Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
  4 */
  5#include <linux/efi.h>
  6#include <asm/efi.h>
  7
  8#include "efistub.h"
  9
 10static efi_guid_t cpu_state_guid = LINUX_EFI_ARM_CPU_STATE_TABLE_GUID;
 11
 12struct efi_arm_entry_state *efi_entry_state;
 13
 14static void get_cpu_state(u32 *cpsr, u32 *sctlr)
 15{
 16	asm("mrs %0, cpsr" : "=r"(*cpsr));
 17	if ((*cpsr & MODE_MASK) == HYP_MODE)
 18		asm("mrc p15, 4, %0, c1, c0, 0" : "=r"(*sctlr));
 19	else
 20		asm("mrc p15, 0, %0, c1, c0, 0" : "=r"(*sctlr));
 21}
 22
 23efi_status_t check_platform_features(void)
 24{
 25	efi_status_t status;
 26	u32 cpsr, sctlr;
 27	int block;
 28
 29	get_cpu_state(&cpsr, &sctlr);
 30
 31	efi_info("Entering in %s mode with MMU %sabled\n",
 32		 ((cpsr & MODE_MASK) == HYP_MODE) ? "HYP" : "SVC",
 33		 (sctlr & 1) ? "en" : "dis");
 34
 35	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
 36			     sizeof(*efi_entry_state),
 37			     (void **)&efi_entry_state);
 38	if (status != EFI_SUCCESS) {
 39		efi_err("allocate_pool() failed\n");
 40		return status;
 41	}
 42
 43	efi_entry_state->cpsr_before_ebs = cpsr;
 44	efi_entry_state->sctlr_before_ebs = sctlr;
 45
 46	status = efi_bs_call(install_configuration_table, &cpu_state_guid,
 47			     efi_entry_state);
 48	if (status != EFI_SUCCESS) {
 49		efi_err("install_configuration_table() failed\n");
 50		goto free_state;
 51	}
 52
 53	/* non-LPAE kernels can run anywhere */
 54	if (!IS_ENABLED(CONFIG_ARM_LPAE))
 55		return EFI_SUCCESS;
 56
 57	/* LPAE kernels need compatible hardware */
 58	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 59	if (block < 5) {
 60		efi_err("This LPAE kernel is not supported by your CPU\n");
 61		status = EFI_UNSUPPORTED;
 62		goto drop_table;
 63	}
 64	return EFI_SUCCESS;
 65
 66drop_table:
 67	efi_bs_call(install_configuration_table, &cpu_state_guid, NULL);
 68free_state:
 69	efi_bs_call(free_pool, efi_entry_state);
 70	return status;
 71}
 72
 73void efi_handle_post_ebs_state(void)
 74{
 75	get_cpu_state(&efi_entry_state->cpsr_after_ebs,
 76		      &efi_entry_state->sctlr_after_ebs);
 77}
 78
 79efi_status_t handle_kernel_image(unsigned long *image_addr,
 80				 unsigned long *image_size,
 81				 unsigned long *reserve_addr,
 82				 unsigned long *reserve_size,
 83				 efi_loaded_image_t *image,
 84				 efi_handle_t image_handle)
 85{
 86	const int slack = TEXT_OFFSET - 5 * PAGE_SIZE;
 87	int alloc_size = MAX_UNCOMP_KERNEL_SIZE + EFI_PHYS_ALIGN;
 88	unsigned long alloc_base, kernel_base;
 89	efi_status_t status;
 90
 91	/*
 92	 * Allocate space for the decompressed kernel as low as possible.
 93	 * The region should be 16 MiB aligned, but the first 'slack' bytes
 94	 * are not used by Linux, so we allow those to be occupied by the
 95	 * firmware.
 96	 */
 97	status = efi_low_alloc_above(alloc_size, EFI_PAGE_SIZE, &alloc_base, 0x0);
 98	if (status != EFI_SUCCESS) {
 99		efi_err("Unable to allocate memory for uncompressed kernel.\n");
100		return status;
101	}
102
103	if ((alloc_base % EFI_PHYS_ALIGN) > slack) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104		/*
105		 * More than 'slack' bytes are already occupied at the base of
106		 * the allocation, so we need to advance to the next 16 MiB block.
 
 
 
 
 
 
 
107		 */
108		kernel_base = round_up(alloc_base, EFI_PHYS_ALIGN);
109		efi_info("Free memory starts at 0x%lx, setting kernel_base to 0x%lx\n",
110			 alloc_base, kernel_base);
111	} else {
112		kernel_base = round_down(alloc_base, EFI_PHYS_ALIGN);
113	}
114
115	*reserve_addr = kernel_base + slack;
116	*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
 
 
 
 
 
 
 
 
 
117
118	/* now free the parts that we will not use */
119	if (*reserve_addr > alloc_base) {
120		efi_bs_call(free_pages, alloc_base,
121			    (*reserve_addr - alloc_base) / EFI_PAGE_SIZE);
122		alloc_size -= *reserve_addr - alloc_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123	}
124	efi_bs_call(free_pages, *reserve_addr + MAX_UNCOMP_KERNEL_SIZE,
125		    (alloc_size - MAX_UNCOMP_KERNEL_SIZE) / EFI_PAGE_SIZE);
126
127	*image_addr = kernel_base + TEXT_OFFSET;
128	*image_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
130	efi_debug("image addr == 0x%lx, reserve_addr == 0x%lx\n",
131		  *image_addr, *reserve_addr);
 
 
 
 
 
 
 
 
 
 
 
132
 
 
133	return EFI_SUCCESS;
134}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
  4 */
  5#include <linux/efi.h>
  6#include <asm/efi.h>
  7
  8#include "efistub.h"
  9
 10static efi_guid_t cpu_state_guid = LINUX_EFI_ARM_CPU_STATE_TABLE_GUID;
 11
 12struct efi_arm_entry_state *efi_entry_state;
 13
 14static void get_cpu_state(u32 *cpsr, u32 *sctlr)
 15{
 16	asm("mrs %0, cpsr" : "=r"(*cpsr));
 17	if ((*cpsr & MODE_MASK) == HYP_MODE)
 18		asm("mrc p15, 4, %0, c1, c0, 0" : "=r"(*sctlr));
 19	else
 20		asm("mrc p15, 0, %0, c1, c0, 0" : "=r"(*sctlr));
 21}
 22
 23efi_status_t check_platform_features(void)
 24{
 25	efi_status_t status;
 26	u32 cpsr, sctlr;
 27	int block;
 28
 29	get_cpu_state(&cpsr, &sctlr);
 30
 31	efi_info("Entering in %s mode with MMU %sabled\n",
 32		 ((cpsr & MODE_MASK) == HYP_MODE) ? "HYP" : "SVC",
 33		 (sctlr & 1) ? "en" : "dis");
 34
 35	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
 36			     sizeof(*efi_entry_state),
 37			     (void **)&efi_entry_state);
 38	if (status != EFI_SUCCESS) {
 39		efi_err("allocate_pool() failed\n");
 40		return status;
 41	}
 42
 43	efi_entry_state->cpsr_before_ebs = cpsr;
 44	efi_entry_state->sctlr_before_ebs = sctlr;
 45
 46	status = efi_bs_call(install_configuration_table, &cpu_state_guid,
 47			     efi_entry_state);
 48	if (status != EFI_SUCCESS) {
 49		efi_err("install_configuration_table() failed\n");
 50		goto free_state;
 51	}
 52
 53	/* non-LPAE kernels can run anywhere */
 54	if (!IS_ENABLED(CONFIG_ARM_LPAE))
 55		return EFI_SUCCESS;
 56
 57	/* LPAE kernels need compatible hardware */
 58	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 59	if (block < 5) {
 60		efi_err("This LPAE kernel is not supported by your CPU\n");
 61		status = EFI_UNSUPPORTED;
 62		goto drop_table;
 63	}
 64	return EFI_SUCCESS;
 65
 66drop_table:
 67	efi_bs_call(install_configuration_table, &cpu_state_guid, NULL);
 68free_state:
 69	efi_bs_call(free_pool, efi_entry_state);
 70	return status;
 71}
 72
 73void efi_handle_post_ebs_state(void)
 74{
 75	get_cpu_state(&efi_entry_state->cpsr_after_ebs,
 76		      &efi_entry_state->sctlr_after_ebs);
 77}
 78
 79static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
 80
 81struct screen_info *alloc_screen_info(void)
 
 
 
 82{
 83	struct screen_info *si;
 
 
 84	efi_status_t status;
 85
 86	/*
 87	 * Unlike on arm64, where we can directly fill out the screen_info
 88	 * structure from the stub, we need to allocate a buffer to hold
 89	 * its contents while we hand over to the kernel proper from the
 90	 * decompressor.
 91	 */
 92	status = efi_bs_call(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
 93			     sizeof(*si), (void **)&si);
 94
 95	if (status != EFI_SUCCESS)
 96		return NULL;
 97
 98	status = efi_bs_call(install_configuration_table,
 99			     &screen_info_guid, si);
100	if (status == EFI_SUCCESS)
101		return si;
102
103	efi_bs_call(free_pool, si);
104	return NULL;
105}
106
107void free_screen_info(struct screen_info *si)
108{
109	if (!si)
110		return;
111
112	efi_bs_call(install_configuration_table, &screen_info_guid, NULL);
113	efi_bs_call(free_pool, si);
114}
115
116static efi_status_t reserve_kernel_base(unsigned long dram_base,
117					unsigned long *reserve_addr,
118					unsigned long *reserve_size)
119{
120	efi_physical_addr_t alloc_addr;
121	efi_memory_desc_t *memory_map;
122	unsigned long nr_pages, map_size, desc_size, buff_size;
123	efi_status_t status;
124	unsigned long l;
125
126	struct efi_boot_memmap map = {
127		.map		= &memory_map,
128		.map_size	= &map_size,
129		.desc_size	= &desc_size,
130		.desc_ver	= NULL,
131		.key_ptr	= NULL,
132		.buff_size	= &buff_size,
133	};
134
135	/*
136	 * Reserve memory for the uncompressed kernel image. This is
137	 * all that prevents any future allocations from conflicting
138	 * with the kernel. Since we can't tell from the compressed
139	 * image how much DRAM the kernel actually uses (due to BSS
140	 * size uncertainty) we allocate the maximum possible size.
141	 * Do this very early, as prints can cause memory allocations
142	 * that may conflict with this.
143	 */
144	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
145	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
146	status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
147			     EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
148	if (status == EFI_SUCCESS) {
149		if (alloc_addr == dram_base) {
150			*reserve_addr = alloc_addr;
151			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
152			return EFI_SUCCESS;
153		}
154		/*
155		 * If we end up here, the allocation succeeded but starts below
156		 * dram_base. This can only occur if the real base of DRAM is
157		 * not a multiple of 128 MB, in which case dram_base will have
158		 * been rounded up. Since this implies that a part of the region
159		 * was already occupied, we need to fall through to the code
160		 * below to ensure that the existing allocations don't conflict.
161		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
162		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
163		 * allocations that we want to disallow.
164		 */
 
 
 
 
 
165	}
166
167	/*
168	 * If the allocation above failed, we may still be able to proceed:
169	 * if the only allocations in the region are of types that will be
170	 * released to the OS after ExitBootServices(), the decompressor can
171	 * safely overwrite them.
172	 */
173	status = efi_get_memory_map(&map);
174	if (status != EFI_SUCCESS) {
175		efi_err("reserve_kernel_base(): Unable to retrieve memory map.\n");
176		return status;
177	}
178
179	for (l = 0; l < map_size; l += desc_size) {
180		efi_memory_desc_t *desc;
181		u64 start, end;
182
183		desc = (void *)memory_map + l;
184		start = desc->phys_addr;
185		end = start + desc->num_pages * EFI_PAGE_SIZE;
186
187		/* Skip if entry does not intersect with region */
188		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
189		    end <= dram_base)
190			continue;
191
192		switch (desc->type) {
193		case EFI_BOOT_SERVICES_CODE:
194		case EFI_BOOT_SERVICES_DATA:
195			/* Ignore types that are released to the OS anyway */
196			continue;
197
198		case EFI_CONVENTIONAL_MEMORY:
199			/* Skip soft reserved conventional memory */
200			if (efi_soft_reserve_enabled() &&
201			    (desc->attribute & EFI_MEMORY_SP))
202				continue;
203
204			/*
205			 * Reserve the intersection between this entry and the
206			 * region.
207			 */
208			start = max(start, (u64)dram_base);
209			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
210
211			status = efi_bs_call(allocate_pages,
212					     EFI_ALLOCATE_ADDRESS,
213					     EFI_LOADER_DATA,
214					     (end - start) / EFI_PAGE_SIZE,
215					     &start);
216			if (status != EFI_SUCCESS) {
217				efi_err("reserve_kernel_base(): alloc failed.\n");
218				goto out;
219			}
220			break;
221
222		case EFI_LOADER_CODE:
223		case EFI_LOADER_DATA:
224			/*
225			 * These regions may be released and reallocated for
226			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
227			 * at any time during the execution of the OS loader,
228			 * so we cannot consider them as safe.
229			 */
230		default:
231			/*
232			 * Treat any other allocation in the region as unsafe */
233			status = EFI_OUT_OF_RESOURCES;
234			goto out;
235		}
236	}
 
 
237
238	status = EFI_SUCCESS;
239out:
240	efi_bs_call(free_pool, memory_map);
241	return status;
242}
243
244efi_status_t handle_kernel_image(unsigned long *image_addr,
245				 unsigned long *image_size,
246				 unsigned long *reserve_addr,
247				 unsigned long *reserve_size,
248				 unsigned long dram_base,
249				 efi_loaded_image_t *image)
250{
251	unsigned long kernel_base;
252	efi_status_t status;
253
254	/* use a 16 MiB aligned base for the decompressed kernel */
255	kernel_base = round_up(dram_base, SZ_16M) + TEXT_OFFSET;
256
257	/*
258	 * Note that some platforms (notably, the Raspberry Pi 2) put
259	 * spin-tables and other pieces of firmware at the base of RAM,
260	 * abusing the fact that the window of TEXT_OFFSET bytes at the
261	 * base of the kernel image is only partially used at the moment.
262	 * (Up to 5 pages are used for the swapper page tables)
263	 */
264	status = reserve_kernel_base(kernel_base - 5 * PAGE_SIZE, reserve_addr,
265				     reserve_size);
266	if (status != EFI_SUCCESS) {
267		efi_err("Unable to allocate memory for uncompressed kernel.\n");
268		return status;
269	}
270
271	*image_addr = kernel_base;
272	*image_size = 0;
273	return EFI_SUCCESS;
274}