Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30#include "xfs_health.h"
31
32/*
33 * Lookup a record by ino in the btree given by cur.
34 */
35int /* error */
36xfs_inobt_lookup(
37 struct xfs_btree_cur *cur, /* btree cursor */
38 xfs_agino_t ino, /* starting inode of chunk */
39 xfs_lookup_t dir, /* <=, >=, == */
40 int *stat) /* success/failure */
41{
42 cur->bc_rec.i.ir_startino = ino;
43 cur->bc_rec.i.ir_holemask = 0;
44 cur->bc_rec.i.ir_count = 0;
45 cur->bc_rec.i.ir_freecount = 0;
46 cur->bc_rec.i.ir_free = 0;
47 return xfs_btree_lookup(cur, dir, stat);
48}
49
50/*
51 * Update the record referred to by cur to the value given.
52 * This either works (return 0) or gets an EFSCORRUPTED error.
53 */
54STATIC int /* error */
55xfs_inobt_update(
56 struct xfs_btree_cur *cur, /* btree cursor */
57 xfs_inobt_rec_incore_t *irec) /* btree record */
58{
59 union xfs_btree_rec rec;
60
61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 if (xfs_has_sparseinodes(cur->bc_mp)) {
63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 } else {
67 /* ir_holemask/ir_count not supported on-disk */
68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 }
70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 return xfs_btree_update(cur, &rec);
72}
73
74/* Convert on-disk btree record to incore inobt record. */
75void
76xfs_inobt_btrec_to_irec(
77 struct xfs_mount *mp,
78 const union xfs_btree_rec *rec,
79 struct xfs_inobt_rec_incore *irec)
80{
81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 if (xfs_has_sparseinodes(mp)) {
83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 } else {
87 /*
88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 * values for full inode chunks.
90 */
91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 irec->ir_count = XFS_INODES_PER_CHUNK;
93 irec->ir_freecount =
94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 }
96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97}
98
99/* Compute the freecount of an incore inode record. */
100uint8_t
101xfs_inobt_rec_freecount(
102 const struct xfs_inobt_rec_incore *irec)
103{
104 uint64_t realfree = irec->ir_free;
105
106 if (xfs_inobt_issparse(irec->ir_holemask))
107 realfree &= xfs_inobt_irec_to_allocmask(irec);
108 return hweight64(realfree);
109}
110
111/* Simple checks for inode records. */
112xfs_failaddr_t
113xfs_inobt_check_irec(
114 struct xfs_perag *pag,
115 const struct xfs_inobt_rec_incore *irec)
116{
117 /* Record has to be properly aligned within the AG. */
118 if (!xfs_verify_agino(pag, irec->ir_startino))
119 return __this_address;
120 if (!xfs_verify_agino(pag,
121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 return __this_address;
123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 irec->ir_count > XFS_INODES_PER_CHUNK)
125 return __this_address;
126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 return __this_address;
128
129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 return __this_address;
131
132 return NULL;
133}
134
135static inline int
136xfs_inobt_complain_bad_rec(
137 struct xfs_btree_cur *cur,
138 xfs_failaddr_t fa,
139 const struct xfs_inobt_rec_incore *irec)
140{
141 struct xfs_mount *mp = cur->bc_mp;
142
143 xfs_warn(mp,
144 "%sbt record corruption in AG %d detected at %pS!",
145 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146 xfs_warn(mp,
147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 xfs_btree_mark_sick(cur);
151 return -EFSCORRUPTED;
152}
153
154/*
155 * Get the data from the pointed-to record.
156 */
157int
158xfs_inobt_get_rec(
159 struct xfs_btree_cur *cur,
160 struct xfs_inobt_rec_incore *irec,
161 int *stat)
162{
163 struct xfs_mount *mp = cur->bc_mp;
164 union xfs_btree_rec *rec;
165 xfs_failaddr_t fa;
166 int error;
167
168 error = xfs_btree_get_rec(cur, &rec, stat);
169 if (error || *stat == 0)
170 return error;
171
172 xfs_inobt_btrec_to_irec(mp, rec, irec);
173 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174 if (fa)
175 return xfs_inobt_complain_bad_rec(cur, fa, irec);
176
177 return 0;
178}
179
180/*
181 * Insert a single inobt record. Cursor must already point to desired location.
182 */
183int
184xfs_inobt_insert_rec(
185 struct xfs_btree_cur *cur,
186 uint16_t holemask,
187 uint8_t count,
188 int32_t freecount,
189 xfs_inofree_t free,
190 int *stat)
191{
192 cur->bc_rec.i.ir_holemask = holemask;
193 cur->bc_rec.i.ir_count = count;
194 cur->bc_rec.i.ir_freecount = freecount;
195 cur->bc_rec.i.ir_free = free;
196 return xfs_btree_insert(cur, stat);
197}
198
199/*
200 * Insert records describing a newly allocated inode chunk into the inobt.
201 */
202STATIC int
203xfs_inobt_insert(
204 struct xfs_perag *pag,
205 struct xfs_trans *tp,
206 struct xfs_buf *agbp,
207 xfs_agino_t newino,
208 xfs_agino_t newlen,
209 bool is_finobt)
210{
211 struct xfs_btree_cur *cur;
212 xfs_agino_t thisino;
213 int i;
214 int error;
215
216 if (is_finobt)
217 cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 else
219 cur = xfs_inobt_init_cursor(pag, tp, agbp);
220
221 for (thisino = newino;
222 thisino < newino + newlen;
223 thisino += XFS_INODES_PER_CHUNK) {
224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 if (error) {
226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 return error;
228 }
229 ASSERT(i == 0);
230
231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 XFS_INODES_PER_CHUNK,
233 XFS_INODES_PER_CHUNK,
234 XFS_INOBT_ALL_FREE, &i);
235 if (error) {
236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 return error;
238 }
239 ASSERT(i == 1);
240 }
241
242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243
244 return 0;
245}
246
247/*
248 * Verify that the number of free inodes in the AGI is correct.
249 */
250#ifdef DEBUG
251static int
252xfs_check_agi_freecount(
253 struct xfs_btree_cur *cur)
254{
255 if (cur->bc_nlevels == 1) {
256 xfs_inobt_rec_incore_t rec;
257 int freecount = 0;
258 int error;
259 int i;
260
261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 if (error)
263 return error;
264
265 do {
266 error = xfs_inobt_get_rec(cur, &rec, &i);
267 if (error)
268 return error;
269
270 if (i) {
271 freecount += rec.ir_freecount;
272 error = xfs_btree_increment(cur, 0, &i);
273 if (error)
274 return error;
275 }
276 } while (i == 1);
277
278 if (!xfs_is_shutdown(cur->bc_mp))
279 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280 }
281 return 0;
282}
283#else
284#define xfs_check_agi_freecount(cur) 0
285#endif
286
287/*
288 * Initialise a new set of inodes. When called without a transaction context
289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290 * than logging them (which in a transaction context puts them into the AIL
291 * for writeback rather than the xfsbufd queue).
292 */
293int
294xfs_ialloc_inode_init(
295 struct xfs_mount *mp,
296 struct xfs_trans *tp,
297 struct list_head *buffer_list,
298 int icount,
299 xfs_agnumber_t agno,
300 xfs_agblock_t agbno,
301 xfs_agblock_t length,
302 unsigned int gen)
303{
304 struct xfs_buf *fbuf;
305 struct xfs_dinode *free;
306 int nbufs;
307 int version;
308 int i, j;
309 xfs_daddr_t d;
310 xfs_ino_t ino = 0;
311 int error;
312
313 /*
314 * Loop over the new block(s), filling in the inodes. For small block
315 * sizes, manipulate the inodes in buffers which are multiples of the
316 * blocks size.
317 */
318 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319
320 /*
321 * Figure out what version number to use in the inodes we create. If
322 * the superblock version has caught up to the one that supports the new
323 * inode format, then use the new inode version. Otherwise use the old
324 * version so that old kernels will continue to be able to use the file
325 * system.
326 *
327 * For v3 inodes, we also need to write the inode number into the inode,
328 * so calculate the first inode number of the chunk here as
329 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330 * across multiple filesystem blocks (such as a cluster) and so cannot
331 * be used in the cluster buffer loop below.
332 *
333 * Further, because we are writing the inode directly into the buffer
334 * and calculating a CRC on the entire inode, we have ot log the entire
335 * inode so that the entire range the CRC covers is present in the log.
336 * That means for v3 inode we log the entire buffer rather than just the
337 * inode cores.
338 */
339 if (xfs_has_v3inodes(mp)) {
340 version = 3;
341 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342
343 /*
344 * log the initialisation that is about to take place as an
345 * logical operation. This means the transaction does not
346 * need to log the physical changes to the inode buffers as log
347 * recovery will know what initialisation is actually needed.
348 * Hence we only need to log the buffers as "ordered" buffers so
349 * they track in the AIL as if they were physically logged.
350 */
351 if (tp)
352 xfs_icreate_log(tp, agno, agbno, icount,
353 mp->m_sb.sb_inodesize, length, gen);
354 } else
355 version = 2;
356
357 for (j = 0; j < nbufs; j++) {
358 /*
359 * Get the block.
360 */
361 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362 (j * M_IGEO(mp)->blocks_per_cluster));
363 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365 XBF_UNMAPPED, &fbuf);
366 if (error)
367 return error;
368
369 /* Initialize the inode buffers and log them appropriately. */
370 fbuf->b_ops = &xfs_inode_buf_ops;
371 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373 int ioffset = i << mp->m_sb.sb_inodelog;
374
375 free = xfs_make_iptr(mp, fbuf, i);
376 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377 free->di_version = version;
378 free->di_gen = cpu_to_be32(gen);
379 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380
381 if (version == 3) {
382 free->di_ino = cpu_to_be64(ino);
383 ino++;
384 uuid_copy(&free->di_uuid,
385 &mp->m_sb.sb_meta_uuid);
386 xfs_dinode_calc_crc(mp, free);
387 } else if (tp) {
388 /* just log the inode core */
389 xfs_trans_log_buf(tp, fbuf, ioffset,
390 ioffset + XFS_DINODE_SIZE(mp) - 1);
391 }
392 }
393
394 if (tp) {
395 /*
396 * Mark the buffer as an inode allocation buffer so it
397 * sticks in AIL at the point of this allocation
398 * transaction. This ensures the they are on disk before
399 * the tail of the log can be moved past this
400 * transaction (i.e. by preventing relogging from moving
401 * it forward in the log).
402 */
403 xfs_trans_inode_alloc_buf(tp, fbuf);
404 if (version == 3) {
405 /*
406 * Mark the buffer as ordered so that they are
407 * not physically logged in the transaction but
408 * still tracked in the AIL as part of the
409 * transaction and pin the log appropriately.
410 */
411 xfs_trans_ordered_buf(tp, fbuf);
412 }
413 } else {
414 fbuf->b_flags |= XBF_DONE;
415 xfs_buf_delwri_queue(fbuf, buffer_list);
416 xfs_buf_relse(fbuf);
417 }
418 }
419 return 0;
420}
421
422/*
423 * Align startino and allocmask for a recently allocated sparse chunk such that
424 * they are fit for insertion (or merge) into the on-disk inode btrees.
425 *
426 * Background:
427 *
428 * When enabled, sparse inode support increases the inode alignment from cluster
429 * size to inode chunk size. This means that the minimum range between two
430 * non-adjacent inode records in the inobt is large enough for a full inode
431 * record. This allows for cluster sized, cluster aligned block allocation
432 * without need to worry about whether the resulting inode record overlaps with
433 * another record in the tree. Without this basic rule, we would have to deal
434 * with the consequences of overlap by potentially undoing recent allocations in
435 * the inode allocation codepath.
436 *
437 * Because of this alignment rule (which is enforced on mount), there are two
438 * inobt possibilities for newly allocated sparse chunks. One is that the
439 * aligned inode record for the chunk covers a range of inodes not already
440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441 * other is that a record already exists at the aligned startino that considers
442 * the newly allocated range as sparse. In the latter case, record content is
443 * merged in hope that sparse inode chunks fill to full chunks over time.
444 */
445STATIC void
446xfs_align_sparse_ino(
447 struct xfs_mount *mp,
448 xfs_agino_t *startino,
449 uint16_t *allocmask)
450{
451 xfs_agblock_t agbno;
452 xfs_agblock_t mod;
453 int offset;
454
455 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456 mod = agbno % mp->m_sb.sb_inoalignmt;
457 if (!mod)
458 return;
459
460 /* calculate the inode offset and align startino */
461 offset = XFS_AGB_TO_AGINO(mp, mod);
462 *startino -= offset;
463
464 /*
465 * Since startino has been aligned down, left shift allocmask such that
466 * it continues to represent the same physical inodes relative to the
467 * new startino.
468 */
469 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470}
471
472/*
473 * Determine whether the source inode record can merge into the target. Both
474 * records must be sparse, the inode ranges must match and there must be no
475 * allocation overlap between the records.
476 */
477STATIC bool
478__xfs_inobt_can_merge(
479 struct xfs_inobt_rec_incore *trec, /* tgt record */
480 struct xfs_inobt_rec_incore *srec) /* src record */
481{
482 uint64_t talloc;
483 uint64_t salloc;
484
485 /* records must cover the same inode range */
486 if (trec->ir_startino != srec->ir_startino)
487 return false;
488
489 /* both records must be sparse */
490 if (!xfs_inobt_issparse(trec->ir_holemask) ||
491 !xfs_inobt_issparse(srec->ir_holemask))
492 return false;
493
494 /* both records must track some inodes */
495 if (!trec->ir_count || !srec->ir_count)
496 return false;
497
498 /* can't exceed capacity of a full record */
499 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500 return false;
501
502 /* verify there is no allocation overlap */
503 talloc = xfs_inobt_irec_to_allocmask(trec);
504 salloc = xfs_inobt_irec_to_allocmask(srec);
505 if (talloc & salloc)
506 return false;
507
508 return true;
509}
510
511/*
512 * Merge the source inode record into the target. The caller must call
513 * __xfs_inobt_can_merge() to ensure the merge is valid.
514 */
515STATIC void
516__xfs_inobt_rec_merge(
517 struct xfs_inobt_rec_incore *trec, /* target */
518 struct xfs_inobt_rec_incore *srec) /* src */
519{
520 ASSERT(trec->ir_startino == srec->ir_startino);
521
522 /* combine the counts */
523 trec->ir_count += srec->ir_count;
524 trec->ir_freecount += srec->ir_freecount;
525
526 /*
527 * Merge the holemask and free mask. For both fields, 0 bits refer to
528 * allocated inodes. We combine the allocated ranges with bitwise AND.
529 */
530 trec->ir_holemask &= srec->ir_holemask;
531 trec->ir_free &= srec->ir_free;
532}
533
534/*
535 * Insert a new sparse inode chunk into the associated inode allocation btree.
536 * The inode record for the sparse chunk is pre-aligned to a startino that
537 * should match any pre-existing sparse inode record in the tree. This allows
538 * sparse chunks to fill over time.
539 *
540 * If no preexisting record exists, the provided record is inserted.
541 * If there is a preexisting record, the provided record is merged with the
542 * existing record and updated in place. The merged record is returned in nrec.
543 *
544 * It is considered corruption if a merge is requested and not possible. Given
545 * the sparse inode alignment constraints, this should never happen.
546 */
547STATIC int
548xfs_inobt_insert_sprec(
549 struct xfs_perag *pag,
550 struct xfs_trans *tp,
551 struct xfs_buf *agbp,
552 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
553{
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
556 int error;
557 int i;
558 struct xfs_inobt_rec_incore rec;
559
560 cur = xfs_inobt_init_cursor(pag, tp, agbp);
561
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 if (error)
565 goto error;
566 /* if nothing there, insert a new record and return */
567 if (i == 0) {
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
570 nrec->ir_free, &i);
571 if (error)
572 goto error;
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 xfs_btree_mark_sick(cur);
575 error = -EFSCORRUPTED;
576 goto error;
577 }
578
579 goto out;
580 }
581
582 /*
583 * A record exists at this startino. Merge the records.
584 */
585 error = xfs_inobt_get_rec(cur, &rec, &i);
586 if (error)
587 goto error;
588 if (XFS_IS_CORRUPT(mp, i != 1)) {
589 xfs_btree_mark_sick(cur);
590 error = -EFSCORRUPTED;
591 goto error;
592 }
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 xfs_btree_mark_sick(cur);
595 error = -EFSCORRUPTED;
596 goto error;
597 }
598
599 /*
600 * This should never fail. If we have coexisting records that
601 * cannot merge, something is seriously wrong.
602 */
603 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604 xfs_btree_mark_sick(cur);
605 error = -EFSCORRUPTED;
606 goto error;
607 }
608
609 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610 rec.ir_holemask, nrec->ir_startino,
611 nrec->ir_holemask);
612
613 /* merge to nrec to output the updated record */
614 __xfs_inobt_rec_merge(nrec, &rec);
615
616 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617 nrec->ir_holemask);
618
619 error = xfs_inobt_rec_check_count(mp, nrec);
620 if (error)
621 goto error;
622
623 error = xfs_inobt_update(cur, nrec);
624 if (error)
625 goto error;
626
627out:
628 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629 return 0;
630error:
631 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632 return error;
633}
634
635/*
636 * Insert a new sparse inode chunk into the free inode btree. The inode
637 * record for the sparse chunk is pre-aligned to a startino that should match
638 * any pre-existing sparse inode record in the tree. This allows sparse chunks
639 * to fill over time.
640 *
641 * The new record is always inserted, overwriting a pre-existing record if
642 * there is one.
643 */
644STATIC int
645xfs_finobt_insert_sprec(
646 struct xfs_perag *pag,
647 struct xfs_trans *tp,
648 struct xfs_buf *agbp,
649 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
650{
651 struct xfs_mount *mp = pag->pag_mount;
652 struct xfs_btree_cur *cur;
653 int error;
654 int i;
655
656 cur = xfs_finobt_init_cursor(pag, tp, agbp);
657
658 /* the new record is pre-aligned so we know where to look */
659 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660 if (error)
661 goto error;
662 /* if nothing there, insert a new record and return */
663 if (i == 0) {
664 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665 nrec->ir_count, nrec->ir_freecount,
666 nrec->ir_free, &i);
667 if (error)
668 goto error;
669 if (XFS_IS_CORRUPT(mp, i != 1)) {
670 xfs_btree_mark_sick(cur);
671 error = -EFSCORRUPTED;
672 goto error;
673 }
674 } else {
675 error = xfs_inobt_update(cur, nrec);
676 if (error)
677 goto error;
678 }
679
680 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681 return 0;
682error:
683 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684 return error;
685}
686
687
688/*
689 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692 * inode count threshold, or the usual negative error code for other errors.
693 */
694STATIC int
695xfs_ialloc_ag_alloc(
696 struct xfs_perag *pag,
697 struct xfs_trans *tp,
698 struct xfs_buf *agbp)
699{
700 struct xfs_agi *agi;
701 struct xfs_alloc_arg args;
702 int error;
703 xfs_agino_t newino; /* new first inode's number */
704 xfs_agino_t newlen; /* new number of inodes */
705 int isaligned = 0; /* inode allocation at stripe */
706 /* unit boundary */
707 /* init. to full chunk */
708 struct xfs_inobt_rec_incore rec;
709 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
710 uint16_t allocmask = (uint16_t) -1;
711 int do_sparse = 0;
712
713 memset(&args, 0, sizeof(args));
714 args.tp = tp;
715 args.mp = tp->t_mountp;
716 args.fsbno = NULLFSBLOCK;
717 args.oinfo = XFS_RMAP_OINFO_INODES;
718 args.pag = pag;
719
720#ifdef DEBUG
721 /* randomly do sparse inode allocations */
722 if (xfs_has_sparseinodes(tp->t_mountp) &&
723 igeo->ialloc_min_blks < igeo->ialloc_blks)
724 do_sparse = get_random_u32_below(2);
725#endif
726
727 /*
728 * Locking will ensure that we don't have two callers in here
729 * at one time.
730 */
731 newlen = igeo->ialloc_inos;
732 if (igeo->maxicount &&
733 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734 igeo->maxicount)
735 return -ENOSPC;
736 args.minlen = args.maxlen = igeo->ialloc_blks;
737 /*
738 * First try to allocate inodes contiguous with the last-allocated
739 * chunk of inodes. If the filesystem is striped, this will fill
740 * an entire stripe unit with inodes.
741 */
742 agi = agbp->b_addr;
743 newino = be32_to_cpu(agi->agi_newino);
744 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745 igeo->ialloc_blks;
746 if (do_sparse)
747 goto sparse_alloc;
748 if (likely(newino != NULLAGINO &&
749 (args.agbno < be32_to_cpu(agi->agi_length)))) {
750 args.prod = 1;
751
752 /*
753 * We need to take into account alignment here to ensure that
754 * we don't modify the free list if we fail to have an exact
755 * block. If we don't have an exact match, and every oher
756 * attempt allocation attempt fails, we'll end up cancelling
757 * a dirty transaction and shutting down.
758 *
759 * For an exact allocation, alignment must be 1,
760 * however we need to take cluster alignment into account when
761 * fixing up the freelist. Use the minalignslop field to
762 * indicate that extra blocks might be required for alignment,
763 * but not to use them in the actual exact allocation.
764 */
765 args.alignment = 1;
766 args.minalignslop = igeo->cluster_align - 1;
767
768 /* Allow space for the inode btree to split. */
769 args.minleft = igeo->inobt_maxlevels;
770 error = xfs_alloc_vextent_exact_bno(&args,
771 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772 args.agbno));
773 if (error)
774 return error;
775
776 /*
777 * This request might have dirtied the transaction if the AG can
778 * satisfy the request, but the exact block was not available.
779 * If the allocation did fail, subsequent requests will relax
780 * the exact agbno requirement and increase the alignment
781 * instead. It is critical that the total size of the request
782 * (len + alignment + slop) does not increase from this point
783 * on, so reset minalignslop to ensure it is not included in
784 * subsequent requests.
785 */
786 args.minalignslop = 0;
787 }
788
789 if (unlikely(args.fsbno == NULLFSBLOCK)) {
790 /*
791 * Set the alignment for the allocation.
792 * If stripe alignment is turned on then align at stripe unit
793 * boundary.
794 * If the cluster size is smaller than a filesystem block
795 * then we're doing I/O for inodes in filesystem block size
796 * pieces, so don't need alignment anyway.
797 */
798 isaligned = 0;
799 if (igeo->ialloc_align) {
800 ASSERT(!xfs_has_noalign(args.mp));
801 args.alignment = args.mp->m_dalign;
802 isaligned = 1;
803 } else
804 args.alignment = igeo->cluster_align;
805 /*
806 * Allocate a fixed-size extent of inodes.
807 */
808 args.prod = 1;
809 /*
810 * Allow space for the inode btree to split.
811 */
812 args.minleft = igeo->inobt_maxlevels;
813 error = xfs_alloc_vextent_near_bno(&args,
814 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815 be32_to_cpu(agi->agi_root)));
816 if (error)
817 return error;
818 }
819
820 /*
821 * If stripe alignment is turned on, then try again with cluster
822 * alignment.
823 */
824 if (isaligned && args.fsbno == NULLFSBLOCK) {
825 args.alignment = igeo->cluster_align;
826 error = xfs_alloc_vextent_near_bno(&args,
827 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828 be32_to_cpu(agi->agi_root)));
829 if (error)
830 return error;
831 }
832
833 /*
834 * Finally, try a sparse allocation if the filesystem supports it and
835 * the sparse allocation length is smaller than a full chunk.
836 */
837 if (xfs_has_sparseinodes(args.mp) &&
838 igeo->ialloc_min_blks < igeo->ialloc_blks &&
839 args.fsbno == NULLFSBLOCK) {
840sparse_alloc:
841 args.alignment = args.mp->m_sb.sb_spino_align;
842 args.prod = 1;
843
844 args.minlen = igeo->ialloc_min_blks;
845 args.maxlen = args.minlen;
846
847 /*
848 * The inode record will be aligned to full chunk size. We must
849 * prevent sparse allocation from AG boundaries that result in
850 * invalid inode records, such as records that start at agbno 0
851 * or extend beyond the AG.
852 *
853 * Set min agbno to the first aligned, non-zero agbno and max to
854 * the last aligned agbno that is at least one full chunk from
855 * the end of the AG.
856 */
857 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
859 args.mp->m_sb.sb_inoalignmt) -
860 igeo->ialloc_blks;
861
862 error = xfs_alloc_vextent_near_bno(&args,
863 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
864 be32_to_cpu(agi->agi_root)));
865 if (error)
866 return error;
867
868 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
869 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
870 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
871 }
872
873 if (args.fsbno == NULLFSBLOCK)
874 return -EAGAIN;
875
876 ASSERT(args.len == args.minlen);
877
878 /*
879 * Stamp and write the inode buffers.
880 *
881 * Seed the new inode cluster with a random generation number. This
882 * prevents short-term reuse of generation numbers if a chunk is
883 * freed and then immediately reallocated. We use random numbers
884 * rather than a linear progression to prevent the next generation
885 * number from being easily guessable.
886 */
887 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
888 args.agbno, args.len, get_random_u32());
889
890 if (error)
891 return error;
892 /*
893 * Convert the results.
894 */
895 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
896
897 if (xfs_inobt_issparse(~allocmask)) {
898 /*
899 * We've allocated a sparse chunk. Align the startino and mask.
900 */
901 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
902
903 rec.ir_startino = newino;
904 rec.ir_holemask = ~allocmask;
905 rec.ir_count = newlen;
906 rec.ir_freecount = newlen;
907 rec.ir_free = XFS_INOBT_ALL_FREE;
908
909 /*
910 * Insert the sparse record into the inobt and allow for a merge
911 * if necessary. If a merge does occur, rec is updated to the
912 * merged record.
913 */
914 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
915 if (error == -EFSCORRUPTED) {
916 xfs_alert(args.mp,
917 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
918 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
919 rec.ir_startino),
920 rec.ir_holemask, rec.ir_count);
921 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
922 }
923 if (error)
924 return error;
925
926 /*
927 * We can't merge the part we've just allocated as for the inobt
928 * due to finobt semantics. The original record may or may not
929 * exist independent of whether physical inodes exist in this
930 * sparse chunk.
931 *
932 * We must update the finobt record based on the inobt record.
933 * rec contains the fully merged and up to date inobt record
934 * from the previous call. Set merge false to replace any
935 * existing record with this one.
936 */
937 if (xfs_has_finobt(args.mp)) {
938 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
939 if (error)
940 return error;
941 }
942 } else {
943 /* full chunk - insert new records to both btrees */
944 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
945 if (error)
946 return error;
947
948 if (xfs_has_finobt(args.mp)) {
949 error = xfs_inobt_insert(pag, tp, agbp, newino,
950 newlen, true);
951 if (error)
952 return error;
953 }
954 }
955
956 /*
957 * Update AGI counts and newino.
958 */
959 be32_add_cpu(&agi->agi_count, newlen);
960 be32_add_cpu(&agi->agi_freecount, newlen);
961 pag->pagi_freecount += newlen;
962 pag->pagi_count += newlen;
963 agi->agi_newino = cpu_to_be32(newino);
964
965 /*
966 * Log allocation group header fields
967 */
968 xfs_ialloc_log_agi(tp, agbp,
969 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
970 /*
971 * Modify/log superblock values for inode count and inode free count.
972 */
973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
975 return 0;
976}
977
978/*
979 * Try to retrieve the next record to the left/right from the current one.
980 */
981STATIC int
982xfs_ialloc_next_rec(
983 struct xfs_btree_cur *cur,
984 xfs_inobt_rec_incore_t *rec,
985 int *done,
986 int left)
987{
988 int error;
989 int i;
990
991 if (left)
992 error = xfs_btree_decrement(cur, 0, &i);
993 else
994 error = xfs_btree_increment(cur, 0, &i);
995
996 if (error)
997 return error;
998 *done = !i;
999 if (i) {
1000 error = xfs_inobt_get_rec(cur, rec, &i);
1001 if (error)
1002 return error;
1003 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004 xfs_btree_mark_sick(cur);
1005 return -EFSCORRUPTED;
1006 }
1007 }
1008
1009 return 0;
1010}
1011
1012STATIC int
1013xfs_ialloc_get_rec(
1014 struct xfs_btree_cur *cur,
1015 xfs_agino_t agino,
1016 xfs_inobt_rec_incore_t *rec,
1017 int *done)
1018{
1019 int error;
1020 int i;
1021
1022 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1023 if (error)
1024 return error;
1025 *done = !i;
1026 if (i) {
1027 error = xfs_inobt_get_rec(cur, rec, &i);
1028 if (error)
1029 return error;
1030 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031 xfs_btree_mark_sick(cur);
1032 return -EFSCORRUPTED;
1033 }
1034 }
1035
1036 return 0;
1037}
1038
1039/*
1040 * Return the offset of the first free inode in the record. If the inode chunk
1041 * is sparsely allocated, we convert the record holemask to inode granularity
1042 * and mask off the unallocated regions from the inode free mask.
1043 */
1044STATIC int
1045xfs_inobt_first_free_inode(
1046 struct xfs_inobt_rec_incore *rec)
1047{
1048 xfs_inofree_t realfree;
1049
1050 /* if there are no holes, return the first available offset */
1051 if (!xfs_inobt_issparse(rec->ir_holemask))
1052 return xfs_lowbit64(rec->ir_free);
1053
1054 realfree = xfs_inobt_irec_to_allocmask(rec);
1055 realfree &= rec->ir_free;
1056
1057 return xfs_lowbit64(realfree);
1058}
1059
1060/*
1061 * Allocate an inode using the inobt-only algorithm.
1062 */
1063STATIC int
1064xfs_dialloc_ag_inobt(
1065 struct xfs_perag *pag,
1066 struct xfs_trans *tp,
1067 struct xfs_buf *agbp,
1068 xfs_ino_t parent,
1069 xfs_ino_t *inop)
1070{
1071 struct xfs_mount *mp = tp->t_mountp;
1072 struct xfs_agi *agi = agbp->b_addr;
1073 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1074 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1075 struct xfs_btree_cur *cur, *tcur;
1076 struct xfs_inobt_rec_incore rec, trec;
1077 xfs_ino_t ino;
1078 int error;
1079 int offset;
1080 int i, j;
1081 int searchdistance = 10;
1082
1083 ASSERT(xfs_perag_initialised_agi(pag));
1084 ASSERT(xfs_perag_allows_inodes(pag));
1085 ASSERT(pag->pagi_freecount > 0);
1086
1087 restart_pagno:
1088 cur = xfs_inobt_init_cursor(pag, tp, agbp);
1089 /*
1090 * If pagino is 0 (this is the root inode allocation) use newino.
1091 * This must work because we've just allocated some.
1092 */
1093 if (!pagino)
1094 pagino = be32_to_cpu(agi->agi_newino);
1095
1096 error = xfs_check_agi_freecount(cur);
1097 if (error)
1098 goto error0;
1099
1100 /*
1101 * If in the same AG as the parent, try to get near the parent.
1102 */
1103 if (pagno == pag->pag_agno) {
1104 int doneleft; /* done, to the left */
1105 int doneright; /* done, to the right */
1106
1107 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1108 if (error)
1109 goto error0;
1110 if (XFS_IS_CORRUPT(mp, i != 1)) {
1111 xfs_btree_mark_sick(cur);
1112 error = -EFSCORRUPTED;
1113 goto error0;
1114 }
1115
1116 error = xfs_inobt_get_rec(cur, &rec, &j);
1117 if (error)
1118 goto error0;
1119 if (XFS_IS_CORRUPT(mp, j != 1)) {
1120 xfs_btree_mark_sick(cur);
1121 error = -EFSCORRUPTED;
1122 goto error0;
1123 }
1124
1125 if (rec.ir_freecount > 0) {
1126 /*
1127 * Found a free inode in the same chunk
1128 * as the parent, done.
1129 */
1130 goto alloc_inode;
1131 }
1132
1133
1134 /*
1135 * In the same AG as parent, but parent's chunk is full.
1136 */
1137
1138 /* duplicate the cursor, search left & right simultaneously */
1139 error = xfs_btree_dup_cursor(cur, &tcur);
1140 if (error)
1141 goto error0;
1142
1143 /*
1144 * Skip to last blocks looked up if same parent inode.
1145 */
1146 if (pagino != NULLAGINO &&
1147 pag->pagl_pagino == pagino &&
1148 pag->pagl_leftrec != NULLAGINO &&
1149 pag->pagl_rightrec != NULLAGINO) {
1150 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1151 &trec, &doneleft);
1152 if (error)
1153 goto error1;
1154
1155 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1156 &rec, &doneright);
1157 if (error)
1158 goto error1;
1159 } else {
1160 /* search left with tcur, back up 1 record */
1161 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1162 if (error)
1163 goto error1;
1164
1165 /* search right with cur, go forward 1 record. */
1166 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1167 if (error)
1168 goto error1;
1169 }
1170
1171 /*
1172 * Loop until we find an inode chunk with a free inode.
1173 */
1174 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1175 int useleft; /* using left inode chunk this time */
1176
1177 /* figure out the closer block if both are valid. */
1178 if (!doneleft && !doneright) {
1179 useleft = pagino -
1180 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1181 rec.ir_startino - pagino;
1182 } else {
1183 useleft = !doneleft;
1184 }
1185
1186 /* free inodes to the left? */
1187 if (useleft && trec.ir_freecount) {
1188 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1189 cur = tcur;
1190
1191 pag->pagl_leftrec = trec.ir_startino;
1192 pag->pagl_rightrec = rec.ir_startino;
1193 pag->pagl_pagino = pagino;
1194 rec = trec;
1195 goto alloc_inode;
1196 }
1197
1198 /* free inodes to the right? */
1199 if (!useleft && rec.ir_freecount) {
1200 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1201
1202 pag->pagl_leftrec = trec.ir_startino;
1203 pag->pagl_rightrec = rec.ir_startino;
1204 pag->pagl_pagino = pagino;
1205 goto alloc_inode;
1206 }
1207
1208 /* get next record to check */
1209 if (useleft) {
1210 error = xfs_ialloc_next_rec(tcur, &trec,
1211 &doneleft, 1);
1212 } else {
1213 error = xfs_ialloc_next_rec(cur, &rec,
1214 &doneright, 0);
1215 }
1216 if (error)
1217 goto error1;
1218 }
1219
1220 if (searchdistance <= 0) {
1221 /*
1222 * Not in range - save last search
1223 * location and allocate a new inode
1224 */
1225 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226 pag->pagl_leftrec = trec.ir_startino;
1227 pag->pagl_rightrec = rec.ir_startino;
1228 pag->pagl_pagino = pagino;
1229
1230 } else {
1231 /*
1232 * We've reached the end of the btree. because
1233 * we are only searching a small chunk of the
1234 * btree each search, there is obviously free
1235 * inodes closer to the parent inode than we
1236 * are now. restart the search again.
1237 */
1238 pag->pagl_pagino = NULLAGINO;
1239 pag->pagl_leftrec = NULLAGINO;
1240 pag->pagl_rightrec = NULLAGINO;
1241 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1243 goto restart_pagno;
1244 }
1245 }
1246
1247 /*
1248 * In a different AG from the parent.
1249 * See if the most recently allocated block has any free.
1250 */
1251 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1252 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1253 XFS_LOOKUP_EQ, &i);
1254 if (error)
1255 goto error0;
1256
1257 if (i == 1) {
1258 error = xfs_inobt_get_rec(cur, &rec, &j);
1259 if (error)
1260 goto error0;
1261
1262 if (j == 1 && rec.ir_freecount > 0) {
1263 /*
1264 * The last chunk allocated in the group
1265 * still has a free inode.
1266 */
1267 goto alloc_inode;
1268 }
1269 }
1270 }
1271
1272 /*
1273 * None left in the last group, search the whole AG
1274 */
1275 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1276 if (error)
1277 goto error0;
1278 if (XFS_IS_CORRUPT(mp, i != 1)) {
1279 xfs_btree_mark_sick(cur);
1280 error = -EFSCORRUPTED;
1281 goto error0;
1282 }
1283
1284 for (;;) {
1285 error = xfs_inobt_get_rec(cur, &rec, &i);
1286 if (error)
1287 goto error0;
1288 if (XFS_IS_CORRUPT(mp, i != 1)) {
1289 xfs_btree_mark_sick(cur);
1290 error = -EFSCORRUPTED;
1291 goto error0;
1292 }
1293 if (rec.ir_freecount > 0)
1294 break;
1295 error = xfs_btree_increment(cur, 0, &i);
1296 if (error)
1297 goto error0;
1298 if (XFS_IS_CORRUPT(mp, i != 1)) {
1299 xfs_btree_mark_sick(cur);
1300 error = -EFSCORRUPTED;
1301 goto error0;
1302 }
1303 }
1304
1305alloc_inode:
1306 offset = xfs_inobt_first_free_inode(&rec);
1307 ASSERT(offset >= 0);
1308 ASSERT(offset < XFS_INODES_PER_CHUNK);
1309 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1310 XFS_INODES_PER_CHUNK) == 0);
1311 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1312 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1313 rec.ir_freecount--;
1314 error = xfs_inobt_update(cur, &rec);
1315 if (error)
1316 goto error0;
1317 be32_add_cpu(&agi->agi_freecount, -1);
1318 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1319 pag->pagi_freecount--;
1320
1321 error = xfs_check_agi_freecount(cur);
1322 if (error)
1323 goto error0;
1324
1325 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1326 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1327 *inop = ino;
1328 return 0;
1329error1:
1330 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1331error0:
1332 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1333 return error;
1334}
1335
1336/*
1337 * Use the free inode btree to allocate an inode based on distance from the
1338 * parent. Note that the provided cursor may be deleted and replaced.
1339 */
1340STATIC int
1341xfs_dialloc_ag_finobt_near(
1342 xfs_agino_t pagino,
1343 struct xfs_btree_cur **ocur,
1344 struct xfs_inobt_rec_incore *rec)
1345{
1346 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1347 struct xfs_btree_cur *rcur; /* right search cursor */
1348 struct xfs_inobt_rec_incore rrec;
1349 int error;
1350 int i, j;
1351
1352 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1353 if (error)
1354 return error;
1355
1356 if (i == 1) {
1357 error = xfs_inobt_get_rec(lcur, rec, &i);
1358 if (error)
1359 return error;
1360 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1361 xfs_btree_mark_sick(lcur);
1362 return -EFSCORRUPTED;
1363 }
1364
1365 /*
1366 * See if we've landed in the parent inode record. The finobt
1367 * only tracks chunks with at least one free inode, so record
1368 * existence is enough.
1369 */
1370 if (pagino >= rec->ir_startino &&
1371 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1372 return 0;
1373 }
1374
1375 error = xfs_btree_dup_cursor(lcur, &rcur);
1376 if (error)
1377 return error;
1378
1379 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1380 if (error)
1381 goto error_rcur;
1382 if (j == 1) {
1383 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1384 if (error)
1385 goto error_rcur;
1386 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1387 xfs_btree_mark_sick(lcur);
1388 error = -EFSCORRUPTED;
1389 goto error_rcur;
1390 }
1391 }
1392
1393 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1394 xfs_btree_mark_sick(lcur);
1395 error = -EFSCORRUPTED;
1396 goto error_rcur;
1397 }
1398 if (i == 1 && j == 1) {
1399 /*
1400 * Both the left and right records are valid. Choose the closer
1401 * inode chunk to the target.
1402 */
1403 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1404 (rrec.ir_startino - pagino)) {
1405 *rec = rrec;
1406 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1407 *ocur = rcur;
1408 } else {
1409 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1410 }
1411 } else if (j == 1) {
1412 /* only the right record is valid */
1413 *rec = rrec;
1414 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1415 *ocur = rcur;
1416 } else if (i == 1) {
1417 /* only the left record is valid */
1418 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1419 }
1420
1421 return 0;
1422
1423error_rcur:
1424 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1425 return error;
1426}
1427
1428/*
1429 * Use the free inode btree to find a free inode based on a newino hint. If
1430 * the hint is NULL, find the first free inode in the AG.
1431 */
1432STATIC int
1433xfs_dialloc_ag_finobt_newino(
1434 struct xfs_agi *agi,
1435 struct xfs_btree_cur *cur,
1436 struct xfs_inobt_rec_incore *rec)
1437{
1438 int error;
1439 int i;
1440
1441 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1442 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1443 XFS_LOOKUP_EQ, &i);
1444 if (error)
1445 return error;
1446 if (i == 1) {
1447 error = xfs_inobt_get_rec(cur, rec, &i);
1448 if (error)
1449 return error;
1450 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1451 xfs_btree_mark_sick(cur);
1452 return -EFSCORRUPTED;
1453 }
1454 return 0;
1455 }
1456 }
1457
1458 /*
1459 * Find the first inode available in the AG.
1460 */
1461 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1462 if (error)
1463 return error;
1464 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1465 xfs_btree_mark_sick(cur);
1466 return -EFSCORRUPTED;
1467 }
1468
1469 error = xfs_inobt_get_rec(cur, rec, &i);
1470 if (error)
1471 return error;
1472 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1473 xfs_btree_mark_sick(cur);
1474 return -EFSCORRUPTED;
1475 }
1476
1477 return 0;
1478}
1479
1480/*
1481 * Update the inobt based on a modification made to the finobt. Also ensure that
1482 * the records from both trees are equivalent post-modification.
1483 */
1484STATIC int
1485xfs_dialloc_ag_update_inobt(
1486 struct xfs_btree_cur *cur, /* inobt cursor */
1487 struct xfs_inobt_rec_incore *frec, /* finobt record */
1488 int offset) /* inode offset */
1489{
1490 struct xfs_inobt_rec_incore rec;
1491 int error;
1492 int i;
1493
1494 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1495 if (error)
1496 return error;
1497 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1498 xfs_btree_mark_sick(cur);
1499 return -EFSCORRUPTED;
1500 }
1501
1502 error = xfs_inobt_get_rec(cur, &rec, &i);
1503 if (error)
1504 return error;
1505 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1506 xfs_btree_mark_sick(cur);
1507 return -EFSCORRUPTED;
1508 }
1509 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510 XFS_INODES_PER_CHUNK) == 0);
1511
1512 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513 rec.ir_freecount--;
1514
1515 if (XFS_IS_CORRUPT(cur->bc_mp,
1516 rec.ir_free != frec->ir_free ||
1517 rec.ir_freecount != frec->ir_freecount)) {
1518 xfs_btree_mark_sick(cur);
1519 return -EFSCORRUPTED;
1520 }
1521
1522 return xfs_inobt_update(cur, &rec);
1523}
1524
1525/*
1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527 * back to the inobt search algorithm.
1528 *
1529 * The caller selected an AG for us, and made sure that free inodes are
1530 * available.
1531 */
1532static int
1533xfs_dialloc_ag(
1534 struct xfs_perag *pag,
1535 struct xfs_trans *tp,
1536 struct xfs_buf *agbp,
1537 xfs_ino_t parent,
1538 xfs_ino_t *inop)
1539{
1540 struct xfs_mount *mp = tp->t_mountp;
1541 struct xfs_agi *agi = agbp->b_addr;
1542 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1543 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1544 struct xfs_btree_cur *cur; /* finobt cursor */
1545 struct xfs_btree_cur *icur; /* inobt cursor */
1546 struct xfs_inobt_rec_incore rec;
1547 xfs_ino_t ino;
1548 int error;
1549 int offset;
1550 int i;
1551
1552 if (!xfs_has_finobt(mp))
1553 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1554
1555 /*
1556 * If pagino is 0 (this is the root inode allocation) use newino.
1557 * This must work because we've just allocated some.
1558 */
1559 if (!pagino)
1560 pagino = be32_to_cpu(agi->agi_newino);
1561
1562 cur = xfs_finobt_init_cursor(pag, tp, agbp);
1563
1564 error = xfs_check_agi_freecount(cur);
1565 if (error)
1566 goto error_cur;
1567
1568 /*
1569 * The search algorithm depends on whether we're in the same AG as the
1570 * parent. If so, find the closest available inode to the parent. If
1571 * not, consider the agi hint or find the first free inode in the AG.
1572 */
1573 if (pag->pag_agno == pagno)
1574 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1575 else
1576 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1577 if (error)
1578 goto error_cur;
1579
1580 offset = xfs_inobt_first_free_inode(&rec);
1581 ASSERT(offset >= 0);
1582 ASSERT(offset < XFS_INODES_PER_CHUNK);
1583 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1584 XFS_INODES_PER_CHUNK) == 0);
1585 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1586
1587 /*
1588 * Modify or remove the finobt record.
1589 */
1590 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1591 rec.ir_freecount--;
1592 if (rec.ir_freecount)
1593 error = xfs_inobt_update(cur, &rec);
1594 else
1595 error = xfs_btree_delete(cur, &i);
1596 if (error)
1597 goto error_cur;
1598
1599 /*
1600 * The finobt has now been updated appropriately. We haven't updated the
1601 * agi and superblock yet, so we can create an inobt cursor and validate
1602 * the original freecount. If all is well, make the equivalent update to
1603 * the inobt using the finobt record and offset information.
1604 */
1605 icur = xfs_inobt_init_cursor(pag, tp, agbp);
1606
1607 error = xfs_check_agi_freecount(icur);
1608 if (error)
1609 goto error_icur;
1610
1611 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1612 if (error)
1613 goto error_icur;
1614
1615 /*
1616 * Both trees have now been updated. We must update the perag and
1617 * superblock before we can check the freecount for each btree.
1618 */
1619 be32_add_cpu(&agi->agi_freecount, -1);
1620 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1621 pag->pagi_freecount--;
1622
1623 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1624
1625 error = xfs_check_agi_freecount(icur);
1626 if (error)
1627 goto error_icur;
1628 error = xfs_check_agi_freecount(cur);
1629 if (error)
1630 goto error_icur;
1631
1632 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1633 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1634 *inop = ino;
1635 return 0;
1636
1637error_icur:
1638 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639error_cur:
1640 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641 return error;
1642}
1643
1644static int
1645xfs_dialloc_roll(
1646 struct xfs_trans **tpp,
1647 struct xfs_buf *agibp)
1648{
1649 struct xfs_trans *tp = *tpp;
1650 struct xfs_dquot_acct *dqinfo;
1651 int error;
1652
1653 /*
1654 * Hold to on to the agibp across the commit so no other allocation can
1655 * come in and take the free inodes we just allocated for our caller.
1656 */
1657 xfs_trans_bhold(tp, agibp);
1658
1659 /*
1660 * We want the quota changes to be associated with the next transaction,
1661 * NOT this one. So, detach the dqinfo from this and attach it to the
1662 * next transaction.
1663 */
1664 dqinfo = tp->t_dqinfo;
1665 tp->t_dqinfo = NULL;
1666
1667 error = xfs_trans_roll(&tp);
1668
1669 /* Re-attach the quota info that we detached from prev trx. */
1670 tp->t_dqinfo = dqinfo;
1671
1672 /*
1673 * Join the buffer even on commit error so that the buffer is released
1674 * when the caller cancels the transaction and doesn't have to handle
1675 * this error case specially.
1676 */
1677 xfs_trans_bjoin(tp, agibp);
1678 *tpp = tp;
1679 return error;
1680}
1681
1682static bool
1683xfs_dialloc_good_ag(
1684 struct xfs_perag *pag,
1685 struct xfs_trans *tp,
1686 umode_t mode,
1687 int flags,
1688 bool ok_alloc)
1689{
1690 struct xfs_mount *mp = tp->t_mountp;
1691 xfs_extlen_t ineed;
1692 xfs_extlen_t longest = 0;
1693 int needspace;
1694 int error;
1695
1696 if (!pag)
1697 return false;
1698 if (!xfs_perag_allows_inodes(pag))
1699 return false;
1700
1701 if (!xfs_perag_initialised_agi(pag)) {
1702 error = xfs_ialloc_read_agi(pag, tp, NULL);
1703 if (error)
1704 return false;
1705 }
1706
1707 if (pag->pagi_freecount)
1708 return true;
1709 if (!ok_alloc)
1710 return false;
1711
1712 if (!xfs_perag_initialised_agf(pag)) {
1713 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1714 if (error)
1715 return false;
1716 }
1717
1718 /*
1719 * Check that there is enough free space for the file plus a chunk of
1720 * inodes if we need to allocate some. If this is the first pass across
1721 * the AGs, take into account the potential space needed for alignment
1722 * of inode chunks when checking the longest contiguous free space in
1723 * the AG - this prevents us from getting ENOSPC because we have free
1724 * space larger than ialloc_blks but alignment constraints prevent us
1725 * from using it.
1726 *
1727 * If we can't find an AG with space for full alignment slack to be
1728 * taken into account, we must be near ENOSPC in all AGs. Hence we
1729 * don't include alignment for the second pass and so if we fail
1730 * allocation due to alignment issues then it is most likely a real
1731 * ENOSPC condition.
1732 *
1733 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1734 * reservations that xfs_alloc_fix_freelist() now does via
1735 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1736 * be more than large enough for the check below to succeed, but
1737 * xfs_alloc_space_available() will fail because of the non-zero
1738 * metadata reservation and hence we won't actually be able to allocate
1739 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1740 * because of this.
1741 */
1742 ineed = M_IGEO(mp)->ialloc_min_blks;
1743 if (flags && ineed > 1)
1744 ineed += M_IGEO(mp)->cluster_align;
1745 longest = pag->pagf_longest;
1746 if (!longest)
1747 longest = pag->pagf_flcount > 0;
1748 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1749
1750 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1751 return false;
1752 return true;
1753}
1754
1755static int
1756xfs_dialloc_try_ag(
1757 struct xfs_perag *pag,
1758 struct xfs_trans **tpp,
1759 xfs_ino_t parent,
1760 xfs_ino_t *new_ino,
1761 bool ok_alloc)
1762{
1763 struct xfs_buf *agbp;
1764 xfs_ino_t ino;
1765 int error;
1766
1767 /*
1768 * Then read in the AGI buffer and recheck with the AGI buffer
1769 * lock held.
1770 */
1771 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1772 if (error)
1773 return error;
1774
1775 if (!pag->pagi_freecount) {
1776 if (!ok_alloc) {
1777 error = -EAGAIN;
1778 goto out_release;
1779 }
1780
1781 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1782 if (error < 0)
1783 goto out_release;
1784
1785 /*
1786 * We successfully allocated space for an inode cluster in this
1787 * AG. Roll the transaction so that we can allocate one of the
1788 * new inodes.
1789 */
1790 ASSERT(pag->pagi_freecount > 0);
1791 error = xfs_dialloc_roll(tpp, agbp);
1792 if (error)
1793 goto out_release;
1794 }
1795
1796 /* Allocate an inode in the found AG */
1797 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1798 if (!error)
1799 *new_ino = ino;
1800 return error;
1801
1802out_release:
1803 xfs_trans_brelse(*tpp, agbp);
1804 return error;
1805}
1806
1807/*
1808 * Allocate an on-disk inode.
1809 *
1810 * Mode is used to tell whether the new inode is a directory and hence where to
1811 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1812 * on success, otherwise an error will be set to indicate the failure (e.g.
1813 * -ENOSPC).
1814 */
1815int
1816xfs_dialloc(
1817 struct xfs_trans **tpp,
1818 xfs_ino_t parent,
1819 umode_t mode,
1820 xfs_ino_t *new_ino)
1821{
1822 struct xfs_mount *mp = (*tpp)->t_mountp;
1823 xfs_agnumber_t agno;
1824 int error = 0;
1825 xfs_agnumber_t start_agno;
1826 struct xfs_perag *pag;
1827 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1828 bool ok_alloc = true;
1829 bool low_space = false;
1830 int flags;
1831 xfs_ino_t ino = NULLFSINO;
1832
1833 /*
1834 * Directories, symlinks, and regular files frequently allocate at least
1835 * one block, so factor that potential expansion when we examine whether
1836 * an AG has enough space for file creation.
1837 */
1838 if (S_ISDIR(mode))
1839 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1840 mp->m_maxagi;
1841 else {
1842 start_agno = XFS_INO_TO_AGNO(mp, parent);
1843 if (start_agno >= mp->m_maxagi)
1844 start_agno = 0;
1845 }
1846
1847 /*
1848 * If we have already hit the ceiling of inode blocks then clear
1849 * ok_alloc so we scan all available agi structures for a free
1850 * inode.
1851 *
1852 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1853 * which will sacrifice the preciseness but improve the performance.
1854 */
1855 if (igeo->maxicount &&
1856 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1857 > igeo->maxicount) {
1858 ok_alloc = false;
1859 }
1860
1861 /*
1862 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1863 * have free inodes in them rather than use up free space allocating new
1864 * inode chunks. Hence we turn off allocation for the first non-blocking
1865 * pass through the AGs if we are near ENOSPC to consume free inodes
1866 * that we can immediately allocate, but then we allow allocation on the
1867 * second pass if we fail to find an AG with free inodes in it.
1868 */
1869 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1870 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1871 ok_alloc = false;
1872 low_space = true;
1873 }
1874
1875 /*
1876 * Loop until we find an allocation group that either has free inodes
1877 * or in which we can allocate some inodes. Iterate through the
1878 * allocation groups upward, wrapping at the end.
1879 */
1880 flags = XFS_ALLOC_FLAG_TRYLOCK;
1881retry:
1882 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1883 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1884 error = xfs_dialloc_try_ag(pag, tpp, parent,
1885 &ino, ok_alloc);
1886 if (error != -EAGAIN)
1887 break;
1888 error = 0;
1889 }
1890
1891 if (xfs_is_shutdown(mp)) {
1892 error = -EFSCORRUPTED;
1893 break;
1894 }
1895 }
1896 if (pag)
1897 xfs_perag_rele(pag);
1898 if (error)
1899 return error;
1900 if (ino == NULLFSINO) {
1901 if (flags) {
1902 flags = 0;
1903 if (low_space)
1904 ok_alloc = true;
1905 goto retry;
1906 }
1907 return -ENOSPC;
1908 }
1909 *new_ino = ino;
1910 return 0;
1911}
1912
1913/*
1914 * Free the blocks of an inode chunk. We must consider that the inode chunk
1915 * might be sparse and only free the regions that are allocated as part of the
1916 * chunk.
1917 */
1918static int
1919xfs_difree_inode_chunk(
1920 struct xfs_trans *tp,
1921 xfs_agnumber_t agno,
1922 struct xfs_inobt_rec_incore *rec)
1923{
1924 struct xfs_mount *mp = tp->t_mountp;
1925 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1926 rec->ir_startino);
1927 int startidx, endidx;
1928 int nextbit;
1929 xfs_agblock_t agbno;
1930 int contigblk;
1931 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1932
1933 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1934 /* not sparse, calculate extent info directly */
1935 return xfs_free_extent_later(tp,
1936 XFS_AGB_TO_FSB(mp, agno, sagbno),
1937 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1938 XFS_AG_RESV_NONE, false);
1939 }
1940
1941 /* holemask is only 16-bits (fits in an unsigned long) */
1942 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1943 holemask[0] = rec->ir_holemask;
1944
1945 /*
1946 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1947 * holemask and convert the start/end index of each range to an extent.
1948 * We start with the start and end index both pointing at the first 0 in
1949 * the mask.
1950 */
1951 startidx = endidx = find_first_zero_bit(holemask,
1952 XFS_INOBT_HOLEMASK_BITS);
1953 nextbit = startidx + 1;
1954 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1955 int error;
1956
1957 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1958 nextbit);
1959 /*
1960 * If the next zero bit is contiguous, update the end index of
1961 * the current range and continue.
1962 */
1963 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1964 nextbit == endidx + 1) {
1965 endidx = nextbit;
1966 goto next;
1967 }
1968
1969 /*
1970 * nextbit is not contiguous with the current end index. Convert
1971 * the current start/end to an extent and add it to the free
1972 * list.
1973 */
1974 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1975 mp->m_sb.sb_inopblock;
1976 contigblk = ((endidx - startidx + 1) *
1977 XFS_INODES_PER_HOLEMASK_BIT) /
1978 mp->m_sb.sb_inopblock;
1979
1980 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1981 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1982 error = xfs_free_extent_later(tp,
1983 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1984 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1985 false);
1986 if (error)
1987 return error;
1988
1989 /* reset range to current bit and carry on... */
1990 startidx = endidx = nextbit;
1991
1992next:
1993 nextbit++;
1994 }
1995 return 0;
1996}
1997
1998STATIC int
1999xfs_difree_inobt(
2000 struct xfs_perag *pag,
2001 struct xfs_trans *tp,
2002 struct xfs_buf *agbp,
2003 xfs_agino_t agino,
2004 struct xfs_icluster *xic,
2005 struct xfs_inobt_rec_incore *orec)
2006{
2007 struct xfs_mount *mp = pag->pag_mount;
2008 struct xfs_agi *agi = agbp->b_addr;
2009 struct xfs_btree_cur *cur;
2010 struct xfs_inobt_rec_incore rec;
2011 int ilen;
2012 int error;
2013 int i;
2014 int off;
2015
2016 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2017 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2018
2019 /*
2020 * Initialize the cursor.
2021 */
2022 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2023
2024 error = xfs_check_agi_freecount(cur);
2025 if (error)
2026 goto error0;
2027
2028 /*
2029 * Look for the entry describing this inode.
2030 */
2031 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2032 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2033 __func__, error);
2034 goto error0;
2035 }
2036 if (XFS_IS_CORRUPT(mp, i != 1)) {
2037 xfs_btree_mark_sick(cur);
2038 error = -EFSCORRUPTED;
2039 goto error0;
2040 }
2041 error = xfs_inobt_get_rec(cur, &rec, &i);
2042 if (error) {
2043 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2044 __func__, error);
2045 goto error0;
2046 }
2047 if (XFS_IS_CORRUPT(mp, i != 1)) {
2048 xfs_btree_mark_sick(cur);
2049 error = -EFSCORRUPTED;
2050 goto error0;
2051 }
2052 /*
2053 * Get the offset in the inode chunk.
2054 */
2055 off = agino - rec.ir_startino;
2056 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2057 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2058 /*
2059 * Mark the inode free & increment the count.
2060 */
2061 rec.ir_free |= XFS_INOBT_MASK(off);
2062 rec.ir_freecount++;
2063
2064 /*
2065 * When an inode chunk is free, it becomes eligible for removal. Don't
2066 * remove the chunk if the block size is large enough for multiple inode
2067 * chunks (that might not be free).
2068 */
2069 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2070 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2071 xic->deleted = true;
2072 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2073 rec.ir_startino);
2074 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2075
2076 /*
2077 * Remove the inode cluster from the AGI B+Tree, adjust the
2078 * AGI and Superblock inode counts, and mark the disk space
2079 * to be freed when the transaction is committed.
2080 */
2081 ilen = rec.ir_freecount;
2082 be32_add_cpu(&agi->agi_count, -ilen);
2083 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2084 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2085 pag->pagi_freecount -= ilen - 1;
2086 pag->pagi_count -= ilen;
2087 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2088 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2089
2090 if ((error = xfs_btree_delete(cur, &i))) {
2091 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2092 __func__, error);
2093 goto error0;
2094 }
2095
2096 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2097 if (error)
2098 goto error0;
2099 } else {
2100 xic->deleted = false;
2101
2102 error = xfs_inobt_update(cur, &rec);
2103 if (error) {
2104 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2105 __func__, error);
2106 goto error0;
2107 }
2108
2109 /*
2110 * Change the inode free counts and log the ag/sb changes.
2111 */
2112 be32_add_cpu(&agi->agi_freecount, 1);
2113 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2114 pag->pagi_freecount++;
2115 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2116 }
2117
2118 error = xfs_check_agi_freecount(cur);
2119 if (error)
2120 goto error0;
2121
2122 *orec = rec;
2123 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2124 return 0;
2125
2126error0:
2127 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2128 return error;
2129}
2130
2131/*
2132 * Free an inode in the free inode btree.
2133 */
2134STATIC int
2135xfs_difree_finobt(
2136 struct xfs_perag *pag,
2137 struct xfs_trans *tp,
2138 struct xfs_buf *agbp,
2139 xfs_agino_t agino,
2140 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2141{
2142 struct xfs_mount *mp = pag->pag_mount;
2143 struct xfs_btree_cur *cur;
2144 struct xfs_inobt_rec_incore rec;
2145 int offset = agino - ibtrec->ir_startino;
2146 int error;
2147 int i;
2148
2149 cur = xfs_finobt_init_cursor(pag, tp, agbp);
2150
2151 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2152 if (error)
2153 goto error;
2154 if (i == 0) {
2155 /*
2156 * If the record does not exist in the finobt, we must have just
2157 * freed an inode in a previously fully allocated chunk. If not,
2158 * something is out of sync.
2159 */
2160 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2161 xfs_btree_mark_sick(cur);
2162 error = -EFSCORRUPTED;
2163 goto error;
2164 }
2165
2166 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2167 ibtrec->ir_count,
2168 ibtrec->ir_freecount,
2169 ibtrec->ir_free, &i);
2170 if (error)
2171 goto error;
2172 ASSERT(i == 1);
2173
2174 goto out;
2175 }
2176
2177 /*
2178 * Read and update the existing record. We could just copy the ibtrec
2179 * across here, but that would defeat the purpose of having redundant
2180 * metadata. By making the modifications independently, we can catch
2181 * corruptions that we wouldn't see if we just copied from one record
2182 * to another.
2183 */
2184 error = xfs_inobt_get_rec(cur, &rec, &i);
2185 if (error)
2186 goto error;
2187 if (XFS_IS_CORRUPT(mp, i != 1)) {
2188 xfs_btree_mark_sick(cur);
2189 error = -EFSCORRUPTED;
2190 goto error;
2191 }
2192
2193 rec.ir_free |= XFS_INOBT_MASK(offset);
2194 rec.ir_freecount++;
2195
2196 if (XFS_IS_CORRUPT(mp,
2197 rec.ir_free != ibtrec->ir_free ||
2198 rec.ir_freecount != ibtrec->ir_freecount)) {
2199 xfs_btree_mark_sick(cur);
2200 error = -EFSCORRUPTED;
2201 goto error;
2202 }
2203
2204 /*
2205 * The content of inobt records should always match between the inobt
2206 * and finobt. The lifecycle of records in the finobt is different from
2207 * the inobt in that the finobt only tracks records with at least one
2208 * free inode. Hence, if all of the inodes are free and we aren't
2209 * keeping inode chunks permanently on disk, remove the record.
2210 * Otherwise, update the record with the new information.
2211 *
2212 * Note that we currently can't free chunks when the block size is large
2213 * enough for multiple chunks. Leave the finobt record to remain in sync
2214 * with the inobt.
2215 */
2216 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2217 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2218 error = xfs_btree_delete(cur, &i);
2219 if (error)
2220 goto error;
2221 ASSERT(i == 1);
2222 } else {
2223 error = xfs_inobt_update(cur, &rec);
2224 if (error)
2225 goto error;
2226 }
2227
2228out:
2229 error = xfs_check_agi_freecount(cur);
2230 if (error)
2231 goto error;
2232
2233 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2234 return 0;
2235
2236error:
2237 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2238 return error;
2239}
2240
2241/*
2242 * Free disk inode. Carefully avoids touching the incore inode, all
2243 * manipulations incore are the caller's responsibility.
2244 * The on-disk inode is not changed by this operation, only the
2245 * btree (free inode mask) is changed.
2246 */
2247int
2248xfs_difree(
2249 struct xfs_trans *tp,
2250 struct xfs_perag *pag,
2251 xfs_ino_t inode,
2252 struct xfs_icluster *xic)
2253{
2254 /* REFERENCED */
2255 xfs_agblock_t agbno; /* block number containing inode */
2256 struct xfs_buf *agbp; /* buffer for allocation group header */
2257 xfs_agino_t agino; /* allocation group inode number */
2258 int error; /* error return value */
2259 struct xfs_mount *mp = tp->t_mountp;
2260 struct xfs_inobt_rec_incore rec;/* btree record */
2261
2262 /*
2263 * Break up inode number into its components.
2264 */
2265 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2266 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2267 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2268 ASSERT(0);
2269 return -EINVAL;
2270 }
2271 agino = XFS_INO_TO_AGINO(mp, inode);
2272 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2273 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2274 __func__, (unsigned long long)inode,
2275 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2276 ASSERT(0);
2277 return -EINVAL;
2278 }
2279 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280 if (agbno >= mp->m_sb.sb_agblocks) {
2281 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2282 __func__, agbno, mp->m_sb.sb_agblocks);
2283 ASSERT(0);
2284 return -EINVAL;
2285 }
2286 /*
2287 * Get the allocation group header.
2288 */
2289 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2290 if (error) {
2291 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2292 __func__, error);
2293 return error;
2294 }
2295
2296 /*
2297 * Fix up the inode allocation btree.
2298 */
2299 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2300 if (error)
2301 goto error0;
2302
2303 /*
2304 * Fix up the free inode btree.
2305 */
2306 if (xfs_has_finobt(mp)) {
2307 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2308 if (error)
2309 goto error0;
2310 }
2311
2312 return 0;
2313
2314error0:
2315 return error;
2316}
2317
2318STATIC int
2319xfs_imap_lookup(
2320 struct xfs_perag *pag,
2321 struct xfs_trans *tp,
2322 xfs_agino_t agino,
2323 xfs_agblock_t agbno,
2324 xfs_agblock_t *chunk_agbno,
2325 xfs_agblock_t *offset_agbno,
2326 int flags)
2327{
2328 struct xfs_mount *mp = pag->pag_mount;
2329 struct xfs_inobt_rec_incore rec;
2330 struct xfs_btree_cur *cur;
2331 struct xfs_buf *agbp;
2332 int error;
2333 int i;
2334
2335 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2336 if (error) {
2337 xfs_alert(mp,
2338 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2339 __func__, error, pag->pag_agno);
2340 return error;
2341 }
2342
2343 /*
2344 * Lookup the inode record for the given agino. If the record cannot be
2345 * found, then it's an invalid inode number and we should abort. Once
2346 * we have a record, we need to ensure it contains the inode number
2347 * we are looking up.
2348 */
2349 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2350 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2351 if (!error) {
2352 if (i)
2353 error = xfs_inobt_get_rec(cur, &rec, &i);
2354 if (!error && i == 0)
2355 error = -EINVAL;
2356 }
2357
2358 xfs_trans_brelse(tp, agbp);
2359 xfs_btree_del_cursor(cur, error);
2360 if (error)
2361 return error;
2362
2363 /* check that the returned record contains the required inode */
2364 if (rec.ir_startino > agino ||
2365 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2366 return -EINVAL;
2367
2368 /* for untrusted inodes check it is allocated first */
2369 if ((flags & XFS_IGET_UNTRUSTED) &&
2370 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2371 return -EINVAL;
2372
2373 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2374 *offset_agbno = agbno - *chunk_agbno;
2375 return 0;
2376}
2377
2378/*
2379 * Return the location of the inode in imap, for mapping it into a buffer.
2380 */
2381int
2382xfs_imap(
2383 struct xfs_perag *pag,
2384 struct xfs_trans *tp,
2385 xfs_ino_t ino, /* inode to locate */
2386 struct xfs_imap *imap, /* location map structure */
2387 uint flags) /* flags for inode btree lookup */
2388{
2389 struct xfs_mount *mp = pag->pag_mount;
2390 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2391 xfs_agino_t agino; /* inode number within alloc group */
2392 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2393 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2394 int error; /* error code */
2395 int offset; /* index of inode in its buffer */
2396 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2397
2398 ASSERT(ino != NULLFSINO);
2399
2400 /*
2401 * Split up the inode number into its parts.
2402 */
2403 agino = XFS_INO_TO_AGINO(mp, ino);
2404 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2405 if (agbno >= mp->m_sb.sb_agblocks ||
2406 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2407 error = -EINVAL;
2408#ifdef DEBUG
2409 /*
2410 * Don't output diagnostic information for untrusted inodes
2411 * as they can be invalid without implying corruption.
2412 */
2413 if (flags & XFS_IGET_UNTRUSTED)
2414 return error;
2415 if (agbno >= mp->m_sb.sb_agblocks) {
2416 xfs_alert(mp,
2417 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2418 __func__, (unsigned long long)agbno,
2419 (unsigned long)mp->m_sb.sb_agblocks);
2420 }
2421 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2422 xfs_alert(mp,
2423 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2424 __func__, ino,
2425 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2426 }
2427 xfs_stack_trace();
2428#endif /* DEBUG */
2429 return error;
2430 }
2431
2432 /*
2433 * For bulkstat and handle lookups, we have an untrusted inode number
2434 * that we have to verify is valid. We cannot do this just by reading
2435 * the inode buffer as it may have been unlinked and removed leaving
2436 * inodes in stale state on disk. Hence we have to do a btree lookup
2437 * in all cases where an untrusted inode number is passed.
2438 */
2439 if (flags & XFS_IGET_UNTRUSTED) {
2440 error = xfs_imap_lookup(pag, tp, agino, agbno,
2441 &chunk_agbno, &offset_agbno, flags);
2442 if (error)
2443 return error;
2444 goto out_map;
2445 }
2446
2447 /*
2448 * If the inode cluster size is the same as the blocksize or
2449 * smaller we get to the buffer by simple arithmetics.
2450 */
2451 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2452 offset = XFS_INO_TO_OFFSET(mp, ino);
2453 ASSERT(offset < mp->m_sb.sb_inopblock);
2454
2455 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2456 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2457 imap->im_boffset = (unsigned short)(offset <<
2458 mp->m_sb.sb_inodelog);
2459 return 0;
2460 }
2461
2462 /*
2463 * If the inode chunks are aligned then use simple maths to
2464 * find the location. Otherwise we have to do a btree
2465 * lookup to find the location.
2466 */
2467 if (M_IGEO(mp)->inoalign_mask) {
2468 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2469 chunk_agbno = agbno - offset_agbno;
2470 } else {
2471 error = xfs_imap_lookup(pag, tp, agino, agbno,
2472 &chunk_agbno, &offset_agbno, flags);
2473 if (error)
2474 return error;
2475 }
2476
2477out_map:
2478 ASSERT(agbno >= chunk_agbno);
2479 cluster_agbno = chunk_agbno +
2480 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2481 M_IGEO(mp)->blocks_per_cluster);
2482 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2483 XFS_INO_TO_OFFSET(mp, ino);
2484
2485 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2486 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2487 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2488
2489 /*
2490 * If the inode number maps to a block outside the bounds
2491 * of the file system then return NULL rather than calling
2492 * read_buf and panicing when we get an error from the
2493 * driver.
2494 */
2495 if ((imap->im_blkno + imap->im_len) >
2496 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2497 xfs_alert(mp,
2498 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2499 __func__, (unsigned long long) imap->im_blkno,
2500 (unsigned long long) imap->im_len,
2501 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2502 return -EINVAL;
2503 }
2504 return 0;
2505}
2506
2507/*
2508 * Log specified fields for the ag hdr (inode section). The growth of the agi
2509 * structure over time requires that we interpret the buffer as two logical
2510 * regions delineated by the end of the unlinked list. This is due to the size
2511 * of the hash table and its location in the middle of the agi.
2512 *
2513 * For example, a request to log a field before agi_unlinked and a field after
2514 * agi_unlinked could cause us to log the entire hash table and use an excessive
2515 * amount of log space. To avoid this behavior, log the region up through
2516 * agi_unlinked in one call and the region after agi_unlinked through the end of
2517 * the structure in another.
2518 */
2519void
2520xfs_ialloc_log_agi(
2521 struct xfs_trans *tp,
2522 struct xfs_buf *bp,
2523 uint32_t fields)
2524{
2525 int first; /* first byte number */
2526 int last; /* last byte number */
2527 static const short offsets[] = { /* field starting offsets */
2528 /* keep in sync with bit definitions */
2529 offsetof(xfs_agi_t, agi_magicnum),
2530 offsetof(xfs_agi_t, agi_versionnum),
2531 offsetof(xfs_agi_t, agi_seqno),
2532 offsetof(xfs_agi_t, agi_length),
2533 offsetof(xfs_agi_t, agi_count),
2534 offsetof(xfs_agi_t, agi_root),
2535 offsetof(xfs_agi_t, agi_level),
2536 offsetof(xfs_agi_t, agi_freecount),
2537 offsetof(xfs_agi_t, agi_newino),
2538 offsetof(xfs_agi_t, agi_dirino),
2539 offsetof(xfs_agi_t, agi_unlinked),
2540 offsetof(xfs_agi_t, agi_free_root),
2541 offsetof(xfs_agi_t, agi_free_level),
2542 offsetof(xfs_agi_t, agi_iblocks),
2543 sizeof(xfs_agi_t)
2544 };
2545#ifdef DEBUG
2546 struct xfs_agi *agi = bp->b_addr;
2547
2548 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2549#endif
2550
2551 /*
2552 * Compute byte offsets for the first and last fields in the first
2553 * region and log the agi buffer. This only logs up through
2554 * agi_unlinked.
2555 */
2556 if (fields & XFS_AGI_ALL_BITS_R1) {
2557 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2558 &first, &last);
2559 xfs_trans_log_buf(tp, bp, first, last);
2560 }
2561
2562 /*
2563 * Mask off the bits in the first region and calculate the first and
2564 * last field offsets for any bits in the second region.
2565 */
2566 fields &= ~XFS_AGI_ALL_BITS_R1;
2567 if (fields) {
2568 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2569 &first, &last);
2570 xfs_trans_log_buf(tp, bp, first, last);
2571 }
2572}
2573
2574static xfs_failaddr_t
2575xfs_agi_verify(
2576 struct xfs_buf *bp)
2577{
2578 struct xfs_mount *mp = bp->b_mount;
2579 struct xfs_agi *agi = bp->b_addr;
2580 xfs_failaddr_t fa;
2581 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2582 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2583 int i;
2584
2585 if (xfs_has_crc(mp)) {
2586 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2587 return __this_address;
2588 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2589 return __this_address;
2590 }
2591
2592 /*
2593 * Validate the magic number of the agi block.
2594 */
2595 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2596 return __this_address;
2597 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2598 return __this_address;
2599
2600 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2601 if (fa)
2602 return fa;
2603
2604 if (be32_to_cpu(agi->agi_level) < 1 ||
2605 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2606 return __this_address;
2607
2608 if (xfs_has_finobt(mp) &&
2609 (be32_to_cpu(agi->agi_free_level) < 1 ||
2610 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2611 return __this_address;
2612
2613 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2614 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2615 continue;
2616 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2617 return __this_address;
2618 }
2619
2620 return NULL;
2621}
2622
2623static void
2624xfs_agi_read_verify(
2625 struct xfs_buf *bp)
2626{
2627 struct xfs_mount *mp = bp->b_mount;
2628 xfs_failaddr_t fa;
2629
2630 if (xfs_has_crc(mp) &&
2631 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2632 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2633 else {
2634 fa = xfs_agi_verify(bp);
2635 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2636 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2637 }
2638}
2639
2640static void
2641xfs_agi_write_verify(
2642 struct xfs_buf *bp)
2643{
2644 struct xfs_mount *mp = bp->b_mount;
2645 struct xfs_buf_log_item *bip = bp->b_log_item;
2646 struct xfs_agi *agi = bp->b_addr;
2647 xfs_failaddr_t fa;
2648
2649 fa = xfs_agi_verify(bp);
2650 if (fa) {
2651 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2652 return;
2653 }
2654
2655 if (!xfs_has_crc(mp))
2656 return;
2657
2658 if (bip)
2659 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2660 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2661}
2662
2663const struct xfs_buf_ops xfs_agi_buf_ops = {
2664 .name = "xfs_agi",
2665 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2666 .verify_read = xfs_agi_read_verify,
2667 .verify_write = xfs_agi_write_verify,
2668 .verify_struct = xfs_agi_verify,
2669};
2670
2671/*
2672 * Read in the allocation group header (inode allocation section)
2673 */
2674int
2675xfs_read_agi(
2676 struct xfs_perag *pag,
2677 struct xfs_trans *tp,
2678 struct xfs_buf **agibpp)
2679{
2680 struct xfs_mount *mp = pag->pag_mount;
2681 int error;
2682
2683 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2684
2685 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2686 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2687 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2688 if (xfs_metadata_is_sick(error))
2689 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2690 if (error)
2691 return error;
2692 if (tp)
2693 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2694
2695 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2696 return 0;
2697}
2698
2699/*
2700 * Read in the agi and initialise the per-ag data. If the caller supplies a
2701 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2702 */
2703int
2704xfs_ialloc_read_agi(
2705 struct xfs_perag *pag,
2706 struct xfs_trans *tp,
2707 struct xfs_buf **agibpp)
2708{
2709 struct xfs_buf *agibp;
2710 struct xfs_agi *agi;
2711 int error;
2712
2713 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2714
2715 error = xfs_read_agi(pag, tp, &agibp);
2716 if (error)
2717 return error;
2718
2719 agi = agibp->b_addr;
2720 if (!xfs_perag_initialised_agi(pag)) {
2721 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2722 pag->pagi_count = be32_to_cpu(agi->agi_count);
2723 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2724 }
2725
2726 /*
2727 * It's possible for these to be out of sync if
2728 * we are in the middle of a forced shutdown.
2729 */
2730 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2731 xfs_is_shutdown(pag->pag_mount));
2732 if (agibpp)
2733 *agibpp = agibp;
2734 else
2735 xfs_trans_brelse(tp, agibp);
2736 return 0;
2737}
2738
2739/* How many inodes are backed by inode clusters ondisk? */
2740STATIC int
2741xfs_ialloc_count_ondisk(
2742 struct xfs_btree_cur *cur,
2743 xfs_agino_t low,
2744 xfs_agino_t high,
2745 unsigned int *allocated)
2746{
2747 struct xfs_inobt_rec_incore irec;
2748 unsigned int ret = 0;
2749 int has_record;
2750 int error;
2751
2752 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2753 if (error)
2754 return error;
2755
2756 while (has_record) {
2757 unsigned int i, hole_idx;
2758
2759 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2760 if (error)
2761 return error;
2762 if (irec.ir_startino > high)
2763 break;
2764
2765 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2766 if (irec.ir_startino + i < low)
2767 continue;
2768 if (irec.ir_startino + i > high)
2769 break;
2770
2771 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2772 if (!(irec.ir_holemask & (1U << hole_idx)))
2773 ret++;
2774 }
2775
2776 error = xfs_btree_increment(cur, 0, &has_record);
2777 if (error)
2778 return error;
2779 }
2780
2781 *allocated = ret;
2782 return 0;
2783}
2784
2785/* Is there an inode record covering a given extent? */
2786int
2787xfs_ialloc_has_inodes_at_extent(
2788 struct xfs_btree_cur *cur,
2789 xfs_agblock_t bno,
2790 xfs_extlen_t len,
2791 enum xbtree_recpacking *outcome)
2792{
2793 xfs_agino_t agino;
2794 xfs_agino_t last_agino;
2795 unsigned int allocated;
2796 int error;
2797
2798 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2799 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2800
2801 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2802 if (error)
2803 return error;
2804
2805 if (allocated == 0)
2806 *outcome = XBTREE_RECPACKING_EMPTY;
2807 else if (allocated == last_agino - agino + 1)
2808 *outcome = XBTREE_RECPACKING_FULL;
2809 else
2810 *outcome = XBTREE_RECPACKING_SPARSE;
2811 return 0;
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 const union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828 xfs_failaddr_t fa;
2829
2830 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2831 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2832 if (fa)
2833 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2834
2835 ci->count += irec.ir_count;
2836 ci->freecount += irec.ir_freecount;
2837
2838 return 0;
2839}
2840
2841/* Count allocated and free inodes under an inobt. */
2842int
2843xfs_ialloc_count_inodes(
2844 struct xfs_btree_cur *cur,
2845 xfs_agino_t *count,
2846 xfs_agino_t *freecount)
2847{
2848 struct xfs_ialloc_count_inodes ci = {0};
2849 int error;
2850
2851 ASSERT(xfs_btree_is_ino(cur->bc_ops));
2852 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2853 if (error)
2854 return error;
2855
2856 *count = ci.count;
2857 *freecount = ci.freecount;
2858 return 0;
2859}
2860
2861/*
2862 * Initialize inode-related geometry information.
2863 *
2864 * Compute the inode btree min and max levels and set maxicount.
2865 *
2866 * Set the inode cluster size. This may still be overridden by the file
2867 * system block size if it is larger than the chosen cluster size.
2868 *
2869 * For v5 filesystems, scale the cluster size with the inode size to keep a
2870 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2871 * inode alignment value appropriately for larger cluster sizes.
2872 *
2873 * Then compute the inode cluster alignment information.
2874 */
2875void
2876xfs_ialloc_setup_geometry(
2877 struct xfs_mount *mp)
2878{
2879 struct xfs_sb *sbp = &mp->m_sb;
2880 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2881 uint64_t icount;
2882 uint inodes;
2883
2884 igeo->new_diflags2 = 0;
2885 if (xfs_has_bigtime(mp))
2886 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2887 if (xfs_has_large_extent_counts(mp))
2888 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2889
2890 /* Compute inode btree geometry. */
2891 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2892 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2893 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2894 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2895 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2896
2897 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2898 sbp->sb_inopblock);
2899 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2900
2901 if (sbp->sb_spino_align)
2902 igeo->ialloc_min_blks = sbp->sb_spino_align;
2903 else
2904 igeo->ialloc_min_blks = igeo->ialloc_blks;
2905
2906 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2907 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2908 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2909 inodes);
2910 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2911
2912 /*
2913 * Set the maximum inode count for this filesystem, being careful not
2914 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2915 * users should never get here due to failing sb verification, but
2916 * certain users (xfs_db) need to be usable even with corrupt metadata.
2917 */
2918 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2919 /*
2920 * Make sure the maximum inode count is a multiple
2921 * of the units we allocate inodes in.
2922 */
2923 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2924 do_div(icount, 100);
2925 do_div(icount, igeo->ialloc_blks);
2926 igeo->maxicount = XFS_FSB_TO_INO(mp,
2927 icount * igeo->ialloc_blks);
2928 } else {
2929 igeo->maxicount = 0;
2930 }
2931
2932 /*
2933 * Compute the desired size of an inode cluster buffer size, which
2934 * starts at 8K and (on v5 filesystems) scales up with larger inode
2935 * sizes.
2936 *
2937 * Preserve the desired inode cluster size because the sparse inodes
2938 * feature uses that desired size (not the actual size) to compute the
2939 * sparse inode alignment. The mount code validates this value, so we
2940 * cannot change the behavior.
2941 */
2942 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2943 if (xfs_has_v3inodes(mp)) {
2944 int new_size = igeo->inode_cluster_size_raw;
2945
2946 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2947 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2948 igeo->inode_cluster_size_raw = new_size;
2949 }
2950
2951 /* Calculate inode cluster ratios. */
2952 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2953 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2954 igeo->inode_cluster_size_raw);
2955 else
2956 igeo->blocks_per_cluster = 1;
2957 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2958 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2959
2960 /* Calculate inode cluster alignment. */
2961 if (xfs_has_align(mp) &&
2962 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2963 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2964 else
2965 igeo->cluster_align = 1;
2966 igeo->inoalign_mask = igeo->cluster_align - 1;
2967 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2968
2969 /*
2970 * If we are using stripe alignment, check whether
2971 * the stripe unit is a multiple of the inode alignment
2972 */
2973 if (mp->m_dalign && igeo->inoalign_mask &&
2974 !(mp->m_dalign & igeo->inoalign_mask))
2975 igeo->ialloc_align = mp->m_dalign;
2976 else
2977 igeo->ialloc_align = 0;
2978}
2979
2980/* Compute the location of the root directory inode that is laid out by mkfs. */
2981xfs_ino_t
2982xfs_ialloc_calc_rootino(
2983 struct xfs_mount *mp,
2984 int sunit)
2985{
2986 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2987 xfs_agblock_t first_bno;
2988
2989 /*
2990 * Pre-calculate the geometry of AG 0. We know what it looks like
2991 * because libxfs knows how to create allocation groups now.
2992 *
2993 * first_bno is the first block in which mkfs could possibly have
2994 * allocated the root directory inode, once we factor in the metadata
2995 * that mkfs formats before it. Namely, the four AG headers...
2996 */
2997 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2998
2999 /* ...the two free space btree roots... */
3000 first_bno += 2;
3001
3002 /* ...the inode btree root... */
3003 first_bno += 1;
3004
3005 /* ...the initial AGFL... */
3006 first_bno += xfs_alloc_min_freelist(mp, NULL);
3007
3008 /* ...the free inode btree root... */
3009 if (xfs_has_finobt(mp))
3010 first_bno++;
3011
3012 /* ...the reverse mapping btree root... */
3013 if (xfs_has_rmapbt(mp))
3014 first_bno++;
3015
3016 /* ...the reference count btree... */
3017 if (xfs_has_reflink(mp))
3018 first_bno++;
3019
3020 /*
3021 * ...and the log, if it is allocated in the first allocation group.
3022 *
3023 * This can happen with filesystems that only have a single
3024 * allocation group, or very odd geometries created by old mkfs
3025 * versions on very small filesystems.
3026 */
3027 if (xfs_ag_contains_log(mp, 0))
3028 first_bno += mp->m_sb.sb_logblocks;
3029
3030 /*
3031 * Now round first_bno up to whatever allocation alignment is given
3032 * by the filesystem or was passed in.
3033 */
3034 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3035 first_bno = roundup(first_bno, sunit);
3036 else if (xfs_has_align(mp) &&
3037 mp->m_sb.sb_inoalignmt > 1)
3038 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3039
3040 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3041}
3042
3043/*
3044 * Ensure there are not sparse inode clusters that cross the new EOAG.
3045 *
3046 * This is a no-op for non-spinode filesystems since clusters are always fully
3047 * allocated and checking the bnobt suffices. However, a spinode filesystem
3048 * could have a record where the upper inodes are free blocks. If those blocks
3049 * were removed from the filesystem, the inode record would extend beyond EOAG,
3050 * which will be flagged as corruption.
3051 */
3052int
3053xfs_ialloc_check_shrink(
3054 struct xfs_perag *pag,
3055 struct xfs_trans *tp,
3056 struct xfs_buf *agibp,
3057 xfs_agblock_t new_length)
3058{
3059 struct xfs_inobt_rec_incore rec;
3060 struct xfs_btree_cur *cur;
3061 xfs_agino_t agino;
3062 int has;
3063 int error;
3064
3065 if (!xfs_has_sparseinodes(pag->pag_mount))
3066 return 0;
3067
3068 cur = xfs_inobt_init_cursor(pag, tp, agibp);
3069
3070 /* Look up the inobt record that would correspond to the new EOFS. */
3071 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3072 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3073 if (error || !has)
3074 goto out;
3075
3076 error = xfs_inobt_get_rec(cur, &rec, &has);
3077 if (error)
3078 goto out;
3079
3080 if (!has) {
3081 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3082 error = -EFSCORRUPTED;
3083 goto out;
3084 }
3085
3086 /* If the record covers inodes that would be beyond EOFS, bail out. */
3087 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3088 error = -ENOSPC;
3089 goto out;
3090 }
3091out:
3092 xfs_btree_del_cursor(cur, error);
3093 return error;
3094}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_btree.h"
17#include "xfs_ialloc.h"
18#include "xfs_ialloc_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_bmap.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_icreate_item.h"
26#include "xfs_icache.h"
27#include "xfs_trace.h"
28#include "xfs_log.h"
29#include "xfs_rmap.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_ag.agno;
109 union xfs_btree_rec *rec;
110 int error;
111 uint64_t realfree;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
134
135 return 0;
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = agbp->b_addr;
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279 int error;
280
281 /*
282 * Loop over the new block(s), filling in the inodes. For small block
283 * sizes, manipulate the inodes in buffers which are multiples of the
284 * blocks size.
285 */
286 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287
288 /*
289 * Figure out what version number to use in the inodes we create. If
290 * the superblock version has caught up to the one that supports the new
291 * inode format, then use the new inode version. Otherwise use the old
292 * version so that old kernels will continue to be able to use the file
293 * system.
294 *
295 * For v3 inodes, we also need to write the inode number into the inode,
296 * so calculate the first inode number of the chunk here as
297 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
298 * across multiple filesystem blocks (such as a cluster) and so cannot
299 * be used in the cluster buffer loop below.
300 *
301 * Further, because we are writing the inode directly into the buffer
302 * and calculating a CRC on the entire inode, we have ot log the entire
303 * inode so that the entire range the CRC covers is present in the log.
304 * That means for v3 inode we log the entire buffer rather than just the
305 * inode cores.
306 */
307 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
308 version = 3;
309 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310
311 /*
312 * log the initialisation that is about to take place as an
313 * logical operation. This means the transaction does not
314 * need to log the physical changes to the inode buffers as log
315 * recovery will know what initialisation is actually needed.
316 * Hence we only need to log the buffers as "ordered" buffers so
317 * they track in the AIL as if they were physically logged.
318 */
319 if (tp)
320 xfs_icreate_log(tp, agno, agbno, icount,
321 mp->m_sb.sb_inodesize, length, gen);
322 } else
323 version = 2;
324
325 for (j = 0; j < nbufs; j++) {
326 /*
327 * Get the block.
328 */
329 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
330 (j * M_IGEO(mp)->blocks_per_cluster));
331 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
333 XBF_UNMAPPED, &fbuf);
334 if (error)
335 return error;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = XFS_DINODE_SIZE(&mp->m_sb);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 }
382 } else {
383 fbuf->b_flags |= XBF_DONE;
384 xfs_buf_delwri_queue(fbuf, buffer_list);
385 xfs_buf_relse(fbuf);
386 }
387 }
388 return 0;
389}
390
391/*
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 *
395 * Background:
396 *
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
405 *
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
413 */
414STATIC void
415xfs_align_sparse_ino(
416 struct xfs_mount *mp,
417 xfs_agino_t *startino,
418 uint16_t *allocmask)
419{
420 xfs_agblock_t agbno;
421 xfs_agblock_t mod;
422 int offset;
423
424 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 mod = agbno % mp->m_sb.sb_inoalignmt;
426 if (!mod)
427 return;
428
429 /* calculate the inode offset and align startino */
430 offset = XFS_AGB_TO_AGINO(mp, mod);
431 *startino -= offset;
432
433 /*
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
436 * new startino.
437 */
438 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439}
440
441/*
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
445 */
446STATIC bool
447__xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore *trec, /* tgt record */
449 struct xfs_inobt_rec_incore *srec) /* src record */
450{
451 uint64_t talloc;
452 uint64_t salloc;
453
454 /* records must cover the same inode range */
455 if (trec->ir_startino != srec->ir_startino)
456 return false;
457
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 !xfs_inobt_issparse(srec->ir_holemask))
461 return false;
462
463 /* both records must track some inodes */
464 if (!trec->ir_count || !srec->ir_count)
465 return false;
466
467 /* can't exceed capacity of a full record */
468 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 return false;
470
471 /* verify there is no allocation overlap */
472 talloc = xfs_inobt_irec_to_allocmask(trec);
473 salloc = xfs_inobt_irec_to_allocmask(srec);
474 if (talloc & salloc)
475 return false;
476
477 return true;
478}
479
480/*
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
483 */
484STATIC void
485__xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore *trec, /* target */
487 struct xfs_inobt_rec_incore *srec) /* src */
488{
489 ASSERT(trec->ir_startino == srec->ir_startino);
490
491 /* combine the counts */
492 trec->ir_count += srec->ir_count;
493 trec->ir_freecount += srec->ir_freecount;
494
495 /*
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 */
499 trec->ir_holemask &= srec->ir_holemask;
500 trec->ir_free &= srec->ir_free;
501}
502
503/*
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
507 * to fill over time.
508 *
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
514 *
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
517 */
518STATIC int
519xfs_inobt_insert_sprec(
520 struct xfs_mount *mp,
521 struct xfs_trans *tp,
522 struct xfs_buf *agbp,
523 int btnum,
524 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
525 bool merge) /* merge or replace */
526{
527 struct xfs_btree_cur *cur;
528 struct xfs_agi *agi = agbp->b_addr;
529 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
530 int error;
531 int i;
532 struct xfs_inobt_rec_incore rec;
533
534 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535
536 /* the new record is pre-aligned so we know where to look */
537 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 if (error)
539 goto error;
540 /* if nothing there, insert a new record and return */
541 if (i == 0) {
542 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 nrec->ir_count, nrec->ir_freecount,
544 nrec->ir_free, &i);
545 if (error)
546 goto error;
547 if (XFS_IS_CORRUPT(mp, i != 1)) {
548 error = -EFSCORRUPTED;
549 goto error;
550 }
551
552 goto out;
553 }
554
555 /*
556 * A record exists at this startino. Merge or replace the record
557 * depending on what we've been asked to do.
558 */
559 if (merge) {
560 error = xfs_inobt_get_rec(cur, &rec, &i);
561 if (error)
562 goto error;
563 if (XFS_IS_CORRUPT(mp, i != 1)) {
564 error = -EFSCORRUPTED;
565 goto error;
566 }
567 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
568 error = -EFSCORRUPTED;
569 goto error;
570 }
571
572 /*
573 * This should never fail. If we have coexisting records that
574 * cannot merge, something is seriously wrong.
575 */
576 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
577 error = -EFSCORRUPTED;
578 goto error;
579 }
580
581 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
582 rec.ir_holemask, nrec->ir_startino,
583 nrec->ir_holemask);
584
585 /* merge to nrec to output the updated record */
586 __xfs_inobt_rec_merge(nrec, &rec);
587
588 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
589 nrec->ir_holemask);
590
591 error = xfs_inobt_rec_check_count(mp, nrec);
592 if (error)
593 goto error;
594 }
595
596 error = xfs_inobt_update(cur, nrec);
597 if (error)
598 goto error;
599
600out:
601 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
602 return 0;
603error:
604 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 return error;
606}
607
608/*
609 * Allocate new inodes in the allocation group specified by agbp.
610 * Return 0 for success, else error code.
611 */
612STATIC int
613xfs_ialloc_ag_alloc(
614 struct xfs_trans *tp,
615 struct xfs_buf *agbp,
616 int *alloc)
617{
618 struct xfs_agi *agi;
619 struct xfs_alloc_arg args;
620 xfs_agnumber_t agno;
621 int error;
622 xfs_agino_t newino; /* new first inode's number */
623 xfs_agino_t newlen; /* new number of inodes */
624 int isaligned = 0; /* inode allocation at stripe */
625 /* unit boundary */
626 /* init. to full chunk */
627 uint16_t allocmask = (uint16_t) -1;
628 struct xfs_inobt_rec_incore rec;
629 struct xfs_perag *pag;
630 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
631 int do_sparse = 0;
632
633 memset(&args, 0, sizeof(args));
634 args.tp = tp;
635 args.mp = tp->t_mountp;
636 args.fsbno = NULLFSBLOCK;
637 args.oinfo = XFS_RMAP_OINFO_INODES;
638
639#ifdef DEBUG
640 /* randomly do sparse inode allocations */
641 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
642 igeo->ialloc_min_blks < igeo->ialloc_blks)
643 do_sparse = prandom_u32() & 1;
644#endif
645
646 /*
647 * Locking will ensure that we don't have two callers in here
648 * at one time.
649 */
650 newlen = igeo->ialloc_inos;
651 if (igeo->maxicount &&
652 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
653 igeo->maxicount)
654 return -ENOSPC;
655 args.minlen = args.maxlen = igeo->ialloc_blks;
656 /*
657 * First try to allocate inodes contiguous with the last-allocated
658 * chunk of inodes. If the filesystem is striped, this will fill
659 * an entire stripe unit with inodes.
660 */
661 agi = agbp->b_addr;
662 newino = be32_to_cpu(agi->agi_newino);
663 agno = be32_to_cpu(agi->agi_seqno);
664 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
665 igeo->ialloc_blks;
666 if (do_sparse)
667 goto sparse_alloc;
668 if (likely(newino != NULLAGINO &&
669 (args.agbno < be32_to_cpu(agi->agi_length)))) {
670 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
671 args.type = XFS_ALLOCTYPE_THIS_BNO;
672 args.prod = 1;
673
674 /*
675 * We need to take into account alignment here to ensure that
676 * we don't modify the free list if we fail to have an exact
677 * block. If we don't have an exact match, and every oher
678 * attempt allocation attempt fails, we'll end up cancelling
679 * a dirty transaction and shutting down.
680 *
681 * For an exact allocation, alignment must be 1,
682 * however we need to take cluster alignment into account when
683 * fixing up the freelist. Use the minalignslop field to
684 * indicate that extra blocks might be required for alignment,
685 * but not to use them in the actual exact allocation.
686 */
687 args.alignment = 1;
688 args.minalignslop = igeo->cluster_align - 1;
689
690 /* Allow space for the inode btree to split. */
691 args.minleft = igeo->inobt_maxlevels;
692 if ((error = xfs_alloc_vextent(&args)))
693 return error;
694
695 /*
696 * This request might have dirtied the transaction if the AG can
697 * satisfy the request, but the exact block was not available.
698 * If the allocation did fail, subsequent requests will relax
699 * the exact agbno requirement and increase the alignment
700 * instead. It is critical that the total size of the request
701 * (len + alignment + slop) does not increase from this point
702 * on, so reset minalignslop to ensure it is not included in
703 * subsequent requests.
704 */
705 args.minalignslop = 0;
706 }
707
708 if (unlikely(args.fsbno == NULLFSBLOCK)) {
709 /*
710 * Set the alignment for the allocation.
711 * If stripe alignment is turned on then align at stripe unit
712 * boundary.
713 * If the cluster size is smaller than a filesystem block
714 * then we're doing I/O for inodes in filesystem block size
715 * pieces, so don't need alignment anyway.
716 */
717 isaligned = 0;
718 if (igeo->ialloc_align) {
719 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
720 args.alignment = args.mp->m_dalign;
721 isaligned = 1;
722 } else
723 args.alignment = igeo->cluster_align;
724 /*
725 * Need to figure out where to allocate the inode blocks.
726 * Ideally they should be spaced out through the a.g.
727 * For now, just allocate blocks up front.
728 */
729 args.agbno = be32_to_cpu(agi->agi_root);
730 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 /*
732 * Allocate a fixed-size extent of inodes.
733 */
734 args.type = XFS_ALLOCTYPE_NEAR_BNO;
735 args.prod = 1;
736 /*
737 * Allow space for the inode btree to split.
738 */
739 args.minleft = igeo->inobt_maxlevels;
740 if ((error = xfs_alloc_vextent(&args)))
741 return error;
742 }
743
744 /*
745 * If stripe alignment is turned on, then try again with cluster
746 * alignment.
747 */
748 if (isaligned && args.fsbno == NULLFSBLOCK) {
749 args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 args.agbno = be32_to_cpu(agi->agi_root);
751 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 args.alignment = igeo->cluster_align;
753 if ((error = xfs_alloc_vextent(&args)))
754 return error;
755 }
756
757 /*
758 * Finally, try a sparse allocation if the filesystem supports it and
759 * the sparse allocation length is smaller than a full chunk.
760 */
761 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
762 igeo->ialloc_min_blks < igeo->ialloc_blks &&
763 args.fsbno == NULLFSBLOCK) {
764sparse_alloc:
765 args.type = XFS_ALLOCTYPE_NEAR_BNO;
766 args.agbno = be32_to_cpu(agi->agi_root);
767 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
768 args.alignment = args.mp->m_sb.sb_spino_align;
769 args.prod = 1;
770
771 args.minlen = igeo->ialloc_min_blks;
772 args.maxlen = args.minlen;
773
774 /*
775 * The inode record will be aligned to full chunk size. We must
776 * prevent sparse allocation from AG boundaries that result in
777 * invalid inode records, such as records that start at agbno 0
778 * or extend beyond the AG.
779 *
780 * Set min agbno to the first aligned, non-zero agbno and max to
781 * the last aligned agbno that is at least one full chunk from
782 * the end of the AG.
783 */
784 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
785 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
786 args.mp->m_sb.sb_inoalignmt) -
787 igeo->ialloc_blks;
788
789 error = xfs_alloc_vextent(&args);
790 if (error)
791 return error;
792
793 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
794 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
795 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
796 }
797
798 if (args.fsbno == NULLFSBLOCK) {
799 *alloc = 0;
800 return 0;
801 }
802 ASSERT(args.len == args.minlen);
803
804 /*
805 * Stamp and write the inode buffers.
806 *
807 * Seed the new inode cluster with a random generation number. This
808 * prevents short-term reuse of generation numbers if a chunk is
809 * freed and then immediately reallocated. We use random numbers
810 * rather than a linear progression to prevent the next generation
811 * number from being easily guessable.
812 */
813 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
814 args.agbno, args.len, prandom_u32());
815
816 if (error)
817 return error;
818 /*
819 * Convert the results.
820 */
821 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
822
823 if (xfs_inobt_issparse(~allocmask)) {
824 /*
825 * We've allocated a sparse chunk. Align the startino and mask.
826 */
827 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
828
829 rec.ir_startino = newino;
830 rec.ir_holemask = ~allocmask;
831 rec.ir_count = newlen;
832 rec.ir_freecount = newlen;
833 rec.ir_free = XFS_INOBT_ALL_FREE;
834
835 /*
836 * Insert the sparse record into the inobt and allow for a merge
837 * if necessary. If a merge does occur, rec is updated to the
838 * merged record.
839 */
840 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
841 &rec, true);
842 if (error == -EFSCORRUPTED) {
843 xfs_alert(args.mp,
844 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
845 XFS_AGINO_TO_INO(args.mp, agno,
846 rec.ir_startino),
847 rec.ir_holemask, rec.ir_count);
848 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
849 }
850 if (error)
851 return error;
852
853 /*
854 * We can't merge the part we've just allocated as for the inobt
855 * due to finobt semantics. The original record may or may not
856 * exist independent of whether physical inodes exist in this
857 * sparse chunk.
858 *
859 * We must update the finobt record based on the inobt record.
860 * rec contains the fully merged and up to date inobt record
861 * from the previous call. Set merge false to replace any
862 * existing record with this one.
863 */
864 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
865 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
866 XFS_BTNUM_FINO, &rec,
867 false);
868 if (error)
869 return error;
870 }
871 } else {
872 /* full chunk - insert new records to both btrees */
873 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
874 XFS_BTNUM_INO);
875 if (error)
876 return error;
877
878 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
879 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
880 newlen, XFS_BTNUM_FINO);
881 if (error)
882 return error;
883 }
884 }
885
886 /*
887 * Update AGI counts and newino.
888 */
889 be32_add_cpu(&agi->agi_count, newlen);
890 be32_add_cpu(&agi->agi_freecount, newlen);
891 pag = agbp->b_pag;
892 pag->pagi_freecount += newlen;
893 pag->pagi_count += newlen;
894 agi->agi_newino = cpu_to_be32(newino);
895
896 /*
897 * Log allocation group header fields
898 */
899 xfs_ialloc_log_agi(tp, agbp,
900 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
901 /*
902 * Modify/log superblock values for inode count and inode free count.
903 */
904 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
905 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
906 *alloc = 1;
907 return 0;
908}
909
910STATIC xfs_agnumber_t
911xfs_ialloc_next_ag(
912 xfs_mount_t *mp)
913{
914 xfs_agnumber_t agno;
915
916 spin_lock(&mp->m_agirotor_lock);
917 agno = mp->m_agirotor;
918 if (++mp->m_agirotor >= mp->m_maxagi)
919 mp->m_agirotor = 0;
920 spin_unlock(&mp->m_agirotor_lock);
921
922 return agno;
923}
924
925/*
926 * Select an allocation group to look for a free inode in, based on the parent
927 * inode and the mode. Return the allocation group buffer.
928 */
929STATIC xfs_agnumber_t
930xfs_ialloc_ag_select(
931 xfs_trans_t *tp, /* transaction pointer */
932 xfs_ino_t parent, /* parent directory inode number */
933 umode_t mode) /* bits set to indicate file type */
934{
935 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
936 xfs_agnumber_t agno; /* current ag number */
937 int flags; /* alloc buffer locking flags */
938 xfs_extlen_t ineed; /* blocks needed for inode allocation */
939 xfs_extlen_t longest = 0; /* longest extent available */
940 xfs_mount_t *mp; /* mount point structure */
941 int needspace; /* file mode implies space allocated */
942 xfs_perag_t *pag; /* per allocation group data */
943 xfs_agnumber_t pagno; /* parent (starting) ag number */
944 int error;
945
946 /*
947 * Files of these types need at least one block if length > 0
948 * (and they won't fit in the inode, but that's hard to figure out).
949 */
950 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
951 mp = tp->t_mountp;
952 agcount = mp->m_maxagi;
953 if (S_ISDIR(mode))
954 pagno = xfs_ialloc_next_ag(mp);
955 else {
956 pagno = XFS_INO_TO_AGNO(mp, parent);
957 if (pagno >= agcount)
958 pagno = 0;
959 }
960
961 ASSERT(pagno < agcount);
962
963 /*
964 * Loop through allocation groups, looking for one with a little
965 * free space in it. Note we don't look for free inodes, exactly.
966 * Instead, we include whether there is a need to allocate inodes
967 * to mean that blocks must be allocated for them,
968 * if none are currently free.
969 */
970 agno = pagno;
971 flags = XFS_ALLOC_FLAG_TRYLOCK;
972 for (;;) {
973 pag = xfs_perag_get(mp, agno);
974 if (!pag->pagi_inodeok) {
975 xfs_ialloc_next_ag(mp);
976 goto nextag;
977 }
978
979 if (!pag->pagi_init) {
980 error = xfs_ialloc_pagi_init(mp, tp, agno);
981 if (error)
982 goto nextag;
983 }
984
985 if (pag->pagi_freecount) {
986 xfs_perag_put(pag);
987 return agno;
988 }
989
990 if (!pag->pagf_init) {
991 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
992 if (error)
993 goto nextag;
994 }
995
996 /*
997 * Check that there is enough free space for the file plus a
998 * chunk of inodes if we need to allocate some. If this is the
999 * first pass across the AGs, take into account the potential
1000 * space needed for alignment of inode chunks when checking the
1001 * longest contiguous free space in the AG - this prevents us
1002 * from getting ENOSPC because we have free space larger than
1003 * ialloc_blks but alignment constraints prevent us from using
1004 * it.
1005 *
1006 * If we can't find an AG with space for full alignment slack to
1007 * be taken into account, we must be near ENOSPC in all AGs.
1008 * Hence we don't include alignment for the second pass and so
1009 * if we fail allocation due to alignment issues then it is most
1010 * likely a real ENOSPC condition.
1011 */
1012 ineed = M_IGEO(mp)->ialloc_min_blks;
1013 if (flags && ineed > 1)
1014 ineed += M_IGEO(mp)->cluster_align;
1015 longest = pag->pagf_longest;
1016 if (!longest)
1017 longest = pag->pagf_flcount > 0;
1018
1019 if (pag->pagf_freeblks >= needspace + ineed &&
1020 longest >= ineed) {
1021 xfs_perag_put(pag);
1022 return agno;
1023 }
1024nextag:
1025 xfs_perag_put(pag);
1026 /*
1027 * No point in iterating over the rest, if we're shutting
1028 * down.
1029 */
1030 if (XFS_FORCED_SHUTDOWN(mp))
1031 return NULLAGNUMBER;
1032 agno++;
1033 if (agno >= agcount)
1034 agno = 0;
1035 if (agno == pagno) {
1036 if (flags == 0)
1037 return NULLAGNUMBER;
1038 flags = 0;
1039 }
1040 }
1041}
1042
1043/*
1044 * Try to retrieve the next record to the left/right from the current one.
1045 */
1046STATIC int
1047xfs_ialloc_next_rec(
1048 struct xfs_btree_cur *cur,
1049 xfs_inobt_rec_incore_t *rec,
1050 int *done,
1051 int left)
1052{
1053 int error;
1054 int i;
1055
1056 if (left)
1057 error = xfs_btree_decrement(cur, 0, &i);
1058 else
1059 error = xfs_btree_increment(cur, 0, &i);
1060
1061 if (error)
1062 return error;
1063 *done = !i;
1064 if (i) {
1065 error = xfs_inobt_get_rec(cur, rec, &i);
1066 if (error)
1067 return error;
1068 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1069 return -EFSCORRUPTED;
1070 }
1071
1072 return 0;
1073}
1074
1075STATIC int
1076xfs_ialloc_get_rec(
1077 struct xfs_btree_cur *cur,
1078 xfs_agino_t agino,
1079 xfs_inobt_rec_incore_t *rec,
1080 int *done)
1081{
1082 int error;
1083 int i;
1084
1085 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1086 if (error)
1087 return error;
1088 *done = !i;
1089 if (i) {
1090 error = xfs_inobt_get_rec(cur, rec, &i);
1091 if (error)
1092 return error;
1093 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1094 return -EFSCORRUPTED;
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Return the offset of the first free inode in the record. If the inode chunk
1102 * is sparsely allocated, we convert the record holemask to inode granularity
1103 * and mask off the unallocated regions from the inode free mask.
1104 */
1105STATIC int
1106xfs_inobt_first_free_inode(
1107 struct xfs_inobt_rec_incore *rec)
1108{
1109 xfs_inofree_t realfree;
1110
1111 /* if there are no holes, return the first available offset */
1112 if (!xfs_inobt_issparse(rec->ir_holemask))
1113 return xfs_lowbit64(rec->ir_free);
1114
1115 realfree = xfs_inobt_irec_to_allocmask(rec);
1116 realfree &= rec->ir_free;
1117
1118 return xfs_lowbit64(realfree);
1119}
1120
1121/*
1122 * Allocate an inode using the inobt-only algorithm.
1123 */
1124STATIC int
1125xfs_dialloc_ag_inobt(
1126 struct xfs_trans *tp,
1127 struct xfs_buf *agbp,
1128 xfs_ino_t parent,
1129 xfs_ino_t *inop)
1130{
1131 struct xfs_mount *mp = tp->t_mountp;
1132 struct xfs_agi *agi = agbp->b_addr;
1133 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1134 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1135 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1136 struct xfs_perag *pag = agbp->b_pag;
1137 struct xfs_btree_cur *cur, *tcur;
1138 struct xfs_inobt_rec_incore rec, trec;
1139 xfs_ino_t ino;
1140 int error;
1141 int offset;
1142 int i, j;
1143 int searchdistance = 10;
1144
1145 ASSERT(pag->pagi_init);
1146 ASSERT(pag->pagi_inodeok);
1147 ASSERT(pag->pagi_freecount > 0);
1148
1149 restart_pagno:
1150 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1151 /*
1152 * If pagino is 0 (this is the root inode allocation) use newino.
1153 * This must work because we've just allocated some.
1154 */
1155 if (!pagino)
1156 pagino = be32_to_cpu(agi->agi_newino);
1157
1158 error = xfs_check_agi_freecount(cur, agi);
1159 if (error)
1160 goto error0;
1161
1162 /*
1163 * If in the same AG as the parent, try to get near the parent.
1164 */
1165 if (pagno == agno) {
1166 int doneleft; /* done, to the left */
1167 int doneright; /* done, to the right */
1168
1169 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1170 if (error)
1171 goto error0;
1172 if (XFS_IS_CORRUPT(mp, i != 1)) {
1173 error = -EFSCORRUPTED;
1174 goto error0;
1175 }
1176
1177 error = xfs_inobt_get_rec(cur, &rec, &j);
1178 if (error)
1179 goto error0;
1180 if (XFS_IS_CORRUPT(mp, j != 1)) {
1181 error = -EFSCORRUPTED;
1182 goto error0;
1183 }
1184
1185 if (rec.ir_freecount > 0) {
1186 /*
1187 * Found a free inode in the same chunk
1188 * as the parent, done.
1189 */
1190 goto alloc_inode;
1191 }
1192
1193
1194 /*
1195 * In the same AG as parent, but parent's chunk is full.
1196 */
1197
1198 /* duplicate the cursor, search left & right simultaneously */
1199 error = xfs_btree_dup_cursor(cur, &tcur);
1200 if (error)
1201 goto error0;
1202
1203 /*
1204 * Skip to last blocks looked up if same parent inode.
1205 */
1206 if (pagino != NULLAGINO &&
1207 pag->pagl_pagino == pagino &&
1208 pag->pagl_leftrec != NULLAGINO &&
1209 pag->pagl_rightrec != NULLAGINO) {
1210 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211 &trec, &doneleft);
1212 if (error)
1213 goto error1;
1214
1215 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216 &rec, &doneright);
1217 if (error)
1218 goto error1;
1219 } else {
1220 /* search left with tcur, back up 1 record */
1221 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222 if (error)
1223 goto error1;
1224
1225 /* search right with cur, go forward 1 record. */
1226 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227 if (error)
1228 goto error1;
1229 }
1230
1231 /*
1232 * Loop until we find an inode chunk with a free inode.
1233 */
1234 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235 int useleft; /* using left inode chunk this time */
1236
1237 /* figure out the closer block if both are valid. */
1238 if (!doneleft && !doneright) {
1239 useleft = pagino -
1240 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241 rec.ir_startino - pagino;
1242 } else {
1243 useleft = !doneleft;
1244 }
1245
1246 /* free inodes to the left? */
1247 if (useleft && trec.ir_freecount) {
1248 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249 cur = tcur;
1250
1251 pag->pagl_leftrec = trec.ir_startino;
1252 pag->pagl_rightrec = rec.ir_startino;
1253 pag->pagl_pagino = pagino;
1254 rec = trec;
1255 goto alloc_inode;
1256 }
1257
1258 /* free inodes to the right? */
1259 if (!useleft && rec.ir_freecount) {
1260 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261
1262 pag->pagl_leftrec = trec.ir_startino;
1263 pag->pagl_rightrec = rec.ir_startino;
1264 pag->pagl_pagino = pagino;
1265 goto alloc_inode;
1266 }
1267
1268 /* get next record to check */
1269 if (useleft) {
1270 error = xfs_ialloc_next_rec(tcur, &trec,
1271 &doneleft, 1);
1272 } else {
1273 error = xfs_ialloc_next_rec(cur, &rec,
1274 &doneright, 0);
1275 }
1276 if (error)
1277 goto error1;
1278 }
1279
1280 if (searchdistance <= 0) {
1281 /*
1282 * Not in range - save last search
1283 * location and allocate a new inode
1284 */
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 pag->pagl_leftrec = trec.ir_startino;
1287 pag->pagl_rightrec = rec.ir_startino;
1288 pag->pagl_pagino = pagino;
1289
1290 } else {
1291 /*
1292 * We've reached the end of the btree. because
1293 * we are only searching a small chunk of the
1294 * btree each search, there is obviously free
1295 * inodes closer to the parent inode than we
1296 * are now. restart the search again.
1297 */
1298 pag->pagl_pagino = NULLAGINO;
1299 pag->pagl_leftrec = NULLAGINO;
1300 pag->pagl_rightrec = NULLAGINO;
1301 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303 goto restart_pagno;
1304 }
1305 }
1306
1307 /*
1308 * In a different AG from the parent.
1309 * See if the most recently allocated block has any free.
1310 */
1311 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313 XFS_LOOKUP_EQ, &i);
1314 if (error)
1315 goto error0;
1316
1317 if (i == 1) {
1318 error = xfs_inobt_get_rec(cur, &rec, &j);
1319 if (error)
1320 goto error0;
1321
1322 if (j == 1 && rec.ir_freecount > 0) {
1323 /*
1324 * The last chunk allocated in the group
1325 * still has a free inode.
1326 */
1327 goto alloc_inode;
1328 }
1329 }
1330 }
1331
1332 /*
1333 * None left in the last group, search the whole AG
1334 */
1335 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336 if (error)
1337 goto error0;
1338 if (XFS_IS_CORRUPT(mp, i != 1)) {
1339 error = -EFSCORRUPTED;
1340 goto error0;
1341 }
1342
1343 for (;;) {
1344 error = xfs_inobt_get_rec(cur, &rec, &i);
1345 if (error)
1346 goto error0;
1347 if (XFS_IS_CORRUPT(mp, i != 1)) {
1348 error = -EFSCORRUPTED;
1349 goto error0;
1350 }
1351 if (rec.ir_freecount > 0)
1352 break;
1353 error = xfs_btree_increment(cur, 0, &i);
1354 if (error)
1355 goto error0;
1356 if (XFS_IS_CORRUPT(mp, i != 1)) {
1357 error = -EFSCORRUPTED;
1358 goto error0;
1359 }
1360 }
1361
1362alloc_inode:
1363 offset = xfs_inobt_first_free_inode(&rec);
1364 ASSERT(offset >= 0);
1365 ASSERT(offset < XFS_INODES_PER_CHUNK);
1366 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1367 XFS_INODES_PER_CHUNK) == 0);
1368 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1369 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1370 rec.ir_freecount--;
1371 error = xfs_inobt_update(cur, &rec);
1372 if (error)
1373 goto error0;
1374 be32_add_cpu(&agi->agi_freecount, -1);
1375 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1376 pag->pagi_freecount--;
1377
1378 error = xfs_check_agi_freecount(cur, agi);
1379 if (error)
1380 goto error0;
1381
1382 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1383 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1384 *inop = ino;
1385 return 0;
1386error1:
1387 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1388error0:
1389 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1390 return error;
1391}
1392
1393/*
1394 * Use the free inode btree to allocate an inode based on distance from the
1395 * parent. Note that the provided cursor may be deleted and replaced.
1396 */
1397STATIC int
1398xfs_dialloc_ag_finobt_near(
1399 xfs_agino_t pagino,
1400 struct xfs_btree_cur **ocur,
1401 struct xfs_inobt_rec_incore *rec)
1402{
1403 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1404 struct xfs_btree_cur *rcur; /* right search cursor */
1405 struct xfs_inobt_rec_incore rrec;
1406 int error;
1407 int i, j;
1408
1409 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1410 if (error)
1411 return error;
1412
1413 if (i == 1) {
1414 error = xfs_inobt_get_rec(lcur, rec, &i);
1415 if (error)
1416 return error;
1417 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1418 return -EFSCORRUPTED;
1419
1420 /*
1421 * See if we've landed in the parent inode record. The finobt
1422 * only tracks chunks with at least one free inode, so record
1423 * existence is enough.
1424 */
1425 if (pagino >= rec->ir_startino &&
1426 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1427 return 0;
1428 }
1429
1430 error = xfs_btree_dup_cursor(lcur, &rcur);
1431 if (error)
1432 return error;
1433
1434 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1435 if (error)
1436 goto error_rcur;
1437 if (j == 1) {
1438 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1439 if (error)
1440 goto error_rcur;
1441 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1442 error = -EFSCORRUPTED;
1443 goto error_rcur;
1444 }
1445 }
1446
1447 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1448 error = -EFSCORRUPTED;
1449 goto error_rcur;
1450 }
1451 if (i == 1 && j == 1) {
1452 /*
1453 * Both the left and right records are valid. Choose the closer
1454 * inode chunk to the target.
1455 */
1456 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1457 (rrec.ir_startino - pagino)) {
1458 *rec = rrec;
1459 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1460 *ocur = rcur;
1461 } else {
1462 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1463 }
1464 } else if (j == 1) {
1465 /* only the right record is valid */
1466 *rec = rrec;
1467 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1468 *ocur = rcur;
1469 } else if (i == 1) {
1470 /* only the left record is valid */
1471 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1472 }
1473
1474 return 0;
1475
1476error_rcur:
1477 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1478 return error;
1479}
1480
1481/*
1482 * Use the free inode btree to find a free inode based on a newino hint. If
1483 * the hint is NULL, find the first free inode in the AG.
1484 */
1485STATIC int
1486xfs_dialloc_ag_finobt_newino(
1487 struct xfs_agi *agi,
1488 struct xfs_btree_cur *cur,
1489 struct xfs_inobt_rec_incore *rec)
1490{
1491 int error;
1492 int i;
1493
1494 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1495 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1496 XFS_LOOKUP_EQ, &i);
1497 if (error)
1498 return error;
1499 if (i == 1) {
1500 error = xfs_inobt_get_rec(cur, rec, &i);
1501 if (error)
1502 return error;
1503 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1504 return -EFSCORRUPTED;
1505 return 0;
1506 }
1507 }
1508
1509 /*
1510 * Find the first inode available in the AG.
1511 */
1512 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1513 if (error)
1514 return error;
1515 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1516 return -EFSCORRUPTED;
1517
1518 error = xfs_inobt_get_rec(cur, rec, &i);
1519 if (error)
1520 return error;
1521 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1522 return -EFSCORRUPTED;
1523
1524 return 0;
1525}
1526
1527/*
1528 * Update the inobt based on a modification made to the finobt. Also ensure that
1529 * the records from both trees are equivalent post-modification.
1530 */
1531STATIC int
1532xfs_dialloc_ag_update_inobt(
1533 struct xfs_btree_cur *cur, /* inobt cursor */
1534 struct xfs_inobt_rec_incore *frec, /* finobt record */
1535 int offset) /* inode offset */
1536{
1537 struct xfs_inobt_rec_incore rec;
1538 int error;
1539 int i;
1540
1541 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1542 if (error)
1543 return error;
1544 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1545 return -EFSCORRUPTED;
1546
1547 error = xfs_inobt_get_rec(cur, &rec, &i);
1548 if (error)
1549 return error;
1550 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1551 return -EFSCORRUPTED;
1552 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1553 XFS_INODES_PER_CHUNK) == 0);
1554
1555 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1556 rec.ir_freecount--;
1557
1558 if (XFS_IS_CORRUPT(cur->bc_mp,
1559 rec.ir_free != frec->ir_free ||
1560 rec.ir_freecount != frec->ir_freecount))
1561 return -EFSCORRUPTED;
1562
1563 return xfs_inobt_update(cur, &rec);
1564}
1565
1566/*
1567 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1568 * back to the inobt search algorithm.
1569 *
1570 * The caller selected an AG for us, and made sure that free inodes are
1571 * available.
1572 */
1573STATIC int
1574xfs_dialloc_ag(
1575 struct xfs_trans *tp,
1576 struct xfs_buf *agbp,
1577 xfs_ino_t parent,
1578 xfs_ino_t *inop)
1579{
1580 struct xfs_mount *mp = tp->t_mountp;
1581 struct xfs_agi *agi = agbp->b_addr;
1582 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1583 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1584 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1585 struct xfs_btree_cur *cur; /* finobt cursor */
1586 struct xfs_btree_cur *icur; /* inobt cursor */
1587 struct xfs_inobt_rec_incore rec;
1588 xfs_ino_t ino;
1589 int error;
1590 int offset;
1591 int i;
1592
1593 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1594 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1595
1596 /*
1597 * If pagino is 0 (this is the root inode allocation) use newino.
1598 * This must work because we've just allocated some.
1599 */
1600 if (!pagino)
1601 pagino = be32_to_cpu(agi->agi_newino);
1602
1603 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1604
1605 error = xfs_check_agi_freecount(cur, agi);
1606 if (error)
1607 goto error_cur;
1608
1609 /*
1610 * The search algorithm depends on whether we're in the same AG as the
1611 * parent. If so, find the closest available inode to the parent. If
1612 * not, consider the agi hint or find the first free inode in the AG.
1613 */
1614 if (agno == pagno)
1615 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1616 else
1617 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1618 if (error)
1619 goto error_cur;
1620
1621 offset = xfs_inobt_first_free_inode(&rec);
1622 ASSERT(offset >= 0);
1623 ASSERT(offset < XFS_INODES_PER_CHUNK);
1624 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1625 XFS_INODES_PER_CHUNK) == 0);
1626 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1627
1628 /*
1629 * Modify or remove the finobt record.
1630 */
1631 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 rec.ir_freecount--;
1633 if (rec.ir_freecount)
1634 error = xfs_inobt_update(cur, &rec);
1635 else
1636 error = xfs_btree_delete(cur, &i);
1637 if (error)
1638 goto error_cur;
1639
1640 /*
1641 * The finobt has now been updated appropriately. We haven't updated the
1642 * agi and superblock yet, so we can create an inobt cursor and validate
1643 * the original freecount. If all is well, make the equivalent update to
1644 * the inobt using the finobt record and offset information.
1645 */
1646 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1647
1648 error = xfs_check_agi_freecount(icur, agi);
1649 if (error)
1650 goto error_icur;
1651
1652 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653 if (error)
1654 goto error_icur;
1655
1656 /*
1657 * Both trees have now been updated. We must update the perag and
1658 * superblock before we can check the freecount for each btree.
1659 */
1660 be32_add_cpu(&agi->agi_freecount, -1);
1661 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662 agbp->b_pag->pagi_freecount--;
1663
1664 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665
1666 error = xfs_check_agi_freecount(icur, agi);
1667 if (error)
1668 goto error_icur;
1669 error = xfs_check_agi_freecount(cur, agi);
1670 if (error)
1671 goto error_icur;
1672
1673 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675 *inop = ino;
1676 return 0;
1677
1678error_icur:
1679 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680error_cur:
1681 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682 return error;
1683}
1684
1685/*
1686 * Allocate an inode on disk.
1687 *
1688 * Mode is used to tell whether the new inode will need space, and whether it
1689 * is a directory.
1690 *
1691 * This function is designed to be called twice if it has to do an allocation
1692 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1693 * If an inode is available without having to performn an allocation, an inode
1694 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1695 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1696 * The caller should then commit the current transaction, allocate a
1697 * new transaction, and call xfs_dialloc() again, passing in the previous value
1698 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1699 * buffer is locked across the two calls, the second call is guaranteed to have
1700 * a free inode available.
1701 *
1702 * Once we successfully pick an inode its number is returned and the on-disk
1703 * data structures are updated. The inode itself is not read in, since doing so
1704 * would break ordering constraints with xfs_reclaim.
1705 */
1706int
1707xfs_dialloc(
1708 struct xfs_trans *tp,
1709 xfs_ino_t parent,
1710 umode_t mode,
1711 struct xfs_buf **IO_agbp,
1712 xfs_ino_t *inop)
1713{
1714 struct xfs_mount *mp = tp->t_mountp;
1715 struct xfs_buf *agbp;
1716 xfs_agnumber_t agno;
1717 int error;
1718 int ialloced;
1719 int noroom = 0;
1720 xfs_agnumber_t start_agno;
1721 struct xfs_perag *pag;
1722 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1723 int okalloc = 1;
1724
1725 if (*IO_agbp) {
1726 /*
1727 * If the caller passes in a pointer to the AGI buffer,
1728 * continue where we left off before. In this case, we
1729 * know that the allocation group has free inodes.
1730 */
1731 agbp = *IO_agbp;
1732 goto out_alloc;
1733 }
1734
1735 /*
1736 * We do not have an agbp, so select an initial allocation
1737 * group for inode allocation.
1738 */
1739 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1740 if (start_agno == NULLAGNUMBER) {
1741 *inop = NULLFSINO;
1742 return 0;
1743 }
1744
1745 /*
1746 * If we have already hit the ceiling of inode blocks then clear
1747 * okalloc so we scan all available agi structures for a free
1748 * inode.
1749 *
1750 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1751 * which will sacrifice the preciseness but improve the performance.
1752 */
1753 if (igeo->maxicount &&
1754 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1755 > igeo->maxicount) {
1756 noroom = 1;
1757 okalloc = 0;
1758 }
1759
1760 /*
1761 * Loop until we find an allocation group that either has free inodes
1762 * or in which we can allocate some inodes. Iterate through the
1763 * allocation groups upward, wrapping at the end.
1764 */
1765 agno = start_agno;
1766 for (;;) {
1767 pag = xfs_perag_get(mp, agno);
1768 if (!pag->pagi_inodeok) {
1769 xfs_ialloc_next_ag(mp);
1770 goto nextag;
1771 }
1772
1773 if (!pag->pagi_init) {
1774 error = xfs_ialloc_pagi_init(mp, tp, agno);
1775 if (error)
1776 goto out_error;
1777 }
1778
1779 /*
1780 * Do a first racy fast path check if this AG is usable.
1781 */
1782 if (!pag->pagi_freecount && !okalloc)
1783 goto nextag;
1784
1785 /*
1786 * Then read in the AGI buffer and recheck with the AGI buffer
1787 * lock held.
1788 */
1789 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1790 if (error)
1791 goto out_error;
1792
1793 if (pag->pagi_freecount) {
1794 xfs_perag_put(pag);
1795 goto out_alloc;
1796 }
1797
1798 if (!okalloc)
1799 goto nextag_relse_buffer;
1800
1801
1802 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1803 if (error) {
1804 xfs_trans_brelse(tp, agbp);
1805
1806 if (error != -ENOSPC)
1807 goto out_error;
1808
1809 xfs_perag_put(pag);
1810 *inop = NULLFSINO;
1811 return 0;
1812 }
1813
1814 if (ialloced) {
1815 /*
1816 * We successfully allocated some inodes, return
1817 * the current context to the caller so that it
1818 * can commit the current transaction and call
1819 * us again where we left off.
1820 */
1821 ASSERT(pag->pagi_freecount > 0);
1822 xfs_perag_put(pag);
1823
1824 *IO_agbp = agbp;
1825 *inop = NULLFSINO;
1826 return 0;
1827 }
1828
1829nextag_relse_buffer:
1830 xfs_trans_brelse(tp, agbp);
1831nextag:
1832 xfs_perag_put(pag);
1833 if (++agno == mp->m_sb.sb_agcount)
1834 agno = 0;
1835 if (agno == start_agno) {
1836 *inop = NULLFSINO;
1837 return noroom ? -ENOSPC : 0;
1838 }
1839 }
1840
1841out_alloc:
1842 *IO_agbp = NULL;
1843 return xfs_dialloc_ag(tp, agbp, parent, inop);
1844out_error:
1845 xfs_perag_put(pag);
1846 return error;
1847}
1848
1849/*
1850 * Free the blocks of an inode chunk. We must consider that the inode chunk
1851 * might be sparse and only free the regions that are allocated as part of the
1852 * chunk.
1853 */
1854STATIC void
1855xfs_difree_inode_chunk(
1856 struct xfs_trans *tp,
1857 xfs_agnumber_t agno,
1858 struct xfs_inobt_rec_incore *rec)
1859{
1860 struct xfs_mount *mp = tp->t_mountp;
1861 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1862 rec->ir_startino);
1863 int startidx, endidx;
1864 int nextbit;
1865 xfs_agblock_t agbno;
1866 int contigblk;
1867 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1868
1869 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1870 /* not sparse, calculate extent info directly */
1871 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1872 M_IGEO(mp)->ialloc_blks,
1873 &XFS_RMAP_OINFO_INODES);
1874 return;
1875 }
1876
1877 /* holemask is only 16-bits (fits in an unsigned long) */
1878 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1879 holemask[0] = rec->ir_holemask;
1880
1881 /*
1882 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1883 * holemask and convert the start/end index of each range to an extent.
1884 * We start with the start and end index both pointing at the first 0 in
1885 * the mask.
1886 */
1887 startidx = endidx = find_first_zero_bit(holemask,
1888 XFS_INOBT_HOLEMASK_BITS);
1889 nextbit = startidx + 1;
1890 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1891 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1892 nextbit);
1893 /*
1894 * If the next zero bit is contiguous, update the end index of
1895 * the current range and continue.
1896 */
1897 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1898 nextbit == endidx + 1) {
1899 endidx = nextbit;
1900 goto next;
1901 }
1902
1903 /*
1904 * nextbit is not contiguous with the current end index. Convert
1905 * the current start/end to an extent and add it to the free
1906 * list.
1907 */
1908 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1909 mp->m_sb.sb_inopblock;
1910 contigblk = ((endidx - startidx + 1) *
1911 XFS_INODES_PER_HOLEMASK_BIT) /
1912 mp->m_sb.sb_inopblock;
1913
1914 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1915 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1916 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1917 contigblk, &XFS_RMAP_OINFO_INODES);
1918
1919 /* reset range to current bit and carry on... */
1920 startidx = endidx = nextbit;
1921
1922next:
1923 nextbit++;
1924 }
1925}
1926
1927STATIC int
1928xfs_difree_inobt(
1929 struct xfs_mount *mp,
1930 struct xfs_trans *tp,
1931 struct xfs_buf *agbp,
1932 xfs_agino_t agino,
1933 struct xfs_icluster *xic,
1934 struct xfs_inobt_rec_incore *orec)
1935{
1936 struct xfs_agi *agi = agbp->b_addr;
1937 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1938 struct xfs_btree_cur *cur;
1939 struct xfs_inobt_rec_incore rec;
1940 int ilen;
1941 int error;
1942 int i;
1943 int off;
1944
1945 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1946 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1947
1948 /*
1949 * Initialize the cursor.
1950 */
1951 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1952
1953 error = xfs_check_agi_freecount(cur, agi);
1954 if (error)
1955 goto error0;
1956
1957 /*
1958 * Look for the entry describing this inode.
1959 */
1960 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1961 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1962 __func__, error);
1963 goto error0;
1964 }
1965 if (XFS_IS_CORRUPT(mp, i != 1)) {
1966 error = -EFSCORRUPTED;
1967 goto error0;
1968 }
1969 error = xfs_inobt_get_rec(cur, &rec, &i);
1970 if (error) {
1971 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1972 __func__, error);
1973 goto error0;
1974 }
1975 if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 error = -EFSCORRUPTED;
1977 goto error0;
1978 }
1979 /*
1980 * Get the offset in the inode chunk.
1981 */
1982 off = agino - rec.ir_startino;
1983 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1984 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1985 /*
1986 * Mark the inode free & increment the count.
1987 */
1988 rec.ir_free |= XFS_INOBT_MASK(off);
1989 rec.ir_freecount++;
1990
1991 /*
1992 * When an inode chunk is free, it becomes eligible for removal. Don't
1993 * remove the chunk if the block size is large enough for multiple inode
1994 * chunks (that might not be free).
1995 */
1996 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1997 rec.ir_free == XFS_INOBT_ALL_FREE &&
1998 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1999 struct xfs_perag *pag = agbp->b_pag;
2000
2001 xic->deleted = true;
2002 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2003 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2004
2005 /*
2006 * Remove the inode cluster from the AGI B+Tree, adjust the
2007 * AGI and Superblock inode counts, and mark the disk space
2008 * to be freed when the transaction is committed.
2009 */
2010 ilen = rec.ir_freecount;
2011 be32_add_cpu(&agi->agi_count, -ilen);
2012 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2013 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2014 pag->pagi_freecount -= ilen - 1;
2015 pag->pagi_count -= ilen;
2016 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2017 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2018
2019 if ((error = xfs_btree_delete(cur, &i))) {
2020 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2021 __func__, error);
2022 goto error0;
2023 }
2024
2025 xfs_difree_inode_chunk(tp, agno, &rec);
2026 } else {
2027 xic->deleted = false;
2028
2029 error = xfs_inobt_update(cur, &rec);
2030 if (error) {
2031 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2032 __func__, error);
2033 goto error0;
2034 }
2035
2036 /*
2037 * Change the inode free counts and log the ag/sb changes.
2038 */
2039 be32_add_cpu(&agi->agi_freecount, 1);
2040 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2041 agbp->b_pag->pagi_freecount++;
2042 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2043 }
2044
2045 error = xfs_check_agi_freecount(cur, agi);
2046 if (error)
2047 goto error0;
2048
2049 *orec = rec;
2050 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2051 return 0;
2052
2053error0:
2054 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2055 return error;
2056}
2057
2058/*
2059 * Free an inode in the free inode btree.
2060 */
2061STATIC int
2062xfs_difree_finobt(
2063 struct xfs_mount *mp,
2064 struct xfs_trans *tp,
2065 struct xfs_buf *agbp,
2066 xfs_agino_t agino,
2067 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2068{
2069 struct xfs_agi *agi = agbp->b_addr;
2070 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2071 struct xfs_btree_cur *cur;
2072 struct xfs_inobt_rec_incore rec;
2073 int offset = agino - ibtrec->ir_startino;
2074 int error;
2075 int i;
2076
2077 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2078
2079 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2080 if (error)
2081 goto error;
2082 if (i == 0) {
2083 /*
2084 * If the record does not exist in the finobt, we must have just
2085 * freed an inode in a previously fully allocated chunk. If not,
2086 * something is out of sync.
2087 */
2088 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2089 error = -EFSCORRUPTED;
2090 goto error;
2091 }
2092
2093 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2094 ibtrec->ir_count,
2095 ibtrec->ir_freecount,
2096 ibtrec->ir_free, &i);
2097 if (error)
2098 goto error;
2099 ASSERT(i == 1);
2100
2101 goto out;
2102 }
2103
2104 /*
2105 * Read and update the existing record. We could just copy the ibtrec
2106 * across here, but that would defeat the purpose of having redundant
2107 * metadata. By making the modifications independently, we can catch
2108 * corruptions that we wouldn't see if we just copied from one record
2109 * to another.
2110 */
2111 error = xfs_inobt_get_rec(cur, &rec, &i);
2112 if (error)
2113 goto error;
2114 if (XFS_IS_CORRUPT(mp, i != 1)) {
2115 error = -EFSCORRUPTED;
2116 goto error;
2117 }
2118
2119 rec.ir_free |= XFS_INOBT_MASK(offset);
2120 rec.ir_freecount++;
2121
2122 if (XFS_IS_CORRUPT(mp,
2123 rec.ir_free != ibtrec->ir_free ||
2124 rec.ir_freecount != ibtrec->ir_freecount)) {
2125 error = -EFSCORRUPTED;
2126 goto error;
2127 }
2128
2129 /*
2130 * The content of inobt records should always match between the inobt
2131 * and finobt. The lifecycle of records in the finobt is different from
2132 * the inobt in that the finobt only tracks records with at least one
2133 * free inode. Hence, if all of the inodes are free and we aren't
2134 * keeping inode chunks permanently on disk, remove the record.
2135 * Otherwise, update the record with the new information.
2136 *
2137 * Note that we currently can't free chunks when the block size is large
2138 * enough for multiple chunks. Leave the finobt record to remain in sync
2139 * with the inobt.
2140 */
2141 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2142 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2143 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2144 error = xfs_btree_delete(cur, &i);
2145 if (error)
2146 goto error;
2147 ASSERT(i == 1);
2148 } else {
2149 error = xfs_inobt_update(cur, &rec);
2150 if (error)
2151 goto error;
2152 }
2153
2154out:
2155 error = xfs_check_agi_freecount(cur, agi);
2156 if (error)
2157 goto error;
2158
2159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2160 return 0;
2161
2162error:
2163 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2164 return error;
2165}
2166
2167/*
2168 * Free disk inode. Carefully avoids touching the incore inode, all
2169 * manipulations incore are the caller's responsibility.
2170 * The on-disk inode is not changed by this operation, only the
2171 * btree (free inode mask) is changed.
2172 */
2173int
2174xfs_difree(
2175 struct xfs_trans *tp, /* transaction pointer */
2176 xfs_ino_t inode, /* inode to be freed */
2177 struct xfs_icluster *xic) /* cluster info if deleted */
2178{
2179 /* REFERENCED */
2180 xfs_agblock_t agbno; /* block number containing inode */
2181 struct xfs_buf *agbp; /* buffer for allocation group header */
2182 xfs_agino_t agino; /* allocation group inode number */
2183 xfs_agnumber_t agno; /* allocation group number */
2184 int error; /* error return value */
2185 struct xfs_mount *mp; /* mount structure for filesystem */
2186 struct xfs_inobt_rec_incore rec;/* btree record */
2187
2188 mp = tp->t_mountp;
2189
2190 /*
2191 * Break up inode number into its components.
2192 */
2193 agno = XFS_INO_TO_AGNO(mp, inode);
2194 if (agno >= mp->m_sb.sb_agcount) {
2195 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2196 __func__, agno, mp->m_sb.sb_agcount);
2197 ASSERT(0);
2198 return -EINVAL;
2199 }
2200 agino = XFS_INO_TO_AGINO(mp, inode);
2201 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2202 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2203 __func__, (unsigned long long)inode,
2204 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2205 ASSERT(0);
2206 return -EINVAL;
2207 }
2208 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2209 if (agbno >= mp->m_sb.sb_agblocks) {
2210 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2211 __func__, agbno, mp->m_sb.sb_agblocks);
2212 ASSERT(0);
2213 return -EINVAL;
2214 }
2215 /*
2216 * Get the allocation group header.
2217 */
2218 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2219 if (error) {
2220 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2221 __func__, error);
2222 return error;
2223 }
2224
2225 /*
2226 * Fix up the inode allocation btree.
2227 */
2228 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2229 if (error)
2230 goto error0;
2231
2232 /*
2233 * Fix up the free inode btree.
2234 */
2235 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2236 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2237 if (error)
2238 goto error0;
2239 }
2240
2241 return 0;
2242
2243error0:
2244 return error;
2245}
2246
2247STATIC int
2248xfs_imap_lookup(
2249 struct xfs_mount *mp,
2250 struct xfs_trans *tp,
2251 xfs_agnumber_t agno,
2252 xfs_agino_t agino,
2253 xfs_agblock_t agbno,
2254 xfs_agblock_t *chunk_agbno,
2255 xfs_agblock_t *offset_agbno,
2256 int flags)
2257{
2258 struct xfs_inobt_rec_incore rec;
2259 struct xfs_btree_cur *cur;
2260 struct xfs_buf *agbp;
2261 int error;
2262 int i;
2263
2264 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2265 if (error) {
2266 xfs_alert(mp,
2267 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2268 __func__, error, agno);
2269 return error;
2270 }
2271
2272 /*
2273 * Lookup the inode record for the given agino. If the record cannot be
2274 * found, then it's an invalid inode number and we should abort. Once
2275 * we have a record, we need to ensure it contains the inode number
2276 * we are looking up.
2277 */
2278 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2279 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2280 if (!error) {
2281 if (i)
2282 error = xfs_inobt_get_rec(cur, &rec, &i);
2283 if (!error && i == 0)
2284 error = -EINVAL;
2285 }
2286
2287 xfs_trans_brelse(tp, agbp);
2288 xfs_btree_del_cursor(cur, error);
2289 if (error)
2290 return error;
2291
2292 /* check that the returned record contains the required inode */
2293 if (rec.ir_startino > agino ||
2294 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2295 return -EINVAL;
2296
2297 /* for untrusted inodes check it is allocated first */
2298 if ((flags & XFS_IGET_UNTRUSTED) &&
2299 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2300 return -EINVAL;
2301
2302 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2303 *offset_agbno = agbno - *chunk_agbno;
2304 return 0;
2305}
2306
2307/*
2308 * Return the location of the inode in imap, for mapping it into a buffer.
2309 */
2310int
2311xfs_imap(
2312 xfs_mount_t *mp, /* file system mount structure */
2313 xfs_trans_t *tp, /* transaction pointer */
2314 xfs_ino_t ino, /* inode to locate */
2315 struct xfs_imap *imap, /* location map structure */
2316 uint flags) /* flags for inode btree lookup */
2317{
2318 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2319 xfs_agino_t agino; /* inode number within alloc group */
2320 xfs_agnumber_t agno; /* allocation group number */
2321 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2322 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2323 int error; /* error code */
2324 int offset; /* index of inode in its buffer */
2325 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2326
2327 ASSERT(ino != NULLFSINO);
2328
2329 /*
2330 * Split up the inode number into its parts.
2331 */
2332 agno = XFS_INO_TO_AGNO(mp, ino);
2333 agino = XFS_INO_TO_AGINO(mp, ino);
2334 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2335 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2336 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2337#ifdef DEBUG
2338 /*
2339 * Don't output diagnostic information for untrusted inodes
2340 * as they can be invalid without implying corruption.
2341 */
2342 if (flags & XFS_IGET_UNTRUSTED)
2343 return -EINVAL;
2344 if (agno >= mp->m_sb.sb_agcount) {
2345 xfs_alert(mp,
2346 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2347 __func__, agno, mp->m_sb.sb_agcount);
2348 }
2349 if (agbno >= mp->m_sb.sb_agblocks) {
2350 xfs_alert(mp,
2351 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2352 __func__, (unsigned long long)agbno,
2353 (unsigned long)mp->m_sb.sb_agblocks);
2354 }
2355 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2356 xfs_alert(mp,
2357 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2358 __func__, ino,
2359 XFS_AGINO_TO_INO(mp, agno, agino));
2360 }
2361 xfs_stack_trace();
2362#endif /* DEBUG */
2363 return -EINVAL;
2364 }
2365
2366 /*
2367 * For bulkstat and handle lookups, we have an untrusted inode number
2368 * that we have to verify is valid. We cannot do this just by reading
2369 * the inode buffer as it may have been unlinked and removed leaving
2370 * inodes in stale state on disk. Hence we have to do a btree lookup
2371 * in all cases where an untrusted inode number is passed.
2372 */
2373 if (flags & XFS_IGET_UNTRUSTED) {
2374 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2375 &chunk_agbno, &offset_agbno, flags);
2376 if (error)
2377 return error;
2378 goto out_map;
2379 }
2380
2381 /*
2382 * If the inode cluster size is the same as the blocksize or
2383 * smaller we get to the buffer by simple arithmetics.
2384 */
2385 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2386 offset = XFS_INO_TO_OFFSET(mp, ino);
2387 ASSERT(offset < mp->m_sb.sb_inopblock);
2388
2389 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2390 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2391 imap->im_boffset = (unsigned short)(offset <<
2392 mp->m_sb.sb_inodelog);
2393 return 0;
2394 }
2395
2396 /*
2397 * If the inode chunks are aligned then use simple maths to
2398 * find the location. Otherwise we have to do a btree
2399 * lookup to find the location.
2400 */
2401 if (M_IGEO(mp)->inoalign_mask) {
2402 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2403 chunk_agbno = agbno - offset_agbno;
2404 } else {
2405 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2406 &chunk_agbno, &offset_agbno, flags);
2407 if (error)
2408 return error;
2409 }
2410
2411out_map:
2412 ASSERT(agbno >= chunk_agbno);
2413 cluster_agbno = chunk_agbno +
2414 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2415 M_IGEO(mp)->blocks_per_cluster);
2416 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2417 XFS_INO_TO_OFFSET(mp, ino);
2418
2419 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2420 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2421 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2422
2423 /*
2424 * If the inode number maps to a block outside the bounds
2425 * of the file system then return NULL rather than calling
2426 * read_buf and panicing when we get an error from the
2427 * driver.
2428 */
2429 if ((imap->im_blkno + imap->im_len) >
2430 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2431 xfs_alert(mp,
2432 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2433 __func__, (unsigned long long) imap->im_blkno,
2434 (unsigned long long) imap->im_len,
2435 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2436 return -EINVAL;
2437 }
2438 return 0;
2439}
2440
2441/*
2442 * Log specified fields for the ag hdr (inode section). The growth of the agi
2443 * structure over time requires that we interpret the buffer as two logical
2444 * regions delineated by the end of the unlinked list. This is due to the size
2445 * of the hash table and its location in the middle of the agi.
2446 *
2447 * For example, a request to log a field before agi_unlinked and a field after
2448 * agi_unlinked could cause us to log the entire hash table and use an excessive
2449 * amount of log space. To avoid this behavior, log the region up through
2450 * agi_unlinked in one call and the region after agi_unlinked through the end of
2451 * the structure in another.
2452 */
2453void
2454xfs_ialloc_log_agi(
2455 xfs_trans_t *tp, /* transaction pointer */
2456 xfs_buf_t *bp, /* allocation group header buffer */
2457 int fields) /* bitmask of fields to log */
2458{
2459 int first; /* first byte number */
2460 int last; /* last byte number */
2461 static const short offsets[] = { /* field starting offsets */
2462 /* keep in sync with bit definitions */
2463 offsetof(xfs_agi_t, agi_magicnum),
2464 offsetof(xfs_agi_t, agi_versionnum),
2465 offsetof(xfs_agi_t, agi_seqno),
2466 offsetof(xfs_agi_t, agi_length),
2467 offsetof(xfs_agi_t, agi_count),
2468 offsetof(xfs_agi_t, agi_root),
2469 offsetof(xfs_agi_t, agi_level),
2470 offsetof(xfs_agi_t, agi_freecount),
2471 offsetof(xfs_agi_t, agi_newino),
2472 offsetof(xfs_agi_t, agi_dirino),
2473 offsetof(xfs_agi_t, agi_unlinked),
2474 offsetof(xfs_agi_t, agi_free_root),
2475 offsetof(xfs_agi_t, agi_free_level),
2476 sizeof(xfs_agi_t)
2477 };
2478#ifdef DEBUG
2479 struct xfs_agi *agi = bp->b_addr;
2480
2481 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2482#endif
2483
2484 /*
2485 * Compute byte offsets for the first and last fields in the first
2486 * region and log the agi buffer. This only logs up through
2487 * agi_unlinked.
2488 */
2489 if (fields & XFS_AGI_ALL_BITS_R1) {
2490 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2491 &first, &last);
2492 xfs_trans_log_buf(tp, bp, first, last);
2493 }
2494
2495 /*
2496 * Mask off the bits in the first region and calculate the first and
2497 * last field offsets for any bits in the second region.
2498 */
2499 fields &= ~XFS_AGI_ALL_BITS_R1;
2500 if (fields) {
2501 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2502 &first, &last);
2503 xfs_trans_log_buf(tp, bp, first, last);
2504 }
2505}
2506
2507static xfs_failaddr_t
2508xfs_agi_verify(
2509 struct xfs_buf *bp)
2510{
2511 struct xfs_mount *mp = bp->b_mount;
2512 struct xfs_agi *agi = bp->b_addr;
2513 int i;
2514
2515 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2516 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2517 return __this_address;
2518 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2519 return __this_address;
2520 }
2521
2522 /*
2523 * Validate the magic number of the agi block.
2524 */
2525 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2526 return __this_address;
2527 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2528 return __this_address;
2529
2530 if (be32_to_cpu(agi->agi_level) < 1 ||
2531 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2532 return __this_address;
2533
2534 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2535 (be32_to_cpu(agi->agi_free_level) < 1 ||
2536 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2537 return __this_address;
2538
2539 /*
2540 * during growfs operations, the perag is not fully initialised,
2541 * so we can't use it for any useful checking. growfs ensures we can't
2542 * use it by using uncached buffers that don't have the perag attached
2543 * so we can detect and avoid this problem.
2544 */
2545 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2546 return __this_address;
2547
2548 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2549 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2550 continue;
2551 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2552 return __this_address;
2553 }
2554
2555 return NULL;
2556}
2557
2558static void
2559xfs_agi_read_verify(
2560 struct xfs_buf *bp)
2561{
2562 struct xfs_mount *mp = bp->b_mount;
2563 xfs_failaddr_t fa;
2564
2565 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2566 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2567 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2568 else {
2569 fa = xfs_agi_verify(bp);
2570 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2571 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572 }
2573}
2574
2575static void
2576xfs_agi_write_verify(
2577 struct xfs_buf *bp)
2578{
2579 struct xfs_mount *mp = bp->b_mount;
2580 struct xfs_buf_log_item *bip = bp->b_log_item;
2581 struct xfs_agi *agi = bp->b_addr;
2582 xfs_failaddr_t fa;
2583
2584 fa = xfs_agi_verify(bp);
2585 if (fa) {
2586 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2587 return;
2588 }
2589
2590 if (!xfs_sb_version_hascrc(&mp->m_sb))
2591 return;
2592
2593 if (bip)
2594 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2595 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2596}
2597
2598const struct xfs_buf_ops xfs_agi_buf_ops = {
2599 .name = "xfs_agi",
2600 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2601 .verify_read = xfs_agi_read_verify,
2602 .verify_write = xfs_agi_write_verify,
2603 .verify_struct = xfs_agi_verify,
2604};
2605
2606/*
2607 * Read in the allocation group header (inode allocation section)
2608 */
2609int
2610xfs_read_agi(
2611 struct xfs_mount *mp, /* file system mount structure */
2612 struct xfs_trans *tp, /* transaction pointer */
2613 xfs_agnumber_t agno, /* allocation group number */
2614 struct xfs_buf **bpp) /* allocation group hdr buf */
2615{
2616 int error;
2617
2618 trace_xfs_read_agi(mp, agno);
2619
2620 ASSERT(agno != NULLAGNUMBER);
2621 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2622 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2623 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2624 if (error)
2625 return error;
2626 if (tp)
2627 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2628
2629 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2630 return 0;
2631}
2632
2633int
2634xfs_ialloc_read_agi(
2635 struct xfs_mount *mp, /* file system mount structure */
2636 struct xfs_trans *tp, /* transaction pointer */
2637 xfs_agnumber_t agno, /* allocation group number */
2638 struct xfs_buf **bpp) /* allocation group hdr buf */
2639{
2640 struct xfs_agi *agi; /* allocation group header */
2641 struct xfs_perag *pag; /* per allocation group data */
2642 int error;
2643
2644 trace_xfs_ialloc_read_agi(mp, agno);
2645
2646 error = xfs_read_agi(mp, tp, agno, bpp);
2647 if (error)
2648 return error;
2649
2650 agi = (*bpp)->b_addr;
2651 pag = (*bpp)->b_pag;
2652 if (!pag->pagi_init) {
2653 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2654 pag->pagi_count = be32_to_cpu(agi->agi_count);
2655 pag->pagi_init = 1;
2656 }
2657
2658 /*
2659 * It's possible for these to be out of sync if
2660 * we are in the middle of a forced shutdown.
2661 */
2662 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2663 XFS_FORCED_SHUTDOWN(mp));
2664 return 0;
2665}
2666
2667/*
2668 * Read in the agi to initialise the per-ag data in the mount structure
2669 */
2670int
2671xfs_ialloc_pagi_init(
2672 xfs_mount_t *mp, /* file system mount structure */
2673 xfs_trans_t *tp, /* transaction pointer */
2674 xfs_agnumber_t agno) /* allocation group number */
2675{
2676 xfs_buf_t *bp = NULL;
2677 int error;
2678
2679 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2680 if (error)
2681 return error;
2682 if (bp)
2683 xfs_trans_brelse(tp, bp);
2684 return 0;
2685}
2686
2687/* Is there an inode record covering a given range of inode numbers? */
2688int
2689xfs_ialloc_has_inode_record(
2690 struct xfs_btree_cur *cur,
2691 xfs_agino_t low,
2692 xfs_agino_t high,
2693 bool *exists)
2694{
2695 struct xfs_inobt_rec_incore irec;
2696 xfs_agino_t agino;
2697 uint16_t holemask;
2698 int has_record;
2699 int i;
2700 int error;
2701
2702 *exists = false;
2703 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2704 while (error == 0 && has_record) {
2705 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2706 if (error || irec.ir_startino > high)
2707 break;
2708
2709 agino = irec.ir_startino;
2710 holemask = irec.ir_holemask;
2711 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2712 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2713 if (holemask & 1)
2714 continue;
2715 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2716 agino <= high) {
2717 *exists = true;
2718 return 0;
2719 }
2720 }
2721
2722 error = xfs_btree_increment(cur, 0, &has_record);
2723 }
2724 return error;
2725}
2726
2727/* Is there an inode record covering a given extent? */
2728int
2729xfs_ialloc_has_inodes_at_extent(
2730 struct xfs_btree_cur *cur,
2731 xfs_agblock_t bno,
2732 xfs_extlen_t len,
2733 bool *exists)
2734{
2735 xfs_agino_t low;
2736 xfs_agino_t high;
2737
2738 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2739 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2740
2741 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2742}
2743
2744struct xfs_ialloc_count_inodes {
2745 xfs_agino_t count;
2746 xfs_agino_t freecount;
2747};
2748
2749/* Record inode counts across all inobt records. */
2750STATIC int
2751xfs_ialloc_count_inodes_rec(
2752 struct xfs_btree_cur *cur,
2753 union xfs_btree_rec *rec,
2754 void *priv)
2755{
2756 struct xfs_inobt_rec_incore irec;
2757 struct xfs_ialloc_count_inodes *ci = priv;
2758
2759 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2760 ci->count += irec.ir_count;
2761 ci->freecount += irec.ir_freecount;
2762
2763 return 0;
2764}
2765
2766/* Count allocated and free inodes under an inobt. */
2767int
2768xfs_ialloc_count_inodes(
2769 struct xfs_btree_cur *cur,
2770 xfs_agino_t *count,
2771 xfs_agino_t *freecount)
2772{
2773 struct xfs_ialloc_count_inodes ci = {0};
2774 int error;
2775
2776 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2777 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2778 if (error)
2779 return error;
2780
2781 *count = ci.count;
2782 *freecount = ci.freecount;
2783 return 0;
2784}
2785
2786/*
2787 * Initialize inode-related geometry information.
2788 *
2789 * Compute the inode btree min and max levels and set maxicount.
2790 *
2791 * Set the inode cluster size. This may still be overridden by the file
2792 * system block size if it is larger than the chosen cluster size.
2793 *
2794 * For v5 filesystems, scale the cluster size with the inode size to keep a
2795 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2796 * inode alignment value appropriately for larger cluster sizes.
2797 *
2798 * Then compute the inode cluster alignment information.
2799 */
2800void
2801xfs_ialloc_setup_geometry(
2802 struct xfs_mount *mp)
2803{
2804 struct xfs_sb *sbp = &mp->m_sb;
2805 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2806 uint64_t icount;
2807 uint inodes;
2808
2809 /* Compute inode btree geometry. */
2810 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2811 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2812 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2813 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2814 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2815
2816 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2817 sbp->sb_inopblock);
2818 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2819
2820 if (sbp->sb_spino_align)
2821 igeo->ialloc_min_blks = sbp->sb_spino_align;
2822 else
2823 igeo->ialloc_min_blks = igeo->ialloc_blks;
2824
2825 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2826 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2827 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2828 inodes);
2829
2830 /*
2831 * Set the maximum inode count for this filesystem, being careful not
2832 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2833 * users should never get here due to failing sb verification, but
2834 * certain users (xfs_db) need to be usable even with corrupt metadata.
2835 */
2836 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2837 /*
2838 * Make sure the maximum inode count is a multiple
2839 * of the units we allocate inodes in.
2840 */
2841 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2842 do_div(icount, 100);
2843 do_div(icount, igeo->ialloc_blks);
2844 igeo->maxicount = XFS_FSB_TO_INO(mp,
2845 icount * igeo->ialloc_blks);
2846 } else {
2847 igeo->maxicount = 0;
2848 }
2849
2850 /*
2851 * Compute the desired size of an inode cluster buffer size, which
2852 * starts at 8K and (on v5 filesystems) scales up with larger inode
2853 * sizes.
2854 *
2855 * Preserve the desired inode cluster size because the sparse inodes
2856 * feature uses that desired size (not the actual size) to compute the
2857 * sparse inode alignment. The mount code validates this value, so we
2858 * cannot change the behavior.
2859 */
2860 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2861 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2862 int new_size = igeo->inode_cluster_size_raw;
2863
2864 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2865 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2866 igeo->inode_cluster_size_raw = new_size;
2867 }
2868
2869 /* Calculate inode cluster ratios. */
2870 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2871 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2872 igeo->inode_cluster_size_raw);
2873 else
2874 igeo->blocks_per_cluster = 1;
2875 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2876 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2877
2878 /* Calculate inode cluster alignment. */
2879 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2880 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2881 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2882 else
2883 igeo->cluster_align = 1;
2884 igeo->inoalign_mask = igeo->cluster_align - 1;
2885 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2886
2887 /*
2888 * If we are using stripe alignment, check whether
2889 * the stripe unit is a multiple of the inode alignment
2890 */
2891 if (mp->m_dalign && igeo->inoalign_mask &&
2892 !(mp->m_dalign & igeo->inoalign_mask))
2893 igeo->ialloc_align = mp->m_dalign;
2894 else
2895 igeo->ialloc_align = 0;
2896}
2897
2898/* Compute the location of the root directory inode that is laid out by mkfs. */
2899xfs_ino_t
2900xfs_ialloc_calc_rootino(
2901 struct xfs_mount *mp,
2902 int sunit)
2903{
2904 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2905 xfs_agblock_t first_bno;
2906
2907 /*
2908 * Pre-calculate the geometry of AG 0. We know what it looks like
2909 * because libxfs knows how to create allocation groups now.
2910 *
2911 * first_bno is the first block in which mkfs could possibly have
2912 * allocated the root directory inode, once we factor in the metadata
2913 * that mkfs formats before it. Namely, the four AG headers...
2914 */
2915 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2916
2917 /* ...the two free space btree roots... */
2918 first_bno += 2;
2919
2920 /* ...the inode btree root... */
2921 first_bno += 1;
2922
2923 /* ...the initial AGFL... */
2924 first_bno += xfs_alloc_min_freelist(mp, NULL);
2925
2926 /* ...the free inode btree root... */
2927 if (xfs_sb_version_hasfinobt(&mp->m_sb))
2928 first_bno++;
2929
2930 /* ...the reverse mapping btree root... */
2931 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2932 first_bno++;
2933
2934 /* ...the reference count btree... */
2935 if (xfs_sb_version_hasreflink(&mp->m_sb))
2936 first_bno++;
2937
2938 /*
2939 * ...and the log, if it is allocated in the first allocation group.
2940 *
2941 * This can happen with filesystems that only have a single
2942 * allocation group, or very odd geometries created by old mkfs
2943 * versions on very small filesystems.
2944 */
2945 if (mp->m_sb.sb_logstart &&
2946 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2947 first_bno += mp->m_sb.sb_logblocks;
2948
2949 /*
2950 * Now round first_bno up to whatever allocation alignment is given
2951 * by the filesystem or was passed in.
2952 */
2953 if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2954 first_bno = roundup(first_bno, sunit);
2955 else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2956 mp->m_sb.sb_inoalignmt > 1)
2957 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2958
2959 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2960}