Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * crash.c - kernel crash support code.
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
 
 
  7#include <linux/buildid.h>
  8#include <linux/init.h>
  9#include <linux/utsname.h>
 10#include <linux/vmalloc.h>
 11#include <linux/sizes.h>
 12#include <linux/kexec.h>
 13#include <linux/memory.h>
 14#include <linux/mm.h>
 15#include <linux/cpuhotplug.h>
 16#include <linux/memblock.h>
 17#include <linux/kmemleak.h>
 18#include <linux/crash_core.h>
 19#include <linux/reboot.h>
 20#include <linux/btf.h>
 21#include <linux/objtool.h>
 22
 23#include <asm/page.h>
 24#include <asm/sections.h>
 25
 26#include <crypto/sha1.h>
 27
 28#include "kallsyms_internal.h"
 29#include "kexec_internal.h"
 30
 31/* Per cpu memory for storing cpu states in case of system crash. */
 32note_buf_t __percpu *crash_notes;
 33
 34#ifdef CONFIG_CRASH_DUMP
 35
 36int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 37{
 38	struct page *vmcoreinfo_page;
 39	void *safecopy;
 40
 41	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 42		return 0;
 43	if (image->type != KEXEC_TYPE_CRASH)
 44		return 0;
 45
 46	/*
 47	 * For kdump, allocate one vmcoreinfo safe copy from the
 48	 * crash memory. as we have arch_kexec_protect_crashkres()
 49	 * after kexec syscall, we naturally protect it from write
 50	 * (even read) access under kernel direct mapping. But on
 51	 * the other hand, we still need to operate it when crash
 52	 * happens to generate vmcoreinfo note, hereby we rely on
 53	 * vmap for this purpose.
 54	 */
 55	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 56	if (!vmcoreinfo_page) {
 57		pr_warn("Could not allocate vmcoreinfo buffer\n");
 58		return -ENOMEM;
 59	}
 60	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 61	if (!safecopy) {
 62		pr_warn("Could not vmap vmcoreinfo buffer\n");
 63		return -ENOMEM;
 64	}
 65
 66	image->vmcoreinfo_data_copy = safecopy;
 67	crash_update_vmcoreinfo_safecopy(safecopy);
 68
 69	return 0;
 70}
 71
 72
 73
 74int kexec_should_crash(struct task_struct *p)
 75{
 76	/*
 77	 * If crash_kexec_post_notifiers is enabled, don't run
 78	 * crash_kexec() here yet, which must be run after panic
 79	 * notifiers in panic().
 80	 */
 81	if (crash_kexec_post_notifiers)
 82		return 0;
 83	/*
 84	 * There are 4 panic() calls in make_task_dead() path, each of which
 85	 * corresponds to each of these 4 conditions.
 86	 */
 87	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 88		return 1;
 89	return 0;
 90}
 91
 92int kexec_crash_loaded(void)
 93{
 94	return !!kexec_crash_image;
 95}
 96EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 97
 98/*
 99 * No panic_cpu check version of crash_kexec().  This function is called
100 * only when panic_cpu holds the current CPU number; this is the only CPU
101 * which processes crash_kexec routines.
102 */
103void __noclone __crash_kexec(struct pt_regs *regs)
104{
105	/* Take the kexec_lock here to prevent sys_kexec_load
106	 * running on one cpu from replacing the crash kernel
107	 * we are using after a panic on a different cpu.
108	 *
109	 * If the crash kernel was not located in a fixed area
110	 * of memory the xchg(&kexec_crash_image) would be
111	 * sufficient.  But since I reuse the memory...
112	 */
113	if (kexec_trylock()) {
114		if (kexec_crash_image) {
115			struct pt_regs fixed_regs;
116
117			crash_setup_regs(&fixed_regs, regs);
118			crash_save_vmcoreinfo();
119			machine_crash_shutdown(&fixed_regs);
120			machine_kexec(kexec_crash_image);
121		}
122		kexec_unlock();
123	}
124}
125STACK_FRAME_NON_STANDARD(__crash_kexec);
126
127__bpf_kfunc void crash_kexec(struct pt_regs *regs)
128{
129	int old_cpu, this_cpu;
130
131	/*
132	 * Only one CPU is allowed to execute the crash_kexec() code as with
133	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
134	 * may stop each other.  To exclude them, we use panic_cpu here too.
135	 */
136	old_cpu = PANIC_CPU_INVALID;
137	this_cpu = raw_smp_processor_id();
138
139	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
140		/* This is the 1st CPU which comes here, so go ahead. */
141		__crash_kexec(regs);
142
143		/*
144		 * Reset panic_cpu to allow another panic()/crash_kexec()
145		 * call.
146		 */
147		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
148	}
149}
150
151static inline resource_size_t crash_resource_size(const struct resource *res)
152{
153	return !res->end ? 0 : resource_size(res);
154}
155
156
157
158
159int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
160			  void **addr, unsigned long *sz)
161{
162	Elf64_Ehdr *ehdr;
163	Elf64_Phdr *phdr;
164	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
165	unsigned char *buf;
166	unsigned int cpu, i;
167	unsigned long long notes_addr;
168	unsigned long mstart, mend;
169
170	/* extra phdr for vmcoreinfo ELF note */
171	nr_phdr = nr_cpus + 1;
172	nr_phdr += mem->nr_ranges;
173
174	/*
175	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
176	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
177	 * I think this is required by tools like gdb. So same physical
178	 * memory will be mapped in two ELF headers. One will contain kernel
179	 * text virtual addresses and other will have __va(physical) addresses.
180	 */
181
182	nr_phdr++;
183	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
184	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
185
186	buf = vzalloc(elf_sz);
187	if (!buf)
188		return -ENOMEM;
189
190	ehdr = (Elf64_Ehdr *)buf;
191	phdr = (Elf64_Phdr *)(ehdr + 1);
192	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
193	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
194	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
195	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
196	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
197	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
198	ehdr->e_type = ET_CORE;
199	ehdr->e_machine = ELF_ARCH;
200	ehdr->e_version = EV_CURRENT;
201	ehdr->e_phoff = sizeof(Elf64_Ehdr);
202	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
203	ehdr->e_phentsize = sizeof(Elf64_Phdr);
204
205	/* Prepare one phdr of type PT_NOTE for each possible CPU */
206	for_each_possible_cpu(cpu) {
207		phdr->p_type = PT_NOTE;
208		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
209		phdr->p_offset = phdr->p_paddr = notes_addr;
210		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
211		(ehdr->e_phnum)++;
212		phdr++;
213	}
214
215	/* Prepare one PT_NOTE header for vmcoreinfo */
216	phdr->p_type = PT_NOTE;
217	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
218	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
219	(ehdr->e_phnum)++;
220	phdr++;
221
222	/* Prepare PT_LOAD type program header for kernel text region */
223	if (need_kernel_map) {
224		phdr->p_type = PT_LOAD;
225		phdr->p_flags = PF_R|PF_W|PF_X;
226		phdr->p_vaddr = (unsigned long) _text;
227		phdr->p_filesz = phdr->p_memsz = _end - _text;
228		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
229		ehdr->e_phnum++;
230		phdr++;
231	}
232
233	/* Go through all the ranges in mem->ranges[] and prepare phdr */
234	for (i = 0; i < mem->nr_ranges; i++) {
235		mstart = mem->ranges[i].start;
236		mend = mem->ranges[i].end;
237
238		phdr->p_type = PT_LOAD;
239		phdr->p_flags = PF_R|PF_W|PF_X;
240		phdr->p_offset  = mstart;
241
242		phdr->p_paddr = mstart;
243		phdr->p_vaddr = (unsigned long) __va(mstart);
244		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
245		phdr->p_align = 0;
246		ehdr->e_phnum++;
247#ifdef CONFIG_KEXEC_FILE
248		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
249			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
250			      ehdr->e_phnum, phdr->p_offset);
251#endif
252		phdr++;
253	}
254
255	*addr = buf;
256	*sz = elf_sz;
257	return 0;
258}
259
260int crash_exclude_mem_range(struct crash_mem *mem,
261			    unsigned long long mstart, unsigned long long mend)
262{
263	int i;
264	unsigned long long start, end, p_start, p_end;
265
266	for (i = 0; i < mem->nr_ranges; i++) {
267		start = mem->ranges[i].start;
268		end = mem->ranges[i].end;
269		p_start = mstart;
270		p_end = mend;
271
272		if (p_start > end)
273			continue;
274
275		/*
276		 * Because the memory ranges in mem->ranges are stored in
277		 * ascending order, when we detect `p_end < start`, we can
278		 * immediately exit the for loop, as the subsequent memory
279		 * ranges will definitely be outside the range we are looking
280		 * for.
281		 */
282		if (p_end < start)
283			break;
284
285		/* Truncate any area outside of range */
286		if (p_start < start)
287			p_start = start;
288		if (p_end > end)
289			p_end = end;
290
291		/* Found completely overlapping range */
292		if (p_start == start && p_end == end) {
293			memmove(&mem->ranges[i], &mem->ranges[i + 1],
294				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
295			i--;
296			mem->nr_ranges--;
297		} else if (p_start > start && p_end < end) {
298			/* Split original range */
299			if (mem->nr_ranges >= mem->max_nr_ranges)
300				return -ENOMEM;
301
302			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
303				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
304
305			mem->ranges[i].end = p_start - 1;
306			mem->ranges[i + 1].start = p_end + 1;
307			mem->ranges[i + 1].end = end;
308
309			i++;
310			mem->nr_ranges++;
311		} else if (p_start != start)
312			mem->ranges[i].end = p_start - 1;
313		else
314			mem->ranges[i].start = p_end + 1;
315	}
316
317	return 0;
318}
319
320ssize_t crash_get_memory_size(void)
321{
322	ssize_t size = 0;
323
324	if (!kexec_trylock())
325		return -EBUSY;
326
327	size += crash_resource_size(&crashk_res);
328	size += crash_resource_size(&crashk_low_res);
329
330	kexec_unlock();
331	return size;
332}
333
334static int __crash_shrink_memory(struct resource *old_res,
335				 unsigned long new_size)
336{
337	struct resource *ram_res;
338
339	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
340	if (!ram_res)
341		return -ENOMEM;
342
343	ram_res->start = old_res->start + new_size;
344	ram_res->end   = old_res->end;
345	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
346	ram_res->name  = "System RAM";
347
348	if (!new_size) {
349		release_resource(old_res);
350		old_res->start = 0;
351		old_res->end   = 0;
352	} else {
353		crashk_res.end = ram_res->start - 1;
354	}
355
356	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
357	insert_resource(&iomem_resource, ram_res);
358
359	return 0;
360}
361
362int crash_shrink_memory(unsigned long new_size)
363{
364	int ret = 0;
365	unsigned long old_size, low_size;
366
367	if (!kexec_trylock())
368		return -EBUSY;
369
370	if (kexec_crash_image) {
371		ret = -ENOENT;
372		goto unlock;
373	}
374
375	low_size = crash_resource_size(&crashk_low_res);
376	old_size = crash_resource_size(&crashk_res) + low_size;
377	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
378	if (new_size >= old_size) {
379		ret = (new_size == old_size) ? 0 : -EINVAL;
380		goto unlock;
381	}
382
383	/*
384	 * (low_size > new_size) implies that low_size is greater than zero.
385	 * This also means that if low_size is zero, the else branch is taken.
386	 *
387	 * If low_size is greater than 0, (low_size > new_size) indicates that
388	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
389	 * needs to be shrunken.
390	 */
391	if (low_size > new_size) {
392		ret = __crash_shrink_memory(&crashk_res, 0);
393		if (ret)
394			goto unlock;
395
396		ret = __crash_shrink_memory(&crashk_low_res, new_size);
397	} else {
398		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
399	}
400
401	/* Swap crashk_res and crashk_low_res if needed */
402	if (!crashk_res.end && crashk_low_res.end) {
403		crashk_res.start = crashk_low_res.start;
404		crashk_res.end   = crashk_low_res.end;
405		release_resource(&crashk_low_res);
406		crashk_low_res.start = 0;
407		crashk_low_res.end   = 0;
408		insert_resource(&iomem_resource, &crashk_res);
409	}
410
411unlock:
412	kexec_unlock();
413	return ret;
414}
415
416void crash_save_cpu(struct pt_regs *regs, int cpu)
417{
418	struct elf_prstatus prstatus;
419	u32 *buf;
420
421	if ((cpu < 0) || (cpu >= nr_cpu_ids))
422		return;
423
424	/* Using ELF notes here is opportunistic.
425	 * I need a well defined structure format
426	 * for the data I pass, and I need tags
427	 * on the data to indicate what information I have
428	 * squirrelled away.  ELF notes happen to provide
429	 * all of that, so there is no need to invent something new.
430	 */
431	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
432	if (!buf)
433		return;
434	memset(&prstatus, 0, sizeof(prstatus));
435	prstatus.common.pr_pid = current->pid;
436	elf_core_copy_regs(&prstatus.pr_reg, regs);
437	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
438			      &prstatus, sizeof(prstatus));
439	final_note(buf);
440}
441
442
443
444static int __init crash_notes_memory_init(void)
445{
446	/* Allocate memory for saving cpu registers. */
447	size_t size, align;
448
449	/*
450	 * crash_notes could be allocated across 2 vmalloc pages when percpu
451	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
452	 * pages are also on 2 continuous physical pages. In this case the
453	 * 2nd part of crash_notes in 2nd page could be lost since only the
454	 * starting address and size of crash_notes are exported through sysfs.
455	 * Here round up the size of crash_notes to the nearest power of two
456	 * and pass it to __alloc_percpu as align value. This can make sure
457	 * crash_notes is allocated inside one physical page.
458	 */
459	size = sizeof(note_buf_t);
460	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
461
462	/*
463	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
464	 * definitely will be in 2 pages with that.
465	 */
466	BUILD_BUG_ON(size > PAGE_SIZE);
467
468	crash_notes = __alloc_percpu(size, align);
469	if (!crash_notes) {
470		pr_warn("Memory allocation for saving cpu register states failed\n");
471		return -ENOMEM;
472	}
473	return 0;
474}
475subsys_initcall(crash_notes_memory_init);
476
477#endif /*CONFIG_CRASH_DUMP*/
478
479#ifdef CONFIG_CRASH_HOTPLUG
480#undef pr_fmt
481#define pr_fmt(fmt) "crash hp: " fmt
482
483/*
484 * Different than kexec/kdump loading/unloading/jumping/shrinking which
485 * usually rarely happen, there will be many crash hotplug events notified
486 * during one short period, e.g one memory board is hot added and memory
487 * regions are online. So mutex lock  __crash_hotplug_lock is used to
488 * serialize the crash hotplug handling specifically.
489 */
490static DEFINE_MUTEX(__crash_hotplug_lock);
491#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
492#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
493
494/*
495 * This routine utilized when the crash_hotplug sysfs node is read.
496 * It reflects the kernel's ability/permission to update the crash
497 * elfcorehdr directly.
498 */
499int crash_check_update_elfcorehdr(void)
500{
501	int rc = 0;
502
503	crash_hotplug_lock();
504	/* Obtain lock while reading crash information */
505	if (!kexec_trylock()) {
506		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
 
507		crash_hotplug_unlock();
508		return 0;
509	}
510	if (kexec_crash_image) {
511		if (kexec_crash_image->file_mode)
512			rc = 1;
513		else
514			rc = kexec_crash_image->update_elfcorehdr;
515	}
516	/* Release lock now that update complete */
517	kexec_unlock();
518	crash_hotplug_unlock();
519
520	return rc;
521}
522
523/*
524 * To accurately reflect hot un/plug changes of cpu and memory resources
525 * (including onling and offlining of those resources), the elfcorehdr
526 * (which is passed to the crash kernel via the elfcorehdr= parameter)
527 * must be updated with the new list of CPUs and memories.
 
 
 
 
 
 
528 *
529 * In order to make changes to elfcorehdr, two conditions are needed:
530 * First, the segment containing the elfcorehdr must be large enough
531 * to permit a growing number of resources; the elfcorehdr memory size
532 * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
533 * Second, purgatory must explicitly exclude the elfcorehdr from the
534 * list of segments it checks (since the elfcorehdr changes and thus
535 * would require an update to purgatory itself to update the digest).
 
536 */
537static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
538{
539	struct kimage *image;
540
541	crash_hotplug_lock();
542	/* Obtain lock while changing crash information */
543	if (!kexec_trylock()) {
544		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
 
545		crash_hotplug_unlock();
546		return;
547	}
548
549	/* Check kdump is not loaded */
550	if (!kexec_crash_image)
551		goto out;
552
553	image = kexec_crash_image;
554
555	/* Check that updating elfcorehdr is permitted */
556	if (!(image->file_mode || image->update_elfcorehdr))
557		goto out;
558
559	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
560		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
561		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
562	else
563		pr_debug("hp_action %u\n", hp_action);
564
565	/*
566	 * The elfcorehdr_index is set to -1 when the struct kimage
567	 * is allocated. Find the segment containing the elfcorehdr,
568	 * if not already found.
569	 */
570	if (image->elfcorehdr_index < 0) {
571		unsigned long mem;
572		unsigned char *ptr;
573		unsigned int n;
574
575		for (n = 0; n < image->nr_segments; n++) {
576			mem = image->segment[n].mem;
577			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
578			if (ptr) {
579				/* The segment containing elfcorehdr */
580				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
581					image->elfcorehdr_index = (int)n;
582				kunmap_local(ptr);
583			}
584		}
585	}
586
587	if (image->elfcorehdr_index < 0) {
588		pr_err("unable to locate elfcorehdr segment");
589		goto out;
590	}
591
592	/* Needed in order for the segments to be updated */
593	arch_kexec_unprotect_crashkres();
594
595	/* Differentiate between normal load and hotplug update */
596	image->hp_action = hp_action;
597
598	/* Now invoke arch-specific update handler */
599	arch_crash_handle_hotplug_event(image);
600
601	/* No longer handling a hotplug event */
602	image->hp_action = KEXEC_CRASH_HP_NONE;
603	image->elfcorehdr_updated = true;
604
605	/* Change back to read-only */
606	arch_kexec_protect_crashkres();
607
608	/* Errors in the callback is not a reason to rollback state */
609out:
610	/* Release lock now that update complete */
611	kexec_unlock();
612	crash_hotplug_unlock();
613}
614
615static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
616{
617	switch (val) {
618	case MEM_ONLINE:
619		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
620			KEXEC_CRASH_HP_INVALID_CPU);
621		break;
622
623	case MEM_OFFLINE:
624		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
625			KEXEC_CRASH_HP_INVALID_CPU);
626		break;
627	}
628	return NOTIFY_OK;
629}
630
631static struct notifier_block crash_memhp_nb = {
632	.notifier_call = crash_memhp_notifier,
633	.priority = 0
634};
635
636static int crash_cpuhp_online(unsigned int cpu)
637{
638	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
639	return 0;
640}
641
642static int crash_cpuhp_offline(unsigned int cpu)
643{
644	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
645	return 0;
646}
647
648static int __init crash_hotplug_init(void)
649{
650	int result = 0;
651
652	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
653		register_memory_notifier(&crash_memhp_nb);
654
655	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
656		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
657			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
658	}
659
660	return result;
661}
662
663subsys_initcall(crash_hotplug_init);
664#endif
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * crash.c - kernel crash support code.
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/buildid.h>
 10#include <linux/init.h>
 11#include <linux/utsname.h>
 12#include <linux/vmalloc.h>
 13#include <linux/sizes.h>
 14#include <linux/kexec.h>
 15#include <linux/memory.h>
 16#include <linux/mm.h>
 17#include <linux/cpuhotplug.h>
 18#include <linux/memblock.h>
 19#include <linux/kmemleak.h>
 20#include <linux/crash_core.h>
 21#include <linux/reboot.h>
 22#include <linux/btf.h>
 23#include <linux/objtool.h>
 24
 25#include <asm/page.h>
 26#include <asm/sections.h>
 27
 28#include <crypto/sha1.h>
 29
 30#include "kallsyms_internal.h"
 31#include "kexec_internal.h"
 32
 33/* Per cpu memory for storing cpu states in case of system crash. */
 34note_buf_t __percpu *crash_notes;
 35
 36#ifdef CONFIG_CRASH_DUMP
 37
 38int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 39{
 40	struct page *vmcoreinfo_page;
 41	void *safecopy;
 42
 43	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 44		return 0;
 45	if (image->type != KEXEC_TYPE_CRASH)
 46		return 0;
 47
 48	/*
 49	 * For kdump, allocate one vmcoreinfo safe copy from the
 50	 * crash memory. as we have arch_kexec_protect_crashkres()
 51	 * after kexec syscall, we naturally protect it from write
 52	 * (even read) access under kernel direct mapping. But on
 53	 * the other hand, we still need to operate it when crash
 54	 * happens to generate vmcoreinfo note, hereby we rely on
 55	 * vmap for this purpose.
 56	 */
 57	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 58	if (!vmcoreinfo_page) {
 59		pr_warn("Could not allocate vmcoreinfo buffer\n");
 60		return -ENOMEM;
 61	}
 62	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 63	if (!safecopy) {
 64		pr_warn("Could not vmap vmcoreinfo buffer\n");
 65		return -ENOMEM;
 66	}
 67
 68	image->vmcoreinfo_data_copy = safecopy;
 69	crash_update_vmcoreinfo_safecopy(safecopy);
 70
 71	return 0;
 72}
 73
 74
 75
 76int kexec_should_crash(struct task_struct *p)
 77{
 78	/*
 79	 * If crash_kexec_post_notifiers is enabled, don't run
 80	 * crash_kexec() here yet, which must be run after panic
 81	 * notifiers in panic().
 82	 */
 83	if (crash_kexec_post_notifiers)
 84		return 0;
 85	/*
 86	 * There are 4 panic() calls in make_task_dead() path, each of which
 87	 * corresponds to each of these 4 conditions.
 88	 */
 89	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 90		return 1;
 91	return 0;
 92}
 93
 94int kexec_crash_loaded(void)
 95{
 96	return !!kexec_crash_image;
 97}
 98EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 99
100/*
101 * No panic_cpu check version of crash_kexec().  This function is called
102 * only when panic_cpu holds the current CPU number; this is the only CPU
103 * which processes crash_kexec routines.
104 */
105void __noclone __crash_kexec(struct pt_regs *regs)
106{
107	/* Take the kexec_lock here to prevent sys_kexec_load
108	 * running on one cpu from replacing the crash kernel
109	 * we are using after a panic on a different cpu.
110	 *
111	 * If the crash kernel was not located in a fixed area
112	 * of memory the xchg(&kexec_crash_image) would be
113	 * sufficient.  But since I reuse the memory...
114	 */
115	if (kexec_trylock()) {
116		if (kexec_crash_image) {
117			struct pt_regs fixed_regs;
118
119			crash_setup_regs(&fixed_regs, regs);
120			crash_save_vmcoreinfo();
121			machine_crash_shutdown(&fixed_regs);
122			machine_kexec(kexec_crash_image);
123		}
124		kexec_unlock();
125	}
126}
127STACK_FRAME_NON_STANDARD(__crash_kexec);
128
129__bpf_kfunc void crash_kexec(struct pt_regs *regs)
130{
131	int old_cpu, this_cpu;
132
133	/*
134	 * Only one CPU is allowed to execute the crash_kexec() code as with
135	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
136	 * may stop each other.  To exclude them, we use panic_cpu here too.
137	 */
138	old_cpu = PANIC_CPU_INVALID;
139	this_cpu = raw_smp_processor_id();
140
141	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
142		/* This is the 1st CPU which comes here, so go ahead. */
143		__crash_kexec(regs);
144
145		/*
146		 * Reset panic_cpu to allow another panic()/crash_kexec()
147		 * call.
148		 */
149		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
150	}
151}
152
153static inline resource_size_t crash_resource_size(const struct resource *res)
154{
155	return !res->end ? 0 : resource_size(res);
156}
157
158
159
160
161int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
162			  void **addr, unsigned long *sz)
163{
164	Elf64_Ehdr *ehdr;
165	Elf64_Phdr *phdr;
166	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
167	unsigned char *buf;
168	unsigned int cpu, i;
169	unsigned long long notes_addr;
170	unsigned long mstart, mend;
171
172	/* extra phdr for vmcoreinfo ELF note */
173	nr_phdr = nr_cpus + 1;
174	nr_phdr += mem->nr_ranges;
175
176	/*
177	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179	 * I think this is required by tools like gdb. So same physical
180	 * memory will be mapped in two ELF headers. One will contain kernel
181	 * text virtual addresses and other will have __va(physical) addresses.
182	 */
183
184	nr_phdr++;
185	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
186	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
187
188	buf = vzalloc(elf_sz);
189	if (!buf)
190		return -ENOMEM;
191
192	ehdr = (Elf64_Ehdr *)buf;
193	phdr = (Elf64_Phdr *)(ehdr + 1);
194	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
195	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
196	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
197	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
198	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
199	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
200	ehdr->e_type = ET_CORE;
201	ehdr->e_machine = ELF_ARCH;
202	ehdr->e_version = EV_CURRENT;
203	ehdr->e_phoff = sizeof(Elf64_Ehdr);
204	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
205	ehdr->e_phentsize = sizeof(Elf64_Phdr);
206
207	/* Prepare one phdr of type PT_NOTE for each possible CPU */
208	for_each_possible_cpu(cpu) {
209		phdr->p_type = PT_NOTE;
210		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
211		phdr->p_offset = phdr->p_paddr = notes_addr;
212		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
213		(ehdr->e_phnum)++;
214		phdr++;
215	}
216
217	/* Prepare one PT_NOTE header for vmcoreinfo */
218	phdr->p_type = PT_NOTE;
219	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
220	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
221	(ehdr->e_phnum)++;
222	phdr++;
223
224	/* Prepare PT_LOAD type program header for kernel text region */
225	if (need_kernel_map) {
226		phdr->p_type = PT_LOAD;
227		phdr->p_flags = PF_R|PF_W|PF_X;
228		phdr->p_vaddr = (unsigned long) _text;
229		phdr->p_filesz = phdr->p_memsz = _end - _text;
230		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
231		ehdr->e_phnum++;
232		phdr++;
233	}
234
235	/* Go through all the ranges in mem->ranges[] and prepare phdr */
236	for (i = 0; i < mem->nr_ranges; i++) {
237		mstart = mem->ranges[i].start;
238		mend = mem->ranges[i].end;
239
240		phdr->p_type = PT_LOAD;
241		phdr->p_flags = PF_R|PF_W|PF_X;
242		phdr->p_offset  = mstart;
243
244		phdr->p_paddr = mstart;
245		phdr->p_vaddr = (unsigned long) __va(mstart);
246		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
247		phdr->p_align = 0;
248		ehdr->e_phnum++;
249#ifdef CONFIG_KEXEC_FILE
250		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
252			      ehdr->e_phnum, phdr->p_offset);
253#endif
254		phdr++;
255	}
256
257	*addr = buf;
258	*sz = elf_sz;
259	return 0;
260}
261
262int crash_exclude_mem_range(struct crash_mem *mem,
263			    unsigned long long mstart, unsigned long long mend)
264{
265	int i;
266	unsigned long long start, end, p_start, p_end;
267
268	for (i = 0; i < mem->nr_ranges; i++) {
269		start = mem->ranges[i].start;
270		end = mem->ranges[i].end;
271		p_start = mstart;
272		p_end = mend;
273
274		if (p_start > end)
275			continue;
276
277		/*
278		 * Because the memory ranges in mem->ranges are stored in
279		 * ascending order, when we detect `p_end < start`, we can
280		 * immediately exit the for loop, as the subsequent memory
281		 * ranges will definitely be outside the range we are looking
282		 * for.
283		 */
284		if (p_end < start)
285			break;
286
287		/* Truncate any area outside of range */
288		if (p_start < start)
289			p_start = start;
290		if (p_end > end)
291			p_end = end;
292
293		/* Found completely overlapping range */
294		if (p_start == start && p_end == end) {
295			memmove(&mem->ranges[i], &mem->ranges[i + 1],
296				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
297			i--;
298			mem->nr_ranges--;
299		} else if (p_start > start && p_end < end) {
300			/* Split original range */
301			if (mem->nr_ranges >= mem->max_nr_ranges)
302				return -ENOMEM;
303
304			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
305				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
306
307			mem->ranges[i].end = p_start - 1;
308			mem->ranges[i + 1].start = p_end + 1;
309			mem->ranges[i + 1].end = end;
310
311			i++;
312			mem->nr_ranges++;
313		} else if (p_start != start)
314			mem->ranges[i].end = p_start - 1;
315		else
316			mem->ranges[i].start = p_end + 1;
317	}
318
319	return 0;
320}
321
322ssize_t crash_get_memory_size(void)
323{
324	ssize_t size = 0;
325
326	if (!kexec_trylock())
327		return -EBUSY;
328
329	size += crash_resource_size(&crashk_res);
330	size += crash_resource_size(&crashk_low_res);
331
332	kexec_unlock();
333	return size;
334}
335
336static int __crash_shrink_memory(struct resource *old_res,
337				 unsigned long new_size)
338{
339	struct resource *ram_res;
340
341	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
342	if (!ram_res)
343		return -ENOMEM;
344
345	ram_res->start = old_res->start + new_size;
346	ram_res->end   = old_res->end;
347	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
348	ram_res->name  = "System RAM";
349
350	if (!new_size) {
351		release_resource(old_res);
352		old_res->start = 0;
353		old_res->end   = 0;
354	} else {
355		crashk_res.end = ram_res->start - 1;
356	}
357
358	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
359	insert_resource(&iomem_resource, ram_res);
360
361	return 0;
362}
363
364int crash_shrink_memory(unsigned long new_size)
365{
366	int ret = 0;
367	unsigned long old_size, low_size;
368
369	if (!kexec_trylock())
370		return -EBUSY;
371
372	if (kexec_crash_image) {
373		ret = -ENOENT;
374		goto unlock;
375	}
376
377	low_size = crash_resource_size(&crashk_low_res);
378	old_size = crash_resource_size(&crashk_res) + low_size;
379	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
380	if (new_size >= old_size) {
381		ret = (new_size == old_size) ? 0 : -EINVAL;
382		goto unlock;
383	}
384
385	/*
386	 * (low_size > new_size) implies that low_size is greater than zero.
387	 * This also means that if low_size is zero, the else branch is taken.
388	 *
389	 * If low_size is greater than 0, (low_size > new_size) indicates that
390	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391	 * needs to be shrunken.
392	 */
393	if (low_size > new_size) {
394		ret = __crash_shrink_memory(&crashk_res, 0);
395		if (ret)
396			goto unlock;
397
398		ret = __crash_shrink_memory(&crashk_low_res, new_size);
399	} else {
400		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
401	}
402
403	/* Swap crashk_res and crashk_low_res if needed */
404	if (!crashk_res.end && crashk_low_res.end) {
405		crashk_res.start = crashk_low_res.start;
406		crashk_res.end   = crashk_low_res.end;
407		release_resource(&crashk_low_res);
408		crashk_low_res.start = 0;
409		crashk_low_res.end   = 0;
410		insert_resource(&iomem_resource, &crashk_res);
411	}
412
413unlock:
414	kexec_unlock();
415	return ret;
416}
417
418void crash_save_cpu(struct pt_regs *regs, int cpu)
419{
420	struct elf_prstatus prstatus;
421	u32 *buf;
422
423	if ((cpu < 0) || (cpu >= nr_cpu_ids))
424		return;
425
426	/* Using ELF notes here is opportunistic.
427	 * I need a well defined structure format
428	 * for the data I pass, and I need tags
429	 * on the data to indicate what information I have
430	 * squirrelled away.  ELF notes happen to provide
431	 * all of that, so there is no need to invent something new.
432	 */
433	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
434	if (!buf)
435		return;
436	memset(&prstatus, 0, sizeof(prstatus));
437	prstatus.common.pr_pid = current->pid;
438	elf_core_copy_regs(&prstatus.pr_reg, regs);
439	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
440			      &prstatus, sizeof(prstatus));
441	final_note(buf);
442}
443
444
445
446static int __init crash_notes_memory_init(void)
447{
448	/* Allocate memory for saving cpu registers. */
449	size_t size, align;
450
451	/*
452	 * crash_notes could be allocated across 2 vmalloc pages when percpu
453	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454	 * pages are also on 2 continuous physical pages. In this case the
455	 * 2nd part of crash_notes in 2nd page could be lost since only the
456	 * starting address and size of crash_notes are exported through sysfs.
457	 * Here round up the size of crash_notes to the nearest power of two
458	 * and pass it to __alloc_percpu as align value. This can make sure
459	 * crash_notes is allocated inside one physical page.
460	 */
461	size = sizeof(note_buf_t);
462	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
463
464	/*
465	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
466	 * definitely will be in 2 pages with that.
467	 */
468	BUILD_BUG_ON(size > PAGE_SIZE);
469
470	crash_notes = __alloc_percpu(size, align);
471	if (!crash_notes) {
472		pr_warn("Memory allocation for saving cpu register states failed\n");
473		return -ENOMEM;
474	}
475	return 0;
476}
477subsys_initcall(crash_notes_memory_init);
478
479#endif /*CONFIG_CRASH_DUMP*/
480
481#ifdef CONFIG_CRASH_HOTPLUG
482#undef pr_fmt
483#define pr_fmt(fmt) "crash hp: " fmt
484
485/*
486 * Different than kexec/kdump loading/unloading/jumping/shrinking which
487 * usually rarely happen, there will be many crash hotplug events notified
488 * during one short period, e.g one memory board is hot added and memory
489 * regions are online. So mutex lock  __crash_hotplug_lock is used to
490 * serialize the crash hotplug handling specifically.
491 */
492static DEFINE_MUTEX(__crash_hotplug_lock);
493#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
495
496/*
497 * This routine utilized when the crash_hotplug sysfs node is read.
498 * It reflects the kernel's ability/permission to update the kdump
499 * image directly.
500 */
501int crash_check_hotplug_support(void)
502{
503	int rc = 0;
504
505	crash_hotplug_lock();
506	/* Obtain lock while reading crash information */
507	if (!kexec_trylock()) {
508		if (!kexec_in_progress)
509			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
510		crash_hotplug_unlock();
511		return 0;
512	}
513	if (kexec_crash_image) {
514		rc = kexec_crash_image->hotplug_support;
 
 
 
515	}
516	/* Release lock now that update complete */
517	kexec_unlock();
518	crash_hotplug_unlock();
519
520	return rc;
521}
522
523/*
524 * To accurately reflect hot un/plug changes of CPU and Memory resources
525 * (including onling and offlining of those resources), the relevant
526 * kexec segments must be updated with latest CPU and Memory resources.
527 *
528 * Architectures must ensure two things for all segments that need
529 * updating during hotplug events:
530 *
531 * 1. Segments must be large enough to accommodate a growing number of
532 *    resources.
533 * 2. Exclude the segments from SHA verification.
534 *
535 * For example, on most architectures, the elfcorehdr (which is passed
536 * to the crash kernel via the elfcorehdr= parameter) must include the
537 * new list of CPUs and memory. To make changes to the elfcorehdr, it
538 * should be large enough to permit a growing number of CPU and Memory
539 * resources. One can estimate the elfcorehdr memory size based on
540 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
541 * excluded from SHA verification by default if the architecture
542 * supports crash hotplug.
543 */
544static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
545{
546	struct kimage *image;
547
548	crash_hotplug_lock();
549	/* Obtain lock while changing crash information */
550	if (!kexec_trylock()) {
551		if (!kexec_in_progress)
552			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
553		crash_hotplug_unlock();
554		return;
555	}
556
557	/* Check kdump is not loaded */
558	if (!kexec_crash_image)
559		goto out;
560
561	image = kexec_crash_image;
562
563	/* Check that kexec segments update is permitted */
564	if (!image->hotplug_support)
565		goto out;
566
567	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
568		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
569		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
570	else
571		pr_debug("hp_action %u\n", hp_action);
572
573	/*
574	 * The elfcorehdr_index is set to -1 when the struct kimage
575	 * is allocated. Find the segment containing the elfcorehdr,
576	 * if not already found.
577	 */
578	if (image->elfcorehdr_index < 0) {
579		unsigned long mem;
580		unsigned char *ptr;
581		unsigned int n;
582
583		for (n = 0; n < image->nr_segments; n++) {
584			mem = image->segment[n].mem;
585			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
586			if (ptr) {
587				/* The segment containing elfcorehdr */
588				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
589					image->elfcorehdr_index = (int)n;
590				kunmap_local(ptr);
591			}
592		}
593	}
594
595	if (image->elfcorehdr_index < 0) {
596		pr_err("unable to locate elfcorehdr segment");
597		goto out;
598	}
599
600	/* Needed in order for the segments to be updated */
601	arch_kexec_unprotect_crashkres();
602
603	/* Differentiate between normal load and hotplug update */
604	image->hp_action = hp_action;
605
606	/* Now invoke arch-specific update handler */
607	arch_crash_handle_hotplug_event(image, arg);
608
609	/* No longer handling a hotplug event */
610	image->hp_action = KEXEC_CRASH_HP_NONE;
611	image->elfcorehdr_updated = true;
612
613	/* Change back to read-only */
614	arch_kexec_protect_crashkres();
615
616	/* Errors in the callback is not a reason to rollback state */
617out:
618	/* Release lock now that update complete */
619	kexec_unlock();
620	crash_hotplug_unlock();
621}
622
623static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
624{
625	switch (val) {
626	case MEM_ONLINE:
627		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
628			KEXEC_CRASH_HP_INVALID_CPU, arg);
629		break;
630
631	case MEM_OFFLINE:
632		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
633			KEXEC_CRASH_HP_INVALID_CPU, arg);
634		break;
635	}
636	return NOTIFY_OK;
637}
638
639static struct notifier_block crash_memhp_nb = {
640	.notifier_call = crash_memhp_notifier,
641	.priority = 0
642};
643
644static int crash_cpuhp_online(unsigned int cpu)
645{
646	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
647	return 0;
648}
649
650static int crash_cpuhp_offline(unsigned int cpu)
651{
652	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
653	return 0;
654}
655
656static int __init crash_hotplug_init(void)
657{
658	int result = 0;
659
660	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
661		register_memory_notifier(&crash_memhp_nb);
662
663	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
664		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
665			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
666	}
667
668	return result;
669}
670
671subsys_initcall(crash_hotplug_init);
672#endif