Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.9.4
  1/*
  2 * Copyright 2012-15 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 *
 22 * Authors: AMD
 23 *
 24 */
 25
 26#include "dm_services.h"
 27#include "include/fixed31_32.h"
 28
 29static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
 30static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
 31static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
 32
 33static inline unsigned long long abs_i64(
 34	long long arg)
 35{
 36	if (arg > 0)
 37		return (unsigned long long)arg;
 38	else
 39		return (unsigned long long)(-arg);
 40}
 41
 42/*
 43 * @brief
 44 * result = dividend / divisor
 45 * *remainder = dividend % divisor
 46 */
 47static inline unsigned long long complete_integer_division_u64(
 48	unsigned long long dividend,
 49	unsigned long long divisor,
 50	unsigned long long *remainder)
 51{
 52	unsigned long long result;
 53
 54	ASSERT(divisor);
 55
 56	result = div64_u64_rem(dividend, divisor, remainder);
 57
 58	return result;
 59}
 60
 61
 62#define FRACTIONAL_PART_MASK \
 63	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
 64
 65#define GET_INTEGER_PART(x) \
 66	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
 67
 68#define GET_FRACTIONAL_PART(x) \
 69	(FRACTIONAL_PART_MASK & (x))
 70
 71struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
 72{
 73	struct fixed31_32 res;
 74
 75	bool arg1_negative = numerator < 0;
 76	bool arg2_negative = denominator < 0;
 77
 78	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
 79	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
 80
 81	unsigned long long remainder;
 82
 83	/* determine integer part */
 84
 85	unsigned long long res_value = complete_integer_division_u64(
 86		arg1_value, arg2_value, &remainder);
 87
 88	ASSERT(res_value <= LONG_MAX);
 89
 90	/* determine fractional part */
 91	{
 92		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
 93
 94		do {
 95			remainder <<= 1;
 96
 97			res_value <<= 1;
 98
 99			if (remainder >= arg2_value) {
100				res_value |= 1;
101				remainder -= arg2_value;
102			}
103		} while (--i != 0);
104	}
105
106	/* round up LSB */
107	{
108		unsigned long long summand = (remainder << 1) >= arg2_value;
109
110		ASSERT(res_value <= LLONG_MAX - summand);
111
112		res_value += summand;
113	}
114
115	res.value = (long long)res_value;
116
117	if (arg1_negative ^ arg2_negative)
118		res.value = -res.value;
119
120	return res;
121}
122
123struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
124{
125	struct fixed31_32 res;
126
127	bool arg1_negative = arg1.value < 0;
128	bool arg2_negative = arg2.value < 0;
129
130	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
131	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
132
133	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
134	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
135
136	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
137	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
138
139	unsigned long long tmp;
140
141	res.value = arg1_int * arg2_int;
142
143	ASSERT(res.value <= LONG_MAX);
144
145	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
146
147	tmp = arg1_int * arg2_fra;
148
149	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
150
151	res.value += tmp;
152
153	tmp = arg2_int * arg1_fra;
154
155	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
156
157	res.value += tmp;
158
159	tmp = arg1_fra * arg2_fra;
160
161	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
162		(tmp >= (unsigned long long)dc_fixpt_half.value);
163
164	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
165
166	res.value += tmp;
167
168	if (arg1_negative ^ arg2_negative)
169		res.value = -res.value;
170
171	return res;
172}
173
174struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
175{
176	struct fixed31_32 res;
177
178	unsigned long long arg_value = abs_i64(arg.value);
179
180	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
181
182	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
183
184	unsigned long long tmp;
185
186	res.value = arg_int * arg_int;
187
188	ASSERT(res.value <= LONG_MAX);
189
190	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
191
192	tmp = arg_int * arg_fra;
193
194	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195
196	res.value += tmp;
197
198	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
199
200	res.value += tmp;
201
202	tmp = arg_fra * arg_fra;
203
204	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
205		(tmp >= (unsigned long long)dc_fixpt_half.value);
206
207	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
208
209	res.value += tmp;
210
211	return res;
212}
213
214struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
215{
216	/*
217	 * @note
218	 * Good idea to use Newton's method
219	 */
220
221	ASSERT(arg.value);
222
223	return dc_fixpt_from_fraction(
224		dc_fixpt_one.value,
225		arg.value);
226}
227
228struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
229{
230	struct fixed31_32 square;
231
232	struct fixed31_32 res = dc_fixpt_one;
233
234	int n = 27;
235
236	struct fixed31_32 arg_norm = arg;
237
238	if (dc_fixpt_le(
239		dc_fixpt_two_pi,
240		dc_fixpt_abs(arg))) {
241		arg_norm = dc_fixpt_sub(
242			arg_norm,
243			dc_fixpt_mul_int(
244				dc_fixpt_two_pi,
245				(int)div64_s64(
246					arg_norm.value,
247					dc_fixpt_two_pi.value)));
248	}
249
250	square = dc_fixpt_sqr(arg_norm);
251
252	do {
253		res = dc_fixpt_sub(
254			dc_fixpt_one,
255			dc_fixpt_div_int(
256				dc_fixpt_mul(
257					square,
258					res),
259				n * (n - 1)));
260
261		n -= 2;
262	} while (n > 2);
263
264	if (arg.value != arg_norm.value)
265		res = dc_fixpt_div(
266			dc_fixpt_mul(res, arg_norm),
267			arg);
268
269	return res;
270}
271
272struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
273{
274	return dc_fixpt_mul(
275		arg,
276		dc_fixpt_sinc(arg));
277}
278
279struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
280{
281	/* TODO implement argument normalization */
282
283	const struct fixed31_32 square = dc_fixpt_sqr(arg);
284
285	struct fixed31_32 res = dc_fixpt_one;
286
287	int n = 26;
288
289	do {
290		res = dc_fixpt_sub(
291			dc_fixpt_one,
292			dc_fixpt_div_int(
293				dc_fixpt_mul(
294					square,
295					res),
296				n * (n - 1)));
297
298		n -= 2;
299	} while (n != 0);
300
301	return res;
302}
303
304/*
305 * @brief
306 * result = exp(arg),
307 * where abs(arg) < 1
308 *
309 * Calculated as Taylor series.
310 */
311static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
312{
313	unsigned int n = 9;
314
315	struct fixed31_32 res = dc_fixpt_from_fraction(
316		n + 2,
317		n + 1);
318	/* TODO find correct res */
319
320	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
321
322	do
323		res = dc_fixpt_add(
324			dc_fixpt_one,
325			dc_fixpt_div_int(
326				dc_fixpt_mul(
327					arg,
328					res),
329				n));
330	while (--n != 1);
331
332	return dc_fixpt_add(
333		dc_fixpt_one,
334		dc_fixpt_mul(
335			arg,
336			res));
337}
338
339struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
340{
341	/*
342	 * @brief
343	 * Main equation is:
344	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
345	 * where m = round(x / ln(2)), r = x - m * ln(2)
346	 */
347
348	if (dc_fixpt_le(
349		dc_fixpt_ln2_div_2,
350		dc_fixpt_abs(arg))) {
351		int m = dc_fixpt_round(
352			dc_fixpt_div(
353				arg,
354				dc_fixpt_ln2));
355
356		struct fixed31_32 r = dc_fixpt_sub(
357			arg,
358			dc_fixpt_mul_int(
359				dc_fixpt_ln2,
360				m));
361
362		ASSERT(m != 0);
363
364		ASSERT(dc_fixpt_lt(
365			dc_fixpt_abs(r),
366			dc_fixpt_one));
367
368		if (m > 0)
369			return dc_fixpt_shl(
370				fixed31_32_exp_from_taylor_series(r),
371				(unsigned char)m);
372		else
373			return dc_fixpt_div_int(
374				fixed31_32_exp_from_taylor_series(r),
375				1LL << -m);
376	} else if (arg.value != 0)
377		return fixed31_32_exp_from_taylor_series(arg);
378	else
379		return dc_fixpt_one;
380}
381
382struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
383{
384	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
385	/* TODO improve 1st estimation */
386
387	struct fixed31_32 error;
388
389	ASSERT(arg.value > 0);
390	/* TODO if arg is negative, return NaN */
391	/* TODO if arg is zero, return -INF */
392
393	do {
394		struct fixed31_32 res1 = dc_fixpt_add(
395			dc_fixpt_sub(
396				res,
397				dc_fixpt_one),
398			dc_fixpt_div(
399				arg,
400				dc_fixpt_exp(res)));
401
402		error = dc_fixpt_sub(
403			res,
404			res1);
405
406		res = res1;
407		/* TODO determine max_allowed_error based on quality of exp() */
408	} while (abs_i64(error.value) > 100ULL);
409
410	return res;
411}
412
413
414/* this function is a generic helper to translate fixed point value to
415 * specified integer format that will consist of integer_bits integer part and
416 * fractional_bits fractional part. For example it is used in
417 * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
418 * part in 32 bits. It is used in hw programming (scaler)
419 */
420
421static inline unsigned int ux_dy(
422	long long value,
423	unsigned int integer_bits,
424	unsigned int fractional_bits)
425{
426	/* 1. create mask of integer part */
427	unsigned int result = (1 << integer_bits) - 1;
428	/* 2. mask out fractional part */
429	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
430	/* 3. shrink fixed point integer part to be of integer_bits width*/
431	result &= GET_INTEGER_PART(value);
432	/* 4. make space for fractional part to be filled in after integer */
433	result <<= fractional_bits;
434	/* 5. shrink fixed point fractional part to of fractional_bits width*/
435	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
436	/* 6. merge the result */
437	return result | fractional_part;
438}
439
440static inline unsigned int clamp_ux_dy(
441	long long value,
442	unsigned int integer_bits,
443	unsigned int fractional_bits,
444	unsigned int min_clamp)
445{
446	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
447
448	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
449		return (1 << (integer_bits + fractional_bits)) - 1;
450	else if (truncated_val > min_clamp)
451		return truncated_val;
452	else
453		return min_clamp;
454}
455
456unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
457{
458	return ux_dy(arg.value, 4, 19);
459}
460
461unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
462{
463	return ux_dy(arg.value, 3, 19);
464}
465
466unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
467{
468	return ux_dy(arg.value, 2, 19);
469}
470
471unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
472{
473	return ux_dy(arg.value, 0, 19);
474}
475
476unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
477{
478	return clamp_ux_dy(arg.value, 0, 14, 1);
479}
480
481unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
482{
483	return clamp_ux_dy(arg.value, 0, 10, 1);
484}
485
486int dc_fixpt_s4d19(struct fixed31_32 arg)
487{
488	if (arg.value < 0)
489		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
490	else
491		return ux_dy(arg.value, 4, 19);
492}
v5.9
  1/*
  2 * Copyright 2012-15 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 *
 22 * Authors: AMD
 23 *
 24 */
 25
 26#include "dm_services.h"
 27#include "include/fixed31_32.h"
 28
 
 
 
 
 29static inline unsigned long long abs_i64(
 30	long long arg)
 31{
 32	if (arg > 0)
 33		return (unsigned long long)arg;
 34	else
 35		return (unsigned long long)(-arg);
 36}
 37
 38/*
 39 * @brief
 40 * result = dividend / divisor
 41 * *remainder = dividend % divisor
 42 */
 43static inline unsigned long long complete_integer_division_u64(
 44	unsigned long long dividend,
 45	unsigned long long divisor,
 46	unsigned long long *remainder)
 47{
 48	unsigned long long result;
 49
 50	ASSERT(divisor);
 51
 52	result = div64_u64_rem(dividend, divisor, remainder);
 53
 54	return result;
 55}
 56
 57
 58#define FRACTIONAL_PART_MASK \
 59	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
 60
 61#define GET_INTEGER_PART(x) \
 62	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
 63
 64#define GET_FRACTIONAL_PART(x) \
 65	(FRACTIONAL_PART_MASK & (x))
 66
 67struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
 68{
 69	struct fixed31_32 res;
 70
 71	bool arg1_negative = numerator < 0;
 72	bool arg2_negative = denominator < 0;
 73
 74	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
 75	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
 76
 77	unsigned long long remainder;
 78
 79	/* determine integer part */
 80
 81	unsigned long long res_value = complete_integer_division_u64(
 82		arg1_value, arg2_value, &remainder);
 83
 84	ASSERT(res_value <= LONG_MAX);
 85
 86	/* determine fractional part */
 87	{
 88		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
 89
 90		do {
 91			remainder <<= 1;
 92
 93			res_value <<= 1;
 94
 95			if (remainder >= arg2_value) {
 96				res_value |= 1;
 97				remainder -= arg2_value;
 98			}
 99		} while (--i != 0);
100	}
101
102	/* round up LSB */
103	{
104		unsigned long long summand = (remainder << 1) >= arg2_value;
105
106		ASSERT(res_value <= LLONG_MAX - summand);
107
108		res_value += summand;
109	}
110
111	res.value = (long long)res_value;
112
113	if (arg1_negative ^ arg2_negative)
114		res.value = -res.value;
115
116	return res;
117}
118
119struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
120{
121	struct fixed31_32 res;
122
123	bool arg1_negative = arg1.value < 0;
124	bool arg2_negative = arg2.value < 0;
125
126	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
127	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
128
129	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
130	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
131
132	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
133	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
134
135	unsigned long long tmp;
136
137	res.value = arg1_int * arg2_int;
138
139	ASSERT(res.value <= LONG_MAX);
140
141	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
142
143	tmp = arg1_int * arg2_fra;
144
145	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
146
147	res.value += tmp;
148
149	tmp = arg2_int * arg1_fra;
150
151	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
152
153	res.value += tmp;
154
155	tmp = arg1_fra * arg2_fra;
156
157	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
158		(tmp >= (unsigned long long)dc_fixpt_half.value);
159
160	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
161
162	res.value += tmp;
163
164	if (arg1_negative ^ arg2_negative)
165		res.value = -res.value;
166
167	return res;
168}
169
170struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
171{
172	struct fixed31_32 res;
173
174	unsigned long long arg_value = abs_i64(arg.value);
175
176	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
177
178	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
179
180	unsigned long long tmp;
181
182	res.value = arg_int * arg_int;
183
184	ASSERT(res.value <= LONG_MAX);
185
186	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
187
188	tmp = arg_int * arg_fra;
189
190	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
191
192	res.value += tmp;
193
194	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195
196	res.value += tmp;
197
198	tmp = arg_fra * arg_fra;
199
200	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
201		(tmp >= (unsigned long long)dc_fixpt_half.value);
202
203	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
204
205	res.value += tmp;
206
207	return res;
208}
209
210struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
211{
212	/*
213	 * @note
214	 * Good idea to use Newton's method
215	 */
216
217	ASSERT(arg.value);
218
219	return dc_fixpt_from_fraction(
220		dc_fixpt_one.value,
221		arg.value);
222}
223
224struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
225{
226	struct fixed31_32 square;
227
228	struct fixed31_32 res = dc_fixpt_one;
229
230	int n = 27;
231
232	struct fixed31_32 arg_norm = arg;
233
234	if (dc_fixpt_le(
235		dc_fixpt_two_pi,
236		dc_fixpt_abs(arg))) {
237		arg_norm = dc_fixpt_sub(
238			arg_norm,
239			dc_fixpt_mul_int(
240				dc_fixpt_two_pi,
241				(int)div64_s64(
242					arg_norm.value,
243					dc_fixpt_two_pi.value)));
244	}
245
246	square = dc_fixpt_sqr(arg_norm);
247
248	do {
249		res = dc_fixpt_sub(
250			dc_fixpt_one,
251			dc_fixpt_div_int(
252				dc_fixpt_mul(
253					square,
254					res),
255				n * (n - 1)));
256
257		n -= 2;
258	} while (n > 2);
259
260	if (arg.value != arg_norm.value)
261		res = dc_fixpt_div(
262			dc_fixpt_mul(res, arg_norm),
263			arg);
264
265	return res;
266}
267
268struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
269{
270	return dc_fixpt_mul(
271		arg,
272		dc_fixpt_sinc(arg));
273}
274
275struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
276{
277	/* TODO implement argument normalization */
278
279	const struct fixed31_32 square = dc_fixpt_sqr(arg);
280
281	struct fixed31_32 res = dc_fixpt_one;
282
283	int n = 26;
284
285	do {
286		res = dc_fixpt_sub(
287			dc_fixpt_one,
288			dc_fixpt_div_int(
289				dc_fixpt_mul(
290					square,
291					res),
292				n * (n - 1)));
293
294		n -= 2;
295	} while (n != 0);
296
297	return res;
298}
299
300/*
301 * @brief
302 * result = exp(arg),
303 * where abs(arg) < 1
304 *
305 * Calculated as Taylor series.
306 */
307static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
308{
309	unsigned int n = 9;
310
311	struct fixed31_32 res = dc_fixpt_from_fraction(
312		n + 2,
313		n + 1);
314	/* TODO find correct res */
315
316	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
317
318	do
319		res = dc_fixpt_add(
320			dc_fixpt_one,
321			dc_fixpt_div_int(
322				dc_fixpt_mul(
323					arg,
324					res),
325				n));
326	while (--n != 1);
327
328	return dc_fixpt_add(
329		dc_fixpt_one,
330		dc_fixpt_mul(
331			arg,
332			res));
333}
334
335struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
336{
337	/*
338	 * @brief
339	 * Main equation is:
340	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
341	 * where m = round(x / ln(2)), r = x - m * ln(2)
342	 */
343
344	if (dc_fixpt_le(
345		dc_fixpt_ln2_div_2,
346		dc_fixpt_abs(arg))) {
347		int m = dc_fixpt_round(
348			dc_fixpt_div(
349				arg,
350				dc_fixpt_ln2));
351
352		struct fixed31_32 r = dc_fixpt_sub(
353			arg,
354			dc_fixpt_mul_int(
355				dc_fixpt_ln2,
356				m));
357
358		ASSERT(m != 0);
359
360		ASSERT(dc_fixpt_lt(
361			dc_fixpt_abs(r),
362			dc_fixpt_one));
363
364		if (m > 0)
365			return dc_fixpt_shl(
366				fixed31_32_exp_from_taylor_series(r),
367				(unsigned char)m);
368		else
369			return dc_fixpt_div_int(
370				fixed31_32_exp_from_taylor_series(r),
371				1LL << -m);
372	} else if (arg.value != 0)
373		return fixed31_32_exp_from_taylor_series(arg);
374	else
375		return dc_fixpt_one;
376}
377
378struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
379{
380	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
381	/* TODO improve 1st estimation */
382
383	struct fixed31_32 error;
384
385	ASSERT(arg.value > 0);
386	/* TODO if arg is negative, return NaN */
387	/* TODO if arg is zero, return -INF */
388
389	do {
390		struct fixed31_32 res1 = dc_fixpt_add(
391			dc_fixpt_sub(
392				res,
393				dc_fixpt_one),
394			dc_fixpt_div(
395				arg,
396				dc_fixpt_exp(res)));
397
398		error = dc_fixpt_sub(
399			res,
400			res1);
401
402		res = res1;
403		/* TODO determine max_allowed_error based on quality of exp() */
404	} while (abs_i64(error.value) > 100ULL);
405
406	return res;
407}
408
409
410/* this function is a generic helper to translate fixed point value to
411 * specified integer format that will consist of integer_bits integer part and
412 * fractional_bits fractional part. For example it is used in
413 * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
414 * part in 32 bits. It is used in hw programming (scaler)
415 */
416
417static inline unsigned int ux_dy(
418	long long value,
419	unsigned int integer_bits,
420	unsigned int fractional_bits)
421{
422	/* 1. create mask of integer part */
423	unsigned int result = (1 << integer_bits) - 1;
424	/* 2. mask out fractional part */
425	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
426	/* 3. shrink fixed point integer part to be of integer_bits width*/
427	result &= GET_INTEGER_PART(value);
428	/* 4. make space for fractional part to be filled in after integer */
429	result <<= fractional_bits;
430	/* 5. shrink fixed point fractional part to of fractional_bits width*/
431	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
432	/* 6. merge the result */
433	return result | fractional_part;
434}
435
436static inline unsigned int clamp_ux_dy(
437	long long value,
438	unsigned int integer_bits,
439	unsigned int fractional_bits,
440	unsigned int min_clamp)
441{
442	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
443
444	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
445		return (1 << (integer_bits + fractional_bits)) - 1;
446	else if (truncated_val > min_clamp)
447		return truncated_val;
448	else
449		return min_clamp;
450}
451
452unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
453{
454	return ux_dy(arg.value, 4, 19);
455}
456
457unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
458{
459	return ux_dy(arg.value, 3, 19);
460}
461
462unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
463{
464	return ux_dy(arg.value, 2, 19);
465}
466
467unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
468{
469	return ux_dy(arg.value, 0, 19);
470}
471
472unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
473{
474	return clamp_ux_dy(arg.value, 0, 14, 1);
475}
476
477unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
478{
479	return clamp_ux_dy(arg.value, 0, 10, 1);
480}
481
482int dc_fixpt_s4d19(struct fixed31_32 arg)
483{
484	if (arg.value < 0)
485		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
486	else
487		return ux_dy(arg.value, 4, 19);
488}