Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18#include "fs.h"
19#include "accessors.h"
20#include "extent-tree.h"
21#include "relocation.h"
22#include "tree-checker.h"
23
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED 6
26#define BACKREF_FOUND_NOT_SHARED 7
27
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 u64 num_bytes;
32 struct extent_inode_elem *next;
33};
34
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
39 struct extent_inode_elem **eie)
40{
41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 u64 offset = key->offset;
43 struct extent_inode_elem *e;
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
47
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, fi) &&
50 !btrfs_file_extent_encryption(eb, fi) &&
51 !btrfs_file_extent_other_encoding(eb, fi)) {
52 u64 data_offset;
53
54 data_offset = btrfs_file_extent_offset(eb, fi);
55
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
58 return 1;
59 offset += ctx->extent_item_pos - data_offset;
60 }
61
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80add_inode_elem:
81 e = kmalloc(sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
87 e->offset = offset;
88 e->num_bytes = data_len;
89 *eie = e;
90
91 return 0;
92}
93
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(eie);
101 }
102}
103
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
106 struct extent_inode_elem **eie)
107{
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, &key, slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 if (disk_byte != ctx->bytenr)
133 continue;
134
135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 return ret;
138 }
139
140 return 0;
141}
142
143struct preftree {
144 struct rb_root_cached root;
145 unsigned int count;
146};
147
148#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154};
155
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164struct share_check {
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
167 u64 inum;
168 u64 data_bytenr;
169 u64 data_extent_gen;
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
176 int share_count;
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
188 bool have_delayed_delete_refs;
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 sizeof(struct prelim_ref), 0, 0, NULL);
202 if (!btrfs_prelim_ref_cache)
203 return -ENOMEM;
204 return 0;
205}
206
207void __cold btrfs_prelim_ref_exit(void)
208{
209 kmem_cache_destroy(btrfs_prelim_ref_cache);
210}
211
212static void free_pref(struct prelim_ref *ref)
213{
214 kmem_cache_free(btrfs_prelim_ref_cache, ref);
215}
216
217/*
218 * Return 0 when both refs are for the same block (and can be merged).
219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220 * indicates a 'higher' block.
221 */
222static int prelim_ref_compare(struct prelim_ref *ref1,
223 struct prelim_ref *ref2)
224{
225 if (ref1->level < ref2->level)
226 return -1;
227 if (ref1->level > ref2->level)
228 return 1;
229 if (ref1->root_id < ref2->root_id)
230 return -1;
231 if (ref1->root_id > ref2->root_id)
232 return 1;
233 if (ref1->key_for_search.type < ref2->key_for_search.type)
234 return -1;
235 if (ref1->key_for_search.type > ref2->key_for_search.type)
236 return 1;
237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 return -1;
239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 return 1;
241 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 return -1;
243 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 return 1;
245 if (ref1->parent < ref2->parent)
246 return -1;
247 if (ref1->parent > ref2->parent)
248 return 1;
249
250 return 0;
251}
252
253static void update_share_count(struct share_check *sc, int oldcount,
254 int newcount, struct prelim_ref *newref)
255{
256 if ((!sc) || (oldcount == 0 && newcount < 1))
257 return;
258
259 if (oldcount > 0 && newcount < 1)
260 sc->share_count--;
261 else if (oldcount < 1 && newcount > 0)
262 sc->share_count++;
263
264 if (newref->root_id == sc->root->root_key.objectid &&
265 newref->wanted_disk_byte == sc->data_bytenr &&
266 newref->key_for_search.objectid == sc->inum)
267 sc->self_ref_count += newref->count;
268}
269
270/*
271 * Add @newref to the @root rbtree, merging identical refs.
272 *
273 * Callers should assume that newref has been freed after calling.
274 */
275static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
276 struct preftree *preftree,
277 struct prelim_ref *newref,
278 struct share_check *sc)
279{
280 struct rb_root_cached *root;
281 struct rb_node **p;
282 struct rb_node *parent = NULL;
283 struct prelim_ref *ref;
284 int result;
285 bool leftmost = true;
286
287 root = &preftree->root;
288 p = &root->rb_root.rb_node;
289
290 while (*p) {
291 parent = *p;
292 ref = rb_entry(parent, struct prelim_ref, rbnode);
293 result = prelim_ref_compare(ref, newref);
294 if (result < 0) {
295 p = &(*p)->rb_left;
296 } else if (result > 0) {
297 p = &(*p)->rb_right;
298 leftmost = false;
299 } else {
300 /* Identical refs, merge them and free @newref */
301 struct extent_inode_elem *eie = ref->inode_list;
302
303 while (eie && eie->next)
304 eie = eie->next;
305
306 if (!eie)
307 ref->inode_list = newref->inode_list;
308 else
309 eie->next = newref->inode_list;
310 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
311 preftree->count);
312 /*
313 * A delayed ref can have newref->count < 0.
314 * The ref->count is updated to follow any
315 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
316 */
317 update_share_count(sc, ref->count,
318 ref->count + newref->count, newref);
319 ref->count += newref->count;
320 free_pref(newref);
321 return;
322 }
323 }
324
325 update_share_count(sc, 0, newref->count, newref);
326 preftree->count++;
327 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
328 rb_link_node(&newref->rbnode, parent, p);
329 rb_insert_color_cached(&newref->rbnode, root, leftmost);
330}
331
332/*
333 * Release the entire tree. We don't care about internal consistency so
334 * just free everything and then reset the tree root.
335 */
336static void prelim_release(struct preftree *preftree)
337{
338 struct prelim_ref *ref, *next_ref;
339
340 rbtree_postorder_for_each_entry_safe(ref, next_ref,
341 &preftree->root.rb_root, rbnode) {
342 free_inode_elem_list(ref->inode_list);
343 free_pref(ref);
344 }
345
346 preftree->root = RB_ROOT_CACHED;
347 preftree->count = 0;
348}
349
350/*
351 * the rules for all callers of this function are:
352 * - obtaining the parent is the goal
353 * - if you add a key, you must know that it is a correct key
354 * - if you cannot add the parent or a correct key, then we will look into the
355 * block later to set a correct key
356 *
357 * delayed refs
358 * ============
359 * backref type | shared | indirect | shared | indirect
360 * information | tree | tree | data | data
361 * --------------------+--------+----------+--------+----------
362 * parent logical | y | - | - | -
363 * key to resolve | - | y | y | y
364 * tree block logical | - | - | - | -
365 * root for resolving | y | y | y | y
366 *
367 * - column 1: we've the parent -> done
368 * - column 2, 3, 4: we use the key to find the parent
369 *
370 * on disk refs (inline or keyed)
371 * ==============================
372 * backref type | shared | indirect | shared | indirect
373 * information | tree | tree | data | data
374 * --------------------+--------+----------+--------+----------
375 * parent logical | y | - | y | -
376 * key to resolve | - | - | - | y
377 * tree block logical | y | y | y | y
378 * root for resolving | - | y | y | y
379 *
380 * - column 1, 3: we've the parent -> done
381 * - column 2: we take the first key from the block to find the parent
382 * (see add_missing_keys)
383 * - column 4: we use the key to find the parent
384 *
385 * additional information that's available but not required to find the parent
386 * block might help in merging entries to gain some speed.
387 */
388static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
389 struct preftree *preftree, u64 root_id,
390 const struct btrfs_key *key, int level, u64 parent,
391 u64 wanted_disk_byte, int count,
392 struct share_check *sc, gfp_t gfp_mask)
393{
394 struct prelim_ref *ref;
395
396 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
397 return 0;
398
399 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
400 if (!ref)
401 return -ENOMEM;
402
403 ref->root_id = root_id;
404 if (key)
405 ref->key_for_search = *key;
406 else
407 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
408
409 ref->inode_list = NULL;
410 ref->level = level;
411 ref->count = count;
412 ref->parent = parent;
413 ref->wanted_disk_byte = wanted_disk_byte;
414 prelim_ref_insert(fs_info, preftree, ref, sc);
415 return extent_is_shared(sc);
416}
417
418/* direct refs use root == 0, key == NULL */
419static int add_direct_ref(const struct btrfs_fs_info *fs_info,
420 struct preftrees *preftrees, int level, u64 parent,
421 u64 wanted_disk_byte, int count,
422 struct share_check *sc, gfp_t gfp_mask)
423{
424 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
425 parent, wanted_disk_byte, count, sc, gfp_mask);
426}
427
428/* indirect refs use parent == 0 */
429static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
430 struct preftrees *preftrees, u64 root_id,
431 const struct btrfs_key *key, int level,
432 u64 wanted_disk_byte, int count,
433 struct share_check *sc, gfp_t gfp_mask)
434{
435 struct preftree *tree = &preftrees->indirect;
436
437 if (!key)
438 tree = &preftrees->indirect_missing_keys;
439 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
440 wanted_disk_byte, count, sc, gfp_mask);
441}
442
443static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
444{
445 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
446 struct rb_node *parent = NULL;
447 struct prelim_ref *ref = NULL;
448 struct prelim_ref target = {};
449 int result;
450
451 target.parent = bytenr;
452
453 while (*p) {
454 parent = *p;
455 ref = rb_entry(parent, struct prelim_ref, rbnode);
456 result = prelim_ref_compare(ref, &target);
457
458 if (result < 0)
459 p = &(*p)->rb_left;
460 else if (result > 0)
461 p = &(*p)->rb_right;
462 else
463 return 1;
464 }
465 return 0;
466}
467
468static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
469 struct btrfs_root *root, struct btrfs_path *path,
470 struct ulist *parents,
471 struct preftrees *preftrees, struct prelim_ref *ref,
472 int level)
473{
474 int ret = 0;
475 int slot;
476 struct extent_buffer *eb;
477 struct btrfs_key key;
478 struct btrfs_key *key_for_search = &ref->key_for_search;
479 struct btrfs_file_extent_item *fi;
480 struct extent_inode_elem *eie = NULL, *old = NULL;
481 u64 disk_byte;
482 u64 wanted_disk_byte = ref->wanted_disk_byte;
483 u64 count = 0;
484 u64 data_offset;
485 u8 type;
486
487 if (level != 0) {
488 eb = path->nodes[level];
489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
490 if (ret < 0)
491 return ret;
492 return 0;
493 }
494
495 /*
496 * 1. We normally enter this function with the path already pointing to
497 * the first item to check. But sometimes, we may enter it with
498 * slot == nritems.
499 * 2. We are searching for normal backref but bytenr of this leaf
500 * matches shared data backref
501 * 3. The leaf owner is not equal to the root we are searching
502 *
503 * For these cases, go to the next leaf before we continue.
504 */
505 eb = path->nodes[0];
506 if (path->slots[0] >= btrfs_header_nritems(eb) ||
507 is_shared_data_backref(preftrees, eb->start) ||
508 ref->root_id != btrfs_header_owner(eb)) {
509 if (ctx->time_seq == BTRFS_SEQ_LAST)
510 ret = btrfs_next_leaf(root, path);
511 else
512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
513 }
514
515 while (!ret && count < ref->count) {
516 eb = path->nodes[0];
517 slot = path->slots[0];
518
519 btrfs_item_key_to_cpu(eb, &key, slot);
520
521 if (key.objectid != key_for_search->objectid ||
522 key.type != BTRFS_EXTENT_DATA_KEY)
523 break;
524
525 /*
526 * We are searching for normal backref but bytenr of this leaf
527 * matches shared data backref, OR
528 * the leaf owner is not equal to the root we are searching for
529 */
530 if (slot == 0 &&
531 (is_shared_data_backref(preftrees, eb->start) ||
532 ref->root_id != btrfs_header_owner(eb))) {
533 if (ctx->time_seq == BTRFS_SEQ_LAST)
534 ret = btrfs_next_leaf(root, path);
535 else
536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
537 continue;
538 }
539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540 type = btrfs_file_extent_type(eb, fi);
541 if (type == BTRFS_FILE_EXTENT_INLINE)
542 goto next;
543 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
544 data_offset = btrfs_file_extent_offset(eb, fi);
545
546 if (disk_byte == wanted_disk_byte) {
547 eie = NULL;
548 old = NULL;
549 if (ref->key_for_search.offset == key.offset - data_offset)
550 count++;
551 else
552 goto next;
553 if (!ctx->skip_inode_ref_list) {
554 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
555 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
556 ret < 0)
557 break;
558 }
559 if (ret > 0)
560 goto next;
561 ret = ulist_add_merge_ptr(parents, eb->start,
562 eie, (void **)&old, GFP_NOFS);
563 if (ret < 0)
564 break;
565 if (!ret && !ctx->skip_inode_ref_list) {
566 while (old->next)
567 old = old->next;
568 old->next = eie;
569 }
570 eie = NULL;
571 }
572next:
573 if (ctx->time_seq == BTRFS_SEQ_LAST)
574 ret = btrfs_next_item(root, path);
575 else
576 ret = btrfs_next_old_item(root, path, ctx->time_seq);
577 }
578
579 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
580 free_inode_elem_list(eie);
581 else if (ret > 0)
582 ret = 0;
583
584 return ret;
585}
586
587/*
588 * resolve an indirect backref in the form (root_id, key, level)
589 * to a logical address
590 */
591static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
592 struct btrfs_path *path,
593 struct preftrees *preftrees,
594 struct prelim_ref *ref, struct ulist *parents)
595{
596 struct btrfs_root *root;
597 struct extent_buffer *eb;
598 int ret = 0;
599 int root_level;
600 int level = ref->level;
601 struct btrfs_key search_key = ref->key_for_search;
602
603 /*
604 * If we're search_commit_root we could possibly be holding locks on
605 * other tree nodes. This happens when qgroups does backref walks when
606 * adding new delayed refs. To deal with this we need to look in cache
607 * for the root, and if we don't find it then we need to search the
608 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
609 * here.
610 */
611 if (path->search_commit_root)
612 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
613 else
614 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
615 if (IS_ERR(root)) {
616 ret = PTR_ERR(root);
617 goto out_free;
618 }
619
620 if (!path->search_commit_root &&
621 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
622 ret = -ENOENT;
623 goto out;
624 }
625
626 if (btrfs_is_testing(ctx->fs_info)) {
627 ret = -ENOENT;
628 goto out;
629 }
630
631 if (path->search_commit_root)
632 root_level = btrfs_header_level(root->commit_root);
633 else if (ctx->time_seq == BTRFS_SEQ_LAST)
634 root_level = btrfs_header_level(root->node);
635 else
636 root_level = btrfs_old_root_level(root, ctx->time_seq);
637
638 if (root_level + 1 == level)
639 goto out;
640
641 /*
642 * We can often find data backrefs with an offset that is too large
643 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
644 * subtracting a file's offset with the data offset of its
645 * corresponding extent data item. This can happen for example in the
646 * clone ioctl.
647 *
648 * So if we detect such case we set the search key's offset to zero to
649 * make sure we will find the matching file extent item at
650 * add_all_parents(), otherwise we will miss it because the offset
651 * taken form the backref is much larger then the offset of the file
652 * extent item. This can make us scan a very large number of file
653 * extent items, but at least it will not make us miss any.
654 *
655 * This is an ugly workaround for a behaviour that should have never
656 * existed, but it does and a fix for the clone ioctl would touch a lot
657 * of places, cause backwards incompatibility and would not fix the
658 * problem for extents cloned with older kernels.
659 */
660 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
661 search_key.offset >= LLONG_MAX)
662 search_key.offset = 0;
663 path->lowest_level = level;
664 if (ctx->time_seq == BTRFS_SEQ_LAST)
665 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
666 else
667 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
668
669 btrfs_debug(ctx->fs_info,
670 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
671 ref->root_id, level, ref->count, ret,
672 ref->key_for_search.objectid, ref->key_for_search.type,
673 ref->key_for_search.offset);
674 if (ret < 0)
675 goto out;
676
677 eb = path->nodes[level];
678 while (!eb) {
679 if (WARN_ON(!level)) {
680 ret = 1;
681 goto out;
682 }
683 level--;
684 eb = path->nodes[level];
685 }
686
687 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
688out:
689 btrfs_put_root(root);
690out_free:
691 path->lowest_level = 0;
692 btrfs_release_path(path);
693 return ret;
694}
695
696static struct extent_inode_elem *
697unode_aux_to_inode_list(struct ulist_node *node)
698{
699 if (!node)
700 return NULL;
701 return (struct extent_inode_elem *)(uintptr_t)node->aux;
702}
703
704static void free_leaf_list(struct ulist *ulist)
705{
706 struct ulist_node *node;
707 struct ulist_iterator uiter;
708
709 ULIST_ITER_INIT(&uiter);
710 while ((node = ulist_next(ulist, &uiter)))
711 free_inode_elem_list(unode_aux_to_inode_list(node));
712
713 ulist_free(ulist);
714}
715
716/*
717 * We maintain three separate rbtrees: one for direct refs, one for
718 * indirect refs which have a key, and one for indirect refs which do not
719 * have a key. Each tree does merge on insertion.
720 *
721 * Once all of the references are located, we iterate over the tree of
722 * indirect refs with missing keys. An appropriate key is located and
723 * the ref is moved onto the tree for indirect refs. After all missing
724 * keys are thus located, we iterate over the indirect ref tree, resolve
725 * each reference, and then insert the resolved reference onto the
726 * direct tree (merging there too).
727 *
728 * New backrefs (i.e., for parent nodes) are added to the appropriate
729 * rbtree as they are encountered. The new backrefs are subsequently
730 * resolved as above.
731 */
732static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
733 struct btrfs_path *path,
734 struct preftrees *preftrees,
735 struct share_check *sc)
736{
737 int err;
738 int ret = 0;
739 struct ulist *parents;
740 struct ulist_node *node;
741 struct ulist_iterator uiter;
742 struct rb_node *rnode;
743
744 parents = ulist_alloc(GFP_NOFS);
745 if (!parents)
746 return -ENOMEM;
747
748 /*
749 * We could trade memory usage for performance here by iterating
750 * the tree, allocating new refs for each insertion, and then
751 * freeing the entire indirect tree when we're done. In some test
752 * cases, the tree can grow quite large (~200k objects).
753 */
754 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
755 struct prelim_ref *ref;
756
757 ref = rb_entry(rnode, struct prelim_ref, rbnode);
758 if (WARN(ref->parent,
759 "BUG: direct ref found in indirect tree")) {
760 ret = -EINVAL;
761 goto out;
762 }
763
764 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
765 preftrees->indirect.count--;
766
767 if (ref->count == 0) {
768 free_pref(ref);
769 continue;
770 }
771
772 if (sc && ref->root_id != sc->root->root_key.objectid) {
773 free_pref(ref);
774 ret = BACKREF_FOUND_SHARED;
775 goto out;
776 }
777 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
778 /*
779 * we can only tolerate ENOENT,otherwise,we should catch error
780 * and return directly.
781 */
782 if (err == -ENOENT) {
783 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
784 NULL);
785 continue;
786 } else if (err) {
787 free_pref(ref);
788 ret = err;
789 goto out;
790 }
791
792 /* we put the first parent into the ref at hand */
793 ULIST_ITER_INIT(&uiter);
794 node = ulist_next(parents, &uiter);
795 ref->parent = node ? node->val : 0;
796 ref->inode_list = unode_aux_to_inode_list(node);
797
798 /* Add a prelim_ref(s) for any other parent(s). */
799 while ((node = ulist_next(parents, &uiter))) {
800 struct prelim_ref *new_ref;
801
802 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
803 GFP_NOFS);
804 if (!new_ref) {
805 free_pref(ref);
806 ret = -ENOMEM;
807 goto out;
808 }
809 memcpy(new_ref, ref, sizeof(*ref));
810 new_ref->parent = node->val;
811 new_ref->inode_list = unode_aux_to_inode_list(node);
812 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
813 new_ref, NULL);
814 }
815
816 /*
817 * Now it's a direct ref, put it in the direct tree. We must
818 * do this last because the ref could be merged/freed here.
819 */
820 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
821
822 ulist_reinit(parents);
823 cond_resched();
824 }
825out:
826 /*
827 * We may have inode lists attached to refs in the parents ulist, so we
828 * must free them before freeing the ulist and its refs.
829 */
830 free_leaf_list(parents);
831 return ret;
832}
833
834/*
835 * read tree blocks and add keys where required.
836 */
837static int add_missing_keys(struct btrfs_fs_info *fs_info,
838 struct preftrees *preftrees, bool lock)
839{
840 struct prelim_ref *ref;
841 struct extent_buffer *eb;
842 struct preftree *tree = &preftrees->indirect_missing_keys;
843 struct rb_node *node;
844
845 while ((node = rb_first_cached(&tree->root))) {
846 struct btrfs_tree_parent_check check = { 0 };
847
848 ref = rb_entry(node, struct prelim_ref, rbnode);
849 rb_erase_cached(node, &tree->root);
850
851 BUG_ON(ref->parent); /* should not be a direct ref */
852 BUG_ON(ref->key_for_search.type);
853 BUG_ON(!ref->wanted_disk_byte);
854
855 check.level = ref->level - 1;
856 check.owner_root = ref->root_id;
857
858 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
859 if (IS_ERR(eb)) {
860 free_pref(ref);
861 return PTR_ERR(eb);
862 }
863 if (!extent_buffer_uptodate(eb)) {
864 free_pref(ref);
865 free_extent_buffer(eb);
866 return -EIO;
867 }
868
869 if (lock)
870 btrfs_tree_read_lock(eb);
871 if (btrfs_header_level(eb) == 0)
872 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
873 else
874 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
875 if (lock)
876 btrfs_tree_read_unlock(eb);
877 free_extent_buffer(eb);
878 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
879 cond_resched();
880 }
881 return 0;
882}
883
884/*
885 * add all currently queued delayed refs from this head whose seq nr is
886 * smaller or equal that seq to the list
887 */
888static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
889 struct btrfs_delayed_ref_head *head, u64 seq,
890 struct preftrees *preftrees, struct share_check *sc)
891{
892 struct btrfs_delayed_ref_node *node;
893 struct btrfs_key key;
894 struct rb_node *n;
895 int count;
896 int ret = 0;
897
898 spin_lock(&head->lock);
899 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
900 node = rb_entry(n, struct btrfs_delayed_ref_node,
901 ref_node);
902 if (node->seq > seq)
903 continue;
904
905 switch (node->action) {
906 case BTRFS_ADD_DELAYED_EXTENT:
907 case BTRFS_UPDATE_DELAYED_HEAD:
908 WARN_ON(1);
909 continue;
910 case BTRFS_ADD_DELAYED_REF:
911 count = node->ref_mod;
912 break;
913 case BTRFS_DROP_DELAYED_REF:
914 count = node->ref_mod * -1;
915 break;
916 default:
917 BUG();
918 }
919 switch (node->type) {
920 case BTRFS_TREE_BLOCK_REF_KEY: {
921 /* NORMAL INDIRECT METADATA backref */
922 struct btrfs_delayed_tree_ref *ref;
923 struct btrfs_key *key_ptr = NULL;
924
925 if (head->extent_op && head->extent_op->update_key) {
926 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
927 key_ptr = &key;
928 }
929
930 ref = btrfs_delayed_node_to_tree_ref(node);
931 ret = add_indirect_ref(fs_info, preftrees, ref->root,
932 key_ptr, ref->level + 1,
933 node->bytenr, count, sc,
934 GFP_ATOMIC);
935 break;
936 }
937 case BTRFS_SHARED_BLOCK_REF_KEY: {
938 /* SHARED DIRECT METADATA backref */
939 struct btrfs_delayed_tree_ref *ref;
940
941 ref = btrfs_delayed_node_to_tree_ref(node);
942
943 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
944 ref->parent, node->bytenr, count,
945 sc, GFP_ATOMIC);
946 break;
947 }
948 case BTRFS_EXTENT_DATA_REF_KEY: {
949 /* NORMAL INDIRECT DATA backref */
950 struct btrfs_delayed_data_ref *ref;
951 ref = btrfs_delayed_node_to_data_ref(node);
952
953 key.objectid = ref->objectid;
954 key.type = BTRFS_EXTENT_DATA_KEY;
955 key.offset = ref->offset;
956
957 /*
958 * If we have a share check context and a reference for
959 * another inode, we can't exit immediately. This is
960 * because even if this is a BTRFS_ADD_DELAYED_REF
961 * reference we may find next a BTRFS_DROP_DELAYED_REF
962 * which cancels out this ADD reference.
963 *
964 * If this is a DROP reference and there was no previous
965 * ADD reference, then we need to signal that when we
966 * process references from the extent tree (through
967 * add_inline_refs() and add_keyed_refs()), we should
968 * not exit early if we find a reference for another
969 * inode, because one of the delayed DROP references
970 * may cancel that reference in the extent tree.
971 */
972 if (sc && count < 0)
973 sc->have_delayed_delete_refs = true;
974
975 ret = add_indirect_ref(fs_info, preftrees, ref->root,
976 &key, 0, node->bytenr, count, sc,
977 GFP_ATOMIC);
978 break;
979 }
980 case BTRFS_SHARED_DATA_REF_KEY: {
981 /* SHARED DIRECT FULL backref */
982 struct btrfs_delayed_data_ref *ref;
983
984 ref = btrfs_delayed_node_to_data_ref(node);
985
986 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
987 node->bytenr, count, sc,
988 GFP_ATOMIC);
989 break;
990 }
991 default:
992 WARN_ON(1);
993 }
994 /*
995 * We must ignore BACKREF_FOUND_SHARED until all delayed
996 * refs have been checked.
997 */
998 if (ret && (ret != BACKREF_FOUND_SHARED))
999 break;
1000 }
1001 if (!ret)
1002 ret = extent_is_shared(sc);
1003
1004 spin_unlock(&head->lock);
1005 return ret;
1006}
1007
1008/*
1009 * add all inline backrefs for bytenr to the list
1010 *
1011 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1012 */
1013static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1014 struct btrfs_path *path,
1015 int *info_level, struct preftrees *preftrees,
1016 struct share_check *sc)
1017{
1018 int ret = 0;
1019 int slot;
1020 struct extent_buffer *leaf;
1021 struct btrfs_key key;
1022 struct btrfs_key found_key;
1023 unsigned long ptr;
1024 unsigned long end;
1025 struct btrfs_extent_item *ei;
1026 u64 flags;
1027 u64 item_size;
1028
1029 /*
1030 * enumerate all inline refs
1031 */
1032 leaf = path->nodes[0];
1033 slot = path->slots[0];
1034
1035 item_size = btrfs_item_size(leaf, slot);
1036 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1037
1038 if (ctx->check_extent_item) {
1039 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1040 if (ret)
1041 return ret;
1042 }
1043
1044 flags = btrfs_extent_flags(leaf, ei);
1045 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1046
1047 ptr = (unsigned long)(ei + 1);
1048 end = (unsigned long)ei + item_size;
1049
1050 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1051 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1052 struct btrfs_tree_block_info *info;
1053
1054 info = (struct btrfs_tree_block_info *)ptr;
1055 *info_level = btrfs_tree_block_level(leaf, info);
1056 ptr += sizeof(struct btrfs_tree_block_info);
1057 BUG_ON(ptr > end);
1058 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1059 *info_level = found_key.offset;
1060 } else {
1061 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1062 }
1063
1064 while (ptr < end) {
1065 struct btrfs_extent_inline_ref *iref;
1066 u64 offset;
1067 int type;
1068
1069 iref = (struct btrfs_extent_inline_ref *)ptr;
1070 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1071 BTRFS_REF_TYPE_ANY);
1072 if (type == BTRFS_REF_TYPE_INVALID)
1073 return -EUCLEAN;
1074
1075 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1076
1077 switch (type) {
1078 case BTRFS_SHARED_BLOCK_REF_KEY:
1079 ret = add_direct_ref(ctx->fs_info, preftrees,
1080 *info_level + 1, offset,
1081 ctx->bytenr, 1, NULL, GFP_NOFS);
1082 break;
1083 case BTRFS_SHARED_DATA_REF_KEY: {
1084 struct btrfs_shared_data_ref *sdref;
1085 int count;
1086
1087 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1088 count = btrfs_shared_data_ref_count(leaf, sdref);
1089
1090 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1091 ctx->bytenr, count, sc, GFP_NOFS);
1092 break;
1093 }
1094 case BTRFS_TREE_BLOCK_REF_KEY:
1095 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1096 NULL, *info_level + 1,
1097 ctx->bytenr, 1, NULL, GFP_NOFS);
1098 break;
1099 case BTRFS_EXTENT_DATA_REF_KEY: {
1100 struct btrfs_extent_data_ref *dref;
1101 int count;
1102 u64 root;
1103
1104 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1105 count = btrfs_extent_data_ref_count(leaf, dref);
1106 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 dref);
1108 key.type = BTRFS_EXTENT_DATA_KEY;
1109 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110
1111 if (sc && key.objectid != sc->inum &&
1112 !sc->have_delayed_delete_refs) {
1113 ret = BACKREF_FOUND_SHARED;
1114 break;
1115 }
1116
1117 root = btrfs_extent_data_ref_root(leaf, dref);
1118
1119 if (!ctx->skip_data_ref ||
1120 !ctx->skip_data_ref(root, key.objectid, key.offset,
1121 ctx->user_ctx))
1122 ret = add_indirect_ref(ctx->fs_info, preftrees,
1123 root, &key, 0, ctx->bytenr,
1124 count, sc, GFP_NOFS);
1125 break;
1126 }
1127 case BTRFS_EXTENT_OWNER_REF_KEY:
1128 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1129 break;
1130 default:
1131 WARN_ON(1);
1132 }
1133 if (ret)
1134 return ret;
1135 ptr += btrfs_extent_inline_ref_size(type);
1136 }
1137
1138 return 0;
1139}
1140
1141/*
1142 * add all non-inline backrefs for bytenr to the list
1143 *
1144 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1145 */
1146static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1147 struct btrfs_root *extent_root,
1148 struct btrfs_path *path,
1149 int info_level, struct preftrees *preftrees,
1150 struct share_check *sc)
1151{
1152 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1153 int ret;
1154 int slot;
1155 struct extent_buffer *leaf;
1156 struct btrfs_key key;
1157
1158 while (1) {
1159 ret = btrfs_next_item(extent_root, path);
1160 if (ret < 0)
1161 break;
1162 if (ret) {
1163 ret = 0;
1164 break;
1165 }
1166
1167 slot = path->slots[0];
1168 leaf = path->nodes[0];
1169 btrfs_item_key_to_cpu(leaf, &key, slot);
1170
1171 if (key.objectid != ctx->bytenr)
1172 break;
1173 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1174 continue;
1175 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1176 break;
1177
1178 switch (key.type) {
1179 case BTRFS_SHARED_BLOCK_REF_KEY:
1180 /* SHARED DIRECT METADATA backref */
1181 ret = add_direct_ref(fs_info, preftrees,
1182 info_level + 1, key.offset,
1183 ctx->bytenr, 1, NULL, GFP_NOFS);
1184 break;
1185 case BTRFS_SHARED_DATA_REF_KEY: {
1186 /* SHARED DIRECT FULL backref */
1187 struct btrfs_shared_data_ref *sdref;
1188 int count;
1189
1190 sdref = btrfs_item_ptr(leaf, slot,
1191 struct btrfs_shared_data_ref);
1192 count = btrfs_shared_data_ref_count(leaf, sdref);
1193 ret = add_direct_ref(fs_info, preftrees, 0,
1194 key.offset, ctx->bytenr, count,
1195 sc, GFP_NOFS);
1196 break;
1197 }
1198 case BTRFS_TREE_BLOCK_REF_KEY:
1199 /* NORMAL INDIRECT METADATA backref */
1200 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1201 NULL, info_level + 1, ctx->bytenr,
1202 1, NULL, GFP_NOFS);
1203 break;
1204 case BTRFS_EXTENT_DATA_REF_KEY: {
1205 /* NORMAL INDIRECT DATA backref */
1206 struct btrfs_extent_data_ref *dref;
1207 int count;
1208 u64 root;
1209
1210 dref = btrfs_item_ptr(leaf, slot,
1211 struct btrfs_extent_data_ref);
1212 count = btrfs_extent_data_ref_count(leaf, dref);
1213 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1214 dref);
1215 key.type = BTRFS_EXTENT_DATA_KEY;
1216 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1217
1218 if (sc && key.objectid != sc->inum &&
1219 !sc->have_delayed_delete_refs) {
1220 ret = BACKREF_FOUND_SHARED;
1221 break;
1222 }
1223
1224 root = btrfs_extent_data_ref_root(leaf, dref);
1225
1226 if (!ctx->skip_data_ref ||
1227 !ctx->skip_data_ref(root, key.objectid, key.offset,
1228 ctx->user_ctx))
1229 ret = add_indirect_ref(fs_info, preftrees, root,
1230 &key, 0, ctx->bytenr,
1231 count, sc, GFP_NOFS);
1232 break;
1233 }
1234 default:
1235 WARN_ON(1);
1236 }
1237 if (ret)
1238 return ret;
1239
1240 }
1241
1242 return ret;
1243}
1244
1245/*
1246 * The caller has joined a transaction or is holding a read lock on the
1247 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1248 * snapshot field changing while updating or checking the cache.
1249 */
1250static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1251 struct btrfs_root *root,
1252 u64 bytenr, int level, bool *is_shared)
1253{
1254 const struct btrfs_fs_info *fs_info = root->fs_info;
1255 struct btrfs_backref_shared_cache_entry *entry;
1256
1257 if (!current->journal_info)
1258 lockdep_assert_held(&fs_info->commit_root_sem);
1259
1260 if (!ctx->use_path_cache)
1261 return false;
1262
1263 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1264 return false;
1265
1266 /*
1267 * Level -1 is used for the data extent, which is not reliable to cache
1268 * because its reference count can increase or decrease without us
1269 * realizing. We cache results only for extent buffers that lead from
1270 * the root node down to the leaf with the file extent item.
1271 */
1272 ASSERT(level >= 0);
1273
1274 entry = &ctx->path_cache_entries[level];
1275
1276 /* Unused cache entry or being used for some other extent buffer. */
1277 if (entry->bytenr != bytenr)
1278 return false;
1279
1280 /*
1281 * We cached a false result, but the last snapshot generation of the
1282 * root changed, so we now have a snapshot. Don't trust the result.
1283 */
1284 if (!entry->is_shared &&
1285 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1286 return false;
1287
1288 /*
1289 * If we cached a true result and the last generation used for dropping
1290 * a root changed, we can not trust the result, because the dropped root
1291 * could be a snapshot sharing this extent buffer.
1292 */
1293 if (entry->is_shared &&
1294 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1295 return false;
1296
1297 *is_shared = entry->is_shared;
1298 /*
1299 * If the node at this level is shared, than all nodes below are also
1300 * shared. Currently some of the nodes below may be marked as not shared
1301 * because we have just switched from one leaf to another, and switched
1302 * also other nodes above the leaf and below the current level, so mark
1303 * them as shared.
1304 */
1305 if (*is_shared) {
1306 for (int i = 0; i < level; i++) {
1307 ctx->path_cache_entries[i].is_shared = true;
1308 ctx->path_cache_entries[i].gen = entry->gen;
1309 }
1310 }
1311
1312 return true;
1313}
1314
1315/*
1316 * The caller has joined a transaction or is holding a read lock on the
1317 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1318 * snapshot field changing while updating or checking the cache.
1319 */
1320static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1321 struct btrfs_root *root,
1322 u64 bytenr, int level, bool is_shared)
1323{
1324 const struct btrfs_fs_info *fs_info = root->fs_info;
1325 struct btrfs_backref_shared_cache_entry *entry;
1326 u64 gen;
1327
1328 if (!current->journal_info)
1329 lockdep_assert_held(&fs_info->commit_root_sem);
1330
1331 if (!ctx->use_path_cache)
1332 return;
1333
1334 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1335 return;
1336
1337 /*
1338 * Level -1 is used for the data extent, which is not reliable to cache
1339 * because its reference count can increase or decrease without us
1340 * realizing. We cache results only for extent buffers that lead from
1341 * the root node down to the leaf with the file extent item.
1342 */
1343 ASSERT(level >= 0);
1344
1345 if (is_shared)
1346 gen = btrfs_get_last_root_drop_gen(fs_info);
1347 else
1348 gen = btrfs_root_last_snapshot(&root->root_item);
1349
1350 entry = &ctx->path_cache_entries[level];
1351 entry->bytenr = bytenr;
1352 entry->is_shared = is_shared;
1353 entry->gen = gen;
1354
1355 /*
1356 * If we found an extent buffer is shared, set the cache result for all
1357 * extent buffers below it to true. As nodes in the path are COWed,
1358 * their sharedness is moved to their children, and if a leaf is COWed,
1359 * then the sharedness of a data extent becomes direct, the refcount of
1360 * data extent is increased in the extent item at the extent tree.
1361 */
1362 if (is_shared) {
1363 for (int i = 0; i < level; i++) {
1364 entry = &ctx->path_cache_entries[i];
1365 entry->is_shared = is_shared;
1366 entry->gen = gen;
1367 }
1368 }
1369}
1370
1371/*
1372 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1373 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1374 * indirect refs to their parent bytenr.
1375 * When roots are found, they're added to the roots list
1376 *
1377 * @ctx: Backref walking context object, must be not NULL.
1378 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1379 * shared extent is detected.
1380 *
1381 * Otherwise this returns 0 for success and <0 for an error.
1382 *
1383 * FIXME some caching might speed things up
1384 */
1385static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1386 struct share_check *sc)
1387{
1388 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1389 struct btrfs_key key;
1390 struct btrfs_path *path;
1391 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1392 struct btrfs_delayed_ref_head *head;
1393 int info_level = 0;
1394 int ret;
1395 struct prelim_ref *ref;
1396 struct rb_node *node;
1397 struct extent_inode_elem *eie = NULL;
1398 struct preftrees preftrees = {
1399 .direct = PREFTREE_INIT,
1400 .indirect = PREFTREE_INIT,
1401 .indirect_missing_keys = PREFTREE_INIT
1402 };
1403
1404 /* Roots ulist is not needed when using a sharedness check context. */
1405 if (sc)
1406 ASSERT(ctx->roots == NULL);
1407
1408 key.objectid = ctx->bytenr;
1409 key.offset = (u64)-1;
1410 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1411 key.type = BTRFS_METADATA_ITEM_KEY;
1412 else
1413 key.type = BTRFS_EXTENT_ITEM_KEY;
1414
1415 path = btrfs_alloc_path();
1416 if (!path)
1417 return -ENOMEM;
1418 if (!ctx->trans) {
1419 path->search_commit_root = 1;
1420 path->skip_locking = 1;
1421 }
1422
1423 if (ctx->time_seq == BTRFS_SEQ_LAST)
1424 path->skip_locking = 1;
1425
1426again:
1427 head = NULL;
1428
1429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1430 if (ret < 0)
1431 goto out;
1432 if (ret == 0) {
1433 /*
1434 * Key with offset -1 found, there would have to exist an extent
1435 * item with such offset, but this is out of the valid range.
1436 */
1437 ret = -EUCLEAN;
1438 goto out;
1439 }
1440
1441 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442 ctx->time_seq != BTRFS_SEQ_LAST) {
1443 /*
1444 * We have a specific time_seq we care about and trans which
1445 * means we have the path lock, we need to grab the ref head and
1446 * lock it so we have a consistent view of the refs at the given
1447 * time.
1448 */
1449 delayed_refs = &ctx->trans->transaction->delayed_refs;
1450 spin_lock(&delayed_refs->lock);
1451 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1452 if (head) {
1453 if (!mutex_trylock(&head->mutex)) {
1454 refcount_inc(&head->refs);
1455 spin_unlock(&delayed_refs->lock);
1456
1457 btrfs_release_path(path);
1458
1459 /*
1460 * Mutex was contended, block until it's
1461 * released and try again
1462 */
1463 mutex_lock(&head->mutex);
1464 mutex_unlock(&head->mutex);
1465 btrfs_put_delayed_ref_head(head);
1466 goto again;
1467 }
1468 spin_unlock(&delayed_refs->lock);
1469 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1470 &preftrees, sc);
1471 mutex_unlock(&head->mutex);
1472 if (ret)
1473 goto out;
1474 } else {
1475 spin_unlock(&delayed_refs->lock);
1476 }
1477 }
1478
1479 if (path->slots[0]) {
1480 struct extent_buffer *leaf;
1481 int slot;
1482
1483 path->slots[0]--;
1484 leaf = path->nodes[0];
1485 slot = path->slots[0];
1486 btrfs_item_key_to_cpu(leaf, &key, slot);
1487 if (key.objectid == ctx->bytenr &&
1488 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489 key.type == BTRFS_METADATA_ITEM_KEY)) {
1490 ret = add_inline_refs(ctx, path, &info_level,
1491 &preftrees, sc);
1492 if (ret)
1493 goto out;
1494 ret = add_keyed_refs(ctx, root, path, info_level,
1495 &preftrees, sc);
1496 if (ret)
1497 goto out;
1498 }
1499 }
1500
1501 /*
1502 * If we have a share context and we reached here, it means the extent
1503 * is not directly shared (no multiple reference items for it),
1504 * otherwise we would have exited earlier with a return value of
1505 * BACKREF_FOUND_SHARED after processing delayed references or while
1506 * processing inline or keyed references from the extent tree.
1507 * The extent may however be indirectly shared through shared subtrees
1508 * as a result from creating snapshots, so we determine below what is
1509 * its parent node, in case we are dealing with a metadata extent, or
1510 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511 * item pointing to it in case we are dealing with a data extent.
1512 */
1513 ASSERT(extent_is_shared(sc) == 0);
1514
1515 /*
1516 * If we are here for a data extent and we have a share_check structure
1517 * it means the data extent is not directly shared (does not have
1518 * multiple reference items), so we have to check if a path in the fs
1519 * tree (going from the root node down to the leaf that has the file
1520 * extent item pointing to the data extent) is shared, that is, if any
1521 * of the extent buffers in the path is referenced by other trees.
1522 */
1523 if (sc && ctx->bytenr == sc->data_bytenr) {
1524 /*
1525 * If our data extent is from a generation more recent than the
1526 * last generation used to snapshot the root, then we know that
1527 * it can not be shared through subtrees, so we can skip
1528 * resolving indirect references, there's no point in
1529 * determining the extent buffers for the path from the fs tree
1530 * root node down to the leaf that has the file extent item that
1531 * points to the data extent.
1532 */
1533 if (sc->data_extent_gen >
1534 btrfs_root_last_snapshot(&sc->root->root_item)) {
1535 ret = BACKREF_FOUND_NOT_SHARED;
1536 goto out;
1537 }
1538
1539 /*
1540 * If we are only determining if a data extent is shared or not
1541 * and the corresponding file extent item is located in the same
1542 * leaf as the previous file extent item, we can skip resolving
1543 * indirect references for a data extent, since the fs tree path
1544 * is the same (same leaf, so same path). We skip as long as the
1545 * cached result for the leaf is valid and only if there's only
1546 * one file extent item pointing to the data extent, because in
1547 * the case of multiple file extent items, they may be located
1548 * in different leaves and therefore we have multiple paths.
1549 */
1550 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551 sc->self_ref_count == 1) {
1552 bool cached;
1553 bool is_shared;
1554
1555 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1556 sc->ctx->curr_leaf_bytenr,
1557 0, &is_shared);
1558 if (cached) {
1559 if (is_shared)
1560 ret = BACKREF_FOUND_SHARED;
1561 else
1562 ret = BACKREF_FOUND_NOT_SHARED;
1563 goto out;
1564 }
1565 }
1566 }
1567
1568 btrfs_release_path(path);
1569
1570 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1571 if (ret)
1572 goto out;
1573
1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575
1576 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1577 if (ret)
1578 goto out;
1579
1580 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581
1582 /*
1583 * This walks the tree of merged and resolved refs. Tree blocks are
1584 * read in as needed. Unique entries are added to the ulist, and
1585 * the list of found roots is updated.
1586 *
1587 * We release the entire tree in one go before returning.
1588 */
1589 node = rb_first_cached(&preftrees.direct.root);
1590 while (node) {
1591 ref = rb_entry(node, struct prelim_ref, rbnode);
1592 node = rb_next(&ref->rbnode);
1593 /*
1594 * ref->count < 0 can happen here if there are delayed
1595 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596 * prelim_ref_insert() relies on this when merging
1597 * identical refs to keep the overall count correct.
1598 * prelim_ref_insert() will merge only those refs
1599 * which compare identically. Any refs having
1600 * e.g. different offsets would not be merged,
1601 * and would retain their original ref->count < 0.
1602 */
1603 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604 /* no parent == root of tree */
1605 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1606 if (ret < 0)
1607 goto out;
1608 }
1609 if (ref->count && ref->parent) {
1610 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611 ref->level == 0) {
1612 struct btrfs_tree_parent_check check = { 0 };
1613 struct extent_buffer *eb;
1614
1615 check.level = ref->level;
1616
1617 eb = read_tree_block(ctx->fs_info, ref->parent,
1618 &check);
1619 if (IS_ERR(eb)) {
1620 ret = PTR_ERR(eb);
1621 goto out;
1622 }
1623 if (!extent_buffer_uptodate(eb)) {
1624 free_extent_buffer(eb);
1625 ret = -EIO;
1626 goto out;
1627 }
1628
1629 if (!path->skip_locking)
1630 btrfs_tree_read_lock(eb);
1631 ret = find_extent_in_eb(ctx, eb, &eie);
1632 if (!path->skip_locking)
1633 btrfs_tree_read_unlock(eb);
1634 free_extent_buffer(eb);
1635 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636 ret < 0)
1637 goto out;
1638 ref->inode_list = eie;
1639 /*
1640 * We transferred the list ownership to the ref,
1641 * so set to NULL to avoid a double free in case
1642 * an error happens after this.
1643 */
1644 eie = NULL;
1645 }
1646 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1647 ref->inode_list,
1648 (void **)&eie, GFP_NOFS);
1649 if (ret < 0)
1650 goto out;
1651 if (!ret && !ctx->skip_inode_ref_list) {
1652 /*
1653 * We've recorded that parent, so we must extend
1654 * its inode list here.
1655 *
1656 * However if there was corruption we may not
1657 * have found an eie, return an error in this
1658 * case.
1659 */
1660 ASSERT(eie);
1661 if (!eie) {
1662 ret = -EUCLEAN;
1663 goto out;
1664 }
1665 while (eie->next)
1666 eie = eie->next;
1667 eie->next = ref->inode_list;
1668 }
1669 eie = NULL;
1670 /*
1671 * We have transferred the inode list ownership from
1672 * this ref to the ref we added to the 'refs' ulist.
1673 * So set this ref's inode list to NULL to avoid
1674 * use-after-free when our caller uses it or double
1675 * frees in case an error happens before we return.
1676 */
1677 ref->inode_list = NULL;
1678 }
1679 cond_resched();
1680 }
1681
1682out:
1683 btrfs_free_path(path);
1684
1685 prelim_release(&preftrees.direct);
1686 prelim_release(&preftrees.indirect);
1687 prelim_release(&preftrees.indirect_missing_keys);
1688
1689 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690 free_inode_elem_list(eie);
1691 return ret;
1692}
1693
1694/*
1695 * Finds all leaves with a reference to the specified combination of
1696 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698 * function. The caller should free the ulist with free_leaf_list() if
1699 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700 * enough.
1701 *
1702 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703 */
1704int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705{
1706 int ret;
1707
1708 ASSERT(ctx->refs == NULL);
1709
1710 ctx->refs = ulist_alloc(GFP_NOFS);
1711 if (!ctx->refs)
1712 return -ENOMEM;
1713
1714 ret = find_parent_nodes(ctx, NULL);
1715 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716 (ret < 0 && ret != -ENOENT)) {
1717 free_leaf_list(ctx->refs);
1718 ctx->refs = NULL;
1719 return ret;
1720 }
1721
1722 return 0;
1723}
1724
1725/*
1726 * Walk all backrefs for a given extent to find all roots that reference this
1727 * extent. Walking a backref means finding all extents that reference this
1728 * extent and in turn walk the backrefs of those, too. Naturally this is a
1729 * recursive process, but here it is implemented in an iterative fashion: We
1730 * find all referencing extents for the extent in question and put them on a
1731 * list. In turn, we find all referencing extents for those, further appending
1732 * to the list. The way we iterate the list allows adding more elements after
1733 * the current while iterating. The process stops when we reach the end of the
1734 * list.
1735 *
1736 * Found roots are added to @ctx->roots, which is allocated by this function if
1737 * it points to NULL, in which case the caller is responsible for freeing it
1738 * after it's not needed anymore.
1739 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740 * ulist to do temporary work, and frees it before returning.
1741 *
1742 * Returns 0 on success, < 0 on error.
1743 */
1744static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745{
1746 const u64 orig_bytenr = ctx->bytenr;
1747 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748 bool roots_ulist_allocated = false;
1749 struct ulist_iterator uiter;
1750 int ret = 0;
1751
1752 ASSERT(ctx->refs == NULL);
1753
1754 ctx->refs = ulist_alloc(GFP_NOFS);
1755 if (!ctx->refs)
1756 return -ENOMEM;
1757
1758 if (!ctx->roots) {
1759 ctx->roots = ulist_alloc(GFP_NOFS);
1760 if (!ctx->roots) {
1761 ulist_free(ctx->refs);
1762 ctx->refs = NULL;
1763 return -ENOMEM;
1764 }
1765 roots_ulist_allocated = true;
1766 }
1767
1768 ctx->skip_inode_ref_list = true;
1769
1770 ULIST_ITER_INIT(&uiter);
1771 while (1) {
1772 struct ulist_node *node;
1773
1774 ret = find_parent_nodes(ctx, NULL);
1775 if (ret < 0 && ret != -ENOENT) {
1776 if (roots_ulist_allocated) {
1777 ulist_free(ctx->roots);
1778 ctx->roots = NULL;
1779 }
1780 break;
1781 }
1782 ret = 0;
1783 node = ulist_next(ctx->refs, &uiter);
1784 if (!node)
1785 break;
1786 ctx->bytenr = node->val;
1787 cond_resched();
1788 }
1789
1790 ulist_free(ctx->refs);
1791 ctx->refs = NULL;
1792 ctx->bytenr = orig_bytenr;
1793 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794
1795 return ret;
1796}
1797
1798int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799 bool skip_commit_root_sem)
1800{
1801 int ret;
1802
1803 if (!ctx->trans && !skip_commit_root_sem)
1804 down_read(&ctx->fs_info->commit_root_sem);
1805 ret = btrfs_find_all_roots_safe(ctx);
1806 if (!ctx->trans && !skip_commit_root_sem)
1807 up_read(&ctx->fs_info->commit_root_sem);
1808 return ret;
1809}
1810
1811struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812{
1813 struct btrfs_backref_share_check_ctx *ctx;
1814
1815 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1816 if (!ctx)
1817 return NULL;
1818
1819 ulist_init(&ctx->refs);
1820
1821 return ctx;
1822}
1823
1824void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825{
1826 if (!ctx)
1827 return;
1828
1829 ulist_release(&ctx->refs);
1830 kfree(ctx);
1831}
1832
1833/*
1834 * Check if a data extent is shared or not.
1835 *
1836 * @inode: The inode whose extent we are checking.
1837 * @bytenr: Logical bytenr of the extent we are checking.
1838 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1839 * not known.
1840 * @ctx: A backref sharedness check context.
1841 *
1842 * btrfs_is_data_extent_shared uses the backref walking code but will short
1843 * circuit as soon as it finds a root or inode that doesn't match the
1844 * one passed in. This provides a significant performance benefit for
1845 * callers (such as fiemap) which want to know whether the extent is
1846 * shared but do not need a ref count.
1847 *
1848 * This attempts to attach to the running transaction in order to account for
1849 * delayed refs, but continues on even when no running transaction exists.
1850 *
1851 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852 */
1853int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854 u64 extent_gen,
1855 struct btrfs_backref_share_check_ctx *ctx)
1856{
1857 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_fs_info *fs_info = root->fs_info;
1860 struct btrfs_trans_handle *trans;
1861 struct ulist_iterator uiter;
1862 struct ulist_node *node;
1863 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864 int ret = 0;
1865 struct share_check shared = {
1866 .ctx = ctx,
1867 .root = root,
1868 .inum = btrfs_ino(inode),
1869 .data_bytenr = bytenr,
1870 .data_extent_gen = extent_gen,
1871 .share_count = 0,
1872 .self_ref_count = 0,
1873 .have_delayed_delete_refs = false,
1874 };
1875 int level;
1876 bool leaf_cached;
1877 bool leaf_is_shared;
1878
1879 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881 return ctx->prev_extents_cache[i].is_shared;
1882 }
1883
1884 ulist_init(&ctx->refs);
1885
1886 trans = btrfs_join_transaction_nostart(root);
1887 if (IS_ERR(trans)) {
1888 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1889 ret = PTR_ERR(trans);
1890 goto out;
1891 }
1892 trans = NULL;
1893 down_read(&fs_info->commit_root_sem);
1894 } else {
1895 btrfs_get_tree_mod_seq(fs_info, &elem);
1896 walk_ctx.time_seq = elem.seq;
1897 }
1898
1899 ctx->use_path_cache = true;
1900
1901 /*
1902 * We may have previously determined that the current leaf is shared.
1903 * If it is, then we have a data extent that is shared due to a shared
1904 * subtree (caused by snapshotting) and we don't need to check for data
1905 * backrefs. If the leaf is not shared, then we must do backref walking
1906 * to determine if the data extent is shared through reflinks.
1907 */
1908 leaf_cached = lookup_backref_shared_cache(ctx, root,
1909 ctx->curr_leaf_bytenr, 0,
1910 &leaf_is_shared);
1911 if (leaf_cached && leaf_is_shared) {
1912 ret = 1;
1913 goto out_trans;
1914 }
1915
1916 walk_ctx.skip_inode_ref_list = true;
1917 walk_ctx.trans = trans;
1918 walk_ctx.fs_info = fs_info;
1919 walk_ctx.refs = &ctx->refs;
1920
1921 /* -1 means we are in the bytenr of the data extent. */
1922 level = -1;
1923 ULIST_ITER_INIT(&uiter);
1924 while (1) {
1925 const unsigned long prev_ref_count = ctx->refs.nnodes;
1926
1927 walk_ctx.bytenr = bytenr;
1928 ret = find_parent_nodes(&walk_ctx, &shared);
1929 if (ret == BACKREF_FOUND_SHARED ||
1930 ret == BACKREF_FOUND_NOT_SHARED) {
1931 /* If shared must return 1, otherwise return 0. */
1932 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933 if (level >= 0)
1934 store_backref_shared_cache(ctx, root, bytenr,
1935 level, ret == 1);
1936 break;
1937 }
1938 if (ret < 0 && ret != -ENOENT)
1939 break;
1940 ret = 0;
1941
1942 /*
1943 * More than one extent buffer (bytenr) may have been added to
1944 * the ctx->refs ulist, in which case we have to check multiple
1945 * tree paths in case the first one is not shared, so we can not
1946 * use the path cache which is made for a single path. Multiple
1947 * extent buffers at the current level happen when:
1948 *
1949 * 1) level -1, the data extent: If our data extent was not
1950 * directly shared (without multiple reference items), then
1951 * it might have a single reference item with a count > 1 for
1952 * the same offset, which means there are 2 (or more) file
1953 * extent items that point to the data extent - this happens
1954 * when a file extent item needs to be split and then one
1955 * item gets moved to another leaf due to a b+tree leaf split
1956 * when inserting some item. In this case the file extent
1957 * items may be located in different leaves and therefore
1958 * some of the leaves may be referenced through shared
1959 * subtrees while others are not. Since our extent buffer
1960 * cache only works for a single path (by far the most common
1961 * case and simpler to deal with), we can not use it if we
1962 * have multiple leaves (which implies multiple paths).
1963 *
1964 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965 * and indirect references on a b+tree node/leaf, so we have
1966 * to check multiple paths, and the extent buffer (the
1967 * current bytenr) may be shared or not. One example is
1968 * during relocation as we may get a shared tree block ref
1969 * (direct ref) and a non-shared tree block ref (indirect
1970 * ref) for the same node/leaf.
1971 */
1972 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973 ctx->use_path_cache = false;
1974
1975 if (level >= 0)
1976 store_backref_shared_cache(ctx, root, bytenr,
1977 level, false);
1978 node = ulist_next(&ctx->refs, &uiter);
1979 if (!node)
1980 break;
1981 bytenr = node->val;
1982 if (ctx->use_path_cache) {
1983 bool is_shared;
1984 bool cached;
1985
1986 level++;
1987 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988 level, &is_shared);
1989 if (cached) {
1990 ret = (is_shared ? 1 : 0);
1991 break;
1992 }
1993 }
1994 shared.share_count = 0;
1995 shared.have_delayed_delete_refs = false;
1996 cond_resched();
1997 }
1998
1999 /*
2000 * If the path cache is disabled, then it means at some tree level we
2001 * got multiple parents due to a mix of direct and indirect backrefs or
2002 * multiple leaves with file extent items pointing to the same data
2003 * extent. We have to invalidate the cache and cache only the sharedness
2004 * result for the levels where we got only one node/reference.
2005 */
2006 if (!ctx->use_path_cache) {
2007 int i = 0;
2008
2009 level--;
2010 if (ret >= 0 && level >= 0) {
2011 bytenr = ctx->path_cache_entries[level].bytenr;
2012 ctx->use_path_cache = true;
2013 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2014 i = level + 1;
2015 }
2016
2017 for ( ; i < BTRFS_MAX_LEVEL; i++)
2018 ctx->path_cache_entries[i].bytenr = 0;
2019 }
2020
2021 /*
2022 * Cache the sharedness result for the data extent if we know our inode
2023 * has more than 1 file extent item that refers to the data extent.
2024 */
2025 if (ret >= 0 && shared.self_ref_count > 1) {
2026 int slot = ctx->prev_extents_cache_slot;
2027
2028 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030
2031 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032 ctx->prev_extents_cache_slot = slot;
2033 }
2034
2035out_trans:
2036 if (trans) {
2037 btrfs_put_tree_mod_seq(fs_info, &elem);
2038 btrfs_end_transaction(trans);
2039 } else {
2040 up_read(&fs_info->commit_root_sem);
2041 }
2042out:
2043 ulist_release(&ctx->refs);
2044 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045
2046 return ret;
2047}
2048
2049int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050 u64 start_off, struct btrfs_path *path,
2051 struct btrfs_inode_extref **ret_extref,
2052 u64 *found_off)
2053{
2054 int ret, slot;
2055 struct btrfs_key key;
2056 struct btrfs_key found_key;
2057 struct btrfs_inode_extref *extref;
2058 const struct extent_buffer *leaf;
2059 unsigned long ptr;
2060
2061 key.objectid = inode_objectid;
2062 key.type = BTRFS_INODE_EXTREF_KEY;
2063 key.offset = start_off;
2064
2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 if (ret < 0)
2067 return ret;
2068
2069 while (1) {
2070 leaf = path->nodes[0];
2071 slot = path->slots[0];
2072 if (slot >= btrfs_header_nritems(leaf)) {
2073 /*
2074 * If the item at offset is not found,
2075 * btrfs_search_slot will point us to the slot
2076 * where it should be inserted. In our case
2077 * that will be the slot directly before the
2078 * next INODE_REF_KEY_V2 item. In the case
2079 * that we're pointing to the last slot in a
2080 * leaf, we must move one leaf over.
2081 */
2082 ret = btrfs_next_leaf(root, path);
2083 if (ret) {
2084 if (ret >= 1)
2085 ret = -ENOENT;
2086 break;
2087 }
2088 continue;
2089 }
2090
2091 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2092
2093 /*
2094 * Check that we're still looking at an extended ref key for
2095 * this particular objectid. If we have different
2096 * objectid or type then there are no more to be found
2097 * in the tree and we can exit.
2098 */
2099 ret = -ENOENT;
2100 if (found_key.objectid != inode_objectid)
2101 break;
2102 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103 break;
2104
2105 ret = 0;
2106 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107 extref = (struct btrfs_inode_extref *)ptr;
2108 *ret_extref = extref;
2109 if (found_off)
2110 *found_off = found_key.offset;
2111 break;
2112 }
2113
2114 return ret;
2115}
2116
2117/*
2118 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119 * Elements of the path are separated by '/' and the path is guaranteed to be
2120 * 0-terminated. the path is only given within the current file system.
2121 * Therefore, it never starts with a '/'. the caller is responsible to provide
2122 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123 * the start point of the resulting string is returned. this pointer is within
2124 * dest, normally.
2125 * in case the path buffer would overflow, the pointer is decremented further
2126 * as if output was written to the buffer, though no more output is actually
2127 * generated. that way, the caller can determine how much space would be
2128 * required for the path to fit into the buffer. in that case, the returned
2129 * value will be smaller than dest. callers must check this!
2130 */
2131char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132 u32 name_len, unsigned long name_off,
2133 struct extent_buffer *eb_in, u64 parent,
2134 char *dest, u32 size)
2135{
2136 int slot;
2137 u64 next_inum;
2138 int ret;
2139 s64 bytes_left = ((s64)size) - 1;
2140 struct extent_buffer *eb = eb_in;
2141 struct btrfs_key found_key;
2142 struct btrfs_inode_ref *iref;
2143
2144 if (bytes_left >= 0)
2145 dest[bytes_left] = '\0';
2146
2147 while (1) {
2148 bytes_left -= name_len;
2149 if (bytes_left >= 0)
2150 read_extent_buffer(eb, dest + bytes_left,
2151 name_off, name_len);
2152 if (eb != eb_in) {
2153 if (!path->skip_locking)
2154 btrfs_tree_read_unlock(eb);
2155 free_extent_buffer(eb);
2156 }
2157 ret = btrfs_find_item(fs_root, path, parent, 0,
2158 BTRFS_INODE_REF_KEY, &found_key);
2159 if (ret > 0)
2160 ret = -ENOENT;
2161 if (ret)
2162 break;
2163
2164 next_inum = found_key.offset;
2165
2166 /* regular exit ahead */
2167 if (parent == next_inum)
2168 break;
2169
2170 slot = path->slots[0];
2171 eb = path->nodes[0];
2172 /* make sure we can use eb after releasing the path */
2173 if (eb != eb_in) {
2174 path->nodes[0] = NULL;
2175 path->locks[0] = 0;
2176 }
2177 btrfs_release_path(path);
2178 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179
2180 name_len = btrfs_inode_ref_name_len(eb, iref);
2181 name_off = (unsigned long)(iref + 1);
2182
2183 parent = next_inum;
2184 --bytes_left;
2185 if (bytes_left >= 0)
2186 dest[bytes_left] = '/';
2187 }
2188
2189 btrfs_release_path(path);
2190
2191 if (ret)
2192 return ERR_PTR(ret);
2193
2194 return dest + bytes_left;
2195}
2196
2197/*
2198 * this makes the path point to (logical EXTENT_ITEM *)
2199 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200 * tree blocks and <0 on error.
2201 */
2202int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203 struct btrfs_path *path, struct btrfs_key *found_key,
2204 u64 *flags_ret)
2205{
2206 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2207 int ret;
2208 u64 flags;
2209 u64 size = 0;
2210 u32 item_size;
2211 const struct extent_buffer *eb;
2212 struct btrfs_extent_item *ei;
2213 struct btrfs_key key;
2214
2215 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216 key.type = BTRFS_METADATA_ITEM_KEY;
2217 else
2218 key.type = BTRFS_EXTENT_ITEM_KEY;
2219 key.objectid = logical;
2220 key.offset = (u64)-1;
2221
2222 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2223 if (ret < 0)
2224 return ret;
2225 if (ret == 0) {
2226 /*
2227 * Key with offset -1 found, there would have to exist an extent
2228 * item with such offset, but this is out of the valid range.
2229 */
2230 return -EUCLEAN;
2231 }
2232
2233 ret = btrfs_previous_extent_item(extent_root, path, 0);
2234 if (ret) {
2235 if (ret > 0)
2236 ret = -ENOENT;
2237 return ret;
2238 }
2239 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2240 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2241 size = fs_info->nodesize;
2242 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2243 size = found_key->offset;
2244
2245 if (found_key->objectid > logical ||
2246 found_key->objectid + size <= logical) {
2247 btrfs_debug(fs_info,
2248 "logical %llu is not within any extent", logical);
2249 return -ENOENT;
2250 }
2251
2252 eb = path->nodes[0];
2253 item_size = btrfs_item_size(eb, path->slots[0]);
2254
2255 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2256 flags = btrfs_extent_flags(eb, ei);
2257
2258 btrfs_debug(fs_info,
2259 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2260 logical, logical - found_key->objectid, found_key->objectid,
2261 found_key->offset, flags, item_size);
2262
2263 WARN_ON(!flags_ret);
2264 if (flags_ret) {
2265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2266 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2267 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2268 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2269 else
2270 BUG();
2271 return 0;
2272 }
2273
2274 return -EIO;
2275}
2276
2277/*
2278 * helper function to iterate extent inline refs. ptr must point to a 0 value
2279 * for the first call and may be modified. it is used to track state.
2280 * if more refs exist, 0 is returned and the next call to
2281 * get_extent_inline_ref must pass the modified ptr parameter to get the
2282 * next ref. after the last ref was processed, 1 is returned.
2283 * returns <0 on error
2284 */
2285static int get_extent_inline_ref(unsigned long *ptr,
2286 const struct extent_buffer *eb,
2287 const struct btrfs_key *key,
2288 const struct btrfs_extent_item *ei,
2289 u32 item_size,
2290 struct btrfs_extent_inline_ref **out_eiref,
2291 int *out_type)
2292{
2293 unsigned long end;
2294 u64 flags;
2295 struct btrfs_tree_block_info *info;
2296
2297 if (!*ptr) {
2298 /* first call */
2299 flags = btrfs_extent_flags(eb, ei);
2300 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2301 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2302 /* a skinny metadata extent */
2303 *out_eiref =
2304 (struct btrfs_extent_inline_ref *)(ei + 1);
2305 } else {
2306 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2307 info = (struct btrfs_tree_block_info *)(ei + 1);
2308 *out_eiref =
2309 (struct btrfs_extent_inline_ref *)(info + 1);
2310 }
2311 } else {
2312 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2313 }
2314 *ptr = (unsigned long)*out_eiref;
2315 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2316 return -ENOENT;
2317 }
2318
2319 end = (unsigned long)ei + item_size;
2320 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2321 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2322 BTRFS_REF_TYPE_ANY);
2323 if (*out_type == BTRFS_REF_TYPE_INVALID)
2324 return -EUCLEAN;
2325
2326 *ptr += btrfs_extent_inline_ref_size(*out_type);
2327 WARN_ON(*ptr > end);
2328 if (*ptr == end)
2329 return 1; /* last */
2330
2331 return 0;
2332}
2333
2334/*
2335 * reads the tree block backref for an extent. tree level and root are returned
2336 * through out_level and out_root. ptr must point to a 0 value for the first
2337 * call and may be modified (see get_extent_inline_ref comment).
2338 * returns 0 if data was provided, 1 if there was no more data to provide or
2339 * <0 on error.
2340 */
2341int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2342 struct btrfs_key *key, struct btrfs_extent_item *ei,
2343 u32 item_size, u64 *out_root, u8 *out_level)
2344{
2345 int ret;
2346 int type;
2347 struct btrfs_extent_inline_ref *eiref;
2348
2349 if (*ptr == (unsigned long)-1)
2350 return 1;
2351
2352 while (1) {
2353 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2354 &eiref, &type);
2355 if (ret < 0)
2356 return ret;
2357
2358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2359 type == BTRFS_SHARED_BLOCK_REF_KEY)
2360 break;
2361
2362 if (ret == 1)
2363 return 1;
2364 }
2365
2366 /* we can treat both ref types equally here */
2367 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2368
2369 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2370 struct btrfs_tree_block_info *info;
2371
2372 info = (struct btrfs_tree_block_info *)(ei + 1);
2373 *out_level = btrfs_tree_block_level(eb, info);
2374 } else {
2375 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2376 *out_level = (u8)key->offset;
2377 }
2378
2379 if (ret == 1)
2380 *ptr = (unsigned long)-1;
2381
2382 return 0;
2383}
2384
2385static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2386 struct extent_inode_elem *inode_list,
2387 u64 root, u64 extent_item_objectid,
2388 iterate_extent_inodes_t *iterate, void *ctx)
2389{
2390 struct extent_inode_elem *eie;
2391 int ret = 0;
2392
2393 for (eie = inode_list; eie; eie = eie->next) {
2394 btrfs_debug(fs_info,
2395 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2396 extent_item_objectid, eie->inum,
2397 eie->offset, root);
2398 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2399 if (ret) {
2400 btrfs_debug(fs_info,
2401 "stopping iteration for %llu due to ret=%d",
2402 extent_item_objectid, ret);
2403 break;
2404 }
2405 }
2406
2407 return ret;
2408}
2409
2410/*
2411 * calls iterate() for every inode that references the extent identified by
2412 * the given parameters.
2413 * when the iterator function returns a non-zero value, iteration stops.
2414 */
2415int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2416 bool search_commit_root,
2417 iterate_extent_inodes_t *iterate, void *user_ctx)
2418{
2419 int ret;
2420 struct ulist *refs;
2421 struct ulist_node *ref_node;
2422 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2423 struct ulist_iterator ref_uiter;
2424
2425 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2426 ctx->bytenr);
2427
2428 ASSERT(ctx->trans == NULL);
2429 ASSERT(ctx->roots == NULL);
2430
2431 if (!search_commit_root) {
2432 struct btrfs_trans_handle *trans;
2433
2434 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2435 if (IS_ERR(trans)) {
2436 if (PTR_ERR(trans) != -ENOENT &&
2437 PTR_ERR(trans) != -EROFS)
2438 return PTR_ERR(trans);
2439 trans = NULL;
2440 }
2441 ctx->trans = trans;
2442 }
2443
2444 if (ctx->trans) {
2445 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2446 ctx->time_seq = seq_elem.seq;
2447 } else {
2448 down_read(&ctx->fs_info->commit_root_sem);
2449 }
2450
2451 ret = btrfs_find_all_leafs(ctx);
2452 if (ret)
2453 goto out;
2454 refs = ctx->refs;
2455 ctx->refs = NULL;
2456
2457 ULIST_ITER_INIT(&ref_uiter);
2458 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2459 const u64 leaf_bytenr = ref_node->val;
2460 struct ulist_node *root_node;
2461 struct ulist_iterator root_uiter;
2462 struct extent_inode_elem *inode_list;
2463
2464 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2465
2466 if (ctx->cache_lookup) {
2467 const u64 *root_ids;
2468 int root_count;
2469 bool cached;
2470
2471 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2472 &root_ids, &root_count);
2473 if (cached) {
2474 for (int i = 0; i < root_count; i++) {
2475 ret = iterate_leaf_refs(ctx->fs_info,
2476 inode_list,
2477 root_ids[i],
2478 leaf_bytenr,
2479 iterate,
2480 user_ctx);
2481 if (ret)
2482 break;
2483 }
2484 continue;
2485 }
2486 }
2487
2488 if (!ctx->roots) {
2489 ctx->roots = ulist_alloc(GFP_NOFS);
2490 if (!ctx->roots) {
2491 ret = -ENOMEM;
2492 break;
2493 }
2494 }
2495
2496 ctx->bytenr = leaf_bytenr;
2497 ret = btrfs_find_all_roots_safe(ctx);
2498 if (ret)
2499 break;
2500
2501 if (ctx->cache_store)
2502 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2503
2504 ULIST_ITER_INIT(&root_uiter);
2505 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2506 btrfs_debug(ctx->fs_info,
2507 "root %llu references leaf %llu, data list %#llx",
2508 root_node->val, ref_node->val,
2509 ref_node->aux);
2510 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2511 root_node->val, ctx->bytenr,
2512 iterate, user_ctx);
2513 }
2514 ulist_reinit(ctx->roots);
2515 }
2516
2517 free_leaf_list(refs);
2518out:
2519 if (ctx->trans) {
2520 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2521 btrfs_end_transaction(ctx->trans);
2522 ctx->trans = NULL;
2523 } else {
2524 up_read(&ctx->fs_info->commit_root_sem);
2525 }
2526
2527 ulist_free(ctx->roots);
2528 ctx->roots = NULL;
2529
2530 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2531 ret = 0;
2532
2533 return ret;
2534}
2535
2536static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2537{
2538 struct btrfs_data_container *inodes = ctx;
2539 const size_t c = 3 * sizeof(u64);
2540
2541 if (inodes->bytes_left >= c) {
2542 inodes->bytes_left -= c;
2543 inodes->val[inodes->elem_cnt] = inum;
2544 inodes->val[inodes->elem_cnt + 1] = offset;
2545 inodes->val[inodes->elem_cnt + 2] = root;
2546 inodes->elem_cnt += 3;
2547 } else {
2548 inodes->bytes_missing += c - inodes->bytes_left;
2549 inodes->bytes_left = 0;
2550 inodes->elem_missed += 3;
2551 }
2552
2553 return 0;
2554}
2555
2556int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2557 struct btrfs_path *path,
2558 void *ctx, bool ignore_offset)
2559{
2560 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2561 int ret;
2562 u64 flags = 0;
2563 struct btrfs_key found_key;
2564 int search_commit_root = path->search_commit_root;
2565
2566 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2567 btrfs_release_path(path);
2568 if (ret < 0)
2569 return ret;
2570 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2571 return -EINVAL;
2572
2573 walk_ctx.bytenr = found_key.objectid;
2574 if (ignore_offset)
2575 walk_ctx.ignore_extent_item_pos = true;
2576 else
2577 walk_ctx.extent_item_pos = logical - found_key.objectid;
2578 walk_ctx.fs_info = fs_info;
2579
2580 return iterate_extent_inodes(&walk_ctx, search_commit_root,
2581 build_ino_list, ctx);
2582}
2583
2584static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2585 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2586
2587static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2588{
2589 int ret = 0;
2590 int slot;
2591 u32 cur;
2592 u32 len;
2593 u32 name_len;
2594 u64 parent = 0;
2595 int found = 0;
2596 struct btrfs_root *fs_root = ipath->fs_root;
2597 struct btrfs_path *path = ipath->btrfs_path;
2598 struct extent_buffer *eb;
2599 struct btrfs_inode_ref *iref;
2600 struct btrfs_key found_key;
2601
2602 while (!ret) {
2603 ret = btrfs_find_item(fs_root, path, inum,
2604 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2605 &found_key);
2606
2607 if (ret < 0)
2608 break;
2609 if (ret) {
2610 ret = found ? 0 : -ENOENT;
2611 break;
2612 }
2613 ++found;
2614
2615 parent = found_key.offset;
2616 slot = path->slots[0];
2617 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2618 if (!eb) {
2619 ret = -ENOMEM;
2620 break;
2621 }
2622 btrfs_release_path(path);
2623
2624 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2625
2626 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2627 name_len = btrfs_inode_ref_name_len(eb, iref);
2628 /* path must be released before calling iterate()! */
2629 btrfs_debug(fs_root->fs_info,
2630 "following ref at offset %u for inode %llu in tree %llu",
2631 cur, found_key.objectid,
2632 fs_root->root_key.objectid);
2633 ret = inode_to_path(parent, name_len,
2634 (unsigned long)(iref + 1), eb, ipath);
2635 if (ret)
2636 break;
2637 len = sizeof(*iref) + name_len;
2638 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2639 }
2640 free_extent_buffer(eb);
2641 }
2642
2643 btrfs_release_path(path);
2644
2645 return ret;
2646}
2647
2648static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2649{
2650 int ret;
2651 int slot;
2652 u64 offset = 0;
2653 u64 parent;
2654 int found = 0;
2655 struct btrfs_root *fs_root = ipath->fs_root;
2656 struct btrfs_path *path = ipath->btrfs_path;
2657 struct extent_buffer *eb;
2658 struct btrfs_inode_extref *extref;
2659 u32 item_size;
2660 u32 cur_offset;
2661 unsigned long ptr;
2662
2663 while (1) {
2664 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2665 &offset);
2666 if (ret < 0)
2667 break;
2668 if (ret) {
2669 ret = found ? 0 : -ENOENT;
2670 break;
2671 }
2672 ++found;
2673
2674 slot = path->slots[0];
2675 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2676 if (!eb) {
2677 ret = -ENOMEM;
2678 break;
2679 }
2680 btrfs_release_path(path);
2681
2682 item_size = btrfs_item_size(eb, slot);
2683 ptr = btrfs_item_ptr_offset(eb, slot);
2684 cur_offset = 0;
2685
2686 while (cur_offset < item_size) {
2687 u32 name_len;
2688
2689 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2690 parent = btrfs_inode_extref_parent(eb, extref);
2691 name_len = btrfs_inode_extref_name_len(eb, extref);
2692 ret = inode_to_path(parent, name_len,
2693 (unsigned long)&extref->name, eb, ipath);
2694 if (ret)
2695 break;
2696
2697 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2698 cur_offset += sizeof(*extref);
2699 }
2700 free_extent_buffer(eb);
2701
2702 offset++;
2703 }
2704
2705 btrfs_release_path(path);
2706
2707 return ret;
2708}
2709
2710/*
2711 * returns 0 if the path could be dumped (probably truncated)
2712 * returns <0 in case of an error
2713 */
2714static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2715 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2716{
2717 char *fspath;
2718 char *fspath_min;
2719 int i = ipath->fspath->elem_cnt;
2720 const int s_ptr = sizeof(char *);
2721 u32 bytes_left;
2722
2723 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2724 ipath->fspath->bytes_left - s_ptr : 0;
2725
2726 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2727 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2728 name_off, eb, inum, fspath_min, bytes_left);
2729 if (IS_ERR(fspath))
2730 return PTR_ERR(fspath);
2731
2732 if (fspath > fspath_min) {
2733 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2734 ++ipath->fspath->elem_cnt;
2735 ipath->fspath->bytes_left = fspath - fspath_min;
2736 } else {
2737 ++ipath->fspath->elem_missed;
2738 ipath->fspath->bytes_missing += fspath_min - fspath;
2739 ipath->fspath->bytes_left = 0;
2740 }
2741
2742 return 0;
2743}
2744
2745/*
2746 * this dumps all file system paths to the inode into the ipath struct, provided
2747 * is has been created large enough. each path is zero-terminated and accessed
2748 * from ipath->fspath->val[i].
2749 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2750 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2751 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2752 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2753 * have been needed to return all paths.
2754 */
2755int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2756{
2757 int ret;
2758 int found_refs = 0;
2759
2760 ret = iterate_inode_refs(inum, ipath);
2761 if (!ret)
2762 ++found_refs;
2763 else if (ret != -ENOENT)
2764 return ret;
2765
2766 ret = iterate_inode_extrefs(inum, ipath);
2767 if (ret == -ENOENT && found_refs)
2768 return 0;
2769
2770 return ret;
2771}
2772
2773struct btrfs_data_container *init_data_container(u32 total_bytes)
2774{
2775 struct btrfs_data_container *data;
2776 size_t alloc_bytes;
2777
2778 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2779 data = kvzalloc(alloc_bytes, GFP_KERNEL);
2780 if (!data)
2781 return ERR_PTR(-ENOMEM);
2782
2783 if (total_bytes >= sizeof(*data))
2784 data->bytes_left = total_bytes - sizeof(*data);
2785 else
2786 data->bytes_missing = sizeof(*data) - total_bytes;
2787
2788 return data;
2789}
2790
2791/*
2792 * allocates space to return multiple file system paths for an inode.
2793 * total_bytes to allocate are passed, note that space usable for actual path
2794 * information will be total_bytes - sizeof(struct inode_fs_paths).
2795 * the returned pointer must be freed with free_ipath() in the end.
2796 */
2797struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2798 struct btrfs_path *path)
2799{
2800 struct inode_fs_paths *ifp;
2801 struct btrfs_data_container *fspath;
2802
2803 fspath = init_data_container(total_bytes);
2804 if (IS_ERR(fspath))
2805 return ERR_CAST(fspath);
2806
2807 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2808 if (!ifp) {
2809 kvfree(fspath);
2810 return ERR_PTR(-ENOMEM);
2811 }
2812
2813 ifp->btrfs_path = path;
2814 ifp->fspath = fspath;
2815 ifp->fs_root = fs_root;
2816
2817 return ifp;
2818}
2819
2820void free_ipath(struct inode_fs_paths *ipath)
2821{
2822 if (!ipath)
2823 return;
2824 kvfree(ipath->fspath);
2825 kfree(ipath);
2826}
2827
2828struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2829{
2830 struct btrfs_backref_iter *ret;
2831
2832 ret = kzalloc(sizeof(*ret), GFP_NOFS);
2833 if (!ret)
2834 return NULL;
2835
2836 ret->path = btrfs_alloc_path();
2837 if (!ret->path) {
2838 kfree(ret);
2839 return NULL;
2840 }
2841
2842 /* Current backref iterator only supports iteration in commit root */
2843 ret->path->search_commit_root = 1;
2844 ret->path->skip_locking = 1;
2845 ret->fs_info = fs_info;
2846
2847 return ret;
2848}
2849
2850static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2851{
2852 iter->bytenr = 0;
2853 iter->item_ptr = 0;
2854 iter->cur_ptr = 0;
2855 iter->end_ptr = 0;
2856 btrfs_release_path(iter->path);
2857 memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2858}
2859
2860int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2861{
2862 struct btrfs_fs_info *fs_info = iter->fs_info;
2863 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2864 struct btrfs_path *path = iter->path;
2865 struct btrfs_extent_item *ei;
2866 struct btrfs_key key;
2867 int ret;
2868
2869 key.objectid = bytenr;
2870 key.type = BTRFS_METADATA_ITEM_KEY;
2871 key.offset = (u64)-1;
2872 iter->bytenr = bytenr;
2873
2874 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2875 if (ret < 0)
2876 return ret;
2877 if (ret == 0) {
2878 /*
2879 * Key with offset -1 found, there would have to exist an extent
2880 * item with such offset, but this is out of the valid range.
2881 */
2882 ret = -EUCLEAN;
2883 goto release;
2884 }
2885 if (path->slots[0] == 0) {
2886 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2887 ret = -EUCLEAN;
2888 goto release;
2889 }
2890 path->slots[0]--;
2891
2892 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2893 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2894 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2895 ret = -ENOENT;
2896 goto release;
2897 }
2898 memcpy(&iter->cur_key, &key, sizeof(key));
2899 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2900 path->slots[0]);
2901 iter->end_ptr = (u32)(iter->item_ptr +
2902 btrfs_item_size(path->nodes[0], path->slots[0]));
2903 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2904 struct btrfs_extent_item);
2905
2906 /*
2907 * Only support iteration on tree backref yet.
2908 *
2909 * This is an extra precaution for non skinny-metadata, where
2910 * EXTENT_ITEM is also used for tree blocks, that we can only use
2911 * extent flags to determine if it's a tree block.
2912 */
2913 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2914 ret = -ENOTSUPP;
2915 goto release;
2916 }
2917 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2918
2919 /* If there is no inline backref, go search for keyed backref */
2920 if (iter->cur_ptr >= iter->end_ptr) {
2921 ret = btrfs_next_item(extent_root, path);
2922
2923 /* No inline nor keyed ref */
2924 if (ret > 0) {
2925 ret = -ENOENT;
2926 goto release;
2927 }
2928 if (ret < 0)
2929 goto release;
2930
2931 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2932 path->slots[0]);
2933 if (iter->cur_key.objectid != bytenr ||
2934 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2935 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2936 ret = -ENOENT;
2937 goto release;
2938 }
2939 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2940 path->slots[0]);
2941 iter->item_ptr = iter->cur_ptr;
2942 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2943 path->nodes[0], path->slots[0]));
2944 }
2945
2946 return 0;
2947release:
2948 btrfs_backref_iter_release(iter);
2949 return ret;
2950}
2951
2952static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2953{
2954 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2955 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2956 return true;
2957 return false;
2958}
2959
2960/*
2961 * Go to the next backref item of current bytenr, can be either inlined or
2962 * keyed.
2963 *
2964 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2965 *
2966 * Return 0 if we get next backref without problem.
2967 * Return >0 if there is no extra backref for this bytenr.
2968 * Return <0 if there is something wrong happened.
2969 */
2970int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2971{
2972 struct extent_buffer *eb = iter->path->nodes[0];
2973 struct btrfs_root *extent_root;
2974 struct btrfs_path *path = iter->path;
2975 struct btrfs_extent_inline_ref *iref;
2976 int ret;
2977 u32 size;
2978
2979 if (btrfs_backref_iter_is_inline_ref(iter)) {
2980 /* We're still inside the inline refs */
2981 ASSERT(iter->cur_ptr < iter->end_ptr);
2982
2983 if (btrfs_backref_has_tree_block_info(iter)) {
2984 /* First tree block info */
2985 size = sizeof(struct btrfs_tree_block_info);
2986 } else {
2987 /* Use inline ref type to determine the size */
2988 int type;
2989
2990 iref = (struct btrfs_extent_inline_ref *)
2991 ((unsigned long)iter->cur_ptr);
2992 type = btrfs_extent_inline_ref_type(eb, iref);
2993
2994 size = btrfs_extent_inline_ref_size(type);
2995 }
2996 iter->cur_ptr += size;
2997 if (iter->cur_ptr < iter->end_ptr)
2998 return 0;
2999
3000 /* All inline items iterated, fall through */
3001 }
3002
3003 /* We're at keyed items, there is no inline item, go to the next one */
3004 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
3005 ret = btrfs_next_item(extent_root, iter->path);
3006 if (ret)
3007 return ret;
3008
3009 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3010 if (iter->cur_key.objectid != iter->bytenr ||
3011 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3012 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3013 return 1;
3014 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3015 path->slots[0]);
3016 iter->cur_ptr = iter->item_ptr;
3017 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3018 path->slots[0]);
3019 return 0;
3020}
3021
3022void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3023 struct btrfs_backref_cache *cache, bool is_reloc)
3024{
3025 int i;
3026
3027 cache->rb_root = RB_ROOT;
3028 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3029 INIT_LIST_HEAD(&cache->pending[i]);
3030 INIT_LIST_HEAD(&cache->changed);
3031 INIT_LIST_HEAD(&cache->detached);
3032 INIT_LIST_HEAD(&cache->leaves);
3033 INIT_LIST_HEAD(&cache->pending_edge);
3034 INIT_LIST_HEAD(&cache->useless_node);
3035 cache->fs_info = fs_info;
3036 cache->is_reloc = is_reloc;
3037}
3038
3039struct btrfs_backref_node *btrfs_backref_alloc_node(
3040 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3041{
3042 struct btrfs_backref_node *node;
3043
3044 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3045 node = kzalloc(sizeof(*node), GFP_NOFS);
3046 if (!node)
3047 return node;
3048
3049 INIT_LIST_HEAD(&node->list);
3050 INIT_LIST_HEAD(&node->upper);
3051 INIT_LIST_HEAD(&node->lower);
3052 RB_CLEAR_NODE(&node->rb_node);
3053 cache->nr_nodes++;
3054 node->level = level;
3055 node->bytenr = bytenr;
3056
3057 return node;
3058}
3059
3060void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3061 struct btrfs_backref_node *node)
3062{
3063 if (node) {
3064 ASSERT(list_empty(&node->list));
3065 ASSERT(list_empty(&node->lower));
3066 ASSERT(node->eb == NULL);
3067 cache->nr_nodes--;
3068 btrfs_put_root(node->root);
3069 kfree(node);
3070 }
3071}
3072
3073struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3074 struct btrfs_backref_cache *cache)
3075{
3076 struct btrfs_backref_edge *edge;
3077
3078 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3079 if (edge)
3080 cache->nr_edges++;
3081 return edge;
3082}
3083
3084void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3085 struct btrfs_backref_edge *edge)
3086{
3087 if (edge) {
3088 cache->nr_edges--;
3089 kfree(edge);
3090 }
3091}
3092
3093void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3094{
3095 if (node->locked) {
3096 btrfs_tree_unlock(node->eb);
3097 node->locked = 0;
3098 }
3099}
3100
3101void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3102{
3103 if (node->eb) {
3104 btrfs_backref_unlock_node_buffer(node);
3105 free_extent_buffer(node->eb);
3106 node->eb = NULL;
3107 }
3108}
3109
3110/*
3111 * Drop the backref node from cache without cleaning up its children
3112 * edges.
3113 *
3114 * This can only be called on node without parent edges.
3115 * The children edges are still kept as is.
3116 */
3117void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3118 struct btrfs_backref_node *node)
3119{
3120 ASSERT(list_empty(&node->upper));
3121
3122 btrfs_backref_drop_node_buffer(node);
3123 list_del_init(&node->list);
3124 list_del_init(&node->lower);
3125 if (!RB_EMPTY_NODE(&node->rb_node))
3126 rb_erase(&node->rb_node, &tree->rb_root);
3127 btrfs_backref_free_node(tree, node);
3128}
3129
3130/*
3131 * Drop the backref node from cache, also cleaning up all its
3132 * upper edges and any uncached nodes in the path.
3133 *
3134 * This cleanup happens bottom up, thus the node should either
3135 * be the lowest node in the cache or a detached node.
3136 */
3137void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3138 struct btrfs_backref_node *node)
3139{
3140 struct btrfs_backref_node *upper;
3141 struct btrfs_backref_edge *edge;
3142
3143 if (!node)
3144 return;
3145
3146 BUG_ON(!node->lowest && !node->detached);
3147 while (!list_empty(&node->upper)) {
3148 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3149 list[LOWER]);
3150 upper = edge->node[UPPER];
3151 list_del(&edge->list[LOWER]);
3152 list_del(&edge->list[UPPER]);
3153 btrfs_backref_free_edge(cache, edge);
3154
3155 /*
3156 * Add the node to leaf node list if no other child block
3157 * cached.
3158 */
3159 if (list_empty(&upper->lower)) {
3160 list_add_tail(&upper->lower, &cache->leaves);
3161 upper->lowest = 1;
3162 }
3163 }
3164
3165 btrfs_backref_drop_node(cache, node);
3166}
3167
3168/*
3169 * Release all nodes/edges from current cache
3170 */
3171void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3172{
3173 struct btrfs_backref_node *node;
3174 int i;
3175
3176 while (!list_empty(&cache->detached)) {
3177 node = list_entry(cache->detached.next,
3178 struct btrfs_backref_node, list);
3179 btrfs_backref_cleanup_node(cache, node);
3180 }
3181
3182 while (!list_empty(&cache->leaves)) {
3183 node = list_entry(cache->leaves.next,
3184 struct btrfs_backref_node, lower);
3185 btrfs_backref_cleanup_node(cache, node);
3186 }
3187
3188 cache->last_trans = 0;
3189
3190 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3191 ASSERT(list_empty(&cache->pending[i]));
3192 ASSERT(list_empty(&cache->pending_edge));
3193 ASSERT(list_empty(&cache->useless_node));
3194 ASSERT(list_empty(&cache->changed));
3195 ASSERT(list_empty(&cache->detached));
3196 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3197 ASSERT(!cache->nr_nodes);
3198 ASSERT(!cache->nr_edges);
3199}
3200
3201void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3202 struct btrfs_backref_node *lower,
3203 struct btrfs_backref_node *upper,
3204 int link_which)
3205{
3206 ASSERT(upper && lower && upper->level == lower->level + 1);
3207 edge->node[LOWER] = lower;
3208 edge->node[UPPER] = upper;
3209 if (link_which & LINK_LOWER)
3210 list_add_tail(&edge->list[LOWER], &lower->upper);
3211 if (link_which & LINK_UPPER)
3212 list_add_tail(&edge->list[UPPER], &upper->lower);
3213}
3214/*
3215 * Handle direct tree backref
3216 *
3217 * Direct tree backref means, the backref item shows its parent bytenr
3218 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3219 *
3220 * @ref_key: The converted backref key.
3221 * For keyed backref, it's the item key.
3222 * For inlined backref, objectid is the bytenr,
3223 * type is btrfs_inline_ref_type, offset is
3224 * btrfs_inline_ref_offset.
3225 */
3226static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3227 struct btrfs_key *ref_key,
3228 struct btrfs_backref_node *cur)
3229{
3230 struct btrfs_backref_edge *edge;
3231 struct btrfs_backref_node *upper;
3232 struct rb_node *rb_node;
3233
3234 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3235
3236 /* Only reloc root uses backref pointing to itself */
3237 if (ref_key->objectid == ref_key->offset) {
3238 struct btrfs_root *root;
3239
3240 cur->is_reloc_root = 1;
3241 /* Only reloc backref cache cares about a specific root */
3242 if (cache->is_reloc) {
3243 root = find_reloc_root(cache->fs_info, cur->bytenr);
3244 if (!root)
3245 return -ENOENT;
3246 cur->root = root;
3247 } else {
3248 /*
3249 * For generic purpose backref cache, reloc root node
3250 * is useless.
3251 */
3252 list_add(&cur->list, &cache->useless_node);
3253 }
3254 return 0;
3255 }
3256
3257 edge = btrfs_backref_alloc_edge(cache);
3258 if (!edge)
3259 return -ENOMEM;
3260
3261 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3262 if (!rb_node) {
3263 /* Parent node not yet cached */
3264 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3265 cur->level + 1);
3266 if (!upper) {
3267 btrfs_backref_free_edge(cache, edge);
3268 return -ENOMEM;
3269 }
3270
3271 /*
3272 * Backrefs for the upper level block isn't cached, add the
3273 * block to pending list
3274 */
3275 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3276 } else {
3277 /* Parent node already cached */
3278 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3279 ASSERT(upper->checked);
3280 INIT_LIST_HEAD(&edge->list[UPPER]);
3281 }
3282 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3283 return 0;
3284}
3285
3286/*
3287 * Handle indirect tree backref
3288 *
3289 * Indirect tree backref means, we only know which tree the node belongs to.
3290 * We still need to do a tree search to find out the parents. This is for
3291 * TREE_BLOCK_REF backref (keyed or inlined).
3292 *
3293 * @trans: Transaction handle.
3294 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3295 * @tree_key: The first key of this tree block.
3296 * @path: A clean (released) path, to avoid allocating path every time
3297 * the function get called.
3298 */
3299static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3300 struct btrfs_backref_cache *cache,
3301 struct btrfs_path *path,
3302 struct btrfs_key *ref_key,
3303 struct btrfs_key *tree_key,
3304 struct btrfs_backref_node *cur)
3305{
3306 struct btrfs_fs_info *fs_info = cache->fs_info;
3307 struct btrfs_backref_node *upper;
3308 struct btrfs_backref_node *lower;
3309 struct btrfs_backref_edge *edge;
3310 struct extent_buffer *eb;
3311 struct btrfs_root *root;
3312 struct rb_node *rb_node;
3313 int level;
3314 bool need_check = true;
3315 int ret;
3316
3317 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3318 if (IS_ERR(root))
3319 return PTR_ERR(root);
3320 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3321 cur->cowonly = 1;
3322
3323 if (btrfs_root_level(&root->root_item) == cur->level) {
3324 /* Tree root */
3325 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3326 /*
3327 * For reloc backref cache, we may ignore reloc root. But for
3328 * general purpose backref cache, we can't rely on
3329 * btrfs_should_ignore_reloc_root() as it may conflict with
3330 * current running relocation and lead to missing root.
3331 *
3332 * For general purpose backref cache, reloc root detection is
3333 * completely relying on direct backref (key->offset is parent
3334 * bytenr), thus only do such check for reloc cache.
3335 */
3336 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3337 btrfs_put_root(root);
3338 list_add(&cur->list, &cache->useless_node);
3339 } else {
3340 cur->root = root;
3341 }
3342 return 0;
3343 }
3344
3345 level = cur->level + 1;
3346
3347 /* Search the tree to find parent blocks referring to the block */
3348 path->search_commit_root = 1;
3349 path->skip_locking = 1;
3350 path->lowest_level = level;
3351 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3352 path->lowest_level = 0;
3353 if (ret < 0) {
3354 btrfs_put_root(root);
3355 return ret;
3356 }
3357 if (ret > 0 && path->slots[level] > 0)
3358 path->slots[level]--;
3359
3360 eb = path->nodes[level];
3361 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3362 btrfs_err(fs_info,
3363"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3364 cur->bytenr, level - 1, root->root_key.objectid,
3365 tree_key->objectid, tree_key->type, tree_key->offset);
3366 btrfs_put_root(root);
3367 ret = -ENOENT;
3368 goto out;
3369 }
3370 lower = cur;
3371
3372 /* Add all nodes and edges in the path */
3373 for (; level < BTRFS_MAX_LEVEL; level++) {
3374 if (!path->nodes[level]) {
3375 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3376 lower->bytenr);
3377 /* Same as previous should_ignore_reloc_root() call */
3378 if (btrfs_should_ignore_reloc_root(root) &&
3379 cache->is_reloc) {
3380 btrfs_put_root(root);
3381 list_add(&lower->list, &cache->useless_node);
3382 } else {
3383 lower->root = root;
3384 }
3385 break;
3386 }
3387
3388 edge = btrfs_backref_alloc_edge(cache);
3389 if (!edge) {
3390 btrfs_put_root(root);
3391 ret = -ENOMEM;
3392 goto out;
3393 }
3394
3395 eb = path->nodes[level];
3396 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3397 if (!rb_node) {
3398 upper = btrfs_backref_alloc_node(cache, eb->start,
3399 lower->level + 1);
3400 if (!upper) {
3401 btrfs_put_root(root);
3402 btrfs_backref_free_edge(cache, edge);
3403 ret = -ENOMEM;
3404 goto out;
3405 }
3406 upper->owner = btrfs_header_owner(eb);
3407 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3408 upper->cowonly = 1;
3409
3410 /*
3411 * If we know the block isn't shared we can avoid
3412 * checking its backrefs.
3413 */
3414 if (btrfs_block_can_be_shared(trans, root, eb))
3415 upper->checked = 0;
3416 else
3417 upper->checked = 1;
3418
3419 /*
3420 * Add the block to pending list if we need to check its
3421 * backrefs, we only do this once while walking up a
3422 * tree as we will catch anything else later on.
3423 */
3424 if (!upper->checked && need_check) {
3425 need_check = false;
3426 list_add_tail(&edge->list[UPPER],
3427 &cache->pending_edge);
3428 } else {
3429 if (upper->checked)
3430 need_check = true;
3431 INIT_LIST_HEAD(&edge->list[UPPER]);
3432 }
3433 } else {
3434 upper = rb_entry(rb_node, struct btrfs_backref_node,
3435 rb_node);
3436 ASSERT(upper->checked);
3437 INIT_LIST_HEAD(&edge->list[UPPER]);
3438 if (!upper->owner)
3439 upper->owner = btrfs_header_owner(eb);
3440 }
3441 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3442
3443 if (rb_node) {
3444 btrfs_put_root(root);
3445 break;
3446 }
3447 lower = upper;
3448 upper = NULL;
3449 }
3450out:
3451 btrfs_release_path(path);
3452 return ret;
3453}
3454
3455/*
3456 * Add backref node @cur into @cache.
3457 *
3458 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3459 * links aren't yet bi-directional. Needs to finish such links.
3460 * Use btrfs_backref_finish_upper_links() to finish such linkage.
3461 *
3462 * @trans: Transaction handle.
3463 * @path: Released path for indirect tree backref lookup
3464 * @iter: Released backref iter for extent tree search
3465 * @node_key: The first key of the tree block
3466 */
3467int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3468 struct btrfs_backref_cache *cache,
3469 struct btrfs_path *path,
3470 struct btrfs_backref_iter *iter,
3471 struct btrfs_key *node_key,
3472 struct btrfs_backref_node *cur)
3473{
3474 struct btrfs_backref_edge *edge;
3475 struct btrfs_backref_node *exist;
3476 int ret;
3477
3478 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3479 if (ret < 0)
3480 return ret;
3481 /*
3482 * We skip the first btrfs_tree_block_info, as we don't use the key
3483 * stored in it, but fetch it from the tree block
3484 */
3485 if (btrfs_backref_has_tree_block_info(iter)) {
3486 ret = btrfs_backref_iter_next(iter);
3487 if (ret < 0)
3488 goto out;
3489 /* No extra backref? This means the tree block is corrupted */
3490 if (ret > 0) {
3491 ret = -EUCLEAN;
3492 goto out;
3493 }
3494 }
3495 WARN_ON(cur->checked);
3496 if (!list_empty(&cur->upper)) {
3497 /*
3498 * The backref was added previously when processing backref of
3499 * type BTRFS_TREE_BLOCK_REF_KEY
3500 */
3501 ASSERT(list_is_singular(&cur->upper));
3502 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3503 list[LOWER]);
3504 ASSERT(list_empty(&edge->list[UPPER]));
3505 exist = edge->node[UPPER];
3506 /*
3507 * Add the upper level block to pending list if we need check
3508 * its backrefs
3509 */
3510 if (!exist->checked)
3511 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3512 } else {
3513 exist = NULL;
3514 }
3515
3516 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3517 struct extent_buffer *eb;
3518 struct btrfs_key key;
3519 int type;
3520
3521 cond_resched();
3522 eb = iter->path->nodes[0];
3523
3524 key.objectid = iter->bytenr;
3525 if (btrfs_backref_iter_is_inline_ref(iter)) {
3526 struct btrfs_extent_inline_ref *iref;
3527
3528 /* Update key for inline backref */
3529 iref = (struct btrfs_extent_inline_ref *)
3530 ((unsigned long)iter->cur_ptr);
3531 type = btrfs_get_extent_inline_ref_type(eb, iref,
3532 BTRFS_REF_TYPE_BLOCK);
3533 if (type == BTRFS_REF_TYPE_INVALID) {
3534 ret = -EUCLEAN;
3535 goto out;
3536 }
3537 key.type = type;
3538 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3539 } else {
3540 key.type = iter->cur_key.type;
3541 key.offset = iter->cur_key.offset;
3542 }
3543
3544 /*
3545 * Parent node found and matches current inline ref, no need to
3546 * rebuild this node for this inline ref
3547 */
3548 if (exist &&
3549 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3550 exist->owner == key.offset) ||
3551 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3552 exist->bytenr == key.offset))) {
3553 exist = NULL;
3554 continue;
3555 }
3556
3557 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3558 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3559 ret = handle_direct_tree_backref(cache, &key, cur);
3560 if (ret < 0)
3561 goto out;
3562 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3563 /*
3564 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3565 * offset means the root objectid. We need to search
3566 * the tree to get its parent bytenr.
3567 */
3568 ret = handle_indirect_tree_backref(trans, cache, path,
3569 &key, node_key, cur);
3570 if (ret < 0)
3571 goto out;
3572 }
3573 /*
3574 * Unrecognized tree backref items (if it can pass tree-checker)
3575 * would be ignored.
3576 */
3577 }
3578 ret = 0;
3579 cur->checked = 1;
3580 WARN_ON(exist);
3581out:
3582 btrfs_backref_iter_release(iter);
3583 return ret;
3584}
3585
3586/*
3587 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3588 */
3589int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3590 struct btrfs_backref_node *start)
3591{
3592 struct list_head *useless_node = &cache->useless_node;
3593 struct btrfs_backref_edge *edge;
3594 struct rb_node *rb_node;
3595 LIST_HEAD(pending_edge);
3596
3597 ASSERT(start->checked);
3598
3599 /* Insert this node to cache if it's not COW-only */
3600 if (!start->cowonly) {
3601 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3602 &start->rb_node);
3603 if (rb_node)
3604 btrfs_backref_panic(cache->fs_info, start->bytenr,
3605 -EEXIST);
3606 list_add_tail(&start->lower, &cache->leaves);
3607 }
3608
3609 /*
3610 * Use breadth first search to iterate all related edges.
3611 *
3612 * The starting points are all the edges of this node
3613 */
3614 list_for_each_entry(edge, &start->upper, list[LOWER])
3615 list_add_tail(&edge->list[UPPER], &pending_edge);
3616
3617 while (!list_empty(&pending_edge)) {
3618 struct btrfs_backref_node *upper;
3619 struct btrfs_backref_node *lower;
3620
3621 edge = list_first_entry(&pending_edge,
3622 struct btrfs_backref_edge, list[UPPER]);
3623 list_del_init(&edge->list[UPPER]);
3624 upper = edge->node[UPPER];
3625 lower = edge->node[LOWER];
3626
3627 /* Parent is detached, no need to keep any edges */
3628 if (upper->detached) {
3629 list_del(&edge->list[LOWER]);
3630 btrfs_backref_free_edge(cache, edge);
3631
3632 /* Lower node is orphan, queue for cleanup */
3633 if (list_empty(&lower->upper))
3634 list_add(&lower->list, useless_node);
3635 continue;
3636 }
3637
3638 /*
3639 * All new nodes added in current build_backref_tree() haven't
3640 * been linked to the cache rb tree.
3641 * So if we have upper->rb_node populated, this means a cache
3642 * hit. We only need to link the edge, as @upper and all its
3643 * parents have already been linked.
3644 */
3645 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3646 if (upper->lowest) {
3647 list_del_init(&upper->lower);
3648 upper->lowest = 0;
3649 }
3650
3651 list_add_tail(&edge->list[UPPER], &upper->lower);
3652 continue;
3653 }
3654
3655 /* Sanity check, we shouldn't have any unchecked nodes */
3656 if (!upper->checked) {
3657 ASSERT(0);
3658 return -EUCLEAN;
3659 }
3660
3661 /* Sanity check, COW-only node has non-COW-only parent */
3662 if (start->cowonly != upper->cowonly) {
3663 ASSERT(0);
3664 return -EUCLEAN;
3665 }
3666
3667 /* Only cache non-COW-only (subvolume trees) tree blocks */
3668 if (!upper->cowonly) {
3669 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3670 &upper->rb_node);
3671 if (rb_node) {
3672 btrfs_backref_panic(cache->fs_info,
3673 upper->bytenr, -EEXIST);
3674 return -EUCLEAN;
3675 }
3676 }
3677
3678 list_add_tail(&edge->list[UPPER], &upper->lower);
3679
3680 /*
3681 * Also queue all the parent edges of this uncached node
3682 * to finish the upper linkage
3683 */
3684 list_for_each_entry(edge, &upper->upper, list[LOWER])
3685 list_add_tail(&edge->list[UPPER], &pending_edge);
3686 }
3687 return 0;
3688}
3689
3690void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3691 struct btrfs_backref_node *node)
3692{
3693 struct btrfs_backref_node *lower;
3694 struct btrfs_backref_node *upper;
3695 struct btrfs_backref_edge *edge;
3696
3697 while (!list_empty(&cache->useless_node)) {
3698 lower = list_first_entry(&cache->useless_node,
3699 struct btrfs_backref_node, list);
3700 list_del_init(&lower->list);
3701 }
3702 while (!list_empty(&cache->pending_edge)) {
3703 edge = list_first_entry(&cache->pending_edge,
3704 struct btrfs_backref_edge, list[UPPER]);
3705 list_del(&edge->list[UPPER]);
3706 list_del(&edge->list[LOWER]);
3707 lower = edge->node[LOWER];
3708 upper = edge->node[UPPER];
3709 btrfs_backref_free_edge(cache, edge);
3710
3711 /*
3712 * Lower is no longer linked to any upper backref nodes and
3713 * isn't in the cache, we can free it ourselves.
3714 */
3715 if (list_empty(&lower->upper) &&
3716 RB_EMPTY_NODE(&lower->rb_node))
3717 list_add(&lower->list, &cache->useless_node);
3718
3719 if (!RB_EMPTY_NODE(&upper->rb_node))
3720 continue;
3721
3722 /* Add this guy's upper edges to the list to process */
3723 list_for_each_entry(edge, &upper->upper, list[LOWER])
3724 list_add_tail(&edge->list[UPPER],
3725 &cache->pending_edge);
3726 if (list_empty(&upper->upper))
3727 list_add(&upper->list, &cache->useless_node);
3728 }
3729
3730 while (!list_empty(&cache->useless_node)) {
3731 lower = list_first_entry(&cache->useless_node,
3732 struct btrfs_backref_node, list);
3733 list_del_init(&lower->list);
3734 if (lower == node)
3735 node = NULL;
3736 btrfs_backref_drop_node(cache, lower);
3737 }
3738
3739 btrfs_backref_cleanup_node(cache, node);
3740 ASSERT(list_empty(&cache->useless_node) &&
3741 list_empty(&cache->pending_edge));
3742}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17
18/* Just an arbitrary number so we can be sure this happened */
19#define BACKREF_FOUND_SHARED 6
20
21struct extent_inode_elem {
22 u64 inum;
23 u64 offset;
24 struct extent_inode_elem *next;
25};
26
27static int check_extent_in_eb(const struct btrfs_key *key,
28 const struct extent_buffer *eb,
29 const struct btrfs_file_extent_item *fi,
30 u64 extent_item_pos,
31 struct extent_inode_elem **eie,
32 bool ignore_offset)
33{
34 u64 offset = 0;
35 struct extent_inode_elem *e;
36
37 if (!ignore_offset &&
38 !btrfs_file_extent_compression(eb, fi) &&
39 !btrfs_file_extent_encryption(eb, fi) &&
40 !btrfs_file_extent_other_encoding(eb, fi)) {
41 u64 data_offset;
42 u64 data_len;
43
44 data_offset = btrfs_file_extent_offset(eb, fi);
45 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47 if (extent_item_pos < data_offset ||
48 extent_item_pos >= data_offset + data_len)
49 return 1;
50 offset = extent_item_pos - data_offset;
51 }
52
53 e = kmalloc(sizeof(*e), GFP_NOFS);
54 if (!e)
55 return -ENOMEM;
56
57 e->next = *eie;
58 e->inum = key->objectid;
59 e->offset = key->offset + offset;
60 *eie = e;
61
62 return 0;
63}
64
65static void free_inode_elem_list(struct extent_inode_elem *eie)
66{
67 struct extent_inode_elem *eie_next;
68
69 for (; eie; eie = eie_next) {
70 eie_next = eie->next;
71 kfree(eie);
72 }
73}
74
75static int find_extent_in_eb(const struct extent_buffer *eb,
76 u64 wanted_disk_byte, u64 extent_item_pos,
77 struct extent_inode_elem **eie,
78 bool ignore_offset)
79{
80 u64 disk_byte;
81 struct btrfs_key key;
82 struct btrfs_file_extent_item *fi;
83 int slot;
84 int nritems;
85 int extent_type;
86 int ret;
87
88 /*
89 * from the shared data ref, we only have the leaf but we need
90 * the key. thus, we must look into all items and see that we
91 * find one (some) with a reference to our extent item.
92 */
93 nritems = btrfs_header_nritems(eb);
94 for (slot = 0; slot < nritems; ++slot) {
95 btrfs_item_key_to_cpu(eb, &key, slot);
96 if (key.type != BTRFS_EXTENT_DATA_KEY)
97 continue;
98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 extent_type = btrfs_file_extent_type(eb, fi);
100 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 continue;
102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 if (disk_byte != wanted_disk_byte)
105 continue;
106
107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 if (ret < 0)
109 return ret;
110 }
111
112 return 0;
113}
114
115struct preftree {
116 struct rb_root_cached root;
117 unsigned int count;
118};
119
120#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
121
122struct preftrees {
123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 struct preftree indirect_missing_keys;
126};
127
128/*
129 * Checks for a shared extent during backref search.
130 *
131 * The share_count tracks prelim_refs (direct and indirect) having a
132 * ref->count >0:
133 * - incremented when a ref->count transitions to >0
134 * - decremented when a ref->count transitions to <1
135 */
136struct share_check {
137 u64 root_objectid;
138 u64 inum;
139 int share_count;
140};
141
142static inline int extent_is_shared(struct share_check *sc)
143{
144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145}
146
147static struct kmem_cache *btrfs_prelim_ref_cache;
148
149int __init btrfs_prelim_ref_init(void)
150{
151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 sizeof(struct prelim_ref),
153 0,
154 SLAB_MEM_SPREAD,
155 NULL);
156 if (!btrfs_prelim_ref_cache)
157 return -ENOMEM;
158 return 0;
159}
160
161void __cold btrfs_prelim_ref_exit(void)
162{
163 kmem_cache_destroy(btrfs_prelim_ref_cache);
164}
165
166static void free_pref(struct prelim_ref *ref)
167{
168 kmem_cache_free(btrfs_prelim_ref_cache, ref);
169}
170
171/*
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
175 */
176static int prelim_ref_compare(struct prelim_ref *ref1,
177 struct prelim_ref *ref2)
178{
179 if (ref1->level < ref2->level)
180 return -1;
181 if (ref1->level > ref2->level)
182 return 1;
183 if (ref1->root_id < ref2->root_id)
184 return -1;
185 if (ref1->root_id > ref2->root_id)
186 return 1;
187 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 return -1;
189 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 return 1;
191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 return -1;
193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 return 1;
195 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 return -1;
197 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 return 1;
199 if (ref1->parent < ref2->parent)
200 return -1;
201 if (ref1->parent > ref2->parent)
202 return 1;
203
204 return 0;
205}
206
207static void update_share_count(struct share_check *sc, int oldcount,
208 int newcount)
209{
210 if ((!sc) || (oldcount == 0 && newcount < 1))
211 return;
212
213 if (oldcount > 0 && newcount < 1)
214 sc->share_count--;
215 else if (oldcount < 1 && newcount > 0)
216 sc->share_count++;
217}
218
219/*
220 * Add @newref to the @root rbtree, merging identical refs.
221 *
222 * Callers should assume that newref has been freed after calling.
223 */
224static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 struct preftree *preftree,
226 struct prelim_ref *newref,
227 struct share_check *sc)
228{
229 struct rb_root_cached *root;
230 struct rb_node **p;
231 struct rb_node *parent = NULL;
232 struct prelim_ref *ref;
233 int result;
234 bool leftmost = true;
235
236 root = &preftree->root;
237 p = &root->rb_root.rb_node;
238
239 while (*p) {
240 parent = *p;
241 ref = rb_entry(parent, struct prelim_ref, rbnode);
242 result = prelim_ref_compare(ref, newref);
243 if (result < 0) {
244 p = &(*p)->rb_left;
245 } else if (result > 0) {
246 p = &(*p)->rb_right;
247 leftmost = false;
248 } else {
249 /* Identical refs, merge them and free @newref */
250 struct extent_inode_elem *eie = ref->inode_list;
251
252 while (eie && eie->next)
253 eie = eie->next;
254
255 if (!eie)
256 ref->inode_list = newref->inode_list;
257 else
258 eie->next = newref->inode_list;
259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 preftree->count);
261 /*
262 * A delayed ref can have newref->count < 0.
263 * The ref->count is updated to follow any
264 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 */
266 update_share_count(sc, ref->count,
267 ref->count + newref->count);
268 ref->count += newref->count;
269 free_pref(newref);
270 return;
271 }
272 }
273
274 update_share_count(sc, 0, newref->count);
275 preftree->count++;
276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 rb_link_node(&newref->rbnode, parent, p);
278 rb_insert_color_cached(&newref->rbnode, root, leftmost);
279}
280
281/*
282 * Release the entire tree. We don't care about internal consistency so
283 * just free everything and then reset the tree root.
284 */
285static void prelim_release(struct preftree *preftree)
286{
287 struct prelim_ref *ref, *next_ref;
288
289 rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 &preftree->root.rb_root, rbnode)
291 free_pref(ref);
292
293 preftree->root = RB_ROOT_CACHED;
294 preftree->count = 0;
295}
296
297/*
298 * the rules for all callers of this function are:
299 * - obtaining the parent is the goal
300 * - if you add a key, you must know that it is a correct key
301 * - if you cannot add the parent or a correct key, then we will look into the
302 * block later to set a correct key
303 *
304 * delayed refs
305 * ============
306 * backref type | shared | indirect | shared | indirect
307 * information | tree | tree | data | data
308 * --------------------+--------+----------+--------+----------
309 * parent logical | y | - | - | -
310 * key to resolve | - | y | y | y
311 * tree block logical | - | - | - | -
312 * root for resolving | y | y | y | y
313 *
314 * - column 1: we've the parent -> done
315 * - column 2, 3, 4: we use the key to find the parent
316 *
317 * on disk refs (inline or keyed)
318 * ==============================
319 * backref type | shared | indirect | shared | indirect
320 * information | tree | tree | data | data
321 * --------------------+--------+----------+--------+----------
322 * parent logical | y | - | y | -
323 * key to resolve | - | - | - | y
324 * tree block logical | y | y | y | y
325 * root for resolving | - | y | y | y
326 *
327 * - column 1, 3: we've the parent -> done
328 * - column 2: we take the first key from the block to find the parent
329 * (see add_missing_keys)
330 * - column 4: we use the key to find the parent
331 *
332 * additional information that's available but not required to find the parent
333 * block might help in merging entries to gain some speed.
334 */
335static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 struct preftree *preftree, u64 root_id,
337 const struct btrfs_key *key, int level, u64 parent,
338 u64 wanted_disk_byte, int count,
339 struct share_check *sc, gfp_t gfp_mask)
340{
341 struct prelim_ref *ref;
342
343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 return 0;
345
346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 if (!ref)
348 return -ENOMEM;
349
350 ref->root_id = root_id;
351 if (key)
352 ref->key_for_search = *key;
353 else
354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355
356 ref->inode_list = NULL;
357 ref->level = level;
358 ref->count = count;
359 ref->parent = parent;
360 ref->wanted_disk_byte = wanted_disk_byte;
361 prelim_ref_insert(fs_info, preftree, ref, sc);
362 return extent_is_shared(sc);
363}
364
365/* direct refs use root == 0, key == NULL */
366static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 struct preftrees *preftrees, int level, u64 parent,
368 u64 wanted_disk_byte, int count,
369 struct share_check *sc, gfp_t gfp_mask)
370{
371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 parent, wanted_disk_byte, count, sc, gfp_mask);
373}
374
375/* indirect refs use parent == 0 */
376static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 struct preftrees *preftrees, u64 root_id,
378 const struct btrfs_key *key, int level,
379 u64 wanted_disk_byte, int count,
380 struct share_check *sc, gfp_t gfp_mask)
381{
382 struct preftree *tree = &preftrees->indirect;
383
384 if (!key)
385 tree = &preftrees->indirect_missing_keys;
386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 wanted_disk_byte, count, sc, gfp_mask);
388}
389
390static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391{
392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 struct rb_node *parent = NULL;
394 struct prelim_ref *ref = NULL;
395 struct prelim_ref target = {};
396 int result;
397
398 target.parent = bytenr;
399
400 while (*p) {
401 parent = *p;
402 ref = rb_entry(parent, struct prelim_ref, rbnode);
403 result = prelim_ref_compare(ref, &target);
404
405 if (result < 0)
406 p = &(*p)->rb_left;
407 else if (result > 0)
408 p = &(*p)->rb_right;
409 else
410 return 1;
411 }
412 return 0;
413}
414
415static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 struct ulist *parents,
417 struct preftrees *preftrees, struct prelim_ref *ref,
418 int level, u64 time_seq, const u64 *extent_item_pos,
419 bool ignore_offset)
420{
421 int ret = 0;
422 int slot;
423 struct extent_buffer *eb;
424 struct btrfs_key key;
425 struct btrfs_key *key_for_search = &ref->key_for_search;
426 struct btrfs_file_extent_item *fi;
427 struct extent_inode_elem *eie = NULL, *old = NULL;
428 u64 disk_byte;
429 u64 wanted_disk_byte = ref->wanted_disk_byte;
430 u64 count = 0;
431 u64 data_offset;
432
433 if (level != 0) {
434 eb = path->nodes[level];
435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 if (ret < 0)
437 return ret;
438 return 0;
439 }
440
441 /*
442 * 1. We normally enter this function with the path already pointing to
443 * the first item to check. But sometimes, we may enter it with
444 * slot == nritems.
445 * 2. We are searching for normal backref but bytenr of this leaf
446 * matches shared data backref
447 * 3. The leaf owner is not equal to the root we are searching
448 *
449 * For these cases, go to the next leaf before we continue.
450 */
451 eb = path->nodes[0];
452 if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 is_shared_data_backref(preftrees, eb->start) ||
454 ref->root_id != btrfs_header_owner(eb)) {
455 if (time_seq == SEQ_LAST)
456 ret = btrfs_next_leaf(root, path);
457 else
458 ret = btrfs_next_old_leaf(root, path, time_seq);
459 }
460
461 while (!ret && count < ref->count) {
462 eb = path->nodes[0];
463 slot = path->slots[0];
464
465 btrfs_item_key_to_cpu(eb, &key, slot);
466
467 if (key.objectid != key_for_search->objectid ||
468 key.type != BTRFS_EXTENT_DATA_KEY)
469 break;
470
471 /*
472 * We are searching for normal backref but bytenr of this leaf
473 * matches shared data backref, OR
474 * the leaf owner is not equal to the root we are searching for
475 */
476 if (slot == 0 &&
477 (is_shared_data_backref(preftrees, eb->start) ||
478 ref->root_id != btrfs_header_owner(eb))) {
479 if (time_seq == SEQ_LAST)
480 ret = btrfs_next_leaf(root, path);
481 else
482 ret = btrfs_next_old_leaf(root, path, time_seq);
483 continue;
484 }
485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 data_offset = btrfs_file_extent_offset(eb, fi);
488
489 if (disk_byte == wanted_disk_byte) {
490 eie = NULL;
491 old = NULL;
492 if (ref->key_for_search.offset == key.offset - data_offset)
493 count++;
494 else
495 goto next;
496 if (extent_item_pos) {
497 ret = check_extent_in_eb(&key, eb, fi,
498 *extent_item_pos,
499 &eie, ignore_offset);
500 if (ret < 0)
501 break;
502 }
503 if (ret > 0)
504 goto next;
505 ret = ulist_add_merge_ptr(parents, eb->start,
506 eie, (void **)&old, GFP_NOFS);
507 if (ret < 0)
508 break;
509 if (!ret && extent_item_pos) {
510 while (old->next)
511 old = old->next;
512 old->next = eie;
513 }
514 eie = NULL;
515 }
516next:
517 if (time_seq == SEQ_LAST)
518 ret = btrfs_next_item(root, path);
519 else
520 ret = btrfs_next_old_item(root, path, time_seq);
521 }
522
523 if (ret > 0)
524 ret = 0;
525 else if (ret < 0)
526 free_inode_elem_list(eie);
527 return ret;
528}
529
530/*
531 * resolve an indirect backref in the form (root_id, key, level)
532 * to a logical address
533 */
534static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 struct btrfs_path *path, u64 time_seq,
536 struct preftrees *preftrees,
537 struct prelim_ref *ref, struct ulist *parents,
538 const u64 *extent_item_pos, bool ignore_offset)
539{
540 struct btrfs_root *root;
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
545 struct btrfs_key search_key = ref->key_for_search;
546
547 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
548 if (IS_ERR(root)) {
549 ret = PTR_ERR(root);
550 goto out_free;
551 }
552
553 if (!path->search_commit_root &&
554 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
555 ret = -ENOENT;
556 goto out;
557 }
558
559 if (btrfs_is_testing(fs_info)) {
560 ret = -ENOENT;
561 goto out;
562 }
563
564 if (path->search_commit_root)
565 root_level = btrfs_header_level(root->commit_root);
566 else if (time_seq == SEQ_LAST)
567 root_level = btrfs_header_level(root->node);
568 else
569 root_level = btrfs_old_root_level(root, time_seq);
570
571 if (root_level + 1 == level)
572 goto out;
573
574 /*
575 * We can often find data backrefs with an offset that is too large
576 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
577 * subtracting a file's offset with the data offset of its
578 * corresponding extent data item. This can happen for example in the
579 * clone ioctl.
580 *
581 * So if we detect such case we set the search key's offset to zero to
582 * make sure we will find the matching file extent item at
583 * add_all_parents(), otherwise we will miss it because the offset
584 * taken form the backref is much larger then the offset of the file
585 * extent item. This can make us scan a very large number of file
586 * extent items, but at least it will not make us miss any.
587 *
588 * This is an ugly workaround for a behaviour that should have never
589 * existed, but it does and a fix for the clone ioctl would touch a lot
590 * of places, cause backwards incompatibility and would not fix the
591 * problem for extents cloned with older kernels.
592 */
593 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
594 search_key.offset >= LLONG_MAX)
595 search_key.offset = 0;
596 path->lowest_level = level;
597 if (time_seq == SEQ_LAST)
598 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
599 else
600 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
601
602 btrfs_debug(fs_info,
603 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
604 ref->root_id, level, ref->count, ret,
605 ref->key_for_search.objectid, ref->key_for_search.type,
606 ref->key_for_search.offset);
607 if (ret < 0)
608 goto out;
609
610 eb = path->nodes[level];
611 while (!eb) {
612 if (WARN_ON(!level)) {
613 ret = 1;
614 goto out;
615 }
616 level--;
617 eb = path->nodes[level];
618 }
619
620 ret = add_all_parents(root, path, parents, preftrees, ref, level,
621 time_seq, extent_item_pos, ignore_offset);
622out:
623 btrfs_put_root(root);
624out_free:
625 path->lowest_level = 0;
626 btrfs_release_path(path);
627 return ret;
628}
629
630static struct extent_inode_elem *
631unode_aux_to_inode_list(struct ulist_node *node)
632{
633 if (!node)
634 return NULL;
635 return (struct extent_inode_elem *)(uintptr_t)node->aux;
636}
637
638/*
639 * We maintain three separate rbtrees: one for direct refs, one for
640 * indirect refs which have a key, and one for indirect refs which do not
641 * have a key. Each tree does merge on insertion.
642 *
643 * Once all of the references are located, we iterate over the tree of
644 * indirect refs with missing keys. An appropriate key is located and
645 * the ref is moved onto the tree for indirect refs. After all missing
646 * keys are thus located, we iterate over the indirect ref tree, resolve
647 * each reference, and then insert the resolved reference onto the
648 * direct tree (merging there too).
649 *
650 * New backrefs (i.e., for parent nodes) are added to the appropriate
651 * rbtree as they are encountered. The new backrefs are subsequently
652 * resolved as above.
653 */
654static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
655 struct btrfs_path *path, u64 time_seq,
656 struct preftrees *preftrees,
657 const u64 *extent_item_pos,
658 struct share_check *sc, bool ignore_offset)
659{
660 int err;
661 int ret = 0;
662 struct ulist *parents;
663 struct ulist_node *node;
664 struct ulist_iterator uiter;
665 struct rb_node *rnode;
666
667 parents = ulist_alloc(GFP_NOFS);
668 if (!parents)
669 return -ENOMEM;
670
671 /*
672 * We could trade memory usage for performance here by iterating
673 * the tree, allocating new refs for each insertion, and then
674 * freeing the entire indirect tree when we're done. In some test
675 * cases, the tree can grow quite large (~200k objects).
676 */
677 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
678 struct prelim_ref *ref;
679
680 ref = rb_entry(rnode, struct prelim_ref, rbnode);
681 if (WARN(ref->parent,
682 "BUG: direct ref found in indirect tree")) {
683 ret = -EINVAL;
684 goto out;
685 }
686
687 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
688 preftrees->indirect.count--;
689
690 if (ref->count == 0) {
691 free_pref(ref);
692 continue;
693 }
694
695 if (sc && sc->root_objectid &&
696 ref->root_id != sc->root_objectid) {
697 free_pref(ref);
698 ret = BACKREF_FOUND_SHARED;
699 goto out;
700 }
701 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
702 ref, parents, extent_item_pos,
703 ignore_offset);
704 /*
705 * we can only tolerate ENOENT,otherwise,we should catch error
706 * and return directly.
707 */
708 if (err == -ENOENT) {
709 prelim_ref_insert(fs_info, &preftrees->direct, ref,
710 NULL);
711 continue;
712 } else if (err) {
713 free_pref(ref);
714 ret = err;
715 goto out;
716 }
717
718 /* we put the first parent into the ref at hand */
719 ULIST_ITER_INIT(&uiter);
720 node = ulist_next(parents, &uiter);
721 ref->parent = node ? node->val : 0;
722 ref->inode_list = unode_aux_to_inode_list(node);
723
724 /* Add a prelim_ref(s) for any other parent(s). */
725 while ((node = ulist_next(parents, &uiter))) {
726 struct prelim_ref *new_ref;
727
728 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
729 GFP_NOFS);
730 if (!new_ref) {
731 free_pref(ref);
732 ret = -ENOMEM;
733 goto out;
734 }
735 memcpy(new_ref, ref, sizeof(*ref));
736 new_ref->parent = node->val;
737 new_ref->inode_list = unode_aux_to_inode_list(node);
738 prelim_ref_insert(fs_info, &preftrees->direct,
739 new_ref, NULL);
740 }
741
742 /*
743 * Now it's a direct ref, put it in the direct tree. We must
744 * do this last because the ref could be merged/freed here.
745 */
746 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
747
748 ulist_reinit(parents);
749 cond_resched();
750 }
751out:
752 ulist_free(parents);
753 return ret;
754}
755
756/*
757 * read tree blocks and add keys where required.
758 */
759static int add_missing_keys(struct btrfs_fs_info *fs_info,
760 struct preftrees *preftrees, bool lock)
761{
762 struct prelim_ref *ref;
763 struct extent_buffer *eb;
764 struct preftree *tree = &preftrees->indirect_missing_keys;
765 struct rb_node *node;
766
767 while ((node = rb_first_cached(&tree->root))) {
768 ref = rb_entry(node, struct prelim_ref, rbnode);
769 rb_erase_cached(node, &tree->root);
770
771 BUG_ON(ref->parent); /* should not be a direct ref */
772 BUG_ON(ref->key_for_search.type);
773 BUG_ON(!ref->wanted_disk_byte);
774
775 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
776 ref->level - 1, NULL);
777 if (IS_ERR(eb)) {
778 free_pref(ref);
779 return PTR_ERR(eb);
780 } else if (!extent_buffer_uptodate(eb)) {
781 free_pref(ref);
782 free_extent_buffer(eb);
783 return -EIO;
784 }
785 if (lock)
786 btrfs_tree_read_lock(eb);
787 if (btrfs_header_level(eb) == 0)
788 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
789 else
790 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
791 if (lock)
792 btrfs_tree_read_unlock(eb);
793 free_extent_buffer(eb);
794 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
795 cond_resched();
796 }
797 return 0;
798}
799
800/*
801 * add all currently queued delayed refs from this head whose seq nr is
802 * smaller or equal that seq to the list
803 */
804static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
805 struct btrfs_delayed_ref_head *head, u64 seq,
806 struct preftrees *preftrees, struct share_check *sc)
807{
808 struct btrfs_delayed_ref_node *node;
809 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
810 struct btrfs_key key;
811 struct btrfs_key tmp_op_key;
812 struct rb_node *n;
813 int count;
814 int ret = 0;
815
816 if (extent_op && extent_op->update_key)
817 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
818
819 spin_lock(&head->lock);
820 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
821 node = rb_entry(n, struct btrfs_delayed_ref_node,
822 ref_node);
823 if (node->seq > seq)
824 continue;
825
826 switch (node->action) {
827 case BTRFS_ADD_DELAYED_EXTENT:
828 case BTRFS_UPDATE_DELAYED_HEAD:
829 WARN_ON(1);
830 continue;
831 case BTRFS_ADD_DELAYED_REF:
832 count = node->ref_mod;
833 break;
834 case BTRFS_DROP_DELAYED_REF:
835 count = node->ref_mod * -1;
836 break;
837 default:
838 BUG();
839 }
840 switch (node->type) {
841 case BTRFS_TREE_BLOCK_REF_KEY: {
842 /* NORMAL INDIRECT METADATA backref */
843 struct btrfs_delayed_tree_ref *ref;
844
845 ref = btrfs_delayed_node_to_tree_ref(node);
846 ret = add_indirect_ref(fs_info, preftrees, ref->root,
847 &tmp_op_key, ref->level + 1,
848 node->bytenr, count, sc,
849 GFP_ATOMIC);
850 break;
851 }
852 case BTRFS_SHARED_BLOCK_REF_KEY: {
853 /* SHARED DIRECT METADATA backref */
854 struct btrfs_delayed_tree_ref *ref;
855
856 ref = btrfs_delayed_node_to_tree_ref(node);
857
858 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
859 ref->parent, node->bytenr, count,
860 sc, GFP_ATOMIC);
861 break;
862 }
863 case BTRFS_EXTENT_DATA_REF_KEY: {
864 /* NORMAL INDIRECT DATA backref */
865 struct btrfs_delayed_data_ref *ref;
866 ref = btrfs_delayed_node_to_data_ref(node);
867
868 key.objectid = ref->objectid;
869 key.type = BTRFS_EXTENT_DATA_KEY;
870 key.offset = ref->offset;
871
872 /*
873 * Found a inum that doesn't match our known inum, we
874 * know it's shared.
875 */
876 if (sc && sc->inum && ref->objectid != sc->inum) {
877 ret = BACKREF_FOUND_SHARED;
878 goto out;
879 }
880
881 ret = add_indirect_ref(fs_info, preftrees, ref->root,
882 &key, 0, node->bytenr, count, sc,
883 GFP_ATOMIC);
884 break;
885 }
886 case BTRFS_SHARED_DATA_REF_KEY: {
887 /* SHARED DIRECT FULL backref */
888 struct btrfs_delayed_data_ref *ref;
889
890 ref = btrfs_delayed_node_to_data_ref(node);
891
892 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
893 node->bytenr, count, sc,
894 GFP_ATOMIC);
895 break;
896 }
897 default:
898 WARN_ON(1);
899 }
900 /*
901 * We must ignore BACKREF_FOUND_SHARED until all delayed
902 * refs have been checked.
903 */
904 if (ret && (ret != BACKREF_FOUND_SHARED))
905 break;
906 }
907 if (!ret)
908 ret = extent_is_shared(sc);
909out:
910 spin_unlock(&head->lock);
911 return ret;
912}
913
914/*
915 * add all inline backrefs for bytenr to the list
916 *
917 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
918 */
919static int add_inline_refs(const struct btrfs_fs_info *fs_info,
920 struct btrfs_path *path, u64 bytenr,
921 int *info_level, struct preftrees *preftrees,
922 struct share_check *sc)
923{
924 int ret = 0;
925 int slot;
926 struct extent_buffer *leaf;
927 struct btrfs_key key;
928 struct btrfs_key found_key;
929 unsigned long ptr;
930 unsigned long end;
931 struct btrfs_extent_item *ei;
932 u64 flags;
933 u64 item_size;
934
935 /*
936 * enumerate all inline refs
937 */
938 leaf = path->nodes[0];
939 slot = path->slots[0];
940
941 item_size = btrfs_item_size_nr(leaf, slot);
942 BUG_ON(item_size < sizeof(*ei));
943
944 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
945 flags = btrfs_extent_flags(leaf, ei);
946 btrfs_item_key_to_cpu(leaf, &found_key, slot);
947
948 ptr = (unsigned long)(ei + 1);
949 end = (unsigned long)ei + item_size;
950
951 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
952 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
953 struct btrfs_tree_block_info *info;
954
955 info = (struct btrfs_tree_block_info *)ptr;
956 *info_level = btrfs_tree_block_level(leaf, info);
957 ptr += sizeof(struct btrfs_tree_block_info);
958 BUG_ON(ptr > end);
959 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
960 *info_level = found_key.offset;
961 } else {
962 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
963 }
964
965 while (ptr < end) {
966 struct btrfs_extent_inline_ref *iref;
967 u64 offset;
968 int type;
969
970 iref = (struct btrfs_extent_inline_ref *)ptr;
971 type = btrfs_get_extent_inline_ref_type(leaf, iref,
972 BTRFS_REF_TYPE_ANY);
973 if (type == BTRFS_REF_TYPE_INVALID)
974 return -EUCLEAN;
975
976 offset = btrfs_extent_inline_ref_offset(leaf, iref);
977
978 switch (type) {
979 case BTRFS_SHARED_BLOCK_REF_KEY:
980 ret = add_direct_ref(fs_info, preftrees,
981 *info_level + 1, offset,
982 bytenr, 1, NULL, GFP_NOFS);
983 break;
984 case BTRFS_SHARED_DATA_REF_KEY: {
985 struct btrfs_shared_data_ref *sdref;
986 int count;
987
988 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
989 count = btrfs_shared_data_ref_count(leaf, sdref);
990
991 ret = add_direct_ref(fs_info, preftrees, 0, offset,
992 bytenr, count, sc, GFP_NOFS);
993 break;
994 }
995 case BTRFS_TREE_BLOCK_REF_KEY:
996 ret = add_indirect_ref(fs_info, preftrees, offset,
997 NULL, *info_level + 1,
998 bytenr, 1, NULL, GFP_NOFS);
999 break;
1000 case BTRFS_EXTENT_DATA_REF_KEY: {
1001 struct btrfs_extent_data_ref *dref;
1002 int count;
1003 u64 root;
1004
1005 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1006 count = btrfs_extent_data_ref_count(leaf, dref);
1007 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008 dref);
1009 key.type = BTRFS_EXTENT_DATA_KEY;
1010 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011
1012 if (sc && sc->inum && key.objectid != sc->inum) {
1013 ret = BACKREF_FOUND_SHARED;
1014 break;
1015 }
1016
1017 root = btrfs_extent_data_ref_root(leaf, dref);
1018
1019 ret = add_indirect_ref(fs_info, preftrees, root,
1020 &key, 0, bytenr, count,
1021 sc, GFP_NOFS);
1022 break;
1023 }
1024 default:
1025 WARN_ON(1);
1026 }
1027 if (ret)
1028 return ret;
1029 ptr += btrfs_extent_inline_ref_size(type);
1030 }
1031
1032 return 0;
1033}
1034
1035/*
1036 * add all non-inline backrefs for bytenr to the list
1037 *
1038 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1039 */
1040static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1041 struct btrfs_path *path, u64 bytenr,
1042 int info_level, struct preftrees *preftrees,
1043 struct share_check *sc)
1044{
1045 struct btrfs_root *extent_root = fs_info->extent_root;
1046 int ret;
1047 int slot;
1048 struct extent_buffer *leaf;
1049 struct btrfs_key key;
1050
1051 while (1) {
1052 ret = btrfs_next_item(extent_root, path);
1053 if (ret < 0)
1054 break;
1055 if (ret) {
1056 ret = 0;
1057 break;
1058 }
1059
1060 slot = path->slots[0];
1061 leaf = path->nodes[0];
1062 btrfs_item_key_to_cpu(leaf, &key, slot);
1063
1064 if (key.objectid != bytenr)
1065 break;
1066 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1067 continue;
1068 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1069 break;
1070
1071 switch (key.type) {
1072 case BTRFS_SHARED_BLOCK_REF_KEY:
1073 /* SHARED DIRECT METADATA backref */
1074 ret = add_direct_ref(fs_info, preftrees,
1075 info_level + 1, key.offset,
1076 bytenr, 1, NULL, GFP_NOFS);
1077 break;
1078 case BTRFS_SHARED_DATA_REF_KEY: {
1079 /* SHARED DIRECT FULL backref */
1080 struct btrfs_shared_data_ref *sdref;
1081 int count;
1082
1083 sdref = btrfs_item_ptr(leaf, slot,
1084 struct btrfs_shared_data_ref);
1085 count = btrfs_shared_data_ref_count(leaf, sdref);
1086 ret = add_direct_ref(fs_info, preftrees, 0,
1087 key.offset, bytenr, count,
1088 sc, GFP_NOFS);
1089 break;
1090 }
1091 case BTRFS_TREE_BLOCK_REF_KEY:
1092 /* NORMAL INDIRECT METADATA backref */
1093 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1094 NULL, info_level + 1, bytenr,
1095 1, NULL, GFP_NOFS);
1096 break;
1097 case BTRFS_EXTENT_DATA_REF_KEY: {
1098 /* NORMAL INDIRECT DATA backref */
1099 struct btrfs_extent_data_ref *dref;
1100 int count;
1101 u64 root;
1102
1103 dref = btrfs_item_ptr(leaf, slot,
1104 struct btrfs_extent_data_ref);
1105 count = btrfs_extent_data_ref_count(leaf, dref);
1106 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 dref);
1108 key.type = BTRFS_EXTENT_DATA_KEY;
1109 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110
1111 if (sc && sc->inum && key.objectid != sc->inum) {
1112 ret = BACKREF_FOUND_SHARED;
1113 break;
1114 }
1115
1116 root = btrfs_extent_data_ref_root(leaf, dref);
1117 ret = add_indirect_ref(fs_info, preftrees, root,
1118 &key, 0, bytenr, count,
1119 sc, GFP_NOFS);
1120 break;
1121 }
1122 default:
1123 WARN_ON(1);
1124 }
1125 if (ret)
1126 return ret;
1127
1128 }
1129
1130 return ret;
1131}
1132
1133/*
1134 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1135 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1136 * indirect refs to their parent bytenr.
1137 * When roots are found, they're added to the roots list
1138 *
1139 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1140 * much like trans == NULL case, the difference only lies in it will not
1141 * commit root.
1142 * The special case is for qgroup to search roots in commit_transaction().
1143 *
1144 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1145 * shared extent is detected.
1146 *
1147 * Otherwise this returns 0 for success and <0 for an error.
1148 *
1149 * If ignore_offset is set to false, only extent refs whose offsets match
1150 * extent_item_pos are returned. If true, every extent ref is returned
1151 * and extent_item_pos is ignored.
1152 *
1153 * FIXME some caching might speed things up
1154 */
1155static int find_parent_nodes(struct btrfs_trans_handle *trans,
1156 struct btrfs_fs_info *fs_info, u64 bytenr,
1157 u64 time_seq, struct ulist *refs,
1158 struct ulist *roots, const u64 *extent_item_pos,
1159 struct share_check *sc, bool ignore_offset)
1160{
1161 struct btrfs_key key;
1162 struct btrfs_path *path;
1163 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1164 struct btrfs_delayed_ref_head *head;
1165 int info_level = 0;
1166 int ret;
1167 struct prelim_ref *ref;
1168 struct rb_node *node;
1169 struct extent_inode_elem *eie = NULL;
1170 struct preftrees preftrees = {
1171 .direct = PREFTREE_INIT,
1172 .indirect = PREFTREE_INIT,
1173 .indirect_missing_keys = PREFTREE_INIT
1174 };
1175
1176 key.objectid = bytenr;
1177 key.offset = (u64)-1;
1178 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1179 key.type = BTRFS_METADATA_ITEM_KEY;
1180 else
1181 key.type = BTRFS_EXTENT_ITEM_KEY;
1182
1183 path = btrfs_alloc_path();
1184 if (!path)
1185 return -ENOMEM;
1186 if (!trans) {
1187 path->search_commit_root = 1;
1188 path->skip_locking = 1;
1189 }
1190
1191 if (time_seq == SEQ_LAST)
1192 path->skip_locking = 1;
1193
1194 /*
1195 * grab both a lock on the path and a lock on the delayed ref head.
1196 * We need both to get a consistent picture of how the refs look
1197 * at a specified point in time
1198 */
1199again:
1200 head = NULL;
1201
1202 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1203 if (ret < 0)
1204 goto out;
1205 BUG_ON(ret == 0);
1206
1207#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1209 time_seq != SEQ_LAST) {
1210#else
1211 if (trans && time_seq != SEQ_LAST) {
1212#endif
1213 /*
1214 * look if there are updates for this ref queued and lock the
1215 * head
1216 */
1217 delayed_refs = &trans->transaction->delayed_refs;
1218 spin_lock(&delayed_refs->lock);
1219 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1220 if (head) {
1221 if (!mutex_trylock(&head->mutex)) {
1222 refcount_inc(&head->refs);
1223 spin_unlock(&delayed_refs->lock);
1224
1225 btrfs_release_path(path);
1226
1227 /*
1228 * Mutex was contended, block until it's
1229 * released and try again
1230 */
1231 mutex_lock(&head->mutex);
1232 mutex_unlock(&head->mutex);
1233 btrfs_put_delayed_ref_head(head);
1234 goto again;
1235 }
1236 spin_unlock(&delayed_refs->lock);
1237 ret = add_delayed_refs(fs_info, head, time_seq,
1238 &preftrees, sc);
1239 mutex_unlock(&head->mutex);
1240 if (ret)
1241 goto out;
1242 } else {
1243 spin_unlock(&delayed_refs->lock);
1244 }
1245 }
1246
1247 if (path->slots[0]) {
1248 struct extent_buffer *leaf;
1249 int slot;
1250
1251 path->slots[0]--;
1252 leaf = path->nodes[0];
1253 slot = path->slots[0];
1254 btrfs_item_key_to_cpu(leaf, &key, slot);
1255 if (key.objectid == bytenr &&
1256 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1257 key.type == BTRFS_METADATA_ITEM_KEY)) {
1258 ret = add_inline_refs(fs_info, path, bytenr,
1259 &info_level, &preftrees, sc);
1260 if (ret)
1261 goto out;
1262 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1263 &preftrees, sc);
1264 if (ret)
1265 goto out;
1266 }
1267 }
1268
1269 btrfs_release_path(path);
1270
1271 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1272 if (ret)
1273 goto out;
1274
1275 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1276
1277 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1278 extent_item_pos, sc, ignore_offset);
1279 if (ret)
1280 goto out;
1281
1282 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1283
1284 /*
1285 * This walks the tree of merged and resolved refs. Tree blocks are
1286 * read in as needed. Unique entries are added to the ulist, and
1287 * the list of found roots is updated.
1288 *
1289 * We release the entire tree in one go before returning.
1290 */
1291 node = rb_first_cached(&preftrees.direct.root);
1292 while (node) {
1293 ref = rb_entry(node, struct prelim_ref, rbnode);
1294 node = rb_next(&ref->rbnode);
1295 /*
1296 * ref->count < 0 can happen here if there are delayed
1297 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1298 * prelim_ref_insert() relies on this when merging
1299 * identical refs to keep the overall count correct.
1300 * prelim_ref_insert() will merge only those refs
1301 * which compare identically. Any refs having
1302 * e.g. different offsets would not be merged,
1303 * and would retain their original ref->count < 0.
1304 */
1305 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1306 if (sc && sc->root_objectid &&
1307 ref->root_id != sc->root_objectid) {
1308 ret = BACKREF_FOUND_SHARED;
1309 goto out;
1310 }
1311
1312 /* no parent == root of tree */
1313 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1314 if (ret < 0)
1315 goto out;
1316 }
1317 if (ref->count && ref->parent) {
1318 if (extent_item_pos && !ref->inode_list &&
1319 ref->level == 0) {
1320 struct extent_buffer *eb;
1321
1322 eb = read_tree_block(fs_info, ref->parent, 0,
1323 ref->level, NULL);
1324 if (IS_ERR(eb)) {
1325 ret = PTR_ERR(eb);
1326 goto out;
1327 } else if (!extent_buffer_uptodate(eb)) {
1328 free_extent_buffer(eb);
1329 ret = -EIO;
1330 goto out;
1331 }
1332
1333 if (!path->skip_locking) {
1334 btrfs_tree_read_lock(eb);
1335 btrfs_set_lock_blocking_read(eb);
1336 }
1337 ret = find_extent_in_eb(eb, bytenr,
1338 *extent_item_pos, &eie, ignore_offset);
1339 if (!path->skip_locking)
1340 btrfs_tree_read_unlock_blocking(eb);
1341 free_extent_buffer(eb);
1342 if (ret < 0)
1343 goto out;
1344 ref->inode_list = eie;
1345 }
1346 ret = ulist_add_merge_ptr(refs, ref->parent,
1347 ref->inode_list,
1348 (void **)&eie, GFP_NOFS);
1349 if (ret < 0)
1350 goto out;
1351 if (!ret && extent_item_pos) {
1352 /*
1353 * we've recorded that parent, so we must extend
1354 * its inode list here
1355 */
1356 BUG_ON(!eie);
1357 while (eie->next)
1358 eie = eie->next;
1359 eie->next = ref->inode_list;
1360 }
1361 eie = NULL;
1362 }
1363 cond_resched();
1364 }
1365
1366out:
1367 btrfs_free_path(path);
1368
1369 prelim_release(&preftrees.direct);
1370 prelim_release(&preftrees.indirect);
1371 prelim_release(&preftrees.indirect_missing_keys);
1372
1373 if (ret < 0)
1374 free_inode_elem_list(eie);
1375 return ret;
1376}
1377
1378static void free_leaf_list(struct ulist *blocks)
1379{
1380 struct ulist_node *node = NULL;
1381 struct extent_inode_elem *eie;
1382 struct ulist_iterator uiter;
1383
1384 ULIST_ITER_INIT(&uiter);
1385 while ((node = ulist_next(blocks, &uiter))) {
1386 if (!node->aux)
1387 continue;
1388 eie = unode_aux_to_inode_list(node);
1389 free_inode_elem_list(eie);
1390 node->aux = 0;
1391 }
1392
1393 ulist_free(blocks);
1394}
1395
1396/*
1397 * Finds all leafs with a reference to the specified combination of bytenr and
1398 * offset. key_list_head will point to a list of corresponding keys (caller must
1399 * free each list element). The leafs will be stored in the leafs ulist, which
1400 * must be freed with ulist_free.
1401 *
1402 * returns 0 on success, <0 on error
1403 */
1404int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info, u64 bytenr,
1406 u64 time_seq, struct ulist **leafs,
1407 const u64 *extent_item_pos, bool ignore_offset)
1408{
1409 int ret;
1410
1411 *leafs = ulist_alloc(GFP_NOFS);
1412 if (!*leafs)
1413 return -ENOMEM;
1414
1415 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1416 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1417 if (ret < 0 && ret != -ENOENT) {
1418 free_leaf_list(*leafs);
1419 return ret;
1420 }
1421
1422 return 0;
1423}
1424
1425/*
1426 * walk all backrefs for a given extent to find all roots that reference this
1427 * extent. Walking a backref means finding all extents that reference this
1428 * extent and in turn walk the backrefs of those, too. Naturally this is a
1429 * recursive process, but here it is implemented in an iterative fashion: We
1430 * find all referencing extents for the extent in question and put them on a
1431 * list. In turn, we find all referencing extents for those, further appending
1432 * to the list. The way we iterate the list allows adding more elements after
1433 * the current while iterating. The process stops when we reach the end of the
1434 * list. Found roots are added to the roots list.
1435 *
1436 * returns 0 on success, < 0 on error.
1437 */
1438static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info, u64 bytenr,
1440 u64 time_seq, struct ulist **roots,
1441 bool ignore_offset)
1442{
1443 struct ulist *tmp;
1444 struct ulist_node *node = NULL;
1445 struct ulist_iterator uiter;
1446 int ret;
1447
1448 tmp = ulist_alloc(GFP_NOFS);
1449 if (!tmp)
1450 return -ENOMEM;
1451 *roots = ulist_alloc(GFP_NOFS);
1452 if (!*roots) {
1453 ulist_free(tmp);
1454 return -ENOMEM;
1455 }
1456
1457 ULIST_ITER_INIT(&uiter);
1458 while (1) {
1459 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1460 tmp, *roots, NULL, NULL, ignore_offset);
1461 if (ret < 0 && ret != -ENOENT) {
1462 ulist_free(tmp);
1463 ulist_free(*roots);
1464 *roots = NULL;
1465 return ret;
1466 }
1467 node = ulist_next(tmp, &uiter);
1468 if (!node)
1469 break;
1470 bytenr = node->val;
1471 cond_resched();
1472 }
1473
1474 ulist_free(tmp);
1475 return 0;
1476}
1477
1478int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1479 struct btrfs_fs_info *fs_info, u64 bytenr,
1480 u64 time_seq, struct ulist **roots,
1481 bool ignore_offset)
1482{
1483 int ret;
1484
1485 if (!trans)
1486 down_read(&fs_info->commit_root_sem);
1487 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1488 time_seq, roots, ignore_offset);
1489 if (!trans)
1490 up_read(&fs_info->commit_root_sem);
1491 return ret;
1492}
1493
1494/**
1495 * btrfs_check_shared - tell us whether an extent is shared
1496 *
1497 * btrfs_check_shared uses the backref walking code but will short
1498 * circuit as soon as it finds a root or inode that doesn't match the
1499 * one passed in. This provides a significant performance benefit for
1500 * callers (such as fiemap) which want to know whether the extent is
1501 * shared but do not need a ref count.
1502 *
1503 * This attempts to attach to the running transaction in order to account for
1504 * delayed refs, but continues on even when no running transaction exists.
1505 *
1506 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1507 */
1508int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1509 struct ulist *roots, struct ulist *tmp)
1510{
1511 struct btrfs_fs_info *fs_info = root->fs_info;
1512 struct btrfs_trans_handle *trans;
1513 struct ulist_iterator uiter;
1514 struct ulist_node *node;
1515 struct seq_list elem = SEQ_LIST_INIT(elem);
1516 int ret = 0;
1517 struct share_check shared = {
1518 .root_objectid = root->root_key.objectid,
1519 .inum = inum,
1520 .share_count = 0,
1521 };
1522
1523 ulist_init(roots);
1524 ulist_init(tmp);
1525
1526 trans = btrfs_join_transaction_nostart(root);
1527 if (IS_ERR(trans)) {
1528 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1529 ret = PTR_ERR(trans);
1530 goto out;
1531 }
1532 trans = NULL;
1533 down_read(&fs_info->commit_root_sem);
1534 } else {
1535 btrfs_get_tree_mod_seq(fs_info, &elem);
1536 }
1537
1538 ULIST_ITER_INIT(&uiter);
1539 while (1) {
1540 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1541 roots, NULL, &shared, false);
1542 if (ret == BACKREF_FOUND_SHARED) {
1543 /* this is the only condition under which we return 1 */
1544 ret = 1;
1545 break;
1546 }
1547 if (ret < 0 && ret != -ENOENT)
1548 break;
1549 ret = 0;
1550 node = ulist_next(tmp, &uiter);
1551 if (!node)
1552 break;
1553 bytenr = node->val;
1554 shared.share_count = 0;
1555 cond_resched();
1556 }
1557
1558 if (trans) {
1559 btrfs_put_tree_mod_seq(fs_info, &elem);
1560 btrfs_end_transaction(trans);
1561 } else {
1562 up_read(&fs_info->commit_root_sem);
1563 }
1564out:
1565 ulist_release(roots);
1566 ulist_release(tmp);
1567 return ret;
1568}
1569
1570int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1571 u64 start_off, struct btrfs_path *path,
1572 struct btrfs_inode_extref **ret_extref,
1573 u64 *found_off)
1574{
1575 int ret, slot;
1576 struct btrfs_key key;
1577 struct btrfs_key found_key;
1578 struct btrfs_inode_extref *extref;
1579 const struct extent_buffer *leaf;
1580 unsigned long ptr;
1581
1582 key.objectid = inode_objectid;
1583 key.type = BTRFS_INODE_EXTREF_KEY;
1584 key.offset = start_off;
1585
1586 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1587 if (ret < 0)
1588 return ret;
1589
1590 while (1) {
1591 leaf = path->nodes[0];
1592 slot = path->slots[0];
1593 if (slot >= btrfs_header_nritems(leaf)) {
1594 /*
1595 * If the item at offset is not found,
1596 * btrfs_search_slot will point us to the slot
1597 * where it should be inserted. In our case
1598 * that will be the slot directly before the
1599 * next INODE_REF_KEY_V2 item. In the case
1600 * that we're pointing to the last slot in a
1601 * leaf, we must move one leaf over.
1602 */
1603 ret = btrfs_next_leaf(root, path);
1604 if (ret) {
1605 if (ret >= 1)
1606 ret = -ENOENT;
1607 break;
1608 }
1609 continue;
1610 }
1611
1612 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1613
1614 /*
1615 * Check that we're still looking at an extended ref key for
1616 * this particular objectid. If we have different
1617 * objectid or type then there are no more to be found
1618 * in the tree and we can exit.
1619 */
1620 ret = -ENOENT;
1621 if (found_key.objectid != inode_objectid)
1622 break;
1623 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1624 break;
1625
1626 ret = 0;
1627 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1628 extref = (struct btrfs_inode_extref *)ptr;
1629 *ret_extref = extref;
1630 if (found_off)
1631 *found_off = found_key.offset;
1632 break;
1633 }
1634
1635 return ret;
1636}
1637
1638/*
1639 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1640 * Elements of the path are separated by '/' and the path is guaranteed to be
1641 * 0-terminated. the path is only given within the current file system.
1642 * Therefore, it never starts with a '/'. the caller is responsible to provide
1643 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1644 * the start point of the resulting string is returned. this pointer is within
1645 * dest, normally.
1646 * in case the path buffer would overflow, the pointer is decremented further
1647 * as if output was written to the buffer, though no more output is actually
1648 * generated. that way, the caller can determine how much space would be
1649 * required for the path to fit into the buffer. in that case, the returned
1650 * value will be smaller than dest. callers must check this!
1651 */
1652char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1653 u32 name_len, unsigned long name_off,
1654 struct extent_buffer *eb_in, u64 parent,
1655 char *dest, u32 size)
1656{
1657 int slot;
1658 u64 next_inum;
1659 int ret;
1660 s64 bytes_left = ((s64)size) - 1;
1661 struct extent_buffer *eb = eb_in;
1662 struct btrfs_key found_key;
1663 int leave_spinning = path->leave_spinning;
1664 struct btrfs_inode_ref *iref;
1665
1666 if (bytes_left >= 0)
1667 dest[bytes_left] = '\0';
1668
1669 path->leave_spinning = 1;
1670 while (1) {
1671 bytes_left -= name_len;
1672 if (bytes_left >= 0)
1673 read_extent_buffer(eb, dest + bytes_left,
1674 name_off, name_len);
1675 if (eb != eb_in) {
1676 if (!path->skip_locking)
1677 btrfs_tree_read_unlock_blocking(eb);
1678 free_extent_buffer(eb);
1679 }
1680 ret = btrfs_find_item(fs_root, path, parent, 0,
1681 BTRFS_INODE_REF_KEY, &found_key);
1682 if (ret > 0)
1683 ret = -ENOENT;
1684 if (ret)
1685 break;
1686
1687 next_inum = found_key.offset;
1688
1689 /* regular exit ahead */
1690 if (parent == next_inum)
1691 break;
1692
1693 slot = path->slots[0];
1694 eb = path->nodes[0];
1695 /* make sure we can use eb after releasing the path */
1696 if (eb != eb_in) {
1697 if (!path->skip_locking)
1698 btrfs_set_lock_blocking_read(eb);
1699 path->nodes[0] = NULL;
1700 path->locks[0] = 0;
1701 }
1702 btrfs_release_path(path);
1703 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1704
1705 name_len = btrfs_inode_ref_name_len(eb, iref);
1706 name_off = (unsigned long)(iref + 1);
1707
1708 parent = next_inum;
1709 --bytes_left;
1710 if (bytes_left >= 0)
1711 dest[bytes_left] = '/';
1712 }
1713
1714 btrfs_release_path(path);
1715 path->leave_spinning = leave_spinning;
1716
1717 if (ret)
1718 return ERR_PTR(ret);
1719
1720 return dest + bytes_left;
1721}
1722
1723/*
1724 * this makes the path point to (logical EXTENT_ITEM *)
1725 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1726 * tree blocks and <0 on error.
1727 */
1728int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1729 struct btrfs_path *path, struct btrfs_key *found_key,
1730 u64 *flags_ret)
1731{
1732 int ret;
1733 u64 flags;
1734 u64 size = 0;
1735 u32 item_size;
1736 const struct extent_buffer *eb;
1737 struct btrfs_extent_item *ei;
1738 struct btrfs_key key;
1739
1740 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1741 key.type = BTRFS_METADATA_ITEM_KEY;
1742 else
1743 key.type = BTRFS_EXTENT_ITEM_KEY;
1744 key.objectid = logical;
1745 key.offset = (u64)-1;
1746
1747 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1748 if (ret < 0)
1749 return ret;
1750
1751 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1752 if (ret) {
1753 if (ret > 0)
1754 ret = -ENOENT;
1755 return ret;
1756 }
1757 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1758 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1759 size = fs_info->nodesize;
1760 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1761 size = found_key->offset;
1762
1763 if (found_key->objectid > logical ||
1764 found_key->objectid + size <= logical) {
1765 btrfs_debug(fs_info,
1766 "logical %llu is not within any extent", logical);
1767 return -ENOENT;
1768 }
1769
1770 eb = path->nodes[0];
1771 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1772 BUG_ON(item_size < sizeof(*ei));
1773
1774 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1775 flags = btrfs_extent_flags(eb, ei);
1776
1777 btrfs_debug(fs_info,
1778 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1779 logical, logical - found_key->objectid, found_key->objectid,
1780 found_key->offset, flags, item_size);
1781
1782 WARN_ON(!flags_ret);
1783 if (flags_ret) {
1784 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1785 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1786 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1787 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1788 else
1789 BUG();
1790 return 0;
1791 }
1792
1793 return -EIO;
1794}
1795
1796/*
1797 * helper function to iterate extent inline refs. ptr must point to a 0 value
1798 * for the first call and may be modified. it is used to track state.
1799 * if more refs exist, 0 is returned and the next call to
1800 * get_extent_inline_ref must pass the modified ptr parameter to get the
1801 * next ref. after the last ref was processed, 1 is returned.
1802 * returns <0 on error
1803 */
1804static int get_extent_inline_ref(unsigned long *ptr,
1805 const struct extent_buffer *eb,
1806 const struct btrfs_key *key,
1807 const struct btrfs_extent_item *ei,
1808 u32 item_size,
1809 struct btrfs_extent_inline_ref **out_eiref,
1810 int *out_type)
1811{
1812 unsigned long end;
1813 u64 flags;
1814 struct btrfs_tree_block_info *info;
1815
1816 if (!*ptr) {
1817 /* first call */
1818 flags = btrfs_extent_flags(eb, ei);
1819 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1820 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1821 /* a skinny metadata extent */
1822 *out_eiref =
1823 (struct btrfs_extent_inline_ref *)(ei + 1);
1824 } else {
1825 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1826 info = (struct btrfs_tree_block_info *)(ei + 1);
1827 *out_eiref =
1828 (struct btrfs_extent_inline_ref *)(info + 1);
1829 }
1830 } else {
1831 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1832 }
1833 *ptr = (unsigned long)*out_eiref;
1834 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1835 return -ENOENT;
1836 }
1837
1838 end = (unsigned long)ei + item_size;
1839 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1840 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1841 BTRFS_REF_TYPE_ANY);
1842 if (*out_type == BTRFS_REF_TYPE_INVALID)
1843 return -EUCLEAN;
1844
1845 *ptr += btrfs_extent_inline_ref_size(*out_type);
1846 WARN_ON(*ptr > end);
1847 if (*ptr == end)
1848 return 1; /* last */
1849
1850 return 0;
1851}
1852
1853/*
1854 * reads the tree block backref for an extent. tree level and root are returned
1855 * through out_level and out_root. ptr must point to a 0 value for the first
1856 * call and may be modified (see get_extent_inline_ref comment).
1857 * returns 0 if data was provided, 1 if there was no more data to provide or
1858 * <0 on error.
1859 */
1860int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1861 struct btrfs_key *key, struct btrfs_extent_item *ei,
1862 u32 item_size, u64 *out_root, u8 *out_level)
1863{
1864 int ret;
1865 int type;
1866 struct btrfs_extent_inline_ref *eiref;
1867
1868 if (*ptr == (unsigned long)-1)
1869 return 1;
1870
1871 while (1) {
1872 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1873 &eiref, &type);
1874 if (ret < 0)
1875 return ret;
1876
1877 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1878 type == BTRFS_SHARED_BLOCK_REF_KEY)
1879 break;
1880
1881 if (ret == 1)
1882 return 1;
1883 }
1884
1885 /* we can treat both ref types equally here */
1886 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1887
1888 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1889 struct btrfs_tree_block_info *info;
1890
1891 info = (struct btrfs_tree_block_info *)(ei + 1);
1892 *out_level = btrfs_tree_block_level(eb, info);
1893 } else {
1894 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1895 *out_level = (u8)key->offset;
1896 }
1897
1898 if (ret == 1)
1899 *ptr = (unsigned long)-1;
1900
1901 return 0;
1902}
1903
1904static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1905 struct extent_inode_elem *inode_list,
1906 u64 root, u64 extent_item_objectid,
1907 iterate_extent_inodes_t *iterate, void *ctx)
1908{
1909 struct extent_inode_elem *eie;
1910 int ret = 0;
1911
1912 for (eie = inode_list; eie; eie = eie->next) {
1913 btrfs_debug(fs_info,
1914 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1915 extent_item_objectid, eie->inum,
1916 eie->offset, root);
1917 ret = iterate(eie->inum, eie->offset, root, ctx);
1918 if (ret) {
1919 btrfs_debug(fs_info,
1920 "stopping iteration for %llu due to ret=%d",
1921 extent_item_objectid, ret);
1922 break;
1923 }
1924 }
1925
1926 return ret;
1927}
1928
1929/*
1930 * calls iterate() for every inode that references the extent identified by
1931 * the given parameters.
1932 * when the iterator function returns a non-zero value, iteration stops.
1933 */
1934int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1935 u64 extent_item_objectid, u64 extent_item_pos,
1936 int search_commit_root,
1937 iterate_extent_inodes_t *iterate, void *ctx,
1938 bool ignore_offset)
1939{
1940 int ret;
1941 struct btrfs_trans_handle *trans = NULL;
1942 struct ulist *refs = NULL;
1943 struct ulist *roots = NULL;
1944 struct ulist_node *ref_node = NULL;
1945 struct ulist_node *root_node = NULL;
1946 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1947 struct ulist_iterator ref_uiter;
1948 struct ulist_iterator root_uiter;
1949
1950 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1951 extent_item_objectid);
1952
1953 if (!search_commit_root) {
1954 trans = btrfs_attach_transaction(fs_info->extent_root);
1955 if (IS_ERR(trans)) {
1956 if (PTR_ERR(trans) != -ENOENT &&
1957 PTR_ERR(trans) != -EROFS)
1958 return PTR_ERR(trans);
1959 trans = NULL;
1960 }
1961 }
1962
1963 if (trans)
1964 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1965 else
1966 down_read(&fs_info->commit_root_sem);
1967
1968 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1969 tree_mod_seq_elem.seq, &refs,
1970 &extent_item_pos, ignore_offset);
1971 if (ret)
1972 goto out;
1973
1974 ULIST_ITER_INIT(&ref_uiter);
1975 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1976 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1977 tree_mod_seq_elem.seq, &roots,
1978 ignore_offset);
1979 if (ret)
1980 break;
1981 ULIST_ITER_INIT(&root_uiter);
1982 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1983 btrfs_debug(fs_info,
1984 "root %llu references leaf %llu, data list %#llx",
1985 root_node->val, ref_node->val,
1986 ref_node->aux);
1987 ret = iterate_leaf_refs(fs_info,
1988 (struct extent_inode_elem *)
1989 (uintptr_t)ref_node->aux,
1990 root_node->val,
1991 extent_item_objectid,
1992 iterate, ctx);
1993 }
1994 ulist_free(roots);
1995 }
1996
1997 free_leaf_list(refs);
1998out:
1999 if (trans) {
2000 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2001 btrfs_end_transaction(trans);
2002 } else {
2003 up_read(&fs_info->commit_root_sem);
2004 }
2005
2006 return ret;
2007}
2008
2009int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2010 struct btrfs_path *path,
2011 iterate_extent_inodes_t *iterate, void *ctx,
2012 bool ignore_offset)
2013{
2014 int ret;
2015 u64 extent_item_pos;
2016 u64 flags = 0;
2017 struct btrfs_key found_key;
2018 int search_commit_root = path->search_commit_root;
2019
2020 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2021 btrfs_release_path(path);
2022 if (ret < 0)
2023 return ret;
2024 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2025 return -EINVAL;
2026
2027 extent_item_pos = logical - found_key.objectid;
2028 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2029 extent_item_pos, search_commit_root,
2030 iterate, ctx, ignore_offset);
2031
2032 return ret;
2033}
2034
2035typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2036 struct extent_buffer *eb, void *ctx);
2037
2038static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2039 struct btrfs_path *path,
2040 iterate_irefs_t *iterate, void *ctx)
2041{
2042 int ret = 0;
2043 int slot;
2044 u32 cur;
2045 u32 len;
2046 u32 name_len;
2047 u64 parent = 0;
2048 int found = 0;
2049 struct extent_buffer *eb;
2050 struct btrfs_item *item;
2051 struct btrfs_inode_ref *iref;
2052 struct btrfs_key found_key;
2053
2054 while (!ret) {
2055 ret = btrfs_find_item(fs_root, path, inum,
2056 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2057 &found_key);
2058
2059 if (ret < 0)
2060 break;
2061 if (ret) {
2062 ret = found ? 0 : -ENOENT;
2063 break;
2064 }
2065 ++found;
2066
2067 parent = found_key.offset;
2068 slot = path->slots[0];
2069 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2070 if (!eb) {
2071 ret = -ENOMEM;
2072 break;
2073 }
2074 btrfs_release_path(path);
2075
2076 item = btrfs_item_nr(slot);
2077 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2078
2079 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2080 name_len = btrfs_inode_ref_name_len(eb, iref);
2081 /* path must be released before calling iterate()! */
2082 btrfs_debug(fs_root->fs_info,
2083 "following ref at offset %u for inode %llu in tree %llu",
2084 cur, found_key.objectid,
2085 fs_root->root_key.objectid);
2086 ret = iterate(parent, name_len,
2087 (unsigned long)(iref + 1), eb, ctx);
2088 if (ret)
2089 break;
2090 len = sizeof(*iref) + name_len;
2091 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2092 }
2093 free_extent_buffer(eb);
2094 }
2095
2096 btrfs_release_path(path);
2097
2098 return ret;
2099}
2100
2101static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2102 struct btrfs_path *path,
2103 iterate_irefs_t *iterate, void *ctx)
2104{
2105 int ret;
2106 int slot;
2107 u64 offset = 0;
2108 u64 parent;
2109 int found = 0;
2110 struct extent_buffer *eb;
2111 struct btrfs_inode_extref *extref;
2112 u32 item_size;
2113 u32 cur_offset;
2114 unsigned long ptr;
2115
2116 while (1) {
2117 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2118 &offset);
2119 if (ret < 0)
2120 break;
2121 if (ret) {
2122 ret = found ? 0 : -ENOENT;
2123 break;
2124 }
2125 ++found;
2126
2127 slot = path->slots[0];
2128 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2129 if (!eb) {
2130 ret = -ENOMEM;
2131 break;
2132 }
2133 btrfs_release_path(path);
2134
2135 item_size = btrfs_item_size_nr(eb, slot);
2136 ptr = btrfs_item_ptr_offset(eb, slot);
2137 cur_offset = 0;
2138
2139 while (cur_offset < item_size) {
2140 u32 name_len;
2141
2142 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2143 parent = btrfs_inode_extref_parent(eb, extref);
2144 name_len = btrfs_inode_extref_name_len(eb, extref);
2145 ret = iterate(parent, name_len,
2146 (unsigned long)&extref->name, eb, ctx);
2147 if (ret)
2148 break;
2149
2150 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2151 cur_offset += sizeof(*extref);
2152 }
2153 free_extent_buffer(eb);
2154
2155 offset++;
2156 }
2157
2158 btrfs_release_path(path);
2159
2160 return ret;
2161}
2162
2163static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2164 struct btrfs_path *path, iterate_irefs_t *iterate,
2165 void *ctx)
2166{
2167 int ret;
2168 int found_refs = 0;
2169
2170 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2171 if (!ret)
2172 ++found_refs;
2173 else if (ret != -ENOENT)
2174 return ret;
2175
2176 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2177 if (ret == -ENOENT && found_refs)
2178 return 0;
2179
2180 return ret;
2181}
2182
2183/*
2184 * returns 0 if the path could be dumped (probably truncated)
2185 * returns <0 in case of an error
2186 */
2187static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2188 struct extent_buffer *eb, void *ctx)
2189{
2190 struct inode_fs_paths *ipath = ctx;
2191 char *fspath;
2192 char *fspath_min;
2193 int i = ipath->fspath->elem_cnt;
2194 const int s_ptr = sizeof(char *);
2195 u32 bytes_left;
2196
2197 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2198 ipath->fspath->bytes_left - s_ptr : 0;
2199
2200 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2201 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2202 name_off, eb, inum, fspath_min, bytes_left);
2203 if (IS_ERR(fspath))
2204 return PTR_ERR(fspath);
2205
2206 if (fspath > fspath_min) {
2207 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2208 ++ipath->fspath->elem_cnt;
2209 ipath->fspath->bytes_left = fspath - fspath_min;
2210 } else {
2211 ++ipath->fspath->elem_missed;
2212 ipath->fspath->bytes_missing += fspath_min - fspath;
2213 ipath->fspath->bytes_left = 0;
2214 }
2215
2216 return 0;
2217}
2218
2219/*
2220 * this dumps all file system paths to the inode into the ipath struct, provided
2221 * is has been created large enough. each path is zero-terminated and accessed
2222 * from ipath->fspath->val[i].
2223 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2224 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2225 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2226 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2227 * have been needed to return all paths.
2228 */
2229int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2230{
2231 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2232 inode_to_path, ipath);
2233}
2234
2235struct btrfs_data_container *init_data_container(u32 total_bytes)
2236{
2237 struct btrfs_data_container *data;
2238 size_t alloc_bytes;
2239
2240 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2241 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2242 if (!data)
2243 return ERR_PTR(-ENOMEM);
2244
2245 if (total_bytes >= sizeof(*data)) {
2246 data->bytes_left = total_bytes - sizeof(*data);
2247 data->bytes_missing = 0;
2248 } else {
2249 data->bytes_missing = sizeof(*data) - total_bytes;
2250 data->bytes_left = 0;
2251 }
2252
2253 data->elem_cnt = 0;
2254 data->elem_missed = 0;
2255
2256 return data;
2257}
2258
2259/*
2260 * allocates space to return multiple file system paths for an inode.
2261 * total_bytes to allocate are passed, note that space usable for actual path
2262 * information will be total_bytes - sizeof(struct inode_fs_paths).
2263 * the returned pointer must be freed with free_ipath() in the end.
2264 */
2265struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2266 struct btrfs_path *path)
2267{
2268 struct inode_fs_paths *ifp;
2269 struct btrfs_data_container *fspath;
2270
2271 fspath = init_data_container(total_bytes);
2272 if (IS_ERR(fspath))
2273 return ERR_CAST(fspath);
2274
2275 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2276 if (!ifp) {
2277 kvfree(fspath);
2278 return ERR_PTR(-ENOMEM);
2279 }
2280
2281 ifp->btrfs_path = path;
2282 ifp->fspath = fspath;
2283 ifp->fs_root = fs_root;
2284
2285 return ifp;
2286}
2287
2288void free_ipath(struct inode_fs_paths *ipath)
2289{
2290 if (!ipath)
2291 return;
2292 kvfree(ipath->fspath);
2293 kfree(ipath);
2294}
2295
2296struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2297 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2298{
2299 struct btrfs_backref_iter *ret;
2300
2301 ret = kzalloc(sizeof(*ret), gfp_flag);
2302 if (!ret)
2303 return NULL;
2304
2305 ret->path = btrfs_alloc_path();
2306 if (!ret->path) {
2307 kfree(ret);
2308 return NULL;
2309 }
2310
2311 /* Current backref iterator only supports iteration in commit root */
2312 ret->path->search_commit_root = 1;
2313 ret->path->skip_locking = 1;
2314 ret->fs_info = fs_info;
2315
2316 return ret;
2317}
2318
2319int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2320{
2321 struct btrfs_fs_info *fs_info = iter->fs_info;
2322 struct btrfs_path *path = iter->path;
2323 struct btrfs_extent_item *ei;
2324 struct btrfs_key key;
2325 int ret;
2326
2327 key.objectid = bytenr;
2328 key.type = BTRFS_METADATA_ITEM_KEY;
2329 key.offset = (u64)-1;
2330 iter->bytenr = bytenr;
2331
2332 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2333 if (ret < 0)
2334 return ret;
2335 if (ret == 0) {
2336 ret = -EUCLEAN;
2337 goto release;
2338 }
2339 if (path->slots[0] == 0) {
2340 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2341 ret = -EUCLEAN;
2342 goto release;
2343 }
2344 path->slots[0]--;
2345
2346 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2347 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2348 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2349 ret = -ENOENT;
2350 goto release;
2351 }
2352 memcpy(&iter->cur_key, &key, sizeof(key));
2353 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2354 path->slots[0]);
2355 iter->end_ptr = (u32)(iter->item_ptr +
2356 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2357 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2358 struct btrfs_extent_item);
2359
2360 /*
2361 * Only support iteration on tree backref yet.
2362 *
2363 * This is an extra precaution for non skinny-metadata, where
2364 * EXTENT_ITEM is also used for tree blocks, that we can only use
2365 * extent flags to determine if it's a tree block.
2366 */
2367 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2368 ret = -ENOTSUPP;
2369 goto release;
2370 }
2371 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2372
2373 /* If there is no inline backref, go search for keyed backref */
2374 if (iter->cur_ptr >= iter->end_ptr) {
2375 ret = btrfs_next_item(fs_info->extent_root, path);
2376
2377 /* No inline nor keyed ref */
2378 if (ret > 0) {
2379 ret = -ENOENT;
2380 goto release;
2381 }
2382 if (ret < 0)
2383 goto release;
2384
2385 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2386 path->slots[0]);
2387 if (iter->cur_key.objectid != bytenr ||
2388 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2389 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2390 ret = -ENOENT;
2391 goto release;
2392 }
2393 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2394 path->slots[0]);
2395 iter->item_ptr = iter->cur_ptr;
2396 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2397 path->nodes[0], path->slots[0]));
2398 }
2399
2400 return 0;
2401release:
2402 btrfs_backref_iter_release(iter);
2403 return ret;
2404}
2405
2406/*
2407 * Go to the next backref item of current bytenr, can be either inlined or
2408 * keyed.
2409 *
2410 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2411 *
2412 * Return 0 if we get next backref without problem.
2413 * Return >0 if there is no extra backref for this bytenr.
2414 * Return <0 if there is something wrong happened.
2415 */
2416int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2417{
2418 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2419 struct btrfs_path *path = iter->path;
2420 struct btrfs_extent_inline_ref *iref;
2421 int ret;
2422 u32 size;
2423
2424 if (btrfs_backref_iter_is_inline_ref(iter)) {
2425 /* We're still inside the inline refs */
2426 ASSERT(iter->cur_ptr < iter->end_ptr);
2427
2428 if (btrfs_backref_has_tree_block_info(iter)) {
2429 /* First tree block info */
2430 size = sizeof(struct btrfs_tree_block_info);
2431 } else {
2432 /* Use inline ref type to determine the size */
2433 int type;
2434
2435 iref = (struct btrfs_extent_inline_ref *)
2436 ((unsigned long)iter->cur_ptr);
2437 type = btrfs_extent_inline_ref_type(eb, iref);
2438
2439 size = btrfs_extent_inline_ref_size(type);
2440 }
2441 iter->cur_ptr += size;
2442 if (iter->cur_ptr < iter->end_ptr)
2443 return 0;
2444
2445 /* All inline items iterated, fall through */
2446 }
2447
2448 /* We're at keyed items, there is no inline item, go to the next one */
2449 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2450 if (ret)
2451 return ret;
2452
2453 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2454 if (iter->cur_key.objectid != iter->bytenr ||
2455 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2456 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2457 return 1;
2458 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2459 path->slots[0]);
2460 iter->cur_ptr = iter->item_ptr;
2461 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2462 path->slots[0]);
2463 return 0;
2464}
2465
2466void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2467 struct btrfs_backref_cache *cache, int is_reloc)
2468{
2469 int i;
2470
2471 cache->rb_root = RB_ROOT;
2472 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2473 INIT_LIST_HEAD(&cache->pending[i]);
2474 INIT_LIST_HEAD(&cache->changed);
2475 INIT_LIST_HEAD(&cache->detached);
2476 INIT_LIST_HEAD(&cache->leaves);
2477 INIT_LIST_HEAD(&cache->pending_edge);
2478 INIT_LIST_HEAD(&cache->useless_node);
2479 cache->fs_info = fs_info;
2480 cache->is_reloc = is_reloc;
2481}
2482
2483struct btrfs_backref_node *btrfs_backref_alloc_node(
2484 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2485{
2486 struct btrfs_backref_node *node;
2487
2488 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2489 node = kzalloc(sizeof(*node), GFP_NOFS);
2490 if (!node)
2491 return node;
2492
2493 INIT_LIST_HEAD(&node->list);
2494 INIT_LIST_HEAD(&node->upper);
2495 INIT_LIST_HEAD(&node->lower);
2496 RB_CLEAR_NODE(&node->rb_node);
2497 cache->nr_nodes++;
2498 node->level = level;
2499 node->bytenr = bytenr;
2500
2501 return node;
2502}
2503
2504struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2505 struct btrfs_backref_cache *cache)
2506{
2507 struct btrfs_backref_edge *edge;
2508
2509 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2510 if (edge)
2511 cache->nr_edges++;
2512 return edge;
2513}
2514
2515/*
2516 * Drop the backref node from cache, also cleaning up all its
2517 * upper edges and any uncached nodes in the path.
2518 *
2519 * This cleanup happens bottom up, thus the node should either
2520 * be the lowest node in the cache or a detached node.
2521 */
2522void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2523 struct btrfs_backref_node *node)
2524{
2525 struct btrfs_backref_node *upper;
2526 struct btrfs_backref_edge *edge;
2527
2528 if (!node)
2529 return;
2530
2531 BUG_ON(!node->lowest && !node->detached);
2532 while (!list_empty(&node->upper)) {
2533 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2534 list[LOWER]);
2535 upper = edge->node[UPPER];
2536 list_del(&edge->list[LOWER]);
2537 list_del(&edge->list[UPPER]);
2538 btrfs_backref_free_edge(cache, edge);
2539
2540 if (RB_EMPTY_NODE(&upper->rb_node)) {
2541 BUG_ON(!list_empty(&node->upper));
2542 btrfs_backref_drop_node(cache, node);
2543 node = upper;
2544 node->lowest = 1;
2545 continue;
2546 }
2547 /*
2548 * Add the node to leaf node list if no other child block
2549 * cached.
2550 */
2551 if (list_empty(&upper->lower)) {
2552 list_add_tail(&upper->lower, &cache->leaves);
2553 upper->lowest = 1;
2554 }
2555 }
2556
2557 btrfs_backref_drop_node(cache, node);
2558}
2559
2560/*
2561 * Release all nodes/edges from current cache
2562 */
2563void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2564{
2565 struct btrfs_backref_node *node;
2566 int i;
2567
2568 while (!list_empty(&cache->detached)) {
2569 node = list_entry(cache->detached.next,
2570 struct btrfs_backref_node, list);
2571 btrfs_backref_cleanup_node(cache, node);
2572 }
2573
2574 while (!list_empty(&cache->leaves)) {
2575 node = list_entry(cache->leaves.next,
2576 struct btrfs_backref_node, lower);
2577 btrfs_backref_cleanup_node(cache, node);
2578 }
2579
2580 cache->last_trans = 0;
2581
2582 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2583 ASSERT(list_empty(&cache->pending[i]));
2584 ASSERT(list_empty(&cache->pending_edge));
2585 ASSERT(list_empty(&cache->useless_node));
2586 ASSERT(list_empty(&cache->changed));
2587 ASSERT(list_empty(&cache->detached));
2588 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2589 ASSERT(!cache->nr_nodes);
2590 ASSERT(!cache->nr_edges);
2591}
2592
2593/*
2594 * Handle direct tree backref
2595 *
2596 * Direct tree backref means, the backref item shows its parent bytenr
2597 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2598 *
2599 * @ref_key: The converted backref key.
2600 * For keyed backref, it's the item key.
2601 * For inlined backref, objectid is the bytenr,
2602 * type is btrfs_inline_ref_type, offset is
2603 * btrfs_inline_ref_offset.
2604 */
2605static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2606 struct btrfs_key *ref_key,
2607 struct btrfs_backref_node *cur)
2608{
2609 struct btrfs_backref_edge *edge;
2610 struct btrfs_backref_node *upper;
2611 struct rb_node *rb_node;
2612
2613 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2614
2615 /* Only reloc root uses backref pointing to itself */
2616 if (ref_key->objectid == ref_key->offset) {
2617 struct btrfs_root *root;
2618
2619 cur->is_reloc_root = 1;
2620 /* Only reloc backref cache cares about a specific root */
2621 if (cache->is_reloc) {
2622 root = find_reloc_root(cache->fs_info, cur->bytenr);
2623 if (WARN_ON(!root))
2624 return -ENOENT;
2625 cur->root = root;
2626 } else {
2627 /*
2628 * For generic purpose backref cache, reloc root node
2629 * is useless.
2630 */
2631 list_add(&cur->list, &cache->useless_node);
2632 }
2633 return 0;
2634 }
2635
2636 edge = btrfs_backref_alloc_edge(cache);
2637 if (!edge)
2638 return -ENOMEM;
2639
2640 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2641 if (!rb_node) {
2642 /* Parent node not yet cached */
2643 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2644 cur->level + 1);
2645 if (!upper) {
2646 btrfs_backref_free_edge(cache, edge);
2647 return -ENOMEM;
2648 }
2649
2650 /*
2651 * Backrefs for the upper level block isn't cached, add the
2652 * block to pending list
2653 */
2654 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2655 } else {
2656 /* Parent node already cached */
2657 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2658 ASSERT(upper->checked);
2659 INIT_LIST_HEAD(&edge->list[UPPER]);
2660 }
2661 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2662 return 0;
2663}
2664
2665/*
2666 * Handle indirect tree backref
2667 *
2668 * Indirect tree backref means, we only know which tree the node belongs to.
2669 * We still need to do a tree search to find out the parents. This is for
2670 * TREE_BLOCK_REF backref (keyed or inlined).
2671 *
2672 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2673 * @tree_key: The first key of this tree block.
2674 * @path: A clean (released) path, to avoid allocating path everytime
2675 * the function get called.
2676 */
2677static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2678 struct btrfs_path *path,
2679 struct btrfs_key *ref_key,
2680 struct btrfs_key *tree_key,
2681 struct btrfs_backref_node *cur)
2682{
2683 struct btrfs_fs_info *fs_info = cache->fs_info;
2684 struct btrfs_backref_node *upper;
2685 struct btrfs_backref_node *lower;
2686 struct btrfs_backref_edge *edge;
2687 struct extent_buffer *eb;
2688 struct btrfs_root *root;
2689 struct rb_node *rb_node;
2690 int level;
2691 bool need_check = true;
2692 int ret;
2693
2694 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2695 if (IS_ERR(root))
2696 return PTR_ERR(root);
2697 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2698 cur->cowonly = 1;
2699
2700 if (btrfs_root_level(&root->root_item) == cur->level) {
2701 /* Tree root */
2702 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2703 /*
2704 * For reloc backref cache, we may ignore reloc root. But for
2705 * general purpose backref cache, we can't rely on
2706 * btrfs_should_ignore_reloc_root() as it may conflict with
2707 * current running relocation and lead to missing root.
2708 *
2709 * For general purpose backref cache, reloc root detection is
2710 * completely relying on direct backref (key->offset is parent
2711 * bytenr), thus only do such check for reloc cache.
2712 */
2713 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2714 btrfs_put_root(root);
2715 list_add(&cur->list, &cache->useless_node);
2716 } else {
2717 cur->root = root;
2718 }
2719 return 0;
2720 }
2721
2722 level = cur->level + 1;
2723
2724 /* Search the tree to find parent blocks referring to the block */
2725 path->search_commit_root = 1;
2726 path->skip_locking = 1;
2727 path->lowest_level = level;
2728 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2729 path->lowest_level = 0;
2730 if (ret < 0) {
2731 btrfs_put_root(root);
2732 return ret;
2733 }
2734 if (ret > 0 && path->slots[level] > 0)
2735 path->slots[level]--;
2736
2737 eb = path->nodes[level];
2738 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2739 btrfs_err(fs_info,
2740"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2741 cur->bytenr, level - 1, root->root_key.objectid,
2742 tree_key->objectid, tree_key->type, tree_key->offset);
2743 btrfs_put_root(root);
2744 ret = -ENOENT;
2745 goto out;
2746 }
2747 lower = cur;
2748
2749 /* Add all nodes and edges in the path */
2750 for (; level < BTRFS_MAX_LEVEL; level++) {
2751 if (!path->nodes[level]) {
2752 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2753 lower->bytenr);
2754 /* Same as previous should_ignore_reloc_root() call */
2755 if (btrfs_should_ignore_reloc_root(root) &&
2756 cache->is_reloc) {
2757 btrfs_put_root(root);
2758 list_add(&lower->list, &cache->useless_node);
2759 } else {
2760 lower->root = root;
2761 }
2762 break;
2763 }
2764
2765 edge = btrfs_backref_alloc_edge(cache);
2766 if (!edge) {
2767 btrfs_put_root(root);
2768 ret = -ENOMEM;
2769 goto out;
2770 }
2771
2772 eb = path->nodes[level];
2773 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2774 if (!rb_node) {
2775 upper = btrfs_backref_alloc_node(cache, eb->start,
2776 lower->level + 1);
2777 if (!upper) {
2778 btrfs_put_root(root);
2779 btrfs_backref_free_edge(cache, edge);
2780 ret = -ENOMEM;
2781 goto out;
2782 }
2783 upper->owner = btrfs_header_owner(eb);
2784 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2785 upper->cowonly = 1;
2786
2787 /*
2788 * If we know the block isn't shared we can avoid
2789 * checking its backrefs.
2790 */
2791 if (btrfs_block_can_be_shared(root, eb))
2792 upper->checked = 0;
2793 else
2794 upper->checked = 1;
2795
2796 /*
2797 * Add the block to pending list if we need to check its
2798 * backrefs, we only do this once while walking up a
2799 * tree as we will catch anything else later on.
2800 */
2801 if (!upper->checked && need_check) {
2802 need_check = false;
2803 list_add_tail(&edge->list[UPPER],
2804 &cache->pending_edge);
2805 } else {
2806 if (upper->checked)
2807 need_check = true;
2808 INIT_LIST_HEAD(&edge->list[UPPER]);
2809 }
2810 } else {
2811 upper = rb_entry(rb_node, struct btrfs_backref_node,
2812 rb_node);
2813 ASSERT(upper->checked);
2814 INIT_LIST_HEAD(&edge->list[UPPER]);
2815 if (!upper->owner)
2816 upper->owner = btrfs_header_owner(eb);
2817 }
2818 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2819
2820 if (rb_node) {
2821 btrfs_put_root(root);
2822 break;
2823 }
2824 lower = upper;
2825 upper = NULL;
2826 }
2827out:
2828 btrfs_release_path(path);
2829 return ret;
2830}
2831
2832/*
2833 * Add backref node @cur into @cache.
2834 *
2835 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2836 * links aren't yet bi-directional. Needs to finish such links.
2837 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2838 *
2839 * @path: Released path for indirect tree backref lookup
2840 * @iter: Released backref iter for extent tree search
2841 * @node_key: The first key of the tree block
2842 */
2843int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2844 struct btrfs_path *path,
2845 struct btrfs_backref_iter *iter,
2846 struct btrfs_key *node_key,
2847 struct btrfs_backref_node *cur)
2848{
2849 struct btrfs_fs_info *fs_info = cache->fs_info;
2850 struct btrfs_backref_edge *edge;
2851 struct btrfs_backref_node *exist;
2852 int ret;
2853
2854 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2855 if (ret < 0)
2856 return ret;
2857 /*
2858 * We skip the first btrfs_tree_block_info, as we don't use the key
2859 * stored in it, but fetch it from the tree block
2860 */
2861 if (btrfs_backref_has_tree_block_info(iter)) {
2862 ret = btrfs_backref_iter_next(iter);
2863 if (ret < 0)
2864 goto out;
2865 /* No extra backref? This means the tree block is corrupted */
2866 if (ret > 0) {
2867 ret = -EUCLEAN;
2868 goto out;
2869 }
2870 }
2871 WARN_ON(cur->checked);
2872 if (!list_empty(&cur->upper)) {
2873 /*
2874 * The backref was added previously when processing backref of
2875 * type BTRFS_TREE_BLOCK_REF_KEY
2876 */
2877 ASSERT(list_is_singular(&cur->upper));
2878 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2879 list[LOWER]);
2880 ASSERT(list_empty(&edge->list[UPPER]));
2881 exist = edge->node[UPPER];
2882 /*
2883 * Add the upper level block to pending list if we need check
2884 * its backrefs
2885 */
2886 if (!exist->checked)
2887 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2888 } else {
2889 exist = NULL;
2890 }
2891
2892 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2893 struct extent_buffer *eb;
2894 struct btrfs_key key;
2895 int type;
2896
2897 cond_resched();
2898 eb = btrfs_backref_get_eb(iter);
2899
2900 key.objectid = iter->bytenr;
2901 if (btrfs_backref_iter_is_inline_ref(iter)) {
2902 struct btrfs_extent_inline_ref *iref;
2903
2904 /* Update key for inline backref */
2905 iref = (struct btrfs_extent_inline_ref *)
2906 ((unsigned long)iter->cur_ptr);
2907 type = btrfs_get_extent_inline_ref_type(eb, iref,
2908 BTRFS_REF_TYPE_BLOCK);
2909 if (type == BTRFS_REF_TYPE_INVALID) {
2910 ret = -EUCLEAN;
2911 goto out;
2912 }
2913 key.type = type;
2914 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2915 } else {
2916 key.type = iter->cur_key.type;
2917 key.offset = iter->cur_key.offset;
2918 }
2919
2920 /*
2921 * Parent node found and matches current inline ref, no need to
2922 * rebuild this node for this inline ref
2923 */
2924 if (exist &&
2925 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2926 exist->owner == key.offset) ||
2927 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2928 exist->bytenr == key.offset))) {
2929 exist = NULL;
2930 continue;
2931 }
2932
2933 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2934 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2935 ret = handle_direct_tree_backref(cache, &key, cur);
2936 if (ret < 0)
2937 goto out;
2938 continue;
2939 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2940 ret = -EINVAL;
2941 btrfs_print_v0_err(fs_info);
2942 btrfs_handle_fs_error(fs_info, ret, NULL);
2943 goto out;
2944 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2945 continue;
2946 }
2947
2948 /*
2949 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2950 * means the root objectid. We need to search the tree to get
2951 * its parent bytenr.
2952 */
2953 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2954 cur);
2955 if (ret < 0)
2956 goto out;
2957 }
2958 ret = 0;
2959 cur->checked = 1;
2960 WARN_ON(exist);
2961out:
2962 btrfs_backref_iter_release(iter);
2963 return ret;
2964}
2965
2966/*
2967 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2968 */
2969int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2970 struct btrfs_backref_node *start)
2971{
2972 struct list_head *useless_node = &cache->useless_node;
2973 struct btrfs_backref_edge *edge;
2974 struct rb_node *rb_node;
2975 LIST_HEAD(pending_edge);
2976
2977 ASSERT(start->checked);
2978
2979 /* Insert this node to cache if it's not COW-only */
2980 if (!start->cowonly) {
2981 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2982 &start->rb_node);
2983 if (rb_node)
2984 btrfs_backref_panic(cache->fs_info, start->bytenr,
2985 -EEXIST);
2986 list_add_tail(&start->lower, &cache->leaves);
2987 }
2988
2989 /*
2990 * Use breadth first search to iterate all related edges.
2991 *
2992 * The starting points are all the edges of this node
2993 */
2994 list_for_each_entry(edge, &start->upper, list[LOWER])
2995 list_add_tail(&edge->list[UPPER], &pending_edge);
2996
2997 while (!list_empty(&pending_edge)) {
2998 struct btrfs_backref_node *upper;
2999 struct btrfs_backref_node *lower;
3000 struct rb_node *rb_node;
3001
3002 edge = list_first_entry(&pending_edge,
3003 struct btrfs_backref_edge, list[UPPER]);
3004 list_del_init(&edge->list[UPPER]);
3005 upper = edge->node[UPPER];
3006 lower = edge->node[LOWER];
3007
3008 /* Parent is detached, no need to keep any edges */
3009 if (upper->detached) {
3010 list_del(&edge->list[LOWER]);
3011 btrfs_backref_free_edge(cache, edge);
3012
3013 /* Lower node is orphan, queue for cleanup */
3014 if (list_empty(&lower->upper))
3015 list_add(&lower->list, useless_node);
3016 continue;
3017 }
3018
3019 /*
3020 * All new nodes added in current build_backref_tree() haven't
3021 * been linked to the cache rb tree.
3022 * So if we have upper->rb_node populated, this means a cache
3023 * hit. We only need to link the edge, as @upper and all its
3024 * parents have already been linked.
3025 */
3026 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3027 if (upper->lowest) {
3028 list_del_init(&upper->lower);
3029 upper->lowest = 0;
3030 }
3031
3032 list_add_tail(&edge->list[UPPER], &upper->lower);
3033 continue;
3034 }
3035
3036 /* Sanity check, we shouldn't have any unchecked nodes */
3037 if (!upper->checked) {
3038 ASSERT(0);
3039 return -EUCLEAN;
3040 }
3041
3042 /* Sanity check, COW-only node has non-COW-only parent */
3043 if (start->cowonly != upper->cowonly) {
3044 ASSERT(0);
3045 return -EUCLEAN;
3046 }
3047
3048 /* Only cache non-COW-only (subvolume trees) tree blocks */
3049 if (!upper->cowonly) {
3050 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3051 &upper->rb_node);
3052 if (rb_node) {
3053 btrfs_backref_panic(cache->fs_info,
3054 upper->bytenr, -EEXIST);
3055 return -EUCLEAN;
3056 }
3057 }
3058
3059 list_add_tail(&edge->list[UPPER], &upper->lower);
3060
3061 /*
3062 * Also queue all the parent edges of this uncached node
3063 * to finish the upper linkage
3064 */
3065 list_for_each_entry(edge, &upper->upper, list[LOWER])
3066 list_add_tail(&edge->list[UPPER], &pending_edge);
3067 }
3068 return 0;
3069}
3070
3071void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3072 struct btrfs_backref_node *node)
3073{
3074 struct btrfs_backref_node *lower;
3075 struct btrfs_backref_node *upper;
3076 struct btrfs_backref_edge *edge;
3077
3078 while (!list_empty(&cache->useless_node)) {
3079 lower = list_first_entry(&cache->useless_node,
3080 struct btrfs_backref_node, list);
3081 list_del_init(&lower->list);
3082 }
3083 while (!list_empty(&cache->pending_edge)) {
3084 edge = list_first_entry(&cache->pending_edge,
3085 struct btrfs_backref_edge, list[UPPER]);
3086 list_del(&edge->list[UPPER]);
3087 list_del(&edge->list[LOWER]);
3088 lower = edge->node[LOWER];
3089 upper = edge->node[UPPER];
3090 btrfs_backref_free_edge(cache, edge);
3091
3092 /*
3093 * Lower is no longer linked to any upper backref nodes and
3094 * isn't in the cache, we can free it ourselves.
3095 */
3096 if (list_empty(&lower->upper) &&
3097 RB_EMPTY_NODE(&lower->rb_node))
3098 list_add(&lower->list, &cache->useless_node);
3099
3100 if (!RB_EMPTY_NODE(&upper->rb_node))
3101 continue;
3102
3103 /* Add this guy's upper edges to the list to process */
3104 list_for_each_entry(edge, &upper->upper, list[LOWER])
3105 list_add_tail(&edge->list[UPPER],
3106 &cache->pending_edge);
3107 if (list_empty(&upper->upper))
3108 list_add(&upper->list, &cache->useless_node);
3109 }
3110
3111 while (!list_empty(&cache->useless_node)) {
3112 lower = list_first_entry(&cache->useless_node,
3113 struct btrfs_backref_node, list);
3114 list_del_init(&lower->list);
3115 if (lower == node)
3116 node = NULL;
3117 btrfs_backref_free_node(cache, lower);
3118 }
3119
3120 btrfs_backref_cleanup_node(cache, node);
3121 ASSERT(list_empty(&cache->useless_node) &&
3122 list_empty(&cache->pending_edge));
3123}