Loading...
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Vetter <daniel.vetter@ffwll.ch>
25 */
26
27/**
28 * DOC: frontbuffer tracking
29 *
30 * Many features require us to track changes to the currently active
31 * frontbuffer, especially rendering targeted at the frontbuffer.
32 *
33 * To be able to do so we track frontbuffers using a bitmask for all possible
34 * frontbuffer slots through intel_frontbuffer_track(). The functions in this
35 * file are then called when the contents of the frontbuffer are invalidated,
36 * when frontbuffer rendering has stopped again to flush out all the changes
37 * and when the frontbuffer is exchanged with a flip. Subsystems interested in
38 * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
39 * into the relevant places and filter for the frontbuffer slots that they are
40 * interested int.
41 *
42 * On a high level there are two types of powersaving features. The first one
43 * work like a special cache (FBC and PSR) and are interested when they should
44 * stop caching and when to restart caching. This is done by placing callbacks
45 * into the invalidate and the flush functions: At invalidate the caching must
46 * be stopped and at flush time it can be restarted. And maybe they need to know
47 * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
48 * and flush on its own) which can be achieved with placing callbacks into the
49 * flip functions.
50 *
51 * The other type of display power saving feature only cares about busyness
52 * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
53 * busyness. There is no direct way to detect idleness. Instead an idle timer
54 * work delayed work should be started from the flush and flip functions and
55 * cancelled as soon as busyness is detected.
56 */
57
58#include "gem/i915_gem_object_frontbuffer.h"
59#include "i915_active.h"
60#include "i915_drv.h"
61#include "intel_display_trace.h"
62#include "intel_display_types.h"
63#include "intel_dp.h"
64#include "intel_drrs.h"
65#include "intel_fbc.h"
66#include "intel_frontbuffer.h"
67#include "intel_psr.h"
68
69/**
70 * frontbuffer_flush - flush frontbuffer
71 * @i915: i915 device
72 * @frontbuffer_bits: frontbuffer plane tracking bits
73 * @origin: which operation caused the flush
74 *
75 * This function gets called every time rendering on the given planes has
76 * completed and frontbuffer caching can be started again. Flushes will get
77 * delayed if they're blocked by some outstanding asynchronous rendering.
78 *
79 * Can be called without any locks held.
80 */
81static void frontbuffer_flush(struct drm_i915_private *i915,
82 unsigned int frontbuffer_bits,
83 enum fb_op_origin origin)
84{
85 /* Delay flushing when rings are still busy.*/
86 spin_lock(&i915->display.fb_tracking.lock);
87 frontbuffer_bits &= ~i915->display.fb_tracking.busy_bits;
88 spin_unlock(&i915->display.fb_tracking.lock);
89
90 if (!frontbuffer_bits)
91 return;
92
93 trace_intel_frontbuffer_flush(i915, frontbuffer_bits, origin);
94
95 might_sleep();
96 intel_drrs_flush(i915, frontbuffer_bits);
97 intel_psr_flush(i915, frontbuffer_bits, origin);
98 intel_fbc_flush(i915, frontbuffer_bits, origin);
99}
100
101/**
102 * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
103 * @i915: i915 device
104 * @frontbuffer_bits: frontbuffer plane tracking bits
105 *
106 * This function gets called after scheduling a flip on @obj. The actual
107 * frontbuffer flushing will be delayed until completion is signalled with
108 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
109 * flush will be cancelled.
110 *
111 * Can be called without any locks held.
112 */
113void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
114 unsigned frontbuffer_bits)
115{
116 spin_lock(&i915->display.fb_tracking.lock);
117 i915->display.fb_tracking.flip_bits |= frontbuffer_bits;
118 /* Remove stale busy bits due to the old buffer. */
119 i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
120 spin_unlock(&i915->display.fb_tracking.lock);
121}
122
123/**
124 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
125 * @i915: i915 device
126 * @frontbuffer_bits: frontbuffer plane tracking bits
127 *
128 * This function gets called after the flip has been latched and will complete
129 * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
130 *
131 * Can be called without any locks held.
132 */
133void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
134 unsigned frontbuffer_bits)
135{
136 spin_lock(&i915->display.fb_tracking.lock);
137 /* Mask any cancelled flips. */
138 frontbuffer_bits &= i915->display.fb_tracking.flip_bits;
139 i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
140 spin_unlock(&i915->display.fb_tracking.lock);
141
142 if (frontbuffer_bits)
143 frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
144}
145
146/**
147 * intel_frontbuffer_flip - synchronous frontbuffer flip
148 * @i915: i915 device
149 * @frontbuffer_bits: frontbuffer plane tracking bits
150 *
151 * This function gets called after scheduling a flip on @obj. This is for
152 * synchronous plane updates which will happen on the next vblank and which will
153 * not get delayed by pending gpu rendering.
154 *
155 * Can be called without any locks held.
156 */
157void intel_frontbuffer_flip(struct drm_i915_private *i915,
158 unsigned frontbuffer_bits)
159{
160 spin_lock(&i915->display.fb_tracking.lock);
161 /* Remove stale busy bits due to the old buffer. */
162 i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
163 spin_unlock(&i915->display.fb_tracking.lock);
164
165 frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
166}
167
168void __intel_fb_invalidate(struct intel_frontbuffer *front,
169 enum fb_op_origin origin,
170 unsigned int frontbuffer_bits)
171{
172 struct drm_i915_private *i915 = intel_bo_to_i915(front->obj);
173
174 if (origin == ORIGIN_CS) {
175 spin_lock(&i915->display.fb_tracking.lock);
176 i915->display.fb_tracking.busy_bits |= frontbuffer_bits;
177 i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
178 spin_unlock(&i915->display.fb_tracking.lock);
179 }
180
181 trace_intel_frontbuffer_invalidate(i915, frontbuffer_bits, origin);
182
183 might_sleep();
184 intel_psr_invalidate(i915, frontbuffer_bits, origin);
185 intel_drrs_invalidate(i915, frontbuffer_bits);
186 intel_fbc_invalidate(i915, frontbuffer_bits, origin);
187}
188
189void __intel_fb_flush(struct intel_frontbuffer *front,
190 enum fb_op_origin origin,
191 unsigned int frontbuffer_bits)
192{
193 struct drm_i915_private *i915 = intel_bo_to_i915(front->obj);
194
195 if (origin == ORIGIN_CS) {
196 spin_lock(&i915->display.fb_tracking.lock);
197 /* Filter out new bits since rendering started. */
198 frontbuffer_bits &= i915->display.fb_tracking.busy_bits;
199 i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
200 spin_unlock(&i915->display.fb_tracking.lock);
201 }
202
203 if (frontbuffer_bits)
204 frontbuffer_flush(i915, frontbuffer_bits, origin);
205}
206
207static void intel_frontbuffer_flush_work(struct work_struct *work)
208{
209 struct intel_frontbuffer *front =
210 container_of(work, struct intel_frontbuffer, flush_work);
211
212 i915_gem_object_flush_if_display(front->obj);
213 intel_frontbuffer_flush(front, ORIGIN_DIRTYFB);
214 intel_frontbuffer_put(front);
215}
216
217/**
218 * intel_frontbuffer_queue_flush - queue flushing frontbuffer object
219 * @front: GEM object to flush
220 *
221 * This function is targeted for our dirty callback for queueing flush when
222 * dma fence is signales
223 */
224void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front)
225{
226 if (!front)
227 return;
228
229 kref_get(&front->ref);
230 if (!schedule_work(&front->flush_work))
231 intel_frontbuffer_put(front);
232}
233
234static int frontbuffer_active(struct i915_active *ref)
235{
236 struct intel_frontbuffer *front =
237 container_of(ref, typeof(*front), write);
238
239 kref_get(&front->ref);
240 return 0;
241}
242
243static void frontbuffer_retire(struct i915_active *ref)
244{
245 struct intel_frontbuffer *front =
246 container_of(ref, typeof(*front), write);
247
248 intel_frontbuffer_flush(front, ORIGIN_CS);
249 intel_frontbuffer_put(front);
250}
251
252static void frontbuffer_release(struct kref *ref)
253 __releases(&intel_bo_to_i915(front->obj)->display.fb_tracking.lock)
254{
255 struct intel_frontbuffer *ret, *front =
256 container_of(ref, typeof(*front), ref);
257 struct drm_i915_gem_object *obj = front->obj;
258
259 drm_WARN_ON(&intel_bo_to_i915(obj)->drm, atomic_read(&front->bits));
260
261 i915_ggtt_clear_scanout(obj);
262
263 ret = i915_gem_object_set_frontbuffer(obj, NULL);
264 drm_WARN_ON(&intel_bo_to_i915(obj)->drm, ret);
265 spin_unlock(&intel_bo_to_i915(obj)->display.fb_tracking.lock);
266
267 i915_active_fini(&front->write);
268 kfree_rcu(front, rcu);
269}
270
271struct intel_frontbuffer *
272intel_frontbuffer_get(struct drm_i915_gem_object *obj)
273{
274 struct drm_i915_private *i915 = intel_bo_to_i915(obj);
275 struct intel_frontbuffer *front, *cur;
276
277 front = i915_gem_object_get_frontbuffer(obj);
278 if (front)
279 return front;
280
281 front = kmalloc(sizeof(*front), GFP_KERNEL);
282 if (!front)
283 return NULL;
284
285 front->obj = obj;
286 kref_init(&front->ref);
287 atomic_set(&front->bits, 0);
288 i915_active_init(&front->write,
289 frontbuffer_active,
290 frontbuffer_retire,
291 I915_ACTIVE_RETIRE_SLEEPS);
292 INIT_WORK(&front->flush_work, intel_frontbuffer_flush_work);
293
294 spin_lock(&i915->display.fb_tracking.lock);
295 cur = i915_gem_object_set_frontbuffer(obj, front);
296 spin_unlock(&i915->display.fb_tracking.lock);
297 if (cur != front)
298 kfree(front);
299 return cur;
300}
301
302void intel_frontbuffer_put(struct intel_frontbuffer *front)
303{
304 kref_put_lock(&front->ref,
305 frontbuffer_release,
306 &intel_bo_to_i915(front->obj)->display.fb_tracking.lock);
307}
308
309/**
310 * intel_frontbuffer_track - update frontbuffer tracking
311 * @old: current buffer for the frontbuffer slots
312 * @new: new buffer for the frontbuffer slots
313 * @frontbuffer_bits: bitmask of frontbuffer slots
314 *
315 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
316 * from @old and setting them in @new. Both @old and @new can be NULL.
317 */
318void intel_frontbuffer_track(struct intel_frontbuffer *old,
319 struct intel_frontbuffer *new,
320 unsigned int frontbuffer_bits)
321{
322 /*
323 * Control of individual bits within the mask are guarded by
324 * the owning plane->mutex, i.e. we can never see concurrent
325 * manipulation of individual bits. But since the bitfield as a whole
326 * is updated using RMW, we need to use atomics in order to update
327 * the bits.
328 */
329 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
330 BITS_PER_TYPE(atomic_t));
331 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32);
332 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE);
333
334 if (old) {
335 drm_WARN_ON(&intel_bo_to_i915(old->obj)->drm,
336 !(atomic_read(&old->bits) & frontbuffer_bits));
337 atomic_andnot(frontbuffer_bits, &old->bits);
338 }
339
340 if (new) {
341 drm_WARN_ON(&intel_bo_to_i915(new->obj)->drm,
342 atomic_read(&new->bits) & frontbuffer_bits);
343 atomic_or(frontbuffer_bits, &new->bits);
344 }
345}
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Vetter <daniel.vetter@ffwll.ch>
25 */
26
27/**
28 * DOC: frontbuffer tracking
29 *
30 * Many features require us to track changes to the currently active
31 * frontbuffer, especially rendering targeted at the frontbuffer.
32 *
33 * To be able to do so we track frontbuffers using a bitmask for all possible
34 * frontbuffer slots through intel_frontbuffer_track(). The functions in this
35 * file are then called when the contents of the frontbuffer are invalidated,
36 * when frontbuffer rendering has stopped again to flush out all the changes
37 * and when the frontbuffer is exchanged with a flip. Subsystems interested in
38 * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
39 * into the relevant places and filter for the frontbuffer slots that they are
40 * interested int.
41 *
42 * On a high level there are two types of powersaving features. The first one
43 * work like a special cache (FBC and PSR) and are interested when they should
44 * stop caching and when to restart caching. This is done by placing callbacks
45 * into the invalidate and the flush functions: At invalidate the caching must
46 * be stopped and at flush time it can be restarted. And maybe they need to know
47 * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
48 * and flush on its own) which can be achieved with placing callbacks into the
49 * flip functions.
50 *
51 * The other type of display power saving feature only cares about busyness
52 * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
53 * busyness. There is no direct way to detect idleness. Instead an idle timer
54 * work delayed work should be started from the flush and flip functions and
55 * cancelled as soon as busyness is detected.
56 */
57
58#include <drm/drm_gem.h>
59
60#include "i915_active.h"
61#include "i915_drv.h"
62#include "intel_bo.h"
63#include "intel_display_trace.h"
64#include "intel_display_types.h"
65#include "intel_dp.h"
66#include "intel_drrs.h"
67#include "intel_fbc.h"
68#include "intel_frontbuffer.h"
69#include "intel_psr.h"
70#include "intel_tdf.h"
71
72/**
73 * frontbuffer_flush - flush frontbuffer
74 * @i915: i915 device
75 * @frontbuffer_bits: frontbuffer plane tracking bits
76 * @origin: which operation caused the flush
77 *
78 * This function gets called every time rendering on the given planes has
79 * completed and frontbuffer caching can be started again. Flushes will get
80 * delayed if they're blocked by some outstanding asynchronous rendering.
81 *
82 * Can be called without any locks held.
83 */
84static void frontbuffer_flush(struct drm_i915_private *i915,
85 unsigned int frontbuffer_bits,
86 enum fb_op_origin origin)
87{
88 struct intel_display *display = &i915->display;
89
90 /* Delay flushing when rings are still busy.*/
91 spin_lock(&i915->display.fb_tracking.lock);
92 frontbuffer_bits &= ~i915->display.fb_tracking.busy_bits;
93 spin_unlock(&i915->display.fb_tracking.lock);
94
95 if (!frontbuffer_bits)
96 return;
97
98 trace_intel_frontbuffer_flush(display, frontbuffer_bits, origin);
99
100 might_sleep();
101 intel_td_flush(i915);
102 intel_drrs_flush(i915, frontbuffer_bits);
103 intel_psr_flush(display, frontbuffer_bits, origin);
104 intel_fbc_flush(i915, frontbuffer_bits, origin);
105}
106
107/**
108 * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
109 * @i915: i915 device
110 * @frontbuffer_bits: frontbuffer plane tracking bits
111 *
112 * This function gets called after scheduling a flip on @obj. The actual
113 * frontbuffer flushing will be delayed until completion is signalled with
114 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
115 * flush will be cancelled.
116 *
117 * Can be called without any locks held.
118 */
119void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
120 unsigned frontbuffer_bits)
121{
122 spin_lock(&i915->display.fb_tracking.lock);
123 i915->display.fb_tracking.flip_bits |= frontbuffer_bits;
124 /* Remove stale busy bits due to the old buffer. */
125 i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
126 spin_unlock(&i915->display.fb_tracking.lock);
127}
128
129/**
130 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
131 * @i915: i915 device
132 * @frontbuffer_bits: frontbuffer plane tracking bits
133 *
134 * This function gets called after the flip has been latched and will complete
135 * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
136 *
137 * Can be called without any locks held.
138 */
139void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
140 unsigned frontbuffer_bits)
141{
142 spin_lock(&i915->display.fb_tracking.lock);
143 /* Mask any cancelled flips. */
144 frontbuffer_bits &= i915->display.fb_tracking.flip_bits;
145 i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
146 spin_unlock(&i915->display.fb_tracking.lock);
147
148 if (frontbuffer_bits)
149 frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
150}
151
152/**
153 * intel_frontbuffer_flip - synchronous frontbuffer flip
154 * @i915: i915 device
155 * @frontbuffer_bits: frontbuffer plane tracking bits
156 *
157 * This function gets called after scheduling a flip on @obj. This is for
158 * synchronous plane updates which will happen on the next vblank and which will
159 * not get delayed by pending gpu rendering.
160 *
161 * Can be called without any locks held.
162 */
163void intel_frontbuffer_flip(struct drm_i915_private *i915,
164 unsigned frontbuffer_bits)
165{
166 spin_lock(&i915->display.fb_tracking.lock);
167 /* Remove stale busy bits due to the old buffer. */
168 i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
169 spin_unlock(&i915->display.fb_tracking.lock);
170
171 frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
172}
173
174void __intel_fb_invalidate(struct intel_frontbuffer *front,
175 enum fb_op_origin origin,
176 unsigned int frontbuffer_bits)
177{
178 struct intel_display *display = to_intel_display(front->obj->dev);
179 struct drm_i915_private *i915 = to_i915(display->drm);
180
181 if (origin == ORIGIN_CS) {
182 spin_lock(&display->fb_tracking.lock);
183 display->fb_tracking.busy_bits |= frontbuffer_bits;
184 display->fb_tracking.flip_bits &= ~frontbuffer_bits;
185 spin_unlock(&display->fb_tracking.lock);
186 }
187
188 trace_intel_frontbuffer_invalidate(display, frontbuffer_bits, origin);
189
190 might_sleep();
191 intel_psr_invalidate(display, frontbuffer_bits, origin);
192 intel_drrs_invalidate(i915, frontbuffer_bits);
193 intel_fbc_invalidate(i915, frontbuffer_bits, origin);
194}
195
196void __intel_fb_flush(struct intel_frontbuffer *front,
197 enum fb_op_origin origin,
198 unsigned int frontbuffer_bits)
199{
200 struct intel_display *display = to_intel_display(front->obj->dev);
201 struct drm_i915_private *i915 = to_i915(display->drm);
202
203 if (origin == ORIGIN_CS) {
204 spin_lock(&display->fb_tracking.lock);
205 /* Filter out new bits since rendering started. */
206 frontbuffer_bits &= display->fb_tracking.busy_bits;
207 display->fb_tracking.busy_bits &= ~frontbuffer_bits;
208 spin_unlock(&display->fb_tracking.lock);
209 }
210
211 if (frontbuffer_bits)
212 frontbuffer_flush(i915, frontbuffer_bits, origin);
213}
214
215static void intel_frontbuffer_flush_work(struct work_struct *work)
216{
217 struct intel_frontbuffer *front =
218 container_of(work, struct intel_frontbuffer, flush_work);
219
220 intel_bo_flush_if_display(front->obj);
221 intel_frontbuffer_flush(front, ORIGIN_DIRTYFB);
222 intel_frontbuffer_put(front);
223}
224
225/**
226 * intel_frontbuffer_queue_flush - queue flushing frontbuffer object
227 * @front: GEM object to flush
228 *
229 * This function is targeted for our dirty callback for queueing flush when
230 * dma fence is signales
231 */
232void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front)
233{
234 if (!front)
235 return;
236
237 kref_get(&front->ref);
238 if (!schedule_work(&front->flush_work))
239 intel_frontbuffer_put(front);
240}
241
242static int frontbuffer_active(struct i915_active *ref)
243{
244 struct intel_frontbuffer *front =
245 container_of(ref, typeof(*front), write);
246
247 kref_get(&front->ref);
248 return 0;
249}
250
251static void frontbuffer_retire(struct i915_active *ref)
252{
253 struct intel_frontbuffer *front =
254 container_of(ref, typeof(*front), write);
255
256 intel_frontbuffer_flush(front, ORIGIN_CS);
257 intel_frontbuffer_put(front);
258}
259
260static void frontbuffer_release(struct kref *ref)
261 __releases(&to_intel_display(front->obj->dev)->fb_tracking.lock)
262{
263 struct intel_frontbuffer *ret, *front =
264 container_of(ref, typeof(*front), ref);
265 struct drm_gem_object *obj = front->obj;
266 struct intel_display *display = to_intel_display(obj->dev);
267
268 drm_WARN_ON(display->drm, atomic_read(&front->bits));
269
270 i915_ggtt_clear_scanout(to_intel_bo(obj));
271
272 ret = intel_bo_set_frontbuffer(obj, NULL);
273 drm_WARN_ON(display->drm, ret);
274 spin_unlock(&display->fb_tracking.lock);
275
276 i915_active_fini(&front->write);
277 kfree_rcu(front, rcu);
278}
279
280struct intel_frontbuffer *
281intel_frontbuffer_get(struct drm_gem_object *obj)
282{
283 struct drm_i915_private *i915 = to_i915(obj->dev);
284 struct intel_frontbuffer *front, *cur;
285
286 front = intel_bo_get_frontbuffer(obj);
287 if (front)
288 return front;
289
290 front = kmalloc(sizeof(*front), GFP_KERNEL);
291 if (!front)
292 return NULL;
293
294 front->obj = obj;
295 kref_init(&front->ref);
296 atomic_set(&front->bits, 0);
297 i915_active_init(&front->write,
298 frontbuffer_active,
299 frontbuffer_retire,
300 I915_ACTIVE_RETIRE_SLEEPS);
301 INIT_WORK(&front->flush_work, intel_frontbuffer_flush_work);
302
303 spin_lock(&i915->display.fb_tracking.lock);
304 cur = intel_bo_set_frontbuffer(obj, front);
305 spin_unlock(&i915->display.fb_tracking.lock);
306 if (cur != front)
307 kfree(front);
308 return cur;
309}
310
311void intel_frontbuffer_put(struct intel_frontbuffer *front)
312{
313 kref_put_lock(&front->ref,
314 frontbuffer_release,
315 &to_intel_display(front->obj->dev)->fb_tracking.lock);
316}
317
318/**
319 * intel_frontbuffer_track - update frontbuffer tracking
320 * @old: current buffer for the frontbuffer slots
321 * @new: new buffer for the frontbuffer slots
322 * @frontbuffer_bits: bitmask of frontbuffer slots
323 *
324 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
325 * from @old and setting them in @new. Both @old and @new can be NULL.
326 */
327void intel_frontbuffer_track(struct intel_frontbuffer *old,
328 struct intel_frontbuffer *new,
329 unsigned int frontbuffer_bits)
330{
331 /*
332 * Control of individual bits within the mask are guarded by
333 * the owning plane->mutex, i.e. we can never see concurrent
334 * manipulation of individual bits. But since the bitfield as a whole
335 * is updated using RMW, we need to use atomics in order to update
336 * the bits.
337 */
338 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
339 BITS_PER_TYPE(atomic_t));
340 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32);
341 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE);
342
343 if (old) {
344 struct intel_display *display = to_intel_display(old->obj->dev);
345
346 drm_WARN_ON(display->drm,
347 !(atomic_read(&old->bits) & frontbuffer_bits));
348 atomic_andnot(frontbuffer_bits, &old->bits);
349 }
350
351 if (new) {
352 struct intel_display *display = to_intel_display(new->obj->dev);
353
354 drm_WARN_ON(display->drm,
355 atomic_read(&new->bits) & frontbuffer_bits);
356 atomic_or(frontbuffer_bits, &new->bits);
357 }
358}