Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * PCMCIA high-level CIS access functions
4 *
5 * The initial developer of the original code is David A. Hinds
6 * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
7 * are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
8 *
9 * Copyright (C) 1999 David A. Hinds
10 * Copyright (C) 2004-2010 Dominik Brodowski
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18
19#include <pcmcia/cisreg.h>
20#include <pcmcia/cistpl.h>
21#include <pcmcia/ss.h>
22#include <pcmcia/ds.h>
23#include "cs_internal.h"
24
25
26/**
27 * pccard_read_tuple() - internal CIS tuple access
28 * @s: the struct pcmcia_socket where the card is inserted
29 * @function: the device function we loop for
30 * @code: which CIS code shall we look for?
31 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
32 *
33 * pccard_read_tuple() reads out one tuple and attempts to parse it
34 */
35int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
36 cisdata_t code, void *parse)
37{
38 tuple_t tuple;
39 cisdata_t *buf;
40 int ret;
41
42 buf = kmalloc(256, GFP_KERNEL);
43 if (buf == NULL) {
44 dev_warn(&s->dev, "no memory to read tuple\n");
45 return -ENOMEM;
46 }
47 tuple.DesiredTuple = code;
48 tuple.Attributes = 0;
49 if (function == BIND_FN_ALL)
50 tuple.Attributes = TUPLE_RETURN_COMMON;
51 ret = pccard_get_first_tuple(s, function, &tuple);
52 if (ret != 0)
53 goto done;
54 tuple.TupleData = buf;
55 tuple.TupleOffset = 0;
56 tuple.TupleDataMax = 255;
57 ret = pccard_get_tuple_data(s, &tuple);
58 if (ret != 0)
59 goto done;
60 ret = pcmcia_parse_tuple(&tuple, parse);
61done:
62 kfree(buf);
63 return ret;
64}
65
66
67/**
68 * pccard_loop_tuple() - loop over tuples in the CIS
69 * @s: the struct pcmcia_socket where the card is inserted
70 * @function: the device function we loop for
71 * @code: which CIS code shall we look for?
72 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
73 * @priv_data: private data to be passed to the loop_tuple function.
74 * @loop_tuple: function to call for each CIS entry of type @function. IT
75 * gets passed the raw tuple, the paresed tuple (if @parse is
76 * set) and @priv_data.
77 *
78 * pccard_loop_tuple() loops over all CIS entries of type @function, and
79 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
80 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
81 */
82static int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
83 cisdata_t code, cisparse_t *parse, void *priv_data,
84 int (*loop_tuple) (tuple_t *tuple,
85 cisparse_t *parse,
86 void *priv_data))
87{
88 tuple_t tuple;
89 cisdata_t *buf;
90 int ret;
91
92 buf = kzalloc(256, GFP_KERNEL);
93 if (buf == NULL) {
94 dev_warn(&s->dev, "no memory to read tuple\n");
95 return -ENOMEM;
96 }
97
98 tuple.TupleData = buf;
99 tuple.TupleDataMax = 255;
100 tuple.TupleOffset = 0;
101 tuple.DesiredTuple = code;
102 tuple.Attributes = 0;
103
104 ret = pccard_get_first_tuple(s, function, &tuple);
105 while (!ret) {
106 if (pccard_get_tuple_data(s, &tuple))
107 goto next_entry;
108
109 if (parse)
110 if (pcmcia_parse_tuple(&tuple, parse))
111 goto next_entry;
112
113 ret = loop_tuple(&tuple, parse, priv_data);
114 if (!ret)
115 break;
116
117next_entry:
118 ret = pccard_get_next_tuple(s, function, &tuple);
119 }
120
121 kfree(buf);
122 return ret;
123}
124
125
126/*
127 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
128 */
129static int pcmcia_io_cfg_data_width(unsigned int flags)
130{
131 if (!(flags & CISTPL_IO_8BIT))
132 return IO_DATA_PATH_WIDTH_16;
133 if (!(flags & CISTPL_IO_16BIT))
134 return IO_DATA_PATH_WIDTH_8;
135 return IO_DATA_PATH_WIDTH_AUTO;
136}
137
138
139struct pcmcia_cfg_mem {
140 struct pcmcia_device *p_dev;
141 int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
142 void *priv_data;
143 cisparse_t parse;
144 cistpl_cftable_entry_t dflt;
145};
146
147/*
148 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
149 *
150 * pcmcia_do_loop_config() is the internal callback for the call from
151 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
152 * by a struct pcmcia_cfg_mem.
153 */
154static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
155{
156 struct pcmcia_cfg_mem *cfg_mem = priv;
157 struct pcmcia_device *p_dev = cfg_mem->p_dev;
158 cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
159 cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
160 unsigned int flags = p_dev->config_flags;
161 unsigned int vcc = p_dev->socket->socket.Vcc;
162
163 dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
164 cfg->index, flags);
165
166 /* default values */
167 cfg_mem->p_dev->config_index = cfg->index;
168 if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
169 cfg_mem->dflt = *cfg;
170
171 /* check for matching Vcc? */
172 if (flags & CONF_AUTO_CHECK_VCC) {
173 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
174 if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
175 return -ENODEV;
176 } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
177 if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
178 return -ENODEV;
179 }
180 }
181
182 /* set Vpp? */
183 if (flags & CONF_AUTO_SET_VPP) {
184 if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
185 p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
186 else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
187 p_dev->vpp =
188 dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
189 }
190
191 /* enable audio? */
192 if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
193 p_dev->config_flags |= CONF_ENABLE_SPKR;
194
195
196 /* IO window settings? */
197 if (flags & CONF_AUTO_SET_IO) {
198 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
199 int i = 0;
200
201 p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
202 p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
203 if (io->nwin == 0)
204 return -ENODEV;
205
206 p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
207 p_dev->resource[0]->flags |=
208 pcmcia_io_cfg_data_width(io->flags);
209 if (io->nwin > 1) {
210 /* For multifunction cards, by convention, we
211 * configure the network function with window 0,
212 * and serial with window 1 */
213 i = (io->win[1].len > io->win[0].len);
214 p_dev->resource[1]->flags = p_dev->resource[0]->flags;
215 p_dev->resource[1]->start = io->win[1-i].base;
216 p_dev->resource[1]->end = io->win[1-i].len;
217 }
218 p_dev->resource[0]->start = io->win[i].base;
219 p_dev->resource[0]->end = io->win[i].len;
220 p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
221 }
222
223 /* MEM window settings? */
224 if (flags & CONF_AUTO_SET_IOMEM) {
225 /* so far, we only set one memory window */
226 cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
227
228 p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
229 if (mem->nwin == 0)
230 return -ENODEV;
231
232 p_dev->resource[2]->start = mem->win[0].host_addr;
233 p_dev->resource[2]->end = mem->win[0].len;
234 if (p_dev->resource[2]->end < 0x1000)
235 p_dev->resource[2]->end = 0x1000;
236 p_dev->card_addr = mem->win[0].card_addr;
237 }
238
239 dev_dbg(&p_dev->dev,
240 "checking configuration %x: %pr %pr %pr (%d lines)\n",
241 p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
242 p_dev->resource[2], p_dev->io_lines);
243
244 return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
245}
246
247/**
248 * pcmcia_loop_config() - loop over configuration options
249 * @p_dev: the struct pcmcia_device which we need to loop for.
250 * @conf_check: function to call for each configuration option.
251 * It gets passed the struct pcmcia_device and private data
252 * being passed to pcmcia_loop_config()
253 * @priv_data: private data to be passed to the conf_check function.
254 *
255 * pcmcia_loop_config() loops over all configuration options, and calls
256 * the driver-specific conf_check() for each one, checking whether
257 * it is a valid one. Returns 0 on success or errorcode otherwise.
258 */
259int pcmcia_loop_config(struct pcmcia_device *p_dev,
260 int (*conf_check) (struct pcmcia_device *p_dev,
261 void *priv_data),
262 void *priv_data)
263{
264 struct pcmcia_cfg_mem *cfg_mem;
265 int ret;
266
267 cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
268 if (cfg_mem == NULL)
269 return -ENOMEM;
270
271 cfg_mem->p_dev = p_dev;
272 cfg_mem->conf_check = conf_check;
273 cfg_mem->priv_data = priv_data;
274
275 ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
276 CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
277 cfg_mem, pcmcia_do_loop_config);
278
279 kfree(cfg_mem);
280 return ret;
281}
282EXPORT_SYMBOL(pcmcia_loop_config);
283
284
285struct pcmcia_loop_mem {
286 struct pcmcia_device *p_dev;
287 void *priv_data;
288 int (*loop_tuple) (struct pcmcia_device *p_dev,
289 tuple_t *tuple,
290 void *priv_data);
291};
292
293/*
294 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
295 *
296 * pcmcia_do_loop_tuple() is the internal callback for the call from
297 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
298 * by a struct pcmcia_cfg_mem.
299 */
300static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
301{
302 struct pcmcia_loop_mem *loop = priv;
303
304 return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
305};
306
307/**
308 * pcmcia_loop_tuple() - loop over tuples in the CIS
309 * @p_dev: the struct pcmcia_device which we need to loop for.
310 * @code: which CIS code shall we look for?
311 * @priv_data: private data to be passed to the loop_tuple function.
312 * @loop_tuple: function to call for each CIS entry of type @function. IT
313 * gets passed the raw tuple and @priv_data.
314 *
315 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
316 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
317 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
318 */
319int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
320 int (*loop_tuple) (struct pcmcia_device *p_dev,
321 tuple_t *tuple,
322 void *priv_data),
323 void *priv_data)
324{
325 struct pcmcia_loop_mem loop = {
326 .p_dev = p_dev,
327 .loop_tuple = loop_tuple,
328 .priv_data = priv_data};
329
330 return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
331 &loop, pcmcia_do_loop_tuple);
332}
333EXPORT_SYMBOL(pcmcia_loop_tuple);
334
335
336struct pcmcia_loop_get {
337 size_t len;
338 cisdata_t **buf;
339};
340
341/*
342 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
343 *
344 * pcmcia_do_get_tuple() is the internal callback for the call from
345 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
346 * the first tuple, return 0 unconditionally. Create a memory buffer large
347 * enough to hold the content of the tuple, and fill it with the tuple data.
348 * The caller is responsible to free the buffer.
349 */
350static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
351 void *priv)
352{
353 struct pcmcia_loop_get *get = priv;
354
355 *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
356 if (*get->buf) {
357 get->len = tuple->TupleDataLen;
358 memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
359 } else
360 dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
361 return 0;
362}
363
364/**
365 * pcmcia_get_tuple() - get first tuple from CIS
366 * @p_dev: the struct pcmcia_device which we need to loop for.
367 * @code: which CIS code shall we look for?
368 * @buf: pointer to store the buffer to.
369 *
370 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
371 * It returns the buffer length (or zero). The caller is responsible to free
372 * the buffer passed in @buf.
373 */
374size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
375 unsigned char **buf)
376{
377 struct pcmcia_loop_get get = {
378 .len = 0,
379 .buf = buf,
380 };
381
382 *get.buf = NULL;
383 pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
384
385 return get.len;
386}
387EXPORT_SYMBOL(pcmcia_get_tuple);
388
389#ifdef CONFIG_NET
390/*
391 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
392 *
393 * pcmcia_do_get_mac() is the internal callback for the call from
394 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
395 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
396 * to struct net_device->dev_addr[i].
397 */
398static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
399 void *priv)
400{
401 struct net_device *dev = priv;
402
403 if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
404 return -EINVAL;
405 if (tuple->TupleDataLen < ETH_ALEN + 2) {
406 dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
407 "LAN_NODE_ID\n");
408 return -EINVAL;
409 }
410
411 if (tuple->TupleData[1] != ETH_ALEN) {
412 dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
413 return -EINVAL;
414 }
415 eth_hw_addr_set(dev, &tuple->TupleData[2]);
416 return 0;
417}
418
419/**
420 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
421 * @p_dev: the struct pcmcia_device for which we want the address.
422 * @dev: a properly prepared struct net_device to store the info to.
423 *
424 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
425 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
426 * must be set up properly by the driver (see examples!).
427 */
428int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
429{
430 return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
431}
432EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
433
434#endif /* CONFIG_NET */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * PCMCIA high-level CIS access functions
4 *
5 * The initial developer of the original code is David A. Hinds
6 * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
7 * are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
8 *
9 * Copyright (C) 1999 David A. Hinds
10 * Copyright (C) 2004-2010 Dominik Brodowski
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/netdevice.h>
17
18#include <pcmcia/cisreg.h>
19#include <pcmcia/cistpl.h>
20#include <pcmcia/ss.h>
21#include <pcmcia/ds.h>
22#include "cs_internal.h"
23
24
25/**
26 * pccard_read_tuple() - internal CIS tuple access
27 * @s: the struct pcmcia_socket where the card is inserted
28 * @function: the device function we loop for
29 * @code: which CIS code shall we look for?
30 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
31 *
32 * pccard_read_tuple() reads out one tuple and attempts to parse it
33 */
34int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
35 cisdata_t code, void *parse)
36{
37 tuple_t tuple;
38 cisdata_t *buf;
39 int ret;
40
41 buf = kmalloc(256, GFP_KERNEL);
42 if (buf == NULL) {
43 dev_warn(&s->dev, "no memory to read tuple\n");
44 return -ENOMEM;
45 }
46 tuple.DesiredTuple = code;
47 tuple.Attributes = 0;
48 if (function == BIND_FN_ALL)
49 tuple.Attributes = TUPLE_RETURN_COMMON;
50 ret = pccard_get_first_tuple(s, function, &tuple);
51 if (ret != 0)
52 goto done;
53 tuple.TupleData = buf;
54 tuple.TupleOffset = 0;
55 tuple.TupleDataMax = 255;
56 ret = pccard_get_tuple_data(s, &tuple);
57 if (ret != 0)
58 goto done;
59 ret = pcmcia_parse_tuple(&tuple, parse);
60done:
61 kfree(buf);
62 return ret;
63}
64
65
66/**
67 * pccard_loop_tuple() - loop over tuples in the CIS
68 * @s: the struct pcmcia_socket where the card is inserted
69 * @function: the device function we loop for
70 * @code: which CIS code shall we look for?
71 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
72 * @priv_data: private data to be passed to the loop_tuple function.
73 * @loop_tuple: function to call for each CIS entry of type @function. IT
74 * gets passed the raw tuple, the paresed tuple (if @parse is
75 * set) and @priv_data.
76 *
77 * pccard_loop_tuple() loops over all CIS entries of type @function, and
78 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
79 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
80 */
81static int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
82 cisdata_t code, cisparse_t *parse, void *priv_data,
83 int (*loop_tuple) (tuple_t *tuple,
84 cisparse_t *parse,
85 void *priv_data))
86{
87 tuple_t tuple;
88 cisdata_t *buf;
89 int ret;
90
91 buf = kzalloc(256, GFP_KERNEL);
92 if (buf == NULL) {
93 dev_warn(&s->dev, "no memory to read tuple\n");
94 return -ENOMEM;
95 }
96
97 tuple.TupleData = buf;
98 tuple.TupleDataMax = 255;
99 tuple.TupleOffset = 0;
100 tuple.DesiredTuple = code;
101 tuple.Attributes = 0;
102
103 ret = pccard_get_first_tuple(s, function, &tuple);
104 while (!ret) {
105 if (pccard_get_tuple_data(s, &tuple))
106 goto next_entry;
107
108 if (parse)
109 if (pcmcia_parse_tuple(&tuple, parse))
110 goto next_entry;
111
112 ret = loop_tuple(&tuple, parse, priv_data);
113 if (!ret)
114 break;
115
116next_entry:
117 ret = pccard_get_next_tuple(s, function, &tuple);
118 }
119
120 kfree(buf);
121 return ret;
122}
123
124
125/**
126 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
127 */
128static int pcmcia_io_cfg_data_width(unsigned int flags)
129{
130 if (!(flags & CISTPL_IO_8BIT))
131 return IO_DATA_PATH_WIDTH_16;
132 if (!(flags & CISTPL_IO_16BIT))
133 return IO_DATA_PATH_WIDTH_8;
134 return IO_DATA_PATH_WIDTH_AUTO;
135}
136
137
138struct pcmcia_cfg_mem {
139 struct pcmcia_device *p_dev;
140 int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
141 void *priv_data;
142 cisparse_t parse;
143 cistpl_cftable_entry_t dflt;
144};
145
146/**
147 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
148 *
149 * pcmcia_do_loop_config() is the internal callback for the call from
150 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
151 * by a struct pcmcia_cfg_mem.
152 */
153static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
154{
155 struct pcmcia_cfg_mem *cfg_mem = priv;
156 struct pcmcia_device *p_dev = cfg_mem->p_dev;
157 cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
158 cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
159 unsigned int flags = p_dev->config_flags;
160 unsigned int vcc = p_dev->socket->socket.Vcc;
161
162 dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
163 cfg->index, flags);
164
165 /* default values */
166 cfg_mem->p_dev->config_index = cfg->index;
167 if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
168 cfg_mem->dflt = *cfg;
169
170 /* check for matching Vcc? */
171 if (flags & CONF_AUTO_CHECK_VCC) {
172 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
173 if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
174 return -ENODEV;
175 } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
176 if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
177 return -ENODEV;
178 }
179 }
180
181 /* set Vpp? */
182 if (flags & CONF_AUTO_SET_VPP) {
183 if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
184 p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
185 else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
186 p_dev->vpp =
187 dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
188 }
189
190 /* enable audio? */
191 if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
192 p_dev->config_flags |= CONF_ENABLE_SPKR;
193
194
195 /* IO window settings? */
196 if (flags & CONF_AUTO_SET_IO) {
197 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
198 int i = 0;
199
200 p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
201 p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
202 if (io->nwin == 0)
203 return -ENODEV;
204
205 p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
206 p_dev->resource[0]->flags |=
207 pcmcia_io_cfg_data_width(io->flags);
208 if (io->nwin > 1) {
209 /* For multifunction cards, by convention, we
210 * configure the network function with window 0,
211 * and serial with window 1 */
212 i = (io->win[1].len > io->win[0].len);
213 p_dev->resource[1]->flags = p_dev->resource[0]->flags;
214 p_dev->resource[1]->start = io->win[1-i].base;
215 p_dev->resource[1]->end = io->win[1-i].len;
216 }
217 p_dev->resource[0]->start = io->win[i].base;
218 p_dev->resource[0]->end = io->win[i].len;
219 p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
220 }
221
222 /* MEM window settings? */
223 if (flags & CONF_AUTO_SET_IOMEM) {
224 /* so far, we only set one memory window */
225 cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
226
227 p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
228 if (mem->nwin == 0)
229 return -ENODEV;
230
231 p_dev->resource[2]->start = mem->win[0].host_addr;
232 p_dev->resource[2]->end = mem->win[0].len;
233 if (p_dev->resource[2]->end < 0x1000)
234 p_dev->resource[2]->end = 0x1000;
235 p_dev->card_addr = mem->win[0].card_addr;
236 }
237
238 dev_dbg(&p_dev->dev,
239 "checking configuration %x: %pr %pr %pr (%d lines)\n",
240 p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
241 p_dev->resource[2], p_dev->io_lines);
242
243 return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
244}
245
246/**
247 * pcmcia_loop_config() - loop over configuration options
248 * @p_dev: the struct pcmcia_device which we need to loop for.
249 * @conf_check: function to call for each configuration option.
250 * It gets passed the struct pcmcia_device and private data
251 * being passed to pcmcia_loop_config()
252 * @priv_data: private data to be passed to the conf_check function.
253 *
254 * pcmcia_loop_config() loops over all configuration options, and calls
255 * the driver-specific conf_check() for each one, checking whether
256 * it is a valid one. Returns 0 on success or errorcode otherwise.
257 */
258int pcmcia_loop_config(struct pcmcia_device *p_dev,
259 int (*conf_check) (struct pcmcia_device *p_dev,
260 void *priv_data),
261 void *priv_data)
262{
263 struct pcmcia_cfg_mem *cfg_mem;
264 int ret;
265
266 cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
267 if (cfg_mem == NULL)
268 return -ENOMEM;
269
270 cfg_mem->p_dev = p_dev;
271 cfg_mem->conf_check = conf_check;
272 cfg_mem->priv_data = priv_data;
273
274 ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
275 CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
276 cfg_mem, pcmcia_do_loop_config);
277
278 kfree(cfg_mem);
279 return ret;
280}
281EXPORT_SYMBOL(pcmcia_loop_config);
282
283
284struct pcmcia_loop_mem {
285 struct pcmcia_device *p_dev;
286 void *priv_data;
287 int (*loop_tuple) (struct pcmcia_device *p_dev,
288 tuple_t *tuple,
289 void *priv_data);
290};
291
292/**
293 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
294 *
295 * pcmcia_do_loop_tuple() is the internal callback for the call from
296 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
297 * by a struct pcmcia_cfg_mem.
298 */
299static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
300{
301 struct pcmcia_loop_mem *loop = priv;
302
303 return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
304};
305
306/**
307 * pcmcia_loop_tuple() - loop over tuples in the CIS
308 * @p_dev: the struct pcmcia_device which we need to loop for.
309 * @code: which CIS code shall we look for?
310 * @priv_data: private data to be passed to the loop_tuple function.
311 * @loop_tuple: function to call for each CIS entry of type @function. IT
312 * gets passed the raw tuple and @priv_data.
313 *
314 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
315 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
316 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
317 */
318int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
319 int (*loop_tuple) (struct pcmcia_device *p_dev,
320 tuple_t *tuple,
321 void *priv_data),
322 void *priv_data)
323{
324 struct pcmcia_loop_mem loop = {
325 .p_dev = p_dev,
326 .loop_tuple = loop_tuple,
327 .priv_data = priv_data};
328
329 return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
330 &loop, pcmcia_do_loop_tuple);
331}
332EXPORT_SYMBOL(pcmcia_loop_tuple);
333
334
335struct pcmcia_loop_get {
336 size_t len;
337 cisdata_t **buf;
338};
339
340/**
341 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
342 *
343 * pcmcia_do_get_tuple() is the internal callback for the call from
344 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
345 * the first tuple, return 0 unconditionally. Create a memory buffer large
346 * enough to hold the content of the tuple, and fill it with the tuple data.
347 * The caller is responsible to free the buffer.
348 */
349static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
350 void *priv)
351{
352 struct pcmcia_loop_get *get = priv;
353
354 *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
355 if (*get->buf) {
356 get->len = tuple->TupleDataLen;
357 memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
358 } else
359 dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
360 return 0;
361}
362
363/**
364 * pcmcia_get_tuple() - get first tuple from CIS
365 * @p_dev: the struct pcmcia_device which we need to loop for.
366 * @code: which CIS code shall we look for?
367 * @buf: pointer to store the buffer to.
368 *
369 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
370 * It returns the buffer length (or zero). The caller is responsible to free
371 * the buffer passed in @buf.
372 */
373size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
374 unsigned char **buf)
375{
376 struct pcmcia_loop_get get = {
377 .len = 0,
378 .buf = buf,
379 };
380
381 *get.buf = NULL;
382 pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
383
384 return get.len;
385}
386EXPORT_SYMBOL(pcmcia_get_tuple);
387
388
389/**
390 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
391 *
392 * pcmcia_do_get_mac() is the internal callback for the call from
393 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
394 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
395 * to struct net_device->dev_addr[i].
396 */
397static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
398 void *priv)
399{
400 struct net_device *dev = priv;
401 int i;
402
403 if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
404 return -EINVAL;
405 if (tuple->TupleDataLen < ETH_ALEN + 2) {
406 dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
407 "LAN_NODE_ID\n");
408 return -EINVAL;
409 }
410
411 if (tuple->TupleData[1] != ETH_ALEN) {
412 dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
413 return -EINVAL;
414 }
415 for (i = 0; i < 6; i++)
416 dev->dev_addr[i] = tuple->TupleData[i+2];
417 return 0;
418}
419
420/**
421 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
422 * @p_dev: the struct pcmcia_device for which we want the address.
423 * @dev: a properly prepared struct net_device to store the info to.
424 *
425 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
426 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
427 * must be set up properly by the driver (see examples!).
428 */
429int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
430{
431 return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
432}
433EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
434