Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6
  7#include "xfs.h"
  8#include "xfs_fs.h"
  9#include "xfs_shared.h"
 10#include "xfs_format.h"
 11#include "xfs_log_format.h"
 12#include "xfs_trans_resv.h"
 13#include "xfs_mount.h"
 14#include "xfs_inode.h"
 15#include "xfs_trans.h"
 16#include "xfs_inode_item.h"
 17#include "xfs_btree.h"
 18#include "xfs_bmap_btree.h"
 19#include "xfs_bmap.h"
 20#include "xfs_error.h"
 21#include "xfs_trace.h"
 22#include "xfs_da_format.h"
 23#include "xfs_da_btree.h"
 24#include "xfs_dir2_priv.h"
 25#include "xfs_attr_leaf.h"
 26#include "xfs_types.h"
 27#include "xfs_errortag.h"
 28#include "xfs_health.h"
 29#include "xfs_symlink_remote.h"
 30
 31struct kmem_cache *xfs_ifork_cache;
 32
 33void
 34xfs_init_local_fork(
 35	struct xfs_inode	*ip,
 36	int			whichfork,
 37	const void		*data,
 38	int64_t			size)
 39{
 40	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
 41	int			mem_size = size;
 42	bool			zero_terminate;
 43
 44	/*
 45	 * If we are using the local fork to store a symlink body we need to
 46	 * zero-terminate it so that we can pass it back to the VFS directly.
 47	 * Overallocate the in-memory fork by one for that and add a zero
 48	 * to terminate it below.
 49	 */
 50	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
 51	if (zero_terminate)
 52		mem_size++;
 53
 54	if (size) {
 55		char *new_data = kmalloc(mem_size,
 56				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
 57
 58		memcpy(new_data, data, size);
 59		if (zero_terminate)
 60			new_data[size] = '\0';
 61
 62		ifp->if_data = new_data;
 63	} else {
 64		ifp->if_data = NULL;
 65	}
 66
 67	ifp->if_bytes = size;
 
 
 68}
 69
 70/*
 71 * The file is in-lined in the on-disk inode.
 72 */
 73STATIC int
 74xfs_iformat_local(
 75	struct xfs_inode	*ip,
 76	struct xfs_dinode	*dip,
 77	int			whichfork,
 78	int			size)
 79{
 80	/*
 81	 * If the size is unreasonable, then something
 82	 * is wrong and we just bail out rather than crash in
 83	 * kmalloc() or memcpy() below.
 84	 */
 85	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 86		xfs_warn(ip->i_mount,
 87	"corrupt inode %llu (bad size %d for local fork, size = %zd).",
 88			(unsigned long long) ip->i_ino, size,
 89			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 90		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 91				"xfs_iformat_local", dip, sizeof(*dip),
 92				__this_address);
 93		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 94		return -EFSCORRUPTED;
 95	}
 96
 97	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
 98	return 0;
 99}
100
101/*
102 * The file consists of a set of extents all of which fit into the on-disk
103 * inode.
104 */
105STATIC int
106xfs_iformat_extents(
107	struct xfs_inode	*ip,
108	struct xfs_dinode	*dip,
109	int			whichfork)
110{
111	struct xfs_mount	*mp = ip->i_mount;
112	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
113	int			state = xfs_bmap_fork_to_state(whichfork);
114	xfs_extnum_t		nex = xfs_dfork_nextents(dip, whichfork);
115	int			size = nex * sizeof(xfs_bmbt_rec_t);
116	struct xfs_iext_cursor	icur;
117	struct xfs_bmbt_rec	*dp;
118	struct xfs_bmbt_irec	new;
119	int			i;
120
121	/*
122	 * If the number of extents is unreasonable, then something is wrong and
123	 * we just bail out rather than crash in kmalloc() or memcpy() below.
124	 */
125	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
126		xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
127			ip->i_ino, nex);
128		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
129				"xfs_iformat_extents(1)", dip, sizeof(*dip),
130				__this_address);
131		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
132		return -EFSCORRUPTED;
133	}
134
135	ifp->if_bytes = 0;
136	ifp->if_data = NULL;
137	ifp->if_height = 0;
138	if (size) {
139		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
140
141		xfs_iext_first(ifp, &icur);
142		for (i = 0; i < nex; i++, dp++) {
143			xfs_failaddr_t	fa;
144
145			xfs_bmbt_disk_get_all(dp, &new);
146			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
147			if (fa) {
148				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
149						"xfs_iformat_extents(2)",
150						dp, sizeof(*dp), fa);
151				xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
152				return xfs_bmap_complain_bad_rec(ip, whichfork,
153						fa, &new);
154			}
155
156			xfs_iext_insert(ip, &icur, &new, state);
157			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
158			xfs_iext_next(ifp, &icur);
159		}
160	}
 
161	return 0;
162}
163
164/*
165 * The file has too many extents to fit into
166 * the inode, so they are in B-tree format.
167 * Allocate a buffer for the root of the B-tree
168 * and copy the root into it.  The i_extents
169 * field will remain NULL until all of the
170 * extents are read in (when they are needed).
171 */
172STATIC int
173xfs_iformat_btree(
174	struct xfs_inode	*ip,
175	struct xfs_dinode	*dip,
176	int			whichfork)
177{
178	struct xfs_mount	*mp = ip->i_mount;
179	xfs_bmdr_block_t	*dfp;
180	struct xfs_ifork	*ifp;
181	/* REFERENCED */
182	int			nrecs;
183	int			size;
184	int			level;
185
186	ifp = xfs_ifork_ptr(ip, whichfork);
187	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
188	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
189	nrecs = be16_to_cpu(dfp->bb_numrecs);
190	level = be16_to_cpu(dfp->bb_level);
191
192	/*
193	 * blow out if -- fork has less extents than can fit in
194	 * fork (fork shouldn't be a btree format), root btree
195	 * block has more records than can fit into the fork,
196	 * or the number of extents is greater than the number of
197	 * blocks.
198	 */
199	if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
200		     nrecs == 0 ||
201		     XFS_BMDR_SPACE_CALC(nrecs) >
202					XFS_DFORK_SIZE(dip, mp, whichfork) ||
203		     ifp->if_nextents > ip->i_nblocks) ||
204		     level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
205		xfs_warn(mp, "corrupt inode %llu (btree).",
206					(unsigned long long) ip->i_ino);
207		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
208				"xfs_iformat_btree", dfp, size,
209				__this_address);
210		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
211		return -EFSCORRUPTED;
212	}
213
214	ifp->if_broot_bytes = size;
215	ifp->if_broot = kmalloc(size,
216				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
217	ASSERT(ifp->if_broot != NULL);
218	/*
219	 * Copy and convert from the on-disk structure
220	 * to the in-memory structure.
221	 */
222	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
223			 ifp->if_broot, size);
 
 
224
225	ifp->if_bytes = 0;
226	ifp->if_data = NULL;
227	ifp->if_height = 0;
228	return 0;
229}
230
231int
232xfs_iformat_data_fork(
233	struct xfs_inode	*ip,
234	struct xfs_dinode	*dip)
235{
236	struct inode		*inode = VFS_I(ip);
237	int			error;
238
239	/*
240	 * Initialize the extent count early, as the per-format routines may
241	 * depend on it.  Use release semantics to set needextents /after/ we
242	 * set the format. This ensures that we can use acquire semantics on
243	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
244	 * valid format value after that load.
245	 */
246	ip->i_df.if_format = dip->di_format;
247	ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
248	smp_store_release(&ip->i_df.if_needextents,
249			   ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
250
251	switch (inode->i_mode & S_IFMT) {
252	case S_IFIFO:
253	case S_IFCHR:
254	case S_IFBLK:
255	case S_IFSOCK:
256		ip->i_disk_size = 0;
257		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
258		return 0;
259	case S_IFREG:
260	case S_IFLNK:
261	case S_IFDIR:
262		switch (ip->i_df.if_format) {
263		case XFS_DINODE_FMT_LOCAL:
264			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
265					be64_to_cpu(dip->di_size));
266			if (!error)
267				error = xfs_ifork_verify_local_data(ip);
268			return error;
269		case XFS_DINODE_FMT_EXTENTS:
270			return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
271		case XFS_DINODE_FMT_BTREE:
272			return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
273		default:
274			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
275					dip, sizeof(*dip), __this_address);
276			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
277			return -EFSCORRUPTED;
278		}
279		break;
280	default:
281		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
282				sizeof(*dip), __this_address);
283		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
284		return -EFSCORRUPTED;
285	}
286}
287
288static uint16_t
289xfs_dfork_attr_shortform_size(
290	struct xfs_dinode		*dip)
291{
292	struct xfs_attr_sf_hdr		*sf = XFS_DFORK_APTR(dip);
 
293
294	return be16_to_cpu(sf->totsize);
295}
296
297void
298xfs_ifork_init_attr(
299	struct xfs_inode	*ip,
300	enum xfs_dinode_fmt	format,
301	xfs_extnum_t		nextents)
302{
303	/*
304	 * Initialize the extent count early, as the per-format routines may
305	 * depend on it.  Use release semantics to set needextents /after/ we
306	 * set the format. This ensures that we can use acquire semantics on
307	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
308	 * valid format value after that load.
309	 */
310	ip->i_af.if_format = format;
311	ip->i_af.if_nextents = nextents;
312	smp_store_release(&ip->i_af.if_needextents,
313			   ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
314}
315
316void
317xfs_ifork_zap_attr(
318	struct xfs_inode	*ip)
319{
320	xfs_idestroy_fork(&ip->i_af);
321	memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
322	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
323}
324
325int
326xfs_iformat_attr_fork(
327	struct xfs_inode	*ip,
328	struct xfs_dinode	*dip)
329{
330	xfs_extnum_t		naextents = xfs_dfork_attr_extents(dip);
331	int			error = 0;
332
333	/*
334	 * Initialize the extent count early, as the per-format routines may
335	 * depend on it.
336	 */
337	xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
 
 
 
 
338
339	switch (ip->i_af.if_format) {
340	case XFS_DINODE_FMT_LOCAL:
341		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
342				xfs_dfork_attr_shortform_size(dip));
343		if (!error)
344			error = xfs_ifork_verify_local_attr(ip);
345		break;
346	case XFS_DINODE_FMT_EXTENTS:
347		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
348		break;
349	case XFS_DINODE_FMT_BTREE:
350		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
351		break;
352	default:
353		xfs_inode_verifier_error(ip, error, __func__, dip,
354				sizeof(*dip), __this_address);
355		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
356		error = -EFSCORRUPTED;
357		break;
358	}
359
360	if (error)
361		xfs_ifork_zap_attr(ip);
 
 
362	return error;
363}
364
365/*
366 * Reallocate the space for if_broot based on the number of records
367 * being added or deleted as indicated in rec_diff.  Move the records
368 * and pointers in if_broot to fit the new size.  When shrinking this
369 * will eliminate holes between the records and pointers created by
370 * the caller.  When growing this will create holes to be filled in
371 * by the caller.
372 *
373 * The caller must not request to add more records than would fit in
374 * the on-disk inode root.  If the if_broot is currently NULL, then
375 * if we are adding records, one will be allocated.  The caller must also
376 * not request that the number of records go below zero, although
377 * it can go to zero.
378 *
379 * ip -- the inode whose if_broot area is changing
380 * ext_diff -- the change in the number of records, positive or negative,
381 *	 requested for the if_broot array.
382 */
383void
384xfs_iroot_realloc(
385	xfs_inode_t		*ip,
386	int			rec_diff,
387	int			whichfork)
388{
389	struct xfs_mount	*mp = ip->i_mount;
390	int			cur_max;
391	struct xfs_ifork	*ifp;
392	struct xfs_btree_block	*new_broot;
393	int			new_max;
394	size_t			new_size;
395	char			*np;
396	char			*op;
397
398	/*
399	 * Handle the degenerate case quietly.
400	 */
401	if (rec_diff == 0) {
402		return;
403	}
404
405	ifp = xfs_ifork_ptr(ip, whichfork);
406	if (rec_diff > 0) {
407		/*
408		 * If there wasn't any memory allocated before, just
409		 * allocate it now and get out.
410		 */
411		if (ifp->if_broot_bytes == 0) {
412			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
413			ifp->if_broot = kmalloc(new_size,
414						GFP_KERNEL | __GFP_NOFAIL);
415			ifp->if_broot_bytes = (int)new_size;
416			return;
417		}
418
419		/*
420		 * If there is already an existing if_broot, then we need
421		 * to realloc() it and shift the pointers to their new
422		 * location.  The records don't change location because
423		 * they are kept butted up against the btree block header.
424		 */
425		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
426		new_max = cur_max + rec_diff;
427		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
428		ifp->if_broot = krealloc(ifp->if_broot, new_size,
429					 GFP_KERNEL | __GFP_NOFAIL);
430		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
431						     ifp->if_broot_bytes);
432		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
433						     (int)new_size);
434		ifp->if_broot_bytes = (int)new_size;
435		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
436			xfs_inode_fork_size(ip, whichfork));
437		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
438		return;
439	}
440
441	/*
442	 * rec_diff is less than 0.  In this case, we are shrinking the
443	 * if_broot buffer.  It must already exist.  If we go to zero
444	 * records, just get rid of the root and clear the status bit.
445	 */
446	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
447	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
448	new_max = cur_max + rec_diff;
449	ASSERT(new_max >= 0);
450	if (new_max > 0)
451		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
452	else
453		new_size = 0;
454	if (new_size > 0) {
455		new_broot = kmalloc(new_size, GFP_KERNEL | __GFP_NOFAIL);
456		/*
457		 * First copy over the btree block header.
458		 */
459		memcpy(new_broot, ifp->if_broot,
460			XFS_BMBT_BLOCK_LEN(ip->i_mount));
461	} else {
462		new_broot = NULL;
 
463	}
464
465	/*
466	 * Only copy the records and pointers if there are any.
467	 */
468	if (new_max > 0) {
469		/*
470		 * First copy the records.
471		 */
472		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
473		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
474		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
475
476		/*
477		 * Then copy the pointers.
478		 */
479		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
480						     ifp->if_broot_bytes);
481		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
482						     (int)new_size);
483		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
484	}
485	kfree(ifp->if_broot);
486	ifp->if_broot = new_broot;
487	ifp->if_broot_bytes = (int)new_size;
488	if (ifp->if_broot)
489		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
490			xfs_inode_fork_size(ip, whichfork));
491	return;
492}
493
494
495/*
496 * This is called when the amount of space needed for if_data
497 * is increased or decreased.  The change in size is indicated by
498 * the number of bytes that need to be added or deleted in the
499 * byte_diff parameter.
500 *
501 * If the amount of space needed has decreased below the size of the
502 * inline buffer, then switch to using the inline buffer.  Otherwise,
503 * use krealloc() or kmalloc() to adjust the size of the buffer
504 * to what is needed.
505 *
506 * ip -- the inode whose if_data area is changing
507 * byte_diff -- the change in the number of bytes, positive or negative,
508 *	 requested for the if_data array.
509 */
510void *
511xfs_idata_realloc(
512	struct xfs_inode	*ip,
513	int64_t			byte_diff,
514	int			whichfork)
515{
516	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
517	int64_t			new_size = ifp->if_bytes + byte_diff;
518
519	ASSERT(new_size >= 0);
520	ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
 
 
 
521
522	if (byte_diff) {
523		ifp->if_data = krealloc(ifp->if_data, new_size,
524					GFP_KERNEL | __GFP_NOFAIL);
525		if (new_size == 0)
526			ifp->if_data = NULL;
527		ifp->if_bytes = new_size;
528	}
529
530	return ifp->if_data;
 
 
 
 
 
 
 
531}
532
533/* Free all memory and reset a fork back to its initial state. */
534void
535xfs_idestroy_fork(
536	struct xfs_ifork	*ifp)
537{
538	if (ifp->if_broot != NULL) {
539		kfree(ifp->if_broot);
540		ifp->if_broot = NULL;
541	}
542
543	switch (ifp->if_format) {
544	case XFS_DINODE_FMT_LOCAL:
545		kfree(ifp->if_data);
546		ifp->if_data = NULL;
547		break;
548	case XFS_DINODE_FMT_EXTENTS:
549	case XFS_DINODE_FMT_BTREE:
 
 
550		if (ifp->if_height)
551			xfs_iext_destroy(ifp);
552		break;
553	}
554}
555
556/*
557 * Convert in-core extents to on-disk form
558 *
559 * In the case of the data fork, the in-core and on-disk fork sizes can be
560 * different due to delayed allocation extents. We only copy on-disk extents
561 * here, so callers must always use the physical fork size to determine the
562 * size of the buffer passed to this routine.  We will return the size actually
563 * used.
564 */
565int
566xfs_iextents_copy(
567	struct xfs_inode	*ip,
568	struct xfs_bmbt_rec	*dp,
569	int			whichfork)
570{
571	int			state = xfs_bmap_fork_to_state(whichfork);
572	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
573	struct xfs_iext_cursor	icur;
574	struct xfs_bmbt_irec	rec;
575	int64_t			copied = 0;
576
577	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
578	ASSERT(ifp->if_bytes > 0);
579
580	for_each_xfs_iext(ifp, &icur, &rec) {
581		if (isnullstartblock(rec.br_startblock))
582			continue;
583		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
584		xfs_bmbt_disk_set_all(dp, &rec);
585		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
586		copied += sizeof(struct xfs_bmbt_rec);
587		dp++;
588	}
589
590	ASSERT(copied > 0);
591	ASSERT(copied <= ifp->if_bytes);
592	return copied;
593}
594
595/*
596 * Each of the following cases stores data into the same region
597 * of the on-disk inode, so only one of them can be valid at
598 * any given time. While it is possible to have conflicting formats
599 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
600 * in EXTENTS format, this can only happen when the fork has
601 * changed formats after being modified but before being flushed.
602 * In these cases, the format always takes precedence, because the
603 * format indicates the current state of the fork.
604 */
605void
606xfs_iflush_fork(
607	struct xfs_inode	*ip,
608	struct xfs_dinode	*dip,
609	struct xfs_inode_log_item *iip,
610	int			whichfork)
611{
612	char			*cp;
613	struct xfs_ifork	*ifp;
614	xfs_mount_t		*mp;
615	static const short	brootflag[2] =
616		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
617	static const short	dataflag[2] =
618		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
619	static const short	extflag[2] =
620		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
621
622	if (!iip)
623		return;
624	ifp = xfs_ifork_ptr(ip, whichfork);
625	/*
626	 * This can happen if we gave up in iformat in an error path,
627	 * for the attribute fork.
628	 */
629	if (!ifp) {
630		ASSERT(whichfork == XFS_ATTR_FORK);
631		return;
632	}
633	cp = XFS_DFORK_PTR(dip, whichfork);
634	mp = ip->i_mount;
635	switch (ifp->if_format) {
636	case XFS_DINODE_FMT_LOCAL:
637		if ((iip->ili_fields & dataflag[whichfork]) &&
638		    (ifp->if_bytes > 0)) {
639			ASSERT(ifp->if_data != NULL);
640			ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
641			memcpy(cp, ifp->if_data, ifp->if_bytes);
642		}
643		break;
644
645	case XFS_DINODE_FMT_EXTENTS:
 
 
646		if ((iip->ili_fields & extflag[whichfork]) &&
647		    (ifp->if_bytes > 0)) {
648			ASSERT(ifp->if_nextents > 0);
649			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
650				whichfork);
651		}
652		break;
653
654	case XFS_DINODE_FMT_BTREE:
655		if ((iip->ili_fields & brootflag[whichfork]) &&
656		    (ifp->if_broot_bytes > 0)) {
657			ASSERT(ifp->if_broot != NULL);
658			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
659			        xfs_inode_fork_size(ip, whichfork));
660			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
661				(xfs_bmdr_block_t *)cp,
662				XFS_DFORK_SIZE(dip, mp, whichfork));
663		}
664		break;
665
666	case XFS_DINODE_FMT_DEV:
667		if (iip->ili_fields & XFS_ILOG_DEV) {
668			ASSERT(whichfork == XFS_DATA_FORK);
669			xfs_dinode_put_rdev(dip,
670					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
671		}
672		break;
673
674	default:
675		ASSERT(0);
676		break;
677	}
678}
679
680/* Convert bmap state flags to an inode fork. */
681struct xfs_ifork *
682xfs_iext_state_to_fork(
683	struct xfs_inode	*ip,
684	int			state)
685{
686	if (state & BMAP_COWFORK)
687		return ip->i_cowfp;
688	else if (state & BMAP_ATTRFORK)
689		return &ip->i_af;
690	return &ip->i_df;
691}
692
693/*
694 * Initialize an inode's copy-on-write fork.
695 */
696void
697xfs_ifork_init_cow(
698	struct xfs_inode	*ip)
699{
700	if (ip->i_cowfp)
701		return;
702
703	ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
704				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
 
705	ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
706}
707
708/* Verify the inline contents of the data fork of an inode. */
709int
710xfs_ifork_verify_local_data(
711	struct xfs_inode	*ip)
712{
713	xfs_failaddr_t		fa = NULL;
714
715	switch (VFS_I(ip)->i_mode & S_IFMT) {
716	case S_IFDIR: {
717		struct xfs_mount	*mp = ip->i_mount;
718		struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
719		struct xfs_dir2_sf_hdr	*sfp = ifp->if_data;
720
721		fa = xfs_dir2_sf_verify(mp, sfp, ifp->if_bytes);
722		break;
723	}
724	case S_IFLNK: {
725		struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
726
727		fa = xfs_symlink_shortform_verify(ifp->if_data, ifp->if_bytes);
728		break;
729	}
730	default:
731		break;
732	}
733
734	if (fa) {
735		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
736				ip->i_df.if_data, ip->i_df.if_bytes, fa);
737		return -EFSCORRUPTED;
738	}
739
740	return 0;
741}
742
743/* Verify the inline contents of the attr fork of an inode. */
744int
745xfs_ifork_verify_local_attr(
746	struct xfs_inode	*ip)
747{
748	struct xfs_ifork	*ifp = &ip->i_af;
749	xfs_failaddr_t		fa;
750
751	if (!xfs_inode_has_attr_fork(ip)) {
752		fa = __this_address;
753	} else {
754		struct xfs_ifork		*ifp = &ip->i_af;
755
756		ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
757		fa = xfs_attr_shortform_verify(ifp->if_data, ifp->if_bytes);
758	}
759	if (fa) {
760		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
761				ifp->if_data, ifp->if_bytes, fa);
 
762		return -EFSCORRUPTED;
763	}
764
765	return 0;
766}
767
768int
769xfs_iext_count_may_overflow(
770	struct xfs_inode	*ip,
771	int			whichfork,
772	int			nr_to_add)
773{
774	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
775	uint64_t		max_exts;
776	uint64_t		nr_exts;
777
778	if (whichfork == XFS_COW_FORK)
779		return 0;
780
781	max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
782				whichfork);
783
784	if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
785		max_exts = 10;
786
787	nr_exts = ifp->if_nextents + nr_to_add;
788	if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
789		return -EFBIG;
790
791	return 0;
792}
793
794/*
795 * Upgrade this inode's extent counter fields to be able to handle a potential
796 * increase in the extent count by nr_to_add.  Normally this is the same
797 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
798 */
799int
800xfs_iext_count_upgrade(
801	struct xfs_trans	*tp,
802	struct xfs_inode	*ip,
803	uint			nr_to_add)
804{
805	ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
806
807	if (!xfs_has_large_extent_counts(ip->i_mount) ||
808	    xfs_inode_has_large_extent_counts(ip) ||
809	    XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
810		return -EFBIG;
811
812	ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
813	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
814
815	return 0;
816}
817
818/* Decide if a file mapping is on the realtime device or not. */
819bool
820xfs_ifork_is_realtime(
821	struct xfs_inode	*ip,
822	int			whichfork)
823{
824	return XFS_IS_REALTIME_INODE(ip) && whichfork != XFS_ATTR_FORK;
825}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6
  7#include "xfs.h"
  8#include "xfs_fs.h"
  9#include "xfs_shared.h"
 10#include "xfs_format.h"
 11#include "xfs_log_format.h"
 12#include "xfs_trans_resv.h"
 13#include "xfs_mount.h"
 14#include "xfs_inode.h"
 15#include "xfs_trans.h"
 16#include "xfs_inode_item.h"
 17#include "xfs_btree.h"
 18#include "xfs_bmap_btree.h"
 19#include "xfs_bmap.h"
 20#include "xfs_error.h"
 21#include "xfs_trace.h"
 22#include "xfs_da_format.h"
 23#include "xfs_da_btree.h"
 24#include "xfs_dir2_priv.h"
 25#include "xfs_attr_leaf.h"
 
 
 
 
 26
 27kmem_zone_t *xfs_ifork_zone;
 28
 29void
 30xfs_init_local_fork(
 31	struct xfs_inode	*ip,
 32	int			whichfork,
 33	const void		*data,
 34	int64_t			size)
 35{
 36	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
 37	int			mem_size = size, real_size = 0;
 38	bool			zero_terminate;
 39
 40	/*
 41	 * If we are using the local fork to store a symlink body we need to
 42	 * zero-terminate it so that we can pass it back to the VFS directly.
 43	 * Overallocate the in-memory fork by one for that and add a zero
 44	 * to terminate it below.
 45	 */
 46	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
 47	if (zero_terminate)
 48		mem_size++;
 49
 50	if (size) {
 51		real_size = roundup(mem_size, 4);
 52		ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS);
 53		memcpy(ifp->if_u1.if_data, data, size);
 
 54		if (zero_terminate)
 55			ifp->if_u1.if_data[size] = '\0';
 
 
 56	} else {
 57		ifp->if_u1.if_data = NULL;
 58	}
 59
 60	ifp->if_bytes = size;
 61	ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
 62	ifp->if_flags |= XFS_IFINLINE;
 63}
 64
 65/*
 66 * The file is in-lined in the on-disk inode.
 67 */
 68STATIC int
 69xfs_iformat_local(
 70	xfs_inode_t	*ip,
 71	xfs_dinode_t	*dip,
 72	int		whichfork,
 73	int		size)
 74{
 75	/*
 76	 * If the size is unreasonable, then something
 77	 * is wrong and we just bail out rather than crash in
 78	 * kmem_alloc() or memcpy() below.
 79	 */
 80	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 81		xfs_warn(ip->i_mount,
 82	"corrupt inode %Lu (bad size %d for local fork, size = %zd).",
 83			(unsigned long long) ip->i_ino, size,
 84			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 85		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 86				"xfs_iformat_local", dip, sizeof(*dip),
 87				__this_address);
 
 88		return -EFSCORRUPTED;
 89	}
 90
 91	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
 92	return 0;
 93}
 94
 95/*
 96 * The file consists of a set of extents all of which fit into the on-disk
 97 * inode.
 98 */
 99STATIC int
100xfs_iformat_extents(
101	struct xfs_inode	*ip,
102	struct xfs_dinode	*dip,
103	int			whichfork)
104{
105	struct xfs_mount	*mp = ip->i_mount;
106	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
107	int			state = xfs_bmap_fork_to_state(whichfork);
108	int			nex = XFS_DFORK_NEXTENTS(dip, whichfork);
109	int			size = nex * sizeof(xfs_bmbt_rec_t);
110	struct xfs_iext_cursor	icur;
111	struct xfs_bmbt_rec	*dp;
112	struct xfs_bmbt_irec	new;
113	int			i;
114
115	/*
116	 * If the number of extents is unreasonable, then something is wrong and
117	 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
118	 */
119	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
120		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
121			(unsigned long long) ip->i_ino, nex);
122		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
123				"xfs_iformat_extents(1)", dip, sizeof(*dip),
124				__this_address);
 
125		return -EFSCORRUPTED;
126	}
127
128	ifp->if_bytes = 0;
129	ifp->if_u1.if_root = NULL;
130	ifp->if_height = 0;
131	if (size) {
132		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
133
134		xfs_iext_first(ifp, &icur);
135		for (i = 0; i < nex; i++, dp++) {
136			xfs_failaddr_t	fa;
137
138			xfs_bmbt_disk_get_all(dp, &new);
139			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
140			if (fa) {
141				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
142						"xfs_iformat_extents(2)",
143						dp, sizeof(*dp), fa);
144				return -EFSCORRUPTED;
 
 
145			}
146
147			xfs_iext_insert(ip, &icur, &new, state);
148			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
149			xfs_iext_next(ifp, &icur);
150		}
151	}
152	ifp->if_flags |= XFS_IFEXTENTS;
153	return 0;
154}
155
156/*
157 * The file has too many extents to fit into
158 * the inode, so they are in B-tree format.
159 * Allocate a buffer for the root of the B-tree
160 * and copy the root into it.  The i_extents
161 * field will remain NULL until all of the
162 * extents are read in (when they are needed).
163 */
164STATIC int
165xfs_iformat_btree(
166	xfs_inode_t		*ip,
167	xfs_dinode_t		*dip,
168	int			whichfork)
169{
170	struct xfs_mount	*mp = ip->i_mount;
171	xfs_bmdr_block_t	*dfp;
172	struct xfs_ifork	*ifp;
173	/* REFERENCED */
174	int			nrecs;
175	int			size;
176	int			level;
177
178	ifp = XFS_IFORK_PTR(ip, whichfork);
179	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
180	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
181	nrecs = be16_to_cpu(dfp->bb_numrecs);
182	level = be16_to_cpu(dfp->bb_level);
183
184	/*
185	 * blow out if -- fork has less extents than can fit in
186	 * fork (fork shouldn't be a btree format), root btree
187	 * block has more records than can fit into the fork,
188	 * or the number of extents is greater than the number of
189	 * blocks.
190	 */
191	if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
192		     nrecs == 0 ||
193		     XFS_BMDR_SPACE_CALC(nrecs) >
194					XFS_DFORK_SIZE(dip, mp, whichfork) ||
195		     ifp->if_nextents > ip->i_d.di_nblocks) ||
196		     level == 0 || level > XFS_BTREE_MAXLEVELS) {
197		xfs_warn(mp, "corrupt inode %Lu (btree).",
198					(unsigned long long) ip->i_ino);
199		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
200				"xfs_iformat_btree", dfp, size,
201				__this_address);
 
202		return -EFSCORRUPTED;
203	}
204
205	ifp->if_broot_bytes = size;
206	ifp->if_broot = kmem_alloc(size, KM_NOFS);
 
207	ASSERT(ifp->if_broot != NULL);
208	/*
209	 * Copy and convert from the on-disk structure
210	 * to the in-memory structure.
211	 */
212	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
213			 ifp->if_broot, size);
214	ifp->if_flags &= ~XFS_IFEXTENTS;
215	ifp->if_flags |= XFS_IFBROOT;
216
217	ifp->if_bytes = 0;
218	ifp->if_u1.if_root = NULL;
219	ifp->if_height = 0;
220	return 0;
221}
222
223int
224xfs_iformat_data_fork(
225	struct xfs_inode	*ip,
226	struct xfs_dinode	*dip)
227{
228	struct inode		*inode = VFS_I(ip);
229	int			error;
230
231	/*
232	 * Initialize the extent count early, as the per-format routines may
233	 * depend on it.
 
 
 
234	 */
235	ip->i_df.if_format = dip->di_format;
236	ip->i_df.if_nextents = be32_to_cpu(dip->di_nextents);
 
 
237
238	switch (inode->i_mode & S_IFMT) {
239	case S_IFIFO:
240	case S_IFCHR:
241	case S_IFBLK:
242	case S_IFSOCK:
243		ip->i_d.di_size = 0;
244		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
245		return 0;
246	case S_IFREG:
247	case S_IFLNK:
248	case S_IFDIR:
249		switch (ip->i_df.if_format) {
250		case XFS_DINODE_FMT_LOCAL:
251			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
252					be64_to_cpu(dip->di_size));
253			if (!error)
254				error = xfs_ifork_verify_local_data(ip);
255			return error;
256		case XFS_DINODE_FMT_EXTENTS:
257			return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
258		case XFS_DINODE_FMT_BTREE:
259			return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
260		default:
261			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
262					dip, sizeof(*dip), __this_address);
 
263			return -EFSCORRUPTED;
264		}
265		break;
266	default:
267		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
268				sizeof(*dip), __this_address);
 
269		return -EFSCORRUPTED;
270	}
271}
272
273static uint16_t
274xfs_dfork_attr_shortform_size(
275	struct xfs_dinode		*dip)
276{
277	struct xfs_attr_shortform	*atp =
278		(struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
279
280	return be16_to_cpu(atp->hdr.totsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281}
282
283int
284xfs_iformat_attr_fork(
285	struct xfs_inode	*ip,
286	struct xfs_dinode	*dip)
287{
 
288	int			error = 0;
289
290	/*
291	 * Initialize the extent count early, as the per-format routines may
292	 * depend on it.
293	 */
294	ip->i_afp = kmem_cache_zalloc(xfs_ifork_zone, GFP_NOFS | __GFP_NOFAIL);
295	ip->i_afp->if_format = dip->di_aformat;
296	if (unlikely(ip->i_afp->if_format == 0)) /* pre IRIX 6.2 file system */
297		ip->i_afp->if_format = XFS_DINODE_FMT_EXTENTS;
298	ip->i_afp->if_nextents = be16_to_cpu(dip->di_anextents);
299
300	switch (ip->i_afp->if_format) {
301	case XFS_DINODE_FMT_LOCAL:
302		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
303				xfs_dfork_attr_shortform_size(dip));
304		if (!error)
305			error = xfs_ifork_verify_local_attr(ip);
306		break;
307	case XFS_DINODE_FMT_EXTENTS:
308		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
309		break;
310	case XFS_DINODE_FMT_BTREE:
311		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
312		break;
313	default:
314		xfs_inode_verifier_error(ip, error, __func__, dip,
315				sizeof(*dip), __this_address);
 
316		error = -EFSCORRUPTED;
317		break;
318	}
319
320	if (error) {
321		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
322		ip->i_afp = NULL;
323	}
324	return error;
325}
326
327/*
328 * Reallocate the space for if_broot based on the number of records
329 * being added or deleted as indicated in rec_diff.  Move the records
330 * and pointers in if_broot to fit the new size.  When shrinking this
331 * will eliminate holes between the records and pointers created by
332 * the caller.  When growing this will create holes to be filled in
333 * by the caller.
334 *
335 * The caller must not request to add more records than would fit in
336 * the on-disk inode root.  If the if_broot is currently NULL, then
337 * if we are adding records, one will be allocated.  The caller must also
338 * not request that the number of records go below zero, although
339 * it can go to zero.
340 *
341 * ip -- the inode whose if_broot area is changing
342 * ext_diff -- the change in the number of records, positive or negative,
343 *	 requested for the if_broot array.
344 */
345void
346xfs_iroot_realloc(
347	xfs_inode_t		*ip,
348	int			rec_diff,
349	int			whichfork)
350{
351	struct xfs_mount	*mp = ip->i_mount;
352	int			cur_max;
353	struct xfs_ifork	*ifp;
354	struct xfs_btree_block	*new_broot;
355	int			new_max;
356	size_t			new_size;
357	char			*np;
358	char			*op;
359
360	/*
361	 * Handle the degenerate case quietly.
362	 */
363	if (rec_diff == 0) {
364		return;
365	}
366
367	ifp = XFS_IFORK_PTR(ip, whichfork);
368	if (rec_diff > 0) {
369		/*
370		 * If there wasn't any memory allocated before, just
371		 * allocate it now and get out.
372		 */
373		if (ifp->if_broot_bytes == 0) {
374			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
375			ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
 
376			ifp->if_broot_bytes = (int)new_size;
377			return;
378		}
379
380		/*
381		 * If there is already an existing if_broot, then we need
382		 * to realloc() it and shift the pointers to their new
383		 * location.  The records don't change location because
384		 * they are kept butted up against the btree block header.
385		 */
386		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
387		new_max = cur_max + rec_diff;
388		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
389		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
390				KM_NOFS);
391		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
392						     ifp->if_broot_bytes);
393		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
394						     (int)new_size);
395		ifp->if_broot_bytes = (int)new_size;
396		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
397			XFS_IFORK_SIZE(ip, whichfork));
398		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
399		return;
400	}
401
402	/*
403	 * rec_diff is less than 0.  In this case, we are shrinking the
404	 * if_broot buffer.  It must already exist.  If we go to zero
405	 * records, just get rid of the root and clear the status bit.
406	 */
407	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
408	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
409	new_max = cur_max + rec_diff;
410	ASSERT(new_max >= 0);
411	if (new_max > 0)
412		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
413	else
414		new_size = 0;
415	if (new_size > 0) {
416		new_broot = kmem_alloc(new_size, KM_NOFS);
417		/*
418		 * First copy over the btree block header.
419		 */
420		memcpy(new_broot, ifp->if_broot,
421			XFS_BMBT_BLOCK_LEN(ip->i_mount));
422	} else {
423		new_broot = NULL;
424		ifp->if_flags &= ~XFS_IFBROOT;
425	}
426
427	/*
428	 * Only copy the records and pointers if there are any.
429	 */
430	if (new_max > 0) {
431		/*
432		 * First copy the records.
433		 */
434		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
435		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
436		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
437
438		/*
439		 * Then copy the pointers.
440		 */
441		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
442						     ifp->if_broot_bytes);
443		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
444						     (int)new_size);
445		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
446	}
447	kmem_free(ifp->if_broot);
448	ifp->if_broot = new_broot;
449	ifp->if_broot_bytes = (int)new_size;
450	if (ifp->if_broot)
451		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
452			XFS_IFORK_SIZE(ip, whichfork));
453	return;
454}
455
456
457/*
458 * This is called when the amount of space needed for if_data
459 * is increased or decreased.  The change in size is indicated by
460 * the number of bytes that need to be added or deleted in the
461 * byte_diff parameter.
462 *
463 * If the amount of space needed has decreased below the size of the
464 * inline buffer, then switch to using the inline buffer.  Otherwise,
465 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
466 * to what is needed.
467 *
468 * ip -- the inode whose if_data area is changing
469 * byte_diff -- the change in the number of bytes, positive or negative,
470 *	 requested for the if_data array.
471 */
472void
473xfs_idata_realloc(
474	struct xfs_inode	*ip,
475	int64_t			byte_diff,
476	int			whichfork)
477{
478	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
479	int64_t			new_size = ifp->if_bytes + byte_diff;
480
481	ASSERT(new_size >= 0);
482	ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));
483
484	if (byte_diff == 0)
485		return;
486
487	if (new_size == 0) {
488		kmem_free(ifp->if_u1.if_data);
489		ifp->if_u1.if_data = NULL;
490		ifp->if_bytes = 0;
491		return;
 
492	}
493
494	/*
495	 * For inline data, the underlying buffer must be a multiple of 4 bytes
496	 * in size so that it can be logged and stay on word boundaries.
497	 * We enforce that here.
498	 */
499	ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data,
500			roundup(new_size, 4), KM_NOFS);
501	ifp->if_bytes = new_size;
502}
503
 
504void
505xfs_idestroy_fork(
506	struct xfs_ifork	*ifp)
507{
508	if (ifp->if_broot != NULL) {
509		kmem_free(ifp->if_broot);
510		ifp->if_broot = NULL;
511	}
512
513	/*
514	 * If the format is local, then we can't have an extents array so just
515	 * look for an inline data array.  If we're not local then we may or may
516	 * not have an extents list, so check and free it up if we do.
517	 */
518	if (ifp->if_format == XFS_DINODE_FMT_LOCAL) {
519		kmem_free(ifp->if_u1.if_data);
520		ifp->if_u1.if_data = NULL;
521	} else if (ifp->if_flags & XFS_IFEXTENTS) {
522		if (ifp->if_height)
523			xfs_iext_destroy(ifp);
 
524	}
525}
526
527/*
528 * Convert in-core extents to on-disk form
529 *
530 * In the case of the data fork, the in-core and on-disk fork sizes can be
531 * different due to delayed allocation extents. We only copy on-disk extents
532 * here, so callers must always use the physical fork size to determine the
533 * size of the buffer passed to this routine.  We will return the size actually
534 * used.
535 */
536int
537xfs_iextents_copy(
538	struct xfs_inode	*ip,
539	struct xfs_bmbt_rec	*dp,
540	int			whichfork)
541{
542	int			state = xfs_bmap_fork_to_state(whichfork);
543	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
544	struct xfs_iext_cursor	icur;
545	struct xfs_bmbt_irec	rec;
546	int64_t			copied = 0;
547
548	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
549	ASSERT(ifp->if_bytes > 0);
550
551	for_each_xfs_iext(ifp, &icur, &rec) {
552		if (isnullstartblock(rec.br_startblock))
553			continue;
554		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
555		xfs_bmbt_disk_set_all(dp, &rec);
556		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
557		copied += sizeof(struct xfs_bmbt_rec);
558		dp++;
559	}
560
561	ASSERT(copied > 0);
562	ASSERT(copied <= ifp->if_bytes);
563	return copied;
564}
565
566/*
567 * Each of the following cases stores data into the same region
568 * of the on-disk inode, so only one of them can be valid at
569 * any given time. While it is possible to have conflicting formats
570 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
571 * in EXTENTS format, this can only happen when the fork has
572 * changed formats after being modified but before being flushed.
573 * In these cases, the format always takes precedence, because the
574 * format indicates the current state of the fork.
575 */
576void
577xfs_iflush_fork(
578	xfs_inode_t		*ip,
579	xfs_dinode_t		*dip,
580	struct xfs_inode_log_item *iip,
581	int			whichfork)
582{
583	char			*cp;
584	struct xfs_ifork	*ifp;
585	xfs_mount_t		*mp;
586	static const short	brootflag[2] =
587		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
588	static const short	dataflag[2] =
589		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
590	static const short	extflag[2] =
591		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
592
593	if (!iip)
594		return;
595	ifp = XFS_IFORK_PTR(ip, whichfork);
596	/*
597	 * This can happen if we gave up in iformat in an error path,
598	 * for the attribute fork.
599	 */
600	if (!ifp) {
601		ASSERT(whichfork == XFS_ATTR_FORK);
602		return;
603	}
604	cp = XFS_DFORK_PTR(dip, whichfork);
605	mp = ip->i_mount;
606	switch (ifp->if_format) {
607	case XFS_DINODE_FMT_LOCAL:
608		if ((iip->ili_fields & dataflag[whichfork]) &&
609		    (ifp->if_bytes > 0)) {
610			ASSERT(ifp->if_u1.if_data != NULL);
611			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
612			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
613		}
614		break;
615
616	case XFS_DINODE_FMT_EXTENTS:
617		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
618		       !(iip->ili_fields & extflag[whichfork]));
619		if ((iip->ili_fields & extflag[whichfork]) &&
620		    (ifp->if_bytes > 0)) {
621			ASSERT(ifp->if_nextents > 0);
622			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
623				whichfork);
624		}
625		break;
626
627	case XFS_DINODE_FMT_BTREE:
628		if ((iip->ili_fields & brootflag[whichfork]) &&
629		    (ifp->if_broot_bytes > 0)) {
630			ASSERT(ifp->if_broot != NULL);
631			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
632			        XFS_IFORK_SIZE(ip, whichfork));
633			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
634				(xfs_bmdr_block_t *)cp,
635				XFS_DFORK_SIZE(dip, mp, whichfork));
636		}
637		break;
638
639	case XFS_DINODE_FMT_DEV:
640		if (iip->ili_fields & XFS_ILOG_DEV) {
641			ASSERT(whichfork == XFS_DATA_FORK);
642			xfs_dinode_put_rdev(dip,
643					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
644		}
645		break;
646
647	default:
648		ASSERT(0);
649		break;
650	}
651}
652
653/* Convert bmap state flags to an inode fork. */
654struct xfs_ifork *
655xfs_iext_state_to_fork(
656	struct xfs_inode	*ip,
657	int			state)
658{
659	if (state & BMAP_COWFORK)
660		return ip->i_cowfp;
661	else if (state & BMAP_ATTRFORK)
662		return ip->i_afp;
663	return &ip->i_df;
664}
665
666/*
667 * Initialize an inode's copy-on-write fork.
668 */
669void
670xfs_ifork_init_cow(
671	struct xfs_inode	*ip)
672{
673	if (ip->i_cowfp)
674		return;
675
676	ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_zone,
677				       GFP_NOFS | __GFP_NOFAIL);
678	ip->i_cowfp->if_flags = XFS_IFEXTENTS;
679	ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
680}
681
682/* Verify the inline contents of the data fork of an inode. */
683int
684xfs_ifork_verify_local_data(
685	struct xfs_inode	*ip)
686{
687	xfs_failaddr_t		fa = NULL;
688
689	switch (VFS_I(ip)->i_mode & S_IFMT) {
690	case S_IFDIR:
691		fa = xfs_dir2_sf_verify(ip);
 
 
 
 
692		break;
693	case S_IFLNK:
694		fa = xfs_symlink_shortform_verify(ip);
 
 
 
695		break;
 
696	default:
697		break;
698	}
699
700	if (fa) {
701		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
702				ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
703		return -EFSCORRUPTED;
704	}
705
706	return 0;
707}
708
709/* Verify the inline contents of the attr fork of an inode. */
710int
711xfs_ifork_verify_local_attr(
712	struct xfs_inode	*ip)
713{
714	struct xfs_ifork	*ifp = ip->i_afp;
715	xfs_failaddr_t		fa;
716
717	if (!ifp)
718		fa = __this_address;
719	else
720		fa = xfs_attr_shortform_verify(ip);
721
 
 
 
722	if (fa) {
723		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
724				ifp ? ifp->if_u1.if_data : NULL,
725				ifp ? ifp->if_bytes : 0, fa);
726		return -EFSCORRUPTED;
727	}
728
729	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730}