Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "ctree.h"
  18#include "disk-io.h"
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "async-thread.h"
  22#include "file-item.h"
  23#include "btrfs_inode.h"
  24
  25/* set when additional merges to this rbio are not allowed */
  26#define RBIO_RMW_LOCKED_BIT	1
  27
  28/*
  29 * set when this rbio is sitting in the hash, but it is just a cache
  30 * of past RMW
  31 */
  32#define RBIO_CACHE_BIT		2
  33
  34/*
  35 * set when it is safe to trust the stripe_pages for caching
  36 */
  37#define RBIO_CACHE_READY_BIT	3
  38
  39#define RBIO_CACHE_SIZE 1024
  40
  41#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  42
  43/* Used by the raid56 code to lock stripes for read/modify/write */
  44struct btrfs_stripe_hash {
  45	struct list_head hash_list;
  46	spinlock_t lock;
  47};
  48
  49/* Used by the raid56 code to lock stripes for read/modify/write */
  50struct btrfs_stripe_hash_table {
  51	struct list_head stripe_cache;
  52	spinlock_t cache_lock;
  53	int cache_size;
  54	struct btrfs_stripe_hash table[];
  55};
  56
  57/*
  58 * A bvec like structure to present a sector inside a page.
  59 *
  60 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
  61 */
  62struct sector_ptr {
  63	struct page *page;
  64	unsigned int pgoff:24;
  65	unsigned int uptodate:8;
  66};
  67
  68static void rmw_rbio_work(struct work_struct *work);
  69static void rmw_rbio_work_locked(struct work_struct *work);
  70static void index_rbio_pages(struct btrfs_raid_bio *rbio);
  71static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 
 
 
 
 
 
  72
  73static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
  74static void scrub_rbio_work_locked(struct work_struct *work);
 
 
  75
  76static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
  77{
  78	bitmap_free(rbio->error_bitmap);
  79	kfree(rbio->stripe_pages);
  80	kfree(rbio->bio_sectors);
  81	kfree(rbio->stripe_sectors);
  82	kfree(rbio->finish_pointers);
  83}
  84
  85static void free_raid_bio(struct btrfs_raid_bio *rbio)
  86{
  87	int i;
 
 
 
 
  88
  89	if (!refcount_dec_and_test(&rbio->refs))
  90		return;
 
 
 
 
 
  91
  92	WARN_ON(!list_empty(&rbio->stripe_cache));
  93	WARN_ON(!list_empty(&rbio->hash_list));
  94	WARN_ON(!bio_list_empty(&rbio->bio_list));
 
 
  95
  96	for (i = 0; i < rbio->nr_pages; i++) {
  97		if (rbio->stripe_pages[i]) {
  98			__free_page(rbio->stripe_pages[i]);
  99			rbio->stripe_pages[i] = NULL;
 100		}
 101	}
 102
 103	btrfs_put_bioc(rbio->bioc);
 104	free_raid_bio_pointers(rbio);
 105	kfree(rbio);
 106}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107
 108static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109{
 110	INIT_WORK(&rbio->work, work_func);
 111	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 112}
 113
 114/*
 115 * the stripe hash table is used for locking, and to collect
 116 * bios in hopes of making a full stripe
 117 */
 118int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 119{
 120	struct btrfs_stripe_hash_table *table;
 121	struct btrfs_stripe_hash_table *x;
 122	struct btrfs_stripe_hash *cur;
 123	struct btrfs_stripe_hash *h;
 124	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 125	int i;
 126
 127	if (info->stripe_hash_table)
 128		return 0;
 129
 130	/*
 131	 * The table is large, starting with order 4 and can go as high as
 132	 * order 7 in case lock debugging is turned on.
 133	 *
 134	 * Try harder to allocate and fallback to vmalloc to lower the chance
 135	 * of a failing mount.
 136	 */
 137	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 138	if (!table)
 139		return -ENOMEM;
 140
 141	spin_lock_init(&table->cache_lock);
 142	INIT_LIST_HEAD(&table->stripe_cache);
 143
 144	h = table->table;
 145
 146	for (i = 0; i < num_entries; i++) {
 147		cur = h + i;
 148		INIT_LIST_HEAD(&cur->hash_list);
 149		spin_lock_init(&cur->lock);
 150	}
 151
 152	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 153	kvfree(x);
 
 154	return 0;
 155}
 156
 157/*
 158 * caching an rbio means to copy anything from the
 159 * bio_sectors array into the stripe_pages array.  We
 160 * use the page uptodate bit in the stripe cache array
 161 * to indicate if it has valid data
 162 *
 163 * once the caching is done, we set the cache ready
 164 * bit.
 165 */
 166static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 167{
 168	int i;
 
 
 169	int ret;
 170
 171	ret = alloc_rbio_pages(rbio);
 172	if (ret)
 173		return;
 174
 175	for (i = 0; i < rbio->nr_sectors; i++) {
 176		/* Some range not covered by bio (partial write), skip it */
 177		if (!rbio->bio_sectors[i].page) {
 178			/*
 179			 * Even if the sector is not covered by bio, if it is
 180			 * a data sector it should still be uptodate as it is
 181			 * read from disk.
 182			 */
 183			if (i < rbio->nr_data * rbio->stripe_nsectors)
 184				ASSERT(rbio->stripe_sectors[i].uptodate);
 185			continue;
 186		}
 187
 188		ASSERT(rbio->stripe_sectors[i].page);
 189		memcpy_page(rbio->stripe_sectors[i].page,
 190			    rbio->stripe_sectors[i].pgoff,
 191			    rbio->bio_sectors[i].page,
 192			    rbio->bio_sectors[i].pgoff,
 193			    rbio->bioc->fs_info->sectorsize);
 194		rbio->stripe_sectors[i].uptodate = 1;
 
 195	}
 196	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 197}
 198
 199/*
 200 * we hash on the first logical address of the stripe
 201 */
 202static int rbio_bucket(struct btrfs_raid_bio *rbio)
 203{
 204	u64 num = rbio->bioc->full_stripe_logical;
 205
 206	/*
 207	 * we shift down quite a bit.  We're using byte
 208	 * addressing, and most of the lower bits are zeros.
 209	 * This tends to upset hash_64, and it consistently
 210	 * returns just one or two different values.
 211	 *
 212	 * shifting off the lower bits fixes things.
 213	 */
 214	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 215}
 216
 217static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 218				       unsigned int page_nr)
 219{
 220	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 221	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 222	int i;
 223
 224	ASSERT(page_nr < rbio->nr_pages);
 225
 226	for (i = sectors_per_page * page_nr;
 227	     i < sectors_per_page * page_nr + sectors_per_page;
 228	     i++) {
 229		if (!rbio->stripe_sectors[i].uptodate)
 230			return false;
 231	}
 232	return true;
 233}
 234
 235/*
 236 * Update the stripe_sectors[] array to use correct page and pgoff
 237 *
 238 * Should be called every time any page pointer in stripes_pages[] got modified.
 239 */
 240static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 241{
 242	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 243	u32 offset;
 244	int i;
 245
 246	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 247		int page_index = offset >> PAGE_SHIFT;
 248
 249		ASSERT(page_index < rbio->nr_pages);
 250		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 251		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 252	}
 253}
 254
 255static void steal_rbio_page(struct btrfs_raid_bio *src,
 256			    struct btrfs_raid_bio *dest, int page_nr)
 257{
 258	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 259	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 260	int i;
 261
 262	if (dest->stripe_pages[page_nr])
 263		__free_page(dest->stripe_pages[page_nr]);
 264	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 265	src->stripe_pages[page_nr] = NULL;
 266
 267	/* Also update the sector->uptodate bits. */
 268	for (i = sectors_per_page * page_nr;
 269	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 270		dest->stripe_sectors[i].uptodate = true;
 271}
 272
 273static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 274{
 275	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 276			      rbio->bioc->fs_info->sectorsize_bits;
 277
 278	/*
 279	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 280	 * we won't have a page which is half data half parity.
 281	 *
 282	 * Thus if the first sector of the page belongs to data stripes, then
 283	 * the full page belongs to data stripes.
 284	 */
 285	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 286}
 287
 288/*
 289 * Stealing an rbio means taking all the uptodate pages from the stripe array
 290 * in the source rbio and putting them into the destination rbio.
 291 *
 292 * This will also update the involved stripe_sectors[] which are referring to
 293 * the old pages.
 294 */
 295static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 296{
 297	int i;
 
 
 298
 299	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 300		return;
 301
 302	for (i = 0; i < dest->nr_pages; i++) {
 303		struct page *p = src->stripe_pages[i];
 304
 305		/*
 306		 * We don't need to steal P/Q pages as they will always be
 307		 * regenerated for RMW or full write anyway.
 308		 */
 309		if (!is_data_stripe_page(src, i))
 310			continue;
 
 311
 312		/*
 313		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 314		 * all data stripe pages present and uptodate.
 315		 */
 316		ASSERT(p);
 317		ASSERT(full_page_sectors_uptodate(src, i));
 318		steal_rbio_page(src, dest, i);
 319	}
 320	index_stripe_sectors(dest);
 321	index_stripe_sectors(src);
 322}
 323
 324/*
 325 * merging means we take the bio_list from the victim and
 326 * splice it into the destination.  The victim should
 327 * be discarded afterwards.
 328 *
 329 * must be called with dest->rbio_list_lock held
 330 */
 331static void merge_rbio(struct btrfs_raid_bio *dest,
 332		       struct btrfs_raid_bio *victim)
 333{
 334	bio_list_merge(&dest->bio_list, &victim->bio_list);
 335	dest->bio_list_bytes += victim->bio_list_bytes;
 336	/* Also inherit the bitmaps from @victim. */
 337	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 338		  dest->stripe_nsectors);
 339	bio_list_init(&victim->bio_list);
 340}
 341
 342/*
 343 * used to prune items that are in the cache.  The caller
 344 * must hold the hash table lock.
 345 */
 346static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 347{
 348	int bucket = rbio_bucket(rbio);
 349	struct btrfs_stripe_hash_table *table;
 350	struct btrfs_stripe_hash *h;
 351	int freeit = 0;
 352
 353	/*
 354	 * check the bit again under the hash table lock.
 355	 */
 356	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 357		return;
 358
 359	table = rbio->bioc->fs_info->stripe_hash_table;
 360	h = table->table + bucket;
 361
 362	/* hold the lock for the bucket because we may be
 363	 * removing it from the hash table
 364	 */
 365	spin_lock(&h->lock);
 366
 367	/*
 368	 * hold the lock for the bio list because we need
 369	 * to make sure the bio list is empty
 370	 */
 371	spin_lock(&rbio->bio_list_lock);
 372
 373	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 374		list_del_init(&rbio->stripe_cache);
 375		table->cache_size -= 1;
 376		freeit = 1;
 377
 378		/* if the bio list isn't empty, this rbio is
 379		 * still involved in an IO.  We take it out
 380		 * of the cache list, and drop the ref that
 381		 * was held for the list.
 382		 *
 383		 * If the bio_list was empty, we also remove
 384		 * the rbio from the hash_table, and drop
 385		 * the corresponding ref
 386		 */
 387		if (bio_list_empty(&rbio->bio_list)) {
 388			if (!list_empty(&rbio->hash_list)) {
 389				list_del_init(&rbio->hash_list);
 390				refcount_dec(&rbio->refs);
 391				BUG_ON(!list_empty(&rbio->plug_list));
 392			}
 393		}
 394	}
 395
 396	spin_unlock(&rbio->bio_list_lock);
 397	spin_unlock(&h->lock);
 398
 399	if (freeit)
 400		free_raid_bio(rbio);
 401}
 402
 403/*
 404 * prune a given rbio from the cache
 405 */
 406static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 407{
 408	struct btrfs_stripe_hash_table *table;
 
 409
 410	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 411		return;
 412
 413	table = rbio->bioc->fs_info->stripe_hash_table;
 414
 415	spin_lock(&table->cache_lock);
 416	__remove_rbio_from_cache(rbio);
 417	spin_unlock(&table->cache_lock);
 418}
 419
 420/*
 421 * remove everything in the cache
 422 */
 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 424{
 425	struct btrfs_stripe_hash_table *table;
 
 426	struct btrfs_raid_bio *rbio;
 427
 428	table = info->stripe_hash_table;
 429
 430	spin_lock(&table->cache_lock);
 431	while (!list_empty(&table->stripe_cache)) {
 432		rbio = list_entry(table->stripe_cache.next,
 433				  struct btrfs_raid_bio,
 434				  stripe_cache);
 435		__remove_rbio_from_cache(rbio);
 436	}
 437	spin_unlock(&table->cache_lock);
 438}
 439
 440/*
 441 * remove all cached entries and free the hash table
 442 * used by unmount
 443 */
 444void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 445{
 446	if (!info->stripe_hash_table)
 447		return;
 448	btrfs_clear_rbio_cache(info);
 449	kvfree(info->stripe_hash_table);
 450	info->stripe_hash_table = NULL;
 451}
 452
 453/*
 454 * insert an rbio into the stripe cache.  It
 455 * must have already been prepared by calling
 456 * cache_rbio_pages
 457 *
 458 * If this rbio was already cached, it gets
 459 * moved to the front of the lru.
 460 *
 461 * If the size of the rbio cache is too big, we
 462 * prune an item.
 463 */
 464static void cache_rbio(struct btrfs_raid_bio *rbio)
 465{
 466	struct btrfs_stripe_hash_table *table;
 
 467
 468	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 469		return;
 470
 471	table = rbio->bioc->fs_info->stripe_hash_table;
 472
 473	spin_lock(&table->cache_lock);
 474	spin_lock(&rbio->bio_list_lock);
 475
 476	/* bump our ref if we were not in the list before */
 477	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 478		refcount_inc(&rbio->refs);
 479
 480	if (!list_empty(&rbio->stripe_cache)){
 481		list_move(&rbio->stripe_cache, &table->stripe_cache);
 482	} else {
 483		list_add(&rbio->stripe_cache, &table->stripe_cache);
 484		table->cache_size += 1;
 485	}
 486
 487	spin_unlock(&rbio->bio_list_lock);
 488
 489	if (table->cache_size > RBIO_CACHE_SIZE) {
 490		struct btrfs_raid_bio *found;
 491
 492		found = list_entry(table->stripe_cache.prev,
 493				  struct btrfs_raid_bio,
 494				  stripe_cache);
 495
 496		if (found != rbio)
 497			__remove_rbio_from_cache(found);
 498	}
 499
 500	spin_unlock(&table->cache_lock);
 501}
 502
 503/*
 504 * helper function to run the xor_blocks api.  It is only
 505 * able to do MAX_XOR_BLOCKS at a time, so we need to
 506 * loop through.
 507 */
 508static void run_xor(void **pages, int src_cnt, ssize_t len)
 509{
 510	int src_off = 0;
 511	int xor_src_cnt = 0;
 512	void *dest = pages[src_cnt];
 513
 514	while(src_cnt > 0) {
 515		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 516		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 517
 518		src_cnt -= xor_src_cnt;
 519		src_off += xor_src_cnt;
 520	}
 521}
 522
 523/*
 524 * Returns true if the bio list inside this rbio covers an entire stripe (no
 525 * rmw required).
 526 */
 527static int rbio_is_full(struct btrfs_raid_bio *rbio)
 528{
 
 529	unsigned long size = rbio->bio_list_bytes;
 530	int ret = 1;
 531
 532	spin_lock(&rbio->bio_list_lock);
 533	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 534		ret = 0;
 535	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 536	spin_unlock(&rbio->bio_list_lock);
 537
 538	return ret;
 539}
 540
 541/*
 542 * returns 1 if it is safe to merge two rbios together.
 543 * The merging is safe if the two rbios correspond to
 544 * the same stripe and if they are both going in the same
 545 * direction (read vs write), and if neither one is
 546 * locked for final IO
 547 *
 548 * The caller is responsible for locking such that
 549 * rmw_locked is safe to test
 550 */
 551static int rbio_can_merge(struct btrfs_raid_bio *last,
 552			  struct btrfs_raid_bio *cur)
 553{
 554	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 555	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 556		return 0;
 557
 558	/*
 559	 * we can't merge with cached rbios, since the
 560	 * idea is that when we merge the destination
 561	 * rbio is going to run our IO for us.  We can
 562	 * steal from cached rbios though, other functions
 563	 * handle that.
 564	 */
 565	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 566	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 567		return 0;
 568
 569	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
 
 570		return 0;
 571
 572	/* we can't merge with different operations */
 573	if (last->operation != cur->operation)
 574		return 0;
 575	/*
 576	 * We've need read the full stripe from the drive.
 577	 * check and repair the parity and write the new results.
 578	 *
 579	 * We're not allowed to add any new bios to the
 580	 * bio list here, anyone else that wants to
 581	 * change this stripe needs to do their own rmw.
 582	 */
 583	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 584		return 0;
 585
 586	if (last->operation == BTRFS_RBIO_READ_REBUILD)
 587		return 0;
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589	return 1;
 590}
 591
 592static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 593					     unsigned int stripe_nr,
 594					     unsigned int sector_nr)
 595{
 596	ASSERT(stripe_nr < rbio->real_stripes);
 597	ASSERT(sector_nr < rbio->stripe_nsectors);
 598
 599	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 600}
 601
 602/* Return a sector from rbio->stripe_sectors, not from the bio list */
 603static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 604					     unsigned int stripe_nr,
 605					     unsigned int sector_nr)
 
 
 606{
 607	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 608							      sector_nr)];
 609}
 610
 611/* Grab a sector inside P stripe */
 612static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 613					      unsigned int sector_nr)
 
 614{
 615	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 616}
 617
 618/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 619static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 620					      unsigned int sector_nr)
 
 
 621{
 622	if (rbio->nr_data + 1 == rbio->real_stripes)
 623		return NULL;
 624	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 625}
 626
 627/*
 628 * The first stripe in the table for a logical address
 629 * has the lock.  rbios are added in one of three ways:
 630 *
 631 * 1) Nobody has the stripe locked yet.  The rbio is given
 632 * the lock and 0 is returned.  The caller must start the IO
 633 * themselves.
 634 *
 635 * 2) Someone has the stripe locked, but we're able to merge
 636 * with the lock owner.  The rbio is freed and the IO will
 637 * start automatically along with the existing rbio.  1 is returned.
 638 *
 639 * 3) Someone has the stripe locked, but we're not able to merge.
 640 * The rbio is added to the lock owner's plug list, or merged into
 641 * an rbio already on the plug list.  When the lock owner unlocks,
 642 * the next rbio on the list is run and the IO is started automatically.
 643 * 1 is returned
 644 *
 645 * If we return 0, the caller still owns the rbio and must continue with
 646 * IO submission.  If we return 1, the caller must assume the rbio has
 647 * already been freed.
 648 */
 649static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 650{
 651	struct btrfs_stripe_hash *h;
 652	struct btrfs_raid_bio *cur;
 653	struct btrfs_raid_bio *pending;
 
 654	struct btrfs_raid_bio *freeit = NULL;
 655	struct btrfs_raid_bio *cache_drop = NULL;
 656	int ret = 0;
 657
 658	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 659
 660	spin_lock(&h->lock);
 661	list_for_each_entry(cur, &h->hash_list, hash_list) {
 662		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
 663			continue;
 664
 665		spin_lock(&cur->bio_list_lock);
 666
 667		/* Can we steal this cached rbio's pages? */
 668		if (bio_list_empty(&cur->bio_list) &&
 669		    list_empty(&cur->plug_list) &&
 670		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 671		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 672			list_del_init(&cur->hash_list);
 673			refcount_dec(&cur->refs);
 674
 675			steal_rbio(cur, rbio);
 676			cache_drop = cur;
 677			spin_unlock(&cur->bio_list_lock);
 678
 679			goto lockit;
 680		}
 681
 682		/* Can we merge into the lock owner? */
 683		if (rbio_can_merge(cur, rbio)) {
 684			merge_rbio(cur, rbio);
 685			spin_unlock(&cur->bio_list_lock);
 686			freeit = rbio;
 687			ret = 1;
 688			goto out;
 689		}
 690
 691
 692		/*
 693		 * We couldn't merge with the running rbio, see if we can merge
 694		 * with the pending ones.  We don't have to check for rmw_locked
 695		 * because there is no way they are inside finish_rmw right now
 696		 */
 697		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 698			if (rbio_can_merge(pending, rbio)) {
 699				merge_rbio(pending, rbio);
 700				spin_unlock(&cur->bio_list_lock);
 701				freeit = rbio;
 702				ret = 1;
 703				goto out;
 704			}
 705		}
 706
 707		/*
 708		 * No merging, put us on the tail of the plug list, our rbio
 709		 * will be started with the currently running rbio unlocks
 710		 */
 711		list_add_tail(&rbio->plug_list, &cur->plug_list);
 712		spin_unlock(&cur->bio_list_lock);
 713		ret = 1;
 714		goto out;
 715	}
 716lockit:
 717	refcount_inc(&rbio->refs);
 718	list_add(&rbio->hash_list, &h->hash_list);
 719out:
 720	spin_unlock(&h->lock);
 721	if (cache_drop)
 722		remove_rbio_from_cache(cache_drop);
 723	if (freeit)
 724		free_raid_bio(freeit);
 725	return ret;
 726}
 727
 728static void recover_rbio_work_locked(struct work_struct *work);
 729
 730/*
 731 * called as rmw or parity rebuild is completed.  If the plug list has more
 732 * rbios waiting for this stripe, the next one on the list will be started
 733 */
 734static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 735{
 736	int bucket;
 737	struct btrfs_stripe_hash *h;
 
 738	int keep_cache = 0;
 739
 740	bucket = rbio_bucket(rbio);
 741	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 742
 743	if (list_empty(&rbio->plug_list))
 744		cache_rbio(rbio);
 745
 746	spin_lock(&h->lock);
 747	spin_lock(&rbio->bio_list_lock);
 748
 749	if (!list_empty(&rbio->hash_list)) {
 750		/*
 751		 * if we're still cached and there is no other IO
 752		 * to perform, just leave this rbio here for others
 753		 * to steal from later
 754		 */
 755		if (list_empty(&rbio->plug_list) &&
 756		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 757			keep_cache = 1;
 758			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 759			BUG_ON(!bio_list_empty(&rbio->bio_list));
 760			goto done;
 761		}
 762
 763		list_del_init(&rbio->hash_list);
 764		refcount_dec(&rbio->refs);
 765
 766		/*
 767		 * we use the plug list to hold all the rbios
 768		 * waiting for the chance to lock this stripe.
 769		 * hand the lock over to one of them.
 770		 */
 771		if (!list_empty(&rbio->plug_list)) {
 772			struct btrfs_raid_bio *next;
 773			struct list_head *head = rbio->plug_list.next;
 774
 775			next = list_entry(head, struct btrfs_raid_bio,
 776					  plug_list);
 777
 778			list_del_init(&rbio->plug_list);
 779
 780			list_add(&next->hash_list, &h->hash_list);
 781			refcount_inc(&next->refs);
 782			spin_unlock(&rbio->bio_list_lock);
 783			spin_unlock(&h->lock);
 784
 785			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
 786				start_async_work(next, recover_rbio_work_locked);
 
 
 
 787			} else if (next->operation == BTRFS_RBIO_WRITE) {
 788				steal_rbio(rbio, next);
 789				start_async_work(next, rmw_rbio_work_locked);
 790			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 791				steal_rbio(rbio, next);
 792				start_async_work(next, scrub_rbio_work_locked);
 793			}
 794
 795			goto done_nolock;
 796		}
 797	}
 798done:
 799	spin_unlock(&rbio->bio_list_lock);
 800	spin_unlock(&h->lock);
 801
 802done_nolock:
 803	if (!keep_cache)
 804		remove_rbio_from_cache(rbio);
 805}
 806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 808{
 809	struct bio *next;
 810
 811	while (cur) {
 812		next = cur->bi_next;
 813		cur->bi_next = NULL;
 814		cur->bi_status = err;
 815		bio_endio(cur);
 816		cur = next;
 817	}
 818}
 819
 820/*
 821 * this frees the rbio and runs through all the bios in the
 822 * bio_list and calls end_io on them
 823 */
 824static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 825{
 826	struct bio *cur = bio_list_get(&rbio->bio_list);
 827	struct bio *extra;
 828
 829	kfree(rbio->csum_buf);
 830	bitmap_free(rbio->csum_bitmap);
 831	rbio->csum_buf = NULL;
 832	rbio->csum_bitmap = NULL;
 833
 834	/*
 835	 * Clear the data bitmap, as the rbio may be cached for later usage.
 836	 * do this before before unlock_stripe() so there will be no new bio
 837	 * for this bio.
 838	 */
 839	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 840
 841	/*
 842	 * At this moment, rbio->bio_list is empty, however since rbio does not
 843	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 844	 * hash list, rbio may be merged with others so that rbio->bio_list
 845	 * becomes non-empty.
 846	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 847	 * more and we can call bio_endio() on all queued bios.
 848	 */
 849	unlock_stripe(rbio);
 850	extra = bio_list_get(&rbio->bio_list);
 851	free_raid_bio(rbio);
 852
 853	rbio_endio_bio_list(cur, err);
 854	if (extra)
 855		rbio_endio_bio_list(extra, err);
 856}
 857
 858/*
 859 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860 *
 861 * @rbio:               The raid bio
 862 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 863 * @sector_nr:		Sector number inside the stripe,
 864 *			valid range [0, stripe_nsectors)
 865 * @bio_list_only:      Whether to use sectors inside the bio list only.
 866 *
 867 * The read/modify/write code wants to reuse the original bio page as much
 868 * as possible, and only use stripe_sectors as fallback.
 869 */
 870static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 871					 int stripe_nr, int sector_nr,
 872					 bool bio_list_only)
 873{
 874	struct sector_ptr *sector;
 875	int index;
 876
 877	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 878	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 879
 880	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 881	ASSERT(index >= 0 && index < rbio->nr_sectors);
 
 882
 883	spin_lock(&rbio->bio_list_lock);
 884	sector = &rbio->bio_sectors[index];
 885	if (sector->page || bio_list_only) {
 886		/* Don't return sector without a valid page pointer */
 887		if (!sector->page)
 888			sector = NULL;
 889		spin_unlock(&rbio->bio_list_lock);
 890		return sector;
 891	}
 892	spin_unlock(&rbio->bio_list_lock);
 893
 894	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 895}
 896
 897/*
 898 * allocation and initial setup for the btrfs_raid_bio.  Not
 899 * this does not allocate any pages for rbio->pages.
 900 */
 901static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 902					 struct btrfs_io_context *bioc)
 
 903{
 904	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
 905	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 906	const unsigned int num_pages = stripe_npages * real_stripes;
 907	const unsigned int stripe_nsectors =
 908		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 909	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 910	struct btrfs_raid_bio *rbio;
 911
 912	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 913	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 914	/*
 915	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 916	 * (at most 16) should be no larger than BITS_PER_LONG.
 917	 */
 918	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 919
 920	/*
 921	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
 922	 * (limited by u8).
 923	 */
 924	ASSERT(real_stripes >= 2);
 925	ASSERT(real_stripes <= U8_MAX);
 926
 927	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 928	if (!rbio)
 929		return ERR_PTR(-ENOMEM);
 930	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 931				     GFP_NOFS);
 932	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 933				    GFP_NOFS);
 934	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 935				       GFP_NOFS);
 936	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 937	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 938
 939	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 940	    !rbio->finish_pointers || !rbio->error_bitmap) {
 941		free_raid_bio_pointers(rbio);
 942		kfree(rbio);
 943		return ERR_PTR(-ENOMEM);
 944	}
 945
 946	bio_list_init(&rbio->bio_list);
 947	init_waitqueue_head(&rbio->io_wait);
 948	INIT_LIST_HEAD(&rbio->plug_list);
 949	spin_lock_init(&rbio->bio_list_lock);
 950	INIT_LIST_HEAD(&rbio->stripe_cache);
 951	INIT_LIST_HEAD(&rbio->hash_list);
 952	btrfs_get_bioc(bioc);
 953	rbio->bioc = bioc;
 
 954	rbio->nr_pages = num_pages;
 955	rbio->nr_sectors = num_sectors;
 956	rbio->real_stripes = real_stripes;
 957	rbio->stripe_npages = stripe_npages;
 958	rbio->stripe_nsectors = stripe_nsectors;
 
 959	refcount_set(&rbio->refs, 1);
 
 960	atomic_set(&rbio->stripes_pending, 0);
 961
 962	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 963	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 964	ASSERT(rbio->nr_data > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965
 
 966	return rbio;
 967}
 968
 969/* allocate pages for all the stripes in the bio, including parity */
 970static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 971{
 972	int ret;
 
 973
 974	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
 975	if (ret < 0)
 976		return ret;
 977	/* Mapping all sectors */
 978	index_stripe_sectors(rbio);
 
 
 
 979	return 0;
 980}
 981
 982/* only allocate pages for p/q stripes */
 983static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 984{
 985	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 986	int ret;
 987
 988	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 989				     rbio->stripe_pages + data_pages, 0);
 990	if (ret < 0)
 991		return ret;
 992
 993	index_stripe_sectors(rbio);
 994	return 0;
 995}
 996
 997/*
 998 * Return the total number of errors found in the vertical stripe of @sector_nr.
 999 *
1000 * @faila and @failb will also be updated to the first and second stripe
1001 * number of the errors.
1002 */
1003static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1004				     int *faila, int *failb)
1005{
1006	int stripe_nr;
1007	int found_errors = 0;
1008
1009	if (faila || failb) {
1010		/*
1011		 * Both @faila and @failb should be valid pointers if any of
1012		 * them is specified.
1013		 */
1014		ASSERT(faila && failb);
1015		*faila = -1;
1016		*failb = -1;
1017	}
1018
1019	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1020		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1021
1022		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1023			found_errors++;
1024			if (faila) {
1025				/* Update faila and failb. */
1026				if (*faila < 0)
1027					*faila = stripe_nr;
1028				else if (*failb < 0)
1029					*failb = stripe_nr;
1030			}
1031		}
1032	}
1033	return found_errors;
1034}
1035
1036/*
1037 * Add a single sector @sector into our list of bios for IO.
1038 *
1039 * Return 0 if everything went well.
1040 * Return <0 for error.
1041 */
1042static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1043			      struct bio_list *bio_list,
1044			      struct sector_ptr *sector,
1045			      unsigned int stripe_nr,
1046			      unsigned int sector_nr,
1047			      enum req_op op)
1048{
1049	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1050	struct bio *last = bio_list->tail;
1051	int ret;
1052	struct bio *bio;
1053	struct btrfs_io_stripe *stripe;
1054	u64 disk_start;
1055
1056	/*
1057	 * Note: here stripe_nr has taken device replace into consideration,
1058	 * thus it can be larger than rbio->real_stripe.
1059	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1060	 */
1061	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1062	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1063	ASSERT(sector->page);
1064
1065	stripe = &rbio->bioc->stripes[stripe_nr];
1066	disk_start = stripe->physical + sector_nr * sectorsize;
1067
1068	/* if the device is missing, just fail this stripe */
1069	if (!stripe->dev->bdev) {
1070		int found_errors;
1071
1072		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1073			rbio->error_bitmap);
1074
1075		/* Check if we have reached tolerance early. */
1076		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1077							 NULL, NULL);
1078		if (found_errors > rbio->bioc->max_errors)
1079			return -EIO;
1080		return 0;
1081	}
1082
1083	/* see if we can add this page onto our existing bio */
1084	if (last) {
1085		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1086		last_end += last->bi_iter.bi_size;
1087
1088		/*
1089		 * we can't merge these if they are from different
1090		 * devices or if they are not contiguous
1091		 */
1092		if (last_end == disk_start && !last->bi_status &&
1093		    last->bi_bdev == stripe->dev->bdev) {
1094			ret = bio_add_page(last, sector->page, sectorsize,
1095					   sector->pgoff);
1096			if (ret == sectorsize)
1097				return 0;
1098		}
1099	}
1100
1101	/* put a new bio on the list */
1102	bio = bio_alloc(stripe->dev->bdev,
1103			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1104			op, GFP_NOFS);
1105	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1106	bio->bi_private = rbio;
1107
1108	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1109	bio_list_add(bio_list, bio);
1110	return 0;
1111}
1112
1113static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1114{
1115	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1116	struct bio_vec bvec;
1117	struct bvec_iter iter;
1118	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1119		     rbio->bioc->full_stripe_logical;
1120
1121	bio_for_each_segment(bvec, bio, iter) {
1122		u32 bvec_offset;
1123
1124		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1125		     bvec_offset += sectorsize, offset += sectorsize) {
1126			int index = offset / sectorsize;
1127			struct sector_ptr *sector = &rbio->bio_sectors[index];
1128
1129			sector->page = bvec.bv_page;
1130			sector->pgoff = bvec.bv_offset + bvec_offset;
1131			ASSERT(sector->pgoff < PAGE_SIZE);
1132		}
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
 
 
 
1147
1148	spin_lock(&rbio->bio_list_lock);
1149	bio_list_for_each(bio, &rbio->bio_list)
1150		index_one_bio(rbio, bio);
1151
1152	spin_unlock(&rbio->bio_list_lock);
1153}
1154
1155static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1156			       struct raid56_bio_trace_info *trace_info)
1157{
1158	const struct btrfs_io_context *bioc = rbio->bioc;
1159	int i;
1160
1161	ASSERT(bioc);
 
1162
1163	/* We rely on bio->bi_bdev to find the stripe number. */
1164	if (!bio->bi_bdev)
1165		goto not_found;
1166
1167	for (i = 0; i < bioc->num_stripes; i++) {
1168		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1169			continue;
1170		trace_info->stripe_nr = i;
1171		trace_info->devid = bioc->stripes[i].dev->devid;
1172		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1173				     bioc->stripes[i].physical;
1174		return;
1175	}
1176
1177not_found:
1178	trace_info->devid = -1;
1179	trace_info->offset = -1;
1180	trace_info->stripe_nr = -1;
1181}
1182
1183static inline void bio_list_put(struct bio_list *bio_list)
 
 
 
 
 
 
 
 
1184{
 
 
 
 
 
 
 
1185	struct bio *bio;
 
1186
1187	while ((bio = bio_list_pop(bio_list)))
1188		bio_put(bio);
1189}
1190
1191static void assert_rbio(struct btrfs_raid_bio *rbio)
1192{
1193	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1194	    !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1195		return;
 
1196
1197	/*
1198	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1199	 * we won't go beyond 256 disks anyway.
 
 
 
 
1200	 */
1201	ASSERT(rbio->real_stripes >= 2);
1202	ASSERT(rbio->nr_data > 0);
 
 
 
1203
1204	/*
1205	 * This is another check to make sure nr data stripes is smaller
1206	 * than total stripes.
 
 
 
 
 
1207	 */
1208	ASSERT(rbio->nr_data < rbio->real_stripes);
1209}
 
 
 
1210
1211/* Generate PQ for one vertical stripe. */
1212static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1213{
1214	void **pointers = rbio->finish_pointers;
1215	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1216	struct sector_ptr *sector;
1217	int stripe;
1218	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1219
1220	/* First collect one sector from each data stripe */
1221	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1222		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1223		pointers[stripe] = kmap_local_page(sector->page) +
1224				   sector->pgoff;
1225	}
1226
1227	/* Then add the parity stripe */
1228	sector = rbio_pstripe_sector(rbio, sectornr);
1229	sector->uptodate = 1;
1230	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1231
1232	if (has_qstripe) {
1233		/*
1234		 * RAID6, add the qstripe and call the library function
1235		 * to fill in our p/q
1236		 */
1237		sector = rbio_qstripe_sector(rbio, sectornr);
1238		sector->uptodate = 1;
1239		pointers[stripe++] = kmap_local_page(sector->page) +
1240				     sector->pgoff;
1241
1242		assert_rbio(rbio);
1243		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1244					pointers);
1245	} else {
1246		/* raid5 */
1247		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1248		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1249	}
1250	for (stripe = stripe - 1; stripe >= 0; stripe--)
1251		kunmap_local(pointers[stripe]);
1252}
1253
1254static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1255				   struct bio_list *bio_list)
1256{
1257	/* The total sector number inside the full stripe. */
1258	int total_sector_nr;
1259	int sectornr;
1260	int stripe;
1261	int ret;
1262
1263	ASSERT(bio_list_size(bio_list) == 0);
1264
1265	/* We should have at least one data sector. */
1266	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
 
1267
1268	/*
1269	 * Reset errors, as we may have errors inherited from from degraded
1270	 * write.
 
1271	 */
1272	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
 
 
 
 
 
1273
1274	/*
1275	 * Start assembly.  Make bios for everything from the higher layers (the
1276	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1277	 */
1278	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1279	     total_sector_nr++) {
1280		struct sector_ptr *sector;
1281
1282		stripe = total_sector_nr / rbio->stripe_nsectors;
1283		sectornr = total_sector_nr % rbio->stripe_nsectors;
1284
1285		/* This vertical stripe has no data, skip it. */
1286		if (!test_bit(sectornr, &rbio->dbitmap))
1287			continue;
1288
1289		if (stripe < rbio->nr_data) {
1290			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1291			if (!sector)
1292				continue;
1293		} else {
1294			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
 
 
 
 
 
 
 
1295		}
 
1296
1297		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1298					 sectornr, REQ_OP_WRITE);
1299		if (ret)
1300			goto error;
 
 
 
 
 
 
1301	}
 
1302
1303	if (likely(!rbio->bioc->replace_nr_stripes))
1304		return 0;
1305
1306	/*
1307	 * Make a copy for the replace target device.
1308	 *
1309	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1310	 */
1311	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1312
1313	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1314	     total_sector_nr++) {
1315		struct sector_ptr *sector;
 
 
 
 
 
 
 
 
1316
1317		stripe = total_sector_nr / rbio->stripe_nsectors;
1318		sectornr = total_sector_nr % rbio->stripe_nsectors;
1319
1320		/*
1321		 * For RAID56, there is only one device that can be replaced,
1322		 * and replace_stripe_src[0] indicates the stripe number we
1323		 * need to copy from.
1324		 */
1325		if (stripe != rbio->bioc->replace_stripe_src) {
1326			/*
1327			 * We can skip the whole stripe completely, note
1328			 * total_sector_nr will be increased by one anyway.
1329			 */
1330			ASSERT(sectornr == 0);
1331			total_sector_nr += rbio->stripe_nsectors - 1;
1332			continue;
1333		}
 
 
 
1334
1335		/* This vertical stripe has no data, skip it. */
1336		if (!test_bit(sectornr, &rbio->dbitmap))
1337			continue;
 
 
 
 
 
 
 
1338
1339		if (stripe < rbio->nr_data) {
1340			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1341			if (!sector)
1342				continue;
1343		} else {
1344			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1345		}
1346
1347		ret = rbio_add_io_sector(rbio, bio_list, sector,
1348					 rbio->real_stripes,
1349					 sectornr, REQ_OP_WRITE);
1350		if (ret)
1351			goto error;
1352	}
1353
1354	return 0;
1355error:
1356	bio_list_put(bio_list);
1357	return -EIO;
1358}
1359
1360static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
1361{
1362	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1363	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1364		     rbio->bioc->full_stripe_logical;
1365	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1366
1367	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1368
1369	bitmap_set(rbio->error_bitmap, total_nr_sector,
1370		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1371
1372	/*
1373	 * Special handling for raid56_alloc_missing_rbio() used by
1374	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1375	 * pass an empty bio here.  Thus we have to find out the missing device
1376	 * and mark the stripe error instead.
1377	 */
1378	if (bio->bi_iter.bi_size == 0) {
1379		bool found_missing = false;
1380		int stripe_nr;
1381
1382		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1383			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1384				found_missing = true;
1385				bitmap_set(rbio->error_bitmap,
1386					   stripe_nr * rbio->stripe_nsectors,
1387					   rbio->stripe_nsectors);
1388			}
1389		}
1390		ASSERT(found_missing);
1391	}
 
 
 
 
1392}
1393
1394/*
1395 * For subpage case, we can no longer set page Up-to-date directly for
1396 * stripe_pages[], thus we need to locate the sector.
1397 */
1398static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1399					     struct page *page,
1400					     unsigned int pgoff)
1401{
1402	int i;
1403
1404	for (i = 0; i < rbio->nr_sectors; i++) {
1405		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1406
1407		if (sector->page == page && sector->pgoff == pgoff)
1408			return sector;
1409	}
1410	return NULL;
1411}
1412
1413/*
1414 * this sets each page in the bio uptodate.  It should only be used on private
1415 * rbio pages, nothing that comes in from the higher layers
1416 */
1417static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1418{
1419	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1420	struct bio_vec *bvec;
1421	struct bvec_iter_all iter_all;
1422
1423	ASSERT(!bio_flagged(bio, BIO_CLONED));
1424
1425	bio_for_each_segment_all(bvec, bio, iter_all) {
1426		struct sector_ptr *sector;
1427		int pgoff;
1428
1429		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1430		     pgoff += sectorsize) {
1431			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1432			ASSERT(sector);
1433			if (sector)
1434				sector->uptodate = 1;
1435		}
1436	}
1437}
1438
1439static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
 
 
1440{
1441	struct bio_vec *bv = bio_first_bvec_all(bio);
1442	int i;
1443
1444	for (i = 0; i < rbio->nr_sectors; i++) {
1445		struct sector_ptr *sector;
 
 
1446
1447		sector = &rbio->stripe_sectors[i];
1448		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1449			break;
1450		sector = &rbio->bio_sectors[i];
1451		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1452			break;
1453	}
1454	ASSERT(i < rbio->nr_sectors);
1455	return i;
1456}
1457
1458static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1459{
1460	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1461	u32 bio_size = 0;
1462	struct bio_vec *bvec;
1463	int i;
1464
1465	bio_for_each_bvec_all(bvec, bio, i)
1466		bio_size += bvec->bv_len;
1467
1468	/*
1469	 * Since we can have multiple bios touching the error_bitmap, we cannot
1470	 * call bitmap_set() without protection.
1471	 *
1472	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1473	 */
1474	for (i = total_sector_nr; i < total_sector_nr +
1475	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1476		set_bit(i, rbio->error_bitmap);
 
 
 
1477}
1478
1479/* Verify the data sectors at read time. */
1480static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1481				    struct bio *bio)
 
 
1482{
1483	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1484	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1485	struct bio_vec *bvec;
1486	struct bvec_iter_all iter_all;
 
 
1487
1488	/* No data csum for the whole stripe, no need to verify. */
1489	if (!rbio->csum_bitmap || !rbio->csum_buf)
1490		return;
1491
1492	/* P/Q stripes, they have no data csum to verify against. */
1493	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1494		return;
1495
1496	bio_for_each_segment_all(bvec, bio, iter_all) {
1497		int bv_offset;
1498
1499		for (bv_offset = bvec->bv_offset;
1500		     bv_offset < bvec->bv_offset + bvec->bv_len;
1501		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1502			u8 csum_buf[BTRFS_CSUM_SIZE];
1503			u8 *expected_csum = rbio->csum_buf +
1504					    total_sector_nr * fs_info->csum_size;
1505			int ret;
 
 
 
 
 
 
 
 
 
 
1506
1507			/* No csum for this sector, skip to the next sector. */
1508			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
 
 
 
 
1509				continue;
1510
1511			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1512				bv_offset, csum_buf, expected_csum);
1513			if (ret < 0)
1514				set_bit(total_sector_nr, rbio->error_bitmap);
1515		}
1516	}
1517}
1518
1519static void raid_wait_read_end_io(struct bio *bio)
1520{
1521	struct btrfs_raid_bio *rbio = bio->bi_private;
1522
1523	if (bio->bi_status) {
1524		rbio_update_error_bitmap(rbio, bio);
1525	} else {
1526		set_bio_pages_uptodate(rbio, bio);
1527		verify_bio_data_sectors(rbio, bio);
 
 
 
 
1528	}
1529
1530	bio_put(bio);
1531	if (atomic_dec_and_test(&rbio->stripes_pending))
1532		wake_up(&rbio->io_wait);
1533}
1534
1535static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1536			     struct bio_list *bio_list)
1537{
1538	struct bio *bio;
1539
1540	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1541	while ((bio = bio_list_pop(bio_list))) {
1542		bio->bi_end_io = raid_wait_read_end_io;
1543
1544		if (trace_raid56_read_enabled()) {
1545			struct raid56_bio_trace_info trace_info = { 0 };
1546
1547			bio_get_trace_info(rbio, bio, &trace_info);
1548			trace_raid56_read(rbio, bio, &trace_info);
1549		}
1550		submit_bio(bio);
1551	}
 
 
 
 
 
1552
1553	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
 
 
 
1554}
1555
1556static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1557{
1558	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1559	int ret;
1560
1561	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1562	if (ret < 0)
 
1563		return ret;
 
1564
1565	index_stripe_sectors(rbio);
 
 
1566	return 0;
1567}
1568
1569/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570 * We use plugging call backs to collect full stripes.
1571 * Any time we get a partial stripe write while plugged
1572 * we collect it into a list.  When the unplug comes down,
1573 * we sort the list by logical block number and merge
1574 * everything we can into the same rbios
1575 */
1576struct btrfs_plug_cb {
1577	struct blk_plug_cb cb;
1578	struct btrfs_fs_info *info;
1579	struct list_head rbio_list;
 
1580};
1581
1582/*
1583 * rbios on the plug list are sorted for easier merging.
1584 */
1585static int plug_cmp(void *priv, const struct list_head *a,
1586		    const struct list_head *b)
1587{
1588	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1589						       plug_list);
1590	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1591						       plug_list);
1592	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1593	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1594
1595	if (a_sector < b_sector)
1596		return -1;
1597	if (a_sector > b_sector)
1598		return 1;
1599	return 0;
1600}
1601
1602static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1603{
1604	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1605	struct btrfs_raid_bio *cur;
1606	struct btrfs_raid_bio *last = NULL;
1607
 
 
 
 
 
1608	list_sort(NULL, &plug->rbio_list, plug_cmp);
1609
1610	while (!list_empty(&plug->rbio_list)) {
1611		cur = list_entry(plug->rbio_list.next,
1612				 struct btrfs_raid_bio, plug_list);
1613		list_del_init(&cur->plug_list);
1614
1615		if (rbio_is_full(cur)) {
1616			/* We have a full stripe, queue it down. */
1617			start_async_work(cur, rmw_rbio_work);
 
 
 
1618			continue;
1619		}
1620		if (last) {
1621			if (rbio_can_merge(last, cur)) {
1622				merge_rbio(last, cur);
1623				free_raid_bio(cur);
1624				continue;
 
1625			}
1626			start_async_work(last, rmw_rbio_work);
1627		}
1628		last = cur;
1629	}
1630	if (last)
1631		start_async_work(last, rmw_rbio_work);
 
1632	kfree(plug);
1633}
1634
1635/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1636static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
 
 
 
 
 
 
 
1637{
1638	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1639	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1640	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1641	const u32 orig_len = orig_bio->bi_iter.bi_size;
1642	const u32 sectorsize = fs_info->sectorsize;
1643	u64 cur_logical;
1644
1645	ASSERT(orig_logical >= full_stripe_start &&
1646	       orig_logical + orig_len <= full_stripe_start +
1647	       rbio->nr_data * BTRFS_STRIPE_LEN);
1648
1649	bio_list_add(&rbio->bio_list, orig_bio);
1650	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1651
1652	/* Update the dbitmap. */
1653	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1654	     cur_logical += sectorsize) {
1655		int bit = ((u32)(cur_logical - full_stripe_start) >>
1656			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1657
1658		set_bit(bit, &rbio->dbitmap);
 
 
 
 
1659	}
 
1660}
1661
1662/*
1663 * our main entry point for writes from the rest of the FS.
1664 */
1665void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
1666{
1667	struct btrfs_fs_info *fs_info = bioc->fs_info;
1668	struct btrfs_raid_bio *rbio;
1669	struct btrfs_plug_cb *plug = NULL;
1670	struct blk_plug_cb *cb;
 
1671
1672	rbio = alloc_rbio(fs_info, bioc);
1673	if (IS_ERR(rbio)) {
1674		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1675		bio_endio(bio);
1676		return;
1677	}
 
 
1678	rbio->operation = BTRFS_RBIO_WRITE;
1679	rbio_add_bio(rbio, bio);
 
 
1680
1681	/*
1682	 * Don't plug on full rbios, just get them out the door
1683	 * as quickly as we can
1684	 */
1685	if (!rbio_is_full(rbio)) {
1686		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1687		if (cb) {
1688			plug = container_of(cb, struct btrfs_plug_cb, cb);
1689			if (!plug->info) {
1690				plug->info = fs_info;
1691				INIT_LIST_HEAD(&plug->rbio_list);
1692			}
1693			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1694			return;
1695		}
1696	}
1697
1698	/*
1699	 * Either we don't have any existing plug, or we're doing a full stripe,
1700	 * queue the rmw work now.
1701	 */
1702	start_async_work(rbio, rmw_rbio_work);
1703}
1704
1705static int verify_one_sector(struct btrfs_raid_bio *rbio,
1706			     int stripe_nr, int sector_nr)
1707{
1708	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1709	struct sector_ptr *sector;
1710	u8 csum_buf[BTRFS_CSUM_SIZE];
1711	u8 *csum_expected;
1712	int ret;
1713
1714	if (!rbio->csum_bitmap || !rbio->csum_buf)
1715		return 0;
1716
1717	/* No way to verify P/Q as they are not covered by data csum. */
1718	if (stripe_nr >= rbio->nr_data)
1719		return 0;
1720	/*
1721	 * If we're rebuilding a read, we have to use pages from the
1722	 * bio list if possible.
1723	 */
1724	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1725		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1726	} else {
1727		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 
 
1728	}
1729
1730	ASSERT(sector->page);
1731
1732	csum_expected = rbio->csum_buf +
1733			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1734			fs_info->csum_size;
1735	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1736				      csum_buf, csum_expected);
1737	return ret;
1738}
1739
1740/*
1741 * Recover a vertical stripe specified by @sector_nr.
1742 * @*pointers are the pre-allocated pointers by the caller, so we don't
1743 * need to allocate/free the pointers again and again.
1744 */
1745static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1746			    void **pointers, void **unmap_array)
1747{
1748	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1749	struct sector_ptr *sector;
1750	const u32 sectorsize = fs_info->sectorsize;
1751	int found_errors;
1752	int faila;
1753	int failb;
1754	int stripe_nr;
1755	int ret = 0;
1756
1757	/*
1758	 * Now we just use bitmap to mark the horizontal stripes in
1759	 * which we have data when doing parity scrub.
1760	 */
1761	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1762	    !test_bit(sector_nr, &rbio->dbitmap))
1763		return 0;
1764
1765	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1766						 &failb);
1767	/*
1768	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1769	 * which only part of a stripe failed csum check.
1770	 */
1771	if (!found_errors)
1772		return 0;
1773
1774	if (found_errors > rbio->bioc->max_errors)
1775		return -EIO;
 
 
 
 
1776
1777	/*
1778	 * Setup our array of pointers with sectors from each stripe
1779	 *
1780	 * NOTE: store a duplicate array of pointers to preserve the
1781	 * pointer order.
1782	 */
1783	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1784		/*
1785		 * If we're rebuilding a read, we have to use pages from the
1786		 * bio list if possible.
1787		 */
1788		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1789			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1790		} else {
1791			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1792		}
1793		ASSERT(sector->page);
1794		pointers[stripe_nr] = kmap_local_page(sector->page) +
1795				   sector->pgoff;
1796		unmap_array[stripe_nr] = pointers[stripe_nr];
1797	}
1798
1799	/* All raid6 handling here */
1800	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1801		/* Single failure, rebuild from parity raid5 style */
1802		if (failb < 0) {
1803			if (faila == rbio->nr_data)
1804				/*
1805				 * Just the P stripe has failed, without
1806				 * a bad data or Q stripe.
1807				 * We have nothing to do, just skip the
1808				 * recovery for this stripe.
1809				 */
1810				goto cleanup;
1811			/*
1812			 * a single failure in raid6 is rebuilt
1813			 * in the pstripe code below
1814			 */
1815			goto pstripe;
 
 
 
 
 
 
 
1816		}
1817
1818		/*
1819		 * If the q stripe is failed, do a pstripe reconstruction from
1820		 * the xors.
1821		 * If both the q stripe and the P stripe are failed, we're
1822		 * here due to a crc mismatch and we can't give them the
1823		 * data they want.
1824		 */
1825		if (failb == rbio->real_stripes - 1) {
1826			if (faila == rbio->real_stripes - 2)
 
 
 
 
 
 
 
1827				/*
1828				 * Only P and Q are corrupted.
1829				 * We only care about data stripes recovery,
1830				 * can skip this vertical stripe.
1831				 */
1832				goto cleanup;
1833			/*
1834			 * Otherwise we have one bad data stripe and
1835			 * a good P stripe.  raid5!
 
 
 
 
 
 
 
 
1836			 */
1837			goto pstripe;
1838		}
 
 
 
 
 
 
 
 
 
 
1839
1840		if (failb == rbio->real_stripes - 2) {
1841			raid6_datap_recov(rbio->real_stripes, sectorsize,
1842					  faila, pointers);
 
 
 
 
 
1843		} else {
1844			raid6_2data_recov(rbio->real_stripes, sectorsize,
1845					  faila, failb, pointers);
1846		}
1847	} else {
1848		void *p;
1849
1850		/* Rebuild from P stripe here (raid5 or raid6). */
1851		ASSERT(failb == -1);
1852pstripe:
1853		/* Copy parity block into failed block to start with */
1854		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1855
1856		/* Rearrange the pointer array */
1857		p = pointers[faila];
1858		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1859		     stripe_nr++)
1860			pointers[stripe_nr] = pointers[stripe_nr + 1];
1861		pointers[rbio->nr_data - 1] = p;
1862
1863		/* Xor in the rest */
1864		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866	}
1867
 
 
 
 
 
1868	/*
1869	 * No matter if this is a RMW or recovery, we should have all
1870	 * failed sectors repaired in the vertical stripe, thus they are now
1871	 * uptodate.
1872	 * Especially if we determine to cache the rbio, we need to
1873	 * have at least all data sectors uptodate.
1874	 *
1875	 * If possible, also check if the repaired sector matches its data
1876	 * checksum.
1877	 */
1878	if (faila >= 0) {
1879		ret = verify_one_sector(rbio, faila, sector_nr);
1880		if (ret < 0)
1881			goto cleanup;
1882
1883		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1884		sector->uptodate = 1;
1885	}
1886	if (failb >= 0) {
1887		ret = verify_one_sector(rbio, failb, sector_nr);
1888		if (ret < 0)
1889			goto cleanup;
 
 
 
 
 
 
 
 
 
1890
1891		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1892		sector->uptodate = 1;
 
 
 
 
 
 
 
 
 
 
 
1893	}
1894
1895cleanup:
1896	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1897		kunmap_local(unmap_array[stripe_nr]);
1898	return ret;
1899}
1900
1901static int recover_sectors(struct btrfs_raid_bio *rbio)
 
 
 
 
1902{
1903	void **pointers = NULL;
1904	void **unmap_array = NULL;
1905	int sectornr;
1906	int ret = 0;
1907
1908	/*
1909	 * @pointers array stores the pointer for each sector.
1910	 *
1911	 * @unmap_array stores copy of pointers that does not get reordered
1912	 * during reconstruction so that kunmap_local works.
1913	 */
1914	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1915	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1916	if (!pointers || !unmap_array) {
1917		ret = -ENOMEM;
1918		goto out;
1919	}
1920
1921	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1922		spin_lock(&rbio->bio_list_lock);
1923		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1924		spin_unlock(&rbio->bio_list_lock);
1925	}
1926
1927	index_rbio_pages(rbio);
1928
1929	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1930		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1931		if (ret < 0)
1932			break;
1933	}
1934
1935out:
1936	kfree(pointers);
1937	kfree(unmap_array);
1938	return ret;
1939}
1940
1941static void recover_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
1942{
1943	struct bio_list bio_list = BIO_EMPTY_LIST;
1944	int total_sector_nr;
1945	int ret = 0;
 
 
 
1946
1947	/*
1948	 * Either we're doing recover for a read failure or degraded write,
1949	 * caller should have set error bitmap correctly.
1950	 */
1951	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1952
1953	/* For recovery, we need to read all sectors including P/Q. */
1954	ret = alloc_rbio_pages(rbio);
1955	if (ret < 0)
1956		goto out;
1957
1958	index_rbio_pages(rbio);
1959
1960	/*
1961	 * Read everything that hasn't failed. However this time we will
1962	 * not trust any cached sector.
1963	 * As we may read out some stale data but higher layer is not reading
1964	 * that stale part.
1965	 *
1966	 * So here we always re-read everything in recovery path.
1967	 */
1968	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1969	     total_sector_nr++) {
1970		int stripe = total_sector_nr / rbio->stripe_nsectors;
1971		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1972		struct sector_ptr *sector;
 
 
 
1973
1974		/*
1975		 * Skip the range which has error.  It can be a range which is
1976		 * marked error (for csum mismatch), or it can be a missing
1977		 * device.
1978		 */
1979		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1980		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1981			/*
1982			 * Also set the error bit for missing device, which
1983			 * may not yet have its error bit set.
1984			 */
1985			set_bit(total_sector_nr, rbio->error_bitmap);
1986			continue;
1987		}
1988
1989		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1990		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1991					 sectornr, REQ_OP_READ);
1992		if (ret < 0) {
1993			bio_list_put(&bio_list);
1994			goto out;
1995		}
1996	}
1997
1998	submit_read_wait_bio_list(rbio, &bio_list);
1999	ret = recover_sectors(rbio);
2000out:
2001	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2002}
2003
2004static void recover_rbio_work(struct work_struct *work)
2005{
2006	struct btrfs_raid_bio *rbio;
2007
2008	rbio = container_of(work, struct btrfs_raid_bio, work);
2009	if (!lock_stripe_add(rbio))
2010		recover_rbio(rbio);
2011}
2012
2013static void recover_rbio_work_locked(struct work_struct *work)
2014{
2015	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2016}
2017
2018static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2019{
2020	bool found = false;
2021	int sector_nr;
2022
2023	/*
2024	 * This is for RAID6 extra recovery tries, thus mirror number should
2025	 * be large than 2.
2026	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2027	 * RAID5 methods.
2028	 */
2029	ASSERT(mirror_num > 2);
2030	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2031		int found_errors;
2032		int faila;
2033		int failb;
2034
2035		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2036							 &faila, &failb);
2037		/* This vertical stripe doesn't have errors. */
2038		if (!found_errors)
2039			continue;
2040
2041		/*
2042		 * If we found errors, there should be only one error marked
2043		 * by previous set_rbio_range_error().
2044		 */
2045		ASSERT(found_errors == 1);
2046		found = true;
2047
2048		/* Now select another stripe to mark as error. */
2049		failb = rbio->real_stripes - (mirror_num - 1);
2050		if (failb <= faila)
2051			failb--;
2052
2053		/* Set the extra bit in error bitmap. */
2054		if (failb >= 0)
2055			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2056				rbio->error_bitmap);
2057	}
2058
2059	/* We should found at least one vertical stripe with error.*/
2060	ASSERT(found);
 
 
 
 
 
 
 
 
 
2061}
2062
2063/*
2064 * the main entry point for reads from the higher layers.  This
2065 * is really only called when the normal read path had a failure,
2066 * so we assume the bio they send down corresponds to a failed part
2067 * of the drive.
2068 */
2069void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2070			   int mirror_num)
 
2071{
2072	struct btrfs_fs_info *fs_info = bioc->fs_info;
2073	struct btrfs_raid_bio *rbio;
2074
2075	rbio = alloc_rbio(fs_info, bioc);
2076	if (IS_ERR(rbio)) {
2077		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2078		bio_endio(bio);
2079		return;
2080	}
2081
2082	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2083	rbio_add_bio(rbio, bio);
2084
2085	set_rbio_range_error(rbio, bio);
2086
2087	/*
2088	 * Loop retry:
2089	 * for 'mirror == 2', reconstruct from all other stripes.
2090	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2091	 */
2092	if (mirror_num > 2)
2093		set_rbio_raid6_extra_error(rbio, mirror_num);
2094
2095	start_async_work(rbio, recover_rbio_work);
2096}
2097
2098static void fill_data_csums(struct btrfs_raid_bio *rbio)
2099{
2100	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2101	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2102						       rbio->bioc->full_stripe_logical);
2103	const u64 start = rbio->bioc->full_stripe_logical;
2104	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2105			fs_info->sectorsize_bits;
2106	int ret;
2107
2108	/* The rbio should not have its csum buffer initialized. */
2109	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2110
2111	/*
2112	 * Skip the csum search if:
2113	 *
2114	 * - The rbio doesn't belong to data block groups
2115	 *   Then we are doing IO for tree blocks, no need to search csums.
2116	 *
2117	 * - The rbio belongs to mixed block groups
2118	 *   This is to avoid deadlock, as we're already holding the full
2119	 *   stripe lock, if we trigger a metadata read, and it needs to do
2120	 *   raid56 recovery, we will deadlock.
2121	 */
2122	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2123	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2124		return;
2125
2126	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2127				 fs_info->csum_size, GFP_NOFS);
2128	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2129					  GFP_NOFS);
2130	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2131		ret = -ENOMEM;
2132		goto error;
2133	}
2134
2135	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2136					rbio->csum_buf, rbio->csum_bitmap);
2137	if (ret < 0)
2138		goto error;
2139	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2140		goto no_csum;
2141	return;
2142
2143error:
2144	/*
2145	 * We failed to allocate memory or grab the csum, but it's not fatal,
2146	 * we can still continue.  But better to warn users that RMW is no
2147	 * longer safe for this particular sub-stripe write.
2148	 */
2149	btrfs_warn_rl(fs_info,
2150"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2151			rbio->bioc->full_stripe_logical, ret);
2152no_csum:
2153	kfree(rbio->csum_buf);
2154	bitmap_free(rbio->csum_bitmap);
2155	rbio->csum_buf = NULL;
2156	rbio->csum_bitmap = NULL;
2157}
2158
2159static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2160{
2161	struct bio_list bio_list = BIO_EMPTY_LIST;
2162	int total_sector_nr;
2163	int ret = 0;
2164
2165	/*
2166	 * Fill the data csums we need for data verification.  We need to fill
2167	 * the csum_bitmap/csum_buf first, as our endio function will try to
2168	 * verify the data sectors.
2169	 */
2170	fill_data_csums(rbio);
2171
2172	/*
2173	 * Build a list of bios to read all sectors (including data and P/Q).
2174	 *
2175	 * This behavior is to compensate the later csum verification and recovery.
2176	 */
2177	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2178	     total_sector_nr++) {
2179		struct sector_ptr *sector;
2180		int stripe = total_sector_nr / rbio->stripe_nsectors;
2181		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2182
2183		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2184		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2185			       stripe, sectornr, REQ_OP_READ);
2186		if (ret) {
2187			bio_list_put(&bio_list);
2188			return ret;
2189		}
2190	}
2191
2192	/*
2193	 * We may or may not have any corrupted sectors (including missing dev
2194	 * and csum mismatch), just let recover_sectors() to handle them all.
2195	 */
2196	submit_read_wait_bio_list(rbio, &bio_list);
2197	return recover_sectors(rbio);
2198}
2199
2200static void raid_wait_write_end_io(struct bio *bio)
2201{
2202	struct btrfs_raid_bio *rbio = bio->bi_private;
2203	blk_status_t err = bio->bi_status;
2204
2205	if (err)
2206		rbio_update_error_bitmap(rbio, bio);
2207	bio_put(bio);
2208	if (atomic_dec_and_test(&rbio->stripes_pending))
2209		wake_up(&rbio->io_wait);
2210}
2211
2212static void submit_write_bios(struct btrfs_raid_bio *rbio,
2213			      struct bio_list *bio_list)
2214{
2215	struct bio *bio;
2216
2217	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2218	while ((bio = bio_list_pop(bio_list))) {
2219		bio->bi_end_io = raid_wait_write_end_io;
2220
2221		if (trace_raid56_write_enabled()) {
2222			struct raid56_bio_trace_info trace_info = { 0 };
2223
2224			bio_get_trace_info(rbio, bio, &trace_info);
2225			trace_raid56_write(rbio, bio, &trace_info);
2226		}
2227		submit_bio(bio);
 
 
 
 
 
 
2228	}
2229}
2230
2231/*
2232 * To determine if we need to read any sector from the disk.
2233 * Should only be utilized in RMW path, to skip cached rbio.
2234 */
2235static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2236{
2237	int i;
2238
2239	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2240		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2241
2242		/*
2243		 * We have a sector which doesn't have page nor uptodate,
2244		 * thus this rbio can not be cached one, as cached one must
2245		 * have all its data sectors present and uptodate.
2246		 */
2247		if (!sector->page || !sector->uptodate)
2248			return true;
2249	}
2250	return false;
2251}
2252
2253static void rmw_rbio(struct btrfs_raid_bio *rbio)
2254{
2255	struct bio_list bio_list;
2256	int sectornr;
2257	int ret = 0;
2258
2259	/*
2260	 * Allocate the pages for parity first, as P/Q pages will always be
2261	 * needed for both full-stripe and sub-stripe writes.
2262	 */
2263	ret = alloc_rbio_parity_pages(rbio);
2264	if (ret < 0)
2265		goto out;
2266
2267	/*
2268	 * Either full stripe write, or we have every data sector already
2269	 * cached, can go to write path immediately.
 
2270	 */
2271	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2272		/*
2273		 * Now we're doing sub-stripe write, also need all data stripes
2274		 * to do the full RMW.
 
2275		 */
2276		ret = alloc_rbio_data_pages(rbio);
2277		if (ret < 0)
2278			goto out;
2279
2280		index_rbio_pages(rbio);
2281
2282		ret = rmw_read_wait_recover(rbio);
2283		if (ret < 0)
2284			goto out;
2285	}
2286
 
 
2287	/*
2288	 * At this stage we're not allowed to add any new bios to the
2289	 * bio list any more, anyone else that wants to change this stripe
2290	 * needs to do their own rmw.
 
 
2291	 */
2292	spin_lock(&rbio->bio_list_lock);
2293	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2294	spin_unlock(&rbio->bio_list_lock);
2295
2296	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2297
2298	index_rbio_pages(rbio);
2299
2300	/*
2301	 * We don't cache full rbios because we're assuming
2302	 * the higher layers are unlikely to use this area of
2303	 * the disk again soon.  If they do use it again,
2304	 * hopefully they will send another full bio.
2305	 */
2306	if (!rbio_is_full(rbio))
2307		cache_rbio_pages(rbio);
2308	else
2309		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2310
2311	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2312		generate_pq_vertical(rbio, sectornr);
2313
2314	bio_list_init(&bio_list);
2315	ret = rmw_assemble_write_bios(rbio, &bio_list);
2316	if (ret < 0)
2317		goto out;
2318
2319	/* We should have at least one bio assembled. */
2320	ASSERT(bio_list_size(&bio_list));
2321	submit_write_bios(rbio, &bio_list);
2322	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2323
2324	/* We may have more errors than our tolerance during the read. */
2325	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2326		int found_errors;
2327
2328		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2329		if (found_errors > rbio->bioc->max_errors) {
2330			ret = -EIO;
2331			break;
2332		}
2333	}
2334out:
2335	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2336}
2337
2338static void rmw_rbio_work(struct work_struct *work)
2339{
2340	struct btrfs_raid_bio *rbio;
2341
2342	rbio = container_of(work, struct btrfs_raid_bio, work);
2343	if (lock_stripe_add(rbio) == 0)
2344		rmw_rbio(rbio);
2345}
2346
2347static void rmw_rbio_work_locked(struct work_struct *work)
2348{
2349	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
2350}
2351
2352/*
2353 * The following code is used to scrub/replace the parity stripe
2354 *
2355 * Caller must have already increased bio_counter for getting @bioc.
2356 *
2357 * Note: We need make sure all the pages that add into the scrub/replace
2358 * raid bio are correct and not be changed during the scrub/replace. That
2359 * is those pages just hold metadata or file data with checksum.
2360 */
2361
2362struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2363				struct btrfs_io_context *bioc,
2364				struct btrfs_device *scrub_dev,
2365				unsigned long *dbitmap, int stripe_nsectors)
 
2366{
2367	struct btrfs_fs_info *fs_info = bioc->fs_info;
2368	struct btrfs_raid_bio *rbio;
2369	int i;
2370
2371	rbio = alloc_rbio(fs_info, bioc);
2372	if (IS_ERR(rbio))
2373		return NULL;
2374	bio_list_add(&rbio->bio_list, bio);
2375	/*
2376	 * This is a special bio which is used to hold the completion handler
2377	 * and make the scrub rbio is similar to the other types
2378	 */
2379	ASSERT(!bio->bi_iter.bi_size);
2380	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2381
2382	/*
2383	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2384	 * to the end position, so this search can start from the first parity
2385	 * stripe.
2386	 */
2387	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2388		if (bioc->stripes[i].dev == scrub_dev) {
2389			rbio->scrubp = i;
2390			break;
2391		}
2392	}
2393	ASSERT(i < rbio->real_stripes);
2394
2395	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 
 
 
 
 
 
 
 
 
 
2396	return rbio;
2397}
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399/*
2400 * We just scrub the parity that we have correct data on the same horizontal,
2401 * so we needn't allocate all pages for all the stripes.
2402 */
2403static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2404{
2405	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2406	int total_sector_nr;
 
 
2407
2408	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2409	     total_sector_nr++) {
2410		struct page *page;
2411		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2412		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2413
2414		if (!test_bit(sectornr, &rbio->dbitmap))
2415			continue;
2416		if (rbio->stripe_pages[index])
2417			continue;
2418		page = alloc_page(GFP_NOFS);
2419		if (!page)
2420			return -ENOMEM;
2421		rbio->stripe_pages[index] = page;
2422	}
2423	index_stripe_sectors(rbio);
2424	return 0;
2425}
2426
2427static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
 
2428{
2429	struct btrfs_io_context *bioc = rbio->bioc;
2430	const u32 sectorsize = bioc->fs_info->sectorsize;
2431	void **pointers = rbio->finish_pointers;
2432	unsigned long *pbitmap = &rbio->finish_pbitmap;
2433	int nr_data = rbio->nr_data;
2434	int stripe;
2435	int sectornr;
2436	bool has_qstripe;
2437	struct sector_ptr p_sector = { 0 };
2438	struct sector_ptr q_sector = { 0 };
2439	struct bio_list bio_list;
 
2440	int is_replace = 0;
2441	int ret;
2442
2443	bio_list_init(&bio_list);
2444
2445	if (rbio->real_stripes - rbio->nr_data == 1)
2446		has_qstripe = false;
2447	else if (rbio->real_stripes - rbio->nr_data == 2)
2448		has_qstripe = true;
2449	else
2450		BUG();
2451
2452	/*
2453	 * Replace is running and our P/Q stripe is being replaced, then we
2454	 * need to duplicate the final write to replace target.
2455	 */
2456	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2457		is_replace = 1;
2458		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2459	}
2460
2461	/*
2462	 * Because the higher layers(scrubber) are unlikely to
2463	 * use this area of the disk again soon, so don't cache
2464	 * it.
2465	 */
2466	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2467
2468	p_sector.page = alloc_page(GFP_NOFS);
2469	if (!p_sector.page)
2470		return -ENOMEM;
2471	p_sector.pgoff = 0;
2472	p_sector.uptodate = 1;
 
 
2473
2474	if (has_qstripe) {
2475		/* RAID6, allocate and map temp space for the Q stripe */
2476		q_sector.page = alloc_page(GFP_NOFS);
2477		if (!q_sector.page) {
2478			__free_page(p_sector.page);
2479			p_sector.page = NULL;
2480			return -ENOMEM;
2481		}
2482		q_sector.pgoff = 0;
2483		q_sector.uptodate = 1;
2484		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2485	}
2486
2487	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2488
2489	/* Map the parity stripe just once */
2490	pointers[nr_data] = kmap_local_page(p_sector.page);
2491
2492	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2493		struct sector_ptr *sector;
2494		void *parity;
2495
2496		/* first collect one page from each data stripe */
2497		for (stripe = 0; stripe < nr_data; stripe++) {
2498			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2499			pointers[stripe] = kmap_local_page(sector->page) +
2500					   sector->pgoff;
2501		}
2502
 
 
 
2503		if (has_qstripe) {
2504			assert_rbio(rbio);
2505			/* RAID6, call the library function to fill in our P/Q */
2506			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 
 
 
 
2507						pointers);
2508		} else {
2509			/* raid5 */
2510			memcpy(pointers[nr_data], pointers[0], sectorsize);
2511			run_xor(pointers + 1, nr_data - 1, sectorsize);
2512		}
2513
2514		/* Check scrubbing parity and repair it */
2515		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2516		parity = kmap_local_page(sector->page) + sector->pgoff;
2517		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2518			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2519		else
2520			/* Parity is right, needn't writeback */
2521			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2522		kunmap_local(parity);
2523
2524		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2525			kunmap_local(pointers[stripe]);
 
2526	}
2527
2528	kunmap_local(pointers[nr_data]);
2529	__free_page(p_sector.page);
2530	p_sector.page = NULL;
2531	if (q_sector.page) {
2532		kunmap_local(pointers[rbio->real_stripes - 1]);
2533		__free_page(q_sector.page);
2534		q_sector.page = NULL;
2535	}
2536
 
2537	/*
2538	 * time to start writing.  Make bios for everything from the
2539	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2540	 * everything else.
2541	 */
2542	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2543		struct sector_ptr *sector;
2544
2545		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2546		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2547					 sectornr, REQ_OP_WRITE);
2548		if (ret)
2549			goto cleanup;
2550	}
2551
2552	if (!is_replace)
2553		goto submit_write;
2554
2555	/*
2556	 * Replace is running and our parity stripe needs to be duplicated to
2557	 * the target device.  Check we have a valid source stripe number.
2558	 */
2559	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2560	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2561		struct sector_ptr *sector;
2562
2563		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2564		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2565					 rbio->real_stripes,
2566					 sectornr, REQ_OP_WRITE);
2567		if (ret)
2568			goto cleanup;
2569	}
2570
2571submit_write:
2572	submit_write_bios(rbio, &bio_list);
2573	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
2575cleanup:
2576	bio_list_put(&bio_list);
2577	return ret;
 
 
2578}
2579
2580static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2581{
2582	if (stripe >= 0 && stripe < rbio->nr_data)
2583		return 1;
2584	return 0;
2585}
2586
2587static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
2588{
2589	void **pointers = NULL;
2590	void **unmap_array = NULL;
2591	int sector_nr;
2592	int ret = 0;
2593
2594	/*
2595	 * @pointers array stores the pointer for each sector.
2596	 *
2597	 * @unmap_array stores copy of pointers that does not get reordered
2598	 * during reconstruction so that kunmap_local works.
2599	 */
2600	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2601	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2602	if (!pointers || !unmap_array) {
2603		ret = -ENOMEM;
2604		goto out;
2605	}
2606
2607	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2608		int dfail = 0, failp = -1;
2609		int faila;
2610		int failb;
2611		int found_errors;
2612
2613		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2614							 &faila, &failb);
2615		if (found_errors > rbio->bioc->max_errors) {
2616			ret = -EIO;
2617			goto out;
2618		}
2619		if (found_errors == 0)
2620			continue;
2621
2622		/* We should have at least one error here. */
2623		ASSERT(faila >= 0 || failb >= 0);
2624
2625		if (is_data_stripe(rbio, faila))
2626			dfail++;
2627		else if (is_parity_stripe(faila))
2628			failp = faila;
2629
2630		if (is_data_stripe(rbio, failb))
2631			dfail++;
2632		else if (is_parity_stripe(failb))
2633			failp = failb;
 
2634		/*
2635		 * Because we can not use a scrubbing parity to repair the
2636		 * data, so the capability of the repair is declined.  (In the
2637		 * case of RAID5, we can not repair anything.)
2638		 */
2639		if (dfail > rbio->bioc->max_errors - 1) {
2640			ret = -EIO;
2641			goto out;
2642		}
2643		/*
2644		 * If all data is good, only parity is correctly, just repair
2645		 * the parity, no need to recover data stripes.
2646		 */
2647		if (dfail == 0)
2648			continue;
 
 
2649
2650		/*
2651		 * Here means we got one corrupted data stripe and one
2652		 * corrupted parity on RAID6, if the corrupted parity is
2653		 * scrubbing parity, luckily, use the other one to repair the
2654		 * data, or we can not repair the data stripe.
2655		 */
2656		if (failp != rbio->scrubp) {
2657			ret = -EIO;
2658			goto out;
2659		}
2660
2661		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2662		if (ret < 0)
2663			goto out;
2664	}
2665out:
2666	kfree(pointers);
2667	kfree(unmap_array);
2668	return ret;
2669}
2670
2671static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2672{
2673	struct bio_list bio_list = BIO_EMPTY_LIST;
2674	int total_sector_nr;
2675	int ret = 0;
2676
2677	/* Build a list of bios to read all the missing parts. */
2678	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2679	     total_sector_nr++) {
2680		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2681		int stripe = total_sector_nr / rbio->stripe_nsectors;
2682		struct sector_ptr *sector;
2683
2684		/* No data in the vertical stripe, no need to read. */
2685		if (!test_bit(sectornr, &rbio->dbitmap))
2686			continue;
2687
2688		/*
2689		 * We want to find all the sectors missing from the rbio and
2690		 * read them from the disk. If sector_in_rbio() finds a sector
2691		 * in the bio list we don't need to read it off the stripe.
2692		 */
2693		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2694		if (sector)
2695			continue;
2696
2697		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2698		/*
2699		 * The bio cache may have handed us an uptodate sector.  If so,
2700		 * use it.
2701		 */
2702		if (sector->uptodate)
2703			continue;
2704
2705		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2706					 sectornr, REQ_OP_READ);
2707		if (ret) {
2708			bio_list_put(&bio_list);
2709			return ret;
2710		}
2711	}
2712
2713	submit_read_wait_bio_list(rbio, &bio_list);
2714	return 0;
 
 
 
 
2715}
2716
2717static void scrub_rbio(struct btrfs_raid_bio *rbio)
2718{
2719	int sector_nr;
 
2720	int ret;
 
 
 
 
 
2721
2722	ret = alloc_rbio_essential_pages(rbio);
2723	if (ret)
2724		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
 
 
2727
2728	ret = scrub_assemble_read_bios(rbio);
2729	if (ret < 0)
2730		goto out;
 
 
 
2731
2732	/* We may have some failures, recover the failed sectors first. */
2733	ret = recover_scrub_rbio(rbio);
2734	if (ret < 0)
2735		goto out;
 
 
 
 
 
 
2736
2737	/*
2738	 * We have every sector properly prepared. Can finish the scrub
2739	 * and writeback the good content.
2740	 */
2741	ret = finish_parity_scrub(rbio);
2742	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2743	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2744		int found_errors;
2745
2746		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2747		if (found_errors > rbio->bioc->max_errors) {
2748			ret = -EIO;
2749			break;
2750		}
2751	}
2752out:
2753	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
 
 
 
 
 
 
 
 
 
2754}
2755
2756static void scrub_rbio_work_locked(struct work_struct *work)
2757{
2758	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
2759}
2760
2761void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2762{
2763	if (!lock_stripe_add(rbio))
2764		start_async_work(rbio, scrub_rbio_work_locked);
2765}
2766
2767/*
2768 * This is for scrub call sites where we already have correct data contents.
2769 * This allows us to avoid reading data stripes again.
2770 *
2771 * Unfortunately here we have to do page copy, other than reusing the pages.
2772 * This is due to the fact rbio has its own page management for its cache.
2773 */
2774void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2775				    struct page **data_pages, u64 data_logical)
2776{
2777	const u64 offset_in_full_stripe = data_logical -
2778					  rbio->bioc->full_stripe_logical;
2779	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2780	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2781	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2782	int ret;
2783
 
 
 
 
 
 
2784	/*
2785	 * If we hit ENOMEM temporarily, but later at
2786	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2787	 * the extra read, not a big deal.
2788	 *
2789	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2790	 * the bio would got proper error number set.
2791	 */
2792	ret = alloc_rbio_data_pages(rbio);
2793	if (ret < 0)
2794		return;
2795
2796	/* data_logical must be at stripe boundary and inside the full stripe. */
2797	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2798	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2799
2800	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2801		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2802		struct page *src = data_pages[page_nr];
2803
2804		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2805		for (int sector_nr = sectors_per_page * page_index;
2806		     sector_nr < sectors_per_page * (page_index + 1);
2807		     sector_nr++)
2808			rbio->stripe_sectors[sector_nr].uptodate = true;
2809	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2810}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
 
  16#include "ctree.h"
  17#include "disk-io.h"
  18#include "volumes.h"
  19#include "raid56.h"
  20#include "async-thread.h"
 
 
  21
  22/* set when additional merges to this rbio are not allowed */
  23#define RBIO_RMW_LOCKED_BIT	1
  24
  25/*
  26 * set when this rbio is sitting in the hash, but it is just a cache
  27 * of past RMW
  28 */
  29#define RBIO_CACHE_BIT		2
  30
  31/*
  32 * set when it is safe to trust the stripe_pages for caching
  33 */
  34#define RBIO_CACHE_READY_BIT	3
  35
  36#define RBIO_CACHE_SIZE 1024
  37
  38#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  39
  40/* Used by the raid56 code to lock stripes for read/modify/write */
  41struct btrfs_stripe_hash {
  42	struct list_head hash_list;
  43	spinlock_t lock;
  44};
  45
  46/* Used by the raid56 code to lock stripes for read/modify/write */
  47struct btrfs_stripe_hash_table {
  48	struct list_head stripe_cache;
  49	spinlock_t cache_lock;
  50	int cache_size;
  51	struct btrfs_stripe_hash table[];
  52};
  53
  54enum btrfs_rbio_ops {
  55	BTRFS_RBIO_WRITE,
  56	BTRFS_RBIO_READ_REBUILD,
  57	BTRFS_RBIO_PARITY_SCRUB,
  58	BTRFS_RBIO_REBUILD_MISSING,
 
 
 
 
  59};
  60
  61struct btrfs_raid_bio {
  62	struct btrfs_fs_info *fs_info;
  63	struct btrfs_bio *bbio;
  64
  65	/* while we're doing rmw on a stripe
  66	 * we put it into a hash table so we can
  67	 * lock the stripe and merge more rbios
  68	 * into it.
  69	 */
  70	struct list_head hash_list;
  71
  72	/*
  73	 * LRU list for the stripe cache
  74	 */
  75	struct list_head stripe_cache;
  76
  77	/*
  78	 * for scheduling work in the helper threads
  79	 */
  80	struct btrfs_work work;
 
 
 
 
  81
  82	/*
  83	 * bio list and bio_list_lock are used
  84	 * to add more bios into the stripe
  85	 * in hopes of avoiding the full rmw
  86	 */
  87	struct bio_list bio_list;
  88	spinlock_t bio_list_lock;
  89
  90	/* also protected by the bio_list_lock, the
  91	 * plug list is used by the plugging code
  92	 * to collect partial bios while plugged.  The
  93	 * stripe locking code also uses it to hand off
  94	 * the stripe lock to the next pending IO
  95	 */
  96	struct list_head plug_list;
  97
  98	/*
  99	 * flags that tell us if it is safe to
 100	 * merge with this bio
 101	 */
 102	unsigned long flags;
 103
 104	/* size of each individual stripe on disk */
 105	int stripe_len;
 
 
 
 
 106
 107	/* number of data stripes (no p/q) */
 108	int nr_data;
 109
 110	int real_stripes;
 111
 112	int stripe_npages;
 113	/*
 114	 * set if we're doing a parity rebuild
 115	 * for a read from higher up, which is handled
 116	 * differently from a parity rebuild as part of
 117	 * rmw
 118	 */
 119	enum btrfs_rbio_ops operation;
 120
 121	/* first bad stripe */
 122	int faila;
 123
 124	/* second bad stripe (for raid6 use) */
 125	int failb;
 126
 127	int scrubp;
 128	/*
 129	 * number of pages needed to represent the full
 130	 * stripe
 131	 */
 132	int nr_pages;
 133
 134	/*
 135	 * size of all the bios in the bio_list.  This
 136	 * helps us decide if the rbio maps to a full
 137	 * stripe or not
 138	 */
 139	int bio_list_bytes;
 140
 141	int generic_bio_cnt;
 142
 143	refcount_t refs;
 144
 145	atomic_t stripes_pending;
 146
 147	atomic_t error;
 148	/*
 149	 * these are two arrays of pointers.  We allocate the
 150	 * rbio big enough to hold them both and setup their
 151	 * locations when the rbio is allocated
 152	 */
 153
 154	/* pointers to pages that we allocated for
 155	 * reading/writing stripes directly from the disk (including P/Q)
 156	 */
 157	struct page **stripe_pages;
 158
 159	/*
 160	 * pointers to the pages in the bio_list.  Stored
 161	 * here for faster lookup
 162	 */
 163	struct page **bio_pages;
 164
 165	/*
 166	 * bitmap to record which horizontal stripe has data
 167	 */
 168	unsigned long *dbitmap;
 169
 170	/* allocated with real_stripes-many pointers for finish_*() calls */
 171	void **finish_pointers;
 172
 173	/* allocated with stripe_npages-many bits for finish_*() calls */
 174	unsigned long *finish_pbitmap;
 175};
 176
 177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 179static void rmw_work(struct btrfs_work *work);
 180static void read_rebuild_work(struct btrfs_work *work);
 181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 186
 187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 188					 int need_check);
 189static void scrub_parity_work(struct btrfs_work *work);
 190
 191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 192{
 193	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 194	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 195}
 196
 197/*
 198 * the stripe hash table is used for locking, and to collect
 199 * bios in hopes of making a full stripe
 200 */
 201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 202{
 203	struct btrfs_stripe_hash_table *table;
 204	struct btrfs_stripe_hash_table *x;
 205	struct btrfs_stripe_hash *cur;
 206	struct btrfs_stripe_hash *h;
 207	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 208	int i;
 209
 210	if (info->stripe_hash_table)
 211		return 0;
 212
 213	/*
 214	 * The table is large, starting with order 4 and can go as high as
 215	 * order 7 in case lock debugging is turned on.
 216	 *
 217	 * Try harder to allocate and fallback to vmalloc to lower the chance
 218	 * of a failing mount.
 219	 */
 220	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 221	if (!table)
 222		return -ENOMEM;
 223
 224	spin_lock_init(&table->cache_lock);
 225	INIT_LIST_HEAD(&table->stripe_cache);
 226
 227	h = table->table;
 228
 229	for (i = 0; i < num_entries; i++) {
 230		cur = h + i;
 231		INIT_LIST_HEAD(&cur->hash_list);
 232		spin_lock_init(&cur->lock);
 233	}
 234
 235	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 236	if (x)
 237		kvfree(x);
 238	return 0;
 239}
 240
 241/*
 242 * caching an rbio means to copy anything from the
 243 * bio_pages array into the stripe_pages array.  We
 244 * use the page uptodate bit in the stripe cache array
 245 * to indicate if it has valid data
 246 *
 247 * once the caching is done, we set the cache ready
 248 * bit.
 249 */
 250static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 251{
 252	int i;
 253	char *s;
 254	char *d;
 255	int ret;
 256
 257	ret = alloc_rbio_pages(rbio);
 258	if (ret)
 259		return;
 260
 261	for (i = 0; i < rbio->nr_pages; i++) {
 262		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 263			continue;
 
 264
 265		s = kmap(rbio->bio_pages[i]);
 266		d = kmap(rbio->stripe_pages[i]);
 267
 268		copy_page(d, s);
 269
 270		kunmap(rbio->bio_pages[i]);
 271		kunmap(rbio->stripe_pages[i]);
 272		SetPageUptodate(rbio->stripe_pages[i]);
 273	}
 274	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 275}
 276
 277/*
 278 * we hash on the first logical address of the stripe
 279 */
 280static int rbio_bucket(struct btrfs_raid_bio *rbio)
 281{
 282	u64 num = rbio->bbio->raid_map[0];
 283
 284	/*
 285	 * we shift down quite a bit.  We're using byte
 286	 * addressing, and most of the lower bits are zeros.
 287	 * This tends to upset hash_64, and it consistently
 288	 * returns just one or two different values.
 289	 *
 290	 * shifting off the lower bits fixes things.
 291	 */
 292	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 293}
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/*
 296 * stealing an rbio means taking all the uptodate pages from the stripe
 297 * array in the source rbio and putting them into the destination rbio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 */
 299static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 300{
 301	int i;
 302	struct page *s;
 303	struct page *d;
 304
 305	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 306		return;
 307
 308	for (i = 0; i < dest->nr_pages; i++) {
 309		s = src->stripe_pages[i];
 310		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 311			continue;
 312		}
 313
 314		d = dest->stripe_pages[i];
 315		if (d)
 316			__free_page(d);
 317
 318		dest->stripe_pages[i] = s;
 319		src->stripe_pages[i] = NULL;
 
 320	}
 
 
 321}
 322
 323/*
 324 * merging means we take the bio_list from the victim and
 325 * splice it into the destination.  The victim should
 326 * be discarded afterwards.
 327 *
 328 * must be called with dest->rbio_list_lock held
 329 */
 330static void merge_rbio(struct btrfs_raid_bio *dest,
 331		       struct btrfs_raid_bio *victim)
 332{
 333	bio_list_merge(&dest->bio_list, &victim->bio_list);
 334	dest->bio_list_bytes += victim->bio_list_bytes;
 335	dest->generic_bio_cnt += victim->generic_bio_cnt;
 
 
 336	bio_list_init(&victim->bio_list);
 337}
 338
 339/*
 340 * used to prune items that are in the cache.  The caller
 341 * must hold the hash table lock.
 342 */
 343static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 344{
 345	int bucket = rbio_bucket(rbio);
 346	struct btrfs_stripe_hash_table *table;
 347	struct btrfs_stripe_hash *h;
 348	int freeit = 0;
 349
 350	/*
 351	 * check the bit again under the hash table lock.
 352	 */
 353	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 354		return;
 355
 356	table = rbio->fs_info->stripe_hash_table;
 357	h = table->table + bucket;
 358
 359	/* hold the lock for the bucket because we may be
 360	 * removing it from the hash table
 361	 */
 362	spin_lock(&h->lock);
 363
 364	/*
 365	 * hold the lock for the bio list because we need
 366	 * to make sure the bio list is empty
 367	 */
 368	spin_lock(&rbio->bio_list_lock);
 369
 370	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 371		list_del_init(&rbio->stripe_cache);
 372		table->cache_size -= 1;
 373		freeit = 1;
 374
 375		/* if the bio list isn't empty, this rbio is
 376		 * still involved in an IO.  We take it out
 377		 * of the cache list, and drop the ref that
 378		 * was held for the list.
 379		 *
 380		 * If the bio_list was empty, we also remove
 381		 * the rbio from the hash_table, and drop
 382		 * the corresponding ref
 383		 */
 384		if (bio_list_empty(&rbio->bio_list)) {
 385			if (!list_empty(&rbio->hash_list)) {
 386				list_del_init(&rbio->hash_list);
 387				refcount_dec(&rbio->refs);
 388				BUG_ON(!list_empty(&rbio->plug_list));
 389			}
 390		}
 391	}
 392
 393	spin_unlock(&rbio->bio_list_lock);
 394	spin_unlock(&h->lock);
 395
 396	if (freeit)
 397		__free_raid_bio(rbio);
 398}
 399
 400/*
 401 * prune a given rbio from the cache
 402 */
 403static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 404{
 405	struct btrfs_stripe_hash_table *table;
 406	unsigned long flags;
 407
 408	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 409		return;
 410
 411	table = rbio->fs_info->stripe_hash_table;
 412
 413	spin_lock_irqsave(&table->cache_lock, flags);
 414	__remove_rbio_from_cache(rbio);
 415	spin_unlock_irqrestore(&table->cache_lock, flags);
 416}
 417
 418/*
 419 * remove everything in the cache
 420 */
 421static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 422{
 423	struct btrfs_stripe_hash_table *table;
 424	unsigned long flags;
 425	struct btrfs_raid_bio *rbio;
 426
 427	table = info->stripe_hash_table;
 428
 429	spin_lock_irqsave(&table->cache_lock, flags);
 430	while (!list_empty(&table->stripe_cache)) {
 431		rbio = list_entry(table->stripe_cache.next,
 432				  struct btrfs_raid_bio,
 433				  stripe_cache);
 434		__remove_rbio_from_cache(rbio);
 435	}
 436	spin_unlock_irqrestore(&table->cache_lock, flags);
 437}
 438
 439/*
 440 * remove all cached entries and free the hash table
 441 * used by unmount
 442 */
 443void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 444{
 445	if (!info->stripe_hash_table)
 446		return;
 447	btrfs_clear_rbio_cache(info);
 448	kvfree(info->stripe_hash_table);
 449	info->stripe_hash_table = NULL;
 450}
 451
 452/*
 453 * insert an rbio into the stripe cache.  It
 454 * must have already been prepared by calling
 455 * cache_rbio_pages
 456 *
 457 * If this rbio was already cached, it gets
 458 * moved to the front of the lru.
 459 *
 460 * If the size of the rbio cache is too big, we
 461 * prune an item.
 462 */
 463static void cache_rbio(struct btrfs_raid_bio *rbio)
 464{
 465	struct btrfs_stripe_hash_table *table;
 466	unsigned long flags;
 467
 468	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 469		return;
 470
 471	table = rbio->fs_info->stripe_hash_table;
 472
 473	spin_lock_irqsave(&table->cache_lock, flags);
 474	spin_lock(&rbio->bio_list_lock);
 475
 476	/* bump our ref if we were not in the list before */
 477	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 478		refcount_inc(&rbio->refs);
 479
 480	if (!list_empty(&rbio->stripe_cache)){
 481		list_move(&rbio->stripe_cache, &table->stripe_cache);
 482	} else {
 483		list_add(&rbio->stripe_cache, &table->stripe_cache);
 484		table->cache_size += 1;
 485	}
 486
 487	spin_unlock(&rbio->bio_list_lock);
 488
 489	if (table->cache_size > RBIO_CACHE_SIZE) {
 490		struct btrfs_raid_bio *found;
 491
 492		found = list_entry(table->stripe_cache.prev,
 493				  struct btrfs_raid_bio,
 494				  stripe_cache);
 495
 496		if (found != rbio)
 497			__remove_rbio_from_cache(found);
 498	}
 499
 500	spin_unlock_irqrestore(&table->cache_lock, flags);
 501}
 502
 503/*
 504 * helper function to run the xor_blocks api.  It is only
 505 * able to do MAX_XOR_BLOCKS at a time, so we need to
 506 * loop through.
 507 */
 508static void run_xor(void **pages, int src_cnt, ssize_t len)
 509{
 510	int src_off = 0;
 511	int xor_src_cnt = 0;
 512	void *dest = pages[src_cnt];
 513
 514	while(src_cnt > 0) {
 515		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 516		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 517
 518		src_cnt -= xor_src_cnt;
 519		src_off += xor_src_cnt;
 520	}
 521}
 522
 523/*
 524 * Returns true if the bio list inside this rbio covers an entire stripe (no
 525 * rmw required).
 526 */
 527static int rbio_is_full(struct btrfs_raid_bio *rbio)
 528{
 529	unsigned long flags;
 530	unsigned long size = rbio->bio_list_bytes;
 531	int ret = 1;
 532
 533	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 534	if (size != rbio->nr_data * rbio->stripe_len)
 535		ret = 0;
 536	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 537	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 538
 539	return ret;
 540}
 541
 542/*
 543 * returns 1 if it is safe to merge two rbios together.
 544 * The merging is safe if the two rbios correspond to
 545 * the same stripe and if they are both going in the same
 546 * direction (read vs write), and if neither one is
 547 * locked for final IO
 548 *
 549 * The caller is responsible for locking such that
 550 * rmw_locked is safe to test
 551 */
 552static int rbio_can_merge(struct btrfs_raid_bio *last,
 553			  struct btrfs_raid_bio *cur)
 554{
 555	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 556	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 557		return 0;
 558
 559	/*
 560	 * we can't merge with cached rbios, since the
 561	 * idea is that when we merge the destination
 562	 * rbio is going to run our IO for us.  We can
 563	 * steal from cached rbios though, other functions
 564	 * handle that.
 565	 */
 566	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 567	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 568		return 0;
 569
 570	if (last->bbio->raid_map[0] !=
 571	    cur->bbio->raid_map[0])
 572		return 0;
 573
 574	/* we can't merge with different operations */
 575	if (last->operation != cur->operation)
 576		return 0;
 577	/*
 578	 * We've need read the full stripe from the drive.
 579	 * check and repair the parity and write the new results.
 580	 *
 581	 * We're not allowed to add any new bios to the
 582	 * bio list here, anyone else that wants to
 583	 * change this stripe needs to do their own rmw.
 584	 */
 585	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 586		return 0;
 587
 588	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 589		return 0;
 590
 591	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 592		int fa = last->faila;
 593		int fb = last->failb;
 594		int cur_fa = cur->faila;
 595		int cur_fb = cur->failb;
 596
 597		if (last->faila >= last->failb) {
 598			fa = last->failb;
 599			fb = last->faila;
 600		}
 601
 602		if (cur->faila >= cur->failb) {
 603			cur_fa = cur->failb;
 604			cur_fb = cur->faila;
 605		}
 606
 607		if (fa != cur_fa || fb != cur_fb)
 608			return 0;
 609	}
 610	return 1;
 611}
 612
 613static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 614				  int index)
 
 615{
 616	return stripe * rbio->stripe_npages + index;
 
 
 
 617}
 618
 619/*
 620 * these are just the pages from the rbio array, not from anything
 621 * the FS sent down to us
 622 */
 623static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 624				     int index)
 625{
 626	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 
 627}
 628
 629/*
 630 * helper to index into the pstripe
 631 */
 632static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 633{
 634	return rbio_stripe_page(rbio, rbio->nr_data, index);
 635}
 636
 637/*
 638 * helper to index into the qstripe, returns null
 639 * if there is no qstripe
 640 */
 641static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 642{
 643	if (rbio->nr_data + 1 == rbio->real_stripes)
 644		return NULL;
 645	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 646}
 647
 648/*
 649 * The first stripe in the table for a logical address
 650 * has the lock.  rbios are added in one of three ways:
 651 *
 652 * 1) Nobody has the stripe locked yet.  The rbio is given
 653 * the lock and 0 is returned.  The caller must start the IO
 654 * themselves.
 655 *
 656 * 2) Someone has the stripe locked, but we're able to merge
 657 * with the lock owner.  The rbio is freed and the IO will
 658 * start automatically along with the existing rbio.  1 is returned.
 659 *
 660 * 3) Someone has the stripe locked, but we're not able to merge.
 661 * The rbio is added to the lock owner's plug list, or merged into
 662 * an rbio already on the plug list.  When the lock owner unlocks,
 663 * the next rbio on the list is run and the IO is started automatically.
 664 * 1 is returned
 665 *
 666 * If we return 0, the caller still owns the rbio and must continue with
 667 * IO submission.  If we return 1, the caller must assume the rbio has
 668 * already been freed.
 669 */
 670static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 671{
 672	struct btrfs_stripe_hash *h;
 673	struct btrfs_raid_bio *cur;
 674	struct btrfs_raid_bio *pending;
 675	unsigned long flags;
 676	struct btrfs_raid_bio *freeit = NULL;
 677	struct btrfs_raid_bio *cache_drop = NULL;
 678	int ret = 0;
 679
 680	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 681
 682	spin_lock_irqsave(&h->lock, flags);
 683	list_for_each_entry(cur, &h->hash_list, hash_list) {
 684		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
 685			continue;
 686
 687		spin_lock(&cur->bio_list_lock);
 688
 689		/* Can we steal this cached rbio's pages? */
 690		if (bio_list_empty(&cur->bio_list) &&
 691		    list_empty(&cur->plug_list) &&
 692		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 693		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 694			list_del_init(&cur->hash_list);
 695			refcount_dec(&cur->refs);
 696
 697			steal_rbio(cur, rbio);
 698			cache_drop = cur;
 699			spin_unlock(&cur->bio_list_lock);
 700
 701			goto lockit;
 702		}
 703
 704		/* Can we merge into the lock owner? */
 705		if (rbio_can_merge(cur, rbio)) {
 706			merge_rbio(cur, rbio);
 707			spin_unlock(&cur->bio_list_lock);
 708			freeit = rbio;
 709			ret = 1;
 710			goto out;
 711		}
 712
 713
 714		/*
 715		 * We couldn't merge with the running rbio, see if we can merge
 716		 * with the pending ones.  We don't have to check for rmw_locked
 717		 * because there is no way they are inside finish_rmw right now
 718		 */
 719		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 720			if (rbio_can_merge(pending, rbio)) {
 721				merge_rbio(pending, rbio);
 722				spin_unlock(&cur->bio_list_lock);
 723				freeit = rbio;
 724				ret = 1;
 725				goto out;
 726			}
 727		}
 728
 729		/*
 730		 * No merging, put us on the tail of the plug list, our rbio
 731		 * will be started with the currently running rbio unlocks
 732		 */
 733		list_add_tail(&rbio->plug_list, &cur->plug_list);
 734		spin_unlock(&cur->bio_list_lock);
 735		ret = 1;
 736		goto out;
 737	}
 738lockit:
 739	refcount_inc(&rbio->refs);
 740	list_add(&rbio->hash_list, &h->hash_list);
 741out:
 742	spin_unlock_irqrestore(&h->lock, flags);
 743	if (cache_drop)
 744		remove_rbio_from_cache(cache_drop);
 745	if (freeit)
 746		__free_raid_bio(freeit);
 747	return ret;
 748}
 749
 
 
 750/*
 751 * called as rmw or parity rebuild is completed.  If the plug list has more
 752 * rbios waiting for this stripe, the next one on the list will be started
 753 */
 754static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 755{
 756	int bucket;
 757	struct btrfs_stripe_hash *h;
 758	unsigned long flags;
 759	int keep_cache = 0;
 760
 761	bucket = rbio_bucket(rbio);
 762	h = rbio->fs_info->stripe_hash_table->table + bucket;
 763
 764	if (list_empty(&rbio->plug_list))
 765		cache_rbio(rbio);
 766
 767	spin_lock_irqsave(&h->lock, flags);
 768	spin_lock(&rbio->bio_list_lock);
 769
 770	if (!list_empty(&rbio->hash_list)) {
 771		/*
 772		 * if we're still cached and there is no other IO
 773		 * to perform, just leave this rbio here for others
 774		 * to steal from later
 775		 */
 776		if (list_empty(&rbio->plug_list) &&
 777		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 778			keep_cache = 1;
 779			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 780			BUG_ON(!bio_list_empty(&rbio->bio_list));
 781			goto done;
 782		}
 783
 784		list_del_init(&rbio->hash_list);
 785		refcount_dec(&rbio->refs);
 786
 787		/*
 788		 * we use the plug list to hold all the rbios
 789		 * waiting for the chance to lock this stripe.
 790		 * hand the lock over to one of them.
 791		 */
 792		if (!list_empty(&rbio->plug_list)) {
 793			struct btrfs_raid_bio *next;
 794			struct list_head *head = rbio->plug_list.next;
 795
 796			next = list_entry(head, struct btrfs_raid_bio,
 797					  plug_list);
 798
 799			list_del_init(&rbio->plug_list);
 800
 801			list_add(&next->hash_list, &h->hash_list);
 802			refcount_inc(&next->refs);
 803			spin_unlock(&rbio->bio_list_lock);
 804			spin_unlock_irqrestore(&h->lock, flags);
 805
 806			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 807				start_async_work(next, read_rebuild_work);
 808			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 809				steal_rbio(rbio, next);
 810				start_async_work(next, read_rebuild_work);
 811			} else if (next->operation == BTRFS_RBIO_WRITE) {
 812				steal_rbio(rbio, next);
 813				start_async_work(next, rmw_work);
 814			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 815				steal_rbio(rbio, next);
 816				start_async_work(next, scrub_parity_work);
 817			}
 818
 819			goto done_nolock;
 820		}
 821	}
 822done:
 823	spin_unlock(&rbio->bio_list_lock);
 824	spin_unlock_irqrestore(&h->lock, flags);
 825
 826done_nolock:
 827	if (!keep_cache)
 828		remove_rbio_from_cache(rbio);
 829}
 830
 831static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 832{
 833	int i;
 834
 835	if (!refcount_dec_and_test(&rbio->refs))
 836		return;
 837
 838	WARN_ON(!list_empty(&rbio->stripe_cache));
 839	WARN_ON(!list_empty(&rbio->hash_list));
 840	WARN_ON(!bio_list_empty(&rbio->bio_list));
 841
 842	for (i = 0; i < rbio->nr_pages; i++) {
 843		if (rbio->stripe_pages[i]) {
 844			__free_page(rbio->stripe_pages[i]);
 845			rbio->stripe_pages[i] = NULL;
 846		}
 847	}
 848
 849	btrfs_put_bbio(rbio->bbio);
 850	kfree(rbio);
 851}
 852
 853static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 854{
 855	struct bio *next;
 856
 857	while (cur) {
 858		next = cur->bi_next;
 859		cur->bi_next = NULL;
 860		cur->bi_status = err;
 861		bio_endio(cur);
 862		cur = next;
 863	}
 864}
 865
 866/*
 867 * this frees the rbio and runs through all the bios in the
 868 * bio_list and calls end_io on them
 869 */
 870static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 871{
 872	struct bio *cur = bio_list_get(&rbio->bio_list);
 873	struct bio *extra;
 874
 875	if (rbio->generic_bio_cnt)
 876		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 
 
 
 
 
 
 
 
 
 877
 878	/*
 879	 * At this moment, rbio->bio_list is empty, however since rbio does not
 880	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 881	 * hash list, rbio may be merged with others so that rbio->bio_list
 882	 * becomes non-empty.
 883	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 884	 * more and we can call bio_endio() on all queued bios.
 885	 */
 886	unlock_stripe(rbio);
 887	extra = bio_list_get(&rbio->bio_list);
 888	__free_raid_bio(rbio);
 889
 890	rbio_endio_bio_list(cur, err);
 891	if (extra)
 892		rbio_endio_bio_list(extra, err);
 893}
 894
 895/*
 896 * end io function used by finish_rmw.  When we finally
 897 * get here, we've written a full stripe
 898 */
 899static void raid_write_end_io(struct bio *bio)
 900{
 901	struct btrfs_raid_bio *rbio = bio->bi_private;
 902	blk_status_t err = bio->bi_status;
 903	int max_errors;
 904
 905	if (err)
 906		fail_bio_stripe(rbio, bio);
 907
 908	bio_put(bio);
 909
 910	if (!atomic_dec_and_test(&rbio->stripes_pending))
 911		return;
 912
 913	err = BLK_STS_OK;
 914
 915	/* OK, we have read all the stripes we need to. */
 916	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 917		     0 : rbio->bbio->max_errors;
 918	if (atomic_read(&rbio->error) > max_errors)
 919		err = BLK_STS_IOERR;
 920
 921	rbio_orig_end_io(rbio, err);
 922}
 923
 924/*
 925 * the read/modify/write code wants to use the original bio for
 926 * any pages it included, and then use the rbio for everything
 927 * else.  This function decides if a given index (stripe number)
 928 * and page number in that stripe fall inside the original bio
 929 * or the rbio.
 930 *
 931 * if you set bio_list_only, you'll get a NULL back for any ranges
 932 * that are outside the bio_list
 933 *
 934 * This doesn't take any refs on anything, you get a bare page pointer
 935 * and the caller must bump refs as required.
 
 
 
 936 *
 937 * You must call index_rbio_pages once before you can trust
 938 * the answers from this function.
 939 */
 940static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 941				 int index, int pagenr, int bio_list_only)
 
 942{
 943	int chunk_page;
 944	struct page *p = NULL;
 945
 946	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 947
 948	spin_lock_irq(&rbio->bio_list_lock);
 949	p = rbio->bio_pages[chunk_page];
 950	spin_unlock_irq(&rbio->bio_list_lock);
 951
 952	if (p || bio_list_only)
 953		return p;
 954
 955	return rbio->stripe_pages[chunk_page];
 956}
 
 
 
 
 
 957
 958/*
 959 * number of pages we need for the entire stripe across all the
 960 * drives
 961 */
 962static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 963{
 964	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 965}
 966
 967/*
 968 * allocation and initial setup for the btrfs_raid_bio.  Not
 969 * this does not allocate any pages for rbio->pages.
 970 */
 971static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 972					 struct btrfs_bio *bbio,
 973					 u64 stripe_len)
 974{
 
 
 
 
 
 
 975	struct btrfs_raid_bio *rbio;
 976	int nr_data = 0;
 977	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980	void *p;
 981
 982	rbio = kzalloc(sizeof(*rbio) +
 983		       sizeof(*rbio->stripe_pages) * num_pages +
 984		       sizeof(*rbio->bio_pages) * num_pages +
 985		       sizeof(*rbio->finish_pointers) * real_stripes +
 986		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 987		       sizeof(*rbio->finish_pbitmap) *
 988				BITS_TO_LONGS(stripe_npages),
 989		       GFP_NOFS);
 
 
 
 990	if (!rbio)
 991		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	bio_list_init(&rbio->bio_list);
 
 994	INIT_LIST_HEAD(&rbio->plug_list);
 995	spin_lock_init(&rbio->bio_list_lock);
 996	INIT_LIST_HEAD(&rbio->stripe_cache);
 997	INIT_LIST_HEAD(&rbio->hash_list);
 998	rbio->bbio = bbio;
 999	rbio->fs_info = fs_info;
1000	rbio->stripe_len = stripe_len;
1001	rbio->nr_pages = num_pages;
 
1002	rbio->real_stripes = real_stripes;
1003	rbio->stripe_npages = stripe_npages;
1004	rbio->faila = -1;
1005	rbio->failb = -1;
1006	refcount_set(&rbio->refs, 1);
1007	atomic_set(&rbio->error, 0);
1008	atomic_set(&rbio->stripes_pending, 0);
1009
1010	/*
1011	 * the stripe_pages, bio_pages, etc arrays point to the extra
1012	 * memory we allocated past the end of the rbio
1013	 */
1014	p = rbio + 1;
1015#define CONSUME_ALLOC(ptr, count)	do {				\
1016		ptr = p;						\
1017		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1018	} while (0)
1019	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1020	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1021	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1022	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1023	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1024#undef  CONSUME_ALLOC
1025
1026	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1027		nr_data = real_stripes - 1;
1028	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1029		nr_data = real_stripes - 2;
1030	else
1031		BUG();
1032
1033	rbio->nr_data = nr_data;
1034	return rbio;
1035}
1036
1037/* allocate pages for all the stripes in the bio, including parity */
1038static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1039{
1040	int i;
1041	struct page *page;
1042
1043	for (i = 0; i < rbio->nr_pages; i++) {
1044		if (rbio->stripe_pages[i])
1045			continue;
1046		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1047		if (!page)
1048			return -ENOMEM;
1049		rbio->stripe_pages[i] = page;
1050	}
1051	return 0;
1052}
1053
1054/* only allocate pages for p/q stripes */
1055static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1056{
1057	int i;
1058	struct page *page;
 
 
 
 
 
1059
1060	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
 
 
1061
1062	for (; i < rbio->nr_pages; i++) {
1063		if (rbio->stripe_pages[i])
1064			continue;
1065		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1066		if (!page)
1067			return -ENOMEM;
1068		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	}
1070	return 0;
1071}
1072
1073/*
1074 * add a single page from a specific stripe into our list of bios for IO
1075 * this will try to merge into existing bios if possible, and returns
1076 * zero if all went well.
1077 */
1078static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1079			    struct bio_list *bio_list,
1080			    struct page *page,
1081			    int stripe_nr,
1082			    unsigned long page_index,
1083			    unsigned long bio_max_len)
 
1084{
 
1085	struct bio *last = bio_list->tail;
1086	int ret;
1087	struct bio *bio;
1088	struct btrfs_bio_stripe *stripe;
1089	u64 disk_start;
1090
1091	stripe = &rbio->bbio->stripes[stripe_nr];
1092	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
1093
1094	/* if the device is missing, just fail this stripe */
1095	if (!stripe->dev->bdev)
1096		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1097
1098	/* see if we can add this page onto our existing bio */
1099	if (last) {
1100		u64 last_end = (u64)last->bi_iter.bi_sector << 9;
1101		last_end += last->bi_iter.bi_size;
1102
1103		/*
1104		 * we can't merge these if they are from different
1105		 * devices or if they are not contiguous
1106		 */
1107		if (last_end == disk_start && !last->bi_status &&
1108		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1109		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1110			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1111			if (ret == PAGE_SIZE)
1112				return 0;
1113		}
1114	}
1115
1116	/* put a new bio on the list */
1117	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1118	btrfs_io_bio(bio)->device = stripe->dev;
1119	bio->bi_iter.bi_size = 0;
1120	bio_set_dev(bio, stripe->dev->bdev);
1121	bio->bi_iter.bi_sector = disk_start >> 9;
1122
1123	bio_add_page(bio, page, PAGE_SIZE, 0);
1124	bio_list_add(bio_list, bio);
1125	return 0;
1126}
1127
1128/*
1129 * while we're doing the read/modify/write cycle, we could
1130 * have errors in reading pages off the disk.  This checks
1131 * for errors and if we're not able to read the page it'll
1132 * trigger parity reconstruction.  The rmw will be finished
1133 * after we've reconstructed the failed stripes
1134 */
1135static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1136{
1137	if (rbio->faila >= 0 || rbio->failb >= 0) {
1138		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1139		__raid56_parity_recover(rbio);
1140	} else {
1141		finish_rmw(rbio);
 
 
 
 
 
 
1142	}
1143}
1144
1145/*
1146 * helper function to walk our bio list and populate the bio_pages array with
1147 * the result.  This seems expensive, but it is faster than constantly
1148 * searching through the bio list as we setup the IO in finish_rmw or stripe
1149 * reconstruction.
1150 *
1151 * This must be called before you trust the answers from page_in_rbio
1152 */
1153static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1154{
1155	struct bio *bio;
1156	u64 start;
1157	unsigned long stripe_offset;
1158	unsigned long page_index;
1159
1160	spin_lock_irq(&rbio->bio_list_lock);
1161	bio_list_for_each(bio, &rbio->bio_list) {
1162		struct bio_vec bvec;
1163		struct bvec_iter iter;
1164		int i = 0;
 
1165
1166		start = (u64)bio->bi_iter.bi_sector << 9;
1167		stripe_offset = start - rbio->bbio->raid_map[0];
1168		page_index = stripe_offset >> PAGE_SHIFT;
 
 
1169
1170		if (bio_flagged(bio, BIO_CLONED))
1171			bio->bi_iter = btrfs_io_bio(bio)->iter;
1172
1173		bio_for_each_segment(bvec, bio, iter) {
1174			rbio->bio_pages[page_index + i] = bvec.bv_page;
1175			i++;
1176		}
 
 
 
 
 
 
 
 
1177	}
1178	spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
1179}
1180
1181/*
1182 * this is called from one of two situations.  We either
1183 * have a full stripe from the higher layers, or we've read all
1184 * the missing bits off disk.
1185 *
1186 * This will calculate the parity and then send down any
1187 * changed blocks.
1188 */
1189static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1190{
1191	struct btrfs_bio *bbio = rbio->bbio;
1192	void **pointers = rbio->finish_pointers;
1193	int nr_data = rbio->nr_data;
1194	int stripe;
1195	int pagenr;
1196	bool has_qstripe;
1197	struct bio_list bio_list;
1198	struct bio *bio;
1199	int ret;
1200
1201	bio_list_init(&bio_list);
 
 
1202
1203	if (rbio->real_stripes - rbio->nr_data == 1)
1204		has_qstripe = false;
1205	else if (rbio->real_stripes - rbio->nr_data == 2)
1206		has_qstripe = true;
1207	else
1208		BUG();
1209
1210	/* at this point we either have a full stripe,
1211	 * or we've read the full stripe from the drive.
1212	 * recalculate the parity and write the new results.
1213	 *
1214	 * We're not allowed to add any new bios to the
1215	 * bio list here, anyone else that wants to
1216	 * change this stripe needs to do their own rmw.
1217	 */
1218	spin_lock_irq(&rbio->bio_list_lock);
1219	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1220	spin_unlock_irq(&rbio->bio_list_lock);
1221
1222	atomic_set(&rbio->error, 0);
1223
1224	/*
1225	 * now that we've set rmw_locked, run through the
1226	 * bio list one last time and map the page pointers
1227	 *
1228	 * We don't cache full rbios because we're assuming
1229	 * the higher layers are unlikely to use this area of
1230	 * the disk again soon.  If they do use it again,
1231	 * hopefully they will send another full bio.
1232	 */
1233	index_rbio_pages(rbio);
1234	if (!rbio_is_full(rbio))
1235		cache_rbio_pages(rbio);
1236	else
1237		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1238
1239	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1240		struct page *p;
1241		/* first collect one page from each data stripe */
1242		for (stripe = 0; stripe < nr_data; stripe++) {
1243			p = page_in_rbio(rbio, stripe, pagenr, 0);
1244			pointers[stripe] = kmap(p);
1245		}
 
1246
1247		/* then add the parity stripe */
1248		p = rbio_pstripe_page(rbio, pagenr);
1249		SetPageUptodate(p);
1250		pointers[stripe++] = kmap(p);
 
 
1251
1252		if (has_qstripe) {
 
 
 
1253
1254			/*
1255			 * raid6, add the qstripe and call the
1256			 * library function to fill in our p/q
1257			 */
1258			p = rbio_qstripe_page(rbio, pagenr);
1259			SetPageUptodate(p);
1260			pointers[stripe++] = kmap(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1263						pointers);
1264		} else {
1265			/* raid5 */
1266			copy_page(pointers[nr_data], pointers[0]);
1267			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1268		}
 
1269
 
1270
1271		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1272			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1273	}
1274
1275	/*
1276	 * time to start writing.  Make bios for everything from the
1277	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1278	 * everything else.
1279	 */
1280	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1281		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1282			struct page *page;
1283			if (stripe < rbio->nr_data) {
1284				page = page_in_rbio(rbio, stripe, pagenr, 1);
1285				if (!page)
1286					continue;
1287			} else {
1288			       page = rbio_stripe_page(rbio, stripe, pagenr);
1289			}
1290
1291			ret = rbio_add_io_page(rbio, &bio_list,
1292				       page, stripe, pagenr, rbio->stripe_len);
1293			if (ret)
1294				goto cleanup;
1295		}
1296	}
 
1297
1298	if (likely(!bbio->num_tgtdevs))
1299		goto write_data;
1300
1301	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1302		if (!bbio->tgtdev_map[stripe])
1303			continue;
1304
1305		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1306			struct page *page;
1307			if (stripe < rbio->nr_data) {
1308				page = page_in_rbio(rbio, stripe, pagenr, 1);
1309				if (!page)
1310					continue;
1311			} else {
1312			       page = rbio_stripe_page(rbio, stripe, pagenr);
1313			}
1314
1315			ret = rbio_add_io_page(rbio, &bio_list, page,
1316					       rbio->bbio->tgtdev_map[stripe],
1317					       pagenr, rbio->stripe_len);
1318			if (ret)
1319				goto cleanup;
1320		}
1321	}
1322
1323write_data:
1324	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1325	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1326
1327	while ((bio = bio_list_pop(&bio_list))) {
1328		bio->bi_private = rbio;
1329		bio->bi_end_io = raid_write_end_io;
1330		bio->bi_opf = REQ_OP_WRITE;
1331
1332		submit_bio(bio);
1333	}
1334	return;
1335
1336cleanup:
1337	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1338
1339	while ((bio = bio_list_pop(&bio_list)))
1340		bio_put(bio);
1341}
 
 
 
1342
1343/*
1344 * helper to find the stripe number for a given bio.  Used to figure out which
1345 * stripe has failed.  This expects the bio to correspond to a physical disk,
1346 * so it looks up based on physical sector numbers.
1347 */
1348static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1349			   struct bio *bio)
1350{
1351	u64 physical = bio->bi_iter.bi_sector;
1352	int i;
1353	struct btrfs_bio_stripe *stripe;
1354
1355	physical <<= 9;
 
1356
1357	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1358		stripe = &rbio->bbio->stripes[i];
1359		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1360		    stripe->dev->bdev &&
1361		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1362		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1363			return i;
 
 
 
 
 
 
1364		}
1365	}
1366	return -1;
1367}
1368
1369/*
1370 * helper to find the stripe number for a given
1371 * bio (before mapping).  Used to figure out which stripe has
1372 * failed.  This looks up based on logical block numbers.
1373 */
1374static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1375				   struct bio *bio)
1376{
1377	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1378	int i;
1379
1380	for (i = 0; i < rbio->nr_data; i++) {
1381		u64 stripe_start = rbio->bbio->raid_map[i];
 
 
 
 
 
1382
1383		if (in_range(logical, stripe_start, rbio->stripe_len))
1384			return i;
 
 
 
1385	}
1386	return -1;
 
 
 
 
1387}
1388
1389/*
1390 * returns -EIO if we had too many failures
1391 */
1392static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1393{
1394	unsigned long flags;
1395	int ret = 0;
1396
1397	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1398
1399	/* we already know this stripe is bad, move on */
1400	if (rbio->faila == failed || rbio->failb == failed)
1401		goto out;
1402
1403	if (rbio->faila == -1) {
1404		/* first failure on this rbio */
1405		rbio->faila = failed;
1406		atomic_inc(&rbio->error);
1407	} else if (rbio->failb == -1) {
1408		/* second failure on this rbio */
1409		rbio->failb = failed;
1410		atomic_inc(&rbio->error);
1411	} else {
1412		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
1413	}
1414out:
1415	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1416
1417	return ret;
1418}
1419
1420/*
1421 * helper to fail a stripe based on a physical disk
1422 * bio.
1423 */
1424static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1425			   struct bio *bio)
 
1426{
1427	int failed = find_bio_stripe(rbio, bio);
1428
1429	if (failed < 0)
1430		return -EIO;
1431
1432	return fail_rbio_index(rbio, failed);
 
 
 
1433}
1434
1435/*
1436 * this sets each page in the bio uptodate.  It should only be used on private
1437 * rbio pages, nothing that comes in from the higher layers
1438 */
1439static void set_bio_pages_uptodate(struct bio *bio)
1440{
 
1441	struct bio_vec *bvec;
1442	struct bvec_iter_all iter_all;
1443
1444	ASSERT(!bio_flagged(bio, BIO_CLONED));
1445
1446	bio_for_each_segment_all(bvec, bio, iter_all)
1447		SetPageUptodate(bvec->bv_page);
 
 
 
 
 
 
 
 
 
 
1448}
1449
1450/*
1451 * end io for the read phase of the rmw cycle.  All the bios here are physical
1452 * stripe bios we've read from the disk so we can recalculate the parity of the
1453 * stripe.
1454 *
1455 * This will usually kick off finish_rmw once all the bios are read in, but it
1456 * may trigger parity reconstruction if we had any errors along the way
1457 */
1458static void raid_rmw_end_io(struct bio *bio)
1459{
1460	struct btrfs_raid_bio *rbio = bio->bi_private;
 
1461
1462	if (bio->bi_status)
1463		fail_bio_stripe(rbio, bio);
1464	else
1465		set_bio_pages_uptodate(bio);
1466
1467	bio_put(bio);
 
 
 
 
 
 
 
 
 
1468
1469	if (!atomic_dec_and_test(&rbio->stripes_pending))
1470		return;
 
 
 
 
1471
1472	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1473		goto cleanup;
1474
1475	/*
1476	 * this will normally call finish_rmw to start our write
1477	 * but if there are any failed stripes we'll reconstruct
1478	 * from parity first
 
1479	 */
1480	validate_rbio_for_rmw(rbio);
1481	return;
1482
1483cleanup:
1484
1485	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1486}
1487
1488/*
1489 * the stripe must be locked by the caller.  It will
1490 * unlock after all the writes are done
1491 */
1492static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1493{
1494	int bios_to_read = 0;
1495	struct bio_list bio_list;
1496	int ret;
1497	int pagenr;
1498	int stripe;
1499	struct bio *bio;
1500
1501	bio_list_init(&bio_list);
 
 
1502
1503	ret = alloc_rbio_pages(rbio);
1504	if (ret)
1505		goto cleanup;
1506
1507	index_rbio_pages(rbio);
 
1508
1509	atomic_set(&rbio->error, 0);
1510	/*
1511	 * build a list of bios to read all the missing parts of this
1512	 * stripe
1513	 */
1514	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1515		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1516			struct page *page;
1517			/*
1518			 * we want to find all the pages missing from
1519			 * the rbio and read them from the disk.  If
1520			 * page_in_rbio finds a page in the bio list
1521			 * we don't need to read it off the stripe.
1522			 */
1523			page = page_in_rbio(rbio, stripe, pagenr, 1);
1524			if (page)
1525				continue;
1526
1527			page = rbio_stripe_page(rbio, stripe, pagenr);
1528			/*
1529			 * the bio cache may have handed us an uptodate
1530			 * page.  If so, be happy and use it
1531			 */
1532			if (PageUptodate(page))
1533				continue;
1534
1535			ret = rbio_add_io_page(rbio, &bio_list, page,
1536				       stripe, pagenr, rbio->stripe_len);
1537			if (ret)
1538				goto cleanup;
1539		}
1540	}
 
 
 
 
 
1541
1542	bios_to_read = bio_list_size(&bio_list);
1543	if (!bios_to_read) {
1544		/*
1545		 * this can happen if others have merged with
1546		 * us, it means there is nothing left to read.
1547		 * But if there are missing devices it may not be
1548		 * safe to do the full stripe write yet.
1549		 */
1550		goto finish;
1551	}
1552
1553	/*
1554	 * the bbio may be freed once we submit the last bio.  Make sure
1555	 * not to touch it after that
1556	 */
1557	atomic_set(&rbio->stripes_pending, bios_to_read);
1558	while ((bio = bio_list_pop(&bio_list))) {
1559		bio->bi_private = rbio;
1560		bio->bi_end_io = raid_rmw_end_io;
1561		bio->bi_opf = REQ_OP_READ;
 
 
 
 
1562
1563		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
1564
 
 
 
1565		submit_bio(bio);
1566	}
1567	/* the actual write will happen once the reads are done */
1568	return 0;
1569
1570cleanup:
1571	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1572
1573	while ((bio = bio_list_pop(&bio_list)))
1574		bio_put(bio);
1575
1576	return -EIO;
1577
1578finish:
1579	validate_rbio_for_rmw(rbio);
1580	return 0;
1581}
1582
1583/*
1584 * if the upper layers pass in a full stripe, we thank them by only allocating
1585 * enough pages to hold the parity, and sending it all down quickly.
1586 */
1587static int full_stripe_write(struct btrfs_raid_bio *rbio)
1588{
 
1589	int ret;
1590
1591	ret = alloc_rbio_parity_pages(rbio);
1592	if (ret) {
1593		__free_raid_bio(rbio);
1594		return ret;
1595	}
1596
1597	ret = lock_stripe_add(rbio);
1598	if (ret == 0)
1599		finish_rmw(rbio);
1600	return 0;
1601}
1602
1603/*
1604 * partial stripe writes get handed over to async helpers.
1605 * We're really hoping to merge a few more writes into this
1606 * rbio before calculating new parity
1607 */
1608static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1609{
1610	int ret;
1611
1612	ret = lock_stripe_add(rbio);
1613	if (ret == 0)
1614		start_async_work(rbio, rmw_work);
1615	return 0;
1616}
1617
1618/*
1619 * sometimes while we were reading from the drive to
1620 * recalculate parity, enough new bios come into create
1621 * a full stripe.  So we do a check here to see if we can
1622 * go directly to finish_rmw
1623 */
1624static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1625{
1626	/* head off into rmw land if we don't have a full stripe */
1627	if (!rbio_is_full(rbio))
1628		return partial_stripe_write(rbio);
1629	return full_stripe_write(rbio);
1630}
1631
1632/*
1633 * We use plugging call backs to collect full stripes.
1634 * Any time we get a partial stripe write while plugged
1635 * we collect it into a list.  When the unplug comes down,
1636 * we sort the list by logical block number and merge
1637 * everything we can into the same rbios
1638 */
1639struct btrfs_plug_cb {
1640	struct blk_plug_cb cb;
1641	struct btrfs_fs_info *info;
1642	struct list_head rbio_list;
1643	struct btrfs_work work;
1644};
1645
1646/*
1647 * rbios on the plug list are sorted for easier merging.
1648 */
1649static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1650{
1651	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1652						 plug_list);
1653	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1654						 plug_list);
1655	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1656	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1657
1658	if (a_sector < b_sector)
1659		return -1;
1660	if (a_sector > b_sector)
1661		return 1;
1662	return 0;
1663}
1664
1665static void run_plug(struct btrfs_plug_cb *plug)
1666{
 
1667	struct btrfs_raid_bio *cur;
1668	struct btrfs_raid_bio *last = NULL;
1669
1670	/*
1671	 * sort our plug list then try to merge
1672	 * everything we can in hopes of creating full
1673	 * stripes.
1674	 */
1675	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1676	while (!list_empty(&plug->rbio_list)) {
1677		cur = list_entry(plug->rbio_list.next,
1678				 struct btrfs_raid_bio, plug_list);
1679		list_del_init(&cur->plug_list);
1680
1681		if (rbio_is_full(cur)) {
1682			int ret;
1683
1684			/* we have a full stripe, send it down */
1685			ret = full_stripe_write(cur);
1686			BUG_ON(ret);
1687			continue;
1688		}
1689		if (last) {
1690			if (rbio_can_merge(last, cur)) {
1691				merge_rbio(last, cur);
1692				__free_raid_bio(cur);
1693				continue;
1694
1695			}
1696			__raid56_parity_write(last);
1697		}
1698		last = cur;
1699	}
1700	if (last) {
1701		__raid56_parity_write(last);
1702	}
1703	kfree(plug);
1704}
1705
1706/*
1707 * if the unplug comes from schedule, we have to push the
1708 * work off to a helper thread
1709 */
1710static void unplug_work(struct btrfs_work *work)
1711{
1712	struct btrfs_plug_cb *plug;
1713	plug = container_of(work, struct btrfs_plug_cb, work);
1714	run_plug(plug);
1715}
1716
1717static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718{
1719	struct btrfs_plug_cb *plug;
1720	plug = container_of(cb, struct btrfs_plug_cb, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	if (from_schedule) {
1723		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1724		btrfs_queue_work(plug->info->rmw_workers,
1725				 &plug->work);
1726		return;
1727	}
1728	run_plug(plug);
1729}
1730
1731/*
1732 * our main entry point for writes from the rest of the FS.
1733 */
1734int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1735			struct btrfs_bio *bbio, u64 stripe_len)
1736{
 
1737	struct btrfs_raid_bio *rbio;
1738	struct btrfs_plug_cb *plug = NULL;
1739	struct blk_plug_cb *cb;
1740	int ret;
1741
1742	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1743	if (IS_ERR(rbio)) {
1744		btrfs_put_bbio(bbio);
1745		return PTR_ERR(rbio);
 
1746	}
1747	bio_list_add(&rbio->bio_list, bio);
1748	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1749	rbio->operation = BTRFS_RBIO_WRITE;
1750
1751	btrfs_bio_counter_inc_noblocked(fs_info);
1752	rbio->generic_bio_cnt = 1;
1753
1754	/*
1755	 * don't plug on full rbios, just get them out the door
1756	 * as quickly as we can
1757	 */
1758	if (rbio_is_full(rbio)) {
1759		ret = full_stripe_write(rbio);
1760		if (ret)
1761			btrfs_bio_counter_dec(fs_info);
1762		return ret;
 
 
 
 
 
 
1763	}
1764
1765	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1766	if (cb) {
1767		plug = container_of(cb, struct btrfs_plug_cb, cb);
1768		if (!plug->info) {
1769			plug->info = fs_info;
1770			INIT_LIST_HEAD(&plug->rbio_list);
1771		}
1772		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1773		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774	} else {
1775		ret = __raid56_parity_write(rbio);
1776		if (ret)
1777			btrfs_bio_counter_dec(fs_info);
1778	}
 
 
 
 
 
 
 
 
1779	return ret;
1780}
1781
1782/*
1783 * all parity reconstruction happens here.  We've read in everything
1784 * we can find from the drives and this does the heavy lifting of
1785 * sorting the good from the bad.
1786 */
1787static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1788{
1789	int pagenr, stripe;
1790	void **pointers;
1791	int faila = -1, failb = -1;
1792	struct page *page;
1793	blk_status_t err;
1794	int i;
 
 
 
1795
1796	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1797	if (!pointers) {
1798		err = BLK_STS_RESOURCE;
1799		goto cleanup_io;
1800	}
 
 
1801
1802	faila = rbio->faila;
1803	failb = rbio->failb;
 
 
 
 
 
 
1804
1805	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1806	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1807		spin_lock_irq(&rbio->bio_list_lock);
1808		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1809		spin_unlock_irq(&rbio->bio_list_lock);
1810	}
1811
1812	index_rbio_pages(rbio);
1813
1814	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
 
 
 
 
1815		/*
1816		 * Now we just use bitmap to mark the horizontal stripes in
1817		 * which we have data when doing parity scrub.
1818		 */
1819		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1820		    !test_bit(pagenr, rbio->dbitmap))
1821			continue;
 
 
 
 
 
 
 
1822
1823		/* setup our array of pointers with pages
1824		 * from each stripe
1825		 */
1826		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 
 
 
 
 
 
 
 
1827			/*
1828			 * if we're rebuilding a read, we have to use
1829			 * pages from the bio list
1830			 */
1831			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1832			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1833			    (stripe == faila || stripe == failb)) {
1834				page = page_in_rbio(rbio, stripe, pagenr, 0);
1835			} else {
1836				page = rbio_stripe_page(rbio, stripe, pagenr);
1837			}
1838			pointers[stripe] = kmap(page);
1839		}
1840
1841		/* all raid6 handling here */
1842		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1843			/*
1844			 * single failure, rebuild from parity raid5
1845			 * style
1846			 */
1847			if (failb < 0) {
1848				if (faila == rbio->nr_data) {
1849					/*
1850					 * Just the P stripe has failed, without
1851					 * a bad data or Q stripe.
1852					 * TODO, we should redo the xor here.
1853					 */
1854					err = BLK_STS_IOERR;
1855					goto cleanup;
1856				}
1857				/*
1858				 * a single failure in raid6 is rebuilt
1859				 * in the pstripe code below
 
1860				 */
1861				goto pstripe;
1862			}
1863
1864			/* make sure our ps and qs are in order */
1865			if (faila > failb)
1866				swap(faila, failb);
1867
1868			/* if the q stripe is failed, do a pstripe reconstruction
1869			 * from the xors.
1870			 * If both the q stripe and the P stripe are failed, we're
1871			 * here due to a crc mismatch and we can't give them the
1872			 * data they want
1873			 */
1874			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1875				if (rbio->bbio->raid_map[faila] ==
1876				    RAID5_P_STRIPE) {
1877					err = BLK_STS_IOERR;
1878					goto cleanup;
1879				}
1880				/*
1881				 * otherwise we have one bad data stripe and
1882				 * a good P stripe.  raid5!
1883				 */
1884				goto pstripe;
1885			}
1886
1887			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1888				raid6_datap_recov(rbio->real_stripes,
1889						  PAGE_SIZE, faila, pointers);
1890			} else {
1891				raid6_2data_recov(rbio->real_stripes,
1892						  PAGE_SIZE, faila, failb,
1893						  pointers);
1894			}
1895		} else {
1896			void *p;
 
 
 
 
1897
1898			/* rebuild from P stripe here (raid5 or raid6) */
1899			BUG_ON(failb != -1);
1900pstripe:
1901			/* Copy parity block into failed block to start with */
1902			copy_page(pointers[faila], pointers[rbio->nr_data]);
 
 
 
 
 
 
 
 
 
 
1903
1904			/* rearrange the pointer array */
1905			p = pointers[faila];
1906			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1907				pointers[stripe] = pointers[stripe + 1];
1908			pointers[rbio->nr_data - 1] = p;
1909
1910			/* xor in the rest */
1911			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1912		}
1913		/* if we're doing this rebuild as part of an rmw, go through
1914		 * and set all of our private rbio pages in the
1915		 * failed stripes as uptodate.  This way finish_rmw will
1916		 * know they can be trusted.  If this was a read reconstruction,
1917		 * other endio functions will fiddle the uptodate bits
1918		 */
1919		if (rbio->operation == BTRFS_RBIO_WRITE) {
1920			for (i = 0;  i < rbio->stripe_npages; i++) {
1921				if (faila != -1) {
1922					page = rbio_stripe_page(rbio, faila, i);
1923					SetPageUptodate(page);
1924				}
1925				if (failb != -1) {
1926					page = rbio_stripe_page(rbio, failb, i);
1927					SetPageUptodate(page);
1928				}
1929			}
1930		}
1931		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1932			/*
1933			 * if we're rebuilding a read, we have to use
1934			 * pages from the bio list
1935			 */
1936			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1937			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1938			    (stripe == faila || stripe == failb)) {
1939				page = page_in_rbio(rbio, stripe, pagenr, 0);
1940			} else {
1941				page = rbio_stripe_page(rbio, stripe, pagenr);
1942			}
1943			kunmap(page);
1944		}
1945	}
1946
1947	err = BLK_STS_OK;
1948cleanup:
1949	kfree(pointers);
1950
1951cleanup_io:
1952	/*
1953	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1954	 * valid rbio which is consistent with ondisk content, thus such a
1955	 * valid rbio can be cached to avoid further disk reads.
 
 
 
 
 
1956	 */
1957	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1958	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1959		/*
1960		 * - In case of two failures, where rbio->failb != -1:
1961		 *
1962		 *   Do not cache this rbio since the above read reconstruction
1963		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1964		 *   changed some content of stripes which are not identical to
1965		 *   on-disk content any more, otherwise, a later write/recover
1966		 *   may steal stripe_pages from this rbio and end up with
1967		 *   corruptions or rebuild failures.
1968		 *
1969		 * - In case of single failure, where rbio->failb == -1:
1970		 *
1971		 *   Cache this rbio iff the above read reconstruction is
1972		 *   executed without problems.
1973		 */
1974		if (err == BLK_STS_OK && rbio->failb < 0)
1975			cache_rbio_pages(rbio);
1976		else
1977			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1978
1979		rbio_orig_end_io(rbio, err);
1980	} else if (err == BLK_STS_OK) {
1981		rbio->faila = -1;
1982		rbio->failb = -1;
1983
1984		if (rbio->operation == BTRFS_RBIO_WRITE)
1985			finish_rmw(rbio);
1986		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1987			finish_parity_scrub(rbio, 0);
1988		else
1989			BUG();
1990	} else {
1991		rbio_orig_end_io(rbio, err);
1992	}
 
 
 
 
 
1993}
1994
1995/*
1996 * This is called only for stripes we've read from disk to
1997 * reconstruct the parity.
1998 */
1999static void raid_recover_end_io(struct bio *bio)
2000{
2001	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
2002
2003	/*
2004	 * we only read stripe pages off the disk, set them
2005	 * up to date if there were no errors
 
 
2006	 */
2007	if (bio->bi_status)
2008		fail_bio_stripe(rbio, bio);
2009	else
2010		set_bio_pages_uptodate(bio);
2011	bio_put(bio);
 
 
 
 
 
 
 
 
 
2012
2013	if (!atomic_dec_and_test(&rbio->stripes_pending))
2014		return;
 
 
 
2015
2016	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2017		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2018	else
2019		__raid_recover_end_io(rbio);
2020}
2021
2022/*
2023 * reads everything we need off the disk to reconstruct
2024 * the parity. endio handlers trigger final reconstruction
2025 * when the IO is done.
2026 *
2027 * This is used both for reads from the higher layers and for
2028 * parity construction required to finish a rmw cycle.
2029 */
2030static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2031{
2032	int bios_to_read = 0;
2033	struct bio_list bio_list;
2034	int ret;
2035	int pagenr;
2036	int stripe;
2037	struct bio *bio;
2038
2039	bio_list_init(&bio_list);
 
 
 
 
2040
 
2041	ret = alloc_rbio_pages(rbio);
2042	if (ret)
2043		goto cleanup;
2044
2045	atomic_set(&rbio->error, 0);
2046
2047	/*
2048	 * read everything that hasn't failed.  Thanks to the
2049	 * stripe cache, it is possible that some or all of these
2050	 * pages are going to be uptodate.
 
 
 
2051	 */
2052	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2053		if (rbio->faila == stripe || rbio->failb == stripe) {
2054			atomic_inc(&rbio->error);
2055			continue;
2056		}
2057
2058		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2059			struct page *p;
2060
 
 
 
 
 
 
 
2061			/*
2062			 * the rmw code may have already read this
2063			 * page in
2064			 */
2065			p = rbio_stripe_page(rbio, stripe, pagenr);
2066			if (PageUptodate(p))
2067				continue;
2068
2069			ret = rbio_add_io_page(rbio, &bio_list,
2070				       rbio_stripe_page(rbio, stripe, pagenr),
2071				       stripe, pagenr, rbio->stripe_len);
2072			if (ret < 0)
2073				goto cleanup;
 
2074		}
2075	}
2076
2077	bios_to_read = bio_list_size(&bio_list);
2078	if (!bios_to_read) {
2079		/*
2080		 * we might have no bios to read just because the pages
2081		 * were up to date, or we might have no bios to read because
2082		 * the devices were gone.
2083		 */
2084		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2085			__raid_recover_end_io(rbio);
2086			return 0;
2087		} else {
2088			goto cleanup;
2089		}
2090	}
 
 
 
 
 
 
 
 
 
 
2091
2092	/*
2093	 * the bbio may be freed once we submit the last bio.  Make sure
2094	 * not to touch it after that
 
 
2095	 */
2096	atomic_set(&rbio->stripes_pending, bios_to_read);
2097	while ((bio = bio_list_pop(&bio_list))) {
2098		bio->bi_private = rbio;
2099		bio->bi_end_io = raid_recover_end_io;
2100		bio->bi_opf = REQ_OP_READ;
2101
2102		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
 
 
 
2103
2104		submit_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105	}
2106
2107	return 0;
2108
2109cleanup:
2110	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2113
2114	while ((bio = bio_list_pop(&bio_list)))
2115		bio_put(bio);
2116
2117	return -EIO;
2118}
2119
2120/*
2121 * the main entry point for reads from the higher layers.  This
2122 * is really only called when the normal read path had a failure,
2123 * so we assume the bio they send down corresponds to a failed part
2124 * of the drive.
2125 */
2126int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2127			  struct btrfs_bio *bbio, u64 stripe_len,
2128			  int mirror_num, int generic_io)
2129{
 
2130	struct btrfs_raid_bio *rbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131	int ret;
2132
2133	if (generic_io) {
2134		ASSERT(bbio->mirror_num == mirror_num);
2135		btrfs_io_bio(bio)->mirror_num = mirror_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136	}
2137
2138	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2139	if (IS_ERR(rbio)) {
2140		if (generic_io)
2141			btrfs_put_bbio(bbio);
2142		return PTR_ERR(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143	}
2144
2145	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2146	bio_list_add(&rbio->bio_list, bio);
2147	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148
2149	rbio->faila = find_logical_bio_stripe(rbio, bio);
2150	if (rbio->faila == -1) {
2151		btrfs_warn(fs_info,
2152	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2153			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2154			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2155		if (generic_io)
2156			btrfs_put_bbio(bbio);
2157		kfree(rbio);
2158		return -EIO;
2159	}
 
 
 
 
 
 
 
 
 
 
 
 
2160
2161	if (generic_io) {
2162		btrfs_bio_counter_inc_noblocked(fs_info);
2163		rbio->generic_bio_cnt = 1;
2164	} else {
2165		btrfs_get_bbio(bbio);
 
 
2166	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168	/*
2169	 * Loop retry:
2170	 * for 'mirror == 2', reconstruct from all other stripes.
2171	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2172	 */
2173	if (mirror_num > 2) {
2174		/*
2175		 * 'mirror == 3' is to fail the p stripe and
2176		 * reconstruct from the q stripe.  'mirror > 3' is to
2177		 * fail a data stripe and reconstruct from p+q stripe.
2178		 */
2179		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2180		ASSERT(rbio->failb > 0);
2181		if (rbio->failb <= rbio->faila)
2182			rbio->failb--;
 
 
 
 
 
2183	}
2184
2185	ret = lock_stripe_add(rbio);
2186
2187	/*
2188	 * __raid56_parity_recover will end the bio with
2189	 * any errors it hits.  We don't want to return
2190	 * its error value up the stack because our caller
2191	 * will end up calling bio_endio with any nonzero
2192	 * return
2193	 */
2194	if (ret == 0)
2195		__raid56_parity_recover(rbio);
 
 
 
 
 
 
2196	/*
2197	 * our rbio has been added to the list of
2198	 * rbios that will be handled after the
2199	 * currently lock owner is done
 
2200	 */
2201	return 0;
 
 
 
 
 
 
 
 
 
 
 
2202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203}
2204
2205static void rmw_work(struct btrfs_work *work)
2206{
2207	struct btrfs_raid_bio *rbio;
2208
2209	rbio = container_of(work, struct btrfs_raid_bio, work);
2210	raid56_rmw_stripe(rbio);
 
2211}
2212
2213static void read_rebuild_work(struct btrfs_work *work)
2214{
2215	struct btrfs_raid_bio *rbio;
2216
2217	rbio = container_of(work, struct btrfs_raid_bio, work);
2218	__raid56_parity_recover(rbio);
2219}
2220
2221/*
2222 * The following code is used to scrub/replace the parity stripe
2223 *
2224 * Caller must have already increased bio_counter for getting @bbio.
2225 *
2226 * Note: We need make sure all the pages that add into the scrub/replace
2227 * raid bio are correct and not be changed during the scrub/replace. That
2228 * is those pages just hold metadata or file data with checksum.
2229 */
2230
2231struct btrfs_raid_bio *
2232raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2233			       struct btrfs_bio *bbio, u64 stripe_len,
2234			       struct btrfs_device *scrub_dev,
2235			       unsigned long *dbitmap, int stripe_nsectors)
2236{
 
2237	struct btrfs_raid_bio *rbio;
2238	int i;
2239
2240	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2241	if (IS_ERR(rbio))
2242		return NULL;
2243	bio_list_add(&rbio->bio_list, bio);
2244	/*
2245	 * This is a special bio which is used to hold the completion handler
2246	 * and make the scrub rbio is similar to the other types
2247	 */
2248	ASSERT(!bio->bi_iter.bi_size);
2249	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2250
2251	/*
2252	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2253	 * to the end position, so this search can start from the first parity
2254	 * stripe.
2255	 */
2256	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2257		if (bbio->stripes[i].dev == scrub_dev) {
2258			rbio->scrubp = i;
2259			break;
2260		}
2261	}
2262	ASSERT(i < rbio->real_stripes);
2263
2264	/* Now we just support the sectorsize equals to page size */
2265	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2266	ASSERT(rbio->stripe_npages == stripe_nsectors);
2267	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2268
2269	/*
2270	 * We have already increased bio_counter when getting bbio, record it
2271	 * so we can free it at rbio_orig_end_io().
2272	 */
2273	rbio->generic_bio_cnt = 1;
2274
2275	return rbio;
2276}
2277
2278/* Used for both parity scrub and missing. */
2279void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2280			    u64 logical)
2281{
2282	int stripe_offset;
2283	int index;
2284
2285	ASSERT(logical >= rbio->bbio->raid_map[0]);
2286	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2287				rbio->stripe_len * rbio->nr_data);
2288	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2289	index = stripe_offset >> PAGE_SHIFT;
2290	rbio->bio_pages[index] = page;
2291}
2292
2293/*
2294 * We just scrub the parity that we have correct data on the same horizontal,
2295 * so we needn't allocate all pages for all the stripes.
2296 */
2297static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2298{
2299	int i;
2300	int bit;
2301	int index;
2302	struct page *page;
2303
2304	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2305		for (i = 0; i < rbio->real_stripes; i++) {
2306			index = i * rbio->stripe_npages + bit;
2307			if (rbio->stripe_pages[index])
2308				continue;
2309
2310			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2311			if (!page)
2312				return -ENOMEM;
2313			rbio->stripe_pages[index] = page;
2314		}
 
 
 
2315	}
 
2316	return 0;
2317}
2318
2319static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2320					 int need_check)
2321{
2322	struct btrfs_bio *bbio = rbio->bbio;
 
2323	void **pointers = rbio->finish_pointers;
2324	unsigned long *pbitmap = rbio->finish_pbitmap;
2325	int nr_data = rbio->nr_data;
2326	int stripe;
2327	int pagenr;
2328	bool has_qstripe;
2329	struct page *p_page = NULL;
2330	struct page *q_page = NULL;
2331	struct bio_list bio_list;
2332	struct bio *bio;
2333	int is_replace = 0;
2334	int ret;
2335
2336	bio_list_init(&bio_list);
2337
2338	if (rbio->real_stripes - rbio->nr_data == 1)
2339		has_qstripe = false;
2340	else if (rbio->real_stripes - rbio->nr_data == 2)
2341		has_qstripe = true;
2342	else
2343		BUG();
2344
2345	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
 
 
 
 
2346		is_replace = 1;
2347		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2348	}
2349
2350	/*
2351	 * Because the higher layers(scrubber) are unlikely to
2352	 * use this area of the disk again soon, so don't cache
2353	 * it.
2354	 */
2355	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2356
2357	if (!need_check)
2358		goto writeback;
2359
2360	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2361	if (!p_page)
2362		goto cleanup;
2363	SetPageUptodate(p_page);
2364
2365	if (has_qstripe) {
2366		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2367		if (!q_page) {
2368			__free_page(p_page);
2369			goto cleanup;
 
 
2370		}
2371		SetPageUptodate(q_page);
 
 
2372	}
2373
2374	atomic_set(&rbio->error, 0);
 
 
 
2375
2376	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2377		struct page *p;
2378		void *parity;
 
2379		/* first collect one page from each data stripe */
2380		for (stripe = 0; stripe < nr_data; stripe++) {
2381			p = page_in_rbio(rbio, stripe, pagenr, 0);
2382			pointers[stripe] = kmap(p);
 
2383		}
2384
2385		/* then add the parity stripe */
2386		pointers[stripe++] = kmap(p_page);
2387
2388		if (has_qstripe) {
2389			/*
2390			 * raid6, add the qstripe and call the
2391			 * library function to fill in our p/q
2392			 */
2393			pointers[stripe++] = kmap(q_page);
2394
2395			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2396						pointers);
2397		} else {
2398			/* raid5 */
2399			copy_page(pointers[nr_data], pointers[0]);
2400			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2401		}
2402
2403		/* Check scrubbing parity and repair it */
2404		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2405		parity = kmap(p);
2406		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2407			copy_page(parity, pointers[rbio->scrubp]);
2408		else
2409			/* Parity is right, needn't writeback */
2410			bitmap_clear(rbio->dbitmap, pagenr, 1);
2411		kunmap(p);
2412
2413		for (stripe = 0; stripe < nr_data; stripe++)
2414			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2415		kunmap(p_page);
2416	}
2417
2418	__free_page(p_page);
2419	if (q_page)
2420		__free_page(q_page);
 
 
 
 
 
2421
2422writeback:
2423	/*
2424	 * time to start writing.  Make bios for everything from the
2425	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2426	 * everything else.
2427	 */
2428	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2429		struct page *page;
2430
2431		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2432		ret = rbio_add_io_page(rbio, &bio_list,
2433			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2434		if (ret)
2435			goto cleanup;
2436	}
2437
2438	if (!is_replace)
2439		goto submit_write;
2440
2441	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2442		struct page *page;
2443
2444		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2445		ret = rbio_add_io_page(rbio, &bio_list, page,
2446				       bbio->tgtdev_map[rbio->scrubp],
2447				       pagenr, rbio->stripe_len);
 
 
 
 
 
2448		if (ret)
2449			goto cleanup;
2450	}
2451
2452submit_write:
2453	nr_data = bio_list_size(&bio_list);
2454	if (!nr_data) {
2455		/* Every parity is right */
2456		rbio_orig_end_io(rbio, BLK_STS_OK);
2457		return;
2458	}
2459
2460	atomic_set(&rbio->stripes_pending, nr_data);
2461
2462	while ((bio = bio_list_pop(&bio_list))) {
2463		bio->bi_private = rbio;
2464		bio->bi_end_io = raid_write_end_io;
2465		bio->bi_opf = REQ_OP_WRITE;
2466
2467		submit_bio(bio);
2468	}
2469	return;
2470
2471cleanup:
2472	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2473
2474	while ((bio = bio_list_pop(&bio_list)))
2475		bio_put(bio);
2476}
2477
2478static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2479{
2480	if (stripe >= 0 && stripe < rbio->nr_data)
2481		return 1;
2482	return 0;
2483}
2484
2485/*
2486 * While we're doing the parity check and repair, we could have errors
2487 * in reading pages off the disk.  This checks for errors and if we're
2488 * not able to read the page it'll trigger parity reconstruction.  The
2489 * parity scrub will be finished after we've reconstructed the failed
2490 * stripes
2491 */
2492static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2493{
2494	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2495		goto cleanup;
 
 
2496
2497	if (rbio->faila >= 0 || rbio->failb >= 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2498		int dfail = 0, failp = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499
2500		if (is_data_stripe(rbio, rbio->faila))
2501			dfail++;
2502		else if (is_parity_stripe(rbio->faila))
2503			failp = rbio->faila;
2504
2505		if (is_data_stripe(rbio, rbio->failb))
2506			dfail++;
2507		else if (is_parity_stripe(rbio->failb))
2508			failp = rbio->failb;
2509
2510		/*
2511		 * Because we can not use a scrubbing parity to repair
2512		 * the data, so the capability of the repair is declined.
2513		 * (In the case of RAID5, we can not repair anything)
2514		 */
2515		if (dfail > rbio->bbio->max_errors - 1)
2516			goto cleanup;
2517
 
2518		/*
2519		 * If all data is good, only parity is correctly, just
2520		 * repair the parity.
2521		 */
2522		if (dfail == 0) {
2523			finish_parity_scrub(rbio, 0);
2524			return;
2525		}
2526
2527		/*
2528		 * Here means we got one corrupted data stripe and one
2529		 * corrupted parity on RAID6, if the corrupted parity
2530		 * is scrubbing parity, luckily, use the other one to repair
2531		 * the data, or we can not repair the data stripe.
2532		 */
2533		if (failp != rbio->scrubp)
2534			goto cleanup;
 
 
2535
2536		__raid_recover_end_io(rbio);
2537	} else {
2538		finish_parity_scrub(rbio, 1);
2539	}
2540	return;
2541
2542cleanup:
2543	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2544}
2545
2546/*
2547 * end io for the read phase of the rmw cycle.  All the bios here are physical
2548 * stripe bios we've read from the disk so we can recalculate the parity of the
2549 * stripe.
2550 *
2551 * This will usually kick off finish_rmw once all the bios are read in, but it
2552 * may trigger parity reconstruction if we had any errors along the way
2553 */
2554static void raid56_parity_scrub_end_io(struct bio *bio)
2555{
2556	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
2557
2558	if (bio->bi_status)
2559		fail_bio_stripe(rbio, bio);
2560	else
2561		set_bio_pages_uptodate(bio);
 
 
 
 
2562
2563	bio_put(bio);
 
 
 
 
 
 
2564
2565	if (!atomic_dec_and_test(&rbio->stripes_pending))
2566		return;
 
 
 
 
 
2567
2568	/*
2569	 * this will normally call finish_rmw to start our write
2570	 * but if there are any failed stripes we'll reconstruct
2571	 * from parity first
2572	 */
2573	validate_rbio_for_parity_scrub(rbio);
2574}
2575
2576static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2577{
2578	int bios_to_read = 0;
2579	struct bio_list bio_list;
2580	int ret;
2581	int pagenr;
2582	int stripe;
2583	struct bio *bio;
2584
2585	bio_list_init(&bio_list);
2586
2587	ret = alloc_rbio_essential_pages(rbio);
2588	if (ret)
2589		goto cleanup;
2590
2591	atomic_set(&rbio->error, 0);
2592	/*
2593	 * build a list of bios to read all the missing parts of this
2594	 * stripe
2595	 */
2596	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2597		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2598			struct page *page;
2599			/*
2600			 * we want to find all the pages missing from
2601			 * the rbio and read them from the disk.  If
2602			 * page_in_rbio finds a page in the bio list
2603			 * we don't need to read it off the stripe.
2604			 */
2605			page = page_in_rbio(rbio, stripe, pagenr, 1);
2606			if (page)
2607				continue;
2608
2609			page = rbio_stripe_page(rbio, stripe, pagenr);
2610			/*
2611			 * the bio cache may have handed us an uptodate
2612			 * page.  If so, be happy and use it
2613			 */
2614			if (PageUptodate(page))
2615				continue;
2616
2617			ret = rbio_add_io_page(rbio, &bio_list, page,
2618				       stripe, pagenr, rbio->stripe_len);
2619			if (ret)
2620				goto cleanup;
2621		}
2622	}
2623
2624	bios_to_read = bio_list_size(&bio_list);
2625	if (!bios_to_read) {
2626		/*
2627		 * this can happen if others have merged with
2628		 * us, it means there is nothing left to read.
2629		 * But if there are missing devices it may not be
2630		 * safe to do the full stripe write yet.
2631		 */
2632		goto finish;
2633	}
2634
2635	/*
2636	 * the bbio may be freed once we submit the last bio.  Make sure
2637	 * not to touch it after that
2638	 */
2639	atomic_set(&rbio->stripes_pending, bios_to_read);
2640	while ((bio = bio_list_pop(&bio_list))) {
2641		bio->bi_private = rbio;
2642		bio->bi_end_io = raid56_parity_scrub_end_io;
2643		bio->bi_opf = REQ_OP_READ;
2644
2645		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2646
2647		submit_bio(bio);
 
2648	}
2649	/* the actual write will happen once the reads are done */
2650	return;
2651
2652cleanup:
2653	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2654
2655	while ((bio = bio_list_pop(&bio_list)))
2656		bio_put(bio);
2657
2658	return;
2659
2660finish:
2661	validate_rbio_for_parity_scrub(rbio);
2662}
2663
2664static void scrub_parity_work(struct btrfs_work *work)
2665{
2666	struct btrfs_raid_bio *rbio;
2667
2668	rbio = container_of(work, struct btrfs_raid_bio, work);
2669	raid56_parity_scrub_stripe(rbio);
2670}
2671
2672void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2673{
2674	if (!lock_stripe_add(rbio))
2675		start_async_work(rbio, scrub_parity_work);
2676}
2677
2678/* The following code is used for dev replace of a missing RAID 5/6 device. */
2679
2680struct btrfs_raid_bio *
2681raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2682			  struct btrfs_bio *bbio, u64 length)
 
 
 
 
2683{
2684	struct btrfs_raid_bio *rbio;
 
 
 
 
 
2685
2686	rbio = alloc_rbio(fs_info, bbio, length);
2687	if (IS_ERR(rbio))
2688		return NULL;
2689
2690	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2691	bio_list_add(&rbio->bio_list, bio);
2692	/*
2693	 * This is a special bio which is used to hold the completion handler
2694	 * and make the scrub rbio is similar to the other types
 
 
 
 
2695	 */
2696	ASSERT(!bio->bi_iter.bi_size);
 
 
2697
2698	rbio->faila = find_logical_bio_stripe(rbio, bio);
2699	if (rbio->faila == -1) {
2700		BUG();
2701		kfree(rbio);
2702		return NULL;
 
 
 
 
 
 
 
 
2703	}
2704
2705	/*
2706	 * When we get bbio, we have already increased bio_counter, record it
2707	 * so we can free it at rbio_orig_end_io()
2708	 */
2709	rbio->generic_bio_cnt = 1;
2710
2711	return rbio;
2712}
2713
2714void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2715{
2716	if (!lock_stripe_add(rbio))
2717		start_async_work(rbio, read_rebuild_work);
2718}