4_0_late_init,
2399	.sw_init = sdma_v4_0_sw_init,
2400	.sw_fini = sdma_v4_0_sw_fini,
2401	.hw_init = sdma_v4_0_hw_init,
2402	.hw_fini = sdma_v4_0_hw_fini,
2403	.suspend = sdma_v4_0_suspend,
2404	.resume = sdma_v4_0_resume,
2405	.is_idle = sdma_v4_0_is_idle,
2406	.wait_for_idle = sdma_v4_0_wait_for_idle,
2407	.soft_reset = sdma_v4_0_soft_reset,
2408	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2409	.set_powergating_state = sdma_v4_0_set_powergating_state,
2410	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2411	.dump_ip_state = sdma_v4_0_dump_ip_state,
2412	.print_ip_state = sdma_v4_0_print_ip_state,
2413};
2414
2415static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2416	.type = AMDGPU_RING_TYPE_SDMA,
2417	.align_mask = 0xff,
2418	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2419	.support_64bit_ptrs = true,
2420	.secure_submission_supported = true,
2421	.get_rptr = sdma_v4_0_ring_get_rptr,
2422	.get_wptr = sdma_v4_0_ring_get_wptr,
2423	.set_wptr = sdma_v4_0_ring_set_wptr,
2424	.emit_frame_size =
2425		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2426		3 + /* hdp invalidate */
2427		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2428		/* sdma_v4_0_ring_emit_vm_flush */
2429		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2430		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2431		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2432	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2433	.emit_ib = sdma_v4_0_ring_emit_ib,
2434	.emit_fence = sdma_v4_0_ring_emit_fence,
2435	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2436	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2437	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2438	.test_ring = sdma_v4_0_ring_test_ring,
2439	.test_ib = sdma_v4_0_ring_test_ib,
2440	.insert_nop = sdma_v4_0_ring_insert_nop,
2441	.pad_ib = sdma_v4_0_ring_pad_ib,
2442	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2443	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2444	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2445};
2446
2447static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2448	.type = AMDGPU_RING_TYPE_SDMA,
2449	.align_mask = 0xff,
2450	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2451	.support_64bit_ptrs = true,
2452	.secure_submission_supported = true,
2453	.get_rptr = sdma_v4_0_ring_get_rptr,
2454	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2455	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2456	.emit_frame_size =
2457		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2458		3 + /* hdp invalidate */
2459		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2460		/* sdma_v4_0_ring_emit_vm_flush */
2461		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2462		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2463		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2464	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2465	.emit_ib = sdma_v4_0_ring_emit_ib,
2466	.emit_fence = sdma_v4_0_ring_emit_fence,
2467	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2468	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2469	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2470	.test_ring = sdma_v4_0_ring_test_ring,
2471	.test_ib = sdma_v4_0_ring_test_ib,
2472	.insert_nop = sdma_v4_0_ring_insert_nop,
2473	.pad_ib = sdma_v4_0_ring_pad_ib,
2474	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2475	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2476	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2477};
2478
2479static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2480{
2481	int i;
2482
2483	for (i = 0; i < adev->sdma.num_instances; i++) {
2484		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2485		adev->sdma.instance[i].ring.me = i;
2486		if (adev->sdma.has_page_queue) {
2487			adev->sdma.instance[i].page.funcs =
2488					&sdma_v4_0_page_ring_funcs;
2489			adev->sdma.instance[i].page.me = i;
2490		}
2491	}
2492}
2493
2494static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2495	.set = sdma_v4_0_set_trap_irq_state,
2496	.process = sdma_v4_0_process_trap_irq,
2497};
2498
2499static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2500	.process = sdma_v4_0_process_illegal_inst_irq,
2501};
2502
2503static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2504	.set = sdma_v4_0_set_ecc_irq_state,
2505	.process = amdgpu_sdma_process_ecc_irq,
2506};
2507
2508static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2509	.process = sdma_v4_0_process_vm_hole_irq,
2510};
2511
2512static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2513	.process = sdma_v4_0_process_doorbell_invalid_irq,
2514};
2515
2516static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2517	.process = sdma_v4_0_process_pool_timeout_irq,
2518};
2519
2520static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2521	.process = sdma_v4_0_process_srbm_write_irq,
2522};
2523
2524static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2525{
2526	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2527	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2528	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2529	switch (adev->sdma.num_instances) {
2530	case 5:
2531	case 8:
2532		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2533		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2534		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2535		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2536		break;
2537	default:
2538		break;
2539	}
2540	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2541	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2542	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2543	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2544	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2545	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2546	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2547}
2548
2549/**
2550 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2551 *
2552 * @ib: indirect buffer to copy to
2553 * @src_offset: src GPU address
2554 * @dst_offset: dst GPU address
2555 * @byte_count: number of bytes to xfer
2556 * @copy_flags: copy flags for the buffers
2557 *
2558 * Copy GPU buffers using the DMA engine (VEGA10/12).
2559 * Used by the amdgpu ttm implementation to move pages if
2560 * registered as the asic copy callback.
2561 */
2562static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2563				       uint64_t src_offset,
2564				       uint64_t dst_offset,
2565				       uint32_t byte_count,
2566				       uint32_t copy_flags)
2567{
2568	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2569		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2570		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2571	ib->ptr[ib->length_dw++] = byte_count - 1;
2572	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2573	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2574	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2575	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2576	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2577}
2578
2579/**
2580 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2581 *
2582 * @ib: indirect buffer to copy to
2583 * @src_data: value to write to buffer
2584 * @dst_offset: dst GPU address
2585 * @byte_count: number of bytes to xfer
2586 *
2587 * Fill GPU buffers using the DMA engine (VEGA10/12).
2588 */
2589static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2590				       uint32_t src_data,
2591				       uint64_t dst_offset,
2592				       uint32_t byte_count)
2593{
2594	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2595	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2596	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2597	ib->ptr[ib->length_dw++] = src_data;
2598	ib->ptr[ib->length_dw++] = byte_count - 1;
2599}
2600
2601static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2602	.copy_max_bytes = 0x400000,
2603	.copy_num_dw = 7,
2604	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2605
2606	.fill_max_bytes = 0x400000,
2607	.fill_num_dw = 5,
2608	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2609};
2610
2611static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2612{
2613	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2614	if (adev->sdma.has_page_queue)
2615		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2616	else
2617		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2618}
2619
2620static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2621	.copy_pte_num_dw = 7,
2622	.copy_pte = sdma_v4_0_vm_copy_pte,
2623
2624	.write_pte = sdma_v4_0_vm_write_pte,
2625	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2626};
2627
2628static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2629{
2630	struct drm_gpu_scheduler *sched;
2631	unsigned i;
2632
2633	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2634	for (i = 0; i < adev->sdma.num_instances; i++) {
2635		if (adev->sdma.has_page_queue)
2636			sched = &adev->sdma.instance[i].page.sched;
2637		else
2638			sched = &adev->sdma.instance[i].ring.sched;
2639		adev->vm_manager.vm_pte_scheds[i] = sched;
2640	}
2641	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2642}
2643
2644static void sdma_v4_0_get_ras_error_count(uint32_t value,
2645					uint32_t instance,
2646					uint32_t *sec_count)
2647{
2648	uint32_t i;
2649	uint32_t sec_cnt;
2650
2651	/* double bits error (multiple bits) error detection is not supported */
2652	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2653		/* the SDMA_EDC_COUNTER register in each sdma instance
2654		 * shares the same sed shift_mask
2655		 * */
2656		sec_cnt = (value &
2657			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2658			sdma_v4_0_ras_fields[i].sec_count_shift;
2659		if (sec_cnt) {
2660			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2661				sdma_v4_0_ras_fields[i].name,
2662				instance, sec_cnt);
2663			*sec_count += sec_cnt;
2664		}
2665	}
2666}
2667
2668static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2669			uint32_t instance, void *ras_error_status)
2670{
2671	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2672	uint32_t sec_count = 0;
2673	uint32_t reg_value = 0;
2674
2675	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2676	/* double bit error is not supported */
2677	if (reg_value)
2678		sdma_v4_0_get_ras_error_count(reg_value,
2679				instance, &sec_count);
2680	/* err_data->ce_count should be initialized to 0
2681	 * before calling into this function */
2682	err_data->ce_count += sec_count;
2683	/* double bit error is not supported
2684	 * set ue count to 0 */
2685	err_data->ue_count = 0;
2686
2687	return 0;
2688};
2689
2690static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2691{
2692	int i = 0;
2693
2694	for (i = 0; i < adev->sdma.num_instances; i++) {
2695		if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2696			dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2697			return;
2698		}
2699	}
2700}
2701
2702static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2703{
2704	int i;
2705
2706	/* read back edc counter registers to clear the counters */
2707	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2708		for (i = 0; i < adev->sdma.num_instances; i++)
2709			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2710	}
2711}
2712
2713const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2714	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2715	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2716};
2717
2718static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2719	.ras_block = {
2720		.hw_ops = &sdma_v4_0_ras_hw_ops,
2721		.ras_cb = sdma_v4_0_process_ras_data_cb,
2722	},
2723};
2724
2725static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2726{
2727	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2728	case IP_VERSION(4, 2, 0):
2729	case IP_VERSION(4, 2, 2):
2730		adev->sdma.ras = &sdma_v4_0_ras;
2731		break;
2732	case IP_VERSION(4, 4, 0):
2733		adev->sdma.ras = &sdma_v4_4_ras;
2734		break;
2735	default:
2736		break;
2737	}
2738}
2739
2740const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2741	.type = AMD_IP_BLOCK_TYPE_SDMA,
2742	.major = 4,
2743	.minor = 0,
2744	.rev = 0,
2745	.funcs = &sdma_v4_0_ip_funcs,
2746};