Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <drm/drm_drv.h>
  25
  26#include "amdgpu.h"
  27#include "amdgpu_trace.h"
  28#include "amdgpu_vm.h"
  29
  30/*
  31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
  32 */
  33struct amdgpu_vm_pt_cursor {
  34	uint64_t pfn;
  35	struct amdgpu_vm_bo_base *parent;
  36	struct amdgpu_vm_bo_base *entry;
  37	unsigned int level;
  38};
  39
  40/**
  41 * amdgpu_vm_pt_level_shift - return the addr shift for each level
  42 *
  43 * @adev: amdgpu_device pointer
  44 * @level: VMPT level
  45 *
  46 * Returns:
  47 * The number of bits the pfn needs to be right shifted for a level.
  48 */
  49static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
  50					     unsigned int level)
  51{
  52	switch (level) {
  53	case AMDGPU_VM_PDB2:
  54	case AMDGPU_VM_PDB1:
  55	case AMDGPU_VM_PDB0:
  56		return 9 * (AMDGPU_VM_PDB0 - level) +
  57			adev->vm_manager.block_size;
  58	case AMDGPU_VM_PTB:
  59		return 0;
  60	default:
  61		return ~0;
  62	}
  63}
  64
  65/**
  66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
  67 *
  68 * @adev: amdgpu_device pointer
  69 * @level: VMPT level
  70 *
  71 * Returns:
  72 * The number of entries in a page directory or page table.
  73 */
  74static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
  75					     unsigned int level)
  76{
  77	unsigned int shift;
  78
  79	shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
  80	if (level == adev->vm_manager.root_level)
  81		/* For the root directory */
  82		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
  83			>> shift;
  84	else if (level != AMDGPU_VM_PTB)
  85		/* Everything in between */
  86		return 512;
  87
  88	/* For the page tables on the leaves */
  89	return AMDGPU_VM_PTE_COUNT(adev);
  90}
  91
  92/**
  93 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
  94 *
  95 * @adev: amdgpu_device pointer
  96 * @level: VMPT level
  97 *
  98 * Returns:
  99 * The mask to extract the entry number of a PD/PT from an address.
 100 */
 101static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
 102					  unsigned int level)
 103{
 104	if (level <= adev->vm_manager.root_level)
 105		return 0xffffffff;
 106	else if (level != AMDGPU_VM_PTB)
 107		return 0x1ff;
 108	else
 109		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 110}
 111
 112/**
 113 * amdgpu_vm_pt_size - returns the size of the page table in bytes
 114 *
 115 * @adev: amdgpu_device pointer
 116 * @level: VMPT level
 117 *
 118 * Returns:
 119 * The size of the BO for a page directory or page table in bytes.
 120 */
 121static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
 122				      unsigned int level)
 123{
 124	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
 125}
 126
 127/**
 128 * amdgpu_vm_pt_parent - get the parent page directory
 129 *
 130 * @pt: child page table
 131 *
 132 * Helper to get the parent entry for the child page table. NULL if we are at
 133 * the root page directory.
 134 */
 135static struct amdgpu_vm_bo_base *
 136amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
 137{
 138	struct amdgpu_bo *parent = pt->bo->parent;
 139
 140	if (!parent)
 141		return NULL;
 142
 143	return parent->vm_bo;
 144}
 145
 146/**
 147 * amdgpu_vm_pt_start - start PD/PT walk
 148 *
 149 * @adev: amdgpu_device pointer
 150 * @vm: amdgpu_vm structure
 151 * @start: start address of the walk
 152 * @cursor: state to initialize
 153 *
 154 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 155 */
 156static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 157			       struct amdgpu_vm *vm, uint64_t start,
 158			       struct amdgpu_vm_pt_cursor *cursor)
 159{
 160	cursor->pfn = start;
 161	cursor->parent = NULL;
 162	cursor->entry = &vm->root;
 163	cursor->level = adev->vm_manager.root_level;
 164}
 165
 166/**
 167 * amdgpu_vm_pt_descendant - go to child node
 168 *
 169 * @adev: amdgpu_device pointer
 170 * @cursor: current state
 171 *
 172 * Walk to the child node of the current node.
 173 * Returns:
 174 * True if the walk was possible, false otherwise.
 175 */
 176static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 177				    struct amdgpu_vm_pt_cursor *cursor)
 178{
 179	unsigned int mask, shift, idx;
 180
 181	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
 182	    !cursor->entry->bo)
 183		return false;
 184
 185	mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
 186	shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
 187
 188	++cursor->level;
 189	idx = (cursor->pfn >> shift) & mask;
 190	cursor->parent = cursor->entry;
 191	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
 192	return true;
 193}
 194
 195/**
 196 * amdgpu_vm_pt_sibling - go to sibling node
 197 *
 198 * @adev: amdgpu_device pointer
 199 * @cursor: current state
 200 *
 201 * Walk to the sibling node of the current node.
 202 * Returns:
 203 * True if the walk was possible, false otherwise.
 204 */
 205static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 206				 struct amdgpu_vm_pt_cursor *cursor)
 207{
 208
 209	unsigned int shift, num_entries;
 210	struct amdgpu_bo_vm *parent;
 211
 212	/* Root doesn't have a sibling */
 213	if (!cursor->parent)
 214		return false;
 215
 216	/* Go to our parents and see if we got a sibling */
 217	shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
 218	num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
 219	parent = to_amdgpu_bo_vm(cursor->parent->bo);
 220
 221	if (cursor->entry == &parent->entries[num_entries - 1])
 222		return false;
 223
 224	cursor->pfn += 1ULL << shift;
 225	cursor->pfn &= ~((1ULL << shift) - 1);
 226	++cursor->entry;
 227	return true;
 228}
 229
 230/**
 231 * amdgpu_vm_pt_ancestor - go to parent node
 232 *
 233 * @cursor: current state
 234 *
 235 * Walk to the parent node of the current node.
 236 * Returns:
 237 * True if the walk was possible, false otherwise.
 238 */
 239static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 240{
 241	if (!cursor->parent)
 242		return false;
 243
 244	--cursor->level;
 245	cursor->entry = cursor->parent;
 246	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 247	return true;
 248}
 249
 250/**
 251 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 252 *
 253 * @adev: amdgpu_device pointer
 254 * @cursor: current state
 255 *
 256 * Walk the PD/PT tree to the next node.
 257 */
 258static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 259			      struct amdgpu_vm_pt_cursor *cursor)
 260{
 261	/* First try a newborn child */
 262	if (amdgpu_vm_pt_descendant(adev, cursor))
 263		return;
 264
 265	/* If that didn't worked try to find a sibling */
 266	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 267		/* No sibling, go to our parents and grandparents */
 268		if (!amdgpu_vm_pt_ancestor(cursor)) {
 269			cursor->pfn = ~0ll;
 270			return;
 271		}
 272	}
 273}
 274
 275/**
 276 * amdgpu_vm_pt_first_dfs - start a deep first search
 277 *
 278 * @adev: amdgpu_device structure
 279 * @vm: amdgpu_vm structure
 280 * @start: optional cursor to start with
 281 * @cursor: state to initialize
 282 *
 283 * Starts a deep first traversal of the PD/PT tree.
 284 */
 285static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 286				   struct amdgpu_vm *vm,
 287				   struct amdgpu_vm_pt_cursor *start,
 288				   struct amdgpu_vm_pt_cursor *cursor)
 289{
 290	if (start)
 291		*cursor = *start;
 292	else
 293		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 294
 295	while (amdgpu_vm_pt_descendant(adev, cursor))
 296		;
 297}
 298
 299/**
 300 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 301 *
 302 * @start: starting point for the search
 303 * @entry: current entry
 304 *
 305 * Returns:
 306 * True when the search should continue, false otherwise.
 307 */
 308static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 309				      struct amdgpu_vm_bo_base *entry)
 310{
 311	return entry && (!start || entry != start->entry);
 312}
 313
 314/**
 315 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 316 *
 317 * @adev: amdgpu_device structure
 318 * @cursor: current state
 319 *
 320 * Move the cursor to the next node in a deep first search.
 321 */
 322static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 323				  struct amdgpu_vm_pt_cursor *cursor)
 324{
 325	if (!cursor->entry)
 326		return;
 327
 328	if (!cursor->parent)
 329		cursor->entry = NULL;
 330	else if (amdgpu_vm_pt_sibling(adev, cursor))
 331		while (amdgpu_vm_pt_descendant(adev, cursor))
 332			;
 333	else
 334		amdgpu_vm_pt_ancestor(cursor);
 335}
 336
 337/*
 338 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 339 */
 340#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 341	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 342	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 343	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 344	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 345
 346/**
 347 * amdgpu_vm_pt_clear - initially clear the PDs/PTs
 348 *
 349 * @adev: amdgpu_device pointer
 350 * @vm: VM to clear BO from
 351 * @vmbo: BO to clear
 352 * @immediate: use an immediate update
 353 *
 354 * Root PD needs to be reserved when calling this.
 355 *
 356 * Returns:
 357 * 0 on success, errno otherwise.
 358 */
 359int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 360		       struct amdgpu_bo_vm *vmbo, bool immediate)
 361{
 362	unsigned int level = adev->vm_manager.root_level;
 363	struct ttm_operation_ctx ctx = { true, false };
 364	struct amdgpu_vm_update_params params;
 365	struct amdgpu_bo *ancestor = &vmbo->bo;
 366	unsigned int entries;
 367	struct amdgpu_bo *bo = &vmbo->bo;
 368	uint64_t addr;
 369	int r, idx;
 370
 371	/* Figure out our place in the hierarchy */
 372	if (ancestor->parent) {
 373		++level;
 374		while (ancestor->parent->parent) {
 375			++level;
 376			ancestor = ancestor->parent;
 377		}
 378	}
 379
 380	entries = amdgpu_bo_size(bo) / 8;
 381
 382	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 383	if (r)
 384		return r;
 385
 386	if (vmbo->shadow) {
 387		struct amdgpu_bo *shadow = vmbo->shadow;
 388
 389		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
 390		if (r)
 391			return r;
 392	}
 393
 394	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 395		return -ENODEV;
 396
 397	r = vm->update_funcs->map_table(vmbo);
 398	if (r)
 399		goto exit;
 400
 401	memset(&params, 0, sizeof(params));
 402	params.adev = adev;
 403	params.vm = vm;
 404	params.immediate = immediate;
 405
 406	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 407	if (r)
 408		goto exit;
 409
 410	addr = 0;
 411
 412	uint64_t value = 0, flags = 0;
 413	if (adev->asic_type >= CHIP_VEGA10) {
 414		if (level != AMDGPU_VM_PTB) {
 415			/* Handle leaf PDEs as PTEs */
 416			flags |= AMDGPU_PDE_PTE;
 417			amdgpu_gmc_get_vm_pde(adev, level,
 418					      &value, &flags);
 419		} else {
 420			/* Workaround for fault priority problem on GMC9 */
 421			flags = AMDGPU_PTE_EXECUTABLE;
 422		}
 423	}
 424
 425	r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
 426				     value, flags);
 427	if (r)
 428		goto exit;
 429
 430	r = vm->update_funcs->commit(&params, NULL);
 431exit:
 432	drm_dev_exit(idx);
 433	return r;
 434}
 435
 436/**
 437 * amdgpu_vm_pt_create - create bo for PD/PT
 438 *
 439 * @adev: amdgpu_device pointer
 440 * @vm: requesting vm
 441 * @level: the page table level
 442 * @immediate: use a immediate update
 443 * @vmbo: pointer to the buffer object pointer
 444 * @xcp_id: GPU partition id
 445 */
 446int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 447			int level, bool immediate, struct amdgpu_bo_vm **vmbo,
 448			int32_t xcp_id)
 449{
 450	struct amdgpu_bo_param bp;
 451	struct amdgpu_bo *bo;
 452	struct dma_resv *resv;
 453	unsigned int num_entries;
 454	int r;
 455
 456	memset(&bp, 0, sizeof(bp));
 457
 458	bp.size = amdgpu_vm_pt_size(adev, level);
 459	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
 460
 461	if (!adev->gmc.is_app_apu)
 462		bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
 463	else
 464		bp.domain = AMDGPU_GEM_DOMAIN_GTT;
 465
 466	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
 467	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 468		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 469
 470	if (level < AMDGPU_VM_PTB)
 471		num_entries = amdgpu_vm_pt_num_entries(adev, level);
 472	else
 473		num_entries = 0;
 474
 475	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
 476
 477	if (vm->use_cpu_for_update)
 478		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 479
 480	bp.type = ttm_bo_type_kernel;
 481	bp.no_wait_gpu = immediate;
 482	bp.xcp_id_plus1 = xcp_id + 1;
 483
 484	if (vm->root.bo)
 485		bp.resv = vm->root.bo->tbo.base.resv;
 486
 487	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
 488	if (r)
 489		return r;
 490
 491	bo = &(*vmbo)->bo;
 492	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
 493		(*vmbo)->shadow = NULL;
 494		return 0;
 495	}
 496
 497	if (!bp.resv)
 498		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
 499				      NULL));
 500	resv = bp.resv;
 501	memset(&bp, 0, sizeof(bp));
 502	bp.size = amdgpu_vm_pt_size(adev, level);
 503	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
 504	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 505	bp.type = ttm_bo_type_kernel;
 506	bp.resv = bo->tbo.base.resv;
 507	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
 508	bp.xcp_id_plus1 = xcp_id + 1;
 509
 510	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
 511
 512	if (!resv)
 513		dma_resv_unlock(bo->tbo.base.resv);
 514
 515	if (r) {
 516		amdgpu_bo_unref(&bo);
 517		return r;
 518	}
 519
 520	amdgpu_bo_add_to_shadow_list(*vmbo);
 521
 522	return 0;
 523}
 524
 525/**
 526 * amdgpu_vm_pt_alloc - Allocate a specific page table
 527 *
 528 * @adev: amdgpu_device pointer
 529 * @vm: VM to allocate page tables for
 530 * @cursor: Which page table to allocate
 531 * @immediate: use an immediate update
 532 *
 533 * Make sure a specific page table or directory is allocated.
 534 *
 535 * Returns:
 536 * 1 if page table needed to be allocated, 0 if page table was already
 537 * allocated, negative errno if an error occurred.
 538 */
 539static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
 540			      struct amdgpu_vm *vm,
 541			      struct amdgpu_vm_pt_cursor *cursor,
 542			      bool immediate)
 543{
 544	struct amdgpu_vm_bo_base *entry = cursor->entry;
 545	struct amdgpu_bo *pt_bo;
 546	struct amdgpu_bo_vm *pt;
 547	int r;
 548
 549	if (entry->bo)
 550		return 0;
 551
 552	amdgpu_vm_eviction_unlock(vm);
 553	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt,
 554				vm->root.bo->xcp_id);
 555	amdgpu_vm_eviction_lock(vm);
 556	if (r)
 557		return r;
 558
 559	/* Keep a reference to the root directory to avoid
 560	 * freeing them up in the wrong order.
 561	 */
 562	pt_bo = &pt->bo;
 563	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
 564	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
 565	r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
 566	if (r)
 567		goto error_free_pt;
 568
 569	return 0;
 570
 571error_free_pt:
 572	amdgpu_bo_unref(&pt->shadow);
 573	amdgpu_bo_unref(&pt_bo);
 574	return r;
 575}
 576
 577/**
 578 * amdgpu_vm_pt_free - free one PD/PT
 579 *
 580 * @entry: PDE to free
 581 */
 582static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
 583{
 584	struct amdgpu_bo *shadow;
 585
 586	if (!entry->bo)
 587		return;
 588
 589	entry->bo->vm_bo = NULL;
 590	shadow = amdgpu_bo_shadowed(entry->bo);
 591	if (shadow) {
 592		ttm_bo_set_bulk_move(&shadow->tbo, NULL);
 593		amdgpu_bo_unref(&shadow);
 594	}
 595	ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
 596
 597	spin_lock(&entry->vm->status_lock);
 598	list_del(&entry->vm_status);
 599	spin_unlock(&entry->vm->status_lock);
 600	amdgpu_bo_unref(&entry->bo);
 601}
 602
 603void amdgpu_vm_pt_free_work(struct work_struct *work)
 604{
 605	struct amdgpu_vm_bo_base *entry, *next;
 606	struct amdgpu_vm *vm;
 607	LIST_HEAD(pt_freed);
 608
 609	vm = container_of(work, struct amdgpu_vm, pt_free_work);
 610
 611	spin_lock(&vm->status_lock);
 612	list_splice_init(&vm->pt_freed, &pt_freed);
 613	spin_unlock(&vm->status_lock);
 614
 615	/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
 616	amdgpu_bo_reserve(vm->root.bo, true);
 617
 618	list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
 619		amdgpu_vm_pt_free(entry);
 620
 621	amdgpu_bo_unreserve(vm->root.bo);
 622}
 623
 624/**
 625 * amdgpu_vm_pt_free_dfs - free PD/PT levels
 626 *
 627 * @adev: amdgpu device structure
 628 * @vm: amdgpu vm structure
 629 * @start: optional cursor where to start freeing PDs/PTs
 630 * @unlocked: vm resv unlock status
 631 *
 632 * Free the page directory or page table level and all sub levels.
 633 */
 634static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev,
 635				  struct amdgpu_vm *vm,
 636				  struct amdgpu_vm_pt_cursor *start,
 637				  bool unlocked)
 638{
 639	struct amdgpu_vm_pt_cursor cursor;
 640	struct amdgpu_vm_bo_base *entry;
 
 
 
 
 641
 642	if (unlocked) {
 643		spin_lock(&vm->status_lock);
 644		for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 645			list_move(&entry->vm_status, &vm->pt_freed);
 646
 647		if (start)
 648			list_move(&start->entry->vm_status, &vm->pt_freed);
 649		spin_unlock(&vm->status_lock);
 650		schedule_work(&vm->pt_free_work);
 651		return;
 652	}
 653
 654	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 655		amdgpu_vm_pt_free(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656
 657	if (start)
 658		amdgpu_vm_pt_free(start->entry);
 
 659}
 660
 661/**
 662 * amdgpu_vm_pt_free_root - free root PD
 663 * @adev: amdgpu device structure
 664 * @vm: amdgpu vm structure
 665 *
 666 * Free the root page directory and everything below it.
 667 */
 668void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 669{
 670	amdgpu_vm_pt_free_dfs(adev, vm, NULL, false);
 
 
 
 
 
 
 671}
 672
 673/**
 674 * amdgpu_vm_pde_update - update a single level in the hierarchy
 675 *
 676 * @params: parameters for the update
 677 * @entry: entry to update
 678 *
 679 * Makes sure the requested entry in parent is up to date.
 680 */
 681int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
 682			 struct amdgpu_vm_bo_base *entry)
 683{
 684	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
 685	struct amdgpu_bo *bo = parent->bo, *pbo;
 686	struct amdgpu_vm *vm = params->vm;
 687	uint64_t pde, pt, flags;
 688	unsigned int level;
 689
 
 
 
 
 690	for (level = 0, pbo = bo->parent; pbo; ++level)
 691		pbo = pbo->parent;
 692
 693	level += params->adev->vm_manager.root_level;
 694	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
 695	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
 696	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
 697					1, 0, flags);
 698}
 699
 700/**
 701 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags
 702 *
 703 * @adev: amdgpu_device pointer
 704 * @flags: pointer to PTE flags
 705 *
 706 * Update PTE no-retry flags when TF is enabled.
 707 */
 708static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev,
 709						uint64_t *flags)
 710{
 711	/*
 712	 * Update no-retry flags with the corresponding TF
 713	 * no-retry combination.
 714	 */
 715	if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) {
 716		*flags &= ~AMDGPU_VM_NORETRY_FLAGS;
 717		*flags |= adev->gmc.noretry_flags;
 718	}
 719}
 720
 721/*
 722 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates
 723 *
 724 * Make sure to set the right flags for the PTEs at the desired level.
 725 */
 726static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
 727				       struct amdgpu_bo_vm *pt,
 728				       unsigned int level,
 729				       uint64_t pe, uint64_t addr,
 730				       unsigned int count, uint32_t incr,
 731				       uint64_t flags)
 732{
 733	struct amdgpu_device *adev = params->adev;
 734
 735	if (level != AMDGPU_VM_PTB) {
 736		flags |= AMDGPU_PDE_PTE;
 737		amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags);
 738
 739	} else if (adev->asic_type >= CHIP_VEGA10 &&
 740		   !(flags & AMDGPU_PTE_VALID) &&
 741		   !(flags & AMDGPU_PTE_PRT)) {
 742
 743		/* Workaround for fault priority problem on GMC9 */
 744		flags |= AMDGPU_PTE_EXECUTABLE;
 745	}
 746
 747	/*
 748	 * Update no-retry flags to use the no-retry flag combination
 749	 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination
 750	 * does not work when TF is enabled. So, replace them with
 751	 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for
 752	 * all cases.
 753	 */
 754	if (level == AMDGPU_VM_PTB)
 755		amdgpu_vm_pte_update_noretry_flags(adev, &flags);
 756
 757	/* APUs mapping system memory may need different MTYPEs on different
 758	 * NUMA nodes. Only do this for contiguous ranges that can be assumed
 759	 * to be on the same NUMA node.
 760	 */
 761	if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) &&
 762	    adev->gmc.gmc_funcs->override_vm_pte_flags &&
 763	    num_possible_nodes() > 1 && !params->pages_addr && params->allow_override)
 764		amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags);
 765
 766	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
 767					 flags);
 768}
 769
 770/**
 771 * amdgpu_vm_pte_fragment - get fragment for PTEs
 772 *
 773 * @params: see amdgpu_vm_update_params definition
 774 * @start: first PTE to handle
 775 * @end: last PTE to handle
 776 * @flags: hw mapping flags
 777 * @frag: resulting fragment size
 778 * @frag_end: end of this fragment
 779 *
 780 * Returns the first possible fragment for the start and end address.
 781 */
 782static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
 783				   uint64_t start, uint64_t end, uint64_t flags,
 784				   unsigned int *frag, uint64_t *frag_end)
 785{
 786	/**
 787	 * The MC L1 TLB supports variable sized pages, based on a fragment
 788	 * field in the PTE. When this field is set to a non-zero value, page
 789	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
 790	 * flags are considered valid for all PTEs within the fragment range
 791	 * and corresponding mappings are assumed to be physically contiguous.
 792	 *
 793	 * The L1 TLB can store a single PTE for the whole fragment,
 794	 * significantly increasing the space available for translation
 795	 * caching. This leads to large improvements in throughput when the
 796	 * TLB is under pressure.
 797	 *
 798	 * The L2 TLB distributes small and large fragments into two
 799	 * asymmetric partitions. The large fragment cache is significantly
 800	 * larger. Thus, we try to use large fragments wherever possible.
 801	 * Userspace can support this by aligning virtual base address and
 802	 * allocation size to the fragment size.
 803	 *
 804	 * Starting with Vega10 the fragment size only controls the L1. The L2
 805	 * is now directly feed with small/huge/giant pages from the walker.
 806	 */
 807	unsigned int max_frag;
 808
 809	if (params->adev->asic_type < CHIP_VEGA10)
 810		max_frag = params->adev->vm_manager.fragment_size;
 811	else
 812		max_frag = 31;
 813
 814	/* system pages are non continuously */
 815	if (params->pages_addr) {
 816		*frag = 0;
 817		*frag_end = end;
 818		return;
 819	}
 820
 821	/* This intentionally wraps around if no bit is set */
 822	*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
 823	if (*frag >= max_frag) {
 824		*frag = max_frag;
 825		*frag_end = end & ~((1ULL << max_frag) - 1);
 826	} else {
 827		*frag_end = start + (1 << *frag);
 828	}
 829}
 830
 831/**
 832 * amdgpu_vm_ptes_update - make sure that page tables are valid
 833 *
 834 * @params: see amdgpu_vm_update_params definition
 835 * @start: start of GPU address range
 836 * @end: end of GPU address range
 837 * @dst: destination address to map to, the next dst inside the function
 838 * @flags: mapping flags
 839 *
 840 * Update the page tables in the range @start - @end.
 841 *
 842 * Returns:
 843 * 0 for success, -EINVAL for failure.
 844 */
 845int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
 846			  uint64_t start, uint64_t end,
 847			  uint64_t dst, uint64_t flags)
 848{
 849	struct amdgpu_device *adev = params->adev;
 850	struct amdgpu_vm_pt_cursor cursor;
 851	uint64_t frag_start = start, frag_end;
 852	unsigned int frag;
 853	int r;
 854
 855	/* figure out the initial fragment */
 856	amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
 857			       &frag_end);
 858
 859	/* walk over the address space and update the PTs */
 860	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
 861	while (cursor.pfn < end) {
 862		unsigned int shift, parent_shift, mask;
 863		uint64_t incr, entry_end, pe_start;
 864		struct amdgpu_bo *pt;
 865
 866		if (!params->unlocked) {
 867			/* make sure that the page tables covering the
 868			 * address range are actually allocated
 869			 */
 870			r = amdgpu_vm_pt_alloc(params->adev, params->vm,
 871					       &cursor, params->immediate);
 872			if (r)
 873				return r;
 874		}
 875
 876		shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
 877		parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
 878		if (params->unlocked) {
 879			/* Unlocked updates are only allowed on the leaves */
 880			if (amdgpu_vm_pt_descendant(adev, &cursor))
 881				continue;
 882		} else if (adev->asic_type < CHIP_VEGA10 &&
 883			   (flags & AMDGPU_PTE_VALID)) {
 884			/* No huge page support before GMC v9 */
 885			if (cursor.level != AMDGPU_VM_PTB) {
 886				if (!amdgpu_vm_pt_descendant(adev, &cursor))
 887					return -ENOENT;
 888				continue;
 889			}
 890		} else if (frag < shift) {
 891			/* We can't use this level when the fragment size is
 892			 * smaller than the address shift. Go to the next
 893			 * child entry and try again.
 894			 */
 895			if (amdgpu_vm_pt_descendant(adev, &cursor))
 896				continue;
 897		} else if (frag >= parent_shift) {
 898			/* If the fragment size is even larger than the parent
 899			 * shift we should go up one level and check it again.
 900			 */
 901			if (!amdgpu_vm_pt_ancestor(&cursor))
 902				return -EINVAL;
 903			continue;
 904		}
 905
 906		pt = cursor.entry->bo;
 907		if (!pt) {
 908			/* We need all PDs and PTs for mapping something, */
 909			if (flags & AMDGPU_PTE_VALID)
 910				return -ENOENT;
 911
 912			/* but unmapping something can happen at a higher
 913			 * level.
 914			 */
 915			if (!amdgpu_vm_pt_ancestor(&cursor))
 916				return -EINVAL;
 917
 918			pt = cursor.entry->bo;
 919			shift = parent_shift;
 920			frag_end = max(frag_end, ALIGN(frag_start + 1,
 921				   1ULL << shift));
 922		}
 923
 924		/* Looks good so far, calculate parameters for the update */
 925		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
 926		mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
 927		pe_start = ((cursor.pfn >> shift) & mask) * 8;
 928		entry_end = ((uint64_t)mask + 1) << shift;
 929		entry_end += cursor.pfn & ~(entry_end - 1);
 930		entry_end = min(entry_end, end);
 931
 932		do {
 933			struct amdgpu_vm *vm = params->vm;
 934			uint64_t upd_end = min(entry_end, frag_end);
 935			unsigned int nptes = (upd_end - frag_start) >> shift;
 936			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
 937
 938			/* This can happen when we set higher level PDs to
 939			 * silent to stop fault floods.
 940			 */
 941			nptes = max(nptes, 1u);
 942
 943			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
 944						    min(nptes, 32u), dst, incr,
 945						    upd_flags,
 946						    vm->task_info ? vm->task_info->tgid : 0,
 947						    vm->immediate.fence_context);
 948			amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
 949						   cursor.level, pe_start, dst,
 950						   nptes, incr, upd_flags);
 951
 952			pe_start += nptes * 8;
 953			dst += nptes * incr;
 954
 955			frag_start = upd_end;
 956			if (frag_start >= frag_end) {
 957				/* figure out the next fragment */
 958				amdgpu_vm_pte_fragment(params, frag_start, end,
 959						       flags, &frag, &frag_end);
 960				if (frag < shift)
 961					break;
 962			}
 963		} while (frag_start < entry_end);
 964
 965		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
 966			/* Free all child entries.
 967			 * Update the tables with the flags and addresses and free up subsequent
 968			 * tables in the case of huge pages or freed up areas.
 969			 * This is the maximum you can free, because all other page tables are not
 970			 * completely covered by the range and so potentially still in use.
 971			 */
 972			while (cursor.pfn < frag_start) {
 973				/* Make sure previous mapping is freed */
 974				if (cursor.entry->bo) {
 975					params->table_freed = true;
 976					amdgpu_vm_pt_free_dfs(adev, params->vm,
 977							      &cursor,
 978							      params->unlocked);
 979				}
 980				amdgpu_vm_pt_next(adev, &cursor);
 981			}
 982
 983		} else if (frag >= shift) {
 984			/* or just move on to the next on the same level. */
 985			amdgpu_vm_pt_next(adev, &cursor);
 986		}
 987	}
 988
 989	return 0;
 990}
 991
 992/**
 993 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible
 994 * @adev: amdgpu device structure
 995 * @vm: amdgpu vm structure
 996 *
 997 * make root page directory and everything below it cpu accessible.
 998 */
 999int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1000{
1001	struct amdgpu_vm_pt_cursor cursor;
1002	struct amdgpu_vm_bo_base *entry;
1003
1004	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) {
1005
1006		struct amdgpu_bo_vm *bo;
1007		int r;
1008
1009		if (entry->bo) {
1010			bo = to_amdgpu_bo_vm(entry->bo);
1011			r = vm->update_funcs->map_table(bo);
1012			if (r)
1013				return r;
1014		}
1015	}
1016
1017	return 0;
1018}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0 OR MIT
  2/*
  3 * Copyright 2022 Advanced Micro Devices, Inc.
  4 *
  5 * Permission is hereby granted, free of charge, to any person obtaining a
  6 * copy of this software and associated documentation files (the "Software"),
  7 * to deal in the Software without restriction, including without limitation
  8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9 * and/or sell copies of the Software, and to permit persons to whom the
 10 * Software is furnished to do so, subject to the following conditions:
 11 *
 12 * The above copyright notice and this permission notice shall be included in
 13 * all copies or substantial portions of the Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 21 * OTHER DEALINGS IN THE SOFTWARE.
 22 */
 23
 24#include <drm/drm_drv.h>
 25
 26#include "amdgpu.h"
 27#include "amdgpu_trace.h"
 28#include "amdgpu_vm.h"
 29
 30/*
 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 32 */
 33struct amdgpu_vm_pt_cursor {
 34	uint64_t pfn;
 35	struct amdgpu_vm_bo_base *parent;
 36	struct amdgpu_vm_bo_base *entry;
 37	unsigned int level;
 38};
 39
 40/**
 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level
 42 *
 43 * @adev: amdgpu_device pointer
 44 * @level: VMPT level
 45 *
 46 * Returns:
 47 * The number of bits the pfn needs to be right shifted for a level.
 48 */
 49static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
 50					     unsigned int level)
 51{
 52	switch (level) {
 53	case AMDGPU_VM_PDB2:
 54	case AMDGPU_VM_PDB1:
 55	case AMDGPU_VM_PDB0:
 56		return 9 * (AMDGPU_VM_PDB0 - level) +
 57			adev->vm_manager.block_size;
 58	case AMDGPU_VM_PTB:
 59		return 0;
 60	default:
 61		return ~0;
 62	}
 63}
 64
 65/**
 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
 67 *
 68 * @adev: amdgpu_device pointer
 69 * @level: VMPT level
 70 *
 71 * Returns:
 72 * The number of entries in a page directory or page table.
 73 */
 74static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
 75					     unsigned int level)
 76{
 77	unsigned int shift;
 78
 79	shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
 80	if (level == adev->vm_manager.root_level)
 81		/* For the root directory */
 82		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
 83			>> shift;
 84	else if (level != AMDGPU_VM_PTB)
 85		/* Everything in between */
 86		return 512;
 87
 88	/* For the page tables on the leaves */
 89	return AMDGPU_VM_PTE_COUNT(adev);
 90}
 91
 92/**
 93 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
 94 *
 95 * @adev: amdgpu_device pointer
 96 * @level: VMPT level
 97 *
 98 * Returns:
 99 * The mask to extract the entry number of a PD/PT from an address.
100 */
101static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
102					  unsigned int level)
103{
104	if (level <= adev->vm_manager.root_level)
105		return 0xffffffff;
106	else if (level != AMDGPU_VM_PTB)
107		return 0x1ff;
108	else
109		return AMDGPU_VM_PTE_COUNT(adev) - 1;
110}
111
112/**
113 * amdgpu_vm_pt_size - returns the size of the page table in bytes
114 *
115 * @adev: amdgpu_device pointer
116 * @level: VMPT level
117 *
118 * Returns:
119 * The size of the BO for a page directory or page table in bytes.
120 */
121static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
122				      unsigned int level)
123{
124	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
125}
126
127/**
128 * amdgpu_vm_pt_parent - get the parent page directory
129 *
130 * @pt: child page table
131 *
132 * Helper to get the parent entry for the child page table. NULL if we are at
133 * the root page directory.
134 */
135static struct amdgpu_vm_bo_base *
136amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
137{
138	struct amdgpu_bo *parent = pt->bo->parent;
139
140	if (!parent)
141		return NULL;
142
143	return parent->vm_bo;
144}
145
146/**
147 * amdgpu_vm_pt_start - start PD/PT walk
148 *
149 * @adev: amdgpu_device pointer
150 * @vm: amdgpu_vm structure
151 * @start: start address of the walk
152 * @cursor: state to initialize
153 *
154 * Initialize a amdgpu_vm_pt_cursor to start a walk.
155 */
156static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
157			       struct amdgpu_vm *vm, uint64_t start,
158			       struct amdgpu_vm_pt_cursor *cursor)
159{
160	cursor->pfn = start;
161	cursor->parent = NULL;
162	cursor->entry = &vm->root;
163	cursor->level = adev->vm_manager.root_level;
164}
165
166/**
167 * amdgpu_vm_pt_descendant - go to child node
168 *
169 * @adev: amdgpu_device pointer
170 * @cursor: current state
171 *
172 * Walk to the child node of the current node.
173 * Returns:
174 * True if the walk was possible, false otherwise.
175 */
176static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
177				    struct amdgpu_vm_pt_cursor *cursor)
178{
179	unsigned int mask, shift, idx;
180
181	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
182	    !cursor->entry->bo)
183		return false;
184
185	mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
186	shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
187
188	++cursor->level;
189	idx = (cursor->pfn >> shift) & mask;
190	cursor->parent = cursor->entry;
191	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
192	return true;
193}
194
195/**
196 * amdgpu_vm_pt_sibling - go to sibling node
197 *
198 * @adev: amdgpu_device pointer
199 * @cursor: current state
200 *
201 * Walk to the sibling node of the current node.
202 * Returns:
203 * True if the walk was possible, false otherwise.
204 */
205static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
206				 struct amdgpu_vm_pt_cursor *cursor)
207{
208
209	unsigned int shift, num_entries;
210	struct amdgpu_bo_vm *parent;
211
212	/* Root doesn't have a sibling */
213	if (!cursor->parent)
214		return false;
215
216	/* Go to our parents and see if we got a sibling */
217	shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
218	num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
219	parent = to_amdgpu_bo_vm(cursor->parent->bo);
220
221	if (cursor->entry == &parent->entries[num_entries - 1])
222		return false;
223
224	cursor->pfn += 1ULL << shift;
225	cursor->pfn &= ~((1ULL << shift) - 1);
226	++cursor->entry;
227	return true;
228}
229
230/**
231 * amdgpu_vm_pt_ancestor - go to parent node
232 *
233 * @cursor: current state
234 *
235 * Walk to the parent node of the current node.
236 * Returns:
237 * True if the walk was possible, false otherwise.
238 */
239static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
240{
241	if (!cursor->parent)
242		return false;
243
244	--cursor->level;
245	cursor->entry = cursor->parent;
246	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
247	return true;
248}
249
250/**
251 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
252 *
253 * @adev: amdgpu_device pointer
254 * @cursor: current state
255 *
256 * Walk the PD/PT tree to the next node.
257 */
258static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
259			      struct amdgpu_vm_pt_cursor *cursor)
260{
261	/* First try a newborn child */
262	if (amdgpu_vm_pt_descendant(adev, cursor))
263		return;
264
265	/* If that didn't worked try to find a sibling */
266	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
267		/* No sibling, go to our parents and grandparents */
268		if (!amdgpu_vm_pt_ancestor(cursor)) {
269			cursor->pfn = ~0ll;
270			return;
271		}
272	}
273}
274
275/**
276 * amdgpu_vm_pt_first_dfs - start a deep first search
277 *
278 * @adev: amdgpu_device structure
279 * @vm: amdgpu_vm structure
280 * @start: optional cursor to start with
281 * @cursor: state to initialize
282 *
283 * Starts a deep first traversal of the PD/PT tree.
284 */
285static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
286				   struct amdgpu_vm *vm,
287				   struct amdgpu_vm_pt_cursor *start,
288				   struct amdgpu_vm_pt_cursor *cursor)
289{
290	if (start)
291		*cursor = *start;
292	else
293		amdgpu_vm_pt_start(adev, vm, 0, cursor);
294
295	while (amdgpu_vm_pt_descendant(adev, cursor))
296		;
297}
298
299/**
300 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
301 *
302 * @start: starting point for the search
303 * @entry: current entry
304 *
305 * Returns:
306 * True when the search should continue, false otherwise.
307 */
308static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
309				      struct amdgpu_vm_bo_base *entry)
310{
311	return entry && (!start || entry != start->entry);
312}
313
314/**
315 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
316 *
317 * @adev: amdgpu_device structure
318 * @cursor: current state
319 *
320 * Move the cursor to the next node in a deep first search.
321 */
322static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
323				  struct amdgpu_vm_pt_cursor *cursor)
324{
325	if (!cursor->entry)
326		return;
327
328	if (!cursor->parent)
329		cursor->entry = NULL;
330	else if (amdgpu_vm_pt_sibling(adev, cursor))
331		while (amdgpu_vm_pt_descendant(adev, cursor))
332			;
333	else
334		amdgpu_vm_pt_ancestor(cursor);
335}
336
337/*
338 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
339 */
340#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
341	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
342	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
343	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
344	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
345
346/**
347 * amdgpu_vm_pt_clear - initially clear the PDs/PTs
348 *
349 * @adev: amdgpu_device pointer
350 * @vm: VM to clear BO from
351 * @vmbo: BO to clear
352 * @immediate: use an immediate update
353 *
354 * Root PD needs to be reserved when calling this.
355 *
356 * Returns:
357 * 0 on success, errno otherwise.
358 */
359int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
360		       struct amdgpu_bo_vm *vmbo, bool immediate)
361{
362	unsigned int level = adev->vm_manager.root_level;
363	struct ttm_operation_ctx ctx = { true, false };
364	struct amdgpu_vm_update_params params;
365	struct amdgpu_bo *ancestor = &vmbo->bo;
366	unsigned int entries;
367	struct amdgpu_bo *bo = &vmbo->bo;
368	uint64_t addr;
369	int r, idx;
370
371	/* Figure out our place in the hierarchy */
372	if (ancestor->parent) {
373		++level;
374		while (ancestor->parent->parent) {
375			++level;
376			ancestor = ancestor->parent;
377		}
378	}
379
380	entries = amdgpu_bo_size(bo) / 8;
381
382	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
383	if (r)
384		return r;
385
 
 
 
 
 
 
 
 
386	if (!drm_dev_enter(adev_to_drm(adev), &idx))
387		return -ENODEV;
388
389	r = vm->update_funcs->map_table(vmbo);
390	if (r)
391		goto exit;
392
393	memset(&params, 0, sizeof(params));
394	params.adev = adev;
395	params.vm = vm;
396	params.immediate = immediate;
397
398	r = vm->update_funcs->prepare(&params, NULL);
399	if (r)
400		goto exit;
401
402	addr = 0;
403
404	uint64_t value = 0, flags = 0;
405	if (adev->asic_type >= CHIP_VEGA10) {
406		if (level != AMDGPU_VM_PTB) {
407			/* Handle leaf PDEs as PTEs */
408			flags |= AMDGPU_PDE_PTE_FLAG(adev);
409			amdgpu_gmc_get_vm_pde(adev, level,
410					      &value, &flags);
411		} else {
412			/* Workaround for fault priority problem on GMC9 */
413			flags = AMDGPU_PTE_EXECUTABLE;
414		}
415	}
416
417	r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
418				     value, flags);
419	if (r)
420		goto exit;
421
422	r = vm->update_funcs->commit(&params, NULL);
423exit:
424	drm_dev_exit(idx);
425	return r;
426}
427
428/**
429 * amdgpu_vm_pt_create - create bo for PD/PT
430 *
431 * @adev: amdgpu_device pointer
432 * @vm: requesting vm
433 * @level: the page table level
434 * @immediate: use a immediate update
435 * @vmbo: pointer to the buffer object pointer
436 * @xcp_id: GPU partition id
437 */
438int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
439			int level, bool immediate, struct amdgpu_bo_vm **vmbo,
440			int32_t xcp_id)
441{
442	struct amdgpu_bo_param bp;
 
 
443	unsigned int num_entries;
 
444
445	memset(&bp, 0, sizeof(bp));
446
447	bp.size = amdgpu_vm_pt_size(adev, level);
448	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
449
450	if (!adev->gmc.is_app_apu)
451		bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
452	else
453		bp.domain = AMDGPU_GEM_DOMAIN_GTT;
454
455	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
456	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
457		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
458
459	if (level < AMDGPU_VM_PTB)
460		num_entries = amdgpu_vm_pt_num_entries(adev, level);
461	else
462		num_entries = 0;
463
464	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
465
466	if (vm->use_cpu_for_update)
467		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
468
469	bp.type = ttm_bo_type_kernel;
470	bp.no_wait_gpu = immediate;
471	bp.xcp_id_plus1 = xcp_id + 1;
472
473	if (vm->root.bo)
474		bp.resv = vm->root.bo->tbo.base.resv;
475
476	return amdgpu_bo_create_vm(adev, &bp, vmbo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477}
478
479/**
480 * amdgpu_vm_pt_alloc - Allocate a specific page table
481 *
482 * @adev: amdgpu_device pointer
483 * @vm: VM to allocate page tables for
484 * @cursor: Which page table to allocate
485 * @immediate: use an immediate update
486 *
487 * Make sure a specific page table or directory is allocated.
488 *
489 * Returns:
490 * 1 if page table needed to be allocated, 0 if page table was already
491 * allocated, negative errno if an error occurred.
492 */
493static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
494			      struct amdgpu_vm *vm,
495			      struct amdgpu_vm_pt_cursor *cursor,
496			      bool immediate)
497{
498	struct amdgpu_vm_bo_base *entry = cursor->entry;
499	struct amdgpu_bo *pt_bo;
500	struct amdgpu_bo_vm *pt;
501	int r;
502
503	if (entry->bo)
504		return 0;
505
506	amdgpu_vm_eviction_unlock(vm);
507	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt,
508				vm->root.bo->xcp_id);
509	amdgpu_vm_eviction_lock(vm);
510	if (r)
511		return r;
512
513	/* Keep a reference to the root directory to avoid
514	 * freeing them up in the wrong order.
515	 */
516	pt_bo = &pt->bo;
517	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
518	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
519	r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
520	if (r)
521		goto error_free_pt;
522
523	return 0;
524
525error_free_pt:
 
526	amdgpu_bo_unref(&pt_bo);
527	return r;
528}
529
530/**
531 * amdgpu_vm_pt_free - free one PD/PT
532 *
533 * @entry: PDE to free
534 */
535static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
536{
 
 
537	if (!entry->bo)
538		return;
539
540	entry->bo->vm_bo = NULL;
 
 
 
 
 
541	ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
542
543	spin_lock(&entry->vm->status_lock);
544	list_del(&entry->vm_status);
545	spin_unlock(&entry->vm->status_lock);
546	amdgpu_bo_unref(&entry->bo);
547}
548
549void amdgpu_vm_pt_free_work(struct work_struct *work)
550{
551	struct amdgpu_vm_bo_base *entry, *next;
552	struct amdgpu_vm *vm;
553	LIST_HEAD(pt_freed);
554
555	vm = container_of(work, struct amdgpu_vm, pt_free_work);
556
557	spin_lock(&vm->status_lock);
558	list_splice_init(&vm->pt_freed, &pt_freed);
559	spin_unlock(&vm->status_lock);
560
561	/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
562	amdgpu_bo_reserve(vm->root.bo, true);
563
564	list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
565		amdgpu_vm_pt_free(entry);
566
567	amdgpu_bo_unreserve(vm->root.bo);
568}
569
570/**
571 * amdgpu_vm_pt_free_list - free PD/PT levels
572 *
573 * @adev: amdgpu device structure
574 * @params: see amdgpu_vm_update_params definition
 
 
575 *
576 * Free the page directory objects saved in the flush list
577 */
578void amdgpu_vm_pt_free_list(struct amdgpu_device *adev,
579			    struct amdgpu_vm_update_params *params)
 
 
580{
581	struct amdgpu_vm_bo_base *entry, *next;
582	struct amdgpu_vm *vm = params->vm;
583	bool unlocked = params->unlocked;
584
585	if (list_empty(&params->tlb_flush_waitlist))
586		return;
587
588	if (unlocked) {
589		spin_lock(&vm->status_lock);
590		list_splice_init(&params->tlb_flush_waitlist, &vm->pt_freed);
 
 
 
 
591		spin_unlock(&vm->status_lock);
592		schedule_work(&vm->pt_free_work);
593		return;
594	}
595
596	list_for_each_entry_safe(entry, next, &params->tlb_flush_waitlist, vm_status)
597		amdgpu_vm_pt_free(entry);
598}
599
600/**
601 * amdgpu_vm_pt_add_list - add PD/PT level to the flush list
602 *
603 * @params: parameters for the update
604 * @cursor: first PT entry to start DF search from, non NULL
605 *
606 * This list will be freed after TLB flush.
607 */
608static void amdgpu_vm_pt_add_list(struct amdgpu_vm_update_params *params,
609				  struct amdgpu_vm_pt_cursor *cursor)
610{
611	struct amdgpu_vm_pt_cursor seek;
612	struct amdgpu_vm_bo_base *entry;
613
614	spin_lock(&params->vm->status_lock);
615	for_each_amdgpu_vm_pt_dfs_safe(params->adev, params->vm, cursor, seek, entry) {
616		if (entry && entry->bo)
617			list_move(&entry->vm_status, &params->tlb_flush_waitlist);
618	}
619
620	/* enter start node now */
621	list_move(&cursor->entry->vm_status, &params->tlb_flush_waitlist);
622	spin_unlock(&params->vm->status_lock);
623}
624
625/**
626 * amdgpu_vm_pt_free_root - free root PD
627 * @adev: amdgpu device structure
628 * @vm: amdgpu vm structure
629 *
630 * Free the root page directory and everything below it.
631 */
632void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
633{
634	struct amdgpu_vm_pt_cursor cursor;
635	struct amdgpu_vm_bo_base *entry;
636
637	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) {
638		if (entry)
639			amdgpu_vm_pt_free(entry);
640	}
641}
642
643/**
644 * amdgpu_vm_pde_update - update a single level in the hierarchy
645 *
646 * @params: parameters for the update
647 * @entry: entry to update
648 *
649 * Makes sure the requested entry in parent is up to date.
650 */
651int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
652			 struct amdgpu_vm_bo_base *entry)
653{
654	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
655	struct amdgpu_bo *bo, *pbo;
656	struct amdgpu_vm *vm = params->vm;
657	uint64_t pde, pt, flags;
658	unsigned int level;
659
660	if (WARN_ON(!parent))
661		return -EINVAL;
662
663	bo = parent->bo;
664	for (level = 0, pbo = bo->parent; pbo; ++level)
665		pbo = pbo->parent;
666
667	level += params->adev->vm_manager.root_level;
668	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
669	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
670	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
671					1, 0, flags);
672}
673
674/**
675 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags
676 *
677 * @adev: amdgpu_device pointer
678 * @flags: pointer to PTE flags
679 *
680 * Update PTE no-retry flags when TF is enabled.
681 */
682static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev,
683						uint64_t *flags)
684{
685	/*
686	 * Update no-retry flags with the corresponding TF
687	 * no-retry combination.
688	 */
689	if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) {
690		*flags &= ~AMDGPU_VM_NORETRY_FLAGS;
691		*flags |= adev->gmc.noretry_flags;
692	}
693}
694
695/*
696 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates
697 *
698 * Make sure to set the right flags for the PTEs at the desired level.
699 */
700static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
701				       struct amdgpu_bo_vm *pt,
702				       unsigned int level,
703				       uint64_t pe, uint64_t addr,
704				       unsigned int count, uint32_t incr,
705				       uint64_t flags)
706{
707	struct amdgpu_device *adev = params->adev;
708
709	if (level != AMDGPU_VM_PTB) {
710		flags |= AMDGPU_PDE_PTE_FLAG(params->adev);
711		amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags);
712
713	} else if (adev->asic_type >= CHIP_VEGA10 &&
714		   !(flags & AMDGPU_PTE_VALID) &&
715		   !(flags & AMDGPU_PTE_PRT_FLAG(params->adev))) {
716
717		/* Workaround for fault priority problem on GMC9 */
718		flags |= AMDGPU_PTE_EXECUTABLE;
719	}
720
721	/*
722	 * Update no-retry flags to use the no-retry flag combination
723	 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination
724	 * does not work when TF is enabled. So, replace them with
725	 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for
726	 * all cases.
727	 */
728	if (level == AMDGPU_VM_PTB)
729		amdgpu_vm_pte_update_noretry_flags(adev, &flags);
730
731	/* APUs mapping system memory may need different MTYPEs on different
732	 * NUMA nodes. Only do this for contiguous ranges that can be assumed
733	 * to be on the same NUMA node.
734	 */
735	if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) &&
736	    adev->gmc.gmc_funcs->override_vm_pte_flags &&
737	    num_possible_nodes() > 1 && !params->pages_addr && params->allow_override)
738		amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags);
739
740	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
741					 flags);
742}
743
744/**
745 * amdgpu_vm_pte_fragment - get fragment for PTEs
746 *
747 * @params: see amdgpu_vm_update_params definition
748 * @start: first PTE to handle
749 * @end: last PTE to handle
750 * @flags: hw mapping flags
751 * @frag: resulting fragment size
752 * @frag_end: end of this fragment
753 *
754 * Returns the first possible fragment for the start and end address.
755 */
756static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
757				   uint64_t start, uint64_t end, uint64_t flags,
758				   unsigned int *frag, uint64_t *frag_end)
759{
760	/**
761	 * The MC L1 TLB supports variable sized pages, based on a fragment
762	 * field in the PTE. When this field is set to a non-zero value, page
763	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
764	 * flags are considered valid for all PTEs within the fragment range
765	 * and corresponding mappings are assumed to be physically contiguous.
766	 *
767	 * The L1 TLB can store a single PTE for the whole fragment,
768	 * significantly increasing the space available for translation
769	 * caching. This leads to large improvements in throughput when the
770	 * TLB is under pressure.
771	 *
772	 * The L2 TLB distributes small and large fragments into two
773	 * asymmetric partitions. The large fragment cache is significantly
774	 * larger. Thus, we try to use large fragments wherever possible.
775	 * Userspace can support this by aligning virtual base address and
776	 * allocation size to the fragment size.
777	 *
778	 * Starting with Vega10 the fragment size only controls the L1. The L2
779	 * is now directly feed with small/huge/giant pages from the walker.
780	 */
781	unsigned int max_frag;
782
783	if (params->adev->asic_type < CHIP_VEGA10)
784		max_frag = params->adev->vm_manager.fragment_size;
785	else
786		max_frag = 31;
787
788	/* system pages are non continuously */
789	if (params->pages_addr) {
790		*frag = 0;
791		*frag_end = end;
792		return;
793	}
794
795	/* This intentionally wraps around if no bit is set */
796	*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
797	if (*frag >= max_frag) {
798		*frag = max_frag;
799		*frag_end = end & ~((1ULL << max_frag) - 1);
800	} else {
801		*frag_end = start + (1 << *frag);
802	}
803}
804
805/**
806 * amdgpu_vm_ptes_update - make sure that page tables are valid
807 *
808 * @params: see amdgpu_vm_update_params definition
809 * @start: start of GPU address range
810 * @end: end of GPU address range
811 * @dst: destination address to map to, the next dst inside the function
812 * @flags: mapping flags
813 *
814 * Update the page tables in the range @start - @end.
815 *
816 * Returns:
817 * 0 for success, -EINVAL for failure.
818 */
819int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
820			  uint64_t start, uint64_t end,
821			  uint64_t dst, uint64_t flags)
822{
823	struct amdgpu_device *adev = params->adev;
824	struct amdgpu_vm_pt_cursor cursor;
825	uint64_t frag_start = start, frag_end;
826	unsigned int frag;
827	int r;
828
829	/* figure out the initial fragment */
830	amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
831			       &frag_end);
832
833	/* walk over the address space and update the PTs */
834	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
835	while (cursor.pfn < end) {
836		unsigned int shift, parent_shift, mask;
837		uint64_t incr, entry_end, pe_start;
838		struct amdgpu_bo *pt;
839
840		if (!params->unlocked) {
841			/* make sure that the page tables covering the
842			 * address range are actually allocated
843			 */
844			r = amdgpu_vm_pt_alloc(params->adev, params->vm,
845					       &cursor, params->immediate);
846			if (r)
847				return r;
848		}
849
850		shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
851		parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
852		if (params->unlocked) {
853			/* Unlocked updates are only allowed on the leaves */
854			if (amdgpu_vm_pt_descendant(adev, &cursor))
855				continue;
856		} else if (adev->asic_type < CHIP_VEGA10 &&
857			   (flags & AMDGPU_PTE_VALID)) {
858			/* No huge page support before GMC v9 */
859			if (cursor.level != AMDGPU_VM_PTB) {
860				if (!amdgpu_vm_pt_descendant(adev, &cursor))
861					return -ENOENT;
862				continue;
863			}
864		} else if (frag < shift) {
865			/* We can't use this level when the fragment size is
866			 * smaller than the address shift. Go to the next
867			 * child entry and try again.
868			 */
869			if (amdgpu_vm_pt_descendant(adev, &cursor))
870				continue;
871		} else if (frag >= parent_shift) {
872			/* If the fragment size is even larger than the parent
873			 * shift we should go up one level and check it again.
874			 */
875			if (!amdgpu_vm_pt_ancestor(&cursor))
876				return -EINVAL;
877			continue;
878		}
879
880		pt = cursor.entry->bo;
881		if (!pt) {
882			/* We need all PDs and PTs for mapping something, */
883			if (flags & AMDGPU_PTE_VALID)
884				return -ENOENT;
885
886			/* but unmapping something can happen at a higher
887			 * level.
888			 */
889			if (!amdgpu_vm_pt_ancestor(&cursor))
890				return -EINVAL;
891
892			pt = cursor.entry->bo;
893			shift = parent_shift;
894			frag_end = max(frag_end, ALIGN(frag_start + 1,
895				   1ULL << shift));
896		}
897
898		/* Looks good so far, calculate parameters for the update */
899		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
900		mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
901		pe_start = ((cursor.pfn >> shift) & mask) * 8;
902		entry_end = ((uint64_t)mask + 1) << shift;
903		entry_end += cursor.pfn & ~(entry_end - 1);
904		entry_end = min(entry_end, end);
905
906		do {
907			struct amdgpu_vm *vm = params->vm;
908			uint64_t upd_end = min(entry_end, frag_end);
909			unsigned int nptes = (upd_end - frag_start) >> shift;
910			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
911
912			/* This can happen when we set higher level PDs to
913			 * silent to stop fault floods.
914			 */
915			nptes = max(nptes, 1u);
916
917			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
918						    min(nptes, 32u), dst, incr,
919						    upd_flags,
920						    vm->task_info ? vm->task_info->tgid : 0,
921						    vm->immediate.fence_context);
922			amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
923						   cursor.level, pe_start, dst,
924						   nptes, incr, upd_flags);
925
926			pe_start += nptes * 8;
927			dst += nptes * incr;
928
929			frag_start = upd_end;
930			if (frag_start >= frag_end) {
931				/* figure out the next fragment */
932				amdgpu_vm_pte_fragment(params, frag_start, end,
933						       flags, &frag, &frag_end);
934				if (frag < shift)
935					break;
936			}
937		} while (frag_start < entry_end);
938
939		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
940			/* Free all child entries.
941			 * Update the tables with the flags and addresses and free up subsequent
942			 * tables in the case of huge pages or freed up areas.
943			 * This is the maximum you can free, because all other page tables are not
944			 * completely covered by the range and so potentially still in use.
945			 */
946			while (cursor.pfn < frag_start) {
947				/* Make sure previous mapping is freed */
948				if (cursor.entry->bo) {
949					params->needs_flush = true;
950					amdgpu_vm_pt_add_list(params, &cursor);
 
 
951				}
952				amdgpu_vm_pt_next(adev, &cursor);
953			}
954
955		} else if (frag >= shift) {
956			/* or just move on to the next on the same level. */
957			amdgpu_vm_pt_next(adev, &cursor);
958		}
959	}
960
961	return 0;
962}
963
964/**
965 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible
966 * @adev: amdgpu device structure
967 * @vm: amdgpu vm structure
968 *
969 * make root page directory and everything below it cpu accessible.
970 */
971int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm)
972{
973	struct amdgpu_vm_pt_cursor cursor;
974	struct amdgpu_vm_bo_base *entry;
975
976	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) {
977
978		struct amdgpu_bo_vm *bo;
979		int r;
980
981		if (entry->bo) {
982			bo = to_amdgpu_bo_vm(entry->bo);
983			r = vm->update_funcs->map_table(bo);
984			if (r)
985				return r;
986		}
987	}
988
989	return 0;
990}