Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
  29#include "xfs_health.h"
  30
  31struct kmem_cache	*xfs_extfree_item_cache;
  32
  33struct workqueue_struct *xfs_alloc_wq;
  34
  35#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  36
  37#define	XFSA_FIXUP_BNO_OK	1
  38#define	XFSA_FIXUP_CNT_OK	2
  39
 
 
 
 
  40/*
  41 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  42 * the beginning of the block for a proper header with the location information
  43 * and CRC.
  44 */
  45unsigned int
  46xfs_agfl_size(
  47	struct xfs_mount	*mp)
  48{
  49	unsigned int		size = mp->m_sb.sb_sectsize;
  50
  51	if (xfs_has_crc(mp))
  52		size -= sizeof(struct xfs_agfl);
  53
  54	return size / sizeof(xfs_agblock_t);
  55}
  56
  57unsigned int
  58xfs_refc_block(
  59	struct xfs_mount	*mp)
  60{
  61	if (xfs_has_rmapbt(mp))
  62		return XFS_RMAP_BLOCK(mp) + 1;
  63	if (xfs_has_finobt(mp))
  64		return XFS_FIBT_BLOCK(mp) + 1;
  65	return XFS_IBT_BLOCK(mp) + 1;
  66}
  67
  68xfs_extlen_t
  69xfs_prealloc_blocks(
  70	struct xfs_mount	*mp)
  71{
  72	if (xfs_has_reflink(mp))
  73		return xfs_refc_block(mp) + 1;
  74	if (xfs_has_rmapbt(mp))
  75		return XFS_RMAP_BLOCK(mp) + 1;
  76	if (xfs_has_finobt(mp))
  77		return XFS_FIBT_BLOCK(mp) + 1;
  78	return XFS_IBT_BLOCK(mp) + 1;
  79}
  80
  81/*
  82 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  83 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  84 * full AG.  Although the space described by the free space btrees, the
  85 * blocks used by the freesp btrees themselves, and the blocks owned by the
  86 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  87 * free space in the AG drop so low that the free space btrees cannot refill an
  88 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  89 * until the fs goes down, we subtract this many AG blocks from the incore
  90 * fdblocks to ensure user allocation does not overcommit the space the
  91 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  92 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  93 */
  94#define XFS_ALLOCBT_AGFL_RESERVE	4
  95
  96/*
  97 * Compute the number of blocks that we set aside to guarantee the ability to
  98 * refill the AGFL and handle a full bmap btree split.
  99 *
 100 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 101 * AGF buffer (PV 947395), we place constraints on the relationship among
 102 * actual allocations for data blocks, freelist blocks, and potential file data
 103 * bmap btree blocks. However, these restrictions may result in no actual space
 104 * allocated for a delayed extent, for example, a data block in a certain AG is
 105 * allocated but there is no additional block for the additional bmap btree
 106 * block due to a split of the bmap btree of the file. The result of this may
 107 * lead to an infinite loop when the file gets flushed to disk and all delayed
 108 * extents need to be actually allocated. To get around this, we explicitly set
 109 * aside a few blocks which will not be reserved in delayed allocation.
 110 *
 111 * For each AG, we need to reserve enough blocks to replenish a totally empty
 112 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 113 */
 114unsigned int
 115xfs_alloc_set_aside(
 116	struct xfs_mount	*mp)
 117{
 118	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 119}
 120
 121/*
 122 * When deciding how much space to allocate out of an AG, we limit the
 123 * allocation maximum size to the size the AG. However, we cannot use all the
 124 * blocks in the AG - some are permanently used by metadata. These
 125 * blocks are generally:
 126 *	- the AG superblock, AGF, AGI and AGFL
 127 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 128 *	  the AGI free inode and rmap btree root blocks.
 129 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 130 *	- the rmapbt root block
 131 *
 132 * The AG headers are sector sized, so the amount of space they take up is
 133 * dependent on filesystem geometry. The others are all single blocks.
 134 */
 135unsigned int
 136xfs_alloc_ag_max_usable(
 137	struct xfs_mount	*mp)
 138{
 139	unsigned int		blocks;
 140
 141	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 142	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 143	blocks += 3;			/* AGF, AGI btree root blocks */
 144	if (xfs_has_finobt(mp))
 145		blocks++;		/* finobt root block */
 146	if (xfs_has_rmapbt(mp))
 147		blocks++;		/* rmap root block */
 148	if (xfs_has_reflink(mp))
 149		blocks++;		/* refcount root block */
 150
 151	return mp->m_sb.sb_agblocks - blocks;
 152}
 153
 154
 155static int
 156xfs_alloc_lookup(
 157	struct xfs_btree_cur	*cur,
 158	xfs_lookup_t		dir,
 159	xfs_agblock_t		bno,
 160	xfs_extlen_t		len,
 161	int			*stat)
 162{
 163	int			error;
 164
 165	cur->bc_rec.a.ar_startblock = bno;
 166	cur->bc_rec.a.ar_blockcount = len;
 167	error = xfs_btree_lookup(cur, dir, stat);
 168	if (*stat == 1)
 169		cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
 170	else
 171		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 172	return error;
 173}
 174
 175/*
 176 * Lookup the record equal to [bno, len] in the btree given by cur.
 177 */
 178static inline int				/* error */
 179xfs_alloc_lookup_eq(
 180	struct xfs_btree_cur	*cur,	/* btree cursor */
 181	xfs_agblock_t		bno,	/* starting block of extent */
 182	xfs_extlen_t		len,	/* length of extent */
 183	int			*stat)	/* success/failure */
 184{
 185	return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
 
 
 
 
 
 
 186}
 187
 188/*
 189 * Lookup the first record greater than or equal to [bno, len]
 190 * in the btree given by cur.
 191 */
 192int				/* error */
 193xfs_alloc_lookup_ge(
 194	struct xfs_btree_cur	*cur,	/* btree cursor */
 195	xfs_agblock_t		bno,	/* starting block of extent */
 196	xfs_extlen_t		len,	/* length of extent */
 197	int			*stat)	/* success/failure */
 198{
 199	return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
 
 
 
 
 
 
 200}
 201
 202/*
 203 * Lookup the first record less than or equal to [bno, len]
 204 * in the btree given by cur.
 205 */
 206int					/* error */
 207xfs_alloc_lookup_le(
 208	struct xfs_btree_cur	*cur,	/* btree cursor */
 209	xfs_agblock_t		bno,	/* starting block of extent */
 210	xfs_extlen_t		len,	/* length of extent */
 211	int			*stat)	/* success/failure */
 212{
 213	return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
 
 
 
 
 
 214}
 215
 216static inline bool
 217xfs_alloc_cur_active(
 218	struct xfs_btree_cur	*cur)
 219{
 220	return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
 221}
 222
 223/*
 224 * Update the record referred to by cur to the value given
 225 * by [bno, len].
 226 * This either works (return 0) or gets an EFSCORRUPTED error.
 227 */
 228STATIC int				/* error */
 229xfs_alloc_update(
 230	struct xfs_btree_cur	*cur,	/* btree cursor */
 231	xfs_agblock_t		bno,	/* starting block of extent */
 232	xfs_extlen_t		len)	/* length of extent */
 233{
 234	union xfs_btree_rec	rec;
 235
 236	rec.alloc.ar_startblock = cpu_to_be32(bno);
 237	rec.alloc.ar_blockcount = cpu_to_be32(len);
 238	return xfs_btree_update(cur, &rec);
 239}
 240
 241/* Convert the ondisk btree record to its incore representation. */
 242void
 243xfs_alloc_btrec_to_irec(
 244	const union xfs_btree_rec	*rec,
 245	struct xfs_alloc_rec_incore	*irec)
 246{
 247	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 248	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 249}
 250
 251/* Simple checks for free space records. */
 252xfs_failaddr_t
 253xfs_alloc_check_irec(
 254	struct xfs_perag			*pag,
 255	const struct xfs_alloc_rec_incore	*irec)
 256{
 257	if (irec->ar_blockcount == 0)
 258		return __this_address;
 259
 260	/* check for valid extent range, including overflow */
 261	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 262		return __this_address;
 263
 264	return NULL;
 265}
 266
 267static inline int
 268xfs_alloc_complain_bad_rec(
 269	struct xfs_btree_cur		*cur,
 270	xfs_failaddr_t			fa,
 271	const struct xfs_alloc_rec_incore *irec)
 272{
 273	struct xfs_mount		*mp = cur->bc_mp;
 274
 275	xfs_warn(mp,
 276		"%sbt record corruption in AG %d detected at %pS!",
 277		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
 278	xfs_warn(mp,
 279		"start block 0x%x block count 0x%x", irec->ar_startblock,
 280		irec->ar_blockcount);
 281	xfs_btree_mark_sick(cur);
 282	return -EFSCORRUPTED;
 283}
 284
 285/*
 286 * Get the data from the pointed-to record.
 287 */
 288int					/* error */
 289xfs_alloc_get_rec(
 290	struct xfs_btree_cur	*cur,	/* btree cursor */
 291	xfs_agblock_t		*bno,	/* output: starting block of extent */
 292	xfs_extlen_t		*len,	/* output: length of extent */
 293	int			*stat)	/* output: success/failure */
 294{
 295	struct xfs_alloc_rec_incore irec;
 
 296	union xfs_btree_rec	*rec;
 297	xfs_failaddr_t		fa;
 298	int			error;
 299
 300	error = xfs_btree_get_rec(cur, &rec, stat);
 301	if (error || !(*stat))
 302		return error;
 303
 304	xfs_alloc_btrec_to_irec(rec, &irec);
 305	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
 306	if (fa)
 307		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 
 
 
 
 
 
 
 
 
 308
 309	*bno = irec.ar_startblock;
 310	*len = irec.ar_blockcount;
 311	return 0;
 
 
 
 
 
 
 
 
 312}
 313
 314/*
 315 * Compute aligned version of the found extent.
 316 * Takes alignment and min length into account.
 317 */
 318STATIC bool
 319xfs_alloc_compute_aligned(
 320	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 321	xfs_agblock_t	foundbno,	/* starting block in found extent */
 322	xfs_extlen_t	foundlen,	/* length in found extent */
 323	xfs_agblock_t	*resbno,	/* result block number */
 324	xfs_extlen_t	*reslen,	/* result length */
 325	unsigned	*busy_gen)
 326{
 327	xfs_agblock_t	bno = foundbno;
 328	xfs_extlen_t	len = foundlen;
 329	xfs_extlen_t	diff;
 330	bool		busy;
 331
 332	/* Trim busy sections out of found extent */
 333	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 334
 335	/*
 336	 * If we have a largish extent that happens to start before min_agbno,
 337	 * see if we can shift it into range...
 338	 */
 339	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 340		diff = args->min_agbno - bno;
 341		if (len > diff) {
 342			bno += diff;
 343			len -= diff;
 344		}
 345	}
 346
 347	if (args->alignment > 1 && len >= args->minlen) {
 348		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 349
 350		diff = aligned_bno - bno;
 351
 352		*resbno = aligned_bno;
 353		*reslen = diff >= len ? 0 : len - diff;
 354	} else {
 355		*resbno = bno;
 356		*reslen = len;
 357	}
 358
 359	return busy;
 360}
 361
 362/*
 363 * Compute best start block and diff for "near" allocations.
 364 * freelen >= wantlen already checked by caller.
 365 */
 366STATIC xfs_extlen_t			/* difference value (absolute) */
 367xfs_alloc_compute_diff(
 368	xfs_agblock_t	wantbno,	/* target starting block */
 369	xfs_extlen_t	wantlen,	/* target length */
 370	xfs_extlen_t	alignment,	/* target alignment */
 371	int		datatype,	/* are we allocating data? */
 372	xfs_agblock_t	freebno,	/* freespace's starting block */
 373	xfs_extlen_t	freelen,	/* freespace's length */
 374	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 375{
 376	xfs_agblock_t	freeend;	/* end of freespace extent */
 377	xfs_agblock_t	newbno1;	/* return block number */
 378	xfs_agblock_t	newbno2;	/* other new block number */
 379	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 380	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 381	xfs_agblock_t	wantend;	/* end of target extent */
 382	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 383
 384	ASSERT(freelen >= wantlen);
 385	freeend = freebno + freelen;
 386	wantend = wantbno + wantlen;
 387	/*
 388	 * We want to allocate from the start of a free extent if it is past
 389	 * the desired block or if we are allocating user data and the free
 390	 * extent is before desired block. The second case is there to allow
 391	 * for contiguous allocation from the remaining free space if the file
 392	 * grows in the short term.
 393	 */
 394	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 395		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 396			newbno1 = NULLAGBLOCK;
 397	} else if (freeend >= wantend && alignment > 1) {
 398		newbno1 = roundup(wantbno, alignment);
 399		newbno2 = newbno1 - alignment;
 400		if (newbno1 >= freeend)
 401			newbno1 = NULLAGBLOCK;
 402		else
 403			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 404		if (newbno2 < freebno)
 405			newbno2 = NULLAGBLOCK;
 406		else
 407			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 408		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 409			if (newlen1 < newlen2 ||
 410			    (newlen1 == newlen2 &&
 411			     XFS_ABSDIFF(newbno1, wantbno) >
 412			     XFS_ABSDIFF(newbno2, wantbno)))
 413				newbno1 = newbno2;
 414		} else if (newbno2 != NULLAGBLOCK)
 415			newbno1 = newbno2;
 416	} else if (freeend >= wantend) {
 417		newbno1 = wantbno;
 418	} else if (alignment > 1) {
 419		newbno1 = roundup(freeend - wantlen, alignment);
 420		if (newbno1 > freeend - wantlen &&
 421		    newbno1 - alignment >= freebno)
 422			newbno1 -= alignment;
 423		else if (newbno1 >= freeend)
 424			newbno1 = NULLAGBLOCK;
 425	} else
 426		newbno1 = freeend - wantlen;
 427	*newbnop = newbno1;
 428	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 429}
 430
 431/*
 432 * Fix up the length, based on mod and prod.
 433 * len should be k * prod + mod for some k.
 434 * If len is too small it is returned unchanged.
 435 * If len hits maxlen it is left alone.
 436 */
 437STATIC void
 438xfs_alloc_fix_len(
 439	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 440{
 441	xfs_extlen_t	k;
 442	xfs_extlen_t	rlen;
 443
 444	ASSERT(args->mod < args->prod);
 445	rlen = args->len;
 446	ASSERT(rlen >= args->minlen);
 447	ASSERT(rlen <= args->maxlen);
 448	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 449	    (args->mod == 0 && rlen < args->prod))
 450		return;
 451	k = rlen % args->prod;
 452	if (k == args->mod)
 453		return;
 454	if (k > args->mod)
 455		rlen = rlen - (k - args->mod);
 456	else
 457		rlen = rlen - args->prod + (args->mod - k);
 458	/* casts to (int) catch length underflows */
 459	if ((int)rlen < (int)args->minlen)
 460		return;
 461	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 462	ASSERT(rlen % args->prod == args->mod);
 463	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 464		rlen + args->minleft);
 465	args->len = rlen;
 466}
 467
 468/*
 469 * Update the two btrees, logically removing from freespace the extent
 470 * starting at rbno, rlen blocks.  The extent is contained within the
 471 * actual (current) free extent fbno for flen blocks.
 472 * Flags are passed in indicating whether the cursors are set to the
 473 * relevant records.
 474 */
 475STATIC int				/* error code */
 476xfs_alloc_fixup_trees(
 477	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 478	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 479	xfs_agblock_t	fbno,		/* starting block of free extent */
 480	xfs_extlen_t	flen,		/* length of free extent */
 481	xfs_agblock_t	rbno,		/* starting block of returned extent */
 482	xfs_extlen_t	rlen,		/* length of returned extent */
 483	int		flags)		/* flags, XFSA_FIXUP_... */
 484{
 485	int		error;		/* error code */
 486	int		i;		/* operation results */
 487	xfs_agblock_t	nfbno1;		/* first new free startblock */
 488	xfs_agblock_t	nfbno2;		/* second new free startblock */
 489	xfs_extlen_t	nflen1=0;	/* first new free length */
 490	xfs_extlen_t	nflen2=0;	/* second new free length */
 491	struct xfs_mount *mp;
 492
 493	mp = cnt_cur->bc_mp;
 494
 495	/*
 496	 * Look up the record in the by-size tree if necessary.
 497	 */
 498	if (flags & XFSA_FIXUP_CNT_OK) {
 499#ifdef DEBUG
 500		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 501			return error;
 502		if (XFS_IS_CORRUPT(mp,
 503				   i != 1 ||
 504				   nfbno1 != fbno ||
 505				   nflen1 != flen)) {
 506			xfs_btree_mark_sick(cnt_cur);
 507			return -EFSCORRUPTED;
 508		}
 509#endif
 510	} else {
 511		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 512			return error;
 513		if (XFS_IS_CORRUPT(mp, i != 1)) {
 514			xfs_btree_mark_sick(cnt_cur);
 515			return -EFSCORRUPTED;
 516		}
 517	}
 518	/*
 519	 * Look up the record in the by-block tree if necessary.
 520	 */
 521	if (flags & XFSA_FIXUP_BNO_OK) {
 522#ifdef DEBUG
 523		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 524			return error;
 525		if (XFS_IS_CORRUPT(mp,
 526				   i != 1 ||
 527				   nfbno1 != fbno ||
 528				   nflen1 != flen)) {
 529			xfs_btree_mark_sick(bno_cur);
 530			return -EFSCORRUPTED;
 531		}
 532#endif
 533	} else {
 534		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 535			return error;
 536		if (XFS_IS_CORRUPT(mp, i != 1)) {
 537			xfs_btree_mark_sick(bno_cur);
 538			return -EFSCORRUPTED;
 539		}
 540	}
 541
 542#ifdef DEBUG
 543	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 544		struct xfs_btree_block	*bnoblock;
 545		struct xfs_btree_block	*cntblock;
 546
 547		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 548		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 549
 550		if (XFS_IS_CORRUPT(mp,
 551				   bnoblock->bb_numrecs !=
 552				   cntblock->bb_numrecs)) {
 553			xfs_btree_mark_sick(bno_cur);
 554			return -EFSCORRUPTED;
 555		}
 556	}
 557#endif
 558
 559	/*
 560	 * Deal with all four cases: the allocated record is contained
 561	 * within the freespace record, so we can have new freespace
 562	 * at either (or both) end, or no freespace remaining.
 563	 */
 564	if (rbno == fbno && rlen == flen)
 565		nfbno1 = nfbno2 = NULLAGBLOCK;
 566	else if (rbno == fbno) {
 567		nfbno1 = rbno + rlen;
 568		nflen1 = flen - rlen;
 569		nfbno2 = NULLAGBLOCK;
 570	} else if (rbno + rlen == fbno + flen) {
 571		nfbno1 = fbno;
 572		nflen1 = flen - rlen;
 573		nfbno2 = NULLAGBLOCK;
 574	} else {
 575		nfbno1 = fbno;
 576		nflen1 = rbno - fbno;
 577		nfbno2 = rbno + rlen;
 578		nflen2 = (fbno + flen) - nfbno2;
 579	}
 580	/*
 581	 * Delete the entry from the by-size btree.
 582	 */
 583	if ((error = xfs_btree_delete(cnt_cur, &i)))
 584		return error;
 585	if (XFS_IS_CORRUPT(mp, i != 1)) {
 586		xfs_btree_mark_sick(cnt_cur);
 587		return -EFSCORRUPTED;
 588	}
 589	/*
 590	 * Add new by-size btree entry(s).
 591	 */
 592	if (nfbno1 != NULLAGBLOCK) {
 593		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 594			return error;
 595		if (XFS_IS_CORRUPT(mp, i != 0)) {
 596			xfs_btree_mark_sick(cnt_cur);
 597			return -EFSCORRUPTED;
 598		}
 599		if ((error = xfs_btree_insert(cnt_cur, &i)))
 600			return error;
 601		if (XFS_IS_CORRUPT(mp, i != 1)) {
 602			xfs_btree_mark_sick(cnt_cur);
 603			return -EFSCORRUPTED;
 604		}
 605	}
 606	if (nfbno2 != NULLAGBLOCK) {
 607		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 608			return error;
 609		if (XFS_IS_CORRUPT(mp, i != 0)) {
 610			xfs_btree_mark_sick(cnt_cur);
 611			return -EFSCORRUPTED;
 612		}
 613		if ((error = xfs_btree_insert(cnt_cur, &i)))
 614			return error;
 615		if (XFS_IS_CORRUPT(mp, i != 1)) {
 616			xfs_btree_mark_sick(cnt_cur);
 617			return -EFSCORRUPTED;
 618		}
 619	}
 620	/*
 621	 * Fix up the by-block btree entry(s).
 622	 */
 623	if (nfbno1 == NULLAGBLOCK) {
 624		/*
 625		 * No remaining freespace, just delete the by-block tree entry.
 626		 */
 627		if ((error = xfs_btree_delete(bno_cur, &i)))
 628			return error;
 629		if (XFS_IS_CORRUPT(mp, i != 1)) {
 630			xfs_btree_mark_sick(bno_cur);
 631			return -EFSCORRUPTED;
 632		}
 633	} else {
 634		/*
 635		 * Update the by-block entry to start later|be shorter.
 636		 */
 637		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 638			return error;
 639	}
 640	if (nfbno2 != NULLAGBLOCK) {
 641		/*
 642		 * 2 resulting free entries, need to add one.
 643		 */
 644		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 645			return error;
 646		if (XFS_IS_CORRUPT(mp, i != 0)) {
 647			xfs_btree_mark_sick(bno_cur);
 648			return -EFSCORRUPTED;
 649		}
 650		if ((error = xfs_btree_insert(bno_cur, &i)))
 651			return error;
 652		if (XFS_IS_CORRUPT(mp, i != 1)) {
 653			xfs_btree_mark_sick(bno_cur);
 654			return -EFSCORRUPTED;
 655		}
 656	}
 657	return 0;
 658}
 659
 660/*
 661 * We do not verify the AGFL contents against AGF-based index counters here,
 662 * even though we may have access to the perag that contains shadow copies. We
 663 * don't know if the AGF based counters have been checked, and if they have they
 664 * still may be inconsistent because they haven't yet been reset on the first
 665 * allocation after the AGF has been read in.
 666 *
 667 * This means we can only check that all agfl entries contain valid or null
 668 * values because we can't reliably determine the active range to exclude
 669 * NULLAGBNO as a valid value.
 670 *
 671 * However, we can't even do that for v4 format filesystems because there are
 672 * old versions of mkfs out there that does not initialise the AGFL to known,
 673 * verifiable values. HEnce we can't tell the difference between a AGFL block
 674 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 675 *
 676 * As a result, we can only fully validate AGFL block numbers when we pull them
 677 * from the freelist in xfs_alloc_get_freelist().
 678 */
 679static xfs_failaddr_t
 680xfs_agfl_verify(
 681	struct xfs_buf	*bp)
 682{
 683	struct xfs_mount *mp = bp->b_mount;
 684	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 685	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 686	int		i;
 687
 688	if (!xfs_has_crc(mp))
 
 
 
 
 
 
 689		return NULL;
 690
 691	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 692		return __this_address;
 693	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 694		return __this_address;
 695	/*
 696	 * during growfs operations, the perag is not fully initialised,
 697	 * so we can't use it for any useful checking. growfs ensures we can't
 698	 * use it by using uncached buffers that don't have the perag attached
 699	 * so we can detect and avoid this problem.
 700	 */
 701	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 702		return __this_address;
 703
 704	for (i = 0; i < xfs_agfl_size(mp); i++) {
 705		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 706		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 707			return __this_address;
 708	}
 709
 710	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 711		return __this_address;
 712	return NULL;
 713}
 714
 715static void
 716xfs_agfl_read_verify(
 717	struct xfs_buf	*bp)
 718{
 719	struct xfs_mount *mp = bp->b_mount;
 720	xfs_failaddr_t	fa;
 721
 722	/*
 723	 * There is no verification of non-crc AGFLs because mkfs does not
 724	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 725	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 726	 * can't verify just those entries are valid.
 727	 */
 728	if (!xfs_has_crc(mp))
 729		return;
 730
 731	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 732		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 733	else {
 734		fa = xfs_agfl_verify(bp);
 735		if (fa)
 736			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 737	}
 738}
 739
 740static void
 741xfs_agfl_write_verify(
 742	struct xfs_buf	*bp)
 743{
 744	struct xfs_mount	*mp = bp->b_mount;
 745	struct xfs_buf_log_item	*bip = bp->b_log_item;
 746	xfs_failaddr_t		fa;
 747
 748	/* no verification of non-crc AGFLs */
 749	if (!xfs_has_crc(mp))
 750		return;
 751
 752	fa = xfs_agfl_verify(bp);
 753	if (fa) {
 754		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 755		return;
 756	}
 757
 758	if (bip)
 759		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 760
 761	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 762}
 763
 764const struct xfs_buf_ops xfs_agfl_buf_ops = {
 765	.name = "xfs_agfl",
 766	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 767	.verify_read = xfs_agfl_read_verify,
 768	.verify_write = xfs_agfl_write_verify,
 769	.verify_struct = xfs_agfl_verify,
 770};
 771
 772/*
 773 * Read in the allocation group free block array.
 774 */
 775int
 776xfs_alloc_read_agfl(
 777	struct xfs_perag	*pag,
 778	struct xfs_trans	*tp,
 779	struct xfs_buf		**bpp)
 
 780{
 781	struct xfs_mount	*mp = pag->pag_mount;
 782	struct xfs_buf		*bp;
 783	int			error;
 784
 
 785	error = xfs_trans_read_buf(
 786			mp, tp, mp->m_ddev_targp,
 787			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 788			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 789	if (xfs_metadata_is_sick(error))
 790		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
 791	if (error)
 792		return error;
 793	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 794	*bpp = bp;
 795	return 0;
 796}
 797
 798STATIC int
 799xfs_alloc_update_counters(
 800	struct xfs_trans	*tp,
 801	struct xfs_buf		*agbp,
 802	long			len)
 803{
 804	struct xfs_agf		*agf = agbp->b_addr;
 805
 806	agbp->b_pag->pagf_freeblks += len;
 807	be32_add_cpu(&agf->agf_freeblks, len);
 808
 
 809	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 810		     be32_to_cpu(agf->agf_length))) {
 811		xfs_buf_mark_corrupt(agbp);
 812		xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
 813		return -EFSCORRUPTED;
 814	}
 815
 816	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 817	return 0;
 818}
 819
 820/*
 821 * Block allocation algorithm and data structures.
 822 */
 823struct xfs_alloc_cur {
 824	struct xfs_btree_cur		*cnt;	/* btree cursors */
 825	struct xfs_btree_cur		*bnolt;
 826	struct xfs_btree_cur		*bnogt;
 827	xfs_extlen_t			cur_len;/* current search length */
 828	xfs_agblock_t			rec_bno;/* extent startblock */
 829	xfs_extlen_t			rec_len;/* extent length */
 830	xfs_agblock_t			bno;	/* alloc bno */
 831	xfs_extlen_t			len;	/* alloc len */
 832	xfs_extlen_t			diff;	/* diff from search bno */
 833	unsigned int			busy_gen;/* busy state */
 834	bool				busy;
 835};
 836
 837/*
 838 * Set up cursors, etc. in the extent allocation cursor. This function can be
 839 * called multiple times to reset an initialized structure without having to
 840 * reallocate cursors.
 841 */
 842static int
 843xfs_alloc_cur_setup(
 844	struct xfs_alloc_arg	*args,
 845	struct xfs_alloc_cur	*acur)
 846{
 847	int			error;
 848	int			i;
 849
 
 
 850	acur->cur_len = args->maxlen;
 851	acur->rec_bno = 0;
 852	acur->rec_len = 0;
 853	acur->bno = 0;
 854	acur->len = 0;
 855	acur->diff = -1;
 856	acur->busy = false;
 857	acur->busy_gen = 0;
 858
 859	/*
 860	 * Perform an initial cntbt lookup to check for availability of maxlen
 861	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 862	 * attempt a small allocation.
 863	 */
 864	if (!acur->cnt)
 865		acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
 866					args->agbp, args->pag);
 867	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 868	if (error)
 869		return error;
 870
 871	/*
 872	 * Allocate the bnobt left and right search cursors.
 873	 */
 874	if (!acur->bnolt)
 875		acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
 876					args->agbp, args->pag);
 877	if (!acur->bnogt)
 878		acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
 879					args->agbp, args->pag);
 880	return i == 1 ? 0 : -ENOSPC;
 881}
 882
 883static void
 884xfs_alloc_cur_close(
 885	struct xfs_alloc_cur	*acur,
 886	bool			error)
 887{
 888	int			cur_error = XFS_BTREE_NOERROR;
 889
 890	if (error)
 891		cur_error = XFS_BTREE_ERROR;
 892
 893	if (acur->cnt)
 894		xfs_btree_del_cursor(acur->cnt, cur_error);
 895	if (acur->bnolt)
 896		xfs_btree_del_cursor(acur->bnolt, cur_error);
 897	if (acur->bnogt)
 898		xfs_btree_del_cursor(acur->bnogt, cur_error);
 899	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 900}
 901
 902/*
 903 * Check an extent for allocation and track the best available candidate in the
 904 * allocation structure. The cursor is deactivated if it has entered an out of
 905 * range state based on allocation arguments. Optionally return the extent
 906 * extent geometry and allocation status if requested by the caller.
 907 */
 908static int
 909xfs_alloc_cur_check(
 910	struct xfs_alloc_arg	*args,
 911	struct xfs_alloc_cur	*acur,
 912	struct xfs_btree_cur	*cur,
 913	int			*new)
 914{
 915	int			error, i;
 916	xfs_agblock_t		bno, bnoa, bnew;
 917	xfs_extlen_t		len, lena, diff = -1;
 918	bool			busy;
 919	unsigned		busy_gen = 0;
 920	bool			deactivate = false;
 921	bool			isbnobt = xfs_btree_is_bno(cur->bc_ops);
 922
 923	*new = 0;
 924
 925	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 926	if (error)
 927		return error;
 928	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 929		xfs_btree_mark_sick(cur);
 930		return -EFSCORRUPTED;
 931	}
 932
 933	/*
 934	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 935	 * range (i.e., walking backwards looking for a minlen extent).
 936	 */
 937	if (len < args->minlen) {
 938		deactivate = !isbnobt;
 939		goto out;
 940	}
 941
 942	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 943					 &busy_gen);
 944	acur->busy |= busy;
 945	if (busy)
 946		acur->busy_gen = busy_gen;
 947	/* deactivate a bnobt cursor outside of locality range */
 948	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 949		deactivate = isbnobt;
 950		goto out;
 951	}
 952	if (lena < args->minlen)
 953		goto out;
 954
 955	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 956	xfs_alloc_fix_len(args);
 957	ASSERT(args->len >= args->minlen);
 958	if (args->len < acur->len)
 959		goto out;
 960
 961	/*
 962	 * We have an aligned record that satisfies minlen and beats or matches
 963	 * the candidate extent size. Compare locality for near allocation mode.
 964	 */
 
 965	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 966				      args->alignment, args->datatype,
 967				      bnoa, lena, &bnew);
 968	if (bnew == NULLAGBLOCK)
 969		goto out;
 970
 971	/*
 972	 * Deactivate a bnobt cursor with worse locality than the current best.
 973	 */
 974	if (diff > acur->diff) {
 975		deactivate = isbnobt;
 976		goto out;
 977	}
 978
 979	ASSERT(args->len > acur->len ||
 980	       (args->len == acur->len && diff <= acur->diff));
 981	acur->rec_bno = bno;
 982	acur->rec_len = len;
 983	acur->bno = bnew;
 984	acur->len = args->len;
 985	acur->diff = diff;
 986	*new = 1;
 987
 988	/*
 989	 * We're done if we found a perfect allocation. This only deactivates
 990	 * the current cursor, but this is just an optimization to terminate a
 991	 * cntbt search that otherwise runs to the edge of the tree.
 992	 */
 993	if (acur->diff == 0 && acur->len == args->maxlen)
 994		deactivate = true;
 995out:
 996	if (deactivate)
 997		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 998	trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
 
 999	return 0;
1000}
1001
1002/*
1003 * Complete an allocation of a candidate extent. Remove the extent from both
1004 * trees and update the args structure.
1005 */
1006STATIC int
1007xfs_alloc_cur_finish(
1008	struct xfs_alloc_arg	*args,
1009	struct xfs_alloc_cur	*acur)
1010{
1011	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1012	int			error;
1013
1014	ASSERT(acur->cnt && acur->bnolt);
1015	ASSERT(acur->bno >= acur->rec_bno);
1016	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1017	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
1018
1019	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1020				      acur->rec_len, acur->bno, acur->len, 0);
1021	if (error)
1022		return error;
1023
1024	args->agbno = acur->bno;
1025	args->len = acur->len;
1026	args->wasfromfl = 0;
1027
1028	trace_xfs_alloc_cur(args);
1029	return 0;
1030}
1031
1032/*
1033 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1034 * bno optimized lookup to search for extents with ideal size and locality.
1035 */
1036STATIC int
1037xfs_alloc_cntbt_iter(
1038	struct xfs_alloc_arg		*args,
1039	struct xfs_alloc_cur		*acur)
1040{
1041	struct xfs_btree_cur	*cur = acur->cnt;
1042	xfs_agblock_t		bno;
1043	xfs_extlen_t		len, cur_len;
1044	int			error;
1045	int			i;
1046
1047	if (!xfs_alloc_cur_active(cur))
1048		return 0;
1049
1050	/* locality optimized lookup */
1051	cur_len = acur->cur_len;
1052	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1053	if (error)
1054		return error;
1055	if (i == 0)
1056		return 0;
1057	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1058	if (error)
1059		return error;
1060
1061	/* check the current record and update search length from it */
1062	error = xfs_alloc_cur_check(args, acur, cur, &i);
1063	if (error)
1064		return error;
1065	ASSERT(len >= acur->cur_len);
1066	acur->cur_len = len;
1067
1068	/*
1069	 * We looked up the first record >= [agbno, len] above. The agbno is a
1070	 * secondary key and so the current record may lie just before or after
1071	 * agbno. If it is past agbno, check the previous record too so long as
1072	 * the length matches as it may be closer. Don't check a smaller record
1073	 * because that could deactivate our cursor.
1074	 */
1075	if (bno > args->agbno) {
1076		error = xfs_btree_decrement(cur, 0, &i);
1077		if (!error && i) {
1078			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1079			if (!error && i && len == acur->cur_len)
1080				error = xfs_alloc_cur_check(args, acur, cur,
1081							    &i);
1082		}
1083		if (error)
1084			return error;
1085	}
1086
1087	/*
1088	 * Increment the search key until we find at least one allocation
1089	 * candidate or if the extent we found was larger. Otherwise, double the
1090	 * search key to optimize the search. Efficiency is more important here
1091	 * than absolute best locality.
1092	 */
1093	cur_len <<= 1;
1094	if (!acur->len || acur->cur_len >= cur_len)
1095		acur->cur_len++;
1096	else
1097		acur->cur_len = cur_len;
1098
1099	return error;
1100}
1101
1102/*
1103 * Deal with the case where only small freespaces remain. Either return the
1104 * contents of the last freespace record, or allocate space from the freelist if
1105 * there is nothing in the tree.
1106 */
1107STATIC int			/* error */
1108xfs_alloc_ag_vextent_small(
1109	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1110	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1111	xfs_agblock_t		*fbnop,	/* result block number */
1112	xfs_extlen_t		*flenp,	/* result length */
1113	int			*stat)	/* status: 0-freelist, 1-normal/none */
1114{
1115	struct xfs_agf		*agf = args->agbp->b_addr;
1116	int			error = 0;
1117	xfs_agblock_t		fbno = NULLAGBLOCK;
1118	xfs_extlen_t		flen = 0;
1119	int			i = 0;
1120
1121	/*
1122	 * If a cntbt cursor is provided, try to allocate the largest record in
1123	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1124	 * allocation. Make sure to respect minleft even when pulling from the
1125	 * freelist.
1126	 */
1127	if (ccur)
1128		error = xfs_btree_decrement(ccur, 0, &i);
1129	if (error)
1130		goto error;
1131	if (i) {
1132		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1133		if (error)
1134			goto error;
1135		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1136			xfs_btree_mark_sick(ccur);
1137			error = -EFSCORRUPTED;
1138			goto error;
1139		}
1140		goto out;
1141	}
1142
1143	if (args->minlen != 1 || args->alignment != 1 ||
1144	    args->resv == XFS_AG_RESV_AGFL ||
1145	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1146		goto out;
1147
1148	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1149			&fbno, 0);
1150	if (error)
1151		goto error;
1152	if (fbno == NULLAGBLOCK)
1153		goto out;
1154
1155	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1156			      (args->datatype & XFS_ALLOC_NOBUSY));
1157
1158	if (args->datatype & XFS_ALLOC_USERDATA) {
1159		struct xfs_buf	*bp;
1160
1161		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1162				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1163				args->mp->m_bsize, 0, &bp);
1164		if (error)
1165			goto error;
1166		xfs_trans_binval(args->tp, bp);
1167	}
1168	*fbnop = args->agbno = fbno;
1169	*flenp = args->len = 1;
1170	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1171		xfs_btree_mark_sick(ccur);
1172		error = -EFSCORRUPTED;
1173		goto error;
1174	}
1175	args->wasfromfl = 1;
1176	trace_xfs_alloc_small_freelist(args);
1177
1178	/*
1179	 * If we're feeding an AGFL block to something that doesn't live in the
1180	 * free space, we need to clear out the OWN_AG rmap.
1181	 */
1182	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1183			      &XFS_RMAP_OINFO_AG);
1184	if (error)
1185		goto error;
1186
1187	*stat = 0;
1188	return 0;
1189
1190out:
1191	/*
1192	 * Can't do the allocation, give up.
1193	 */
1194	if (flen < args->minlen) {
1195		args->agbno = NULLAGBLOCK;
1196		trace_xfs_alloc_small_notenough(args);
1197		flen = 0;
1198	}
1199	*fbnop = fbno;
1200	*flenp = flen;
1201	*stat = 1;
1202	trace_xfs_alloc_small_done(args);
1203	return 0;
1204
1205error:
1206	trace_xfs_alloc_small_error(args);
1207	return error;
1208}
1209
1210/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211 * Allocate a variable extent at exactly agno/bno.
1212 * Extent's length (returned in *len) will be between minlen and maxlen,
1213 * and of the form k * prod + mod unless there's nothing that large.
1214 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1215 */
1216STATIC int			/* error */
1217xfs_alloc_ag_vextent_exact(
1218	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1219{
1220	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1221	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1222	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1223	int		error;
1224	xfs_agblock_t	fbno;	/* start block of found extent */
1225	xfs_extlen_t	flen;	/* length of found extent */
1226	xfs_agblock_t	tbno;	/* start block of busy extent */
1227	xfs_extlen_t	tlen;	/* length of busy extent */
1228	xfs_agblock_t	tend;	/* end block of busy extent */
1229	int		i;	/* success/failure of operation */
1230	unsigned	busy_gen;
1231
1232	ASSERT(args->alignment == 1);
1233
1234	/*
1235	 * Allocate/initialize a cursor for the by-number freespace btree.
1236	 */
1237	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1238					  args->pag);
1239
1240	/*
1241	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1242	 * Look for the closest free block <= bno, it must contain bno
1243	 * if any free block does.
1244	 */
1245	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1246	if (error)
1247		goto error0;
1248	if (!i)
1249		goto not_found;
1250
1251	/*
1252	 * Grab the freespace record.
1253	 */
1254	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1255	if (error)
1256		goto error0;
1257	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1258		xfs_btree_mark_sick(bno_cur);
1259		error = -EFSCORRUPTED;
1260		goto error0;
1261	}
1262	ASSERT(fbno <= args->agbno);
1263
1264	/*
1265	 * Check for overlapping busy extents.
1266	 */
1267	tbno = fbno;
1268	tlen = flen;
1269	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1270
1271	/*
1272	 * Give up if the start of the extent is busy, or the freespace isn't
1273	 * long enough for the minimum request.
1274	 */
1275	if (tbno > args->agbno)
1276		goto not_found;
1277	if (tlen < args->minlen)
1278		goto not_found;
1279	tend = tbno + tlen;
1280	if (tend < args->agbno + args->minlen)
1281		goto not_found;
1282
1283	/*
1284	 * End of extent will be smaller of the freespace end and the
1285	 * maximal requested end.
1286	 *
1287	 * Fix the length according to mod and prod if given.
1288	 */
1289	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1290						- args->agbno;
1291	xfs_alloc_fix_len(args);
1292	ASSERT(args->agbno + args->len <= tend);
1293
1294	/*
1295	 * We are allocating agbno for args->len
1296	 * Allocate/initialize a cursor for the by-size btree.
1297	 */
1298	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1299					args->pag);
1300	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1301	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1302				      args->len, XFSA_FIXUP_BNO_OK);
1303	if (error) {
1304		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1305		goto error0;
1306	}
1307
1308	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1309	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1310
1311	args->wasfromfl = 0;
1312	trace_xfs_alloc_exact_done(args);
1313	return 0;
1314
1315not_found:
1316	/* Didn't find it, return null. */
1317	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1318	args->agbno = NULLAGBLOCK;
1319	trace_xfs_alloc_exact_notfound(args);
1320	return 0;
1321
1322error0:
1323	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1324	trace_xfs_alloc_exact_error(args);
1325	return error;
1326}
1327
1328/*
1329 * Search a given number of btree records in a given direction. Check each
1330 * record against the good extent we've already found.
1331 */
1332STATIC int
1333xfs_alloc_walk_iter(
1334	struct xfs_alloc_arg	*args,
1335	struct xfs_alloc_cur	*acur,
1336	struct xfs_btree_cur	*cur,
1337	bool			increment,
1338	bool			find_one, /* quit on first candidate */
1339	int			count,    /* rec count (-1 for infinite) */
1340	int			*stat)
1341{
1342	int			error;
1343	int			i;
1344
1345	*stat = 0;
1346
1347	/*
1348	 * Search so long as the cursor is active or we find a better extent.
1349	 * The cursor is deactivated if it extends beyond the range of the
1350	 * current allocation candidate.
1351	 */
1352	while (xfs_alloc_cur_active(cur) && count) {
1353		error = xfs_alloc_cur_check(args, acur, cur, &i);
1354		if (error)
1355			return error;
1356		if (i == 1) {
1357			*stat = 1;
1358			if (find_one)
1359				break;
1360		}
1361		if (!xfs_alloc_cur_active(cur))
1362			break;
1363
1364		if (increment)
1365			error = xfs_btree_increment(cur, 0, &i);
1366		else
1367			error = xfs_btree_decrement(cur, 0, &i);
1368		if (error)
1369			return error;
1370		if (i == 0)
1371			cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1372
1373		if (count > 0)
1374			count--;
1375	}
1376
1377	return 0;
1378}
1379
1380/*
1381 * Search the by-bno and by-size btrees in parallel in search of an extent with
1382 * ideal locality based on the NEAR mode ->agbno locality hint.
1383 */
1384STATIC int
1385xfs_alloc_ag_vextent_locality(
1386	struct xfs_alloc_arg	*args,
1387	struct xfs_alloc_cur	*acur,
1388	int			*stat)
1389{
1390	struct xfs_btree_cur	*fbcur = NULL;
1391	int			error;
1392	int			i;
1393	bool			fbinc;
1394
1395	ASSERT(acur->len == 0);
 
1396
1397	*stat = 0;
1398
1399	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1400	if (error)
1401		return error;
1402	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1403	if (error)
1404		return error;
1405	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1406	if (error)
1407		return error;
1408
1409	/*
1410	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1411	 * right and lookup the closest extent to the locality hint for each
1412	 * extent size key in the cntbt. The entire search terminates
1413	 * immediately on a bnobt hit because that means we've found best case
1414	 * locality. Otherwise the search continues until the cntbt cursor runs
1415	 * off the end of the tree. If no allocation candidate is found at this
1416	 * point, give up on locality, walk backwards from the end of the cntbt
1417	 * and take the first available extent.
1418	 *
1419	 * The parallel tree searches balance each other out to provide fairly
1420	 * consistent performance for various situations. The bnobt search can
1421	 * have pathological behavior in the worst case scenario of larger
1422	 * allocation requests and fragmented free space. On the other hand, the
1423	 * bnobt is able to satisfy most smaller allocation requests much more
1424	 * quickly than the cntbt. The cntbt search can sift through fragmented
1425	 * free space and sets of free extents for larger allocation requests
1426	 * more quickly than the bnobt. Since the locality hint is just a hint
1427	 * and we don't want to scan the entire bnobt for perfect locality, the
1428	 * cntbt search essentially bounds the bnobt search such that we can
1429	 * find good enough locality at reasonable performance in most cases.
1430	 */
1431	while (xfs_alloc_cur_active(acur->bnolt) ||
1432	       xfs_alloc_cur_active(acur->bnogt) ||
1433	       xfs_alloc_cur_active(acur->cnt)) {
1434
1435		trace_xfs_alloc_cur_lookup(args);
1436
1437		/*
1438		 * Search the bnobt left and right. In the case of a hit, finish
1439		 * the search in the opposite direction and we're done.
1440		 */
1441		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1442					    true, 1, &i);
1443		if (error)
1444			return error;
1445		if (i == 1) {
1446			trace_xfs_alloc_cur_left(args);
1447			fbcur = acur->bnogt;
1448			fbinc = true;
1449			break;
1450		}
1451		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1452					    1, &i);
1453		if (error)
1454			return error;
1455		if (i == 1) {
1456			trace_xfs_alloc_cur_right(args);
1457			fbcur = acur->bnolt;
1458			fbinc = false;
1459			break;
1460		}
1461
1462		/*
1463		 * Check the extent with best locality based on the current
1464		 * extent size search key and keep track of the best candidate.
1465		 */
1466		error = xfs_alloc_cntbt_iter(args, acur);
1467		if (error)
1468			return error;
1469		if (!xfs_alloc_cur_active(acur->cnt)) {
1470			trace_xfs_alloc_cur_lookup_done(args);
1471			break;
1472		}
1473	}
1474
1475	/*
1476	 * If we failed to find anything due to busy extents, return empty
1477	 * handed so the caller can flush and retry. If no busy extents were
1478	 * found, walk backwards from the end of the cntbt as a last resort.
1479	 */
1480	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1481		error = xfs_btree_decrement(acur->cnt, 0, &i);
1482		if (error)
1483			return error;
1484		if (i) {
1485			acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1486			fbcur = acur->cnt;
1487			fbinc = false;
1488		}
1489	}
1490
1491	/*
1492	 * Search in the opposite direction for a better entry in the case of
1493	 * a bnobt hit or walk backwards from the end of the cntbt.
1494	 */
1495	if (fbcur) {
1496		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1497					    &i);
1498		if (error)
1499			return error;
1500	}
1501
1502	if (acur->len)
1503		*stat = 1;
1504
1505	return 0;
1506}
1507
1508/* Check the last block of the cnt btree for allocations. */
1509static int
1510xfs_alloc_ag_vextent_lastblock(
1511	struct xfs_alloc_arg	*args,
1512	struct xfs_alloc_cur	*acur,
1513	xfs_agblock_t		*bno,
1514	xfs_extlen_t		*len,
1515	bool			*allocated)
1516{
1517	int			error;
1518	int			i;
1519
1520#ifdef DEBUG
1521	/* Randomly don't execute the first algorithm. */
1522	if (get_random_u32_below(2))
1523		return 0;
1524#endif
1525
1526	/*
1527	 * Start from the entry that lookup found, sequence through all larger
1528	 * free blocks.  If we're actually pointing at a record smaller than
1529	 * maxlen, go to the start of this block, and skip all those smaller
1530	 * than minlen.
1531	 */
1532	if (*len || args->alignment > 1) {
1533		acur->cnt->bc_levels[0].ptr = 1;
1534		do {
1535			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1536			if (error)
1537				return error;
1538			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1539				xfs_btree_mark_sick(acur->cnt);
1540				return -EFSCORRUPTED;
1541			}
1542			if (*len >= args->minlen)
1543				break;
1544			error = xfs_btree_increment(acur->cnt, 0, &i);
1545			if (error)
1546				return error;
1547		} while (i);
1548		ASSERT(*len >= args->minlen);
1549		if (!i)
1550			return 0;
1551	}
1552
1553	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1554	if (error)
1555		return error;
1556
1557	/*
1558	 * It didn't work.  We COULD be in a case where there's a good record
1559	 * somewhere, so try again.
1560	 */
1561	if (acur->len == 0)
1562		return 0;
1563
1564	trace_xfs_alloc_near_first(args);
1565	*allocated = true;
1566	return 0;
1567}
1568
1569/*
1570 * Allocate a variable extent near bno in the allocation group agno.
1571 * Extent's length (returned in len) will be between minlen and maxlen,
1572 * and of the form k * prod + mod unless there's nothing that large.
1573 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1574 */
1575STATIC int
1576xfs_alloc_ag_vextent_near(
1577	struct xfs_alloc_arg	*args,
1578	uint32_t		alloc_flags)
1579{
1580	struct xfs_alloc_cur	acur = {};
1581	int			error;		/* error code */
1582	int			i;		/* result code, temporary */
1583	xfs_agblock_t		bno;
1584	xfs_extlen_t		len;
1585
1586	/* handle uninitialized agbno range so caller doesn't have to */
1587	if (!args->min_agbno && !args->max_agbno)
1588		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1589	ASSERT(args->min_agbno <= args->max_agbno);
1590
1591	/* clamp agbno to the range if it's outside */
1592	if (args->agbno < args->min_agbno)
1593		args->agbno = args->min_agbno;
1594	if (args->agbno > args->max_agbno)
1595		args->agbno = args->max_agbno;
1596
1597	/* Retry once quickly if we find busy extents before blocking. */
1598	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1599restart:
1600	len = 0;
1601
1602	/*
1603	 * Set up cursors and see if there are any free extents as big as
1604	 * maxlen. If not, pick the last entry in the tree unless the tree is
1605	 * empty.
1606	 */
1607	error = xfs_alloc_cur_setup(args, &acur);
1608	if (error == -ENOSPC) {
1609		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1610				&len, &i);
1611		if (error)
1612			goto out;
1613		if (i == 0 || len == 0) {
1614			trace_xfs_alloc_near_noentry(args);
1615			goto out;
1616		}
1617		ASSERT(i == 1);
1618	} else if (error) {
1619		goto out;
1620	}
1621
1622	/*
1623	 * First algorithm.
1624	 * If the requested extent is large wrt the freespaces available
1625	 * in this a.g., then the cursor will be pointing to a btree entry
1626	 * near the right edge of the tree.  If it's in the last btree leaf
1627	 * block, then we just examine all the entries in that block
1628	 * that are big enough, and pick the best one.
1629	 */
1630	if (xfs_btree_islastblock(acur.cnt, 0)) {
1631		bool		allocated = false;
1632
1633		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1634				&allocated);
1635		if (error)
1636			goto out;
1637		if (allocated)
1638			goto alloc_finish;
1639	}
1640
1641	/*
1642	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1643	 * locality.
1644	 */
1645	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1646	if (error)
1647		goto out;
1648
1649	/*
1650	 * If we couldn't get anything, give up.
1651	 */
1652	if (!acur.len) {
1653		if (acur.busy) {
1654			/*
1655			 * Our only valid extents must have been busy. Flush and
1656			 * retry the allocation again. If we get an -EAGAIN
1657			 * error, we're being told that a deadlock was avoided
1658			 * and the current transaction needs committing before
1659			 * the allocation can be retried.
1660			 */
1661			trace_xfs_alloc_near_busy(args);
1662			error = xfs_extent_busy_flush(args->tp, args->pag,
1663					acur.busy_gen, alloc_flags);
1664			if (error)
1665				goto out;
1666
1667			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1668			goto restart;
1669		}
1670		trace_xfs_alloc_size_neither(args);
1671		args->agbno = NULLAGBLOCK;
1672		goto out;
1673	}
1674
1675alloc_finish:
1676	/* fix up btrees on a successful allocation */
1677	error = xfs_alloc_cur_finish(args, &acur);
1678
1679out:
1680	xfs_alloc_cur_close(&acur, error);
1681	return error;
1682}
1683
1684/*
1685 * Allocate a variable extent anywhere in the allocation group agno.
1686 * Extent's length (returned in len) will be between minlen and maxlen,
1687 * and of the form k * prod + mod unless there's nothing that large.
1688 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1689 */
1690static int
1691xfs_alloc_ag_vextent_size(
1692	struct xfs_alloc_arg	*args,
1693	uint32_t		alloc_flags)
1694{
1695	struct xfs_agf		*agf = args->agbp->b_addr;
1696	struct xfs_btree_cur	*bno_cur;
1697	struct xfs_btree_cur	*cnt_cur;
1698	xfs_agblock_t		fbno;		/* start of found freespace */
1699	xfs_extlen_t		flen;		/* length of found freespace */
1700	xfs_agblock_t		rbno;		/* returned block number */
1701	xfs_extlen_t		rlen;		/* length of returned extent */
1702	bool			busy;
1703	unsigned		busy_gen;
1704	int			error;
1705	int			i;
1706
1707	/* Retry once quickly if we find busy extents before blocking. */
1708	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1709restart:
1710	/*
1711	 * Allocate and initialize a cursor for the by-size btree.
1712	 */
1713	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1714					args->pag);
1715	bno_cur = NULL;
 
1716
1717	/*
1718	 * Look for an entry >= maxlen+alignment-1 blocks.
1719	 */
1720	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1721			args->maxlen + args->alignment - 1, &i)))
1722		goto error0;
1723
1724	/*
1725	 * If none then we have to settle for a smaller extent. In the case that
1726	 * there are no large extents, this will return the last entry in the
1727	 * tree unless the tree is empty. In the case that there are only busy
1728	 * large extents, this will return the largest small extent unless there
1729	 * are no smaller extents available.
1730	 */
1731	if (!i) {
1732		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1733						   &fbno, &flen, &i);
1734		if (error)
1735			goto error0;
1736		if (i == 0 || flen == 0) {
1737			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1738			trace_xfs_alloc_size_noentry(args);
1739			return 0;
1740		}
1741		ASSERT(i == 1);
1742		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1743				&rlen, &busy_gen);
1744	} else {
1745		/*
1746		 * Search for a non-busy extent that is large enough.
1747		 */
1748		for (;;) {
1749			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1750			if (error)
1751				goto error0;
1752			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1753				xfs_btree_mark_sick(cnt_cur);
1754				error = -EFSCORRUPTED;
1755				goto error0;
1756			}
1757
1758			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1759					&rbno, &rlen, &busy_gen);
1760
1761			if (rlen >= args->maxlen)
1762				break;
1763
1764			error = xfs_btree_increment(cnt_cur, 0, &i);
1765			if (error)
1766				goto error0;
1767			if (i)
1768				continue;
1769
1770			/*
1771			 * Our only valid extents must have been busy. Flush and
1772			 * retry the allocation again. If we get an -EAGAIN
1773			 * error, we're being told that a deadlock was avoided
1774			 * and the current transaction needs committing before
1775			 * the allocation can be retried.
1776			 */
1777			trace_xfs_alloc_size_busy(args);
1778			error = xfs_extent_busy_flush(args->tp, args->pag,
1779					busy_gen, alloc_flags);
1780			if (error)
1781				goto error0;
1782
1783			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1784			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1785			goto restart;
1786		}
1787	}
1788
1789	/*
1790	 * In the first case above, we got the last entry in the
1791	 * by-size btree.  Now we check to see if the space hits maxlen
1792	 * once aligned; if not, we search left for something better.
1793	 * This can't happen in the second case above.
1794	 */
1795	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1796	if (XFS_IS_CORRUPT(args->mp,
1797			   rlen != 0 &&
1798			   (rlen > flen ||
1799			    rbno + rlen > fbno + flen))) {
1800		xfs_btree_mark_sick(cnt_cur);
1801		error = -EFSCORRUPTED;
1802		goto error0;
1803	}
1804	if (rlen < args->maxlen) {
1805		xfs_agblock_t	bestfbno;
1806		xfs_extlen_t	bestflen;
1807		xfs_agblock_t	bestrbno;
1808		xfs_extlen_t	bestrlen;
1809
1810		bestrlen = rlen;
1811		bestrbno = rbno;
1812		bestflen = flen;
1813		bestfbno = fbno;
1814		for (;;) {
1815			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1816				goto error0;
1817			if (i == 0)
1818				break;
1819			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1820					&i)))
1821				goto error0;
1822			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1823				xfs_btree_mark_sick(cnt_cur);
1824				error = -EFSCORRUPTED;
1825				goto error0;
1826			}
1827			if (flen < bestrlen)
1828				break;
1829			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1830					&rbno, &rlen, &busy_gen);
1831			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1832			if (XFS_IS_CORRUPT(args->mp,
1833					   rlen != 0 &&
1834					   (rlen > flen ||
1835					    rbno + rlen > fbno + flen))) {
1836				xfs_btree_mark_sick(cnt_cur);
1837				error = -EFSCORRUPTED;
1838				goto error0;
1839			}
1840			if (rlen > bestrlen) {
1841				bestrlen = rlen;
1842				bestrbno = rbno;
1843				bestflen = flen;
1844				bestfbno = fbno;
1845				if (rlen == args->maxlen)
1846					break;
1847			}
1848		}
1849		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1850				&i)))
1851			goto error0;
1852		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1853			xfs_btree_mark_sick(cnt_cur);
1854			error = -EFSCORRUPTED;
1855			goto error0;
1856		}
1857		rlen = bestrlen;
1858		rbno = bestrbno;
1859		flen = bestflen;
1860		fbno = bestfbno;
1861	}
1862	args->wasfromfl = 0;
1863	/*
1864	 * Fix up the length.
1865	 */
1866	args->len = rlen;
1867	if (rlen < args->minlen) {
1868		if (busy) {
1869			/*
1870			 * Our only valid extents must have been busy. Flush and
1871			 * retry the allocation again. If we get an -EAGAIN
1872			 * error, we're being told that a deadlock was avoided
1873			 * and the current transaction needs committing before
1874			 * the allocation can be retried.
1875			 */
1876			trace_xfs_alloc_size_busy(args);
1877			error = xfs_extent_busy_flush(args->tp, args->pag,
1878					busy_gen, alloc_flags);
1879			if (error)
1880				goto error0;
1881
1882			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1883			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 
 
1884			goto restart;
1885		}
1886		goto out_nominleft;
1887	}
1888	xfs_alloc_fix_len(args);
1889
1890	rlen = args->len;
1891	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1892		xfs_btree_mark_sick(cnt_cur);
1893		error = -EFSCORRUPTED;
1894		goto error0;
1895	}
1896	/*
1897	 * Allocate and initialize a cursor for the by-block tree.
1898	 */
1899	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1900					args->pag);
1901	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1902			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1903		goto error0;
1904	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1905	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1906	cnt_cur = bno_cur = NULL;
1907	args->len = rlen;
1908	args->agbno = rbno;
1909	if (XFS_IS_CORRUPT(args->mp,
1910			   args->agbno + args->len >
1911			   be32_to_cpu(agf->agf_length))) {
1912		xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
1913		error = -EFSCORRUPTED;
1914		goto error0;
1915	}
1916	trace_xfs_alloc_size_done(args);
1917	return 0;
1918
1919error0:
1920	trace_xfs_alloc_size_error(args);
1921	if (cnt_cur)
1922		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1923	if (bno_cur)
1924		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1925	return error;
1926
1927out_nominleft:
1928	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1929	trace_xfs_alloc_size_nominleft(args);
1930	args->agbno = NULLAGBLOCK;
1931	return 0;
1932}
1933
1934/*
1935 * Free the extent starting at agno/bno for length.
1936 */
1937STATIC int
1938xfs_free_ag_extent(
1939	struct xfs_trans		*tp,
1940	struct xfs_buf			*agbp,
1941	xfs_agnumber_t			agno,
1942	xfs_agblock_t			bno,
1943	xfs_extlen_t			len,
1944	const struct xfs_owner_info	*oinfo,
1945	enum xfs_ag_resv_type		type)
1946{
1947	struct xfs_mount		*mp;
1948	struct xfs_btree_cur		*bno_cur;
1949	struct xfs_btree_cur		*cnt_cur;
1950	xfs_agblock_t			gtbno; /* start of right neighbor */
1951	xfs_extlen_t			gtlen; /* length of right neighbor */
1952	xfs_agblock_t			ltbno; /* start of left neighbor */
1953	xfs_extlen_t			ltlen; /* length of left neighbor */
1954	xfs_agblock_t			nbno; /* new starting block of freesp */
1955	xfs_extlen_t			nlen; /* new length of freespace */
1956	int				haveleft; /* have a left neighbor */
1957	int				haveright; /* have a right neighbor */
1958	int				i;
1959	int				error;
1960	struct xfs_perag		*pag = agbp->b_pag;
1961
1962	bno_cur = cnt_cur = NULL;
1963	mp = tp->t_mountp;
1964
1965	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1966		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1967		if (error)
1968			goto error0;
1969	}
1970
1971	/*
1972	 * Allocate and initialize a cursor for the by-block btree.
1973	 */
1974	bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
1975	/*
1976	 * Look for a neighboring block on the left (lower block numbers)
1977	 * that is contiguous with this space.
1978	 */
1979	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1980		goto error0;
1981	if (haveleft) {
1982		/*
1983		 * There is a block to our left.
1984		 */
1985		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1986			goto error0;
1987		if (XFS_IS_CORRUPT(mp, i != 1)) {
1988			xfs_btree_mark_sick(bno_cur);
1989			error = -EFSCORRUPTED;
1990			goto error0;
1991		}
1992		/*
1993		 * It's not contiguous, though.
1994		 */
1995		if (ltbno + ltlen < bno)
1996			haveleft = 0;
1997		else {
1998			/*
1999			 * If this failure happens the request to free this
2000			 * space was invalid, it's (partly) already free.
2001			 * Very bad.
2002			 */
2003			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2004				xfs_btree_mark_sick(bno_cur);
2005				error = -EFSCORRUPTED;
2006				goto error0;
2007			}
2008		}
2009	}
2010	/*
2011	 * Look for a neighboring block on the right (higher block numbers)
2012	 * that is contiguous with this space.
2013	 */
2014	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2015		goto error0;
2016	if (haveright) {
2017		/*
2018		 * There is a block to our right.
2019		 */
2020		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2021			goto error0;
2022		if (XFS_IS_CORRUPT(mp, i != 1)) {
2023			xfs_btree_mark_sick(bno_cur);
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		/*
2028		 * It's not contiguous, though.
2029		 */
2030		if (bno + len < gtbno)
2031			haveright = 0;
2032		else {
2033			/*
2034			 * If this failure happens the request to free this
2035			 * space was invalid, it's (partly) already free.
2036			 * Very bad.
2037			 */
2038			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2039				xfs_btree_mark_sick(bno_cur);
2040				error = -EFSCORRUPTED;
2041				goto error0;
2042			}
2043		}
2044	}
2045	/*
2046	 * Now allocate and initialize a cursor for the by-size tree.
2047	 */
2048	cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2049	/*
2050	 * Have both left and right contiguous neighbors.
2051	 * Merge all three into a single free block.
2052	 */
2053	if (haveleft && haveright) {
2054		/*
2055		 * Delete the old by-size entry on the left.
2056		 */
2057		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2058			goto error0;
2059		if (XFS_IS_CORRUPT(mp, i != 1)) {
2060			xfs_btree_mark_sick(cnt_cur);
2061			error = -EFSCORRUPTED;
2062			goto error0;
2063		}
2064		if ((error = xfs_btree_delete(cnt_cur, &i)))
2065			goto error0;
2066		if (XFS_IS_CORRUPT(mp, i != 1)) {
2067			xfs_btree_mark_sick(cnt_cur);
2068			error = -EFSCORRUPTED;
2069			goto error0;
2070		}
2071		/*
2072		 * Delete the old by-size entry on the right.
2073		 */
2074		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2075			goto error0;
2076		if (XFS_IS_CORRUPT(mp, i != 1)) {
2077			xfs_btree_mark_sick(cnt_cur);
2078			error = -EFSCORRUPTED;
2079			goto error0;
2080		}
2081		if ((error = xfs_btree_delete(cnt_cur, &i)))
2082			goto error0;
2083		if (XFS_IS_CORRUPT(mp, i != 1)) {
2084			xfs_btree_mark_sick(cnt_cur);
2085			error = -EFSCORRUPTED;
2086			goto error0;
2087		}
2088		/*
2089		 * Delete the old by-block entry for the right block.
2090		 */
2091		if ((error = xfs_btree_delete(bno_cur, &i)))
2092			goto error0;
2093		if (XFS_IS_CORRUPT(mp, i != 1)) {
2094			xfs_btree_mark_sick(bno_cur);
2095			error = -EFSCORRUPTED;
2096			goto error0;
2097		}
2098		/*
2099		 * Move the by-block cursor back to the left neighbor.
2100		 */
2101		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2102			goto error0;
2103		if (XFS_IS_CORRUPT(mp, i != 1)) {
2104			xfs_btree_mark_sick(bno_cur);
2105			error = -EFSCORRUPTED;
2106			goto error0;
2107		}
2108#ifdef DEBUG
2109		/*
2110		 * Check that this is the right record: delete didn't
2111		 * mangle the cursor.
2112		 */
2113		{
2114			xfs_agblock_t	xxbno;
2115			xfs_extlen_t	xxlen;
2116
2117			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2118					&i)))
2119				goto error0;
2120			if (XFS_IS_CORRUPT(mp,
2121					   i != 1 ||
2122					   xxbno != ltbno ||
2123					   xxlen != ltlen)) {
2124				xfs_btree_mark_sick(bno_cur);
2125				error = -EFSCORRUPTED;
2126				goto error0;
2127			}
2128		}
2129#endif
2130		/*
2131		 * Update remaining by-block entry to the new, joined block.
2132		 */
2133		nbno = ltbno;
2134		nlen = len + ltlen + gtlen;
2135		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2136			goto error0;
2137	}
2138	/*
2139	 * Have only a left contiguous neighbor.
2140	 * Merge it together with the new freespace.
2141	 */
2142	else if (haveleft) {
2143		/*
2144		 * Delete the old by-size entry on the left.
2145		 */
2146		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2147			goto error0;
2148		if (XFS_IS_CORRUPT(mp, i != 1)) {
2149			xfs_btree_mark_sick(cnt_cur);
2150			error = -EFSCORRUPTED;
2151			goto error0;
2152		}
2153		if ((error = xfs_btree_delete(cnt_cur, &i)))
2154			goto error0;
2155		if (XFS_IS_CORRUPT(mp, i != 1)) {
2156			xfs_btree_mark_sick(cnt_cur);
2157			error = -EFSCORRUPTED;
2158			goto error0;
2159		}
2160		/*
2161		 * Back up the by-block cursor to the left neighbor, and
2162		 * update its length.
2163		 */
2164		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2165			goto error0;
2166		if (XFS_IS_CORRUPT(mp, i != 1)) {
2167			xfs_btree_mark_sick(bno_cur);
2168			error = -EFSCORRUPTED;
2169			goto error0;
2170		}
2171		nbno = ltbno;
2172		nlen = len + ltlen;
2173		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2174			goto error0;
2175	}
2176	/*
2177	 * Have only a right contiguous neighbor.
2178	 * Merge it together with the new freespace.
2179	 */
2180	else if (haveright) {
2181		/*
2182		 * Delete the old by-size entry on the right.
2183		 */
2184		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2185			goto error0;
2186		if (XFS_IS_CORRUPT(mp, i != 1)) {
2187			xfs_btree_mark_sick(cnt_cur);
2188			error = -EFSCORRUPTED;
2189			goto error0;
2190		}
2191		if ((error = xfs_btree_delete(cnt_cur, &i)))
2192			goto error0;
2193		if (XFS_IS_CORRUPT(mp, i != 1)) {
2194			xfs_btree_mark_sick(cnt_cur);
2195			error = -EFSCORRUPTED;
2196			goto error0;
2197		}
2198		/*
2199		 * Update the starting block and length of the right
2200		 * neighbor in the by-block tree.
2201		 */
2202		nbno = bno;
2203		nlen = len + gtlen;
2204		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2205			goto error0;
2206	}
2207	/*
2208	 * No contiguous neighbors.
2209	 * Insert the new freespace into the by-block tree.
2210	 */
2211	else {
2212		nbno = bno;
2213		nlen = len;
2214		if ((error = xfs_btree_insert(bno_cur, &i)))
2215			goto error0;
2216		if (XFS_IS_CORRUPT(mp, i != 1)) {
2217			xfs_btree_mark_sick(bno_cur);
2218			error = -EFSCORRUPTED;
2219			goto error0;
2220		}
2221	}
2222	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2223	bno_cur = NULL;
2224	/*
2225	 * In all cases we need to insert the new freespace in the by-size tree.
2226	 */
2227	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2228		goto error0;
2229	if (XFS_IS_CORRUPT(mp, i != 0)) {
2230		xfs_btree_mark_sick(cnt_cur);
2231		error = -EFSCORRUPTED;
2232		goto error0;
2233	}
2234	if ((error = xfs_btree_insert(cnt_cur, &i)))
2235		goto error0;
2236	if (XFS_IS_CORRUPT(mp, i != 1)) {
2237		xfs_btree_mark_sick(cnt_cur);
2238		error = -EFSCORRUPTED;
2239		goto error0;
2240	}
2241	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2242	cnt_cur = NULL;
2243
2244	/*
2245	 * Update the freespace totals in the ag and superblock.
2246	 */
2247	error = xfs_alloc_update_counters(tp, agbp, len);
2248	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2249	if (error)
2250		goto error0;
2251
2252	XFS_STATS_INC(mp, xs_freex);
2253	XFS_STATS_ADD(mp, xs_freeb, len);
2254
2255	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2256
2257	return 0;
2258
2259 error0:
2260	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2261	if (bno_cur)
2262		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2263	if (cnt_cur)
2264		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2265	return error;
2266}
2267
2268/*
2269 * Visible (exported) allocation/free functions.
2270 * Some of these are used just by xfs_alloc_btree.c and this file.
2271 */
2272
2273/*
2274 * Compute and fill in value of m_alloc_maxlevels.
2275 */
2276void
2277xfs_alloc_compute_maxlevels(
2278	xfs_mount_t	*mp)	/* file system mount structure */
2279{
2280	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2281			(mp->m_sb.sb_agblocks + 1) / 2);
2282	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2283}
2284
2285/*
2286 * Find the length of the longest extent in an AG.  The 'need' parameter
2287 * specifies how much space we're going to need for the AGFL and the
2288 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2289 * other callers.
2290 */
2291xfs_extlen_t
2292xfs_alloc_longest_free_extent(
2293	struct xfs_perag	*pag,
2294	xfs_extlen_t		need,
2295	xfs_extlen_t		reserved)
2296{
2297	xfs_extlen_t		delta = 0;
2298
2299	/*
2300	 * If the AGFL needs a recharge, we'll have to subtract that from the
2301	 * longest extent.
2302	 */
2303	if (need > pag->pagf_flcount)
2304		delta = need - pag->pagf_flcount;
2305
2306	/*
2307	 * If we cannot maintain others' reservations with space from the
2308	 * not-longest freesp extents, we'll have to subtract /that/ from
2309	 * the longest extent too.
2310	 */
2311	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2312		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2313
2314	/*
2315	 * If the longest extent is long enough to satisfy all the
2316	 * reservations and AGFL rules in place, we can return this extent.
2317	 */
2318	if (pag->pagf_longest > delta)
2319		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2320				pag->pagf_longest - delta);
2321
2322	/* Otherwise, let the caller try for 1 block if there's space. */
2323	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2324}
2325
2326/*
2327 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2328 * return the largest possible minimum length.
2329 */
2330unsigned int
2331xfs_alloc_min_freelist(
2332	struct xfs_mount	*mp,
2333	struct xfs_perag	*pag)
2334{
2335	/* AG btrees have at least 1 level. */
2336	const unsigned int	bno_level = pag ? pag->pagf_bno_level : 1;
2337	const unsigned int	cnt_level = pag ? pag->pagf_cnt_level : 1;
2338	const unsigned int	rmap_level = pag ? pag->pagf_rmap_level : 1;
2339	unsigned int		min_free;
2340
2341	ASSERT(mp->m_alloc_maxlevels > 0);
2342
2343	/*
2344	 * For a btree shorter than the maximum height, the worst case is that
2345	 * every level gets split and a new level is added, then while inserting
2346	 * another entry to refill the AGFL, every level under the old root gets
2347	 * split again. This is:
2348	 *
2349	 *   (full height split reservation) + (AGFL refill split height)
2350	 * = (current height + 1) + (current height - 1)
2351	 * = (new height) + (new height - 2)
2352	 * = 2 * new height - 2
2353	 *
2354	 * For a btree of maximum height, the worst case is that every level
2355	 * under the root gets split, then while inserting another entry to
2356	 * refill the AGFL, every level under the root gets split again. This is
2357	 * also:
2358	 *
2359	 *   2 * (current height - 1)
2360	 * = 2 * (new height - 1)
2361	 * = 2 * new height - 2
2362	 */
2363
2364	/* space needed by-bno freespace btree */
2365	min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2366	/* space needed by-size freespace btree */
2367	min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2368	/* space needed reverse mapping used space btree */
2369	if (xfs_has_rmapbt(mp))
2370		min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
 
 
2371	return min_free;
2372}
2373
2374/*
2375 * Check if the operation we are fixing up the freelist for should go ahead or
2376 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2377 * is dependent on whether the size and shape of free space available will
2378 * permit the requested allocation to take place.
2379 */
2380static bool
2381xfs_alloc_space_available(
2382	struct xfs_alloc_arg	*args,
2383	xfs_extlen_t		min_free,
2384	int			flags)
2385{
2386	struct xfs_perag	*pag = args->pag;
2387	xfs_extlen_t		alloc_len, longest;
2388	xfs_extlen_t		reservation; /* blocks that are still reserved */
2389	int			available;
2390	xfs_extlen_t		agflcount;
2391
2392	if (flags & XFS_ALLOC_FLAG_FREEING)
2393		return true;
2394
2395	reservation = xfs_ag_resv_needed(pag, args->resv);
2396
2397	/* do we have enough contiguous free space for the allocation? */
2398	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2399	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2400	if (longest < alloc_len)
2401		return false;
2402
2403	/*
2404	 * Do we have enough free space remaining for the allocation? Don't
2405	 * account extra agfl blocks because we are about to defer free them,
2406	 * making them unavailable until the current transaction commits.
2407	 */
2408	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2409	available = (int)(pag->pagf_freeblks + agflcount -
2410			  reservation - min_free - args->minleft);
2411	if (available < (int)max(args->total, alloc_len))
2412		return false;
2413
2414	/*
2415	 * Clamp maxlen to the amount of free space available for the actual
2416	 * extent allocation.
2417	 */
2418	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2419		args->maxlen = available;
2420		ASSERT(args->maxlen > 0);
2421		ASSERT(args->maxlen >= args->minlen);
2422	}
2423
2424	return true;
2425}
2426
2427int
2428xfs_free_agfl_block(
2429	struct xfs_trans	*tp,
2430	xfs_agnumber_t		agno,
2431	xfs_agblock_t		agbno,
2432	struct xfs_buf		*agbp,
2433	struct xfs_owner_info	*oinfo)
2434{
2435	int			error;
2436	struct xfs_buf		*bp;
2437
2438	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2439				   XFS_AG_RESV_AGFL);
2440	if (error)
2441		return error;
2442
2443	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2444			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2445			tp->t_mountp->m_bsize, 0, &bp);
2446	if (error)
2447		return error;
2448	xfs_trans_binval(tp, bp);
2449
2450	return 0;
2451}
2452
2453/*
2454 * Check the agfl fields of the agf for inconsistency or corruption.
2455 *
2456 * The original purpose was to detect an agfl header padding mismatch between
2457 * current and early v5 kernels. This problem manifests as a 1-slot size
2458 * difference between the on-disk flcount and the active [first, last] range of
2459 * a wrapped agfl.
2460 *
2461 * However, we need to use these same checks to catch agfl count corruptions
2462 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2463 * way, we need to reset the agfl and warn the user.
2464 *
2465 * Return true if a reset is required before the agfl can be used, false
2466 * otherwise.
2467 */
2468static bool
2469xfs_agfl_needs_reset(
2470	struct xfs_mount	*mp,
2471	struct xfs_agf		*agf)
2472{
2473	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2474	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2475	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2476	int			agfl_size = xfs_agfl_size(mp);
2477	int			active;
2478
 
 
 
 
2479	/*
2480	 * The agf read verifier catches severe corruption of these fields.
2481	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2482	 * the verifier allows it.
2483	 */
2484	if (f >= agfl_size || l >= agfl_size)
2485		return true;
2486	if (c > agfl_size)
2487		return true;
2488
2489	/*
2490	 * Check consistency between the on-disk count and the active range. An
2491	 * agfl padding mismatch manifests as an inconsistent flcount.
2492	 */
2493	if (c && l >= f)
2494		active = l - f + 1;
2495	else if (c)
2496		active = agfl_size - f + l + 1;
2497	else
2498		active = 0;
2499
2500	return active != c;
2501}
2502
2503/*
2504 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2505 * agfl content cannot be trusted. Warn the user that a repair is required to
2506 * recover leaked blocks.
2507 *
2508 * The purpose of this mechanism is to handle filesystems affected by the agfl
2509 * header padding mismatch problem. A reset keeps the filesystem online with a
2510 * relatively minor free space accounting inconsistency rather than suffer the
2511 * inevitable crash from use of an invalid agfl block.
2512 */
2513static void
2514xfs_agfl_reset(
2515	struct xfs_trans	*tp,
2516	struct xfs_buf		*agbp,
2517	struct xfs_perag	*pag)
2518{
2519	struct xfs_mount	*mp = tp->t_mountp;
2520	struct xfs_agf		*agf = agbp->b_addr;
2521
2522	ASSERT(xfs_perag_agfl_needs_reset(pag));
2523	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2524
2525	xfs_warn(mp,
2526	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2527	       "Please unmount and run xfs_repair.",
2528	         pag->pag_agno, pag->pagf_flcount);
2529
2530	agf->agf_flfirst = 0;
2531	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2532	agf->agf_flcount = 0;
2533	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2534				    XFS_AGF_FLCOUNT);
2535
2536	pag->pagf_flcount = 0;
2537	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2538}
2539
2540/*
2541 * Defer an AGFL block free. This is effectively equivalent to
2542 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2543 *
2544 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2545 * allocation operations in a transaction. AGFL frees are prone to this problem
2546 * because for one they are always freed one at a time. Further, an immediate
2547 * AGFL block free can cause a btree join and require another block free before
2548 * the real allocation can proceed. Deferring the free disconnects freeing up
2549 * the AGFL slot from freeing the block.
2550 */
2551static int
2552xfs_defer_agfl_block(
2553	struct xfs_trans		*tp,
2554	xfs_agnumber_t			agno,
2555	xfs_agblock_t			agbno,
2556	struct xfs_owner_info		*oinfo)
2557{
2558	struct xfs_mount		*mp = tp->t_mountp;
2559	struct xfs_extent_free_item	*xefi;
2560	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2561
2562	ASSERT(xfs_extfree_item_cache != NULL);
2563	ASSERT(oinfo != NULL);
2564
2565	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2566		return -EFSCORRUPTED;
2567
2568	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2569			       GFP_KERNEL | __GFP_NOFAIL);
2570	xefi->xefi_startblock = fsbno;
2571	xefi->xefi_blockcount = 1;
2572	xefi->xefi_owner = oinfo->oi_owner;
2573	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2574
2575	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2576
2577	xfs_extent_free_get_group(mp, xefi);
2578	xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type);
2579	return 0;
2580}
2581
2582/*
2583 * Add the extent to the list of extents to be free at transaction end.
2584 * The list is maintained sorted (by block number).
2585 */
2586static int
2587xfs_defer_extent_free(
2588	struct xfs_trans		*tp,
2589	xfs_fsblock_t			bno,
2590	xfs_filblks_t			len,
2591	const struct xfs_owner_info	*oinfo,
2592	enum xfs_ag_resv_type		type,
2593	bool				skip_discard,
2594	struct xfs_defer_pending	**dfpp)
2595{
2596	struct xfs_extent_free_item	*xefi;
2597	struct xfs_mount		*mp = tp->t_mountp;
2598#ifdef DEBUG
2599	xfs_agnumber_t			agno;
2600	xfs_agblock_t			agbno;
2601
2602	ASSERT(bno != NULLFSBLOCK);
2603	ASSERT(len > 0);
2604	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2605	ASSERT(!isnullstartblock(bno));
2606	agno = XFS_FSB_TO_AGNO(mp, bno);
2607	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2608	ASSERT(agno < mp->m_sb.sb_agcount);
2609	ASSERT(agbno < mp->m_sb.sb_agblocks);
2610	ASSERT(len < mp->m_sb.sb_agblocks);
2611	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2612#endif
2613	ASSERT(xfs_extfree_item_cache != NULL);
2614	ASSERT(type != XFS_AG_RESV_AGFL);
2615
2616	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2617		return -EFSCORRUPTED;
2618
2619	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2620			       GFP_KERNEL | __GFP_NOFAIL);
2621	xefi->xefi_startblock = bno;
2622	xefi->xefi_blockcount = (xfs_extlen_t)len;
2623	xefi->xefi_agresv = type;
2624	if (skip_discard)
2625		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2626	if (oinfo) {
2627		ASSERT(oinfo->oi_offset == 0);
2628
2629		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2630			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2631		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2632			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2633		xefi->xefi_owner = oinfo->oi_owner;
2634	} else {
2635		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2636	}
2637	trace_xfs_bmap_free_defer(mp,
2638			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2639			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2640
2641	xfs_extent_free_get_group(mp, xefi);
2642	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type);
2643	return 0;
2644}
2645
2646int
2647xfs_free_extent_later(
2648	struct xfs_trans		*tp,
2649	xfs_fsblock_t			bno,
2650	xfs_filblks_t			len,
2651	const struct xfs_owner_info	*oinfo,
2652	enum xfs_ag_resv_type		type,
2653	bool				skip_discard)
2654{
2655	struct xfs_defer_pending	*dontcare = NULL;
2656
2657	return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard,
2658			&dontcare);
2659}
2660
2661/*
2662 * Set up automatic freeing of unwritten space in the filesystem.
2663 *
2664 * This function attached a paused deferred extent free item to the
2665 * transaction.  Pausing means that the EFI will be logged in the next
2666 * transaction commit, but the pending EFI will not be finished until the
2667 * pending item is unpaused.
2668 *
2669 * If the system goes down after the EFI has been persisted to the log but
2670 * before the pending item is unpaused, log recovery will find the EFI, fail to
2671 * find the EFD, and free the space.
2672 *
2673 * If the pending item is unpaused, the next transaction commit will log an EFD
2674 * without freeing the space.
2675 *
2676 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2677 * @args structure are set to the relevant values.
2678 */
2679int
2680xfs_alloc_schedule_autoreap(
2681	const struct xfs_alloc_arg	*args,
2682	bool				skip_discard,
2683	struct xfs_alloc_autoreap	*aarp)
2684{
2685	int				error;
2686
2687	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2688			&args->oinfo, args->resv, skip_discard, &aarp->dfp);
2689	if (error)
2690		return error;
2691
2692	xfs_defer_item_pause(args->tp, aarp->dfp);
2693	return 0;
2694}
2695
2696/*
2697 * Cancel automatic freeing of unwritten space in the filesystem.
2698 *
2699 * Earlier, we created a paused deferred extent free item and attached it to
2700 * this transaction so that we could automatically roll back a new space
2701 * allocation if the system went down.  Now we want to cancel the paused work
2702 * item by marking the EFI stale so we don't actually free the space, unpausing
2703 * the pending item and logging an EFD.
2704 *
2705 * The caller generally should have already mapped the space into the ondisk
2706 * filesystem.  If the reserved space was partially used, the caller must call
2707 * xfs_free_extent_later to create a new EFI to free the unused space.
2708 */
2709void
2710xfs_alloc_cancel_autoreap(
2711	struct xfs_trans		*tp,
2712	struct xfs_alloc_autoreap	*aarp)
2713{
2714	struct xfs_defer_pending	*dfp = aarp->dfp;
2715	struct xfs_extent_free_item	*xefi;
2716
2717	if (!dfp)
2718		return;
2719
2720	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2721		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2722
2723	xfs_defer_item_unpause(tp, dfp);
2724}
2725
2726/*
2727 * Commit automatic freeing of unwritten space in the filesystem.
2728 *
2729 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2730 * allocated space.  Call this if none of the reserved space was used.
2731 */
2732void
2733xfs_alloc_commit_autoreap(
2734	struct xfs_trans		*tp,
2735	struct xfs_alloc_autoreap	*aarp)
2736{
2737	if (aarp->dfp)
2738		xfs_defer_item_unpause(tp, aarp->dfp);
2739}
2740
2741#ifdef DEBUG
2742/*
2743 * Check if an AGF has a free extent record whose length is equal to
2744 * args->minlen.
2745 */
2746STATIC int
2747xfs_exact_minlen_extent_available(
2748	struct xfs_alloc_arg	*args,
2749	struct xfs_buf		*agbp,
2750	int			*stat)
2751{
2752	struct xfs_btree_cur	*cnt_cur;
2753	xfs_agblock_t		fbno;
2754	xfs_extlen_t		flen;
2755	int			error = 0;
2756
2757	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2758					args->pag);
2759	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2760	if (error)
2761		goto out;
2762
2763	if (*stat == 0) {
2764		xfs_btree_mark_sick(cnt_cur);
2765		error = -EFSCORRUPTED;
2766		goto out;
2767	}
2768
2769	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2770	if (error)
2771		goto out;
2772
2773	if (*stat == 1 && flen != args->minlen)
2774		*stat = 0;
2775
2776out:
2777	xfs_btree_del_cursor(cnt_cur, error);
2778
2779	return error;
2780}
2781#endif
2782
2783/*
2784 * Decide whether to use this allocation group for this allocation.
2785 * If so, fix up the btree freelist's size.
2786 */
2787int			/* error */
2788xfs_alloc_fix_freelist(
2789	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2790	uint32_t		alloc_flags)
2791{
2792	struct xfs_mount	*mp = args->mp;
2793	struct xfs_perag	*pag = args->pag;
2794	struct xfs_trans	*tp = args->tp;
2795	struct xfs_buf		*agbp = NULL;
2796	struct xfs_buf		*agflbp = NULL;
2797	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2798	xfs_agblock_t		bno;	/* freelist block */
2799	xfs_extlen_t		need;	/* total blocks needed in freelist */
2800	int			error = 0;
2801
2802	/* deferred ops (AGFL block frees) require permanent transactions */
2803	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2804
2805	if (!xfs_perag_initialised_agf(pag)) {
2806		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2807		if (error) {
2808			/* Couldn't lock the AGF so skip this AG. */
2809			if (error == -EAGAIN)
2810				error = 0;
2811			goto out_no_agbp;
2812		}
2813	}
2814
2815	/*
2816	 * If this is a metadata preferred pag and we are user data then try
2817	 * somewhere else if we are not being asked to try harder at this
2818	 * point
2819	 */
2820	if (xfs_perag_prefers_metadata(pag) &&
2821	    (args->datatype & XFS_ALLOC_USERDATA) &&
2822	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2823		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2824		goto out_agbp_relse;
2825	}
2826
2827	need = xfs_alloc_min_freelist(mp, pag);
2828	if (!xfs_alloc_space_available(args, need, alloc_flags |
2829			XFS_ALLOC_FLAG_CHECK))
2830		goto out_agbp_relse;
2831
2832	/*
2833	 * Get the a.g. freespace buffer.
2834	 * Can fail if we're not blocking on locks, and it's held.
2835	 */
2836	if (!agbp) {
2837		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2838		if (error) {
2839			/* Couldn't lock the AGF so skip this AG. */
2840			if (error == -EAGAIN)
2841				error = 0;
2842			goto out_no_agbp;
2843		}
2844	}
2845
2846	/* reset a padding mismatched agfl before final free space check */
2847	if (xfs_perag_agfl_needs_reset(pag))
2848		xfs_agfl_reset(tp, agbp, pag);
2849
2850	/* If there isn't enough total space or single-extent, reject it. */
2851	need = xfs_alloc_min_freelist(mp, pag);
2852	if (!xfs_alloc_space_available(args, need, alloc_flags))
2853		goto out_agbp_relse;
2854
2855#ifdef DEBUG
2856	if (args->alloc_minlen_only) {
2857		int stat;
2858
2859		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2860		if (error || !stat)
2861			goto out_agbp_relse;
2862	}
2863#endif
2864	/*
2865	 * Make the freelist shorter if it's too long.
2866	 *
2867	 * Note that from this point onwards, we will always release the agf and
2868	 * agfl buffers on error. This handles the case where we error out and
2869	 * the buffers are clean or may not have been joined to the transaction
2870	 * and hence need to be released manually. If they have been joined to
2871	 * the transaction, then xfs_trans_brelse() will handle them
2872	 * appropriately based on the recursion count and dirty state of the
2873	 * buffer.
2874	 *
2875	 * XXX (dgc): When we have lots of free space, does this buy us
2876	 * anything other than extra overhead when we need to put more blocks
2877	 * back on the free list? Maybe we should only do this when space is
2878	 * getting low or the AGFL is more than half full?
2879	 *
2880	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2881	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2882	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2883	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2884	 * both required to ensure that rmaps are correctly recorded for the
2885	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2886	 * repair/rmap.c in xfsprogs for details.
2887	 */
2888	memset(&targs, 0, sizeof(targs));
2889	/* struct copy below */
2890	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2891		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2892	else
2893		targs.oinfo = XFS_RMAP_OINFO_AG;
2894	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2895			pag->pagf_flcount > need) {
2896		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2897		if (error)
2898			goto out_agbp_relse;
2899
2900		/* defer agfl frees */
2901		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2902		if (error)
2903			goto out_agbp_relse;
2904	}
2905
2906	targs.tp = tp;
2907	targs.mp = mp;
2908	targs.agbp = agbp;
2909	targs.agno = args->agno;
2910	targs.alignment = targs.minlen = targs.prod = 1;
 
2911	targs.pag = pag;
2912	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2913	if (error)
2914		goto out_agbp_relse;
2915
2916	/* Make the freelist longer if it's too short. */
2917	while (pag->pagf_flcount < need) {
2918		targs.agbno = 0;
2919		targs.maxlen = need - pag->pagf_flcount;
2920		targs.resv = XFS_AG_RESV_AGFL;
2921
2922		/* Allocate as many blocks as possible at once. */
2923		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2924		if (error)
2925			goto out_agflbp_relse;
2926
2927		/*
2928		 * Stop if we run out.  Won't happen if callers are obeying
2929		 * the restrictions correctly.  Can happen for free calls
2930		 * on a completely full ag.
2931		 */
2932		if (targs.agbno == NULLAGBLOCK) {
2933			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2934				break;
2935			goto out_agflbp_relse;
2936		}
2937
2938		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2939			error = xfs_rmap_alloc(tp, agbp, pag,
2940				       targs.agbno, targs.len, &targs.oinfo);
2941			if (error)
2942				goto out_agflbp_relse;
2943		}
2944		error = xfs_alloc_update_counters(tp, agbp,
2945						  -((long)(targs.len)));
2946		if (error)
2947			goto out_agflbp_relse;
2948
2949		/*
2950		 * Put each allocated block on the list.
2951		 */
2952		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2953			error = xfs_alloc_put_freelist(pag, tp, agbp,
2954							agflbp, bno, 0);
2955			if (error)
2956				goto out_agflbp_relse;
2957		}
2958	}
2959	xfs_trans_brelse(tp, agflbp);
2960	args->agbp = agbp;
2961	return 0;
2962
2963out_agflbp_relse:
2964	xfs_trans_brelse(tp, agflbp);
2965out_agbp_relse:
2966	if (agbp)
2967		xfs_trans_brelse(tp, agbp);
2968out_no_agbp:
2969	args->agbp = NULL;
2970	return error;
2971}
2972
2973/*
2974 * Get a block from the freelist.
2975 * Returns with the buffer for the block gotten.
2976 */
2977int
2978xfs_alloc_get_freelist(
2979	struct xfs_perag	*pag,
2980	struct xfs_trans	*tp,
2981	struct xfs_buf		*agbp,
2982	xfs_agblock_t		*bnop,
2983	int			btreeblk)
2984{
2985	struct xfs_agf		*agf = agbp->b_addr;
2986	struct xfs_buf		*agflbp;
2987	xfs_agblock_t		bno;
2988	__be32			*agfl_bno;
2989	int			error;
2990	uint32_t		logflags;
2991	struct xfs_mount	*mp = tp->t_mountp;
2992
2993	/*
2994	 * Freelist is empty, give up.
2995	 */
2996	if (!agf->agf_flcount) {
2997		*bnop = NULLAGBLOCK;
2998		return 0;
2999	}
3000	/*
3001	 * Read the array of free blocks.
3002	 */
3003	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
 
3004	if (error)
3005		return error;
3006
3007
3008	/*
3009	 * Get the block number and update the data structures.
3010	 */
3011	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3012	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3013	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3014		return -EFSCORRUPTED;
3015
3016	be32_add_cpu(&agf->agf_flfirst, 1);
3017	xfs_trans_brelse(tp, agflbp);
3018	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3019		agf->agf_flfirst = 0;
3020
3021	ASSERT(!xfs_perag_agfl_needs_reset(pag));
 
3022	be32_add_cpu(&agf->agf_flcount, -1);
 
3023	pag->pagf_flcount--;
3024
3025	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3026	if (btreeblk) {
3027		be32_add_cpu(&agf->agf_btreeblks, 1);
3028		pag->pagf_btreeblks++;
3029		logflags |= XFS_AGF_BTREEBLKS;
3030	}
3031
3032	xfs_alloc_log_agf(tp, agbp, logflags);
3033	*bnop = bno;
3034
3035	return 0;
3036}
3037
3038/*
3039 * Log the given fields from the agf structure.
3040 */
3041void
3042xfs_alloc_log_agf(
3043	struct xfs_trans	*tp,
3044	struct xfs_buf		*bp,
3045	uint32_t		fields)
3046{
3047	int	first;		/* first byte offset */
3048	int	last;		/* last byte offset */
3049	static const short	offsets[] = {
3050		offsetof(xfs_agf_t, agf_magicnum),
3051		offsetof(xfs_agf_t, agf_versionnum),
3052		offsetof(xfs_agf_t, agf_seqno),
3053		offsetof(xfs_agf_t, agf_length),
3054		offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
3055		offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
3056		offsetof(xfs_agf_t, agf_flfirst),
3057		offsetof(xfs_agf_t, agf_fllast),
3058		offsetof(xfs_agf_t, agf_flcount),
3059		offsetof(xfs_agf_t, agf_freeblks),
3060		offsetof(xfs_agf_t, agf_longest),
3061		offsetof(xfs_agf_t, agf_btreeblks),
3062		offsetof(xfs_agf_t, agf_uuid),
3063		offsetof(xfs_agf_t, agf_rmap_blocks),
3064		offsetof(xfs_agf_t, agf_refcount_blocks),
3065		offsetof(xfs_agf_t, agf_refcount_root),
3066		offsetof(xfs_agf_t, agf_refcount_level),
3067		/* needed so that we don't log the whole rest of the structure: */
3068		offsetof(xfs_agf_t, agf_spare64),
3069		sizeof(xfs_agf_t)
3070	};
3071
3072	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3073
3074	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3075
3076	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3077	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3078}
3079
3080/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081 * Put the block on the freelist for the allocation group.
3082 */
3083int
3084xfs_alloc_put_freelist(
3085	struct xfs_perag	*pag,
3086	struct xfs_trans	*tp,
3087	struct xfs_buf		*agbp,
3088	struct xfs_buf		*agflbp,
3089	xfs_agblock_t		bno,
3090	int			btreeblk)
3091{
3092	struct xfs_mount	*mp = tp->t_mountp;
3093	struct xfs_agf		*agf = agbp->b_addr;
3094	__be32			*blockp;
3095	int			error;
3096	uint32_t		logflags;
 
3097	__be32			*agfl_bno;
3098	int			startoff;
3099
3100	if (!agflbp) {
3101		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3102		if (error)
3103			return error;
3104	}
3105
3106	be32_add_cpu(&agf->agf_fllast, 1);
3107	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3108		agf->agf_fllast = 0;
3109
3110	ASSERT(!xfs_perag_agfl_needs_reset(pag));
 
3111	be32_add_cpu(&agf->agf_flcount, 1);
 
3112	pag->pagf_flcount++;
3113
3114	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3115	if (btreeblk) {
3116		be32_add_cpu(&agf->agf_btreeblks, -1);
3117		pag->pagf_btreeblks--;
3118		logflags |= XFS_AGF_BTREEBLKS;
3119	}
3120
3121	xfs_alloc_log_agf(tp, agbp, logflags);
3122
3123	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3124
3125	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3126	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3127	*blockp = cpu_to_be32(bno);
3128	startoff = (char *)blockp - (char *)agflbp->b_addr;
3129
3130	xfs_alloc_log_agf(tp, agbp, logflags);
3131
3132	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3133	xfs_trans_log_buf(tp, agflbp, startoff,
3134			  startoff + sizeof(xfs_agblock_t) - 1);
3135	return 0;
3136}
3137
3138/*
3139 * Check that this AGF/AGI header's sequence number and length matches the AG
3140 * number and size in fsblocks.
3141 */
3142xfs_failaddr_t
3143xfs_validate_ag_length(
3144	struct xfs_buf		*bp,
3145	uint32_t		seqno,
3146	uint32_t		length)
3147{
3148	struct xfs_mount	*mp = bp->b_mount;
3149	/*
3150	 * During growfs operations, the perag is not fully initialised,
3151	 * so we can't use it for any useful checking. growfs ensures we can't
3152	 * use it by using uncached buffers that don't have the perag attached
3153	 * so we can detect and avoid this problem.
3154	 */
3155	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3156		return __this_address;
3157
3158	/*
3159	 * Only the last AG in the filesystem is allowed to be shorter
3160	 * than the AG size recorded in the superblock.
3161	 */
3162	if (length != mp->m_sb.sb_agblocks) {
3163		/*
3164		 * During growfs, the new last AG can get here before we
3165		 * have updated the superblock. Give it a pass on the seqno
3166		 * check.
3167		 */
3168		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3169			return __this_address;
3170		if (length < XFS_MIN_AG_BLOCKS)
3171			return __this_address;
3172		if (length > mp->m_sb.sb_agblocks)
3173			return __this_address;
3174	}
3175
3176	return NULL;
3177}
3178
3179/*
3180 * Verify the AGF is consistent.
3181 *
3182 * We do not verify the AGFL indexes in the AGF are fully consistent here
3183 * because of issues with variable on-disk structure sizes. Instead, we check
3184 * the agfl indexes for consistency when we initialise the perag from the AGF
3185 * information after a read completes.
3186 *
3187 * If the index is inconsistent, then we mark the perag as needing an AGFL
3188 * reset. The first AGFL update performed then resets the AGFL indexes and
3189 * refills the AGFL with known good free blocks, allowing the filesystem to
3190 * continue operating normally at the cost of a few leaked free space blocks.
3191 */
3192static xfs_failaddr_t
3193xfs_agf_verify(
3194	struct xfs_buf		*bp)
3195{
3196	struct xfs_mount	*mp = bp->b_mount;
3197	struct xfs_agf		*agf = bp->b_addr;
3198	xfs_failaddr_t		fa;
3199	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3200	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3201
3202	if (xfs_has_crc(mp)) {
3203		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3204			return __this_address;
3205		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3206			return __this_address;
3207	}
3208
3209	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3210		return __this_address;
3211
3212	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
 
 
 
 
3213		return __this_address;
3214
3215	/*
3216	 * Both agf_seqno and agf_length need to validated before anything else
3217	 * block number related in the AGF or AGFL can be checked.
3218	 */
3219	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3220	if (fa)
3221		return fa;
3222
3223	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3224		return __this_address;
3225	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3226		return __this_address;
3227	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3228		return __this_address;
3229
3230	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3231	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3232		return __this_address;
3233
3234	if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3235	    be32_to_cpu(agf->agf_cnt_level) < 1 ||
3236	    be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3237	    be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
3238		return __this_address;
3239
3240	if (xfs_has_lazysbcount(mp) &&
3241	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
 
3242		return __this_address;
3243
3244	if (xfs_has_rmapbt(mp)) {
3245		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3246			return __this_address;
3247
3248		if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3249		    be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
3250			return __this_address;
3251	}
 
 
 
 
3252
3253	if (xfs_has_reflink(mp)) {
3254		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3255			return __this_address;
3256
3257		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3258		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3259			return __this_address;
3260	}
 
 
 
 
 
3261
3262	return NULL;
 
3263}
3264
3265static void
3266xfs_agf_read_verify(
3267	struct xfs_buf	*bp)
3268{
3269	struct xfs_mount *mp = bp->b_mount;
3270	xfs_failaddr_t	fa;
3271
3272	if (xfs_has_crc(mp) &&
3273	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3274		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3275	else {
3276		fa = xfs_agf_verify(bp);
3277		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3278			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3279	}
3280}
3281
3282static void
3283xfs_agf_write_verify(
3284	struct xfs_buf	*bp)
3285{
3286	struct xfs_mount	*mp = bp->b_mount;
3287	struct xfs_buf_log_item	*bip = bp->b_log_item;
3288	struct xfs_agf		*agf = bp->b_addr;
3289	xfs_failaddr_t		fa;
3290
3291	fa = xfs_agf_verify(bp);
3292	if (fa) {
3293		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3294		return;
3295	}
3296
3297	if (!xfs_has_crc(mp))
3298		return;
3299
3300	if (bip)
3301		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3302
3303	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3304}
3305
3306const struct xfs_buf_ops xfs_agf_buf_ops = {
3307	.name = "xfs_agf",
3308	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3309	.verify_read = xfs_agf_read_verify,
3310	.verify_write = xfs_agf_write_verify,
3311	.verify_struct = xfs_agf_verify,
3312};
3313
3314/*
3315 * Read in the allocation group header (free/alloc section).
3316 */
3317int
3318xfs_read_agf(
3319	struct xfs_perag	*pag,
3320	struct xfs_trans	*tp,
3321	int			flags,
3322	struct xfs_buf		**agfbpp)
 
3323{
3324	struct xfs_mount	*mp = pag->pag_mount;
3325	int			error;
3326
3327	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3328
 
3329	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3330			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3331			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3332	if (xfs_metadata_is_sick(error))
3333		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3334	if (error)
3335		return error;
3336
3337	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
 
3338	return 0;
3339}
3340
3341/*
3342 * Read in the allocation group header (free/alloc section) and initialise the
3343 * perag structure if necessary. If the caller provides @agfbpp, then return the
3344 * locked buffer to the caller, otherwise free it.
3345 */
3346int
3347xfs_alloc_read_agf(
3348	struct xfs_perag	*pag,
3349	struct xfs_trans	*tp,
3350	int			flags,
3351	struct xfs_buf		**agfbpp)
 
3352{
3353	struct xfs_buf		*agfbp;
3354	struct xfs_agf		*agf;
3355	int			error;
3356	int			allocbt_blks;
3357
3358	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3359
3360	/* We don't support trylock when freeing. */
3361	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3362			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3363	error = xfs_read_agf(pag, tp,
 
3364			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3365			&agfbp);
3366	if (error)
3367		return error;
 
3368
3369	agf = agfbp->b_addr;
3370	if (!xfs_perag_initialised_agf(pag)) {
 
3371		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3372		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3373		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3374		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3375		pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3376		pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3377		pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
 
 
 
3378		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3379		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3380			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3381		else
3382			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3383
3384		/*
3385		 * Update the in-core allocbt counter. Filter out the rmapbt
3386		 * subset of the btreeblks counter because the rmapbt is managed
3387		 * by perag reservation. Subtract one for the rmapbt root block
3388		 * because the rmap counter includes it while the btreeblks
3389		 * counter only tracks non-root blocks.
3390		 */
3391		allocbt_blks = pag->pagf_btreeblks;
3392		if (xfs_has_rmapbt(pag->pag_mount))
3393			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3394		if (allocbt_blks > 0)
3395			atomic64_add(allocbt_blks,
3396					&pag->pag_mount->m_allocbt_blks);
3397
3398		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3399	}
3400#ifdef DEBUG
3401	else if (!xfs_is_shutdown(pag->pag_mount)) {
3402		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3403		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3404		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3405		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3406		ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3407		ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
 
 
3408	}
3409#endif
3410	if (agfbpp)
3411		*agfbpp = agfbp;
3412	else
3413		xfs_trans_brelse(tp, agfbp);
3414	return 0;
3415}
3416
3417/*
3418 * Pre-proces allocation arguments to set initial state that we don't require
3419 * callers to set up correctly, as well as bounds check the allocation args
3420 * that are set up.
3421 */
3422static int
3423xfs_alloc_vextent_check_args(
3424	struct xfs_alloc_arg	*args,
3425	xfs_fsblock_t		target,
3426	xfs_agnumber_t		*minimum_agno)
3427{
3428	struct xfs_mount	*mp = args->mp;
3429	xfs_agblock_t		agsize;
3430
3431	args->fsbno = NULLFSBLOCK;
3432
3433	*minimum_agno = 0;
3434	if (args->tp->t_highest_agno != NULLAGNUMBER)
3435		*minimum_agno = args->tp->t_highest_agno;
3436
 
 
 
3437	/*
3438	 * Just fix this up, for the case where the last a.g. is shorter
3439	 * (or there's only one a.g.) and the caller couldn't easily figure
3440	 * that out (xfs_bmap_alloc).
3441	 */
3442	agsize = mp->m_sb.sb_agblocks;
3443	if (args->maxlen > agsize)
3444		args->maxlen = agsize;
3445	if (args->alignment == 0)
3446		args->alignment = 1;
3447
3448	ASSERT(args->minlen > 0);
3449	ASSERT(args->maxlen > 0);
3450	ASSERT(args->alignment > 0);
3451	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3452
3453	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3454	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3455	ASSERT(args->minlen <= args->maxlen);
3456	ASSERT(args->minlen <= agsize);
3457	ASSERT(args->mod < args->prod);
3458
3459	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3460	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3461	    args->minlen > args->maxlen || args->minlen > agsize ||
3462	    args->mod >= args->prod) {
 
3463		trace_xfs_alloc_vextent_badargs(args);
3464		return -ENOSPC;
3465	}
3466
3467	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3468		trace_xfs_alloc_vextent_skip_deadlock(args);
3469		return -ENOSPC;
3470	}
3471	return 0;
3472
3473}
3474
3475/*
3476 * Prepare an AG for allocation. If the AG is not prepared to accept the
3477 * allocation, return failure.
3478 *
3479 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3480 * modified to hold their own perag references.
3481 */
3482static int
3483xfs_alloc_vextent_prepare_ag(
3484	struct xfs_alloc_arg	*args,
3485	uint32_t		alloc_flags)
3486{
3487	bool			need_pag = !args->pag;
3488	int			error;
3489
3490	if (need_pag)
3491		args->pag = xfs_perag_get(args->mp, args->agno);
3492
3493	args->agbp = NULL;
3494	error = xfs_alloc_fix_freelist(args, alloc_flags);
3495	if (error) {
3496		trace_xfs_alloc_vextent_nofix(args);
3497		if (need_pag)
3498			xfs_perag_put(args->pag);
3499		args->agbno = NULLAGBLOCK;
3500		return error;
3501	}
3502	if (!args->agbp) {
3503		/* cannot allocate in this AG at all */
3504		trace_xfs_alloc_vextent_noagbp(args);
3505		args->agbno = NULLAGBLOCK;
3506		return 0;
3507	}
3508	args->wasfromfl = 0;
3509	return 0;
3510}
3511
3512/*
3513 * Post-process allocation results to account for the allocation if it succeed
3514 * and set the allocated block number correctly for the caller.
3515 *
3516 * XXX: we should really be returning ENOSPC for ENOSPC, not
3517 * hiding it behind a "successful" NULLFSBLOCK allocation.
3518 */
3519static int
3520xfs_alloc_vextent_finish(
3521	struct xfs_alloc_arg	*args,
3522	xfs_agnumber_t		minimum_agno,
3523	int			alloc_error,
3524	bool			drop_perag)
3525{
3526	struct xfs_mount	*mp = args->mp;
3527	int			error = 0;
3528
3529	/*
3530	 * We can end up here with a locked AGF. If we failed, the caller is
3531	 * likely going to try to allocate again with different parameters, and
3532	 * that can widen the AGs that are searched for free space. If we have
3533	 * to do BMBT block allocation, we have to do a new allocation.
3534	 *
3535	 * Hence leaving this function with the AGF locked opens up potential
3536	 * ABBA AGF deadlocks because a future allocation attempt in this
3537	 * transaction may attempt to lock a lower number AGF.
3538	 *
3539	 * We can't release the AGF until the transaction is commited, so at
3540	 * this point we must update the "first allocation" tracker to point at
3541	 * this AG if the tracker is empty or points to a lower AG. This allows
3542	 * the next allocation attempt to be modified appropriately to avoid
3543	 * deadlocks.
3544	 */
3545	if (args->agbp &&
3546	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3547	     args->agno > minimum_agno))
3548		args->tp->t_highest_agno = args->agno;
3549
3550	/*
3551	 * If the allocation failed with an error or we had an ENOSPC result,
3552	 * preserve the returned error whilst also marking the allocation result
3553	 * as "no extent allocated". This ensures that callers that fail to
3554	 * capture the error will still treat it as a failed allocation.
3555	 */
3556	if (alloc_error || args->agbno == NULLAGBLOCK) {
3557		args->fsbno = NULLFSBLOCK;
3558		error = alloc_error;
3559		goto out_drop_perag;
3560	}
3561
3562	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3563
3564	ASSERT(args->len >= args->minlen);
3565	ASSERT(args->len <= args->maxlen);
3566	ASSERT(args->agbno % args->alignment == 0);
3567	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3568
3569	/* if not file data, insert new block into the reverse map btree */
3570	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3571		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3572				       args->agbno, args->len, &args->oinfo);
3573		if (error)
3574			goto out_drop_perag;
3575	}
3576
3577	if (!args->wasfromfl) {
3578		error = xfs_alloc_update_counters(args->tp, args->agbp,
3579						  -((long)(args->len)));
3580		if (error)
3581			goto out_drop_perag;
3582
3583		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3584				args->len));
3585	}
3586
3587	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3588
3589	XFS_STATS_INC(mp, xs_allocx);
3590	XFS_STATS_ADD(mp, xs_allocb, args->len);
3591
3592	trace_xfs_alloc_vextent_finish(args);
3593
3594out_drop_perag:
3595	if (drop_perag && args->pag) {
3596		xfs_perag_rele(args->pag);
3597		args->pag = NULL;
3598	}
3599	return error;
3600}
3601
3602/*
3603 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3604 * you need an exact sized allocation without locality constraints, this is the
3605 * fastest way to do it.
3606 *
3607 * Caller is expected to hold a perag reference in args->pag.
3608 */
3609int
3610xfs_alloc_vextent_this_ag(
3611	struct xfs_alloc_arg	*args,
3612	xfs_agnumber_t		agno)
3613{
3614	struct xfs_mount	*mp = args->mp;
3615	xfs_agnumber_t		minimum_agno;
3616	uint32_t		alloc_flags = 0;
3617	int			error;
3618
3619	ASSERT(args->pag != NULL);
3620	ASSERT(args->pag->pag_agno == agno);
3621
3622	args->agno = agno;
3623	args->agbno = 0;
3624
3625	trace_xfs_alloc_vextent_this_ag(args);
3626
3627	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3628			&minimum_agno);
3629	if (error) {
3630		if (error == -ENOSPC)
3631			return 0;
3632		return error;
3633	}
3634
3635	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3636	if (!error && args->agbp)
3637		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3638
3639	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3640}
3641
3642/*
3643 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3644 *
3645 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3646 * allocation attempts in @start_agno have locality information. If we fail to
3647 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3648 * we attempt to allocation in as there is no locality optimisation possible for
3649 * those allocations.
3650 *
3651 * On return, args->pag may be left referenced if we finish before the "all
3652 * failed" return point. The allocation finish still needs the perag, and
3653 * so the caller will release it once they've finished the allocation.
3654 *
3655 * When we wrap the AG iteration at the end of the filesystem, we have to be
3656 * careful not to wrap into AGs below ones we already have locked in the
3657 * transaction if we are doing a blocking iteration. This will result in an
3658 * out-of-order locking of AGFs and hence can cause deadlocks.
3659 */
3660static int
3661xfs_alloc_vextent_iterate_ags(
3662	struct xfs_alloc_arg	*args,
3663	xfs_agnumber_t		minimum_agno,
3664	xfs_agnumber_t		start_agno,
3665	xfs_agblock_t		target_agbno,
3666	uint32_t		alloc_flags)
3667{
3668	struct xfs_mount	*mp = args->mp;
3669	xfs_agnumber_t		restart_agno = minimum_agno;
3670	xfs_agnumber_t		agno;
3671	int			error = 0;
3672
3673	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3674		restart_agno = 0;
3675restart:
3676	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3677			mp->m_sb.sb_agcount, agno, args->pag) {
3678		args->agno = agno;
3679		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3680		if (error)
3681			break;
3682		if (!args->agbp) {
3683			trace_xfs_alloc_vextent_loopfailed(args);
3684			continue;
3685		}
3686
 
 
 
 
3687		/*
3688		 * Allocation is supposed to succeed now, so break out of the
3689		 * loop regardless of whether we succeed or not.
3690		 */
3691		if (args->agno == start_agno && target_agbno) {
3692			args->agbno = target_agbno;
3693			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3694		} else {
3695			args->agbno = 0;
3696			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
 
 
 
3697		}
3698		break;
3699	}
3700	if (error) {
3701		xfs_perag_rele(args->pag);
3702		args->pag = NULL;
3703		return error;
3704	}
3705	if (args->agbp)
3706		return 0;
3707
3708	/*
3709	 * We didn't find an AG we can alloation from. If we were given
3710	 * constraining flags by the caller, drop them and retry the allocation
3711	 * without any constraints being set.
3712	 */
3713	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3714		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3715		restart_agno = minimum_agno;
3716		goto restart;
3717	}
3718
3719	ASSERT(args->pag == NULL);
3720	trace_xfs_alloc_vextent_allfailed(args);
3721	return 0;
3722}
3723
3724/*
3725 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3726 * to allocate blocks. It starts with a near allocation attempt in the initial
3727 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3728 * back to zero if allowed by previous allocations in this transaction,
3729 * otherwise will wrap back to the start AG and run a second blocking pass to
3730 * the end of the filesystem.
3731 */
3732int
3733xfs_alloc_vextent_start_ag(
3734	struct xfs_alloc_arg	*args,
3735	xfs_fsblock_t		target)
3736{
3737	struct xfs_mount	*mp = args->mp;
3738	xfs_agnumber_t		minimum_agno;
3739	xfs_agnumber_t		start_agno;
3740	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3741	bool			bump_rotor = false;
3742	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3743	int			error;
3744
3745	ASSERT(args->pag == NULL);
3746
3747	args->agno = NULLAGNUMBER;
3748	args->agbno = NULLAGBLOCK;
3749
3750	trace_xfs_alloc_vextent_start_ag(args);
3751
3752	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3753	if (error) {
3754		if (error == -ENOSPC)
3755			return 0;
3756		return error;
3757	}
3758
3759	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3760	    xfs_is_inode32(mp)) {
3761		target = XFS_AGB_TO_FSB(mp,
3762				((mp->m_agfrotor / rotorstep) %
3763				mp->m_sb.sb_agcount), 0);
3764		bump_rotor = 1;
3765	}
3766
3767	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3768	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3769			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3770
3771	if (bump_rotor) {
3772		if (args->agno == start_agno)
3773			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3774				(mp->m_sb.sb_agcount * rotorstep);
3775		else
3776			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3777				(mp->m_sb.sb_agcount * rotorstep);
3778	}
3779
3780	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3781}
3782
3783/*
3784 * Iterate from the agno indicated via @target through to the end of the
3785 * filesystem attempting blocking allocation. This does not wrap or try a second
3786 * pass, so will not recurse into AGs lower than indicated by the target.
3787 */
3788int
3789xfs_alloc_vextent_first_ag(
3790	struct xfs_alloc_arg	*args,
3791	xfs_fsblock_t		target)
3792 {
3793	struct xfs_mount	*mp = args->mp;
3794	xfs_agnumber_t		minimum_agno;
3795	xfs_agnumber_t		start_agno;
3796	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3797	int			error;
3798
3799	ASSERT(args->pag == NULL);
3800
3801	args->agno = NULLAGNUMBER;
3802	args->agbno = NULLAGBLOCK;
3803
3804	trace_xfs_alloc_vextent_first_ag(args);
3805
3806	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3807	if (error) {
3808		if (error == -ENOSPC)
3809			return 0;
3810		return error;
3811	}
3812
3813	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3814	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3815			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3816	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3817}
3818
3819/*
3820 * Allocate at the exact block target or fail. Caller is expected to hold a
3821 * perag reference in args->pag.
3822 */
3823int
3824xfs_alloc_vextent_exact_bno(
3825	struct xfs_alloc_arg	*args,
3826	xfs_fsblock_t		target)
3827{
3828	struct xfs_mount	*mp = args->mp;
3829	xfs_agnumber_t		minimum_agno;
3830	int			error;
3831
3832	ASSERT(args->pag != NULL);
3833	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3834
3835	args->agno = XFS_FSB_TO_AGNO(mp, target);
3836	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3837
3838	trace_xfs_alloc_vextent_exact_bno(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3839
3840	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3841	if (error) {
3842		if (error == -ENOSPC)
3843			return 0;
3844		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845	}
 
 
 
 
 
 
 
 
 
 
 
3846
3847	error = xfs_alloc_vextent_prepare_ag(args, 0);
3848	if (!error && args->agbp)
3849		error = xfs_alloc_ag_vextent_exact(args);
3850
3851	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3852}
3853
3854/*
3855 * Allocate an extent as close to the target as possible. If there are not
3856 * viable candidates in the AG, then fail the allocation.
3857 *
3858 * Caller may or may not have a per-ag reference in args->pag.
3859 */
3860int
3861xfs_alloc_vextent_near_bno(
3862	struct xfs_alloc_arg	*args,
3863	xfs_fsblock_t		target)
3864{
3865	struct xfs_mount	*mp = args->mp;
3866	xfs_agnumber_t		minimum_agno;
3867	bool			needs_perag = args->pag == NULL;
3868	uint32_t		alloc_flags = 0;
3869	int			error;
3870
3871	if (!needs_perag)
3872		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3873
3874	args->agno = XFS_FSB_TO_AGNO(mp, target);
3875	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3876
3877	trace_xfs_alloc_vextent_near_bno(args);
3878
3879	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3880	if (error) {
3881		if (error == -ENOSPC)
3882			return 0;
3883		return error;
3884	}
3885
3886	if (needs_perag)
3887		args->pag = xfs_perag_grab(mp, args->agno);
3888
3889	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3890	if (!error && args->agbp)
3891		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3892
3893	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3894}
3895
3896/* Ensure that the freelist is at full capacity. */
3897int
3898xfs_free_extent_fix_freelist(
3899	struct xfs_trans	*tp,
3900	struct xfs_perag	*pag,
3901	struct xfs_buf		**agbp)
3902{
3903	struct xfs_alloc_arg	args;
3904	int			error;
3905
3906	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3907	args.tp = tp;
3908	args.mp = tp->t_mountp;
3909	args.agno = pag->pag_agno;
3910	args.pag = pag;
3911
3912	/*
3913	 * validate that the block number is legal - the enables us to detect
3914	 * and handle a silent filesystem corruption rather than crashing.
3915	 */
3916	if (args.agno >= args.mp->m_sb.sb_agcount)
3917		return -EFSCORRUPTED;
3918
 
 
 
3919	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3920	if (error)
3921		return error;
3922
3923	*agbp = args.agbp;
3924	return 0;
 
 
3925}
3926
3927/*
3928 * Free an extent.
3929 * Just break up the extent address and hand off to xfs_free_ag_extent
3930 * after fixing up the freelist.
3931 */
3932int
3933__xfs_free_extent(
3934	struct xfs_trans		*tp,
3935	struct xfs_perag		*pag,
3936	xfs_agblock_t			agbno,
3937	xfs_extlen_t			len,
3938	const struct xfs_owner_info	*oinfo,
3939	enum xfs_ag_resv_type		type,
3940	bool				skip_discard)
3941{
3942	struct xfs_mount		*mp = tp->t_mountp;
3943	struct xfs_buf			*agbp;
 
 
3944	struct xfs_agf			*agf;
3945	int				error;
3946	unsigned int			busy_flags = 0;
3947
3948	ASSERT(len != 0);
3949	ASSERT(type != XFS_AG_RESV_AGFL);
3950
3951	if (XFS_TEST_ERROR(false, mp,
3952			XFS_ERRTAG_FREE_EXTENT))
3953		return -EIO;
3954
3955	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3956	if (error) {
3957		if (xfs_metadata_is_sick(error))
3958			xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3959		return error;
3960	}
3961
3962	agf = agbp->b_addr;
3963
3964	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3965		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3966		error = -EFSCORRUPTED;
3967		goto err_release;
3968	}
3969
3970	/* validate the extent size is legal now we have the agf locked */
3971	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3972		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3973		error = -EFSCORRUPTED;
3974		goto err_release;
3975	}
3976
3977	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3978			type);
3979	if (error)
3980		goto err_release;
3981
3982	if (skip_discard)
3983		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3984	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3985	return 0;
3986
3987err_release:
3988	xfs_trans_brelse(tp, agbp);
3989	return error;
3990}
3991
3992struct xfs_alloc_query_range_info {
3993	xfs_alloc_query_range_fn	fn;
3994	void				*priv;
3995};
3996
3997/* Format btree record and pass to our callback. */
3998STATIC int
3999xfs_alloc_query_range_helper(
4000	struct xfs_btree_cur		*cur,
4001	const union xfs_btree_rec	*rec,
4002	void				*priv)
4003{
4004	struct xfs_alloc_query_range_info	*query = priv;
4005	struct xfs_alloc_rec_incore		irec;
4006	xfs_failaddr_t				fa;
4007
4008	xfs_alloc_btrec_to_irec(rec, &irec);
4009	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
4010	if (fa)
4011		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4012
 
 
4013	return query->fn(cur, &irec, query->priv);
4014}
4015
4016/* Find all free space within a given range of blocks. */
4017int
4018xfs_alloc_query_range(
4019	struct xfs_btree_cur			*cur,
4020	const struct xfs_alloc_rec_incore	*low_rec,
4021	const struct xfs_alloc_rec_incore	*high_rec,
4022	xfs_alloc_query_range_fn		fn,
4023	void					*priv)
4024{
4025	union xfs_btree_irec			low_brec = { .a = *low_rec };
4026	union xfs_btree_irec			high_brec = { .a = *high_rec };
4027	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
4028
4029	ASSERT(xfs_btree_is_bno(cur->bc_ops));
 
 
 
 
4030	return xfs_btree_query_range(cur, &low_brec, &high_brec,
4031			xfs_alloc_query_range_helper, &query);
4032}
4033
4034/* Find all free space records. */
4035int
4036xfs_alloc_query_all(
4037	struct xfs_btree_cur			*cur,
4038	xfs_alloc_query_range_fn		fn,
4039	void					*priv)
4040{
4041	struct xfs_alloc_query_range_info	query;
4042
4043	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4044	query.priv = priv;
4045	query.fn = fn;
4046	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4047}
4048
4049/*
4050 * Scan part of the keyspace of the free space and tell us if the area has no
4051 * records, is fully mapped by records, or is partially filled.
4052 */
4053int
4054xfs_alloc_has_records(
4055	struct xfs_btree_cur	*cur,
4056	xfs_agblock_t		bno,
4057	xfs_extlen_t		len,
4058	enum xbtree_recpacking	*outcome)
4059{
4060	union xfs_btree_irec	low;
4061	union xfs_btree_irec	high;
4062
4063	memset(&low, 0, sizeof(low));
4064	low.a.ar_startblock = bno;
4065	memset(&high, 0xFF, sizeof(high));
4066	high.a.ar_startblock = bno + len - 1;
4067
4068	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4069}
4070
4071/*
4072 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4073 * error code or XFS_ITER_*.
4074 */
4075int
4076xfs_agfl_walk(
4077	struct xfs_mount	*mp,
4078	struct xfs_agf		*agf,
4079	struct xfs_buf		*agflbp,
4080	xfs_agfl_walk_fn	walk_fn,
4081	void			*priv)
4082{
4083	__be32			*agfl_bno;
4084	unsigned int		i;
4085	int			error;
4086
4087	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4088	i = be32_to_cpu(agf->agf_flfirst);
4089
4090	/* Nothing to walk in an empty AGFL. */
4091	if (agf->agf_flcount == cpu_to_be32(0))
4092		return 0;
4093
4094	/* Otherwise, walk from first to last, wrapping as needed. */
4095	for (;;) {
4096		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4097		if (error)
4098			return error;
4099		if (i == be32_to_cpu(agf->agf_fllast))
4100			break;
4101		if (++i == xfs_agfl_size(mp))
4102			i = 0;
4103	}
4104
4105	return 0;
4106}
4107
4108int __init
4109xfs_extfree_intent_init_cache(void)
4110{
4111	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4112			sizeof(struct xfs_extent_free_item),
4113			0, 0, NULL);
4114
4115	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4116}
4117
4118void
4119xfs_extfree_intent_destroy_cache(void)
4120{
4121	kmem_cache_destroy(xfs_extfree_item_cache);
4122	xfs_extfree_item_cache = NULL;
4123}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_btree.h"
  17#include "xfs_rmap.h"
  18#include "xfs_alloc_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_extent_busy.h"
  21#include "xfs_errortag.h"
  22#include "xfs_error.h"
  23#include "xfs_trace.h"
  24#include "xfs_trans.h"
  25#include "xfs_buf_item.h"
  26#include "xfs_log.h"
 
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
 
  29
  30extern kmem_zone_t	*xfs_bmap_free_item_zone;
  31
  32struct workqueue_struct *xfs_alloc_wq;
  33
  34#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  35
  36#define	XFSA_FIXUP_BNO_OK	1
  37#define	XFSA_FIXUP_CNT_OK	2
  38
  39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
  40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
  41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
  42
  43/*
  44 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  45 * the beginning of the block for a proper header with the location information
  46 * and CRC.
  47 */
  48unsigned int
  49xfs_agfl_size(
  50	struct xfs_mount	*mp)
  51{
  52	unsigned int		size = mp->m_sb.sb_sectsize;
  53
  54	if (xfs_sb_version_hascrc(&mp->m_sb))
  55		size -= sizeof(struct xfs_agfl);
  56
  57	return size / sizeof(xfs_agblock_t);
  58}
  59
  60unsigned int
  61xfs_refc_block(
  62	struct xfs_mount	*mp)
  63{
  64	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
  65		return XFS_RMAP_BLOCK(mp) + 1;
  66	if (xfs_sb_version_hasfinobt(&mp->m_sb))
  67		return XFS_FIBT_BLOCK(mp) + 1;
  68	return XFS_IBT_BLOCK(mp) + 1;
  69}
  70
  71xfs_extlen_t
  72xfs_prealloc_blocks(
  73	struct xfs_mount	*mp)
  74{
  75	if (xfs_sb_version_hasreflink(&mp->m_sb))
  76		return xfs_refc_block(mp) + 1;
  77	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
  78		return XFS_RMAP_BLOCK(mp) + 1;
  79	if (xfs_sb_version_hasfinobt(&mp->m_sb))
  80		return XFS_FIBT_BLOCK(mp) + 1;
  81	return XFS_IBT_BLOCK(mp) + 1;
  82}
  83
  84/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
  86 * AGF buffer (PV 947395), we place constraints on the relationship among
  87 * actual allocations for data blocks, freelist blocks, and potential file data
  88 * bmap btree blocks. However, these restrictions may result in no actual space
  89 * allocated for a delayed extent, for example, a data block in a certain AG is
  90 * allocated but there is no additional block for the additional bmap btree
  91 * block due to a split of the bmap btree of the file. The result of this may
  92 * lead to an infinite loop when the file gets flushed to disk and all delayed
  93 * extents need to be actually allocated. To get around this, we explicitly set
  94 * aside a few blocks which will not be reserved in delayed allocation.
  95 *
  96 * We need to reserve 4 fsbs _per AG_ for the freelist and 4 more to handle a
  97 * potential split of the file's bmap btree.
  98 */
  99unsigned int
 100xfs_alloc_set_aside(
 101	struct xfs_mount	*mp)
 102{
 103	return mp->m_sb.sb_agcount * (XFS_ALLOC_AGFL_RESERVE + 4);
 104}
 105
 106/*
 107 * When deciding how much space to allocate out of an AG, we limit the
 108 * allocation maximum size to the size the AG. However, we cannot use all the
 109 * blocks in the AG - some are permanently used by metadata. These
 110 * blocks are generally:
 111 *	- the AG superblock, AGF, AGI and AGFL
 112 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 113 *	  the AGI free inode and rmap btree root blocks.
 114 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 115 *	- the rmapbt root block
 116 *
 117 * The AG headers are sector sized, so the amount of space they take up is
 118 * dependent on filesystem geometry. The others are all single blocks.
 119 */
 120unsigned int
 121xfs_alloc_ag_max_usable(
 122	struct xfs_mount	*mp)
 123{
 124	unsigned int		blocks;
 125
 126	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 127	blocks += XFS_ALLOC_AGFL_RESERVE;
 128	blocks += 3;			/* AGF, AGI btree root blocks */
 129	if (xfs_sb_version_hasfinobt(&mp->m_sb))
 130		blocks++;		/* finobt root block */
 131	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
 132		blocks++; 		/* rmap root block */
 133	if (xfs_sb_version_hasreflink(&mp->m_sb))
 134		blocks++;		/* refcount root block */
 135
 136	return mp->m_sb.sb_agblocks - blocks;
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * Lookup the record equal to [bno, len] in the btree given by cur.
 141 */
 142STATIC int				/* error */
 143xfs_alloc_lookup_eq(
 144	struct xfs_btree_cur	*cur,	/* btree cursor */
 145	xfs_agblock_t		bno,	/* starting block of extent */
 146	xfs_extlen_t		len,	/* length of extent */
 147	int			*stat)	/* success/failure */
 148{
 149	int			error;
 150
 151	cur->bc_rec.a.ar_startblock = bno;
 152	cur->bc_rec.a.ar_blockcount = len;
 153	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
 154	cur->bc_ag.abt.active = (*stat == 1);
 155	return error;
 156}
 157
 158/*
 159 * Lookup the first record greater than or equal to [bno, len]
 160 * in the btree given by cur.
 161 */
 162int				/* error */
 163xfs_alloc_lookup_ge(
 164	struct xfs_btree_cur	*cur,	/* btree cursor */
 165	xfs_agblock_t		bno,	/* starting block of extent */
 166	xfs_extlen_t		len,	/* length of extent */
 167	int			*stat)	/* success/failure */
 168{
 169	int			error;
 170
 171	cur->bc_rec.a.ar_startblock = bno;
 172	cur->bc_rec.a.ar_blockcount = len;
 173	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
 174	cur->bc_ag.abt.active = (*stat == 1);
 175	return error;
 176}
 177
 178/*
 179 * Lookup the first record less than or equal to [bno, len]
 180 * in the btree given by cur.
 181 */
 182int					/* error */
 183xfs_alloc_lookup_le(
 184	struct xfs_btree_cur	*cur,	/* btree cursor */
 185	xfs_agblock_t		bno,	/* starting block of extent */
 186	xfs_extlen_t		len,	/* length of extent */
 187	int			*stat)	/* success/failure */
 188{
 189	int			error;
 190	cur->bc_rec.a.ar_startblock = bno;
 191	cur->bc_rec.a.ar_blockcount = len;
 192	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
 193	cur->bc_ag.abt.active = (*stat == 1);
 194	return error;
 195}
 196
 197static inline bool
 198xfs_alloc_cur_active(
 199	struct xfs_btree_cur	*cur)
 200{
 201	return cur && cur->bc_ag.abt.active;
 202}
 203
 204/*
 205 * Update the record referred to by cur to the value given
 206 * by [bno, len].
 207 * This either works (return 0) or gets an EFSCORRUPTED error.
 208 */
 209STATIC int				/* error */
 210xfs_alloc_update(
 211	struct xfs_btree_cur	*cur,	/* btree cursor */
 212	xfs_agblock_t		bno,	/* starting block of extent */
 213	xfs_extlen_t		len)	/* length of extent */
 214{
 215	union xfs_btree_rec	rec;
 216
 217	rec.alloc.ar_startblock = cpu_to_be32(bno);
 218	rec.alloc.ar_blockcount = cpu_to_be32(len);
 219	return xfs_btree_update(cur, &rec);
 220}
 221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222/*
 223 * Get the data from the pointed-to record.
 224 */
 225int					/* error */
 226xfs_alloc_get_rec(
 227	struct xfs_btree_cur	*cur,	/* btree cursor */
 228	xfs_agblock_t		*bno,	/* output: starting block of extent */
 229	xfs_extlen_t		*len,	/* output: length of extent */
 230	int			*stat)	/* output: success/failure */
 231{
 232	struct xfs_mount	*mp = cur->bc_mp;
 233	xfs_agnumber_t		agno = cur->bc_ag.agno;
 234	union xfs_btree_rec	*rec;
 
 235	int			error;
 236
 237	error = xfs_btree_get_rec(cur, &rec, stat);
 238	if (error || !(*stat))
 239		return error;
 240
 241	*bno = be32_to_cpu(rec->alloc.ar_startblock);
 242	*len = be32_to_cpu(rec->alloc.ar_blockcount);
 243
 244	if (*len == 0)
 245		goto out_bad_rec;
 246
 247	/* check for valid extent range, including overflow */
 248	if (!xfs_verify_agbno(mp, agno, *bno))
 249		goto out_bad_rec;
 250	if (*bno > *bno + *len)
 251		goto out_bad_rec;
 252	if (!xfs_verify_agbno(mp, agno, *bno + *len - 1))
 253		goto out_bad_rec;
 254
 
 
 255	return 0;
 256
 257out_bad_rec:
 258	xfs_warn(mp,
 259		"%s Freespace BTree record corruption in AG %d detected!",
 260		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno);
 261	xfs_warn(mp,
 262		"start block 0x%x block count 0x%x", *bno, *len);
 263	return -EFSCORRUPTED;
 264}
 265
 266/*
 267 * Compute aligned version of the found extent.
 268 * Takes alignment and min length into account.
 269 */
 270STATIC bool
 271xfs_alloc_compute_aligned(
 272	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 273	xfs_agblock_t	foundbno,	/* starting block in found extent */
 274	xfs_extlen_t	foundlen,	/* length in found extent */
 275	xfs_agblock_t	*resbno,	/* result block number */
 276	xfs_extlen_t	*reslen,	/* result length */
 277	unsigned	*busy_gen)
 278{
 279	xfs_agblock_t	bno = foundbno;
 280	xfs_extlen_t	len = foundlen;
 281	xfs_extlen_t	diff;
 282	bool		busy;
 283
 284	/* Trim busy sections out of found extent */
 285	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 286
 287	/*
 288	 * If we have a largish extent that happens to start before min_agbno,
 289	 * see if we can shift it into range...
 290	 */
 291	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 292		diff = args->min_agbno - bno;
 293		if (len > diff) {
 294			bno += diff;
 295			len -= diff;
 296		}
 297	}
 298
 299	if (args->alignment > 1 && len >= args->minlen) {
 300		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 301
 302		diff = aligned_bno - bno;
 303
 304		*resbno = aligned_bno;
 305		*reslen = diff >= len ? 0 : len - diff;
 306	} else {
 307		*resbno = bno;
 308		*reslen = len;
 309	}
 310
 311	return busy;
 312}
 313
 314/*
 315 * Compute best start block and diff for "near" allocations.
 316 * freelen >= wantlen already checked by caller.
 317 */
 318STATIC xfs_extlen_t			/* difference value (absolute) */
 319xfs_alloc_compute_diff(
 320	xfs_agblock_t	wantbno,	/* target starting block */
 321	xfs_extlen_t	wantlen,	/* target length */
 322	xfs_extlen_t	alignment,	/* target alignment */
 323	int		datatype,	/* are we allocating data? */
 324	xfs_agblock_t	freebno,	/* freespace's starting block */
 325	xfs_extlen_t	freelen,	/* freespace's length */
 326	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 327{
 328	xfs_agblock_t	freeend;	/* end of freespace extent */
 329	xfs_agblock_t	newbno1;	/* return block number */
 330	xfs_agblock_t	newbno2;	/* other new block number */
 331	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 332	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 333	xfs_agblock_t	wantend;	/* end of target extent */
 334	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 335
 336	ASSERT(freelen >= wantlen);
 337	freeend = freebno + freelen;
 338	wantend = wantbno + wantlen;
 339	/*
 340	 * We want to allocate from the start of a free extent if it is past
 341	 * the desired block or if we are allocating user data and the free
 342	 * extent is before desired block. The second case is there to allow
 343	 * for contiguous allocation from the remaining free space if the file
 344	 * grows in the short term.
 345	 */
 346	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 347		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 348			newbno1 = NULLAGBLOCK;
 349	} else if (freeend >= wantend && alignment > 1) {
 350		newbno1 = roundup(wantbno, alignment);
 351		newbno2 = newbno1 - alignment;
 352		if (newbno1 >= freeend)
 353			newbno1 = NULLAGBLOCK;
 354		else
 355			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 356		if (newbno2 < freebno)
 357			newbno2 = NULLAGBLOCK;
 358		else
 359			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 360		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 361			if (newlen1 < newlen2 ||
 362			    (newlen1 == newlen2 &&
 363			     XFS_ABSDIFF(newbno1, wantbno) >
 364			     XFS_ABSDIFF(newbno2, wantbno)))
 365				newbno1 = newbno2;
 366		} else if (newbno2 != NULLAGBLOCK)
 367			newbno1 = newbno2;
 368	} else if (freeend >= wantend) {
 369		newbno1 = wantbno;
 370	} else if (alignment > 1) {
 371		newbno1 = roundup(freeend - wantlen, alignment);
 372		if (newbno1 > freeend - wantlen &&
 373		    newbno1 - alignment >= freebno)
 374			newbno1 -= alignment;
 375		else if (newbno1 >= freeend)
 376			newbno1 = NULLAGBLOCK;
 377	} else
 378		newbno1 = freeend - wantlen;
 379	*newbnop = newbno1;
 380	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 381}
 382
 383/*
 384 * Fix up the length, based on mod and prod.
 385 * len should be k * prod + mod for some k.
 386 * If len is too small it is returned unchanged.
 387 * If len hits maxlen it is left alone.
 388 */
 389STATIC void
 390xfs_alloc_fix_len(
 391	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 392{
 393	xfs_extlen_t	k;
 394	xfs_extlen_t	rlen;
 395
 396	ASSERT(args->mod < args->prod);
 397	rlen = args->len;
 398	ASSERT(rlen >= args->minlen);
 399	ASSERT(rlen <= args->maxlen);
 400	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 401	    (args->mod == 0 && rlen < args->prod))
 402		return;
 403	k = rlen % args->prod;
 404	if (k == args->mod)
 405		return;
 406	if (k > args->mod)
 407		rlen = rlen - (k - args->mod);
 408	else
 409		rlen = rlen - args->prod + (args->mod - k);
 410	/* casts to (int) catch length underflows */
 411	if ((int)rlen < (int)args->minlen)
 412		return;
 413	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 414	ASSERT(rlen % args->prod == args->mod);
 415	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 416		rlen + args->minleft);
 417	args->len = rlen;
 418}
 419
 420/*
 421 * Update the two btrees, logically removing from freespace the extent
 422 * starting at rbno, rlen blocks.  The extent is contained within the
 423 * actual (current) free extent fbno for flen blocks.
 424 * Flags are passed in indicating whether the cursors are set to the
 425 * relevant records.
 426 */
 427STATIC int				/* error code */
 428xfs_alloc_fixup_trees(
 429	xfs_btree_cur_t	*cnt_cur,	/* cursor for by-size btree */
 430	xfs_btree_cur_t	*bno_cur,	/* cursor for by-block btree */
 431	xfs_agblock_t	fbno,		/* starting block of free extent */
 432	xfs_extlen_t	flen,		/* length of free extent */
 433	xfs_agblock_t	rbno,		/* starting block of returned extent */
 434	xfs_extlen_t	rlen,		/* length of returned extent */
 435	int		flags)		/* flags, XFSA_FIXUP_... */
 436{
 437	int		error;		/* error code */
 438	int		i;		/* operation results */
 439	xfs_agblock_t	nfbno1;		/* first new free startblock */
 440	xfs_agblock_t	nfbno2;		/* second new free startblock */
 441	xfs_extlen_t	nflen1=0;	/* first new free length */
 442	xfs_extlen_t	nflen2=0;	/* second new free length */
 443	struct xfs_mount *mp;
 444
 445	mp = cnt_cur->bc_mp;
 446
 447	/*
 448	 * Look up the record in the by-size tree if necessary.
 449	 */
 450	if (flags & XFSA_FIXUP_CNT_OK) {
 451#ifdef DEBUG
 452		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 453			return error;
 454		if (XFS_IS_CORRUPT(mp,
 455				   i != 1 ||
 456				   nfbno1 != fbno ||
 457				   nflen1 != flen))
 
 458			return -EFSCORRUPTED;
 
 459#endif
 460	} else {
 461		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 462			return error;
 463		if (XFS_IS_CORRUPT(mp, i != 1))
 
 464			return -EFSCORRUPTED;
 
 465	}
 466	/*
 467	 * Look up the record in the by-block tree if necessary.
 468	 */
 469	if (flags & XFSA_FIXUP_BNO_OK) {
 470#ifdef DEBUG
 471		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 472			return error;
 473		if (XFS_IS_CORRUPT(mp,
 474				   i != 1 ||
 475				   nfbno1 != fbno ||
 476				   nflen1 != flen))
 
 477			return -EFSCORRUPTED;
 
 478#endif
 479	} else {
 480		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 481			return error;
 482		if (XFS_IS_CORRUPT(mp, i != 1))
 
 483			return -EFSCORRUPTED;
 
 484	}
 485
 486#ifdef DEBUG
 487	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 488		struct xfs_btree_block	*bnoblock;
 489		struct xfs_btree_block	*cntblock;
 490
 491		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_bufs[0]);
 492		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_bufs[0]);
 493
 494		if (XFS_IS_CORRUPT(mp,
 495				   bnoblock->bb_numrecs !=
 496				   cntblock->bb_numrecs))
 
 497			return -EFSCORRUPTED;
 
 498	}
 499#endif
 500
 501	/*
 502	 * Deal with all four cases: the allocated record is contained
 503	 * within the freespace record, so we can have new freespace
 504	 * at either (or both) end, or no freespace remaining.
 505	 */
 506	if (rbno == fbno && rlen == flen)
 507		nfbno1 = nfbno2 = NULLAGBLOCK;
 508	else if (rbno == fbno) {
 509		nfbno1 = rbno + rlen;
 510		nflen1 = flen - rlen;
 511		nfbno2 = NULLAGBLOCK;
 512	} else if (rbno + rlen == fbno + flen) {
 513		nfbno1 = fbno;
 514		nflen1 = flen - rlen;
 515		nfbno2 = NULLAGBLOCK;
 516	} else {
 517		nfbno1 = fbno;
 518		nflen1 = rbno - fbno;
 519		nfbno2 = rbno + rlen;
 520		nflen2 = (fbno + flen) - nfbno2;
 521	}
 522	/*
 523	 * Delete the entry from the by-size btree.
 524	 */
 525	if ((error = xfs_btree_delete(cnt_cur, &i)))
 526		return error;
 527	if (XFS_IS_CORRUPT(mp, i != 1))
 
 528		return -EFSCORRUPTED;
 
 529	/*
 530	 * Add new by-size btree entry(s).
 531	 */
 532	if (nfbno1 != NULLAGBLOCK) {
 533		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 534			return error;
 535		if (XFS_IS_CORRUPT(mp, i != 0))
 
 536			return -EFSCORRUPTED;
 
 537		if ((error = xfs_btree_insert(cnt_cur, &i)))
 538			return error;
 539		if (XFS_IS_CORRUPT(mp, i != 1))
 
 540			return -EFSCORRUPTED;
 
 541	}
 542	if (nfbno2 != NULLAGBLOCK) {
 543		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 544			return error;
 545		if (XFS_IS_CORRUPT(mp, i != 0))
 
 546			return -EFSCORRUPTED;
 
 547		if ((error = xfs_btree_insert(cnt_cur, &i)))
 548			return error;
 549		if (XFS_IS_CORRUPT(mp, i != 1))
 
 550			return -EFSCORRUPTED;
 
 551	}
 552	/*
 553	 * Fix up the by-block btree entry(s).
 554	 */
 555	if (nfbno1 == NULLAGBLOCK) {
 556		/*
 557		 * No remaining freespace, just delete the by-block tree entry.
 558		 */
 559		if ((error = xfs_btree_delete(bno_cur, &i)))
 560			return error;
 561		if (XFS_IS_CORRUPT(mp, i != 1))
 
 562			return -EFSCORRUPTED;
 
 563	} else {
 564		/*
 565		 * Update the by-block entry to start later|be shorter.
 566		 */
 567		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 568			return error;
 569	}
 570	if (nfbno2 != NULLAGBLOCK) {
 571		/*
 572		 * 2 resulting free entries, need to add one.
 573		 */
 574		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 575			return error;
 576		if (XFS_IS_CORRUPT(mp, i != 0))
 
 577			return -EFSCORRUPTED;
 
 578		if ((error = xfs_btree_insert(bno_cur, &i)))
 579			return error;
 580		if (XFS_IS_CORRUPT(mp, i != 1))
 
 581			return -EFSCORRUPTED;
 
 582	}
 583	return 0;
 584}
 585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586static xfs_failaddr_t
 587xfs_agfl_verify(
 588	struct xfs_buf	*bp)
 589{
 590	struct xfs_mount *mp = bp->b_mount;
 591	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 592	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 593	int		i;
 594
 595	/*
 596	 * There is no verification of non-crc AGFLs because mkfs does not
 597	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 598	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 599	 * can't verify just those entries are valid.
 600	 */
 601	if (!xfs_sb_version_hascrc(&mp->m_sb))
 602		return NULL;
 603
 604	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 605		return __this_address;
 606	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 607		return __this_address;
 608	/*
 609	 * during growfs operations, the perag is not fully initialised,
 610	 * so we can't use it for any useful checking. growfs ensures we can't
 611	 * use it by using uncached buffers that don't have the perag attached
 612	 * so we can detect and avoid this problem.
 613	 */
 614	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 615		return __this_address;
 616
 617	for (i = 0; i < xfs_agfl_size(mp); i++) {
 618		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 619		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 620			return __this_address;
 621	}
 622
 623	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 624		return __this_address;
 625	return NULL;
 626}
 627
 628static void
 629xfs_agfl_read_verify(
 630	struct xfs_buf	*bp)
 631{
 632	struct xfs_mount *mp = bp->b_mount;
 633	xfs_failaddr_t	fa;
 634
 635	/*
 636	 * There is no verification of non-crc AGFLs because mkfs does not
 637	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 638	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 639	 * can't verify just those entries are valid.
 640	 */
 641	if (!xfs_sb_version_hascrc(&mp->m_sb))
 642		return;
 643
 644	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 645		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 646	else {
 647		fa = xfs_agfl_verify(bp);
 648		if (fa)
 649			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 650	}
 651}
 652
 653static void
 654xfs_agfl_write_verify(
 655	struct xfs_buf	*bp)
 656{
 657	struct xfs_mount	*mp = bp->b_mount;
 658	struct xfs_buf_log_item	*bip = bp->b_log_item;
 659	xfs_failaddr_t		fa;
 660
 661	/* no verification of non-crc AGFLs */
 662	if (!xfs_sb_version_hascrc(&mp->m_sb))
 663		return;
 664
 665	fa = xfs_agfl_verify(bp);
 666	if (fa) {
 667		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 668		return;
 669	}
 670
 671	if (bip)
 672		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 673
 674	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 675}
 676
 677const struct xfs_buf_ops xfs_agfl_buf_ops = {
 678	.name = "xfs_agfl",
 679	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 680	.verify_read = xfs_agfl_read_verify,
 681	.verify_write = xfs_agfl_write_verify,
 682	.verify_struct = xfs_agfl_verify,
 683};
 684
 685/*
 686 * Read in the allocation group free block array.
 687 */
 688int					/* error */
 689xfs_alloc_read_agfl(
 690	xfs_mount_t	*mp,		/* mount point structure */
 691	xfs_trans_t	*tp,		/* transaction pointer */
 692	xfs_agnumber_t	agno,		/* allocation group number */
 693	xfs_buf_t	**bpp)		/* buffer for the ag free block array */
 694{
 695	xfs_buf_t	*bp;		/* return value */
 696	int		error;
 
 697
 698	ASSERT(agno != NULLAGNUMBER);
 699	error = xfs_trans_read_buf(
 700			mp, tp, mp->m_ddev_targp,
 701			XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
 702			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 
 
 703	if (error)
 704		return error;
 705	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 706	*bpp = bp;
 707	return 0;
 708}
 709
 710STATIC int
 711xfs_alloc_update_counters(
 712	struct xfs_trans	*tp,
 713	struct xfs_buf		*agbp,
 714	long			len)
 715{
 716	struct xfs_agf		*agf = agbp->b_addr;
 717
 718	agbp->b_pag->pagf_freeblks += len;
 719	be32_add_cpu(&agf->agf_freeblks, len);
 720
 721	xfs_trans_agblocks_delta(tp, len);
 722	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 723		     be32_to_cpu(agf->agf_length))) {
 724		xfs_buf_mark_corrupt(agbp);
 
 725		return -EFSCORRUPTED;
 726	}
 727
 728	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 729	return 0;
 730}
 731
 732/*
 733 * Block allocation algorithm and data structures.
 734 */
 735struct xfs_alloc_cur {
 736	struct xfs_btree_cur		*cnt;	/* btree cursors */
 737	struct xfs_btree_cur		*bnolt;
 738	struct xfs_btree_cur		*bnogt;
 739	xfs_extlen_t			cur_len;/* current search length */
 740	xfs_agblock_t			rec_bno;/* extent startblock */
 741	xfs_extlen_t			rec_len;/* extent length */
 742	xfs_agblock_t			bno;	/* alloc bno */
 743	xfs_extlen_t			len;	/* alloc len */
 744	xfs_extlen_t			diff;	/* diff from search bno */
 745	unsigned int			busy_gen;/* busy state */
 746	bool				busy;
 747};
 748
 749/*
 750 * Set up cursors, etc. in the extent allocation cursor. This function can be
 751 * called multiple times to reset an initialized structure without having to
 752 * reallocate cursors.
 753 */
 754static int
 755xfs_alloc_cur_setup(
 756	struct xfs_alloc_arg	*args,
 757	struct xfs_alloc_cur	*acur)
 758{
 759	int			error;
 760	int			i;
 761
 762	ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
 763
 764	acur->cur_len = args->maxlen;
 765	acur->rec_bno = 0;
 766	acur->rec_len = 0;
 767	acur->bno = 0;
 768	acur->len = 0;
 769	acur->diff = -1;
 770	acur->busy = false;
 771	acur->busy_gen = 0;
 772
 773	/*
 774	 * Perform an initial cntbt lookup to check for availability of maxlen
 775	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 776	 * attempt a small allocation.
 777	 */
 778	if (!acur->cnt)
 779		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
 780					args->agbp, args->agno, XFS_BTNUM_CNT);
 781	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 782	if (error)
 783		return error;
 784
 785	/*
 786	 * Allocate the bnobt left and right search cursors.
 787	 */
 788	if (!acur->bnolt)
 789		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
 790					args->agbp, args->agno, XFS_BTNUM_BNO);
 791	if (!acur->bnogt)
 792		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
 793					args->agbp, args->agno, XFS_BTNUM_BNO);
 794	return i == 1 ? 0 : -ENOSPC;
 795}
 796
 797static void
 798xfs_alloc_cur_close(
 799	struct xfs_alloc_cur	*acur,
 800	bool			error)
 801{
 802	int			cur_error = XFS_BTREE_NOERROR;
 803
 804	if (error)
 805		cur_error = XFS_BTREE_ERROR;
 806
 807	if (acur->cnt)
 808		xfs_btree_del_cursor(acur->cnt, cur_error);
 809	if (acur->bnolt)
 810		xfs_btree_del_cursor(acur->bnolt, cur_error);
 811	if (acur->bnogt)
 812		xfs_btree_del_cursor(acur->bnogt, cur_error);
 813	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 814}
 815
 816/*
 817 * Check an extent for allocation and track the best available candidate in the
 818 * allocation structure. The cursor is deactivated if it has entered an out of
 819 * range state based on allocation arguments. Optionally return the extent
 820 * extent geometry and allocation status if requested by the caller.
 821 */
 822static int
 823xfs_alloc_cur_check(
 824	struct xfs_alloc_arg	*args,
 825	struct xfs_alloc_cur	*acur,
 826	struct xfs_btree_cur	*cur,
 827	int			*new)
 828{
 829	int			error, i;
 830	xfs_agblock_t		bno, bnoa, bnew;
 831	xfs_extlen_t		len, lena, diff = -1;
 832	bool			busy;
 833	unsigned		busy_gen = 0;
 834	bool			deactivate = false;
 835	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
 836
 837	*new = 0;
 838
 839	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 840	if (error)
 841		return error;
 842	if (XFS_IS_CORRUPT(args->mp, i != 1))
 
 843		return -EFSCORRUPTED;
 
 844
 845	/*
 846	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 847	 * range (i.e., walking backwards looking for a minlen extent).
 848	 */
 849	if (len < args->minlen) {
 850		deactivate = !isbnobt;
 851		goto out;
 852	}
 853
 854	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 855					 &busy_gen);
 856	acur->busy |= busy;
 857	if (busy)
 858		acur->busy_gen = busy_gen;
 859	/* deactivate a bnobt cursor outside of locality range */
 860	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 861		deactivate = isbnobt;
 862		goto out;
 863	}
 864	if (lena < args->minlen)
 865		goto out;
 866
 867	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 868	xfs_alloc_fix_len(args);
 869	ASSERT(args->len >= args->minlen);
 870	if (args->len < acur->len)
 871		goto out;
 872
 873	/*
 874	 * We have an aligned record that satisfies minlen and beats or matches
 875	 * the candidate extent size. Compare locality for near allocation mode.
 876	 */
 877	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
 878	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 879				      args->alignment, args->datatype,
 880				      bnoa, lena, &bnew);
 881	if (bnew == NULLAGBLOCK)
 882		goto out;
 883
 884	/*
 885	 * Deactivate a bnobt cursor with worse locality than the current best.
 886	 */
 887	if (diff > acur->diff) {
 888		deactivate = isbnobt;
 889		goto out;
 890	}
 891
 892	ASSERT(args->len > acur->len ||
 893	       (args->len == acur->len && diff <= acur->diff));
 894	acur->rec_bno = bno;
 895	acur->rec_len = len;
 896	acur->bno = bnew;
 897	acur->len = args->len;
 898	acur->diff = diff;
 899	*new = 1;
 900
 901	/*
 902	 * We're done if we found a perfect allocation. This only deactivates
 903	 * the current cursor, but this is just an optimization to terminate a
 904	 * cntbt search that otherwise runs to the edge of the tree.
 905	 */
 906	if (acur->diff == 0 && acur->len == args->maxlen)
 907		deactivate = true;
 908out:
 909	if (deactivate)
 910		cur->bc_ag.abt.active = false;
 911	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
 912				  *new);
 913	return 0;
 914}
 915
 916/*
 917 * Complete an allocation of a candidate extent. Remove the extent from both
 918 * trees and update the args structure.
 919 */
 920STATIC int
 921xfs_alloc_cur_finish(
 922	struct xfs_alloc_arg	*args,
 923	struct xfs_alloc_cur	*acur)
 924{
 925	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
 926	int			error;
 927
 928	ASSERT(acur->cnt && acur->bnolt);
 929	ASSERT(acur->bno >= acur->rec_bno);
 930	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 931	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
 932
 933	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 934				      acur->rec_len, acur->bno, acur->len, 0);
 935	if (error)
 936		return error;
 937
 938	args->agbno = acur->bno;
 939	args->len = acur->len;
 940	args->wasfromfl = 0;
 941
 942	trace_xfs_alloc_cur(args);
 943	return 0;
 944}
 945
 946/*
 947 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 948 * bno optimized lookup to search for extents with ideal size and locality.
 949 */
 950STATIC int
 951xfs_alloc_cntbt_iter(
 952	struct xfs_alloc_arg		*args,
 953	struct xfs_alloc_cur		*acur)
 954{
 955	struct xfs_btree_cur	*cur = acur->cnt;
 956	xfs_agblock_t		bno;
 957	xfs_extlen_t		len, cur_len;
 958	int			error;
 959	int			i;
 960
 961	if (!xfs_alloc_cur_active(cur))
 962		return 0;
 963
 964	/* locality optimized lookup */
 965	cur_len = acur->cur_len;
 966	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
 967	if (error)
 968		return error;
 969	if (i == 0)
 970		return 0;
 971	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 972	if (error)
 973		return error;
 974
 975	/* check the current record and update search length from it */
 976	error = xfs_alloc_cur_check(args, acur, cur, &i);
 977	if (error)
 978		return error;
 979	ASSERT(len >= acur->cur_len);
 980	acur->cur_len = len;
 981
 982	/*
 983	 * We looked up the first record >= [agbno, len] above. The agbno is a
 984	 * secondary key and so the current record may lie just before or after
 985	 * agbno. If it is past agbno, check the previous record too so long as
 986	 * the length matches as it may be closer. Don't check a smaller record
 987	 * because that could deactivate our cursor.
 988	 */
 989	if (bno > args->agbno) {
 990		error = xfs_btree_decrement(cur, 0, &i);
 991		if (!error && i) {
 992			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 993			if (!error && i && len == acur->cur_len)
 994				error = xfs_alloc_cur_check(args, acur, cur,
 995							    &i);
 996		}
 997		if (error)
 998			return error;
 999	}
1000
1001	/*
1002	 * Increment the search key until we find at least one allocation
1003	 * candidate or if the extent we found was larger. Otherwise, double the
1004	 * search key to optimize the search. Efficiency is more important here
1005	 * than absolute best locality.
1006	 */
1007	cur_len <<= 1;
1008	if (!acur->len || acur->cur_len >= cur_len)
1009		acur->cur_len++;
1010	else
1011		acur->cur_len = cur_len;
1012
1013	return error;
1014}
1015
1016/*
1017 * Deal with the case where only small freespaces remain. Either return the
1018 * contents of the last freespace record, or allocate space from the freelist if
1019 * there is nothing in the tree.
1020 */
1021STATIC int			/* error */
1022xfs_alloc_ag_vextent_small(
1023	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1024	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1025	xfs_agblock_t		*fbnop,	/* result block number */
1026	xfs_extlen_t		*flenp,	/* result length */
1027	int			*stat)	/* status: 0-freelist, 1-normal/none */
1028{
1029	struct xfs_agf		*agf = args->agbp->b_addr;
1030	int			error = 0;
1031	xfs_agblock_t		fbno = NULLAGBLOCK;
1032	xfs_extlen_t		flen = 0;
1033	int			i = 0;
1034
1035	/*
1036	 * If a cntbt cursor is provided, try to allocate the largest record in
1037	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1038	 * allocation. Make sure to respect minleft even when pulling from the
1039	 * freelist.
1040	 */
1041	if (ccur)
1042		error = xfs_btree_decrement(ccur, 0, &i);
1043	if (error)
1044		goto error;
1045	if (i) {
1046		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1047		if (error)
1048			goto error;
1049		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1050			error = -EFSCORRUPTED;
1051			goto error;
1052		}
1053		goto out;
1054	}
1055
1056	if (args->minlen != 1 || args->alignment != 1 ||
1057	    args->resv == XFS_AG_RESV_AGFL ||
1058	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1059		goto out;
1060
1061	error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0);
 
1062	if (error)
1063		goto error;
1064	if (fbno == NULLAGBLOCK)
1065		goto out;
1066
1067	xfs_extent_busy_reuse(args->mp, args->agno, fbno, 1,
1068			      (args->datatype & XFS_ALLOC_NOBUSY));
1069
1070	if (args->datatype & XFS_ALLOC_USERDATA) {
1071		struct xfs_buf	*bp;
1072
1073		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1074				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1075				args->mp->m_bsize, 0, &bp);
1076		if (error)
1077			goto error;
1078		xfs_trans_binval(args->tp, bp);
1079	}
1080	*fbnop = args->agbno = fbno;
1081	*flenp = args->len = 1;
1082	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
 
1083		error = -EFSCORRUPTED;
1084		goto error;
1085	}
1086	args->wasfromfl = 1;
1087	trace_xfs_alloc_small_freelist(args);
1088
1089	/*
1090	 * If we're feeding an AGFL block to something that doesn't live in the
1091	 * free space, we need to clear out the OWN_AG rmap.
1092	 */
1093	error = xfs_rmap_free(args->tp, args->agbp, args->agno, fbno, 1,
1094			      &XFS_RMAP_OINFO_AG);
1095	if (error)
1096		goto error;
1097
1098	*stat = 0;
1099	return 0;
1100
1101out:
1102	/*
1103	 * Can't do the allocation, give up.
1104	 */
1105	if (flen < args->minlen) {
1106		args->agbno = NULLAGBLOCK;
1107		trace_xfs_alloc_small_notenough(args);
1108		flen = 0;
1109	}
1110	*fbnop = fbno;
1111	*flenp = flen;
1112	*stat = 1;
1113	trace_xfs_alloc_small_done(args);
1114	return 0;
1115
1116error:
1117	trace_xfs_alloc_small_error(args);
1118	return error;
1119}
1120
1121/*
1122 * Allocate a variable extent in the allocation group agno.
1123 * Type and bno are used to determine where in the allocation group the
1124 * extent will start.
1125 * Extent's length (returned in *len) will be between minlen and maxlen,
1126 * and of the form k * prod + mod unless there's nothing that large.
1127 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1128 */
1129STATIC int			/* error */
1130xfs_alloc_ag_vextent(
1131	xfs_alloc_arg_t	*args)	/* argument structure for allocation */
1132{
1133	int		error=0;
1134
1135	ASSERT(args->minlen > 0);
1136	ASSERT(args->maxlen > 0);
1137	ASSERT(args->minlen <= args->maxlen);
1138	ASSERT(args->mod < args->prod);
1139	ASSERT(args->alignment > 0);
1140
1141	/*
1142	 * Branch to correct routine based on the type.
1143	 */
1144	args->wasfromfl = 0;
1145	switch (args->type) {
1146	case XFS_ALLOCTYPE_THIS_AG:
1147		error = xfs_alloc_ag_vextent_size(args);
1148		break;
1149	case XFS_ALLOCTYPE_NEAR_BNO:
1150		error = xfs_alloc_ag_vextent_near(args);
1151		break;
1152	case XFS_ALLOCTYPE_THIS_BNO:
1153		error = xfs_alloc_ag_vextent_exact(args);
1154		break;
1155	default:
1156		ASSERT(0);
1157		/* NOTREACHED */
1158	}
1159
1160	if (error || args->agbno == NULLAGBLOCK)
1161		return error;
1162
1163	ASSERT(args->len >= args->minlen);
1164	ASSERT(args->len <= args->maxlen);
1165	ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1166	ASSERT(args->agbno % args->alignment == 0);
1167
1168	/* if not file data, insert new block into the reverse map btree */
1169	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1170		error = xfs_rmap_alloc(args->tp, args->agbp, args->agno,
1171				       args->agbno, args->len, &args->oinfo);
1172		if (error)
1173			return error;
1174	}
1175
1176	if (!args->wasfromfl) {
1177		error = xfs_alloc_update_counters(args->tp, args->agbp,
1178						  -((long)(args->len)));
1179		if (error)
1180			return error;
1181
1182		ASSERT(!xfs_extent_busy_search(args->mp, args->agno,
1183					      args->agbno, args->len));
1184	}
1185
1186	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1187
1188	XFS_STATS_INC(args->mp, xs_allocx);
1189	XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1190	return error;
1191}
1192
1193/*
1194 * Allocate a variable extent at exactly agno/bno.
1195 * Extent's length (returned in *len) will be between minlen and maxlen,
1196 * and of the form k * prod + mod unless there's nothing that large.
1197 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1198 */
1199STATIC int			/* error */
1200xfs_alloc_ag_vextent_exact(
1201	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1202{
1203	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1204	xfs_btree_cur_t	*bno_cur;/* by block-number btree cursor */
1205	xfs_btree_cur_t	*cnt_cur;/* by count btree cursor */
1206	int		error;
1207	xfs_agblock_t	fbno;	/* start block of found extent */
1208	xfs_extlen_t	flen;	/* length of found extent */
1209	xfs_agblock_t	tbno;	/* start block of busy extent */
1210	xfs_extlen_t	tlen;	/* length of busy extent */
1211	xfs_agblock_t	tend;	/* end block of busy extent */
1212	int		i;	/* success/failure of operation */
1213	unsigned	busy_gen;
1214
1215	ASSERT(args->alignment == 1);
1216
1217	/*
1218	 * Allocate/initialize a cursor for the by-number freespace btree.
1219	 */
1220	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1221					  args->agno, XFS_BTNUM_BNO);
1222
1223	/*
1224	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1225	 * Look for the closest free block <= bno, it must contain bno
1226	 * if any free block does.
1227	 */
1228	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1229	if (error)
1230		goto error0;
1231	if (!i)
1232		goto not_found;
1233
1234	/*
1235	 * Grab the freespace record.
1236	 */
1237	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1238	if (error)
1239		goto error0;
1240	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1241		error = -EFSCORRUPTED;
1242		goto error0;
1243	}
1244	ASSERT(fbno <= args->agbno);
1245
1246	/*
1247	 * Check for overlapping busy extents.
1248	 */
1249	tbno = fbno;
1250	tlen = flen;
1251	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1252
1253	/*
1254	 * Give up if the start of the extent is busy, or the freespace isn't
1255	 * long enough for the minimum request.
1256	 */
1257	if (tbno > args->agbno)
1258		goto not_found;
1259	if (tlen < args->minlen)
1260		goto not_found;
1261	tend = tbno + tlen;
1262	if (tend < args->agbno + args->minlen)
1263		goto not_found;
1264
1265	/*
1266	 * End of extent will be smaller of the freespace end and the
1267	 * maximal requested end.
1268	 *
1269	 * Fix the length according to mod and prod if given.
1270	 */
1271	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1272						- args->agbno;
1273	xfs_alloc_fix_len(args);
1274	ASSERT(args->agbno + args->len <= tend);
1275
1276	/*
1277	 * We are allocating agbno for args->len
1278	 * Allocate/initialize a cursor for the by-size btree.
1279	 */
1280	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1281		args->agno, XFS_BTNUM_CNT);
1282	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1283	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1284				      args->len, XFSA_FIXUP_BNO_OK);
1285	if (error) {
1286		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1287		goto error0;
1288	}
1289
1290	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1291	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1292
1293	args->wasfromfl = 0;
1294	trace_xfs_alloc_exact_done(args);
1295	return 0;
1296
1297not_found:
1298	/* Didn't find it, return null. */
1299	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1300	args->agbno = NULLAGBLOCK;
1301	trace_xfs_alloc_exact_notfound(args);
1302	return 0;
1303
1304error0:
1305	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1306	trace_xfs_alloc_exact_error(args);
1307	return error;
1308}
1309
1310/*
1311 * Search a given number of btree records in a given direction. Check each
1312 * record against the good extent we've already found.
1313 */
1314STATIC int
1315xfs_alloc_walk_iter(
1316	struct xfs_alloc_arg	*args,
1317	struct xfs_alloc_cur	*acur,
1318	struct xfs_btree_cur	*cur,
1319	bool			increment,
1320	bool			find_one, /* quit on first candidate */
1321	int			count,    /* rec count (-1 for infinite) */
1322	int			*stat)
1323{
1324	int			error;
1325	int			i;
1326
1327	*stat = 0;
1328
1329	/*
1330	 * Search so long as the cursor is active or we find a better extent.
1331	 * The cursor is deactivated if it extends beyond the range of the
1332	 * current allocation candidate.
1333	 */
1334	while (xfs_alloc_cur_active(cur) && count) {
1335		error = xfs_alloc_cur_check(args, acur, cur, &i);
1336		if (error)
1337			return error;
1338		if (i == 1) {
1339			*stat = 1;
1340			if (find_one)
1341				break;
1342		}
1343		if (!xfs_alloc_cur_active(cur))
1344			break;
1345
1346		if (increment)
1347			error = xfs_btree_increment(cur, 0, &i);
1348		else
1349			error = xfs_btree_decrement(cur, 0, &i);
1350		if (error)
1351			return error;
1352		if (i == 0)
1353			cur->bc_ag.abt.active = false;
1354
1355		if (count > 0)
1356			count--;
1357	}
1358
1359	return 0;
1360}
1361
1362/*
1363 * Search the by-bno and by-size btrees in parallel in search of an extent with
1364 * ideal locality based on the NEAR mode ->agbno locality hint.
1365 */
1366STATIC int
1367xfs_alloc_ag_vextent_locality(
1368	struct xfs_alloc_arg	*args,
1369	struct xfs_alloc_cur	*acur,
1370	int			*stat)
1371{
1372	struct xfs_btree_cur	*fbcur = NULL;
1373	int			error;
1374	int			i;
1375	bool			fbinc;
1376
1377	ASSERT(acur->len == 0);
1378	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1379
1380	*stat = 0;
1381
1382	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1383	if (error)
1384		return error;
1385	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1386	if (error)
1387		return error;
1388	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1389	if (error)
1390		return error;
1391
1392	/*
1393	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1394	 * right and lookup the closest extent to the locality hint for each
1395	 * extent size key in the cntbt. The entire search terminates
1396	 * immediately on a bnobt hit because that means we've found best case
1397	 * locality. Otherwise the search continues until the cntbt cursor runs
1398	 * off the end of the tree. If no allocation candidate is found at this
1399	 * point, give up on locality, walk backwards from the end of the cntbt
1400	 * and take the first available extent.
1401	 *
1402	 * The parallel tree searches balance each other out to provide fairly
1403	 * consistent performance for various situations. The bnobt search can
1404	 * have pathological behavior in the worst case scenario of larger
1405	 * allocation requests and fragmented free space. On the other hand, the
1406	 * bnobt is able to satisfy most smaller allocation requests much more
1407	 * quickly than the cntbt. The cntbt search can sift through fragmented
1408	 * free space and sets of free extents for larger allocation requests
1409	 * more quickly than the bnobt. Since the locality hint is just a hint
1410	 * and we don't want to scan the entire bnobt for perfect locality, the
1411	 * cntbt search essentially bounds the bnobt search such that we can
1412	 * find good enough locality at reasonable performance in most cases.
1413	 */
1414	while (xfs_alloc_cur_active(acur->bnolt) ||
1415	       xfs_alloc_cur_active(acur->bnogt) ||
1416	       xfs_alloc_cur_active(acur->cnt)) {
1417
1418		trace_xfs_alloc_cur_lookup(args);
1419
1420		/*
1421		 * Search the bnobt left and right. In the case of a hit, finish
1422		 * the search in the opposite direction and we're done.
1423		 */
1424		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1425					    true, 1, &i);
1426		if (error)
1427			return error;
1428		if (i == 1) {
1429			trace_xfs_alloc_cur_left(args);
1430			fbcur = acur->bnogt;
1431			fbinc = true;
1432			break;
1433		}
1434		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1435					    1, &i);
1436		if (error)
1437			return error;
1438		if (i == 1) {
1439			trace_xfs_alloc_cur_right(args);
1440			fbcur = acur->bnolt;
1441			fbinc = false;
1442			break;
1443		}
1444
1445		/*
1446		 * Check the extent with best locality based on the current
1447		 * extent size search key and keep track of the best candidate.
1448		 */
1449		error = xfs_alloc_cntbt_iter(args, acur);
1450		if (error)
1451			return error;
1452		if (!xfs_alloc_cur_active(acur->cnt)) {
1453			trace_xfs_alloc_cur_lookup_done(args);
1454			break;
1455		}
1456	}
1457
1458	/*
1459	 * If we failed to find anything due to busy extents, return empty
1460	 * handed so the caller can flush and retry. If no busy extents were
1461	 * found, walk backwards from the end of the cntbt as a last resort.
1462	 */
1463	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1464		error = xfs_btree_decrement(acur->cnt, 0, &i);
1465		if (error)
1466			return error;
1467		if (i) {
1468			acur->cnt->bc_ag.abt.active = true;
1469			fbcur = acur->cnt;
1470			fbinc = false;
1471		}
1472	}
1473
1474	/*
1475	 * Search in the opposite direction for a better entry in the case of
1476	 * a bnobt hit or walk backwards from the end of the cntbt.
1477	 */
1478	if (fbcur) {
1479		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1480					    &i);
1481		if (error)
1482			return error;
1483	}
1484
1485	if (acur->len)
1486		*stat = 1;
1487
1488	return 0;
1489}
1490
1491/* Check the last block of the cnt btree for allocations. */
1492static int
1493xfs_alloc_ag_vextent_lastblock(
1494	struct xfs_alloc_arg	*args,
1495	struct xfs_alloc_cur	*acur,
1496	xfs_agblock_t		*bno,
1497	xfs_extlen_t		*len,
1498	bool			*allocated)
1499{
1500	int			error;
1501	int			i;
1502
1503#ifdef DEBUG
1504	/* Randomly don't execute the first algorithm. */
1505	if (prandom_u32() & 1)
1506		return 0;
1507#endif
1508
1509	/*
1510	 * Start from the entry that lookup found, sequence through all larger
1511	 * free blocks.  If we're actually pointing at a record smaller than
1512	 * maxlen, go to the start of this block, and skip all those smaller
1513	 * than minlen.
1514	 */
1515	if (*len || args->alignment > 1) {
1516		acur->cnt->bc_ptrs[0] = 1;
1517		do {
1518			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1519			if (error)
1520				return error;
1521			if (XFS_IS_CORRUPT(args->mp, i != 1))
 
1522				return -EFSCORRUPTED;
 
1523			if (*len >= args->minlen)
1524				break;
1525			error = xfs_btree_increment(acur->cnt, 0, &i);
1526			if (error)
1527				return error;
1528		} while (i);
1529		ASSERT(*len >= args->minlen);
1530		if (!i)
1531			return 0;
1532	}
1533
1534	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1535	if (error)
1536		return error;
1537
1538	/*
1539	 * It didn't work.  We COULD be in a case where there's a good record
1540	 * somewhere, so try again.
1541	 */
1542	if (acur->len == 0)
1543		return 0;
1544
1545	trace_xfs_alloc_near_first(args);
1546	*allocated = true;
1547	return 0;
1548}
1549
1550/*
1551 * Allocate a variable extent near bno in the allocation group agno.
1552 * Extent's length (returned in len) will be between minlen and maxlen,
1553 * and of the form k * prod + mod unless there's nothing that large.
1554 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1555 */
1556STATIC int
1557xfs_alloc_ag_vextent_near(
1558	struct xfs_alloc_arg	*args)
 
1559{
1560	struct xfs_alloc_cur	acur = {};
1561	int			error;		/* error code */
1562	int			i;		/* result code, temporary */
1563	xfs_agblock_t		bno;
1564	xfs_extlen_t		len;
1565
1566	/* handle uninitialized agbno range so caller doesn't have to */
1567	if (!args->min_agbno && !args->max_agbno)
1568		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1569	ASSERT(args->min_agbno <= args->max_agbno);
1570
1571	/* clamp agbno to the range if it's outside */
1572	if (args->agbno < args->min_agbno)
1573		args->agbno = args->min_agbno;
1574	if (args->agbno > args->max_agbno)
1575		args->agbno = args->max_agbno;
1576
 
 
1577restart:
1578	len = 0;
1579
1580	/*
1581	 * Set up cursors and see if there are any free extents as big as
1582	 * maxlen. If not, pick the last entry in the tree unless the tree is
1583	 * empty.
1584	 */
1585	error = xfs_alloc_cur_setup(args, &acur);
1586	if (error == -ENOSPC) {
1587		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1588				&len, &i);
1589		if (error)
1590			goto out;
1591		if (i == 0 || len == 0) {
1592			trace_xfs_alloc_near_noentry(args);
1593			goto out;
1594		}
1595		ASSERT(i == 1);
1596	} else if (error) {
1597		goto out;
1598	}
1599
1600	/*
1601	 * First algorithm.
1602	 * If the requested extent is large wrt the freespaces available
1603	 * in this a.g., then the cursor will be pointing to a btree entry
1604	 * near the right edge of the tree.  If it's in the last btree leaf
1605	 * block, then we just examine all the entries in that block
1606	 * that are big enough, and pick the best one.
1607	 */
1608	if (xfs_btree_islastblock(acur.cnt, 0)) {
1609		bool		allocated = false;
1610
1611		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1612				&allocated);
1613		if (error)
1614			goto out;
1615		if (allocated)
1616			goto alloc_finish;
1617	}
1618
1619	/*
1620	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1621	 * locality.
1622	 */
1623	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1624	if (error)
1625		goto out;
1626
1627	/*
1628	 * If we couldn't get anything, give up.
1629	 */
1630	if (!acur.len) {
1631		if (acur.busy) {
 
 
 
 
 
 
 
1632			trace_xfs_alloc_near_busy(args);
1633			xfs_extent_busy_flush(args->mp, args->pag,
1634					      acur.busy_gen);
 
 
 
 
1635			goto restart;
1636		}
1637		trace_xfs_alloc_size_neither(args);
1638		args->agbno = NULLAGBLOCK;
1639		goto out;
1640	}
1641
1642alloc_finish:
1643	/* fix up btrees on a successful allocation */
1644	error = xfs_alloc_cur_finish(args, &acur);
1645
1646out:
1647	xfs_alloc_cur_close(&acur, error);
1648	return error;
1649}
1650
1651/*
1652 * Allocate a variable extent anywhere in the allocation group agno.
1653 * Extent's length (returned in len) will be between minlen and maxlen,
1654 * and of the form k * prod + mod unless there's nothing that large.
1655 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1656 */
1657STATIC int				/* error */
1658xfs_alloc_ag_vextent_size(
1659	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 
1660{
1661	struct xfs_agf	*agf = args->agbp->b_addr;
1662	xfs_btree_cur_t	*bno_cur;	/* cursor for bno btree */
1663	xfs_btree_cur_t	*cnt_cur;	/* cursor for cnt btree */
1664	int		error;		/* error result */
1665	xfs_agblock_t	fbno;		/* start of found freespace */
1666	xfs_extlen_t	flen;		/* length of found freespace */
1667	int		i;		/* temp status variable */
1668	xfs_agblock_t	rbno;		/* returned block number */
1669	xfs_extlen_t	rlen;		/* length of returned extent */
1670	bool		busy;
1671	unsigned	busy_gen;
1672
 
 
1673restart:
1674	/*
1675	 * Allocate and initialize a cursor for the by-size btree.
1676	 */
1677	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1678		args->agno, XFS_BTNUM_CNT);
1679	bno_cur = NULL;
1680	busy = false;
1681
1682	/*
1683	 * Look for an entry >= maxlen+alignment-1 blocks.
1684	 */
1685	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1686			args->maxlen + args->alignment - 1, &i)))
1687		goto error0;
1688
1689	/*
1690	 * If none then we have to settle for a smaller extent. In the case that
1691	 * there are no large extents, this will return the last entry in the
1692	 * tree unless the tree is empty. In the case that there are only busy
1693	 * large extents, this will return the largest small extent unless there
1694	 * are no smaller extents available.
1695	 */
1696	if (!i) {
1697		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1698						   &fbno, &flen, &i);
1699		if (error)
1700			goto error0;
1701		if (i == 0 || flen == 0) {
1702			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1703			trace_xfs_alloc_size_noentry(args);
1704			return 0;
1705		}
1706		ASSERT(i == 1);
1707		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1708				&rlen, &busy_gen);
1709	} else {
1710		/*
1711		 * Search for a non-busy extent that is large enough.
1712		 */
1713		for (;;) {
1714			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1715			if (error)
1716				goto error0;
1717			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1718				error = -EFSCORRUPTED;
1719				goto error0;
1720			}
1721
1722			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1723					&rbno, &rlen, &busy_gen);
1724
1725			if (rlen >= args->maxlen)
1726				break;
1727
1728			error = xfs_btree_increment(cnt_cur, 0, &i);
1729			if (error)
1730				goto error0;
1731			if (i == 0) {
1732				/*
1733				 * Our only valid extents must have been busy.
1734				 * Make it unbusy by forcing the log out and
1735				 * retrying.
1736				 */
1737				xfs_btree_del_cursor(cnt_cur,
1738						     XFS_BTREE_NOERROR);
1739				trace_xfs_alloc_size_busy(args);
1740				xfs_extent_busy_flush(args->mp,
1741							args->pag, busy_gen);
1742				goto restart;
1743			}
 
 
 
 
 
 
1744		}
1745	}
1746
1747	/*
1748	 * In the first case above, we got the last entry in the
1749	 * by-size btree.  Now we check to see if the space hits maxlen
1750	 * once aligned; if not, we search left for something better.
1751	 * This can't happen in the second case above.
1752	 */
1753	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1754	if (XFS_IS_CORRUPT(args->mp,
1755			   rlen != 0 &&
1756			   (rlen > flen ||
1757			    rbno + rlen > fbno + flen))) {
 
1758		error = -EFSCORRUPTED;
1759		goto error0;
1760	}
1761	if (rlen < args->maxlen) {
1762		xfs_agblock_t	bestfbno;
1763		xfs_extlen_t	bestflen;
1764		xfs_agblock_t	bestrbno;
1765		xfs_extlen_t	bestrlen;
1766
1767		bestrlen = rlen;
1768		bestrbno = rbno;
1769		bestflen = flen;
1770		bestfbno = fbno;
1771		for (;;) {
1772			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1773				goto error0;
1774			if (i == 0)
1775				break;
1776			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1777					&i)))
1778				goto error0;
1779			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1780				error = -EFSCORRUPTED;
1781				goto error0;
1782			}
1783			if (flen < bestrlen)
1784				break;
1785			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1786					&rbno, &rlen, &busy_gen);
1787			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1788			if (XFS_IS_CORRUPT(args->mp,
1789					   rlen != 0 &&
1790					   (rlen > flen ||
1791					    rbno + rlen > fbno + flen))) {
 
1792				error = -EFSCORRUPTED;
1793				goto error0;
1794			}
1795			if (rlen > bestrlen) {
1796				bestrlen = rlen;
1797				bestrbno = rbno;
1798				bestflen = flen;
1799				bestfbno = fbno;
1800				if (rlen == args->maxlen)
1801					break;
1802			}
1803		}
1804		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1805				&i)))
1806			goto error0;
1807		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1808			error = -EFSCORRUPTED;
1809			goto error0;
1810		}
1811		rlen = bestrlen;
1812		rbno = bestrbno;
1813		flen = bestflen;
1814		fbno = bestfbno;
1815	}
1816	args->wasfromfl = 0;
1817	/*
1818	 * Fix up the length.
1819	 */
1820	args->len = rlen;
1821	if (rlen < args->minlen) {
1822		if (busy) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1824			trace_xfs_alloc_size_busy(args);
1825			xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1826			goto restart;
1827		}
1828		goto out_nominleft;
1829	}
1830	xfs_alloc_fix_len(args);
1831
1832	rlen = args->len;
1833	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
 
1834		error = -EFSCORRUPTED;
1835		goto error0;
1836	}
1837	/*
1838	 * Allocate and initialize a cursor for the by-block tree.
1839	 */
1840	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1841		args->agno, XFS_BTNUM_BNO);
1842	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1843			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1844		goto error0;
1845	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1846	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1847	cnt_cur = bno_cur = NULL;
1848	args->len = rlen;
1849	args->agbno = rbno;
1850	if (XFS_IS_CORRUPT(args->mp,
1851			   args->agbno + args->len >
1852			   be32_to_cpu(agf->agf_length))) {
 
1853		error = -EFSCORRUPTED;
1854		goto error0;
1855	}
1856	trace_xfs_alloc_size_done(args);
1857	return 0;
1858
1859error0:
1860	trace_xfs_alloc_size_error(args);
1861	if (cnt_cur)
1862		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1863	if (bno_cur)
1864		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1865	return error;
1866
1867out_nominleft:
1868	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1869	trace_xfs_alloc_size_nominleft(args);
1870	args->agbno = NULLAGBLOCK;
1871	return 0;
1872}
1873
1874/*
1875 * Free the extent starting at agno/bno for length.
1876 */
1877STATIC int
1878xfs_free_ag_extent(
1879	struct xfs_trans		*tp,
1880	struct xfs_buf			*agbp,
1881	xfs_agnumber_t			agno,
1882	xfs_agblock_t			bno,
1883	xfs_extlen_t			len,
1884	const struct xfs_owner_info	*oinfo,
1885	enum xfs_ag_resv_type		type)
1886{
1887	struct xfs_mount		*mp;
1888	struct xfs_btree_cur		*bno_cur;
1889	struct xfs_btree_cur		*cnt_cur;
1890	xfs_agblock_t			gtbno; /* start of right neighbor */
1891	xfs_extlen_t			gtlen; /* length of right neighbor */
1892	xfs_agblock_t			ltbno; /* start of left neighbor */
1893	xfs_extlen_t			ltlen; /* length of left neighbor */
1894	xfs_agblock_t			nbno; /* new starting block of freesp */
1895	xfs_extlen_t			nlen; /* new length of freespace */
1896	int				haveleft; /* have a left neighbor */
1897	int				haveright; /* have a right neighbor */
1898	int				i;
1899	int				error;
 
1900
1901	bno_cur = cnt_cur = NULL;
1902	mp = tp->t_mountp;
1903
1904	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1905		error = xfs_rmap_free(tp, agbp, agno, bno, len, oinfo);
1906		if (error)
1907			goto error0;
1908	}
1909
1910	/*
1911	 * Allocate and initialize a cursor for the by-block btree.
1912	 */
1913	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_BNO);
1914	/*
1915	 * Look for a neighboring block on the left (lower block numbers)
1916	 * that is contiguous with this space.
1917	 */
1918	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1919		goto error0;
1920	if (haveleft) {
1921		/*
1922		 * There is a block to our left.
1923		 */
1924		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1925			goto error0;
1926		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1927			error = -EFSCORRUPTED;
1928			goto error0;
1929		}
1930		/*
1931		 * It's not contiguous, though.
1932		 */
1933		if (ltbno + ltlen < bno)
1934			haveleft = 0;
1935		else {
1936			/*
1937			 * If this failure happens the request to free this
1938			 * space was invalid, it's (partly) already free.
1939			 * Very bad.
1940			 */
1941			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
 
1942				error = -EFSCORRUPTED;
1943				goto error0;
1944			}
1945		}
1946	}
1947	/*
1948	 * Look for a neighboring block on the right (higher block numbers)
1949	 * that is contiguous with this space.
1950	 */
1951	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1952		goto error0;
1953	if (haveright) {
1954		/*
1955		 * There is a block to our right.
1956		 */
1957		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1958			goto error0;
1959		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1960			error = -EFSCORRUPTED;
1961			goto error0;
1962		}
1963		/*
1964		 * It's not contiguous, though.
1965		 */
1966		if (bno + len < gtbno)
1967			haveright = 0;
1968		else {
1969			/*
1970			 * If this failure happens the request to free this
1971			 * space was invalid, it's (partly) already free.
1972			 * Very bad.
1973			 */
1974			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
 
1975				error = -EFSCORRUPTED;
1976				goto error0;
1977			}
1978		}
1979	}
1980	/*
1981	 * Now allocate and initialize a cursor for the by-size tree.
1982	 */
1983	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_CNT);
1984	/*
1985	 * Have both left and right contiguous neighbors.
1986	 * Merge all three into a single free block.
1987	 */
1988	if (haveleft && haveright) {
1989		/*
1990		 * Delete the old by-size entry on the left.
1991		 */
1992		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
1993			goto error0;
1994		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1995			error = -EFSCORRUPTED;
1996			goto error0;
1997		}
1998		if ((error = xfs_btree_delete(cnt_cur, &i)))
1999			goto error0;
2000		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2001			error = -EFSCORRUPTED;
2002			goto error0;
2003		}
2004		/*
2005		 * Delete the old by-size entry on the right.
2006		 */
2007		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2008			goto error0;
2009		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2010			error = -EFSCORRUPTED;
2011			goto error0;
2012		}
2013		if ((error = xfs_btree_delete(cnt_cur, &i)))
2014			goto error0;
2015		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2016			error = -EFSCORRUPTED;
2017			goto error0;
2018		}
2019		/*
2020		 * Delete the old by-block entry for the right block.
2021		 */
2022		if ((error = xfs_btree_delete(bno_cur, &i)))
2023			goto error0;
2024		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2025			error = -EFSCORRUPTED;
2026			goto error0;
2027		}
2028		/*
2029		 * Move the by-block cursor back to the left neighbor.
2030		 */
2031		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2032			goto error0;
2033		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2034			error = -EFSCORRUPTED;
2035			goto error0;
2036		}
2037#ifdef DEBUG
2038		/*
2039		 * Check that this is the right record: delete didn't
2040		 * mangle the cursor.
2041		 */
2042		{
2043			xfs_agblock_t	xxbno;
2044			xfs_extlen_t	xxlen;
2045
2046			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2047					&i)))
2048				goto error0;
2049			if (XFS_IS_CORRUPT(mp,
2050					   i != 1 ||
2051					   xxbno != ltbno ||
2052					   xxlen != ltlen)) {
 
2053				error = -EFSCORRUPTED;
2054				goto error0;
2055			}
2056		}
2057#endif
2058		/*
2059		 * Update remaining by-block entry to the new, joined block.
2060		 */
2061		nbno = ltbno;
2062		nlen = len + ltlen + gtlen;
2063		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2064			goto error0;
2065	}
2066	/*
2067	 * Have only a left contiguous neighbor.
2068	 * Merge it together with the new freespace.
2069	 */
2070	else if (haveleft) {
2071		/*
2072		 * Delete the old by-size entry on the left.
2073		 */
2074		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2075			goto error0;
2076		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2077			error = -EFSCORRUPTED;
2078			goto error0;
2079		}
2080		if ((error = xfs_btree_delete(cnt_cur, &i)))
2081			goto error0;
2082		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2083			error = -EFSCORRUPTED;
2084			goto error0;
2085		}
2086		/*
2087		 * Back up the by-block cursor to the left neighbor, and
2088		 * update its length.
2089		 */
2090		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2091			goto error0;
2092		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2093			error = -EFSCORRUPTED;
2094			goto error0;
2095		}
2096		nbno = ltbno;
2097		nlen = len + ltlen;
2098		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2099			goto error0;
2100	}
2101	/*
2102	 * Have only a right contiguous neighbor.
2103	 * Merge it together with the new freespace.
2104	 */
2105	else if (haveright) {
2106		/*
2107		 * Delete the old by-size entry on the right.
2108		 */
2109		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2110			goto error0;
2111		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2112			error = -EFSCORRUPTED;
2113			goto error0;
2114		}
2115		if ((error = xfs_btree_delete(cnt_cur, &i)))
2116			goto error0;
2117		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2118			error = -EFSCORRUPTED;
2119			goto error0;
2120		}
2121		/*
2122		 * Update the starting block and length of the right
2123		 * neighbor in the by-block tree.
2124		 */
2125		nbno = bno;
2126		nlen = len + gtlen;
2127		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2128			goto error0;
2129	}
2130	/*
2131	 * No contiguous neighbors.
2132	 * Insert the new freespace into the by-block tree.
2133	 */
2134	else {
2135		nbno = bno;
2136		nlen = len;
2137		if ((error = xfs_btree_insert(bno_cur, &i)))
2138			goto error0;
2139		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2140			error = -EFSCORRUPTED;
2141			goto error0;
2142		}
2143	}
2144	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2145	bno_cur = NULL;
2146	/*
2147	 * In all cases we need to insert the new freespace in the by-size tree.
2148	 */
2149	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2150		goto error0;
2151	if (XFS_IS_CORRUPT(mp, i != 0)) {
 
2152		error = -EFSCORRUPTED;
2153		goto error0;
2154	}
2155	if ((error = xfs_btree_insert(cnt_cur, &i)))
2156		goto error0;
2157	if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2158		error = -EFSCORRUPTED;
2159		goto error0;
2160	}
2161	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2162	cnt_cur = NULL;
2163
2164	/*
2165	 * Update the freespace totals in the ag and superblock.
2166	 */
2167	error = xfs_alloc_update_counters(tp, agbp, len);
2168	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2169	if (error)
2170		goto error0;
2171
2172	XFS_STATS_INC(mp, xs_freex);
2173	XFS_STATS_ADD(mp, xs_freeb, len);
2174
2175	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2176
2177	return 0;
2178
2179 error0:
2180	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2181	if (bno_cur)
2182		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2183	if (cnt_cur)
2184		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2185	return error;
2186}
2187
2188/*
2189 * Visible (exported) allocation/free functions.
2190 * Some of these are used just by xfs_alloc_btree.c and this file.
2191 */
2192
2193/*
2194 * Compute and fill in value of m_ag_maxlevels.
2195 */
2196void
2197xfs_alloc_compute_maxlevels(
2198	xfs_mount_t	*mp)	/* file system mount structure */
2199{
2200	mp->m_ag_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2201			(mp->m_sb.sb_agblocks + 1) / 2);
 
2202}
2203
2204/*
2205 * Find the length of the longest extent in an AG.  The 'need' parameter
2206 * specifies how much space we're going to need for the AGFL and the
2207 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2208 * other callers.
2209 */
2210xfs_extlen_t
2211xfs_alloc_longest_free_extent(
2212	struct xfs_perag	*pag,
2213	xfs_extlen_t		need,
2214	xfs_extlen_t		reserved)
2215{
2216	xfs_extlen_t		delta = 0;
2217
2218	/*
2219	 * If the AGFL needs a recharge, we'll have to subtract that from the
2220	 * longest extent.
2221	 */
2222	if (need > pag->pagf_flcount)
2223		delta = need - pag->pagf_flcount;
2224
2225	/*
2226	 * If we cannot maintain others' reservations with space from the
2227	 * not-longest freesp extents, we'll have to subtract /that/ from
2228	 * the longest extent too.
2229	 */
2230	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2231		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2232
2233	/*
2234	 * If the longest extent is long enough to satisfy all the
2235	 * reservations and AGFL rules in place, we can return this extent.
2236	 */
2237	if (pag->pagf_longest > delta)
2238		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2239				pag->pagf_longest - delta);
2240
2241	/* Otherwise, let the caller try for 1 block if there's space. */
2242	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2243}
2244
2245/*
2246 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2247 * return the largest possible minimum length.
2248 */
2249unsigned int
2250xfs_alloc_min_freelist(
2251	struct xfs_mount	*mp,
2252	struct xfs_perag	*pag)
2253{
2254	/* AG btrees have at least 1 level. */
2255	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2256	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
 
2257	unsigned int		min_free;
2258
2259	ASSERT(mp->m_ag_maxlevels > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260
2261	/* space needed by-bno freespace btree */
2262	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2263				       mp->m_ag_maxlevels);
2264	/* space needed by-size freespace btree */
2265	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2266				       mp->m_ag_maxlevels);
2267	/* space needed reverse mapping used space btree */
2268	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2269		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2270						mp->m_rmap_maxlevels);
2271
2272	return min_free;
2273}
2274
2275/*
2276 * Check if the operation we are fixing up the freelist for should go ahead or
2277 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2278 * is dependent on whether the size and shape of free space available will
2279 * permit the requested allocation to take place.
2280 */
2281static bool
2282xfs_alloc_space_available(
2283	struct xfs_alloc_arg	*args,
2284	xfs_extlen_t		min_free,
2285	int			flags)
2286{
2287	struct xfs_perag	*pag = args->pag;
2288	xfs_extlen_t		alloc_len, longest;
2289	xfs_extlen_t		reservation; /* blocks that are still reserved */
2290	int			available;
2291	xfs_extlen_t		agflcount;
2292
2293	if (flags & XFS_ALLOC_FLAG_FREEING)
2294		return true;
2295
2296	reservation = xfs_ag_resv_needed(pag, args->resv);
2297
2298	/* do we have enough contiguous free space for the allocation? */
2299	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2300	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2301	if (longest < alloc_len)
2302		return false;
2303
2304	/*
2305	 * Do we have enough free space remaining for the allocation? Don't
2306	 * account extra agfl blocks because we are about to defer free them,
2307	 * making them unavailable until the current transaction commits.
2308	 */
2309	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2310	available = (int)(pag->pagf_freeblks + agflcount -
2311			  reservation - min_free - args->minleft);
2312	if (available < (int)max(args->total, alloc_len))
2313		return false;
2314
2315	/*
2316	 * Clamp maxlen to the amount of free space available for the actual
2317	 * extent allocation.
2318	 */
2319	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2320		args->maxlen = available;
2321		ASSERT(args->maxlen > 0);
2322		ASSERT(args->maxlen >= args->minlen);
2323	}
2324
2325	return true;
2326}
2327
2328int
2329xfs_free_agfl_block(
2330	struct xfs_trans	*tp,
2331	xfs_agnumber_t		agno,
2332	xfs_agblock_t		agbno,
2333	struct xfs_buf		*agbp,
2334	struct xfs_owner_info	*oinfo)
2335{
2336	int			error;
2337	struct xfs_buf		*bp;
2338
2339	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2340				   XFS_AG_RESV_AGFL);
2341	if (error)
2342		return error;
2343
2344	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2345			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2346			tp->t_mountp->m_bsize, 0, &bp);
2347	if (error)
2348		return error;
2349	xfs_trans_binval(tp, bp);
2350
2351	return 0;
2352}
2353
2354/*
2355 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2356 * is to detect an agfl header padding mismatch between current and early v5
2357 * kernels. This problem manifests as a 1-slot size difference between the
2358 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2359 * may also catch variants of agfl count corruption unrelated to padding. Either
2360 * way, we'll reset the agfl and warn the user.
 
 
 
 
2361 *
2362 * Return true if a reset is required before the agfl can be used, false
2363 * otherwise.
2364 */
2365static bool
2366xfs_agfl_needs_reset(
2367	struct xfs_mount	*mp,
2368	struct xfs_agf		*agf)
2369{
2370	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2371	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2372	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2373	int			agfl_size = xfs_agfl_size(mp);
2374	int			active;
2375
2376	/* no agfl header on v4 supers */
2377	if (!xfs_sb_version_hascrc(&mp->m_sb))
2378		return false;
2379
2380	/*
2381	 * The agf read verifier catches severe corruption of these fields.
2382	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2383	 * the verifier allows it.
2384	 */
2385	if (f >= agfl_size || l >= agfl_size)
2386		return true;
2387	if (c > agfl_size)
2388		return true;
2389
2390	/*
2391	 * Check consistency between the on-disk count and the active range. An
2392	 * agfl padding mismatch manifests as an inconsistent flcount.
2393	 */
2394	if (c && l >= f)
2395		active = l - f + 1;
2396	else if (c)
2397		active = agfl_size - f + l + 1;
2398	else
2399		active = 0;
2400
2401	return active != c;
2402}
2403
2404/*
2405 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2406 * agfl content cannot be trusted. Warn the user that a repair is required to
2407 * recover leaked blocks.
2408 *
2409 * The purpose of this mechanism is to handle filesystems affected by the agfl
2410 * header padding mismatch problem. A reset keeps the filesystem online with a
2411 * relatively minor free space accounting inconsistency rather than suffer the
2412 * inevitable crash from use of an invalid agfl block.
2413 */
2414static void
2415xfs_agfl_reset(
2416	struct xfs_trans	*tp,
2417	struct xfs_buf		*agbp,
2418	struct xfs_perag	*pag)
2419{
2420	struct xfs_mount	*mp = tp->t_mountp;
2421	struct xfs_agf		*agf = agbp->b_addr;
2422
2423	ASSERT(pag->pagf_agflreset);
2424	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2425
2426	xfs_warn(mp,
2427	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2428	       "Please unmount and run xfs_repair.",
2429	         pag->pag_agno, pag->pagf_flcount);
2430
2431	agf->agf_flfirst = 0;
2432	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2433	agf->agf_flcount = 0;
2434	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2435				    XFS_AGF_FLCOUNT);
2436
2437	pag->pagf_flcount = 0;
2438	pag->pagf_agflreset = false;
2439}
2440
2441/*
2442 * Defer an AGFL block free. This is effectively equivalent to
2443 * xfs_bmap_add_free() with some special handling particular to AGFL blocks.
2444 *
2445 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2446 * allocation operations in a transaction. AGFL frees are prone to this problem
2447 * because for one they are always freed one at a time. Further, an immediate
2448 * AGFL block free can cause a btree join and require another block free before
2449 * the real allocation can proceed. Deferring the free disconnects freeing up
2450 * the AGFL slot from freeing the block.
2451 */
2452STATIC void
2453xfs_defer_agfl_block(
2454	struct xfs_trans		*tp,
2455	xfs_agnumber_t			agno,
2456	xfs_fsblock_t			agbno,
2457	struct xfs_owner_info		*oinfo)
2458{
2459	struct xfs_mount		*mp = tp->t_mountp;
2460	struct xfs_extent_free_item	*new;		/* new element */
 
2461
2462	ASSERT(xfs_bmap_free_item_zone != NULL);
2463	ASSERT(oinfo != NULL);
2464
2465	new = kmem_cache_alloc(xfs_bmap_free_item_zone,
 
 
 
2466			       GFP_KERNEL | __GFP_NOFAIL);
2467	new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2468	new->xefi_blockcount = 1;
2469	new->xefi_oinfo = *oinfo;
 
2470
2471	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2472
2473	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
 
 
2474}
2475
2476/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477 * Decide whether to use this allocation group for this allocation.
2478 * If so, fix up the btree freelist's size.
2479 */
2480int			/* error */
2481xfs_alloc_fix_freelist(
2482	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2483	int			flags)	/* XFS_ALLOC_FLAG_... */
2484{
2485	struct xfs_mount	*mp = args->mp;
2486	struct xfs_perag	*pag = args->pag;
2487	struct xfs_trans	*tp = args->tp;
2488	struct xfs_buf		*agbp = NULL;
2489	struct xfs_buf		*agflbp = NULL;
2490	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2491	xfs_agblock_t		bno;	/* freelist block */
2492	xfs_extlen_t		need;	/* total blocks needed in freelist */
2493	int			error = 0;
2494
2495	/* deferred ops (AGFL block frees) require permanent transactions */
2496	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2497
2498	if (!pag->pagf_init) {
2499		error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2500		if (error) {
2501			/* Couldn't lock the AGF so skip this AG. */
2502			if (error == -EAGAIN)
2503				error = 0;
2504			goto out_no_agbp;
2505		}
2506	}
2507
2508	/*
2509	 * If this is a metadata preferred pag and we are user data then try
2510	 * somewhere else if we are not being asked to try harder at this
2511	 * point
2512	 */
2513	if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2514	    (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2515		ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
 
2516		goto out_agbp_relse;
2517	}
2518
2519	need = xfs_alloc_min_freelist(mp, pag);
2520	if (!xfs_alloc_space_available(args, need, flags |
2521			XFS_ALLOC_FLAG_CHECK))
2522		goto out_agbp_relse;
2523
2524	/*
2525	 * Get the a.g. freespace buffer.
2526	 * Can fail if we're not blocking on locks, and it's held.
2527	 */
2528	if (!agbp) {
2529		error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2530		if (error) {
2531			/* Couldn't lock the AGF so skip this AG. */
2532			if (error == -EAGAIN)
2533				error = 0;
2534			goto out_no_agbp;
2535		}
2536	}
2537
2538	/* reset a padding mismatched agfl before final free space check */
2539	if (pag->pagf_agflreset)
2540		xfs_agfl_reset(tp, agbp, pag);
2541
2542	/* If there isn't enough total space or single-extent, reject it. */
2543	need = xfs_alloc_min_freelist(mp, pag);
2544	if (!xfs_alloc_space_available(args, need, flags))
2545		goto out_agbp_relse;
2546
 
 
 
 
 
 
 
 
 
2547	/*
2548	 * Make the freelist shorter if it's too long.
2549	 *
2550	 * Note that from this point onwards, we will always release the agf and
2551	 * agfl buffers on error. This handles the case where we error out and
2552	 * the buffers are clean or may not have been joined to the transaction
2553	 * and hence need to be released manually. If they have been joined to
2554	 * the transaction, then xfs_trans_brelse() will handle them
2555	 * appropriately based on the recursion count and dirty state of the
2556	 * buffer.
2557	 *
2558	 * XXX (dgc): When we have lots of free space, does this buy us
2559	 * anything other than extra overhead when we need to put more blocks
2560	 * back on the free list? Maybe we should only do this when space is
2561	 * getting low or the AGFL is more than half full?
2562	 *
2563	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2564	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2565	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2566	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2567	 * both required to ensure that rmaps are correctly recorded for the
2568	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2569	 * repair/rmap.c in xfsprogs for details.
2570	 */
2571	memset(&targs, 0, sizeof(targs));
2572	/* struct copy below */
2573	if (flags & XFS_ALLOC_FLAG_NORMAP)
2574		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2575	else
2576		targs.oinfo = XFS_RMAP_OINFO_AG;
2577	while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2578		error = xfs_alloc_get_freelist(tp, agbp, &bno, 0);
 
2579		if (error)
2580			goto out_agbp_relse;
2581
2582		/* defer agfl frees */
2583		xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
 
 
2584	}
2585
2586	targs.tp = tp;
2587	targs.mp = mp;
2588	targs.agbp = agbp;
2589	targs.agno = args->agno;
2590	targs.alignment = targs.minlen = targs.prod = 1;
2591	targs.type = XFS_ALLOCTYPE_THIS_AG;
2592	targs.pag = pag;
2593	error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp);
2594	if (error)
2595		goto out_agbp_relse;
2596
2597	/* Make the freelist longer if it's too short. */
2598	while (pag->pagf_flcount < need) {
2599		targs.agbno = 0;
2600		targs.maxlen = need - pag->pagf_flcount;
2601		targs.resv = XFS_AG_RESV_AGFL;
2602
2603		/* Allocate as many blocks as possible at once. */
2604		error = xfs_alloc_ag_vextent(&targs);
2605		if (error)
2606			goto out_agflbp_relse;
2607
2608		/*
2609		 * Stop if we run out.  Won't happen if callers are obeying
2610		 * the restrictions correctly.  Can happen for free calls
2611		 * on a completely full ag.
2612		 */
2613		if (targs.agbno == NULLAGBLOCK) {
2614			if (flags & XFS_ALLOC_FLAG_FREEING)
2615				break;
2616			goto out_agflbp_relse;
2617		}
 
 
 
 
 
 
 
 
 
 
 
 
2618		/*
2619		 * Put each allocated block on the list.
2620		 */
2621		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2622			error = xfs_alloc_put_freelist(tp, agbp,
2623							agflbp, bno, 0);
2624			if (error)
2625				goto out_agflbp_relse;
2626		}
2627	}
2628	xfs_trans_brelse(tp, agflbp);
2629	args->agbp = agbp;
2630	return 0;
2631
2632out_agflbp_relse:
2633	xfs_trans_brelse(tp, agflbp);
2634out_agbp_relse:
2635	if (agbp)
2636		xfs_trans_brelse(tp, agbp);
2637out_no_agbp:
2638	args->agbp = NULL;
2639	return error;
2640}
2641
2642/*
2643 * Get a block from the freelist.
2644 * Returns with the buffer for the block gotten.
2645 */
2646int				/* error */
2647xfs_alloc_get_freelist(
2648	xfs_trans_t	*tp,	/* transaction pointer */
2649	xfs_buf_t	*agbp,	/* buffer containing the agf structure */
2650	xfs_agblock_t	*bnop,	/* block address retrieved from freelist */
2651	int		btreeblk) /* destination is a AGF btree */
2652{
2653	struct xfs_agf	*agf = agbp->b_addr;
2654	xfs_buf_t	*agflbp;/* buffer for a.g. freelist structure */
2655	xfs_agblock_t	bno;	/* block number returned */
2656	__be32		*agfl_bno;
2657	int		error;
2658	int		logflags;
2659	xfs_mount_t	*mp = tp->t_mountp;
2660	xfs_perag_t	*pag;	/* per allocation group data */
2661
2662	/*
2663	 * Freelist is empty, give up.
2664	 */
2665	if (!agf->agf_flcount) {
2666		*bnop = NULLAGBLOCK;
2667		return 0;
2668	}
2669	/*
2670	 * Read the array of free blocks.
2671	 */
2672	error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno),
2673				    &agflbp);
2674	if (error)
2675		return error;
2676
2677
2678	/*
2679	 * Get the block number and update the data structures.
2680	 */
2681	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2682	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
 
 
 
2683	be32_add_cpu(&agf->agf_flfirst, 1);
2684	xfs_trans_brelse(tp, agflbp);
2685	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2686		agf->agf_flfirst = 0;
2687
2688	pag = agbp->b_pag;
2689	ASSERT(!pag->pagf_agflreset);
2690	be32_add_cpu(&agf->agf_flcount, -1);
2691	xfs_trans_agflist_delta(tp, -1);
2692	pag->pagf_flcount--;
2693
2694	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2695	if (btreeblk) {
2696		be32_add_cpu(&agf->agf_btreeblks, 1);
2697		pag->pagf_btreeblks++;
2698		logflags |= XFS_AGF_BTREEBLKS;
2699	}
2700
2701	xfs_alloc_log_agf(tp, agbp, logflags);
2702	*bnop = bno;
2703
2704	return 0;
2705}
2706
2707/*
2708 * Log the given fields from the agf structure.
2709 */
2710void
2711xfs_alloc_log_agf(
2712	xfs_trans_t	*tp,	/* transaction pointer */
2713	xfs_buf_t	*bp,	/* buffer for a.g. freelist header */
2714	int		fields)	/* mask of fields to be logged (XFS_AGF_...) */
2715{
2716	int	first;		/* first byte offset */
2717	int	last;		/* last byte offset */
2718	static const short	offsets[] = {
2719		offsetof(xfs_agf_t, agf_magicnum),
2720		offsetof(xfs_agf_t, agf_versionnum),
2721		offsetof(xfs_agf_t, agf_seqno),
2722		offsetof(xfs_agf_t, agf_length),
2723		offsetof(xfs_agf_t, agf_roots[0]),
2724		offsetof(xfs_agf_t, agf_levels[0]),
2725		offsetof(xfs_agf_t, agf_flfirst),
2726		offsetof(xfs_agf_t, agf_fllast),
2727		offsetof(xfs_agf_t, agf_flcount),
2728		offsetof(xfs_agf_t, agf_freeblks),
2729		offsetof(xfs_agf_t, agf_longest),
2730		offsetof(xfs_agf_t, agf_btreeblks),
2731		offsetof(xfs_agf_t, agf_uuid),
2732		offsetof(xfs_agf_t, agf_rmap_blocks),
2733		offsetof(xfs_agf_t, agf_refcount_blocks),
2734		offsetof(xfs_agf_t, agf_refcount_root),
2735		offsetof(xfs_agf_t, agf_refcount_level),
2736		/* needed so that we don't log the whole rest of the structure: */
2737		offsetof(xfs_agf_t, agf_spare64),
2738		sizeof(xfs_agf_t)
2739	};
2740
2741	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2742
2743	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2744
2745	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2746	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2747}
2748
2749/*
2750 * Interface for inode allocation to force the pag data to be initialized.
2751 */
2752int					/* error */
2753xfs_alloc_pagf_init(
2754	xfs_mount_t		*mp,	/* file system mount structure */
2755	xfs_trans_t		*tp,	/* transaction pointer */
2756	xfs_agnumber_t		agno,	/* allocation group number */
2757	int			flags)	/* XFS_ALLOC_FLAGS_... */
2758{
2759	xfs_buf_t		*bp;
2760	int			error;
2761
2762	error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp);
2763	if (!error)
2764		xfs_trans_brelse(tp, bp);
2765	return error;
2766}
2767
2768/*
2769 * Put the block on the freelist for the allocation group.
2770 */
2771int					/* error */
2772xfs_alloc_put_freelist(
2773	xfs_trans_t		*tp,	/* transaction pointer */
2774	xfs_buf_t		*agbp,	/* buffer for a.g. freelist header */
2775	xfs_buf_t		*agflbp,/* buffer for a.g. free block array */
2776	xfs_agblock_t		bno,	/* block being freed */
2777	int			btreeblk) /* block came from a AGF btree */
 
2778{
2779	struct xfs_mount	*mp = tp->t_mountp;
2780	struct xfs_agf		*agf = agbp->b_addr;
2781	__be32			*blockp;/* pointer to array entry */
2782	int			error;
2783	int			logflags;
2784	xfs_perag_t		*pag;	/* per allocation group data */
2785	__be32			*agfl_bno;
2786	int			startoff;
2787
2788	if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp,
2789			be32_to_cpu(agf->agf_seqno), &agflbp)))
2790		return error;
 
 
 
2791	be32_add_cpu(&agf->agf_fllast, 1);
2792	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2793		agf->agf_fllast = 0;
2794
2795	pag = agbp->b_pag;
2796	ASSERT(!pag->pagf_agflreset);
2797	be32_add_cpu(&agf->agf_flcount, 1);
2798	xfs_trans_agflist_delta(tp, 1);
2799	pag->pagf_flcount++;
2800
2801	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2802	if (btreeblk) {
2803		be32_add_cpu(&agf->agf_btreeblks, -1);
2804		pag->pagf_btreeblks--;
2805		logflags |= XFS_AGF_BTREEBLKS;
2806	}
2807
2808	xfs_alloc_log_agf(tp, agbp, logflags);
2809
2810	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2811
2812	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2813	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2814	*blockp = cpu_to_be32(bno);
2815	startoff = (char *)blockp - (char *)agflbp->b_addr;
2816
2817	xfs_alloc_log_agf(tp, agbp, logflags);
2818
2819	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2820	xfs_trans_log_buf(tp, agflbp, startoff,
2821			  startoff + sizeof(xfs_agblock_t) - 1);
2822	return 0;
2823}
2824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825static xfs_failaddr_t
2826xfs_agf_verify(
2827	struct xfs_buf		*bp)
2828{
2829	struct xfs_mount	*mp = bp->b_mount;
2830	struct xfs_agf		*agf = bp->b_addr;
 
 
 
2831
2832	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2833		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2834			return __this_address;
2835		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2836			return __this_address;
2837	}
2838
2839	if (!xfs_verify_magic(bp, agf->agf_magicnum))
2840		return __this_address;
2841
2842	if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2843	      be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2844	      be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2845	      be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2846	      be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2847		return __this_address;
2848
2849	if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
 
 
 
 
 
 
 
 
 
 
 
 
2850		return __this_address;
2851
2852	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2853	    be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2854		return __this_address;
2855
2856	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2857	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2858	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > XFS_BTREE_MAXLEVELS ||
2859	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > XFS_BTREE_MAXLEVELS)
2860		return __this_address;
2861
2862	if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2863	    (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2864	     be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > XFS_BTREE_MAXLEVELS))
2865		return __this_address;
2866
2867	if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2868	    be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2869		return __this_address;
2870
2871	/*
2872	 * during growfs operations, the perag is not fully initialised,
2873	 * so we can't use it for any useful checking. growfs ensures we can't
2874	 * use it by using uncached buffers that don't have the perag attached
2875	 * so we can detect and avoid this problem.
2876	 */
2877	if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2878		return __this_address;
2879
2880	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
2881	    be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2882		return __this_address;
2883
2884	if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2885	    be32_to_cpu(agf->agf_refcount_blocks) >
2886	    be32_to_cpu(agf->agf_length))
2887		return __this_address;
2888
2889	if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2890	    (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2891	     be32_to_cpu(agf->agf_refcount_level) > XFS_BTREE_MAXLEVELS))
2892		return __this_address;
2893
2894	return NULL;
2895
2896}
2897
2898static void
2899xfs_agf_read_verify(
2900	struct xfs_buf	*bp)
2901{
2902	struct xfs_mount *mp = bp->b_mount;
2903	xfs_failaddr_t	fa;
2904
2905	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2906	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
2907		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2908	else {
2909		fa = xfs_agf_verify(bp);
2910		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
2911			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2912	}
2913}
2914
2915static void
2916xfs_agf_write_verify(
2917	struct xfs_buf	*bp)
2918{
2919	struct xfs_mount	*mp = bp->b_mount;
2920	struct xfs_buf_log_item	*bip = bp->b_log_item;
2921	struct xfs_agf		*agf = bp->b_addr;
2922	xfs_failaddr_t		fa;
2923
2924	fa = xfs_agf_verify(bp);
2925	if (fa) {
2926		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2927		return;
2928	}
2929
2930	if (!xfs_sb_version_hascrc(&mp->m_sb))
2931		return;
2932
2933	if (bip)
2934		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2935
2936	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
2937}
2938
2939const struct xfs_buf_ops xfs_agf_buf_ops = {
2940	.name = "xfs_agf",
2941	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
2942	.verify_read = xfs_agf_read_verify,
2943	.verify_write = xfs_agf_write_verify,
2944	.verify_struct = xfs_agf_verify,
2945};
2946
2947/*
2948 * Read in the allocation group header (free/alloc section).
2949 */
2950int					/* error */
2951xfs_read_agf(
2952	struct xfs_mount	*mp,	/* mount point structure */
2953	struct xfs_trans	*tp,	/* transaction pointer */
2954	xfs_agnumber_t		agno,	/* allocation group number */
2955	int			flags,	/* XFS_BUF_ */
2956	struct xfs_buf		**bpp)	/* buffer for the ag freelist header */
2957{
2958	int		error;
 
2959
2960	trace_xfs_read_agf(mp, agno);
2961
2962	ASSERT(agno != NULLAGNUMBER);
2963	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2964			XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
2965			XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops);
 
 
2966	if (error)
2967		return error;
2968
2969	ASSERT(!(*bpp)->b_error);
2970	xfs_buf_set_ref(*bpp, XFS_AGF_REF);
2971	return 0;
2972}
2973
2974/*
2975 * Read in the allocation group header (free/alloc section).
 
 
2976 */
2977int					/* error */
2978xfs_alloc_read_agf(
2979	struct xfs_mount	*mp,	/* mount point structure */
2980	struct xfs_trans	*tp,	/* transaction pointer */
2981	xfs_agnumber_t		agno,	/* allocation group number */
2982	int			flags,	/* XFS_ALLOC_FLAG_... */
2983	struct xfs_buf		**bpp)	/* buffer for the ag freelist header */
2984{
2985	struct xfs_agf		*agf;		/* ag freelist header */
2986	struct xfs_perag	*pag;		/* per allocation group data */
2987	int			error;
 
2988
2989	trace_xfs_alloc_read_agf(mp, agno);
2990
2991	/* We don't support trylock when freeing. */
2992	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
2993			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
2994	ASSERT(agno != NULLAGNUMBER);
2995	error = xfs_read_agf(mp, tp, agno,
2996			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2997			bpp);
2998	if (error)
2999		return error;
3000	ASSERT(!(*bpp)->b_error);
3001
3002	agf = (*bpp)->b_addr;
3003	pag = (*bpp)->b_pag;
3004	if (!pag->pagf_init) {
3005		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3006		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3007		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3008		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3009		pag->pagf_levels[XFS_BTNUM_BNOi] =
3010			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3011		pag->pagf_levels[XFS_BTNUM_CNTi] =
3012			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3013		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3014			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3015		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3016		pag->pagf_init = 1;
3017		pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3018	}
3019#ifdef DEBUG
3020	else if (!XFS_FORCED_SHUTDOWN(mp)) {
3021		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3022		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3023		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3024		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3025		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3026		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3027		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3028		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3029	}
3030#endif
 
 
 
 
3031	return 0;
3032}
3033
3034/*
3035 * Allocate an extent (variable-size).
3036 * Depending on the allocation type, we either look in a single allocation
3037 * group or loop over the allocation groups to find the result.
3038 */
3039int				/* error */
3040xfs_alloc_vextent(
3041	struct xfs_alloc_arg	*args)	/* allocation argument structure */
 
 
3042{
3043	xfs_agblock_t		agsize;	/* allocation group size */
3044	int			error;
3045	int			flags;	/* XFS_ALLOC_FLAG_... locking flags */
3046	struct xfs_mount	*mp;	/* mount structure pointer */
3047	xfs_agnumber_t		sagno;	/* starting allocation group number */
3048	xfs_alloctype_t		type;	/* input allocation type */
3049	int			bump_rotor = 0;
3050	xfs_agnumber_t		rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3051
3052	mp = args->mp;
3053	type = args->otype = args->type;
3054	args->agbno = NULLAGBLOCK;
3055	/*
3056	 * Just fix this up, for the case where the last a.g. is shorter
3057	 * (or there's only one a.g.) and the caller couldn't easily figure
3058	 * that out (xfs_bmap_alloc).
3059	 */
3060	agsize = mp->m_sb.sb_agblocks;
3061	if (args->maxlen > agsize)
3062		args->maxlen = agsize;
3063	if (args->alignment == 0)
3064		args->alignment = 1;
3065	ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3066	ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
 
 
 
 
 
 
3067	ASSERT(args->minlen <= args->maxlen);
3068	ASSERT(args->minlen <= agsize);
3069	ASSERT(args->mod < args->prod);
3070	if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3071	    XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
 
3072	    args->minlen > args->maxlen || args->minlen > agsize ||
3073	    args->mod >= args->prod) {
3074		args->fsbno = NULLFSBLOCK;
3075		trace_xfs_alloc_vextent_badargs(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3076		return 0;
3077	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	switch (type) {
3080	case XFS_ALLOCTYPE_THIS_AG:
3081	case XFS_ALLOCTYPE_NEAR_BNO:
3082	case XFS_ALLOCTYPE_THIS_BNO:
3083		/*
3084		 * These three force us into a single a.g.
3085		 */
3086		args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3087		args->pag = xfs_perag_get(mp, args->agno);
3088		error = xfs_alloc_fix_freelist(args, 0);
3089		if (error) {
3090			trace_xfs_alloc_vextent_nofix(args);
3091			goto error0;
3092		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093		if (!args->agbp) {
3094			trace_xfs_alloc_vextent_noagbp(args);
3095			break;
3096		}
3097		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3098		if ((error = xfs_alloc_ag_vextent(args)))
3099			goto error0;
3100		break;
3101	case XFS_ALLOCTYPE_START_BNO:
3102		/*
3103		 * Try near allocation first, then anywhere-in-ag after
3104		 * the first a.g. fails.
3105		 */
3106		if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3107		    (mp->m_flags & XFS_MOUNT_32BITINODES)) {
3108			args->fsbno = XFS_AGB_TO_FSB(mp,
3109					((mp->m_agfrotor / rotorstep) %
3110					mp->m_sb.sb_agcount), 0);
3111			bump_rotor = 1;
3112		}
3113		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3114		args->type = XFS_ALLOCTYPE_NEAR_BNO;
3115		/* FALLTHROUGH */
3116	case XFS_ALLOCTYPE_FIRST_AG:
3117		/*
3118		 * Rotate through the allocation groups looking for a winner.
3119		 */
3120		if (type == XFS_ALLOCTYPE_FIRST_AG) {
3121			/*
3122			 * Start with allocation group given by bno.
3123			 */
3124			args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3125			args->type = XFS_ALLOCTYPE_THIS_AG;
3126			sagno = 0;
3127			flags = 0;
3128		} else {
3129			/*
3130			 * Start with the given allocation group.
3131			 */
3132			args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3133			flags = XFS_ALLOC_FLAG_TRYLOCK;
3134		}
3135		/*
3136		 * Loop over allocation groups twice; first time with
3137		 * trylock set, second time without.
3138		 */
3139		for (;;) {
3140			args->pag = xfs_perag_get(mp, args->agno);
3141			error = xfs_alloc_fix_freelist(args, flags);
3142			if (error) {
3143				trace_xfs_alloc_vextent_nofix(args);
3144				goto error0;
3145			}
3146			/*
3147			 * If we get a buffer back then the allocation will fly.
3148			 */
3149			if (args->agbp) {
3150				if ((error = xfs_alloc_ag_vextent(args)))
3151					goto error0;
3152				break;
3153			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154
3155			trace_xfs_alloc_vextent_loopfailed(args);
 
3156
3157			/*
3158			 * Didn't work, figure out the next iteration.
3159			 */
3160			if (args->agno == sagno &&
3161			    type == XFS_ALLOCTYPE_START_BNO)
3162				args->type = XFS_ALLOCTYPE_THIS_AG;
3163			/*
3164			* For the first allocation, we can try any AG to get
3165			* space.  However, if we already have allocated a
3166			* block, we don't want to try AGs whose number is below
3167			* sagno. Otherwise, we may end up with out-of-order
3168			* locking of AGF, which might cause deadlock.
3169			*/
3170			if (++(args->agno) == mp->m_sb.sb_agcount) {
3171				if (args->tp->t_firstblock != NULLFSBLOCK)
3172					args->agno = sagno;
3173				else
3174					args->agno = 0;
3175			}
3176			/*
3177			 * Reached the starting a.g., must either be done
3178			 * or switch to non-trylock mode.
3179			 */
3180			if (args->agno == sagno) {
3181				if (flags == 0) {
3182					args->agbno = NULLAGBLOCK;
3183					trace_xfs_alloc_vextent_allfailed(args);
3184					break;
3185				}
3186
3187				flags = 0;
3188				if (type == XFS_ALLOCTYPE_START_BNO) {
3189					args->agbno = XFS_FSB_TO_AGBNO(mp,
3190						args->fsbno);
3191					args->type = XFS_ALLOCTYPE_NEAR_BNO;
3192				}
3193			}
3194			xfs_perag_put(args->pag);
3195		}
3196		if (bump_rotor) {
3197			if (args->agno == sagno)
3198				mp->m_agfrotor = (mp->m_agfrotor + 1) %
3199					(mp->m_sb.sb_agcount * rotorstep);
3200			else
3201				mp->m_agfrotor = (args->agno * rotorstep + 1) %
3202					(mp->m_sb.sb_agcount * rotorstep);
3203		}
3204		break;
3205	default:
3206		ASSERT(0);
3207		/* NOTREACHED */
3208	}
3209	if (args->agbno == NULLAGBLOCK)
3210		args->fsbno = NULLFSBLOCK;
3211	else {
3212		args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3213#ifdef DEBUG
3214		ASSERT(args->len >= args->minlen);
3215		ASSERT(args->len <= args->maxlen);
3216		ASSERT(args->agbno % args->alignment == 0);
3217		XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3218			args->len);
3219#endif
3220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221	}
3222	xfs_perag_put(args->pag);
3223	return 0;
3224error0:
3225	xfs_perag_put(args->pag);
3226	return error;
 
 
 
 
3227}
3228
3229/* Ensure that the freelist is at full capacity. */
3230int
3231xfs_free_extent_fix_freelist(
3232	struct xfs_trans	*tp,
3233	xfs_agnumber_t		agno,
3234	struct xfs_buf		**agbp)
3235{
3236	struct xfs_alloc_arg	args;
3237	int			error;
3238
3239	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3240	args.tp = tp;
3241	args.mp = tp->t_mountp;
3242	args.agno = agno;
 
3243
3244	/*
3245	 * validate that the block number is legal - the enables us to detect
3246	 * and handle a silent filesystem corruption rather than crashing.
3247	 */
3248	if (args.agno >= args.mp->m_sb.sb_agcount)
3249		return -EFSCORRUPTED;
3250
3251	args.pag = xfs_perag_get(args.mp, args.agno);
3252	ASSERT(args.pag);
3253
3254	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3255	if (error)
3256		goto out;
3257
3258	*agbp = args.agbp;
3259out:
3260	xfs_perag_put(args.pag);
3261	return error;
3262}
3263
3264/*
3265 * Free an extent.
3266 * Just break up the extent address and hand off to xfs_free_ag_extent
3267 * after fixing up the freelist.
3268 */
3269int
3270__xfs_free_extent(
3271	struct xfs_trans		*tp,
3272	xfs_fsblock_t			bno,
 
3273	xfs_extlen_t			len,
3274	const struct xfs_owner_info	*oinfo,
3275	enum xfs_ag_resv_type		type,
3276	bool				skip_discard)
3277{
3278	struct xfs_mount		*mp = tp->t_mountp;
3279	struct xfs_buf			*agbp;
3280	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, bno);
3281	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp, bno);
3282	struct xfs_agf			*agf;
3283	int				error;
3284	unsigned int			busy_flags = 0;
3285
3286	ASSERT(len != 0);
3287	ASSERT(type != XFS_AG_RESV_AGFL);
3288
3289	if (XFS_TEST_ERROR(false, mp,
3290			XFS_ERRTAG_FREE_EXTENT))
3291		return -EIO;
3292
3293	error = xfs_free_extent_fix_freelist(tp, agno, &agbp);
3294	if (error)
 
 
3295		return error;
 
 
3296	agf = agbp->b_addr;
3297
3298	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
 
3299		error = -EFSCORRUPTED;
3300		goto err;
3301	}
3302
3303	/* validate the extent size is legal now we have the agf locked */
3304	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
 
3305		error = -EFSCORRUPTED;
3306		goto err;
3307	}
3308
3309	error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
 
3310	if (error)
3311		goto err;
3312
3313	if (skip_discard)
3314		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3315	xfs_extent_busy_insert(tp, agno, agbno, len, busy_flags);
3316	return 0;
3317
3318err:
3319	xfs_trans_brelse(tp, agbp);
3320	return error;
3321}
3322
3323struct xfs_alloc_query_range_info {
3324	xfs_alloc_query_range_fn	fn;
3325	void				*priv;
3326};
3327
3328/* Format btree record and pass to our callback. */
3329STATIC int
3330xfs_alloc_query_range_helper(
3331	struct xfs_btree_cur		*cur,
3332	union xfs_btree_rec		*rec,
3333	void				*priv)
3334{
3335	struct xfs_alloc_query_range_info	*query = priv;
3336	struct xfs_alloc_rec_incore		irec;
 
 
 
 
 
 
3337
3338	irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3339	irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3340	return query->fn(cur, &irec, query->priv);
3341}
3342
3343/* Find all free space within a given range of blocks. */
3344int
3345xfs_alloc_query_range(
3346	struct xfs_btree_cur			*cur,
3347	struct xfs_alloc_rec_incore		*low_rec,
3348	struct xfs_alloc_rec_incore		*high_rec,
3349	xfs_alloc_query_range_fn		fn,
3350	void					*priv)
3351{
3352	union xfs_btree_irec			low_brec;
3353	union xfs_btree_irec			high_brec;
3354	struct xfs_alloc_query_range_info	query;
3355
3356	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3357	low_brec.a = *low_rec;
3358	high_brec.a = *high_rec;
3359	query.priv = priv;
3360	query.fn = fn;
3361	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3362			xfs_alloc_query_range_helper, &query);
3363}
3364
3365/* Find all free space records. */
3366int
3367xfs_alloc_query_all(
3368	struct xfs_btree_cur			*cur,
3369	xfs_alloc_query_range_fn		fn,
3370	void					*priv)
3371{
3372	struct xfs_alloc_query_range_info	query;
3373
3374	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3375	query.priv = priv;
3376	query.fn = fn;
3377	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3378}
3379
3380/* Is there a record covering a given extent? */
 
 
 
3381int
3382xfs_alloc_has_record(
3383	struct xfs_btree_cur	*cur,
3384	xfs_agblock_t		bno,
3385	xfs_extlen_t		len,
3386	bool			*exists)
3387{
3388	union xfs_btree_irec	low;
3389	union xfs_btree_irec	high;
3390
3391	memset(&low, 0, sizeof(low));
3392	low.a.ar_startblock = bno;
3393	memset(&high, 0xFF, sizeof(high));
3394	high.a.ar_startblock = bno + len - 1;
3395
3396	return xfs_btree_has_record(cur, &low, &high, exists);
3397}
3398
3399/*
3400 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3401 * error code or XFS_ITER_*.
3402 */
3403int
3404xfs_agfl_walk(
3405	struct xfs_mount	*mp,
3406	struct xfs_agf		*agf,
3407	struct xfs_buf		*agflbp,
3408	xfs_agfl_walk_fn	walk_fn,
3409	void			*priv)
3410{
3411	__be32			*agfl_bno;
3412	unsigned int		i;
3413	int			error;
3414
3415	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3416	i = be32_to_cpu(agf->agf_flfirst);
3417
3418	/* Nothing to walk in an empty AGFL. */
3419	if (agf->agf_flcount == cpu_to_be32(0))
3420		return 0;
3421
3422	/* Otherwise, walk from first to last, wrapping as needed. */
3423	for (;;) {
3424		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3425		if (error)
3426			return error;
3427		if (i == be32_to_cpu(agf->agf_fllast))
3428			break;
3429		if (++i == xfs_agfl_size(mp))
3430			i = 0;
3431	}
3432
3433	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3434}