Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm83.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
6 *
7 * Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is
8 * a sensor chip made by National Semiconductor. It reports up to four
9 * temperatures (its own plus up to three external ones) with a 1 deg
10 * resolution and a 3-4 deg accuracy. Complete datasheet can be obtained
11 * from National's website at:
12 * http://www.national.com/pf/LM/LM83.html
13 * Since the datasheet omits to give the chip stepping code, I give it
14 * here: 0x03 (at register 0xff).
15 *
16 * Also supports the LM82 temp sensor, which is basically a stripped down
17 * model of the LM83. Datasheet is here:
18 * http://www.national.com/pf/LM/LM82.html
19 */
20
21#include <linux/bits.h>
22#include <linux/err.h>
23#include <linux/i2c.h>
24#include <linux/init.h>
25#include <linux/hwmon.h>
26#include <linux/module.h>
27#include <linux/regmap.h>
28#include <linux/slab.h>
29
30/*
31 * Addresses to scan
32 * Address is selected using 2 three-level pins, resulting in 9 possible
33 * addresses.
34 */
35
36static const unsigned short normal_i2c[] = {
37 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };
38
39enum chips { lm83, lm82 };
40
41/*
42 * The LM83 registers
43 * Manufacturer ID is 0x01 for National Semiconductor.
44 */
45
46#define LM83_REG_R_MAN_ID 0xFE
47#define LM83_REG_R_CHIP_ID 0xFF
48#define LM83_REG_R_CONFIG 0x03
49#define LM83_REG_W_CONFIG 0x09
50#define LM83_REG_R_STATUS1 0x02
51#define LM83_REG_R_STATUS2 0x35
52#define LM83_REG_R_LOCAL_TEMP 0x00
53#define LM83_REG_R_LOCAL_HIGH 0x05
54#define LM83_REG_W_LOCAL_HIGH 0x0B
55#define LM83_REG_R_REMOTE1_TEMP 0x30
56#define LM83_REG_R_REMOTE1_HIGH 0x38
57#define LM83_REG_W_REMOTE1_HIGH 0x50
58#define LM83_REG_R_REMOTE2_TEMP 0x01
59#define LM83_REG_R_REMOTE2_HIGH 0x07
60#define LM83_REG_W_REMOTE2_HIGH 0x0D
61#define LM83_REG_R_REMOTE3_TEMP 0x31
62#define LM83_REG_R_REMOTE3_HIGH 0x3A
63#define LM83_REG_W_REMOTE3_HIGH 0x52
64#define LM83_REG_R_TCRIT 0x42
65#define LM83_REG_W_TCRIT 0x5A
66
67static const u8 LM83_REG_TEMP[] = {
68 LM83_REG_R_LOCAL_TEMP,
69 LM83_REG_R_REMOTE1_TEMP,
70 LM83_REG_R_REMOTE2_TEMP,
71 LM83_REG_R_REMOTE3_TEMP,
72};
73
74static const u8 LM83_REG_MAX[] = {
75 LM83_REG_R_LOCAL_HIGH,
76 LM83_REG_R_REMOTE1_HIGH,
77 LM83_REG_R_REMOTE2_HIGH,
78 LM83_REG_R_REMOTE3_HIGH,
79};
80
81/* alarm and fault registers and bits, indexed by channel */
82static const u8 LM83_ALARM_REG[] = {
83 LM83_REG_R_STATUS1, LM83_REG_R_STATUS2, LM83_REG_R_STATUS1, LM83_REG_R_STATUS2
84};
85
86static const u8 LM83_MAX_ALARM_BIT[] = {
87 BIT(6), BIT(7), BIT(4), BIT(4)
88};
89
90static const u8 LM83_CRIT_ALARM_BIT[] = {
91 BIT(0), BIT(0), BIT(1), BIT(1)
92};
93
94static const u8 LM83_FAULT_BIT[] = {
95 0, BIT(5), BIT(2), BIT(2)
96};
97
98/*
99 * Client data (each client gets its own)
100 */
101
102struct lm83_data {
103 struct regmap *regmap;
104 enum chips type;
105};
106
107/* regmap code */
108
109static int lm83_regmap_reg_read(void *context, unsigned int reg, unsigned int *val)
110{
111 struct i2c_client *client = context;
112 int ret;
113
114 ret = i2c_smbus_read_byte_data(client, reg);
115 if (ret < 0)
116 return ret;
117
118 *val = ret;
119 return 0;
120}
121
122/*
123 * The regmap write function maps read register addresses to write register
124 * addresses. This is necessary for regmap register caching to work.
125 * An alternative would be to clear the regmap cache whenever a register is
126 * written, but that would be much more expensive.
127 */
128static int lm83_regmap_reg_write(void *context, unsigned int reg, unsigned int val)
129{
130 struct i2c_client *client = context;
131
132 switch (reg) {
133 case LM83_REG_R_CONFIG:
134 case LM83_REG_R_LOCAL_HIGH:
135 case LM83_REG_R_REMOTE2_HIGH:
136 reg += 0x06;
137 break;
138 case LM83_REG_R_REMOTE1_HIGH:
139 case LM83_REG_R_REMOTE3_HIGH:
140 case LM83_REG_R_TCRIT:
141 reg += 0x18;
142 break;
143 default:
144 break;
145 }
146
147 return i2c_smbus_write_byte_data(client, reg, val);
148}
149
150static bool lm83_regmap_is_volatile(struct device *dev, unsigned int reg)
151{
152 switch (reg) {
153 case LM83_REG_R_LOCAL_TEMP:
154 case LM83_REG_R_REMOTE1_TEMP:
155 case LM83_REG_R_REMOTE2_TEMP:
156 case LM83_REG_R_REMOTE3_TEMP:
157 case LM83_REG_R_STATUS1:
158 case LM83_REG_R_STATUS2:
159 return true;
160 default:
161 return false;
162 }
163}
164
165static const struct regmap_config lm83_regmap_config = {
166 .reg_bits = 8,
167 .val_bits = 8,
168 .cache_type = REGCACHE_MAPLE,
169 .volatile_reg = lm83_regmap_is_volatile,
170 .reg_read = lm83_regmap_reg_read,
171 .reg_write = lm83_regmap_reg_write,
172};
173
174/* hwmon API */
175
176static int lm83_temp_read(struct device *dev, u32 attr, int channel, long *val)
177{
178 struct lm83_data *data = dev_get_drvdata(dev);
179 unsigned int regval;
180 int err;
181
182 switch (attr) {
183 case hwmon_temp_input:
184 err = regmap_read(data->regmap, LM83_REG_TEMP[channel], ®val);
185 if (err < 0)
186 return err;
187 *val = (s8)regval * 1000;
188 break;
189 case hwmon_temp_max:
190 err = regmap_read(data->regmap, LM83_REG_MAX[channel], ®val);
191 if (err < 0)
192 return err;
193 *val = (s8)regval * 1000;
194 break;
195 case hwmon_temp_crit:
196 err = regmap_read(data->regmap, LM83_REG_R_TCRIT, ®val);
197 if (err < 0)
198 return err;
199 *val = (s8)regval * 1000;
200 break;
201 case hwmon_temp_max_alarm:
202 err = regmap_read(data->regmap, LM83_ALARM_REG[channel], ®val);
203 if (err < 0)
204 return err;
205 *val = !!(regval & LM83_MAX_ALARM_BIT[channel]);
206 break;
207 case hwmon_temp_crit_alarm:
208 err = regmap_read(data->regmap, LM83_ALARM_REG[channel], ®val);
209 if (err < 0)
210 return err;
211 *val = !!(regval & LM83_CRIT_ALARM_BIT[channel]);
212 break;
213 case hwmon_temp_fault:
214 err = regmap_read(data->regmap, LM83_ALARM_REG[channel], ®val);
215 if (err < 0)
216 return err;
217 *val = !!(regval & LM83_FAULT_BIT[channel]);
218 break;
219 default:
220 return -EOPNOTSUPP;
221 }
222 return 0;
223}
224
225static int lm83_temp_write(struct device *dev, u32 attr, int channel, long val)
226{
227 struct lm83_data *data = dev_get_drvdata(dev);
228 unsigned int regval;
229 int err;
230
231 regval = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
232
233 switch (attr) {
234 case hwmon_temp_max:
235 err = regmap_write(data->regmap, LM83_REG_MAX[channel], regval);
236 if (err < 0)
237 return err;
238 break;
239 case hwmon_temp_crit:
240 err = regmap_write(data->regmap, LM83_REG_R_TCRIT, regval);
241 if (err < 0)
242 return err;
243 break;
244 default:
245 return -EOPNOTSUPP;
246 }
247 return 0;
248}
249
250static int lm83_chip_read(struct device *dev, u32 attr, int channel, long *val)
251{
252 struct lm83_data *data = dev_get_drvdata(dev);
253 unsigned int regval;
254 int err;
255
256 switch (attr) {
257 case hwmon_chip_alarms:
258 err = regmap_read(data->regmap, LM83_REG_R_STATUS1, ®val);
259 if (err < 0)
260 return err;
261 *val = regval;
262 err = regmap_read(data->regmap, LM83_REG_R_STATUS2, ®val);
263 if (err < 0)
264 return err;
265 *val |= regval << 8;
266 return 0;
267 default:
268 return -EOPNOTSUPP;
269 }
270
271 return 0;
272}
273
274static int lm83_read(struct device *dev, enum hwmon_sensor_types type,
275 u32 attr, int channel, long *val)
276{
277 switch (type) {
278 case hwmon_chip:
279 return lm83_chip_read(dev, attr, channel, val);
280 case hwmon_temp:
281 return lm83_temp_read(dev, attr, channel, val);
282 default:
283 return -EOPNOTSUPP;
284 }
285}
286
287static int lm83_write(struct device *dev, enum hwmon_sensor_types type,
288 u32 attr, int channel, long val)
289{
290 switch (type) {
291 case hwmon_temp:
292 return lm83_temp_write(dev, attr, channel, val);
293 default:
294 return -EOPNOTSUPP;
295 }
296}
297
298static umode_t lm83_is_visible(const void *_data, enum hwmon_sensor_types type,
299 u32 attr, int channel)
300{
301 const struct lm83_data *data = _data;
302
303 /*
304 * LM82 only supports a single external channel, modeled as channel 2.
305 */
306 if (data->type == lm82 && (channel == 1 || channel == 3))
307 return 0;
308
309 switch (type) {
310 case hwmon_chip:
311 if (attr == hwmon_chip_alarms)
312 return 0444;
313 break;
314 case hwmon_temp:
315 switch (attr) {
316 case hwmon_temp_input:
317 case hwmon_temp_max_alarm:
318 case hwmon_temp_crit_alarm:
319 return 0444;
320 case hwmon_temp_fault:
321 if (channel)
322 return 0444;
323 break;
324 case hwmon_temp_max:
325 return 0644;
326 case hwmon_temp_crit:
327 if (channel == 2)
328 return 0644;
329 return 0444;
330 default:
331 break;
332 }
333 break;
334 default:
335 break;
336 }
337 return 0;
338}
339
340static const struct hwmon_channel_info * const lm83_info[] = {
341 HWMON_CHANNEL_INFO(chip, HWMON_C_ALARMS),
342 HWMON_CHANNEL_INFO(temp,
343 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
344 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM,
345 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
346 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT,
347 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
348 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT,
349 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
350 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT
351 ),
352 NULL
353};
354
355static const struct hwmon_ops lm83_hwmon_ops = {
356 .is_visible = lm83_is_visible,
357 .read = lm83_read,
358 .write = lm83_write,
359};
360
361static const struct hwmon_chip_info lm83_chip_info = {
362 .ops = &lm83_hwmon_ops,
363 .info = lm83_info,
364};
365
366/* Return 0 if detection is successful, -ENODEV otherwise */
367static int lm83_detect(struct i2c_client *client,
368 struct i2c_board_info *info)
369{
370 struct i2c_adapter *adapter = client->adapter;
371 const char *name;
372 u8 man_id, chip_id;
373
374 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
375 return -ENODEV;
376
377 /* Detection */
378 if ((i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1) & 0xA8) ||
379 (i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2) & 0x48) ||
380 (i2c_smbus_read_byte_data(client, LM83_REG_R_CONFIG) & 0x41)) {
381 dev_dbg(&adapter->dev, "LM83 detection failed at 0x%02x\n",
382 client->addr);
383 return -ENODEV;
384 }
385
386 /* Identification */
387 man_id = i2c_smbus_read_byte_data(client, LM83_REG_R_MAN_ID);
388 if (man_id != 0x01) /* National Semiconductor */
389 return -ENODEV;
390
391 chip_id = i2c_smbus_read_byte_data(client, LM83_REG_R_CHIP_ID);
392 switch (chip_id) {
393 case 0x03:
394 /*
395 * According to the LM82 datasheet dated March 2013, recent
396 * revisions of LM82 have a die revision of 0x03. This was
397 * confirmed with a real chip. Further details in this revision
398 * of the LM82 datasheet strongly suggest that LM82 is just a
399 * repackaged LM83. It is therefore impossible to distinguish
400 * those chips from LM83, and they will be misdetected as LM83.
401 */
402 name = "lm83";
403 break;
404 case 0x01:
405 name = "lm82";
406 break;
407 default:
408 /* identification failed */
409 dev_dbg(&adapter->dev,
410 "Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n",
411 man_id, chip_id);
412 return -ENODEV;
413 }
414
415 strscpy(info->type, name, I2C_NAME_SIZE);
416
417 return 0;
418}
419
420static const struct i2c_device_id lm83_id[] = {
421 { "lm83", lm83 },
422 { "lm82", lm82 },
423 { }
424};
425MODULE_DEVICE_TABLE(i2c, lm83_id);
426
427static int lm83_probe(struct i2c_client *client)
428{
429 struct device *dev = &client->dev;
430 struct device *hwmon_dev;
431 struct lm83_data *data;
432
433 data = devm_kzalloc(dev, sizeof(struct lm83_data), GFP_KERNEL);
434 if (!data)
435 return -ENOMEM;
436
437 data->regmap = devm_regmap_init(dev, NULL, client, &lm83_regmap_config);
438 if (IS_ERR(data->regmap))
439 return PTR_ERR(data->regmap);
440
441 data->type = i2c_match_id(lm83_id, client)->driver_data;
442
443 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
444 data, &lm83_chip_info, NULL);
445 return PTR_ERR_OR_ZERO(hwmon_dev);
446}
447
448/*
449 * Driver data (common to all clients)
450 */
451
452static struct i2c_driver lm83_driver = {
453 .class = I2C_CLASS_HWMON,
454 .driver = {
455 .name = "lm83",
456 },
457 .probe = lm83_probe,
458 .id_table = lm83_id,
459 .detect = lm83_detect,
460 .address_list = normal_i2c,
461};
462
463module_i2c_driver(lm83_driver);
464
465MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
466MODULE_DESCRIPTION("LM83 driver");
467MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm83.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
6 *
7 * Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is
8 * a sensor chip made by National Semiconductor. It reports up to four
9 * temperatures (its own plus up to three external ones) with a 1 deg
10 * resolution and a 3-4 deg accuracy. Complete datasheet can be obtained
11 * from National's website at:
12 * http://www.national.com/pf/LM/LM83.html
13 * Since the datasheet omits to give the chip stepping code, I give it
14 * here: 0x03 (at register 0xff).
15 *
16 * Also supports the LM82 temp sensor, which is basically a stripped down
17 * model of the LM83. Datasheet is here:
18 * http://www.national.com/pf/LM/LM82.html
19 */
20
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/slab.h>
24#include <linux/jiffies.h>
25#include <linux/i2c.h>
26#include <linux/hwmon-sysfs.h>
27#include <linux/hwmon.h>
28#include <linux/err.h>
29#include <linux/mutex.h>
30#include <linux/sysfs.h>
31
32/*
33 * Addresses to scan
34 * Address is selected using 2 three-level pins, resulting in 9 possible
35 * addresses.
36 */
37
38static const unsigned short normal_i2c[] = {
39 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };
40
41enum chips { lm83, lm82 };
42
43/*
44 * The LM83 registers
45 * Manufacturer ID is 0x01 for National Semiconductor.
46 */
47
48#define LM83_REG_R_MAN_ID 0xFE
49#define LM83_REG_R_CHIP_ID 0xFF
50#define LM83_REG_R_CONFIG 0x03
51#define LM83_REG_W_CONFIG 0x09
52#define LM83_REG_R_STATUS1 0x02
53#define LM83_REG_R_STATUS2 0x35
54#define LM83_REG_R_LOCAL_TEMP 0x00
55#define LM83_REG_R_LOCAL_HIGH 0x05
56#define LM83_REG_W_LOCAL_HIGH 0x0B
57#define LM83_REG_R_REMOTE1_TEMP 0x30
58#define LM83_REG_R_REMOTE1_HIGH 0x38
59#define LM83_REG_W_REMOTE1_HIGH 0x50
60#define LM83_REG_R_REMOTE2_TEMP 0x01
61#define LM83_REG_R_REMOTE2_HIGH 0x07
62#define LM83_REG_W_REMOTE2_HIGH 0x0D
63#define LM83_REG_R_REMOTE3_TEMP 0x31
64#define LM83_REG_R_REMOTE3_HIGH 0x3A
65#define LM83_REG_W_REMOTE3_HIGH 0x52
66#define LM83_REG_R_TCRIT 0x42
67#define LM83_REG_W_TCRIT 0x5A
68
69/*
70 * Conversions and various macros
71 * The LM83 uses signed 8-bit values with LSB = 1 degree Celsius.
72 */
73
74#define TEMP_FROM_REG(val) ((val) * 1000)
75#define TEMP_TO_REG(val) ((val) <= -128000 ? -128 : \
76 (val) >= 127000 ? 127 : \
77 (val) < 0 ? ((val) - 500) / 1000 : \
78 ((val) + 500) / 1000)
79
80static const u8 LM83_REG_R_TEMP[] = {
81 LM83_REG_R_LOCAL_TEMP,
82 LM83_REG_R_REMOTE1_TEMP,
83 LM83_REG_R_REMOTE2_TEMP,
84 LM83_REG_R_REMOTE3_TEMP,
85 LM83_REG_R_LOCAL_HIGH,
86 LM83_REG_R_REMOTE1_HIGH,
87 LM83_REG_R_REMOTE2_HIGH,
88 LM83_REG_R_REMOTE3_HIGH,
89 LM83_REG_R_TCRIT,
90};
91
92static const u8 LM83_REG_W_HIGH[] = {
93 LM83_REG_W_LOCAL_HIGH,
94 LM83_REG_W_REMOTE1_HIGH,
95 LM83_REG_W_REMOTE2_HIGH,
96 LM83_REG_W_REMOTE3_HIGH,
97 LM83_REG_W_TCRIT,
98};
99
100/*
101 * Client data (each client gets its own)
102 */
103
104struct lm83_data {
105 struct i2c_client *client;
106 const struct attribute_group *groups[3];
107 struct mutex update_lock;
108 char valid; /* zero until following fields are valid */
109 unsigned long last_updated; /* in jiffies */
110
111 /* registers values */
112 s8 temp[9]; /* 0..3: input 1-4,
113 4..7: high limit 1-4,
114 8 : critical limit */
115 u16 alarms; /* bitvector, combined */
116};
117
118static struct lm83_data *lm83_update_device(struct device *dev)
119{
120 struct lm83_data *data = dev_get_drvdata(dev);
121 struct i2c_client *client = data->client;
122
123 mutex_lock(&data->update_lock);
124
125 if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
126 int nr;
127
128 dev_dbg(&client->dev, "Updating lm83 data.\n");
129 for (nr = 0; nr < 9; nr++) {
130 data->temp[nr] =
131 i2c_smbus_read_byte_data(client,
132 LM83_REG_R_TEMP[nr]);
133 }
134 data->alarms =
135 i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1)
136 + (i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2)
137 << 8);
138
139 data->last_updated = jiffies;
140 data->valid = 1;
141 }
142
143 mutex_unlock(&data->update_lock);
144
145 return data;
146}
147
148/*
149 * Sysfs stuff
150 */
151
152static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
153 char *buf)
154{
155 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
156 struct lm83_data *data = lm83_update_device(dev);
157 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
158}
159
160static ssize_t temp_store(struct device *dev,
161 struct device_attribute *devattr, const char *buf,
162 size_t count)
163{
164 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
165 struct lm83_data *data = dev_get_drvdata(dev);
166 struct i2c_client *client = data->client;
167 long val;
168 int nr = attr->index;
169 int err;
170
171 err = kstrtol(buf, 10, &val);
172 if (err < 0)
173 return err;
174
175 mutex_lock(&data->update_lock);
176 data->temp[nr] = TEMP_TO_REG(val);
177 i2c_smbus_write_byte_data(client, LM83_REG_W_HIGH[nr - 4],
178 data->temp[nr]);
179 mutex_unlock(&data->update_lock);
180 return count;
181}
182
183static ssize_t alarms_show(struct device *dev, struct device_attribute *dummy,
184 char *buf)
185{
186 struct lm83_data *data = lm83_update_device(dev);
187 return sprintf(buf, "%d\n", data->alarms);
188}
189
190static ssize_t alarm_show(struct device *dev,
191 struct device_attribute *devattr, char *buf)
192{
193 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
194 struct lm83_data *data = lm83_update_device(dev);
195 int bitnr = attr->index;
196
197 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
198}
199
200static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
201static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
202static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
203static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3);
204static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 4);
205static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 5);
206static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 6);
207static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 7);
208static SENSOR_DEVICE_ATTR_RO(temp1_crit, temp, 8);
209static SENSOR_DEVICE_ATTR_RO(temp2_crit, temp, 8);
210static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 8);
211static SENSOR_DEVICE_ATTR_RO(temp4_crit, temp, 8);
212
213/* Individual alarm files */
214static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 0);
215static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 1);
216static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 2);
217static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 4);
218static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
219static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 8);
220static SENSOR_DEVICE_ATTR_RO(temp4_crit_alarm, alarm, 9);
221static SENSOR_DEVICE_ATTR_RO(temp4_fault, alarm, 10);
222static SENSOR_DEVICE_ATTR_RO(temp4_max_alarm, alarm, 12);
223static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 13);
224static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 15);
225/* Raw alarm file for compatibility */
226static DEVICE_ATTR_RO(alarms);
227
228static struct attribute *lm83_attributes[] = {
229 &sensor_dev_attr_temp1_input.dev_attr.attr,
230 &sensor_dev_attr_temp3_input.dev_attr.attr,
231 &sensor_dev_attr_temp1_max.dev_attr.attr,
232 &sensor_dev_attr_temp3_max.dev_attr.attr,
233 &sensor_dev_attr_temp1_crit.dev_attr.attr,
234 &sensor_dev_attr_temp3_crit.dev_attr.attr,
235
236 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
237 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
238 &sensor_dev_attr_temp3_fault.dev_attr.attr,
239 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
240 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
241 &dev_attr_alarms.attr,
242 NULL
243};
244
245static const struct attribute_group lm83_group = {
246 .attrs = lm83_attributes,
247};
248
249static struct attribute *lm83_attributes_opt[] = {
250 &sensor_dev_attr_temp2_input.dev_attr.attr,
251 &sensor_dev_attr_temp4_input.dev_attr.attr,
252 &sensor_dev_attr_temp2_max.dev_attr.attr,
253 &sensor_dev_attr_temp4_max.dev_attr.attr,
254 &sensor_dev_attr_temp2_crit.dev_attr.attr,
255 &sensor_dev_attr_temp4_crit.dev_attr.attr,
256
257 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
258 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
259 &sensor_dev_attr_temp4_fault.dev_attr.attr,
260 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
261 &sensor_dev_attr_temp2_fault.dev_attr.attr,
262 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
263 NULL
264};
265
266static const struct attribute_group lm83_group_opt = {
267 .attrs = lm83_attributes_opt,
268};
269
270/*
271 * Real code
272 */
273
274/* Return 0 if detection is successful, -ENODEV otherwise */
275static int lm83_detect(struct i2c_client *new_client,
276 struct i2c_board_info *info)
277{
278 struct i2c_adapter *adapter = new_client->adapter;
279 const char *name;
280 u8 man_id, chip_id;
281
282 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
283 return -ENODEV;
284
285 /* Detection */
286 if ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS1) & 0xA8) ||
287 (i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS2) & 0x48) ||
288 (i2c_smbus_read_byte_data(new_client, LM83_REG_R_CONFIG) & 0x41)) {
289 dev_dbg(&adapter->dev, "LM83 detection failed at 0x%02x\n",
290 new_client->addr);
291 return -ENODEV;
292 }
293
294 /* Identification */
295 man_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_MAN_ID);
296 if (man_id != 0x01) /* National Semiconductor */
297 return -ENODEV;
298
299 chip_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_CHIP_ID);
300 switch (chip_id) {
301 case 0x03:
302 name = "lm83";
303 break;
304 case 0x01:
305 name = "lm82";
306 break;
307 default:
308 /* identification failed */
309 dev_info(&adapter->dev,
310 "Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n",
311 man_id, chip_id);
312 return -ENODEV;
313 }
314
315 strlcpy(info->type, name, I2C_NAME_SIZE);
316
317 return 0;
318}
319
320static int lm83_probe(struct i2c_client *new_client,
321 const struct i2c_device_id *id)
322{
323 struct device *hwmon_dev;
324 struct lm83_data *data;
325
326 data = devm_kzalloc(&new_client->dev, sizeof(struct lm83_data),
327 GFP_KERNEL);
328 if (!data)
329 return -ENOMEM;
330
331 data->client = new_client;
332 mutex_init(&data->update_lock);
333
334 /*
335 * Register sysfs hooks
336 * The LM82 can only monitor one external diode which is
337 * at the same register as the LM83 temp3 entry - so we
338 * declare 1 and 3 common, and then 2 and 4 only for the LM83.
339 */
340 data->groups[0] = &lm83_group;
341 if (id->driver_data == lm83)
342 data->groups[1] = &lm83_group_opt;
343
344 hwmon_dev = devm_hwmon_device_register_with_groups(&new_client->dev,
345 new_client->name,
346 data, data->groups);
347 return PTR_ERR_OR_ZERO(hwmon_dev);
348}
349
350/*
351 * Driver data (common to all clients)
352 */
353
354static const struct i2c_device_id lm83_id[] = {
355 { "lm83", lm83 },
356 { "lm82", lm82 },
357 { }
358};
359MODULE_DEVICE_TABLE(i2c, lm83_id);
360
361static struct i2c_driver lm83_driver = {
362 .class = I2C_CLASS_HWMON,
363 .driver = {
364 .name = "lm83",
365 },
366 .probe = lm83_probe,
367 .id_table = lm83_id,
368 .detect = lm83_detect,
369 .address_list = normal_i2c,
370};
371
372module_i2c_driver(lm83_driver);
373
374MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
375MODULE_DESCRIPTION("LM83 driver");
376MODULE_LICENSE("GPL");