Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40/* List of registered clks that use runtime PM */
  41static HLIST_HEAD(clk_rpm_list);
  42static DEFINE_MUTEX(clk_rpm_list_lock);
  43
  44static const struct hlist_head *all_lists[] = {
  45	&clk_root_list,
  46	&clk_orphan_list,
  47	NULL,
  48};
  49
  50/***    private data structures    ***/
  51
  52struct clk_parent_map {
  53	const struct clk_hw	*hw;
  54	struct clk_core		*core;
  55	const char		*fw_name;
  56	const char		*name;
  57	int			index;
  58};
  59
  60struct clk_core {
  61	const char		*name;
  62	const struct clk_ops	*ops;
  63	struct clk_hw		*hw;
  64	struct module		*owner;
  65	struct device		*dev;
  66	struct hlist_node	rpm_node;
  67	struct device_node	*of_node;
  68	struct clk_core		*parent;
  69	struct clk_parent_map	*parents;
  70	u8			num_parents;
  71	u8			new_parent_index;
  72	unsigned long		rate;
  73	unsigned long		req_rate;
  74	unsigned long		new_rate;
  75	struct clk_core		*new_parent;
  76	struct clk_core		*new_child;
  77	unsigned long		flags;
  78	bool			orphan;
  79	bool			rpm_enabled;
  80	unsigned int		enable_count;
  81	unsigned int		prepare_count;
  82	unsigned int		protect_count;
  83	unsigned long		min_rate;
  84	unsigned long		max_rate;
  85	unsigned long		accuracy;
  86	int			phase;
  87	struct clk_duty		duty;
  88	struct hlist_head	children;
  89	struct hlist_node	child_node;
  90	struct hlist_head	clks;
  91	unsigned int		notifier_count;
  92#ifdef CONFIG_DEBUG_FS
  93	struct dentry		*dentry;
  94	struct hlist_node	debug_node;
  95#endif
  96	struct kref		ref;
  97};
  98
  99#define CREATE_TRACE_POINTS
 100#include <trace/events/clk.h>
 101
 102struct clk {
 103	struct clk_core	*core;
 104	struct device *dev;
 105	const char *dev_id;
 106	const char *con_id;
 107	unsigned long min_rate;
 108	unsigned long max_rate;
 109	unsigned int exclusive_count;
 110	struct hlist_node clks_node;
 111};
 112
 113/***           runtime pm          ***/
 114static int clk_pm_runtime_get(struct clk_core *core)
 115{
 
 
 116	if (!core->rpm_enabled)
 117		return 0;
 118
 119	return pm_runtime_resume_and_get(core->dev);
 
 
 
 
 
 120}
 121
 122static void clk_pm_runtime_put(struct clk_core *core)
 123{
 124	if (!core->rpm_enabled)
 125		return;
 126
 127	pm_runtime_put_sync(core->dev);
 128}
 129
 130/**
 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
 132 *
 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
 134 * that disabling unused clks avoids a deadlock where a device is runtime PM
 135 * resuming/suspending and the runtime PM callback is trying to grab the
 136 * prepare_lock for something like clk_prepare_enable() while
 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
 138 * PM resume/suspend the device as well.
 139 *
 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
 141 * success. Otherwise the lock is released on failure.
 142 *
 143 * Return: 0 on success, negative errno otherwise.
 144 */
 145static int clk_pm_runtime_get_all(void)
 146{
 147	int ret;
 148	struct clk_core *core, *failed;
 149
 150	/*
 151	 * Grab the list lock to prevent any new clks from being registered
 152	 * or unregistered until clk_pm_runtime_put_all().
 153	 */
 154	mutex_lock(&clk_rpm_list_lock);
 155
 156	/*
 157	 * Runtime PM "get" all the devices that are needed for the clks
 158	 * currently registered. Do this without holding the prepare_lock, to
 159	 * avoid the deadlock.
 160	 */
 161	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 162		ret = clk_pm_runtime_get(core);
 163		if (ret) {
 164			failed = core;
 165			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
 166			       dev_name(failed->dev), failed->name);
 167			goto err;
 168		}
 169	}
 170
 171	return 0;
 172
 173err:
 174	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
 175		if (core == failed)
 176			break;
 177
 178		clk_pm_runtime_put(core);
 179	}
 180	mutex_unlock(&clk_rpm_list_lock);
 181
 182	return ret;
 183}
 184
 185/**
 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
 187 *
 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
 189 * the 'clk_rpm_list_lock'.
 190 */
 191static void clk_pm_runtime_put_all(void)
 192{
 193	struct clk_core *core;
 194
 195	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
 196		clk_pm_runtime_put(core);
 197	mutex_unlock(&clk_rpm_list_lock);
 198}
 199
 200static void clk_pm_runtime_init(struct clk_core *core)
 201{
 202	struct device *dev = core->dev;
 203
 204	if (dev && pm_runtime_enabled(dev)) {
 205		core->rpm_enabled = true;
 206
 207		mutex_lock(&clk_rpm_list_lock);
 208		hlist_add_head(&core->rpm_node, &clk_rpm_list);
 209		mutex_unlock(&clk_rpm_list_lock);
 210	}
 211}
 212
 213/***           locking             ***/
 214static void clk_prepare_lock(void)
 215{
 216	if (!mutex_trylock(&prepare_lock)) {
 217		if (prepare_owner == current) {
 218			prepare_refcnt++;
 219			return;
 220		}
 221		mutex_lock(&prepare_lock);
 222	}
 223	WARN_ON_ONCE(prepare_owner != NULL);
 224	WARN_ON_ONCE(prepare_refcnt != 0);
 225	prepare_owner = current;
 226	prepare_refcnt = 1;
 227}
 228
 229static void clk_prepare_unlock(void)
 230{
 231	WARN_ON_ONCE(prepare_owner != current);
 232	WARN_ON_ONCE(prepare_refcnt == 0);
 233
 234	if (--prepare_refcnt)
 235		return;
 236	prepare_owner = NULL;
 237	mutex_unlock(&prepare_lock);
 238}
 239
 240static unsigned long clk_enable_lock(void)
 241	__acquires(enable_lock)
 242{
 243	unsigned long flags;
 244
 245	/*
 246	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 247	 * we already hold the lock. So, in that case, we rely only on
 248	 * reference counting.
 249	 */
 250	if (!IS_ENABLED(CONFIG_SMP) ||
 251	    !spin_trylock_irqsave(&enable_lock, flags)) {
 252		if (enable_owner == current) {
 253			enable_refcnt++;
 254			__acquire(enable_lock);
 255			if (!IS_ENABLED(CONFIG_SMP))
 256				local_save_flags(flags);
 257			return flags;
 258		}
 259		spin_lock_irqsave(&enable_lock, flags);
 260	}
 261	WARN_ON_ONCE(enable_owner != NULL);
 262	WARN_ON_ONCE(enable_refcnt != 0);
 263	enable_owner = current;
 264	enable_refcnt = 1;
 265	return flags;
 266}
 267
 268static void clk_enable_unlock(unsigned long flags)
 269	__releases(enable_lock)
 270{
 271	WARN_ON_ONCE(enable_owner != current);
 272	WARN_ON_ONCE(enable_refcnt == 0);
 273
 274	if (--enable_refcnt) {
 275		__release(enable_lock);
 276		return;
 277	}
 278	enable_owner = NULL;
 279	spin_unlock_irqrestore(&enable_lock, flags);
 280}
 281
 282static bool clk_core_rate_is_protected(struct clk_core *core)
 283{
 284	return core->protect_count;
 285}
 286
 287static bool clk_core_is_prepared(struct clk_core *core)
 288{
 289	bool ret = false;
 290
 291	/*
 292	 * .is_prepared is optional for clocks that can prepare
 293	 * fall back to software usage counter if it is missing
 294	 */
 295	if (!core->ops->is_prepared)
 296		return core->prepare_count;
 297
 298	if (!clk_pm_runtime_get(core)) {
 299		ret = core->ops->is_prepared(core->hw);
 300		clk_pm_runtime_put(core);
 301	}
 302
 303	return ret;
 304}
 305
 306static bool clk_core_is_enabled(struct clk_core *core)
 307{
 308	bool ret = false;
 309
 310	/*
 311	 * .is_enabled is only mandatory for clocks that gate
 312	 * fall back to software usage counter if .is_enabled is missing
 313	 */
 314	if (!core->ops->is_enabled)
 315		return core->enable_count;
 316
 317	/*
 318	 * Check if clock controller's device is runtime active before
 319	 * calling .is_enabled callback. If not, assume that clock is
 320	 * disabled, because we might be called from atomic context, from
 321	 * which pm_runtime_get() is not allowed.
 322	 * This function is called mainly from clk_disable_unused_subtree,
 323	 * which ensures proper runtime pm activation of controller before
 324	 * taking enable spinlock, but the below check is needed if one tries
 325	 * to call it from other places.
 326	 */
 327	if (core->rpm_enabled) {
 328		pm_runtime_get_noresume(core->dev);
 329		if (!pm_runtime_active(core->dev)) {
 330			ret = false;
 331			goto done;
 332		}
 333	}
 334
 335	/*
 336	 * This could be called with the enable lock held, or from atomic
 337	 * context. If the parent isn't enabled already, we can't do
 338	 * anything here. We can also assume this clock isn't enabled.
 339	 */
 340	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
 341		if (!clk_core_is_enabled(core->parent)) {
 342			ret = false;
 343			goto done;
 344		}
 345
 346	ret = core->ops->is_enabled(core->hw);
 347done:
 348	if (core->rpm_enabled)
 349		pm_runtime_put(core->dev);
 350
 351	return ret;
 352}
 353
 354/***    helper functions   ***/
 355
 356const char *__clk_get_name(const struct clk *clk)
 357{
 358	return !clk ? NULL : clk->core->name;
 359}
 360EXPORT_SYMBOL_GPL(__clk_get_name);
 361
 362const char *clk_hw_get_name(const struct clk_hw *hw)
 363{
 364	return hw->core->name;
 365}
 366EXPORT_SYMBOL_GPL(clk_hw_get_name);
 367
 368struct clk_hw *__clk_get_hw(struct clk *clk)
 369{
 370	return !clk ? NULL : clk->core->hw;
 371}
 372EXPORT_SYMBOL_GPL(__clk_get_hw);
 373
 374unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 375{
 376	return hw->core->num_parents;
 377}
 378EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 379
 380struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 381{
 382	return hw->core->parent ? hw->core->parent->hw : NULL;
 383}
 384EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 385
 386static struct clk_core *__clk_lookup_subtree(const char *name,
 387					     struct clk_core *core)
 388{
 389	struct clk_core *child;
 390	struct clk_core *ret;
 391
 392	if (!strcmp(core->name, name))
 393		return core;
 394
 395	hlist_for_each_entry(child, &core->children, child_node) {
 396		ret = __clk_lookup_subtree(name, child);
 397		if (ret)
 398			return ret;
 399	}
 400
 401	return NULL;
 402}
 403
 404static struct clk_core *clk_core_lookup(const char *name)
 405{
 406	struct clk_core *root_clk;
 407	struct clk_core *ret;
 408
 409	if (!name)
 410		return NULL;
 411
 412	/* search the 'proper' clk tree first */
 413	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 414		ret = __clk_lookup_subtree(name, root_clk);
 415		if (ret)
 416			return ret;
 417	}
 418
 419	/* if not found, then search the orphan tree */
 420	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 421		ret = __clk_lookup_subtree(name, root_clk);
 422		if (ret)
 423			return ret;
 424	}
 425
 426	return NULL;
 427}
 428
 429#ifdef CONFIG_OF
 430static int of_parse_clkspec(const struct device_node *np, int index,
 431			    const char *name, struct of_phandle_args *out_args);
 432static struct clk_hw *
 433of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 434#else
 435static inline int of_parse_clkspec(const struct device_node *np, int index,
 436				   const char *name,
 437				   struct of_phandle_args *out_args)
 438{
 439	return -ENOENT;
 440}
 441static inline struct clk_hw *
 442of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 443{
 444	return ERR_PTR(-ENOENT);
 445}
 446#endif
 447
 448/**
 449 * clk_core_get - Find the clk_core parent of a clk
 450 * @core: clk to find parent of
 451 * @p_index: parent index to search for
 452 *
 453 * This is the preferred method for clk providers to find the parent of a
 454 * clk when that parent is external to the clk controller. The parent_names
 455 * array is indexed and treated as a local name matching a string in the device
 456 * node's 'clock-names' property or as the 'con_id' matching the device's
 457 * dev_name() in a clk_lookup. This allows clk providers to use their own
 458 * namespace instead of looking for a globally unique parent string.
 459 *
 460 * For example the following DT snippet would allow a clock registered by the
 461 * clock-controller@c001 that has a clk_init_data::parent_data array
 462 * with 'xtal' in the 'name' member to find the clock provided by the
 463 * clock-controller@f00abcd without needing to get the globally unique name of
 464 * the xtal clk.
 465 *
 466 *      parent: clock-controller@f00abcd {
 467 *              reg = <0xf00abcd 0xabcd>;
 468 *              #clock-cells = <0>;
 469 *      };
 470 *
 471 *      clock-controller@c001 {
 472 *              reg = <0xc001 0xf00d>;
 473 *              clocks = <&parent>;
 474 *              clock-names = "xtal";
 475 *              #clock-cells = <1>;
 476 *      };
 477 *
 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 479 * exist in the provider or the name can't be found in the DT node or
 480 * in a clkdev lookup. NULL when the provider knows about the clk but it
 481 * isn't provided on this system.
 482 * A valid clk_core pointer when the clk can be found in the provider.
 483 */
 484static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 485{
 486	const char *name = core->parents[p_index].fw_name;
 487	int index = core->parents[p_index].index;
 488	struct clk_hw *hw = ERR_PTR(-ENOENT);
 489	struct device *dev = core->dev;
 490	const char *dev_id = dev ? dev_name(dev) : NULL;
 491	struct device_node *np = core->of_node;
 492	struct of_phandle_args clkspec;
 493
 494	if (np && (name || index >= 0) &&
 495	    !of_parse_clkspec(np, index, name, &clkspec)) {
 496		hw = of_clk_get_hw_from_clkspec(&clkspec);
 497		of_node_put(clkspec.np);
 498	} else if (name) {
 499		/*
 500		 * If the DT search above couldn't find the provider fallback to
 501		 * looking up via clkdev based clk_lookups.
 502		 */
 503		hw = clk_find_hw(dev_id, name);
 504	}
 505
 506	if (IS_ERR(hw))
 507		return ERR_CAST(hw);
 508
 509	if (!hw)
 510		return NULL;
 511
 512	return hw->core;
 513}
 514
 515static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 516{
 517	struct clk_parent_map *entry = &core->parents[index];
 518	struct clk_core *parent;
 519
 520	if (entry->hw) {
 521		parent = entry->hw->core;
 
 
 
 
 
 
 
 522	} else {
 523		parent = clk_core_get(core, index);
 524		if (PTR_ERR(parent) == -ENOENT && entry->name)
 525			parent = clk_core_lookup(entry->name);
 526	}
 527
 528	/*
 529	 * We have a direct reference but it isn't registered yet?
 530	 * Orphan it and let clk_reparent() update the orphan status
 531	 * when the parent is registered.
 532	 */
 533	if (!parent)
 534		parent = ERR_PTR(-EPROBE_DEFER);
 535
 536	/* Only cache it if it's not an error */
 537	if (!IS_ERR(parent))
 538		entry->core = parent;
 539}
 540
 541static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 542							 u8 index)
 543{
 544	if (!core || index >= core->num_parents || !core->parents)
 545		return NULL;
 546
 547	if (!core->parents[index].core)
 548		clk_core_fill_parent_index(core, index);
 549
 550	return core->parents[index].core;
 551}
 552
 553struct clk_hw *
 554clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 555{
 556	struct clk_core *parent;
 557
 558	parent = clk_core_get_parent_by_index(hw->core, index);
 559
 560	return !parent ? NULL : parent->hw;
 561}
 562EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 563
 564unsigned int __clk_get_enable_count(struct clk *clk)
 565{
 566	return !clk ? 0 : clk->core->enable_count;
 567}
 568
 569static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 570{
 571	if (!core)
 572		return 0;
 573
 574	if (!core->num_parents || core->parent)
 575		return core->rate;
 576
 577	/*
 578	 * Clk must have a parent because num_parents > 0 but the parent isn't
 579	 * known yet. Best to return 0 as the rate of this clk until we can
 580	 * properly recalc the rate based on the parent's rate.
 581	 */
 582	return 0;
 583}
 584
 585unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 586{
 587	return clk_core_get_rate_nolock(hw->core);
 588}
 589EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 590
 591static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 592{
 593	if (!core)
 594		return 0;
 595
 596	return core->accuracy;
 597}
 598
 599unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 600{
 601	return hw->core->flags;
 602}
 603EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 604
 605bool clk_hw_is_prepared(const struct clk_hw *hw)
 606{
 607	return clk_core_is_prepared(hw->core);
 608}
 609EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 610
 611bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 612{
 613	return clk_core_rate_is_protected(hw->core);
 614}
 615EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 616
 617bool clk_hw_is_enabled(const struct clk_hw *hw)
 618{
 619	return clk_core_is_enabled(hw->core);
 620}
 621EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 622
 623bool __clk_is_enabled(struct clk *clk)
 624{
 625	if (!clk)
 626		return false;
 627
 628	return clk_core_is_enabled(clk->core);
 629}
 630EXPORT_SYMBOL_GPL(__clk_is_enabled);
 631
 632static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 633			   unsigned long best, unsigned long flags)
 634{
 635	if (flags & CLK_MUX_ROUND_CLOSEST)
 636		return abs(now - rate) < abs(best - rate);
 637
 638	return now <= rate && now > best;
 639}
 640
 641static void clk_core_init_rate_req(struct clk_core * const core,
 642				   struct clk_rate_request *req,
 643				   unsigned long rate);
 644
 645static int clk_core_round_rate_nolock(struct clk_core *core,
 646				      struct clk_rate_request *req);
 647
 648static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 649{
 650	struct clk_core *tmp;
 651	unsigned int i;
 652
 653	/* Optimize for the case where the parent is already the parent. */
 654	if (core->parent == parent)
 655		return true;
 656
 657	for (i = 0; i < core->num_parents; i++) {
 658		tmp = clk_core_get_parent_by_index(core, i);
 659		if (!tmp)
 660			continue;
 661
 662		if (tmp == parent)
 663			return true;
 664	}
 665
 666	return false;
 667}
 668
 669static void
 670clk_core_forward_rate_req(struct clk_core *core,
 671			  const struct clk_rate_request *old_req,
 672			  struct clk_core *parent,
 673			  struct clk_rate_request *req,
 674			  unsigned long parent_rate)
 675{
 676	if (WARN_ON(!clk_core_has_parent(core, parent)))
 677		return;
 678
 679	clk_core_init_rate_req(parent, req, parent_rate);
 680
 681	if (req->min_rate < old_req->min_rate)
 682		req->min_rate = old_req->min_rate;
 683
 684	if (req->max_rate > old_req->max_rate)
 685		req->max_rate = old_req->max_rate;
 686}
 687
 688static int
 689clk_core_determine_rate_no_reparent(struct clk_hw *hw,
 690				    struct clk_rate_request *req)
 691{
 692	struct clk_core *core = hw->core;
 693	struct clk_core *parent = core->parent;
 694	unsigned long best;
 695	int ret;
 696
 697	if (core->flags & CLK_SET_RATE_PARENT) {
 698		struct clk_rate_request parent_req;
 699
 700		if (!parent) {
 701			req->rate = 0;
 702			return 0;
 703		}
 704
 705		clk_core_forward_rate_req(core, req, parent, &parent_req,
 706					  req->rate);
 707
 708		trace_clk_rate_request_start(&parent_req);
 709
 710		ret = clk_core_round_rate_nolock(parent, &parent_req);
 711		if (ret)
 712			return ret;
 713
 714		trace_clk_rate_request_done(&parent_req);
 715
 716		best = parent_req.rate;
 717	} else if (parent) {
 718		best = clk_core_get_rate_nolock(parent);
 719	} else {
 720		best = clk_core_get_rate_nolock(core);
 721	}
 722
 723	req->best_parent_rate = best;
 724	req->rate = best;
 725
 726	return 0;
 727}
 728
 729int clk_mux_determine_rate_flags(struct clk_hw *hw,
 730				 struct clk_rate_request *req,
 731				 unsigned long flags)
 732{
 733	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 734	int i, num_parents, ret;
 735	unsigned long best = 0;
 
 736
 737	/* if NO_REPARENT flag set, pass through to current parent */
 738	if (core->flags & CLK_SET_RATE_NO_REPARENT)
 739		return clk_core_determine_rate_no_reparent(hw, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	/* find the parent that can provide the fastest rate <= rate */
 742	num_parents = core->num_parents;
 743	for (i = 0; i < num_parents; i++) {
 744		unsigned long parent_rate;
 745
 746		parent = clk_core_get_parent_by_index(core, i);
 747		if (!parent)
 748			continue;
 749
 750		if (core->flags & CLK_SET_RATE_PARENT) {
 751			struct clk_rate_request parent_req;
 752
 753			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 754
 755			trace_clk_rate_request_start(&parent_req);
 756
 757			ret = clk_core_round_rate_nolock(parent, &parent_req);
 758			if (ret)
 759				continue;
 760
 761			trace_clk_rate_request_done(&parent_req);
 762
 763			parent_rate = parent_req.rate;
 764		} else {
 765			parent_rate = clk_core_get_rate_nolock(parent);
 766		}
 767
 768		if (mux_is_better_rate(req->rate, parent_rate,
 769				       best, flags)) {
 770			best_parent = parent;
 771			best = parent_rate;
 772		}
 773	}
 774
 775	if (!best_parent)
 776		return -EINVAL;
 777
 778	req->best_parent_hw = best_parent->hw;
 
 
 779	req->best_parent_rate = best;
 780	req->rate = best;
 781
 782	return 0;
 783}
 784EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 785
 786struct clk *__clk_lookup(const char *name)
 787{
 788	struct clk_core *core = clk_core_lookup(name);
 789
 790	return !core ? NULL : core->hw->clk;
 791}
 792
 793static void clk_core_get_boundaries(struct clk_core *core,
 794				    unsigned long *min_rate,
 795				    unsigned long *max_rate)
 796{
 797	struct clk *clk_user;
 798
 799	lockdep_assert_held(&prepare_lock);
 800
 801	*min_rate = core->min_rate;
 802	*max_rate = core->max_rate;
 803
 804	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 805		*min_rate = max(*min_rate, clk_user->min_rate);
 806
 807	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 808		*max_rate = min(*max_rate, clk_user->max_rate);
 809}
 810
 811/*
 812 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 813 * @hw: the hw clk we want to get the range from
 814 * @min_rate: pointer to the variable that will hold the minimum
 815 * @max_rate: pointer to the variable that will hold the maximum
 816 *
 817 * Fills the @min_rate and @max_rate variables with the minimum and
 818 * maximum that clock can reach.
 819 */
 820void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 821			   unsigned long *max_rate)
 822{
 823	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 824}
 825EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 826
 827static bool clk_core_check_boundaries(struct clk_core *core,
 828				      unsigned long min_rate,
 829				      unsigned long max_rate)
 830{
 831	struct clk *user;
 832
 833	lockdep_assert_held(&prepare_lock);
 834
 835	if (min_rate > core->max_rate || max_rate < core->min_rate)
 836		return false;
 837
 838	hlist_for_each_entry(user, &core->clks, clks_node)
 839		if (min_rate > user->max_rate || max_rate < user->min_rate)
 840			return false;
 841
 842	return true;
 843}
 844
 845void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 846			   unsigned long max_rate)
 847{
 848	hw->core->min_rate = min_rate;
 849	hw->core->max_rate = max_rate;
 850}
 851EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 852
 853/*
 854 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 855 * @hw: mux type clk to determine rate on
 856 * @req: rate request, also used to return preferred parent and frequencies
 857 *
 858 * Helper for finding best parent to provide a given frequency. This can be used
 859 * directly as a determine_rate callback (e.g. for a mux), or from a more
 860 * complex clock that may combine a mux with other operations.
 861 *
 862 * Returns: 0 on success, -EERROR value on error
 863 */
 864int __clk_mux_determine_rate(struct clk_hw *hw,
 865			     struct clk_rate_request *req)
 866{
 867	return clk_mux_determine_rate_flags(hw, req, 0);
 868}
 869EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 870
 871int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 872				     struct clk_rate_request *req)
 873{
 874	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 875}
 876EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 877
 878/*
 879 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
 880 * @hw: mux type clk to determine rate on
 881 * @req: rate request, also used to return preferred frequency
 882 *
 883 * Helper for finding best parent rate to provide a given frequency.
 884 * This can be used directly as a determine_rate callback (e.g. for a
 885 * mux), or from a more complex clock that may combine a mux with other
 886 * operations.
 887 *
 888 * Returns: 0 on success, -EERROR value on error
 889 */
 890int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
 891				      struct clk_rate_request *req)
 892{
 893	return clk_core_determine_rate_no_reparent(hw, req);
 894}
 895EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
 896
 897/***        clk api        ***/
 898
 899static void clk_core_rate_unprotect(struct clk_core *core)
 900{
 901	lockdep_assert_held(&prepare_lock);
 902
 903	if (!core)
 904		return;
 905
 906	if (WARN(core->protect_count == 0,
 907	    "%s already unprotected\n", core->name))
 908		return;
 909
 910	if (--core->protect_count > 0)
 911		return;
 912
 913	clk_core_rate_unprotect(core->parent);
 914}
 915
 916static int clk_core_rate_nuke_protect(struct clk_core *core)
 917{
 918	int ret;
 919
 920	lockdep_assert_held(&prepare_lock);
 921
 922	if (!core)
 923		return -EINVAL;
 924
 925	if (core->protect_count == 0)
 926		return 0;
 927
 928	ret = core->protect_count;
 929	core->protect_count = 1;
 930	clk_core_rate_unprotect(core);
 931
 932	return ret;
 933}
 934
 935/**
 936 * clk_rate_exclusive_put - release exclusivity over clock rate control
 937 * @clk: the clk over which the exclusivity is released
 938 *
 939 * clk_rate_exclusive_put() completes a critical section during which a clock
 940 * consumer cannot tolerate any other consumer making any operation on the
 941 * clock which could result in a rate change or rate glitch. Exclusive clocks
 942 * cannot have their rate changed, either directly or indirectly due to changes
 943 * further up the parent chain of clocks. As a result, clocks up parent chain
 944 * also get under exclusive control of the calling consumer.
 945 *
 946 * If exlusivity is claimed more than once on clock, even by the same consumer,
 947 * the rate effectively gets locked as exclusivity can't be preempted.
 948 *
 949 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 950 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 951 * error status.
 952 */
 953void clk_rate_exclusive_put(struct clk *clk)
 954{
 955	if (!clk)
 956		return;
 957
 958	clk_prepare_lock();
 959
 960	/*
 961	 * if there is something wrong with this consumer protect count, stop
 962	 * here before messing with the provider
 963	 */
 964	if (WARN_ON(clk->exclusive_count <= 0))
 965		goto out;
 966
 967	clk_core_rate_unprotect(clk->core);
 968	clk->exclusive_count--;
 969out:
 970	clk_prepare_unlock();
 971}
 972EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 973
 974static void clk_core_rate_protect(struct clk_core *core)
 975{
 976	lockdep_assert_held(&prepare_lock);
 977
 978	if (!core)
 979		return;
 980
 981	if (core->protect_count == 0)
 982		clk_core_rate_protect(core->parent);
 983
 984	core->protect_count++;
 985}
 986
 987static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 988{
 989	lockdep_assert_held(&prepare_lock);
 990
 991	if (!core)
 992		return;
 993
 994	if (count == 0)
 995		return;
 996
 997	clk_core_rate_protect(core);
 998	core->protect_count = count;
 999}
1000
1001/**
1002 * clk_rate_exclusive_get - get exclusivity over the clk rate control
1003 * @clk: the clk over which the exclusity of rate control is requested
1004 *
1005 * clk_rate_exclusive_get() begins a critical section during which a clock
1006 * consumer cannot tolerate any other consumer making any operation on the
1007 * clock which could result in a rate change or rate glitch. Exclusive clocks
1008 * cannot have their rate changed, either directly or indirectly due to changes
1009 * further up the parent chain of clocks. As a result, clocks up parent chain
1010 * also get under exclusive control of the calling consumer.
1011 *
1012 * If exlusivity is claimed more than once on clock, even by the same consumer,
1013 * the rate effectively gets locked as exclusivity can't be preempted.
1014 *
1015 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1016 * clk_rate_exclusive_put(). Calls to this function may sleep.
1017 * Returns 0 on success, -EERROR otherwise
1018 */
1019int clk_rate_exclusive_get(struct clk *clk)
1020{
1021	if (!clk)
1022		return 0;
1023
1024	clk_prepare_lock();
1025	clk_core_rate_protect(clk->core);
1026	clk->exclusive_count++;
1027	clk_prepare_unlock();
1028
1029	return 0;
1030}
1031EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1032
1033static void devm_clk_rate_exclusive_put(void *data)
1034{
1035	struct clk *clk = data;
1036
1037	clk_rate_exclusive_put(clk);
1038}
1039
1040int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1041{
1042	int ret;
1043
1044	ret = clk_rate_exclusive_get(clk);
1045	if (ret)
1046		return ret;
1047
1048	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1049}
1050EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1051
1052static void clk_core_unprepare(struct clk_core *core)
1053{
1054	lockdep_assert_held(&prepare_lock);
1055
1056	if (!core)
1057		return;
1058
1059	if (WARN(core->prepare_count == 0,
1060	    "%s already unprepared\n", core->name))
1061		return;
1062
1063	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1064	    "Unpreparing critical %s\n", core->name))
1065		return;
1066
1067	if (core->flags & CLK_SET_RATE_GATE)
1068		clk_core_rate_unprotect(core);
1069
1070	if (--core->prepare_count > 0)
1071		return;
1072
1073	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1074
1075	trace_clk_unprepare(core);
1076
1077	if (core->ops->unprepare)
1078		core->ops->unprepare(core->hw);
1079
 
 
1080	trace_clk_unprepare_complete(core);
1081	clk_core_unprepare(core->parent);
1082	clk_pm_runtime_put(core);
1083}
1084
1085static void clk_core_unprepare_lock(struct clk_core *core)
1086{
1087	clk_prepare_lock();
1088	clk_core_unprepare(core);
1089	clk_prepare_unlock();
1090}
1091
1092/**
1093 * clk_unprepare - undo preparation of a clock source
1094 * @clk: the clk being unprepared
1095 *
1096 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1097 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1098 * if the operation may sleep.  One example is a clk which is accessed over
1099 * I2c.  In the complex case a clk gate operation may require a fast and a slow
1100 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1101 * exclusive.  In fact clk_disable must be called before clk_unprepare.
1102 */
1103void clk_unprepare(struct clk *clk)
1104{
1105	if (IS_ERR_OR_NULL(clk))
1106		return;
1107
1108	clk_core_unprepare_lock(clk->core);
1109}
1110EXPORT_SYMBOL_GPL(clk_unprepare);
1111
1112static int clk_core_prepare(struct clk_core *core)
1113{
1114	int ret = 0;
1115
1116	lockdep_assert_held(&prepare_lock);
1117
1118	if (!core)
1119		return 0;
1120
1121	if (core->prepare_count == 0) {
1122		ret = clk_pm_runtime_get(core);
1123		if (ret)
1124			return ret;
1125
1126		ret = clk_core_prepare(core->parent);
1127		if (ret)
1128			goto runtime_put;
1129
1130		trace_clk_prepare(core);
1131
1132		if (core->ops->prepare)
1133			ret = core->ops->prepare(core->hw);
1134
1135		trace_clk_prepare_complete(core);
1136
1137		if (ret)
1138			goto unprepare;
1139	}
1140
1141	core->prepare_count++;
1142
1143	/*
1144	 * CLK_SET_RATE_GATE is a special case of clock protection
1145	 * Instead of a consumer claiming exclusive rate control, it is
1146	 * actually the provider which prevents any consumer from making any
1147	 * operation which could result in a rate change or rate glitch while
1148	 * the clock is prepared.
1149	 */
1150	if (core->flags & CLK_SET_RATE_GATE)
1151		clk_core_rate_protect(core);
1152
1153	return 0;
1154unprepare:
1155	clk_core_unprepare(core->parent);
1156runtime_put:
1157	clk_pm_runtime_put(core);
1158	return ret;
1159}
1160
1161static int clk_core_prepare_lock(struct clk_core *core)
1162{
1163	int ret;
1164
1165	clk_prepare_lock();
1166	ret = clk_core_prepare(core);
1167	clk_prepare_unlock();
1168
1169	return ret;
1170}
1171
1172/**
1173 * clk_prepare - prepare a clock source
1174 * @clk: the clk being prepared
1175 *
1176 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1177 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1178 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1179 * the complex case a clk ungate operation may require a fast and a slow part.
1180 * It is this reason that clk_prepare and clk_enable are not mutually
1181 * exclusive.  In fact clk_prepare must be called before clk_enable.
1182 * Returns 0 on success, -EERROR otherwise.
1183 */
1184int clk_prepare(struct clk *clk)
1185{
1186	if (!clk)
1187		return 0;
1188
1189	return clk_core_prepare_lock(clk->core);
1190}
1191EXPORT_SYMBOL_GPL(clk_prepare);
1192
1193static void clk_core_disable(struct clk_core *core)
1194{
1195	lockdep_assert_held(&enable_lock);
1196
1197	if (!core)
1198		return;
1199
1200	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1201		return;
1202
1203	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1204	    "Disabling critical %s\n", core->name))
1205		return;
1206
1207	if (--core->enable_count > 0)
1208		return;
1209
1210	trace_clk_disable(core);
1211
1212	if (core->ops->disable)
1213		core->ops->disable(core->hw);
1214
1215	trace_clk_disable_complete(core);
1216
1217	clk_core_disable(core->parent);
1218}
1219
1220static void clk_core_disable_lock(struct clk_core *core)
1221{
1222	unsigned long flags;
1223
1224	flags = clk_enable_lock();
1225	clk_core_disable(core);
1226	clk_enable_unlock(flags);
1227}
1228
1229/**
1230 * clk_disable - gate a clock
1231 * @clk: the clk being gated
1232 *
1233 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1234 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1235 * clk if the operation is fast and will never sleep.  One example is a
1236 * SoC-internal clk which is controlled via simple register writes.  In the
1237 * complex case a clk gate operation may require a fast and a slow part.  It is
1238 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1239 * In fact clk_disable must be called before clk_unprepare.
1240 */
1241void clk_disable(struct clk *clk)
1242{
1243	if (IS_ERR_OR_NULL(clk))
1244		return;
1245
1246	clk_core_disable_lock(clk->core);
1247}
1248EXPORT_SYMBOL_GPL(clk_disable);
1249
1250static int clk_core_enable(struct clk_core *core)
1251{
1252	int ret = 0;
1253
1254	lockdep_assert_held(&enable_lock);
1255
1256	if (!core)
1257		return 0;
1258
1259	if (WARN(core->prepare_count == 0,
1260	    "Enabling unprepared %s\n", core->name))
1261		return -ESHUTDOWN;
1262
1263	if (core->enable_count == 0) {
1264		ret = clk_core_enable(core->parent);
1265
1266		if (ret)
1267			return ret;
1268
1269		trace_clk_enable(core);
1270
1271		if (core->ops->enable)
1272			ret = core->ops->enable(core->hw);
1273
1274		trace_clk_enable_complete(core);
1275
1276		if (ret) {
1277			clk_core_disable(core->parent);
1278			return ret;
1279		}
1280	}
1281
1282	core->enable_count++;
1283	return 0;
1284}
1285
1286static int clk_core_enable_lock(struct clk_core *core)
1287{
1288	unsigned long flags;
1289	int ret;
1290
1291	flags = clk_enable_lock();
1292	ret = clk_core_enable(core);
1293	clk_enable_unlock(flags);
1294
1295	return ret;
1296}
1297
1298/**
1299 * clk_gate_restore_context - restore context for poweroff
1300 * @hw: the clk_hw pointer of clock whose state is to be restored
1301 *
1302 * The clock gate restore context function enables or disables
1303 * the gate clocks based on the enable_count. This is done in cases
1304 * where the clock context is lost and based on the enable_count
1305 * the clock either needs to be enabled/disabled. This
1306 * helps restore the state of gate clocks.
1307 */
1308void clk_gate_restore_context(struct clk_hw *hw)
1309{
1310	struct clk_core *core = hw->core;
1311
1312	if (core->enable_count)
1313		core->ops->enable(hw);
1314	else
1315		core->ops->disable(hw);
1316}
1317EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1318
1319static int clk_core_save_context(struct clk_core *core)
1320{
1321	struct clk_core *child;
1322	int ret = 0;
1323
1324	hlist_for_each_entry(child, &core->children, child_node) {
1325		ret = clk_core_save_context(child);
1326		if (ret < 0)
1327			return ret;
1328	}
1329
1330	if (core->ops && core->ops->save_context)
1331		ret = core->ops->save_context(core->hw);
1332
1333	return ret;
1334}
1335
1336static void clk_core_restore_context(struct clk_core *core)
1337{
1338	struct clk_core *child;
1339
1340	if (core->ops && core->ops->restore_context)
1341		core->ops->restore_context(core->hw);
1342
1343	hlist_for_each_entry(child, &core->children, child_node)
1344		clk_core_restore_context(child);
1345}
1346
1347/**
1348 * clk_save_context - save clock context for poweroff
1349 *
1350 * Saves the context of the clock register for powerstates in which the
1351 * contents of the registers will be lost. Occurs deep within the suspend
1352 * code.  Returns 0 on success.
1353 */
1354int clk_save_context(void)
1355{
1356	struct clk_core *clk;
1357	int ret;
1358
1359	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1360		ret = clk_core_save_context(clk);
1361		if (ret < 0)
1362			return ret;
1363	}
1364
1365	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1366		ret = clk_core_save_context(clk);
1367		if (ret < 0)
1368			return ret;
1369	}
1370
1371	return 0;
1372}
1373EXPORT_SYMBOL_GPL(clk_save_context);
1374
1375/**
1376 * clk_restore_context - restore clock context after poweroff
1377 *
1378 * Restore the saved clock context upon resume.
1379 *
1380 */
1381void clk_restore_context(void)
1382{
1383	struct clk_core *core;
1384
1385	hlist_for_each_entry(core, &clk_root_list, child_node)
1386		clk_core_restore_context(core);
1387
1388	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1389		clk_core_restore_context(core);
1390}
1391EXPORT_SYMBOL_GPL(clk_restore_context);
1392
1393/**
1394 * clk_enable - ungate a clock
1395 * @clk: the clk being ungated
1396 *
1397 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1398 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1399 * if the operation will never sleep.  One example is a SoC-internal clk which
1400 * is controlled via simple register writes.  In the complex case a clk ungate
1401 * operation may require a fast and a slow part.  It is this reason that
1402 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1403 * must be called before clk_enable.  Returns 0 on success, -EERROR
1404 * otherwise.
1405 */
1406int clk_enable(struct clk *clk)
1407{
1408	if (!clk)
1409		return 0;
1410
1411	return clk_core_enable_lock(clk->core);
1412}
1413EXPORT_SYMBOL_GPL(clk_enable);
1414
1415/**
1416 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1417 * @clk: clock source
1418 *
1419 * Returns true if clk_prepare() implicitly enables the clock, effectively
1420 * making clk_enable()/clk_disable() no-ops, false otherwise.
1421 *
1422 * This is of interest mainly to power management code where actually
1423 * disabling the clock also requires unpreparing it to have any material
1424 * effect.
1425 *
1426 * Regardless of the value returned here, the caller must always invoke
1427 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1428 * to be right.
1429 */
1430bool clk_is_enabled_when_prepared(struct clk *clk)
1431{
1432	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1433}
1434EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1435
1436static int clk_core_prepare_enable(struct clk_core *core)
1437{
1438	int ret;
1439
1440	ret = clk_core_prepare_lock(core);
1441	if (ret)
1442		return ret;
1443
1444	ret = clk_core_enable_lock(core);
1445	if (ret)
1446		clk_core_unprepare_lock(core);
1447
1448	return ret;
1449}
1450
1451static void clk_core_disable_unprepare(struct clk_core *core)
1452{
1453	clk_core_disable_lock(core);
1454	clk_core_unprepare_lock(core);
1455}
1456
1457static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1458{
1459	struct clk_core *child;
1460
1461	lockdep_assert_held(&prepare_lock);
1462
1463	hlist_for_each_entry(child, &core->children, child_node)
1464		clk_unprepare_unused_subtree(child);
1465
1466	if (core->prepare_count)
1467		return;
1468
1469	if (core->flags & CLK_IGNORE_UNUSED)
1470		return;
1471
 
 
 
1472	if (clk_core_is_prepared(core)) {
1473		trace_clk_unprepare(core);
1474		if (core->ops->unprepare_unused)
1475			core->ops->unprepare_unused(core->hw);
1476		else if (core->ops->unprepare)
1477			core->ops->unprepare(core->hw);
1478		trace_clk_unprepare_complete(core);
1479	}
 
 
1480}
1481
1482static void __init clk_disable_unused_subtree(struct clk_core *core)
1483{
1484	struct clk_core *child;
1485	unsigned long flags;
1486
1487	lockdep_assert_held(&prepare_lock);
1488
1489	hlist_for_each_entry(child, &core->children, child_node)
1490		clk_disable_unused_subtree(child);
1491
1492	if (core->flags & CLK_OPS_PARENT_ENABLE)
1493		clk_core_prepare_enable(core->parent);
1494
 
 
 
1495	flags = clk_enable_lock();
1496
1497	if (core->enable_count)
1498		goto unlock_out;
1499
1500	if (core->flags & CLK_IGNORE_UNUSED)
1501		goto unlock_out;
1502
1503	/*
1504	 * some gate clocks have special needs during the disable-unused
1505	 * sequence.  call .disable_unused if available, otherwise fall
1506	 * back to .disable
1507	 */
1508	if (clk_core_is_enabled(core)) {
1509		trace_clk_disable(core);
1510		if (core->ops->disable_unused)
1511			core->ops->disable_unused(core->hw);
1512		else if (core->ops->disable)
1513			core->ops->disable(core->hw);
1514		trace_clk_disable_complete(core);
1515	}
1516
1517unlock_out:
1518	clk_enable_unlock(flags);
 
 
1519	if (core->flags & CLK_OPS_PARENT_ENABLE)
1520		clk_core_disable_unprepare(core->parent);
1521}
1522
1523static bool clk_ignore_unused __initdata;
1524static int __init clk_ignore_unused_setup(char *__unused)
1525{
1526	clk_ignore_unused = true;
1527	return 1;
1528}
1529__setup("clk_ignore_unused", clk_ignore_unused_setup);
1530
1531static int __init clk_disable_unused(void)
1532{
1533	struct clk_core *core;
1534	int ret;
1535
1536	if (clk_ignore_unused) {
1537		pr_warn("clk: Not disabling unused clocks\n");
1538		return 0;
1539	}
1540
1541	pr_info("clk: Disabling unused clocks\n");
1542
1543	ret = clk_pm_runtime_get_all();
1544	if (ret)
1545		return ret;
1546	/*
1547	 * Grab the prepare lock to keep the clk topology stable while iterating
1548	 * over clks.
1549	 */
1550	clk_prepare_lock();
1551
1552	hlist_for_each_entry(core, &clk_root_list, child_node)
1553		clk_disable_unused_subtree(core);
1554
1555	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556		clk_disable_unused_subtree(core);
1557
1558	hlist_for_each_entry(core, &clk_root_list, child_node)
1559		clk_unprepare_unused_subtree(core);
1560
1561	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1562		clk_unprepare_unused_subtree(core);
1563
1564	clk_prepare_unlock();
1565
1566	clk_pm_runtime_put_all();
1567
1568	return 0;
1569}
1570late_initcall_sync(clk_disable_unused);
1571
1572static int clk_core_determine_round_nolock(struct clk_core *core,
1573					   struct clk_rate_request *req)
1574{
1575	long rate;
1576
1577	lockdep_assert_held(&prepare_lock);
1578
1579	if (!core)
1580		return 0;
1581
1582	/*
1583	 * Some clock providers hand-craft their clk_rate_requests and
1584	 * might not fill min_rate and max_rate.
1585	 *
1586	 * If it's the case, clamping the rate is equivalent to setting
1587	 * the rate to 0 which is bad. Skip the clamping but complain so
1588	 * that it gets fixed, hopefully.
1589	 */
1590	if (!req->min_rate && !req->max_rate)
1591		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1592			__func__, core->name);
1593	else
1594		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1595
1596	/*
1597	 * At this point, core protection will be disabled
1598	 * - if the provider is not protected at all
1599	 * - if the calling consumer is the only one which has exclusivity
1600	 *   over the provider
1601	 */
1602	if (clk_core_rate_is_protected(core)) {
1603		req->rate = core->rate;
1604	} else if (core->ops->determine_rate) {
1605		return core->ops->determine_rate(core->hw, req);
1606	} else if (core->ops->round_rate) {
1607		rate = core->ops->round_rate(core->hw, req->rate,
1608					     &req->best_parent_rate);
1609		if (rate < 0)
1610			return rate;
1611
1612		req->rate = rate;
1613	} else {
1614		return -EINVAL;
1615	}
1616
1617	return 0;
1618}
1619
1620static void clk_core_init_rate_req(struct clk_core * const core,
1621				   struct clk_rate_request *req,
1622				   unsigned long rate)
1623{
1624	struct clk_core *parent;
1625
1626	if (WARN_ON(!req))
1627		return;
1628
1629	memset(req, 0, sizeof(*req));
1630	req->max_rate = ULONG_MAX;
1631
1632	if (!core)
1633		return;
1634
1635	req->core = core;
1636	req->rate = rate;
1637	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1638
1639	parent = core->parent;
1640	if (parent) {
1641		req->best_parent_hw = parent->hw;
1642		req->best_parent_rate = parent->rate;
1643	} else {
1644		req->best_parent_hw = NULL;
1645		req->best_parent_rate = 0;
1646	}
1647}
1648
1649/**
1650 * clk_hw_init_rate_request - Initializes a clk_rate_request
1651 * @hw: the clk for which we want to submit a rate request
1652 * @req: the clk_rate_request structure we want to initialise
1653 * @rate: the rate which is to be requested
1654 *
1655 * Initializes a clk_rate_request structure to submit to
1656 * __clk_determine_rate() or similar functions.
1657 */
1658void clk_hw_init_rate_request(const struct clk_hw *hw,
1659			      struct clk_rate_request *req,
1660			      unsigned long rate)
1661{
1662	if (WARN_ON(!hw || !req))
1663		return;
1664
1665	clk_core_init_rate_req(hw->core, req, rate);
1666}
1667EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1668
1669/**
1670 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1671 * @hw: the original clock that got the rate request
1672 * @old_req: the original clk_rate_request structure we want to forward
1673 * @parent: the clk we want to forward @old_req to
1674 * @req: the clk_rate_request structure we want to initialise
1675 * @parent_rate: The rate which is to be requested to @parent
1676 *
1677 * Initializes a clk_rate_request structure to submit to a clock parent
1678 * in __clk_determine_rate() or similar functions.
1679 */
1680void clk_hw_forward_rate_request(const struct clk_hw *hw,
1681				 const struct clk_rate_request *old_req,
1682				 const struct clk_hw *parent,
1683				 struct clk_rate_request *req,
1684				 unsigned long parent_rate)
1685{
1686	if (WARN_ON(!hw || !old_req || !parent || !req))
1687		return;
1688
1689	clk_core_forward_rate_req(hw->core, old_req,
1690				  parent->core, req,
1691				  parent_rate);
1692}
1693EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1694
1695static bool clk_core_can_round(struct clk_core * const core)
1696{
1697	return core->ops->determine_rate || core->ops->round_rate;
1698}
1699
1700static int clk_core_round_rate_nolock(struct clk_core *core,
1701				      struct clk_rate_request *req)
1702{
1703	int ret;
1704
1705	lockdep_assert_held(&prepare_lock);
1706
1707	if (!core) {
1708		req->rate = 0;
1709		return 0;
1710	}
1711
 
 
1712	if (clk_core_can_round(core))
1713		return clk_core_determine_round_nolock(core, req);
1714
1715	if (core->flags & CLK_SET_RATE_PARENT) {
1716		struct clk_rate_request parent_req;
1717
1718		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1719
1720		trace_clk_rate_request_start(&parent_req);
1721
1722		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1723		if (ret)
1724			return ret;
1725
1726		trace_clk_rate_request_done(&parent_req);
1727
1728		req->best_parent_rate = parent_req.rate;
1729		req->rate = parent_req.rate;
1730
1731		return 0;
1732	}
1733
1734	req->rate = core->rate;
1735	return 0;
1736}
1737
1738/**
1739 * __clk_determine_rate - get the closest rate actually supported by a clock
1740 * @hw: determine the rate of this clock
1741 * @req: target rate request
1742 *
1743 * Useful for clk_ops such as .set_rate and .determine_rate.
1744 */
1745int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1746{
1747	if (!hw) {
1748		req->rate = 0;
1749		return 0;
1750	}
1751
1752	return clk_core_round_rate_nolock(hw->core, req);
1753}
1754EXPORT_SYMBOL_GPL(__clk_determine_rate);
1755
1756/**
1757 * clk_hw_round_rate() - round the given rate for a hw clk
1758 * @hw: the hw clk for which we are rounding a rate
1759 * @rate: the rate which is to be rounded
1760 *
1761 * Takes in a rate as input and rounds it to a rate that the clk can actually
1762 * use.
1763 *
1764 * Context: prepare_lock must be held.
1765 *          For clk providers to call from within clk_ops such as .round_rate,
1766 *          .determine_rate.
1767 *
1768 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1769 *         else returns the parent rate.
1770 */
1771unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1772{
1773	int ret;
1774	struct clk_rate_request req;
1775
1776	clk_core_init_rate_req(hw->core, &req, rate);
1777
1778	trace_clk_rate_request_start(&req);
1779
1780	ret = clk_core_round_rate_nolock(hw->core, &req);
1781	if (ret)
1782		return 0;
1783
1784	trace_clk_rate_request_done(&req);
1785
1786	return req.rate;
1787}
1788EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1789
1790/**
1791 * clk_round_rate - round the given rate for a clk
1792 * @clk: the clk for which we are rounding a rate
1793 * @rate: the rate which is to be rounded
1794 *
1795 * Takes in a rate as input and rounds it to a rate that the clk can actually
1796 * use which is then returned.  If clk doesn't support round_rate operation
1797 * then the parent rate is returned.
1798 */
1799long clk_round_rate(struct clk *clk, unsigned long rate)
1800{
1801	struct clk_rate_request req;
1802	int ret;
1803
1804	if (!clk)
1805		return 0;
1806
1807	clk_prepare_lock();
1808
1809	if (clk->exclusive_count)
1810		clk_core_rate_unprotect(clk->core);
1811
1812	clk_core_init_rate_req(clk->core, &req, rate);
1813
1814	trace_clk_rate_request_start(&req);
1815
1816	ret = clk_core_round_rate_nolock(clk->core, &req);
1817
1818	trace_clk_rate_request_done(&req);
1819
1820	if (clk->exclusive_count)
1821		clk_core_rate_protect(clk->core);
1822
1823	clk_prepare_unlock();
1824
1825	if (ret)
1826		return ret;
1827
1828	return req.rate;
1829}
1830EXPORT_SYMBOL_GPL(clk_round_rate);
1831
1832/**
1833 * __clk_notify - call clk notifier chain
1834 * @core: clk that is changing rate
1835 * @msg: clk notifier type (see include/linux/clk.h)
1836 * @old_rate: old clk rate
1837 * @new_rate: new clk rate
1838 *
1839 * Triggers a notifier call chain on the clk rate-change notification
1840 * for 'clk'.  Passes a pointer to the struct clk and the previous
1841 * and current rates to the notifier callback.  Intended to be called by
1842 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1843 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1844 * a driver returns that.
1845 */
1846static int __clk_notify(struct clk_core *core, unsigned long msg,
1847		unsigned long old_rate, unsigned long new_rate)
1848{
1849	struct clk_notifier *cn;
1850	struct clk_notifier_data cnd;
1851	int ret = NOTIFY_DONE;
1852
1853	cnd.old_rate = old_rate;
1854	cnd.new_rate = new_rate;
1855
1856	list_for_each_entry(cn, &clk_notifier_list, node) {
1857		if (cn->clk->core == core) {
1858			cnd.clk = cn->clk;
1859			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1860					&cnd);
1861			if (ret & NOTIFY_STOP_MASK)
1862				return ret;
1863		}
1864	}
1865
1866	return ret;
1867}
1868
1869/**
1870 * __clk_recalc_accuracies
1871 * @core: first clk in the subtree
1872 *
1873 * Walks the subtree of clks starting with clk and recalculates accuracies as
1874 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1875 * callback then it is assumed that the clock will take on the accuracy of its
1876 * parent.
1877 */
1878static void __clk_recalc_accuracies(struct clk_core *core)
1879{
1880	unsigned long parent_accuracy = 0;
1881	struct clk_core *child;
1882
1883	lockdep_assert_held(&prepare_lock);
1884
1885	if (core->parent)
1886		parent_accuracy = core->parent->accuracy;
1887
1888	if (core->ops->recalc_accuracy)
1889		core->accuracy = core->ops->recalc_accuracy(core->hw,
1890							  parent_accuracy);
1891	else
1892		core->accuracy = parent_accuracy;
1893
1894	hlist_for_each_entry(child, &core->children, child_node)
1895		__clk_recalc_accuracies(child);
1896}
1897
1898static long clk_core_get_accuracy_recalc(struct clk_core *core)
1899{
1900	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1901		__clk_recalc_accuracies(core);
1902
1903	return clk_core_get_accuracy_no_lock(core);
1904}
1905
1906/**
1907 * clk_get_accuracy - return the accuracy of clk
1908 * @clk: the clk whose accuracy is being returned
1909 *
1910 * Simply returns the cached accuracy of the clk, unless
1911 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1912 * issued.
1913 * If clk is NULL then returns 0.
1914 */
1915long clk_get_accuracy(struct clk *clk)
1916{
1917	long accuracy;
1918
1919	if (!clk)
1920		return 0;
1921
1922	clk_prepare_lock();
1923	accuracy = clk_core_get_accuracy_recalc(clk->core);
1924	clk_prepare_unlock();
1925
1926	return accuracy;
1927}
1928EXPORT_SYMBOL_GPL(clk_get_accuracy);
1929
1930static unsigned long clk_recalc(struct clk_core *core,
1931				unsigned long parent_rate)
1932{
1933	unsigned long rate = parent_rate;
1934
1935	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1936		rate = core->ops->recalc_rate(core->hw, parent_rate);
1937		clk_pm_runtime_put(core);
1938	}
1939	return rate;
1940}
1941
1942/**
1943 * __clk_recalc_rates
1944 * @core: first clk in the subtree
1945 * @update_req: Whether req_rate should be updated with the new rate
1946 * @msg: notification type (see include/linux/clk.h)
1947 *
1948 * Walks the subtree of clks starting with clk and recalculates rates as it
1949 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1950 * it is assumed that the clock will take on the rate of its parent.
1951 *
1952 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1953 * if necessary.
1954 */
1955static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1956			       unsigned long msg)
1957{
1958	unsigned long old_rate;
1959	unsigned long parent_rate = 0;
1960	struct clk_core *child;
1961
1962	lockdep_assert_held(&prepare_lock);
1963
1964	old_rate = core->rate;
1965
1966	if (core->parent)
1967		parent_rate = core->parent->rate;
1968
1969	core->rate = clk_recalc(core, parent_rate);
1970	if (update_req)
1971		core->req_rate = core->rate;
1972
1973	/*
1974	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1975	 * & ABORT_RATE_CHANGE notifiers
1976	 */
1977	if (core->notifier_count && msg)
1978		__clk_notify(core, msg, old_rate, core->rate);
1979
1980	hlist_for_each_entry(child, &core->children, child_node)
1981		__clk_recalc_rates(child, update_req, msg);
1982}
1983
1984static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1985{
1986	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1987		__clk_recalc_rates(core, false, 0);
1988
1989	return clk_core_get_rate_nolock(core);
1990}
1991
1992/**
1993 * clk_get_rate - return the rate of clk
1994 * @clk: the clk whose rate is being returned
1995 *
1996 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1997 * is set, which means a recalc_rate will be issued. Can be called regardless of
1998 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1999 * 0.
2000 */
2001unsigned long clk_get_rate(struct clk *clk)
2002{
2003	unsigned long rate;
2004
2005	if (!clk)
2006		return 0;
2007
2008	clk_prepare_lock();
2009	rate = clk_core_get_rate_recalc(clk->core);
2010	clk_prepare_unlock();
2011
2012	return rate;
2013}
2014EXPORT_SYMBOL_GPL(clk_get_rate);
2015
2016static int clk_fetch_parent_index(struct clk_core *core,
2017				  struct clk_core *parent)
2018{
2019	int i;
2020
2021	if (!parent)
2022		return -EINVAL;
2023
2024	for (i = 0; i < core->num_parents; i++) {
2025		/* Found it first try! */
2026		if (core->parents[i].core == parent)
2027			return i;
2028
2029		/* Something else is here, so keep looking */
2030		if (core->parents[i].core)
2031			continue;
2032
2033		/* Maybe core hasn't been cached but the hw is all we know? */
2034		if (core->parents[i].hw) {
2035			if (core->parents[i].hw == parent->hw)
2036				break;
2037
2038			/* Didn't match, but we're expecting a clk_hw */
2039			continue;
2040		}
2041
2042		/* Maybe it hasn't been cached (clk_set_parent() path) */
2043		if (parent == clk_core_get(core, i))
2044			break;
2045
2046		/* Fallback to comparing globally unique names */
2047		if (core->parents[i].name &&
2048		    !strcmp(parent->name, core->parents[i].name))
2049			break;
2050	}
2051
2052	if (i == core->num_parents)
2053		return -EINVAL;
2054
2055	core->parents[i].core = parent;
2056	return i;
2057}
2058
2059/**
2060 * clk_hw_get_parent_index - return the index of the parent clock
2061 * @hw: clk_hw associated with the clk being consumed
2062 *
2063 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2064 * clock does not have a current parent.
2065 */
2066int clk_hw_get_parent_index(struct clk_hw *hw)
2067{
2068	struct clk_hw *parent = clk_hw_get_parent(hw);
2069
2070	if (WARN_ON(parent == NULL))
2071		return -EINVAL;
2072
2073	return clk_fetch_parent_index(hw->core, parent->core);
2074}
2075EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2076
2077/*
2078 * Update the orphan status of @core and all its children.
2079 */
2080static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2081{
2082	struct clk_core *child;
2083
2084	core->orphan = is_orphan;
2085
2086	hlist_for_each_entry(child, &core->children, child_node)
2087		clk_core_update_orphan_status(child, is_orphan);
2088}
2089
2090static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2091{
2092	bool was_orphan = core->orphan;
2093
2094	hlist_del(&core->child_node);
2095
2096	if (new_parent) {
2097		bool becomes_orphan = new_parent->orphan;
2098
2099		/* avoid duplicate POST_RATE_CHANGE notifications */
2100		if (new_parent->new_child == core)
2101			new_parent->new_child = NULL;
2102
2103		hlist_add_head(&core->child_node, &new_parent->children);
2104
2105		if (was_orphan != becomes_orphan)
2106			clk_core_update_orphan_status(core, becomes_orphan);
2107	} else {
2108		hlist_add_head(&core->child_node, &clk_orphan_list);
2109		if (!was_orphan)
2110			clk_core_update_orphan_status(core, true);
2111	}
2112
2113	core->parent = new_parent;
2114}
2115
2116static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2117					   struct clk_core *parent)
2118{
2119	unsigned long flags;
2120	struct clk_core *old_parent = core->parent;
2121
2122	/*
2123	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2124	 *
2125	 * 2. Migrate prepare state between parents and prevent race with
2126	 * clk_enable().
2127	 *
2128	 * If the clock is not prepared, then a race with
2129	 * clk_enable/disable() is impossible since we already have the
2130	 * prepare lock (future calls to clk_enable() need to be preceded by
2131	 * a clk_prepare()).
2132	 *
2133	 * If the clock is prepared, migrate the prepared state to the new
2134	 * parent and also protect against a race with clk_enable() by
2135	 * forcing the clock and the new parent on.  This ensures that all
2136	 * future calls to clk_enable() are practically NOPs with respect to
2137	 * hardware and software states.
2138	 *
2139	 * See also: Comment for clk_set_parent() below.
2140	 */
2141
2142	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2143	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2144		clk_core_prepare_enable(old_parent);
2145		clk_core_prepare_enable(parent);
2146	}
2147
2148	/* migrate prepare count if > 0 */
2149	if (core->prepare_count) {
2150		clk_core_prepare_enable(parent);
2151		clk_core_enable_lock(core);
2152	}
2153
2154	/* update the clk tree topology */
2155	flags = clk_enable_lock();
2156	clk_reparent(core, parent);
2157	clk_enable_unlock(flags);
2158
2159	return old_parent;
2160}
2161
2162static void __clk_set_parent_after(struct clk_core *core,
2163				   struct clk_core *parent,
2164				   struct clk_core *old_parent)
2165{
2166	/*
2167	 * Finish the migration of prepare state and undo the changes done
2168	 * for preventing a race with clk_enable().
2169	 */
2170	if (core->prepare_count) {
2171		clk_core_disable_lock(core);
2172		clk_core_disable_unprepare(old_parent);
2173	}
2174
2175	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2176	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2177		clk_core_disable_unprepare(parent);
2178		clk_core_disable_unprepare(old_parent);
2179	}
2180}
2181
2182static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2183			    u8 p_index)
2184{
2185	unsigned long flags;
2186	int ret = 0;
2187	struct clk_core *old_parent;
2188
2189	old_parent = __clk_set_parent_before(core, parent);
2190
2191	trace_clk_set_parent(core, parent);
2192
2193	/* change clock input source */
2194	if (parent && core->ops->set_parent)
2195		ret = core->ops->set_parent(core->hw, p_index);
2196
2197	trace_clk_set_parent_complete(core, parent);
2198
2199	if (ret) {
2200		flags = clk_enable_lock();
2201		clk_reparent(core, old_parent);
2202		clk_enable_unlock(flags);
2203
2204		__clk_set_parent_after(core, old_parent, parent);
2205
2206		return ret;
2207	}
2208
2209	__clk_set_parent_after(core, parent, old_parent);
2210
2211	return 0;
2212}
2213
2214/**
2215 * __clk_speculate_rates
2216 * @core: first clk in the subtree
2217 * @parent_rate: the "future" rate of clk's parent
2218 *
2219 * Walks the subtree of clks starting with clk, speculating rates as it
2220 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2221 *
2222 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2223 * pre-rate change notifications and returns early if no clks in the
2224 * subtree have subscribed to the notifications.  Note that if a clk does not
2225 * implement the .recalc_rate callback then it is assumed that the clock will
2226 * take on the rate of its parent.
2227 */
2228static int __clk_speculate_rates(struct clk_core *core,
2229				 unsigned long parent_rate)
2230{
2231	struct clk_core *child;
2232	unsigned long new_rate;
2233	int ret = NOTIFY_DONE;
2234
2235	lockdep_assert_held(&prepare_lock);
2236
2237	new_rate = clk_recalc(core, parent_rate);
2238
2239	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2240	if (core->notifier_count)
2241		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2242
2243	if (ret & NOTIFY_STOP_MASK) {
2244		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2245				__func__, core->name, ret);
2246		goto out;
2247	}
2248
2249	hlist_for_each_entry(child, &core->children, child_node) {
2250		ret = __clk_speculate_rates(child, new_rate);
2251		if (ret & NOTIFY_STOP_MASK)
2252			break;
2253	}
2254
2255out:
2256	return ret;
2257}
2258
2259static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2260			     struct clk_core *new_parent, u8 p_index)
2261{
2262	struct clk_core *child;
2263
2264	core->new_rate = new_rate;
2265	core->new_parent = new_parent;
2266	core->new_parent_index = p_index;
2267	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2268	core->new_child = NULL;
2269	if (new_parent && new_parent != core->parent)
2270		new_parent->new_child = core;
2271
2272	hlist_for_each_entry(child, &core->children, child_node) {
2273		child->new_rate = clk_recalc(child, new_rate);
2274		clk_calc_subtree(child, child->new_rate, NULL, 0);
2275	}
2276}
2277
2278/*
2279 * calculate the new rates returning the topmost clock that has to be
2280 * changed.
2281 */
2282static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2283					   unsigned long rate)
2284{
2285	struct clk_core *top = core;
2286	struct clk_core *old_parent, *parent;
2287	unsigned long best_parent_rate = 0;
2288	unsigned long new_rate;
2289	unsigned long min_rate;
2290	unsigned long max_rate;
2291	int p_index = 0;
2292	long ret;
2293
2294	/* sanity */
2295	if (IS_ERR_OR_NULL(core))
2296		return NULL;
2297
2298	/* save parent rate, if it exists */
2299	parent = old_parent = core->parent;
2300	if (parent)
2301		best_parent_rate = parent->rate;
2302
2303	clk_core_get_boundaries(core, &min_rate, &max_rate);
2304
2305	/* find the closest rate and parent clk/rate */
2306	if (clk_core_can_round(core)) {
2307		struct clk_rate_request req;
2308
2309		clk_core_init_rate_req(core, &req, rate);
 
 
2310
2311		trace_clk_rate_request_start(&req);
2312
2313		ret = clk_core_determine_round_nolock(core, &req);
2314		if (ret < 0)
2315			return NULL;
2316
2317		trace_clk_rate_request_done(&req);
2318
2319		best_parent_rate = req.best_parent_rate;
2320		new_rate = req.rate;
2321		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2322
2323		if (new_rate < min_rate || new_rate > max_rate)
2324			return NULL;
2325	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2326		/* pass-through clock without adjustable parent */
2327		core->new_rate = core->rate;
2328		return NULL;
2329	} else {
2330		/* pass-through clock with adjustable parent */
2331		top = clk_calc_new_rates(parent, rate);
2332		new_rate = parent->new_rate;
2333		goto out;
2334	}
2335
2336	/* some clocks must be gated to change parent */
2337	if (parent != old_parent &&
2338	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2339		pr_debug("%s: %s not gated but wants to reparent\n",
2340			 __func__, core->name);
2341		return NULL;
2342	}
2343
2344	/* try finding the new parent index */
2345	if (parent && core->num_parents > 1) {
2346		p_index = clk_fetch_parent_index(core, parent);
2347		if (p_index < 0) {
2348			pr_debug("%s: clk %s can not be parent of clk %s\n",
2349				 __func__, parent->name, core->name);
2350			return NULL;
2351		}
2352	}
2353
2354	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2355	    best_parent_rate != parent->rate)
2356		top = clk_calc_new_rates(parent, best_parent_rate);
2357
2358out:
2359	clk_calc_subtree(core, new_rate, parent, p_index);
2360
2361	return top;
2362}
2363
2364/*
2365 * Notify about rate changes in a subtree. Always walk down the whole tree
2366 * so that in case of an error we can walk down the whole tree again and
2367 * abort the change.
2368 */
2369static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2370						  unsigned long event)
2371{
2372	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2373	int ret = NOTIFY_DONE;
2374
2375	if (core->rate == core->new_rate)
2376		return NULL;
2377
2378	if (core->notifier_count) {
2379		ret = __clk_notify(core, event, core->rate, core->new_rate);
2380		if (ret & NOTIFY_STOP_MASK)
2381			fail_clk = core;
2382	}
2383
2384	hlist_for_each_entry(child, &core->children, child_node) {
2385		/* Skip children who will be reparented to another clock */
2386		if (child->new_parent && child->new_parent != core)
2387			continue;
2388		tmp_clk = clk_propagate_rate_change(child, event);
2389		if (tmp_clk)
2390			fail_clk = tmp_clk;
2391	}
2392
2393	/* handle the new child who might not be in core->children yet */
2394	if (core->new_child) {
2395		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2396		if (tmp_clk)
2397			fail_clk = tmp_clk;
2398	}
2399
2400	return fail_clk;
2401}
2402
2403/*
2404 * walk down a subtree and set the new rates notifying the rate
2405 * change on the way
2406 */
2407static void clk_change_rate(struct clk_core *core)
2408{
2409	struct clk_core *child;
2410	struct hlist_node *tmp;
2411	unsigned long old_rate;
2412	unsigned long best_parent_rate = 0;
2413	bool skip_set_rate = false;
2414	struct clk_core *old_parent;
2415	struct clk_core *parent = NULL;
2416
2417	old_rate = core->rate;
2418
2419	if (core->new_parent) {
2420		parent = core->new_parent;
2421		best_parent_rate = core->new_parent->rate;
2422	} else if (core->parent) {
2423		parent = core->parent;
2424		best_parent_rate = core->parent->rate;
2425	}
2426
2427	if (clk_pm_runtime_get(core))
2428		return;
2429
2430	if (core->flags & CLK_SET_RATE_UNGATE) {
 
 
2431		clk_core_prepare(core);
2432		clk_core_enable_lock(core);
 
 
2433	}
2434
2435	if (core->new_parent && core->new_parent != core->parent) {
2436		old_parent = __clk_set_parent_before(core, core->new_parent);
2437		trace_clk_set_parent(core, core->new_parent);
2438
2439		if (core->ops->set_rate_and_parent) {
2440			skip_set_rate = true;
2441			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2442					best_parent_rate,
2443					core->new_parent_index);
2444		} else if (core->ops->set_parent) {
2445			core->ops->set_parent(core->hw, core->new_parent_index);
2446		}
2447
2448		trace_clk_set_parent_complete(core, core->new_parent);
2449		__clk_set_parent_after(core, core->new_parent, old_parent);
2450	}
2451
2452	if (core->flags & CLK_OPS_PARENT_ENABLE)
2453		clk_core_prepare_enable(parent);
2454
2455	trace_clk_set_rate(core, core->new_rate);
2456
2457	if (!skip_set_rate && core->ops->set_rate)
2458		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2459
2460	trace_clk_set_rate_complete(core, core->new_rate);
2461
2462	core->rate = clk_recalc(core, best_parent_rate);
2463
2464	if (core->flags & CLK_SET_RATE_UNGATE) {
2465		clk_core_disable_lock(core);
 
 
 
 
2466		clk_core_unprepare(core);
2467	}
2468
2469	if (core->flags & CLK_OPS_PARENT_ENABLE)
2470		clk_core_disable_unprepare(parent);
2471
2472	if (core->notifier_count && old_rate != core->rate)
2473		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2474
2475	if (core->flags & CLK_RECALC_NEW_RATES)
2476		(void)clk_calc_new_rates(core, core->new_rate);
2477
2478	/*
2479	 * Use safe iteration, as change_rate can actually swap parents
2480	 * for certain clock types.
2481	 */
2482	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2483		/* Skip children who will be reparented to another clock */
2484		if (child->new_parent && child->new_parent != core)
2485			continue;
2486		clk_change_rate(child);
2487	}
2488
2489	/* handle the new child who might not be in core->children yet */
2490	if (core->new_child)
2491		clk_change_rate(core->new_child);
2492
2493	clk_pm_runtime_put(core);
2494}
2495
2496static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2497						     unsigned long req_rate)
2498{
2499	int ret, cnt;
2500	struct clk_rate_request req;
2501
2502	lockdep_assert_held(&prepare_lock);
2503
2504	if (!core)
2505		return 0;
2506
2507	/* simulate what the rate would be if it could be freely set */
2508	cnt = clk_core_rate_nuke_protect(core);
2509	if (cnt < 0)
2510		return cnt;
2511
2512	clk_core_init_rate_req(core, &req, req_rate);
2513
2514	trace_clk_rate_request_start(&req);
2515
2516	ret = clk_core_round_rate_nolock(core, &req);
2517
2518	trace_clk_rate_request_done(&req);
2519
2520	/* restore the protection */
2521	clk_core_rate_restore_protect(core, cnt);
2522
2523	return ret ? 0 : req.rate;
2524}
2525
2526static int clk_core_set_rate_nolock(struct clk_core *core,
2527				    unsigned long req_rate)
2528{
2529	struct clk_core *top, *fail_clk;
2530	unsigned long rate;
2531	int ret;
2532
2533	if (!core)
2534		return 0;
2535
2536	rate = clk_core_req_round_rate_nolock(core, req_rate);
2537
2538	/* bail early if nothing to do */
2539	if (rate == clk_core_get_rate_nolock(core))
2540		return 0;
2541
2542	/* fail on a direct rate set of a protected provider */
2543	if (clk_core_rate_is_protected(core))
2544		return -EBUSY;
2545
2546	/* calculate new rates and get the topmost changed clock */
2547	top = clk_calc_new_rates(core, req_rate);
2548	if (!top)
2549		return -EINVAL;
2550
2551	ret = clk_pm_runtime_get(core);
2552	if (ret)
2553		return ret;
2554
2555	/* notify that we are about to change rates */
2556	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2557	if (fail_clk) {
2558		pr_debug("%s: failed to set %s rate\n", __func__,
2559				fail_clk->name);
2560		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2561		ret = -EBUSY;
2562		goto err;
2563	}
2564
2565	/* change the rates */
2566	clk_change_rate(top);
2567
2568	core->req_rate = req_rate;
2569err:
2570	clk_pm_runtime_put(core);
2571
2572	return ret;
2573}
2574
2575/**
2576 * clk_set_rate - specify a new rate for clk
2577 * @clk: the clk whose rate is being changed
2578 * @rate: the new rate for clk
2579 *
2580 * In the simplest case clk_set_rate will only adjust the rate of clk.
2581 *
2582 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2583 * propagate up to clk's parent; whether or not this happens depends on the
2584 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2585 * after calling .round_rate then upstream parent propagation is ignored.  If
2586 * *parent_rate comes back with a new rate for clk's parent then we propagate
2587 * up to clk's parent and set its rate.  Upward propagation will continue
2588 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2589 * .round_rate stops requesting changes to clk's parent_rate.
2590 *
2591 * Rate changes are accomplished via tree traversal that also recalculates the
2592 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2593 *
2594 * Returns 0 on success, -EERROR otherwise.
2595 */
2596int clk_set_rate(struct clk *clk, unsigned long rate)
2597{
2598	int ret;
2599
2600	if (!clk)
2601		return 0;
2602
2603	/* prevent racing with updates to the clock topology */
2604	clk_prepare_lock();
2605
2606	if (clk->exclusive_count)
2607		clk_core_rate_unprotect(clk->core);
2608
2609	ret = clk_core_set_rate_nolock(clk->core, rate);
2610
2611	if (clk->exclusive_count)
2612		clk_core_rate_protect(clk->core);
2613
2614	clk_prepare_unlock();
2615
2616	return ret;
2617}
2618EXPORT_SYMBOL_GPL(clk_set_rate);
2619
2620/**
2621 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2622 * @clk: the clk whose rate is being changed
2623 * @rate: the new rate for clk
2624 *
2625 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2626 * within a critical section
2627 *
2628 * This can be used initially to ensure that at least 1 consumer is
2629 * satisfied when several consumers are competing for exclusivity over the
2630 * same clock provider.
2631 *
2632 * The exclusivity is not applied if setting the rate failed.
2633 *
2634 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2635 * clk_rate_exclusive_put().
2636 *
2637 * Returns 0 on success, -EERROR otherwise.
2638 */
2639int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2640{
2641	int ret;
2642
2643	if (!clk)
2644		return 0;
2645
2646	/* prevent racing with updates to the clock topology */
2647	clk_prepare_lock();
2648
2649	/*
2650	 * The temporary protection removal is not here, on purpose
2651	 * This function is meant to be used instead of clk_rate_protect,
2652	 * so before the consumer code path protect the clock provider
2653	 */
2654
2655	ret = clk_core_set_rate_nolock(clk->core, rate);
2656	if (!ret) {
2657		clk_core_rate_protect(clk->core);
2658		clk->exclusive_count++;
2659	}
2660
2661	clk_prepare_unlock();
2662
2663	return ret;
2664}
2665EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2666
2667static int clk_set_rate_range_nolock(struct clk *clk,
2668				     unsigned long min,
2669				     unsigned long max)
 
 
 
 
 
 
2670{
2671	int ret = 0;
2672	unsigned long old_min, old_max, rate;
2673
2674	lockdep_assert_held(&prepare_lock);
2675
2676	if (!clk)
2677		return 0;
2678
2679	trace_clk_set_rate_range(clk->core, min, max);
2680
2681	if (min > max) {
2682		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2683		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2684		       min, max);
2685		return -EINVAL;
2686	}
2687
 
 
2688	if (clk->exclusive_count)
2689		clk_core_rate_unprotect(clk->core);
2690
2691	/* Save the current values in case we need to rollback the change */
2692	old_min = clk->min_rate;
2693	old_max = clk->max_rate;
2694	clk->min_rate = min;
2695	clk->max_rate = max;
2696
2697	if (!clk_core_check_boundaries(clk->core, min, max)) {
2698		ret = -EINVAL;
2699		goto out;
2700	}
 
 
 
 
 
 
 
 
 
 
2701
2702	rate = clk->core->req_rate;
2703	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2704		rate = clk_core_get_rate_recalc(clk->core);
 
2705
2706	/*
2707	 * Since the boundaries have been changed, let's give the
2708	 * opportunity to the provider to adjust the clock rate based on
2709	 * the new boundaries.
2710	 *
2711	 * We also need to handle the case where the clock is currently
2712	 * outside of the boundaries. Clamping the last requested rate
2713	 * to the current minimum and maximum will also handle this.
2714	 *
2715	 * FIXME:
2716	 * There is a catch. It may fail for the usual reason (clock
2717	 * broken, clock protected, etc) but also because:
2718	 * - round_rate() was not favorable and fell on the wrong
2719	 *   side of the boundary
2720	 * - the determine_rate() callback does not really check for
2721	 *   this corner case when determining the rate
2722	 */
2723	rate = clamp(rate, min, max);
2724	ret = clk_core_set_rate_nolock(clk->core, rate);
2725	if (ret) {
2726		/* rollback the changes */
2727		clk->min_rate = old_min;
2728		clk->max_rate = old_max;
2729	}
2730
2731out:
2732	if (clk->exclusive_count)
2733		clk_core_rate_protect(clk->core);
2734
2735	return ret;
2736}
2737
2738/**
2739 * clk_set_rate_range - set a rate range for a clock source
2740 * @clk: clock source
2741 * @min: desired minimum clock rate in Hz, inclusive
2742 * @max: desired maximum clock rate in Hz, inclusive
2743 *
2744 * Return: 0 for success or negative errno on failure.
2745 */
2746int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2747{
2748	int ret;
2749
2750	if (!clk)
2751		return 0;
2752
2753	clk_prepare_lock();
2754
2755	ret = clk_set_rate_range_nolock(clk, min, max);
2756
2757	clk_prepare_unlock();
2758
2759	return ret;
2760}
2761EXPORT_SYMBOL_GPL(clk_set_rate_range);
2762
2763/**
2764 * clk_set_min_rate - set a minimum clock rate for a clock source
2765 * @clk: clock source
2766 * @rate: desired minimum clock rate in Hz, inclusive
2767 *
2768 * Returns success (0) or negative errno.
2769 */
2770int clk_set_min_rate(struct clk *clk, unsigned long rate)
2771{
2772	if (!clk)
2773		return 0;
2774
2775	trace_clk_set_min_rate(clk->core, rate);
2776
2777	return clk_set_rate_range(clk, rate, clk->max_rate);
2778}
2779EXPORT_SYMBOL_GPL(clk_set_min_rate);
2780
2781/**
2782 * clk_set_max_rate - set a maximum clock rate for a clock source
2783 * @clk: clock source
2784 * @rate: desired maximum clock rate in Hz, inclusive
2785 *
2786 * Returns success (0) or negative errno.
2787 */
2788int clk_set_max_rate(struct clk *clk, unsigned long rate)
2789{
2790	if (!clk)
2791		return 0;
2792
2793	trace_clk_set_max_rate(clk->core, rate);
2794
2795	return clk_set_rate_range(clk, clk->min_rate, rate);
2796}
2797EXPORT_SYMBOL_GPL(clk_set_max_rate);
2798
2799/**
2800 * clk_get_parent - return the parent of a clk
2801 * @clk: the clk whose parent gets returned
2802 *
2803 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2804 */
2805struct clk *clk_get_parent(struct clk *clk)
2806{
2807	struct clk *parent;
2808
2809	if (!clk)
2810		return NULL;
2811
2812	clk_prepare_lock();
2813	/* TODO: Create a per-user clk and change callers to call clk_put */
2814	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2815	clk_prepare_unlock();
2816
2817	return parent;
2818}
2819EXPORT_SYMBOL_GPL(clk_get_parent);
2820
2821static struct clk_core *__clk_init_parent(struct clk_core *core)
2822{
2823	u8 index = 0;
2824
2825	if (core->num_parents > 1 && core->ops->get_parent)
2826		index = core->ops->get_parent(core->hw);
2827
2828	return clk_core_get_parent_by_index(core, index);
2829}
2830
2831static void clk_core_reparent(struct clk_core *core,
2832				  struct clk_core *new_parent)
2833{
2834	clk_reparent(core, new_parent);
2835	__clk_recalc_accuracies(core);
2836	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2837}
2838
2839void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2840{
2841	if (!hw)
2842		return;
2843
2844	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2845}
2846
2847/**
2848 * clk_has_parent - check if a clock is a possible parent for another
2849 * @clk: clock source
2850 * @parent: parent clock source
2851 *
2852 * This function can be used in drivers that need to check that a clock can be
2853 * the parent of another without actually changing the parent.
2854 *
2855 * Returns true if @parent is a possible parent for @clk, false otherwise.
2856 */
2857bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2858{
 
 
 
2859	/* NULL clocks should be nops, so return success if either is NULL. */
2860	if (!clk || !parent)
2861		return true;
2862
2863	return clk_core_has_parent(clk->core, parent->core);
 
 
 
 
 
 
 
 
 
 
 
2864}
2865EXPORT_SYMBOL_GPL(clk_has_parent);
2866
2867static int clk_core_set_parent_nolock(struct clk_core *core,
2868				      struct clk_core *parent)
2869{
2870	int ret = 0;
2871	int p_index = 0;
2872	unsigned long p_rate = 0;
2873
2874	lockdep_assert_held(&prepare_lock);
2875
2876	if (!core)
2877		return 0;
2878
2879	if (core->parent == parent)
2880		return 0;
2881
2882	/* verify ops for multi-parent clks */
2883	if (core->num_parents > 1 && !core->ops->set_parent)
2884		return -EPERM;
2885
2886	/* check that we are allowed to re-parent if the clock is in use */
2887	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2888		return -EBUSY;
2889
2890	if (clk_core_rate_is_protected(core))
2891		return -EBUSY;
2892
2893	/* try finding the new parent index */
2894	if (parent) {
2895		p_index = clk_fetch_parent_index(core, parent);
2896		if (p_index < 0) {
2897			pr_debug("%s: clk %s can not be parent of clk %s\n",
2898					__func__, parent->name, core->name);
2899			return p_index;
2900		}
2901		p_rate = parent->rate;
2902	}
2903
2904	ret = clk_pm_runtime_get(core);
2905	if (ret)
2906		return ret;
2907
2908	/* propagate PRE_RATE_CHANGE notifications */
2909	ret = __clk_speculate_rates(core, p_rate);
2910
2911	/* abort if a driver objects */
2912	if (ret & NOTIFY_STOP_MASK)
2913		goto runtime_put;
2914
2915	/* do the re-parent */
2916	ret = __clk_set_parent(core, parent, p_index);
2917
2918	/* propagate rate an accuracy recalculation accordingly */
2919	if (ret) {
2920		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2921	} else {
2922		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2923		__clk_recalc_accuracies(core);
2924	}
2925
2926runtime_put:
2927	clk_pm_runtime_put(core);
2928
2929	return ret;
2930}
2931
2932int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2933{
2934	return clk_core_set_parent_nolock(hw->core, parent->core);
2935}
2936EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2937
2938/**
2939 * clk_set_parent - switch the parent of a mux clk
2940 * @clk: the mux clk whose input we are switching
2941 * @parent: the new input to clk
2942 *
2943 * Re-parent clk to use parent as its new input source.  If clk is in
2944 * prepared state, the clk will get enabled for the duration of this call. If
2945 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2946 * that, the reparenting is glitchy in hardware, etc), use the
2947 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2948 *
2949 * After successfully changing clk's parent clk_set_parent will update the
2950 * clk topology, sysfs topology and propagate rate recalculation via
2951 * __clk_recalc_rates.
2952 *
2953 * Returns 0 on success, -EERROR otherwise.
2954 */
2955int clk_set_parent(struct clk *clk, struct clk *parent)
2956{
2957	int ret;
2958
2959	if (!clk)
2960		return 0;
2961
2962	clk_prepare_lock();
2963
2964	if (clk->exclusive_count)
2965		clk_core_rate_unprotect(clk->core);
2966
2967	ret = clk_core_set_parent_nolock(clk->core,
2968					 parent ? parent->core : NULL);
2969
2970	if (clk->exclusive_count)
2971		clk_core_rate_protect(clk->core);
2972
2973	clk_prepare_unlock();
2974
2975	return ret;
2976}
2977EXPORT_SYMBOL_GPL(clk_set_parent);
2978
2979static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2980{
2981	int ret = -EINVAL;
2982
2983	lockdep_assert_held(&prepare_lock);
2984
2985	if (!core)
2986		return 0;
2987
2988	if (clk_core_rate_is_protected(core))
2989		return -EBUSY;
2990
2991	trace_clk_set_phase(core, degrees);
2992
2993	if (core->ops->set_phase) {
2994		ret = core->ops->set_phase(core->hw, degrees);
2995		if (!ret)
2996			core->phase = degrees;
2997	}
2998
2999	trace_clk_set_phase_complete(core, degrees);
3000
3001	return ret;
3002}
3003
3004/**
3005 * clk_set_phase - adjust the phase shift of a clock signal
3006 * @clk: clock signal source
3007 * @degrees: number of degrees the signal is shifted
3008 *
3009 * Shifts the phase of a clock signal by the specified
3010 * degrees. Returns 0 on success, -EERROR otherwise.
3011 *
3012 * This function makes no distinction about the input or reference
3013 * signal that we adjust the clock signal phase against. For example
3014 * phase locked-loop clock signal generators we may shift phase with
3015 * respect to feedback clock signal input, but for other cases the
3016 * clock phase may be shifted with respect to some other, unspecified
3017 * signal.
3018 *
3019 * Additionally the concept of phase shift does not propagate through
3020 * the clock tree hierarchy, which sets it apart from clock rates and
3021 * clock accuracy. A parent clock phase attribute does not have an
3022 * impact on the phase attribute of a child clock.
3023 */
3024int clk_set_phase(struct clk *clk, int degrees)
3025{
3026	int ret;
3027
3028	if (!clk)
3029		return 0;
3030
3031	/* sanity check degrees */
3032	degrees %= 360;
3033	if (degrees < 0)
3034		degrees += 360;
3035
3036	clk_prepare_lock();
3037
3038	if (clk->exclusive_count)
3039		clk_core_rate_unprotect(clk->core);
3040
3041	ret = clk_core_set_phase_nolock(clk->core, degrees);
3042
3043	if (clk->exclusive_count)
3044		clk_core_rate_protect(clk->core);
3045
3046	clk_prepare_unlock();
3047
3048	return ret;
3049}
3050EXPORT_SYMBOL_GPL(clk_set_phase);
3051
3052static int clk_core_get_phase(struct clk_core *core)
3053{
3054	int ret;
3055
3056	lockdep_assert_held(&prepare_lock);
3057	if (!core->ops->get_phase)
3058		return 0;
3059
3060	/* Always try to update cached phase if possible */
3061	ret = core->ops->get_phase(core->hw);
3062	if (ret >= 0)
3063		core->phase = ret;
3064
3065	return ret;
3066}
3067
3068/**
3069 * clk_get_phase - return the phase shift of a clock signal
3070 * @clk: clock signal source
3071 *
3072 * Returns the phase shift of a clock node in degrees, otherwise returns
3073 * -EERROR.
3074 */
3075int clk_get_phase(struct clk *clk)
3076{
3077	int ret;
3078
3079	if (!clk)
3080		return 0;
3081
3082	clk_prepare_lock();
3083	ret = clk_core_get_phase(clk->core);
3084	clk_prepare_unlock();
3085
3086	return ret;
3087}
3088EXPORT_SYMBOL_GPL(clk_get_phase);
3089
3090static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3091{
3092	/* Assume a default value of 50% */
3093	core->duty.num = 1;
3094	core->duty.den = 2;
3095}
3096
3097static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3098
3099static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3100{
3101	struct clk_duty *duty = &core->duty;
3102	int ret = 0;
3103
3104	if (!core->ops->get_duty_cycle)
3105		return clk_core_update_duty_cycle_parent_nolock(core);
3106
3107	ret = core->ops->get_duty_cycle(core->hw, duty);
3108	if (ret)
3109		goto reset;
3110
3111	/* Don't trust the clock provider too much */
3112	if (duty->den == 0 || duty->num > duty->den) {
3113		ret = -EINVAL;
3114		goto reset;
3115	}
3116
3117	return 0;
3118
3119reset:
3120	clk_core_reset_duty_cycle_nolock(core);
3121	return ret;
3122}
3123
3124static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3125{
3126	int ret = 0;
3127
3128	if (core->parent &&
3129	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3130		ret = clk_core_update_duty_cycle_nolock(core->parent);
3131		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3132	} else {
3133		clk_core_reset_duty_cycle_nolock(core);
3134	}
3135
3136	return ret;
3137}
3138
3139static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3140						 struct clk_duty *duty);
3141
3142static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3143					  struct clk_duty *duty)
3144{
3145	int ret;
3146
3147	lockdep_assert_held(&prepare_lock);
3148
3149	if (clk_core_rate_is_protected(core))
3150		return -EBUSY;
3151
3152	trace_clk_set_duty_cycle(core, duty);
3153
3154	if (!core->ops->set_duty_cycle)
3155		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3156
3157	ret = core->ops->set_duty_cycle(core->hw, duty);
3158	if (!ret)
3159		memcpy(&core->duty, duty, sizeof(*duty));
3160
3161	trace_clk_set_duty_cycle_complete(core, duty);
3162
3163	return ret;
3164}
3165
3166static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3167						 struct clk_duty *duty)
3168{
3169	int ret = 0;
3170
3171	if (core->parent &&
3172	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3173		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3174		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3175	}
3176
3177	return ret;
3178}
3179
3180/**
3181 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3182 * @clk: clock signal source
3183 * @num: numerator of the duty cycle ratio to be applied
3184 * @den: denominator of the duty cycle ratio to be applied
3185 *
3186 * Apply the duty cycle ratio if the ratio is valid and the clock can
3187 * perform this operation
3188 *
3189 * Returns (0) on success, a negative errno otherwise.
3190 */
3191int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3192{
3193	int ret;
3194	struct clk_duty duty;
3195
3196	if (!clk)
3197		return 0;
3198
3199	/* sanity check the ratio */
3200	if (den == 0 || num > den)
3201		return -EINVAL;
3202
3203	duty.num = num;
3204	duty.den = den;
3205
3206	clk_prepare_lock();
3207
3208	if (clk->exclusive_count)
3209		clk_core_rate_unprotect(clk->core);
3210
3211	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3212
3213	if (clk->exclusive_count)
3214		clk_core_rate_protect(clk->core);
3215
3216	clk_prepare_unlock();
3217
3218	return ret;
3219}
3220EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3221
3222static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3223					  unsigned int scale)
3224{
3225	struct clk_duty *duty = &core->duty;
3226	int ret;
3227
3228	clk_prepare_lock();
3229
3230	ret = clk_core_update_duty_cycle_nolock(core);
3231	if (!ret)
3232		ret = mult_frac(scale, duty->num, duty->den);
3233
3234	clk_prepare_unlock();
3235
3236	return ret;
3237}
3238
3239/**
3240 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3241 * @clk: clock signal source
3242 * @scale: scaling factor to be applied to represent the ratio as an integer
3243 *
3244 * Returns the duty cycle ratio of a clock node multiplied by the provided
3245 * scaling factor, or negative errno on error.
3246 */
3247int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3248{
3249	if (!clk)
3250		return 0;
3251
3252	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3253}
3254EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3255
3256/**
3257 * clk_is_match - check if two clk's point to the same hardware clock
3258 * @p: clk compared against q
3259 * @q: clk compared against p
3260 *
3261 * Returns true if the two struct clk pointers both point to the same hardware
3262 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3263 * share the same struct clk_core object.
3264 *
3265 * Returns false otherwise. Note that two NULL clks are treated as matching.
3266 */
3267bool clk_is_match(const struct clk *p, const struct clk *q)
3268{
3269	/* trivial case: identical struct clk's or both NULL */
3270	if (p == q)
3271		return true;
3272
3273	/* true if clk->core pointers match. Avoid dereferencing garbage */
3274	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3275		if (p->core == q->core)
3276			return true;
3277
3278	return false;
3279}
3280EXPORT_SYMBOL_GPL(clk_is_match);
3281
3282/***        debugfs support        ***/
3283
3284#ifdef CONFIG_DEBUG_FS
3285#include <linux/debugfs.h>
3286
3287static struct dentry *rootdir;
3288static int inited = 0;
3289static DEFINE_MUTEX(clk_debug_lock);
3290static HLIST_HEAD(clk_debug_list);
3291
3292static struct hlist_head *orphan_list[] = {
3293	&clk_orphan_list,
3294	NULL,
3295};
3296
3297static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3298				 int level)
3299{
3300	int phase;
3301	struct clk *clk_user;
3302	int multi_node = 0;
3303
3304	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3305		   level * 3 + 1, "",
3306		   35 - level * 3, c->name,
3307		   c->enable_count, c->prepare_count, c->protect_count,
3308		   clk_core_get_rate_recalc(c),
3309		   clk_core_get_accuracy_recalc(c));
3310
3311	phase = clk_core_get_phase(c);
3312	if (phase >= 0)
3313		seq_printf(s, "%-5d", phase);
3314	else
3315		seq_puts(s, "-----");
3316
3317	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3318
3319	if (c->ops->is_enabled)
3320		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3321	else if (!c->ops->enable)
3322		seq_printf(s, " %5c ", 'Y');
3323	else
3324		seq_printf(s, " %5c ", '?');
3325
3326	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3327		seq_printf(s, "%*s%-*s  %-25s\n",
3328			   level * 3 + 2 + 105 * multi_node, "",
3329			   30,
3330			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3331			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3332
3333		multi_node = 1;
3334	}
3335
3336}
3337
3338static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3339				     int level)
3340{
3341	struct clk_core *child;
3342
3343	clk_summary_show_one(s, c, level);
3344
3345	hlist_for_each_entry(child, &c->children, child_node)
3346		clk_summary_show_subtree(s, child, level + 1);
3347}
3348
3349static int clk_summary_show(struct seq_file *s, void *data)
3350{
3351	struct clk_core *c;
3352	struct hlist_head **lists = s->private;
3353	int ret;
3354
3355	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3356	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3357	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3358
3359	ret = clk_pm_runtime_get_all();
3360	if (ret)
3361		return ret;
3362
3363	clk_prepare_lock();
3364
3365	for (; *lists; lists++)
3366		hlist_for_each_entry(c, *lists, child_node)
3367			clk_summary_show_subtree(s, c, 0);
3368
3369	clk_prepare_unlock();
3370	clk_pm_runtime_put_all();
3371
3372	return 0;
3373}
3374DEFINE_SHOW_ATTRIBUTE(clk_summary);
3375
3376static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3377{
3378	int phase;
3379	unsigned long min_rate, max_rate;
3380
3381	clk_core_get_boundaries(c, &min_rate, &max_rate);
3382
3383	/* This should be JSON format, i.e. elements separated with a comma */
3384	seq_printf(s, "\"%s\": { ", c->name);
3385	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3386	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3387	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3388	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3389	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3390	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3391	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3392	phase = clk_core_get_phase(c);
3393	if (phase >= 0)
3394		seq_printf(s, "\"phase\": %d,", phase);
3395	seq_printf(s, "\"duty_cycle\": %u",
3396		   clk_core_get_scaled_duty_cycle(c, 100000));
3397}
3398
3399static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3400{
3401	struct clk_core *child;
3402
3403	clk_dump_one(s, c, level);
3404
3405	hlist_for_each_entry(child, &c->children, child_node) {
3406		seq_putc(s, ',');
3407		clk_dump_subtree(s, child, level + 1);
3408	}
3409
3410	seq_putc(s, '}');
3411}
3412
3413static int clk_dump_show(struct seq_file *s, void *data)
3414{
3415	struct clk_core *c;
3416	bool first_node = true;
3417	struct hlist_head **lists = s->private;
3418	int ret;
3419
3420	ret = clk_pm_runtime_get_all();
3421	if (ret)
3422		return ret;
3423
3424	seq_putc(s, '{');
3425
3426	clk_prepare_lock();
3427
3428	for (; *lists; lists++) {
3429		hlist_for_each_entry(c, *lists, child_node) {
3430			if (!first_node)
3431				seq_putc(s, ',');
3432			first_node = false;
3433			clk_dump_subtree(s, c, 0);
3434		}
3435	}
3436
3437	clk_prepare_unlock();
3438	clk_pm_runtime_put_all();
3439
3440	seq_puts(s, "}\n");
3441	return 0;
3442}
3443DEFINE_SHOW_ATTRIBUTE(clk_dump);
3444
3445#undef CLOCK_ALLOW_WRITE_DEBUGFS
3446#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3447/*
3448 * This can be dangerous, therefore don't provide any real compile time
3449 * configuration option for this feature.
3450 * People who want to use this will need to modify the source code directly.
3451 */
3452static int clk_rate_set(void *data, u64 val)
3453{
3454	struct clk_core *core = data;
3455	int ret;
3456
3457	clk_prepare_lock();
3458	ret = clk_core_set_rate_nolock(core, val);
3459	clk_prepare_unlock();
3460
3461	return ret;
3462}
3463
3464#define clk_rate_mode	0644
3465
3466static int clk_phase_set(void *data, u64 val)
3467{
3468	struct clk_core *core = data;
3469	int degrees = do_div(val, 360);
3470	int ret;
3471
3472	clk_prepare_lock();
3473	ret = clk_core_set_phase_nolock(core, degrees);
3474	clk_prepare_unlock();
3475
3476	return ret;
3477}
3478
3479#define clk_phase_mode	0644
3480
3481static int clk_prepare_enable_set(void *data, u64 val)
3482{
3483	struct clk_core *core = data;
3484	int ret = 0;
3485
3486	if (val)
3487		ret = clk_prepare_enable(core->hw->clk);
3488	else
3489		clk_disable_unprepare(core->hw->clk);
3490
3491	return ret;
3492}
3493
3494static int clk_prepare_enable_get(void *data, u64 *val)
3495{
3496	struct clk_core *core = data;
3497
3498	*val = core->enable_count && core->prepare_count;
3499	return 0;
3500}
3501
3502DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3503			 clk_prepare_enable_set, "%llu\n");
3504
3505#else
3506#define clk_rate_set	NULL
3507#define clk_rate_mode	0444
3508
3509#define clk_phase_set	NULL
3510#define clk_phase_mode	0644
3511#endif
3512
3513static int clk_rate_get(void *data, u64 *val)
3514{
3515	struct clk_core *core = data;
3516
3517	clk_prepare_lock();
3518	*val = clk_core_get_rate_recalc(core);
3519	clk_prepare_unlock();
3520
3521	return 0;
3522}
3523
3524DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3525
3526static int clk_phase_get(void *data, u64 *val)
3527{
3528	struct clk_core *core = data;
3529
3530	*val = core->phase;
3531	return 0;
3532}
3533
3534DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3535
3536static const struct {
3537	unsigned long flag;
3538	const char *name;
3539} clk_flags[] = {
3540#define ENTRY(f) { f, #f }
3541	ENTRY(CLK_SET_RATE_GATE),
3542	ENTRY(CLK_SET_PARENT_GATE),
3543	ENTRY(CLK_SET_RATE_PARENT),
3544	ENTRY(CLK_IGNORE_UNUSED),
3545	ENTRY(CLK_GET_RATE_NOCACHE),
3546	ENTRY(CLK_SET_RATE_NO_REPARENT),
3547	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3548	ENTRY(CLK_RECALC_NEW_RATES),
3549	ENTRY(CLK_SET_RATE_UNGATE),
3550	ENTRY(CLK_IS_CRITICAL),
3551	ENTRY(CLK_OPS_PARENT_ENABLE),
3552	ENTRY(CLK_DUTY_CYCLE_PARENT),
3553#undef ENTRY
3554};
3555
3556static int clk_flags_show(struct seq_file *s, void *data)
3557{
3558	struct clk_core *core = s->private;
3559	unsigned long flags = core->flags;
3560	unsigned int i;
3561
3562	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3563		if (flags & clk_flags[i].flag) {
3564			seq_printf(s, "%s\n", clk_flags[i].name);
3565			flags &= ~clk_flags[i].flag;
3566		}
3567	}
3568	if (flags) {
3569		/* Unknown flags */
3570		seq_printf(s, "0x%lx\n", flags);
3571	}
3572
3573	return 0;
3574}
3575DEFINE_SHOW_ATTRIBUTE(clk_flags);
3576
3577static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3578				 unsigned int i, char terminator)
3579{
3580	struct clk_core *parent;
3581	const char *name = NULL;
3582
3583	/*
3584	 * Go through the following options to fetch a parent's name.
3585	 *
3586	 * 1. Fetch the registered parent clock and use its name
3587	 * 2. Use the global (fallback) name if specified
3588	 * 3. Use the local fw_name if provided
3589	 * 4. Fetch parent clock's clock-output-name if DT index was set
3590	 *
3591	 * This may still fail in some cases, such as when the parent is
3592	 * specified directly via a struct clk_hw pointer, but it isn't
3593	 * registered (yet).
3594	 */
3595	parent = clk_core_get_parent_by_index(core, i);
3596	if (parent) {
3597		seq_puts(s, parent->name);
3598	} else if (core->parents[i].name) {
3599		seq_puts(s, core->parents[i].name);
3600	} else if (core->parents[i].fw_name) {
3601		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3602	} else {
3603		if (core->parents[i].index >= 0)
3604			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3605		if (!name)
3606			name = "(missing)";
3607
3608		seq_puts(s, name);
3609	}
3610
3611	seq_putc(s, terminator);
3612}
3613
3614static int possible_parents_show(struct seq_file *s, void *data)
3615{
3616	struct clk_core *core = s->private;
3617	int i;
3618
3619	for (i = 0; i < core->num_parents - 1; i++)
3620		possible_parent_show(s, core, i, ' ');
3621
3622	possible_parent_show(s, core, i, '\n');
3623
3624	return 0;
3625}
3626DEFINE_SHOW_ATTRIBUTE(possible_parents);
3627
3628static int current_parent_show(struct seq_file *s, void *data)
3629{
3630	struct clk_core *core = s->private;
3631
3632	if (core->parent)
3633		seq_printf(s, "%s\n", core->parent->name);
3634
3635	return 0;
3636}
3637DEFINE_SHOW_ATTRIBUTE(current_parent);
3638
3639#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3640static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3641				    size_t count, loff_t *ppos)
3642{
3643	struct seq_file *s = file->private_data;
3644	struct clk_core *core = s->private;
3645	struct clk_core *parent;
3646	u8 idx;
3647	int err;
3648
3649	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3650	if (err < 0)
3651		return err;
3652
3653	parent = clk_core_get_parent_by_index(core, idx);
3654	if (!parent)
3655		return -ENOENT;
3656
3657	clk_prepare_lock();
3658	err = clk_core_set_parent_nolock(core, parent);
3659	clk_prepare_unlock();
3660	if (err)
3661		return err;
3662
3663	return count;
3664}
3665
3666static const struct file_operations current_parent_rw_fops = {
3667	.open		= current_parent_open,
3668	.write		= current_parent_write,
3669	.read		= seq_read,
3670	.llseek		= seq_lseek,
3671	.release	= single_release,
3672};
3673#endif
3674
3675static int clk_duty_cycle_show(struct seq_file *s, void *data)
3676{
3677	struct clk_core *core = s->private;
3678	struct clk_duty *duty = &core->duty;
3679
3680	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3681
3682	return 0;
3683}
3684DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3685
3686static int clk_min_rate_show(struct seq_file *s, void *data)
3687{
3688	struct clk_core *core = s->private;
3689	unsigned long min_rate, max_rate;
3690
3691	clk_prepare_lock();
3692	clk_core_get_boundaries(core, &min_rate, &max_rate);
3693	clk_prepare_unlock();
3694	seq_printf(s, "%lu\n", min_rate);
3695
3696	return 0;
3697}
3698DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3699
3700static int clk_max_rate_show(struct seq_file *s, void *data)
3701{
3702	struct clk_core *core = s->private;
3703	unsigned long min_rate, max_rate;
3704
3705	clk_prepare_lock();
3706	clk_core_get_boundaries(core, &min_rate, &max_rate);
3707	clk_prepare_unlock();
3708	seq_printf(s, "%lu\n", max_rate);
3709
3710	return 0;
3711}
3712DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3713
3714static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3715{
3716	struct dentry *root;
3717
3718	if (!core || !pdentry)
3719		return;
3720
3721	root = debugfs_create_dir(core->name, pdentry);
3722	core->dentry = root;
3723
3724	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3725			    &clk_rate_fops);
3726	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3727	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3728	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3729	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3730			    &clk_phase_fops);
3731	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3732	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3733	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3734	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3735	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3736	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3737			    &clk_duty_cycle_fops);
3738#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3739	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3740			    &clk_prepare_enable_fops);
3741
3742	if (core->num_parents > 1)
3743		debugfs_create_file("clk_parent", 0644, root, core,
3744				    &current_parent_rw_fops);
3745	else
3746#endif
 
3747	if (core->num_parents > 0)
3748		debugfs_create_file("clk_parent", 0444, root, core,
3749				    &current_parent_fops);
3750
3751	if (core->num_parents > 1)
3752		debugfs_create_file("clk_possible_parents", 0444, root, core,
3753				    &possible_parents_fops);
3754
3755	if (core->ops->debug_init)
3756		core->ops->debug_init(core->hw, core->dentry);
3757}
3758
3759/**
3760 * clk_debug_register - add a clk node to the debugfs clk directory
3761 * @core: the clk being added to the debugfs clk directory
3762 *
3763 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3764 * initialized.  Otherwise it bails out early since the debugfs clk directory
3765 * will be created lazily by clk_debug_init as part of a late_initcall.
3766 */
3767static void clk_debug_register(struct clk_core *core)
3768{
3769	mutex_lock(&clk_debug_lock);
3770	hlist_add_head(&core->debug_node, &clk_debug_list);
3771	if (inited)
3772		clk_debug_create_one(core, rootdir);
3773	mutex_unlock(&clk_debug_lock);
3774}
3775
3776 /**
3777 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3778 * @core: the clk being removed from the debugfs clk directory
3779 *
3780 * Dynamically removes a clk and all its child nodes from the
3781 * debugfs clk directory if clk->dentry points to debugfs created by
3782 * clk_debug_register in __clk_core_init.
3783 */
3784static void clk_debug_unregister(struct clk_core *core)
3785{
3786	mutex_lock(&clk_debug_lock);
3787	hlist_del_init(&core->debug_node);
3788	debugfs_remove_recursive(core->dentry);
3789	core->dentry = NULL;
3790	mutex_unlock(&clk_debug_lock);
3791}
3792
3793/**
3794 * clk_debug_init - lazily populate the debugfs clk directory
3795 *
3796 * clks are often initialized very early during boot before memory can be
3797 * dynamically allocated and well before debugfs is setup. This function
3798 * populates the debugfs clk directory once at boot-time when we know that
3799 * debugfs is setup. It should only be called once at boot-time, all other clks
3800 * added dynamically will be done so with clk_debug_register.
3801 */
3802static int __init clk_debug_init(void)
3803{
3804	struct clk_core *core;
3805
3806#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3807	pr_warn("\n");
3808	pr_warn("********************************************************************\n");
3809	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3810	pr_warn("**                                                                **\n");
3811	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3812	pr_warn("**                                                                **\n");
3813	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3814	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3815	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3816	pr_warn("**                                                                **\n");
3817	pr_warn("** If you see this message and you are not debugging the          **\n");
3818	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3819	pr_warn("**                                                                **\n");
3820	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3821	pr_warn("********************************************************************\n");
3822#endif
3823
3824	rootdir = debugfs_create_dir("clk", NULL);
3825
3826	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3827			    &clk_summary_fops);
3828	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3829			    &clk_dump_fops);
3830	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3831			    &clk_summary_fops);
3832	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3833			    &clk_dump_fops);
3834
3835	mutex_lock(&clk_debug_lock);
3836	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3837		clk_debug_create_one(core, rootdir);
3838
3839	inited = 1;
3840	mutex_unlock(&clk_debug_lock);
3841
3842	return 0;
3843}
3844late_initcall(clk_debug_init);
3845#else
3846static inline void clk_debug_register(struct clk_core *core) { }
3847static inline void clk_debug_unregister(struct clk_core *core)
3848{
3849}
3850#endif
3851
3852static void clk_core_reparent_orphans_nolock(void)
3853{
3854	struct clk_core *orphan;
3855	struct hlist_node *tmp2;
3856
3857	/*
3858	 * walk the list of orphan clocks and reparent any that newly finds a
3859	 * parent.
3860	 */
3861	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3862		struct clk_core *parent = __clk_init_parent(orphan);
3863
3864		/*
3865		 * We need to use __clk_set_parent_before() and _after() to
3866		 * properly migrate any prepare/enable count of the orphan
3867		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3868		 * are enabled during init but might not have a parent yet.
3869		 */
3870		if (parent) {
3871			/* update the clk tree topology */
3872			__clk_set_parent_before(orphan, parent);
3873			__clk_set_parent_after(orphan, parent, NULL);
3874			__clk_recalc_accuracies(orphan);
3875			__clk_recalc_rates(orphan, true, 0);
3876
3877			/*
3878			 * __clk_init_parent() will set the initial req_rate to
3879			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3880			 * is an orphan when it's registered.
3881			 *
3882			 * 'req_rate' is used by clk_set_rate_range() and
3883			 * clk_put() to trigger a clk_set_rate() call whenever
3884			 * the boundaries are modified. Let's make sure
3885			 * 'req_rate' is set to something non-zero so that
3886			 * clk_set_rate_range() doesn't drop the frequency.
3887			 */
3888			orphan->req_rate = orphan->rate;
3889		}
3890	}
3891}
3892
3893/**
3894 * __clk_core_init - initialize the data structures in a struct clk_core
3895 * @core:	clk_core being initialized
3896 *
3897 * Initializes the lists in struct clk_core, queries the hardware for the
3898 * parent and rate and sets them both.
3899 */
3900static int __clk_core_init(struct clk_core *core)
3901{
3902	int ret;
3903	struct clk_core *parent;
3904	unsigned long rate;
3905	int phase;
3906
3907	clk_prepare_lock();
 
3908
3909	/*
3910	 * Set hw->core after grabbing the prepare_lock to synchronize with
3911	 * callers of clk_core_fill_parent_index() where we treat hw->core
3912	 * being NULL as the clk not being registered yet. This is crucial so
3913	 * that clks aren't parented until their parent is fully registered.
3914	 */
3915	core->hw->core = core;
3916
3917	ret = clk_pm_runtime_get(core);
3918	if (ret)
3919		goto unlock;
3920
3921	/* check to see if a clock with this name is already registered */
3922	if (clk_core_lookup(core->name)) {
3923		pr_debug("%s: clk %s already initialized\n",
3924				__func__, core->name);
3925		ret = -EEXIST;
3926		goto out;
3927	}
3928
3929	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3930	if (core->ops->set_rate &&
3931	    !((core->ops->round_rate || core->ops->determine_rate) &&
3932	      core->ops->recalc_rate)) {
3933		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3934		       __func__, core->name);
3935		ret = -EINVAL;
3936		goto out;
3937	}
3938
3939	if (core->ops->set_parent && !core->ops->get_parent) {
3940		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3941		       __func__, core->name);
3942		ret = -EINVAL;
3943		goto out;
3944	}
3945
3946	if (core->ops->set_parent && !core->ops->determine_rate) {
3947		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3948			__func__, core->name);
3949		ret = -EINVAL;
3950		goto out;
3951	}
3952
3953	if (core->num_parents > 1 && !core->ops->get_parent) {
3954		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3955		       __func__, core->name);
3956		ret = -EINVAL;
3957		goto out;
3958	}
3959
3960	if (core->ops->set_rate_and_parent &&
3961			!(core->ops->set_parent && core->ops->set_rate)) {
3962		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3963				__func__, core->name);
3964		ret = -EINVAL;
3965		goto out;
3966	}
3967
3968	/*
3969	 * optional platform-specific magic
3970	 *
3971	 * The .init callback is not used by any of the basic clock types, but
3972	 * exists for weird hardware that must perform initialization magic for
3973	 * CCF to get an accurate view of clock for any other callbacks. It may
3974	 * also be used needs to perform dynamic allocations. Such allocation
3975	 * must be freed in the terminate() callback.
3976	 * This callback shall not be used to initialize the parameters state,
3977	 * such as rate, parent, etc ...
3978	 *
3979	 * If it exist, this callback should called before any other callback of
3980	 * the clock
3981	 */
3982	if (core->ops->init) {
3983		ret = core->ops->init(core->hw);
3984		if (ret)
3985			goto out;
3986	}
3987
3988	parent = core->parent = __clk_init_parent(core);
3989
3990	/*
3991	 * Populate core->parent if parent has already been clk_core_init'd. If
3992	 * parent has not yet been clk_core_init'd then place clk in the orphan
3993	 * list.  If clk doesn't have any parents then place it in the root
3994	 * clk list.
3995	 *
3996	 * Every time a new clk is clk_init'd then we walk the list of orphan
3997	 * clocks and re-parent any that are children of the clock currently
3998	 * being clk_init'd.
3999	 */
4000	if (parent) {
4001		hlist_add_head(&core->child_node, &parent->children);
4002		core->orphan = parent->orphan;
4003	} else if (!core->num_parents) {
4004		hlist_add_head(&core->child_node, &clk_root_list);
4005		core->orphan = false;
4006	} else {
4007		hlist_add_head(&core->child_node, &clk_orphan_list);
4008		core->orphan = true;
4009	}
4010
4011	/*
4012	 * Set clk's accuracy.  The preferred method is to use
4013	 * .recalc_accuracy. For simple clocks and lazy developers the default
4014	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4015	 * parent (or is orphaned) then accuracy is set to zero (perfect
4016	 * clock).
4017	 */
4018	if (core->ops->recalc_accuracy)
4019		core->accuracy = core->ops->recalc_accuracy(core->hw,
4020					clk_core_get_accuracy_no_lock(parent));
4021	else if (parent)
4022		core->accuracy = parent->accuracy;
4023	else
4024		core->accuracy = 0;
4025
4026	/*
4027	 * Set clk's phase by clk_core_get_phase() caching the phase.
4028	 * Since a phase is by definition relative to its parent, just
4029	 * query the current clock phase, or just assume it's in phase.
4030	 */
4031	phase = clk_core_get_phase(core);
4032	if (phase < 0) {
4033		ret = phase;
4034		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4035			core->name);
4036		goto out;
4037	}
4038
4039	/*
4040	 * Set clk's duty cycle.
4041	 */
4042	clk_core_update_duty_cycle_nolock(core);
4043
4044	/*
4045	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4046	 * simple clocks and lazy developers the default fallback is to use the
4047	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4048	 * then rate is set to zero.
4049	 */
4050	if (core->ops->recalc_rate)
4051		rate = core->ops->recalc_rate(core->hw,
4052				clk_core_get_rate_nolock(parent));
4053	else if (parent)
4054		rate = parent->rate;
4055	else
4056		rate = 0;
4057	core->rate = core->req_rate = rate;
4058
4059	/*
4060	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4061	 * don't get accidentally disabled when walking the orphan tree and
4062	 * reparenting clocks
4063	 */
4064	if (core->flags & CLK_IS_CRITICAL) {
 
 
4065		ret = clk_core_prepare(core);
4066		if (ret) {
4067			pr_warn("%s: critical clk '%s' failed to prepare\n",
4068			       __func__, core->name);
4069			goto out;
4070		}
4071
4072		ret = clk_core_enable_lock(core);
 
 
4073		if (ret) {
4074			pr_warn("%s: critical clk '%s' failed to enable\n",
4075			       __func__, core->name);
4076			clk_core_unprepare(core);
4077			goto out;
4078		}
4079	}
4080
4081	clk_core_reparent_orphans_nolock();
 
 
 
4082out:
4083	clk_pm_runtime_put(core);
4084unlock:
4085	if (ret) {
4086		hlist_del_init(&core->child_node);
4087		core->hw->core = NULL;
4088	}
4089
4090	clk_prepare_unlock();
4091
4092	if (!ret)
4093		clk_debug_register(core);
4094
4095	return ret;
4096}
4097
4098/**
4099 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4100 * @core: clk to add consumer to
4101 * @clk: consumer to link to a clk
4102 */
4103static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4104{
4105	clk_prepare_lock();
4106	hlist_add_head(&clk->clks_node, &core->clks);
4107	clk_prepare_unlock();
4108}
4109
4110/**
4111 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4112 * @clk: consumer to unlink
4113 */
4114static void clk_core_unlink_consumer(struct clk *clk)
4115{
4116	lockdep_assert_held(&prepare_lock);
4117	hlist_del(&clk->clks_node);
4118}
4119
4120/**
4121 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4122 * @core: clk to allocate a consumer for
4123 * @dev_id: string describing device name
4124 * @con_id: connection ID string on device
4125 *
4126 * Returns: clk consumer left unlinked from the consumer list
4127 */
4128static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4129			     const char *con_id)
4130{
4131	struct clk *clk;
4132
4133	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4134	if (!clk)
4135		return ERR_PTR(-ENOMEM);
4136
4137	clk->core = core;
4138	clk->dev_id = dev_id;
4139	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4140	clk->max_rate = ULONG_MAX;
4141
4142	return clk;
4143}
4144
4145/**
4146 * free_clk - Free a clk consumer
4147 * @clk: clk consumer to free
4148 *
4149 * Note, this assumes the clk has been unlinked from the clk_core consumer
4150 * list.
4151 */
4152static void free_clk(struct clk *clk)
4153{
4154	kfree_const(clk->con_id);
4155	kfree(clk);
4156}
4157
4158/**
4159 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4160 * a clk_hw
4161 * @dev: clk consumer device
4162 * @hw: clk_hw associated with the clk being consumed
4163 * @dev_id: string describing device name
4164 * @con_id: connection ID string on device
4165 *
4166 * This is the main function used to create a clk pointer for use by clk
4167 * consumers. It connects a consumer to the clk_core and clk_hw structures
4168 * used by the framework and clk provider respectively.
4169 */
4170struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4171			      const char *dev_id, const char *con_id)
4172{
4173	struct clk *clk;
4174	struct clk_core *core;
4175
4176	/* This is to allow this function to be chained to others */
4177	if (IS_ERR_OR_NULL(hw))
4178		return ERR_CAST(hw);
4179
4180	core = hw->core;
4181	clk = alloc_clk(core, dev_id, con_id);
4182	if (IS_ERR(clk))
4183		return clk;
4184	clk->dev = dev;
4185
4186	if (!try_module_get(core->owner)) {
4187		free_clk(clk);
4188		return ERR_PTR(-ENOENT);
4189	}
4190
4191	kref_get(&core->ref);
4192	clk_core_link_consumer(core, clk);
4193
4194	return clk;
4195}
4196
4197/**
4198 * clk_hw_get_clk - get clk consumer given an clk_hw
4199 * @hw: clk_hw associated with the clk being consumed
4200 * @con_id: connection ID string on device
4201 *
4202 * Returns: new clk consumer
4203 * This is the function to be used by providers which need
4204 * to get a consumer clk and act on the clock element
4205 * Calls to this function must be balanced with calls clk_put()
4206 */
4207struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4208{
4209	struct device *dev = hw->core->dev;
4210	const char *name = dev ? dev_name(dev) : NULL;
4211
4212	return clk_hw_create_clk(dev, hw, name, con_id);
4213}
4214EXPORT_SYMBOL(clk_hw_get_clk);
4215
4216static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4217{
4218	const char *dst;
4219
4220	if (!src) {
4221		if (must_exist)
4222			return -EINVAL;
4223		return 0;
4224	}
4225
4226	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4227	if (!dst)
4228		return -ENOMEM;
4229
4230	return 0;
4231}
4232
4233static int clk_core_populate_parent_map(struct clk_core *core,
4234					const struct clk_init_data *init)
4235{
4236	u8 num_parents = init->num_parents;
4237	const char * const *parent_names = init->parent_names;
4238	const struct clk_hw **parent_hws = init->parent_hws;
4239	const struct clk_parent_data *parent_data = init->parent_data;
4240	int i, ret = 0;
4241	struct clk_parent_map *parents, *parent;
4242
4243	if (!num_parents)
4244		return 0;
4245
4246	/*
4247	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4248	 * having a cache of names/clk_hw pointers to clk_core pointers.
4249	 */
4250	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4251	core->parents = parents;
4252	if (!parents)
4253		return -ENOMEM;
4254
4255	/* Copy everything over because it might be __initdata */
4256	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4257		parent->index = -1;
4258		if (parent_names) {
4259			/* throw a WARN if any entries are NULL */
4260			WARN(!parent_names[i],
4261				"%s: invalid NULL in %s's .parent_names\n",
4262				__func__, core->name);
4263			ret = clk_cpy_name(&parent->name, parent_names[i],
4264					   true);
4265		} else if (parent_data) {
4266			parent->hw = parent_data[i].hw;
4267			parent->index = parent_data[i].index;
4268			ret = clk_cpy_name(&parent->fw_name,
4269					   parent_data[i].fw_name, false);
4270			if (!ret)
4271				ret = clk_cpy_name(&parent->name,
4272						   parent_data[i].name,
4273						   false);
4274		} else if (parent_hws) {
4275			parent->hw = parent_hws[i];
4276		} else {
4277			ret = -EINVAL;
4278			WARN(1, "Must specify parents if num_parents > 0\n");
4279		}
4280
4281		if (ret) {
4282			do {
4283				kfree_const(parents[i].name);
4284				kfree_const(parents[i].fw_name);
4285			} while (--i >= 0);
4286			kfree(parents);
4287
4288			return ret;
4289		}
4290	}
4291
4292	return 0;
4293}
4294
4295static void clk_core_free_parent_map(struct clk_core *core)
4296{
4297	int i = core->num_parents;
4298
4299	if (!core->num_parents)
4300		return;
4301
4302	while (--i >= 0) {
4303		kfree_const(core->parents[i].name);
4304		kfree_const(core->parents[i].fw_name);
4305	}
4306
4307	kfree(core->parents);
4308}
4309
4310/* Free memory allocated for a struct clk_core */
4311static void __clk_release(struct kref *ref)
4312{
4313	struct clk_core *core = container_of(ref, struct clk_core, ref);
4314
4315	if (core->rpm_enabled) {
4316		mutex_lock(&clk_rpm_list_lock);
4317		hlist_del(&core->rpm_node);
4318		mutex_unlock(&clk_rpm_list_lock);
4319	}
4320
4321	clk_core_free_parent_map(core);
4322	kfree_const(core->name);
4323	kfree(core);
4324}
4325
4326static struct clk *
4327__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4328{
4329	int ret;
4330	struct clk_core *core;
4331	const struct clk_init_data *init = hw->init;
4332
4333	/*
4334	 * The init data is not supposed to be used outside of registration path.
4335	 * Set it to NULL so that provider drivers can't use it either and so that
4336	 * we catch use of hw->init early on in the core.
4337	 */
4338	hw->init = NULL;
4339
4340	core = kzalloc(sizeof(*core), GFP_KERNEL);
4341	if (!core) {
4342		ret = -ENOMEM;
4343		goto fail_out;
4344	}
4345
4346	kref_init(&core->ref);
4347
4348	core->name = kstrdup_const(init->name, GFP_KERNEL);
4349	if (!core->name) {
4350		ret = -ENOMEM;
4351		goto fail_name;
4352	}
4353
4354	if (WARN_ON(!init->ops)) {
4355		ret = -EINVAL;
4356		goto fail_ops;
4357	}
4358	core->ops = init->ops;
4359
 
 
4360	core->dev = dev;
4361	clk_pm_runtime_init(core);
4362	core->of_node = np;
4363	if (dev && dev->driver)
4364		core->owner = dev->driver->owner;
4365	core->hw = hw;
4366	core->flags = init->flags;
4367	core->num_parents = init->num_parents;
4368	core->min_rate = 0;
4369	core->max_rate = ULONG_MAX;
 
4370
4371	ret = clk_core_populate_parent_map(core, init);
4372	if (ret)
4373		goto fail_parents;
4374
4375	INIT_HLIST_HEAD(&core->clks);
4376
4377	/*
4378	 * Don't call clk_hw_create_clk() here because that would pin the
4379	 * provider module to itself and prevent it from ever being removed.
4380	 */
4381	hw->clk = alloc_clk(core, NULL, NULL);
4382	if (IS_ERR(hw->clk)) {
4383		ret = PTR_ERR(hw->clk);
4384		goto fail_create_clk;
4385	}
4386
4387	clk_core_link_consumer(core, hw->clk);
4388
4389	ret = __clk_core_init(core);
4390	if (!ret)
4391		return hw->clk;
4392
4393	clk_prepare_lock();
4394	clk_core_unlink_consumer(hw->clk);
4395	clk_prepare_unlock();
4396
4397	free_clk(hw->clk);
4398	hw->clk = NULL;
4399
4400fail_create_clk:
 
4401fail_parents:
4402fail_ops:
 
4403fail_name:
4404	kref_put(&core->ref, __clk_release);
4405fail_out:
4406	return ERR_PTR(ret);
4407}
4408
4409/**
4410 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4411 * @dev: Device to get device node of
4412 *
4413 * Return: device node pointer of @dev, or the device node pointer of
4414 * @dev->parent if dev doesn't have a device node, or NULL if neither
4415 * @dev or @dev->parent have a device node.
4416 */
4417static struct device_node *dev_or_parent_of_node(struct device *dev)
4418{
4419	struct device_node *np;
4420
4421	if (!dev)
4422		return NULL;
4423
4424	np = dev_of_node(dev);
4425	if (!np)
4426		np = dev_of_node(dev->parent);
4427
4428	return np;
4429}
4430
4431/**
4432 * clk_register - allocate a new clock, register it and return an opaque cookie
4433 * @dev: device that is registering this clock
4434 * @hw: link to hardware-specific clock data
4435 *
4436 * clk_register is the *deprecated* interface for populating the clock tree with
4437 * new clock nodes. Use clk_hw_register() instead.
4438 *
4439 * Returns: a pointer to the newly allocated struct clk which
4440 * cannot be dereferenced by driver code but may be used in conjunction with the
4441 * rest of the clock API.  In the event of an error clk_register will return an
4442 * error code; drivers must test for an error code after calling clk_register.
4443 */
4444struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4445{
4446	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4447}
4448EXPORT_SYMBOL_GPL(clk_register);
4449
4450/**
4451 * clk_hw_register - register a clk_hw and return an error code
4452 * @dev: device that is registering this clock
4453 * @hw: link to hardware-specific clock data
4454 *
4455 * clk_hw_register is the primary interface for populating the clock tree with
4456 * new clock nodes. It returns an integer equal to zero indicating success or
4457 * less than zero indicating failure. Drivers must test for an error code after
4458 * calling clk_hw_register().
4459 */
4460int clk_hw_register(struct device *dev, struct clk_hw *hw)
4461{
4462	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4463			       hw));
4464}
4465EXPORT_SYMBOL_GPL(clk_hw_register);
4466
4467/*
4468 * of_clk_hw_register - register a clk_hw and return an error code
4469 * @node: device_node of device that is registering this clock
4470 * @hw: link to hardware-specific clock data
4471 *
4472 * of_clk_hw_register() is the primary interface for populating the clock tree
4473 * with new clock nodes when a struct device is not available, but a struct
4474 * device_node is. It returns an integer equal to zero indicating success or
4475 * less than zero indicating failure. Drivers must test for an error code after
4476 * calling of_clk_hw_register().
4477 */
4478int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4479{
4480	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4481}
4482EXPORT_SYMBOL_GPL(of_clk_hw_register);
4483
 
 
 
 
 
 
 
 
 
 
 
 
4484/*
4485 * Empty clk_ops for unregistered clocks. These are used temporarily
4486 * after clk_unregister() was called on a clock and until last clock
4487 * consumer calls clk_put() and the struct clk object is freed.
4488 */
4489static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4490{
4491	return -ENXIO;
4492}
4493
4494static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4495{
4496	WARN_ON_ONCE(1);
4497}
4498
4499static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4500					unsigned long parent_rate)
4501{
4502	return -ENXIO;
4503}
4504
4505static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4506{
4507	return -ENXIO;
4508}
4509
4510static int clk_nodrv_determine_rate(struct clk_hw *hw,
4511				    struct clk_rate_request *req)
4512{
4513	return -ENXIO;
4514}
4515
4516static const struct clk_ops clk_nodrv_ops = {
4517	.enable		= clk_nodrv_prepare_enable,
4518	.disable	= clk_nodrv_disable_unprepare,
4519	.prepare	= clk_nodrv_prepare_enable,
4520	.unprepare	= clk_nodrv_disable_unprepare,
4521	.determine_rate	= clk_nodrv_determine_rate,
4522	.set_rate	= clk_nodrv_set_rate,
4523	.set_parent	= clk_nodrv_set_parent,
4524};
4525
4526static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4527						const struct clk_core *target)
4528{
4529	int i;
4530	struct clk_core *child;
4531
4532	for (i = 0; i < root->num_parents; i++)
4533		if (root->parents[i].core == target)
4534			root->parents[i].core = NULL;
4535
4536	hlist_for_each_entry(child, &root->children, child_node)
4537		clk_core_evict_parent_cache_subtree(child, target);
4538}
4539
4540/* Remove this clk from all parent caches */
4541static void clk_core_evict_parent_cache(struct clk_core *core)
4542{
4543	const struct hlist_head **lists;
4544	struct clk_core *root;
4545
4546	lockdep_assert_held(&prepare_lock);
4547
4548	for (lists = all_lists; *lists; lists++)
4549		hlist_for_each_entry(root, *lists, child_node)
4550			clk_core_evict_parent_cache_subtree(root, core);
4551
4552}
4553
4554/**
4555 * clk_unregister - unregister a currently registered clock
4556 * @clk: clock to unregister
4557 */
4558void clk_unregister(struct clk *clk)
4559{
4560	unsigned long flags;
4561	const struct clk_ops *ops;
4562
4563	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4564		return;
4565
4566	clk_debug_unregister(clk->core);
4567
4568	clk_prepare_lock();
4569
4570	ops = clk->core->ops;
4571	if (ops == &clk_nodrv_ops) {
4572		pr_err("%s: unregistered clock: %s\n", __func__,
4573		       clk->core->name);
4574		clk_prepare_unlock();
4575		return;
4576	}
4577	/*
4578	 * Assign empty clock ops for consumers that might still hold
4579	 * a reference to this clock.
4580	 */
4581	flags = clk_enable_lock();
4582	clk->core->ops = &clk_nodrv_ops;
4583	clk_enable_unlock(flags);
4584
4585	if (ops->terminate)
4586		ops->terminate(clk->core->hw);
4587
4588	if (!hlist_empty(&clk->core->children)) {
4589		struct clk_core *child;
4590		struct hlist_node *t;
4591
4592		/* Reparent all children to the orphan list. */
4593		hlist_for_each_entry_safe(child, t, &clk->core->children,
4594					  child_node)
4595			clk_core_set_parent_nolock(child, NULL);
4596	}
4597
4598	clk_core_evict_parent_cache(clk->core);
4599
4600	hlist_del_init(&clk->core->child_node);
4601
4602	if (clk->core->prepare_count)
4603		pr_warn("%s: unregistering prepared clock: %s\n",
4604					__func__, clk->core->name);
4605
4606	if (clk->core->protect_count)
4607		pr_warn("%s: unregistering protected clock: %s\n",
4608					__func__, clk->core->name);
4609	clk_prepare_unlock();
4610
4611	kref_put(&clk->core->ref, __clk_release);
4612	free_clk(clk);
 
 
4613}
4614EXPORT_SYMBOL_GPL(clk_unregister);
4615
4616/**
4617 * clk_hw_unregister - unregister a currently registered clk_hw
4618 * @hw: hardware-specific clock data to unregister
4619 */
4620void clk_hw_unregister(struct clk_hw *hw)
4621{
4622	clk_unregister(hw->clk);
4623}
4624EXPORT_SYMBOL_GPL(clk_hw_unregister);
4625
4626static void devm_clk_unregister_cb(struct device *dev, void *res)
4627{
4628	clk_unregister(*(struct clk **)res);
4629}
4630
4631static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4632{
4633	clk_hw_unregister(*(struct clk_hw **)res);
4634}
4635
4636/**
4637 * devm_clk_register - resource managed clk_register()
4638 * @dev: device that is registering this clock
4639 * @hw: link to hardware-specific clock data
4640 *
4641 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4642 *
4643 * Clocks returned from this function are automatically clk_unregister()ed on
4644 * driver detach. See clk_register() for more information.
4645 */
4646struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4647{
4648	struct clk *clk;
4649	struct clk **clkp;
4650
4651	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4652	if (!clkp)
4653		return ERR_PTR(-ENOMEM);
4654
4655	clk = clk_register(dev, hw);
4656	if (!IS_ERR(clk)) {
4657		*clkp = clk;
4658		devres_add(dev, clkp);
4659	} else {
4660		devres_free(clkp);
4661	}
4662
4663	return clk;
4664}
4665EXPORT_SYMBOL_GPL(devm_clk_register);
4666
4667/**
4668 * devm_clk_hw_register - resource managed clk_hw_register()
4669 * @dev: device that is registering this clock
4670 * @hw: link to hardware-specific clock data
4671 *
4672 * Managed clk_hw_register(). Clocks registered by this function are
4673 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4674 * for more information.
4675 */
4676int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4677{
4678	struct clk_hw **hwp;
4679	int ret;
4680
4681	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4682	if (!hwp)
4683		return -ENOMEM;
4684
4685	ret = clk_hw_register(dev, hw);
4686	if (!ret) {
4687		*hwp = hw;
4688		devres_add(dev, hwp);
4689	} else {
4690		devres_free(hwp);
4691	}
4692
4693	return ret;
4694}
4695EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4696
4697static void devm_clk_release(struct device *dev, void *res)
4698{
4699	clk_put(*(struct clk **)res);
 
 
 
 
 
 
 
 
 
 
 
 
4700}
4701
4702/**
4703 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4704 * @dev: device that is registering this clock
4705 * @hw: clk_hw associated with the clk being consumed
4706 * @con_id: connection ID string on device
4707 *
4708 * Managed clk_hw_get_clk(). Clocks got with this function are
4709 * automatically clk_put() on driver detach. See clk_put()
4710 * for more information.
4711 */
4712struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4713				const char *con_id)
4714{
4715	struct clk *clk;
4716	struct clk **clkp;
4717
4718	/* This should not happen because it would mean we have drivers
4719	 * passing around clk_hw pointers instead of having the caller use
4720	 * proper clk_get() style APIs
4721	 */
4722	WARN_ON_ONCE(dev != hw->core->dev);
4723
4724	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4725	if (!clkp)
4726		return ERR_PTR(-ENOMEM);
4727
4728	clk = clk_hw_get_clk(hw, con_id);
4729	if (!IS_ERR(clk)) {
4730		*clkp = clk;
4731		devres_add(dev, clkp);
4732	} else {
4733		devres_free(clkp);
4734	}
4735
4736	return clk;
 
 
 
 
 
 
 
 
 
 
 
 
4737}
4738EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4739
4740/*
4741 * clkdev helpers
4742 */
4743
4744void __clk_put(struct clk *clk)
4745{
4746	struct module *owner;
4747
4748	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4749		return;
4750
4751	clk_prepare_lock();
4752
4753	/*
4754	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4755	 * given user should be balanced with calls to clk_rate_exclusive_put()
4756	 * and by that same consumer
4757	 */
4758	if (WARN_ON(clk->exclusive_count)) {
4759		/* We voiced our concern, let's sanitize the situation */
4760		clk->core->protect_count -= (clk->exclusive_count - 1);
4761		clk_core_rate_unprotect(clk->core);
4762		clk->exclusive_count = 0;
4763	}
4764
4765	hlist_del(&clk->clks_node);
 
 
 
4766
4767	/* If we had any boundaries on that clock, let's drop them. */
4768	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4769		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4770
4771	clk_prepare_unlock();
4772
4773	owner = clk->core->owner;
4774	kref_put(&clk->core->ref, __clk_release);
4775	module_put(owner);
 
4776	free_clk(clk);
4777}
4778
4779/***        clk rate change notifiers        ***/
4780
4781/**
4782 * clk_notifier_register - add a clk rate change notifier
4783 * @clk: struct clk * to watch
4784 * @nb: struct notifier_block * with callback info
4785 *
4786 * Request notification when clk's rate changes.  This uses an SRCU
4787 * notifier because we want it to block and notifier unregistrations are
4788 * uncommon.  The callbacks associated with the notifier must not
4789 * re-enter into the clk framework by calling any top-level clk APIs;
4790 * this will cause a nested prepare_lock mutex.
4791 *
4792 * In all notification cases (pre, post and abort rate change) the original
4793 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4794 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4795 *
4796 * clk_notifier_register() must be called from non-atomic context.
4797 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4798 * allocation failure; otherwise, passes along the return value of
4799 * srcu_notifier_chain_register().
4800 */
4801int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4802{
4803	struct clk_notifier *cn;
4804	int ret = -ENOMEM;
4805
4806	if (!clk || !nb)
4807		return -EINVAL;
4808
4809	clk_prepare_lock();
4810
4811	/* search the list of notifiers for this clk */
4812	list_for_each_entry(cn, &clk_notifier_list, node)
4813		if (cn->clk == clk)
4814			goto found;
4815
4816	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4817	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4818	if (!cn)
4819		goto out;
 
4820
4821	cn->clk = clk;
4822	srcu_init_notifier_head(&cn->notifier_head);
4823
4824	list_add(&cn->node, &clk_notifier_list);
 
4825
4826found:
4827	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4828
4829	clk->core->notifier_count++;
4830
4831out:
4832	clk_prepare_unlock();
4833
4834	return ret;
4835}
4836EXPORT_SYMBOL_GPL(clk_notifier_register);
4837
4838/**
4839 * clk_notifier_unregister - remove a clk rate change notifier
4840 * @clk: struct clk *
4841 * @nb: struct notifier_block * with callback info
4842 *
4843 * Request no further notification for changes to 'clk' and frees memory
4844 * allocated in clk_notifier_register.
4845 *
4846 * Returns -EINVAL if called with null arguments; otherwise, passes
4847 * along the return value of srcu_notifier_chain_unregister().
4848 */
4849int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4850{
4851	struct clk_notifier *cn;
4852	int ret = -ENOENT;
4853
4854	if (!clk || !nb)
4855		return -EINVAL;
4856
4857	clk_prepare_lock();
4858
4859	list_for_each_entry(cn, &clk_notifier_list, node) {
4860		if (cn->clk == clk) {
4861			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4862
4863			clk->core->notifier_count--;
4864
4865			/* XXX the notifier code should handle this better */
4866			if (!cn->notifier_head.head) {
4867				srcu_cleanup_notifier_head(&cn->notifier_head);
4868				list_del(&cn->node);
4869				kfree(cn);
4870			}
4871			break;
4872		}
4873	}
4874
4875	clk_prepare_unlock();
4876
4877	return ret;
4878}
4879EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4880
4881struct clk_notifier_devres {
4882	struct clk *clk;
4883	struct notifier_block *nb;
4884};
4885
4886static void devm_clk_notifier_release(struct device *dev, void *res)
4887{
4888	struct clk_notifier_devres *devres = res;
4889
4890	clk_notifier_unregister(devres->clk, devres->nb);
4891}
4892
4893int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4894			       struct notifier_block *nb)
4895{
4896	struct clk_notifier_devres *devres;
4897	int ret;
4898
4899	devres = devres_alloc(devm_clk_notifier_release,
4900			      sizeof(*devres), GFP_KERNEL);
4901
4902	if (!devres)
4903		return -ENOMEM;
 
 
 
 
4904
4905	ret = clk_notifier_register(clk, nb);
4906	if (!ret) {
4907		devres->clk = clk;
4908		devres->nb = nb;
4909		devres_add(dev, devres);
4910	} else {
4911		devres_free(devres);
4912	}
4913
 
 
4914	return ret;
4915}
4916EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4917
4918#ifdef CONFIG_OF
4919static void clk_core_reparent_orphans(void)
4920{
4921	clk_prepare_lock();
4922	clk_core_reparent_orphans_nolock();
4923	clk_prepare_unlock();
4924}
4925
4926/**
4927 * struct of_clk_provider - Clock provider registration structure
4928 * @link: Entry in global list of clock providers
4929 * @node: Pointer to device tree node of clock provider
4930 * @get: Get clock callback.  Returns NULL or a struct clk for the
4931 *       given clock specifier
4932 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4933 *       struct clk_hw for the given clock specifier
4934 * @data: context pointer to be passed into @get callback
4935 */
4936struct of_clk_provider {
4937	struct list_head link;
4938
4939	struct device_node *node;
4940	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4941	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4942	void *data;
4943};
4944
4945extern struct of_device_id __clk_of_table;
4946static const struct of_device_id __clk_of_table_sentinel
4947	__used __section("__clk_of_table_end");
4948
4949static LIST_HEAD(of_clk_providers);
4950static DEFINE_MUTEX(of_clk_mutex);
4951
4952struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4953				     void *data)
4954{
4955	return data;
4956}
4957EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4958
4959struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4960{
4961	return data;
4962}
4963EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4964
4965struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4966{
4967	struct clk_onecell_data *clk_data = data;
4968	unsigned int idx = clkspec->args[0];
4969
4970	if (idx >= clk_data->clk_num) {
4971		pr_err("%s: invalid clock index %u\n", __func__, idx);
4972		return ERR_PTR(-EINVAL);
4973	}
4974
4975	return clk_data->clks[idx];
4976}
4977EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4978
4979struct clk_hw *
4980of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4981{
4982	struct clk_hw_onecell_data *hw_data = data;
4983	unsigned int idx = clkspec->args[0];
4984
4985	if (idx >= hw_data->num) {
4986		pr_err("%s: invalid index %u\n", __func__, idx);
4987		return ERR_PTR(-EINVAL);
4988	}
4989
4990	return hw_data->hws[idx];
4991}
4992EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4993
4994/**
4995 * of_clk_add_provider() - Register a clock provider for a node
4996 * @np: Device node pointer associated with clock provider
4997 * @clk_src_get: callback for decoding clock
4998 * @data: context pointer for @clk_src_get callback.
4999 *
5000 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5001 */
5002int of_clk_add_provider(struct device_node *np,
5003			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5004						   void *data),
5005			void *data)
5006{
5007	struct of_clk_provider *cp;
5008	int ret;
5009
5010	if (!np)
5011		return 0;
5012
5013	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5014	if (!cp)
5015		return -ENOMEM;
5016
5017	cp->node = of_node_get(np);
5018	cp->data = data;
5019	cp->get = clk_src_get;
5020
5021	mutex_lock(&of_clk_mutex);
5022	list_add(&cp->link, &of_clk_providers);
5023	mutex_unlock(&of_clk_mutex);
5024	pr_debug("Added clock from %pOF\n", np);
5025
5026	clk_core_reparent_orphans();
5027
5028	ret = of_clk_set_defaults(np, true);
5029	if (ret < 0)
5030		of_clk_del_provider(np);
5031
5032	fwnode_dev_initialized(&np->fwnode, true);
5033
5034	return ret;
5035}
5036EXPORT_SYMBOL_GPL(of_clk_add_provider);
5037
5038/**
5039 * of_clk_add_hw_provider() - Register a clock provider for a node
5040 * @np: Device node pointer associated with clock provider
5041 * @get: callback for decoding clk_hw
5042 * @data: context pointer for @get callback.
5043 */
5044int of_clk_add_hw_provider(struct device_node *np,
5045			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5046						 void *data),
5047			   void *data)
5048{
5049	struct of_clk_provider *cp;
5050	int ret;
5051
5052	if (!np)
5053		return 0;
5054
5055	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5056	if (!cp)
5057		return -ENOMEM;
5058
5059	cp->node = of_node_get(np);
5060	cp->data = data;
5061	cp->get_hw = get;
5062
5063	mutex_lock(&of_clk_mutex);
5064	list_add(&cp->link, &of_clk_providers);
5065	mutex_unlock(&of_clk_mutex);
5066	pr_debug("Added clk_hw provider from %pOF\n", np);
5067
5068	clk_core_reparent_orphans();
5069
5070	ret = of_clk_set_defaults(np, true);
5071	if (ret < 0)
5072		of_clk_del_provider(np);
5073
5074	fwnode_dev_initialized(&np->fwnode, true);
5075
5076	return ret;
5077}
5078EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5079
5080static void devm_of_clk_release_provider(struct device *dev, void *res)
5081{
5082	of_clk_del_provider(*(struct device_node **)res);
5083}
5084
5085/*
5086 * We allow a child device to use its parent device as the clock provider node
5087 * for cases like MFD sub-devices where the child device driver wants to use
5088 * devm_*() APIs but not list the device in DT as a sub-node.
5089 */
5090static struct device_node *get_clk_provider_node(struct device *dev)
5091{
5092	struct device_node *np, *parent_np;
5093
5094	np = dev->of_node;
5095	parent_np = dev->parent ? dev->parent->of_node : NULL;
5096
5097	if (!of_property_present(np, "#clock-cells"))
5098		if (of_property_present(parent_np, "#clock-cells"))
5099			np = parent_np;
5100
5101	return np;
5102}
5103
5104/**
5105 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5106 * @dev: Device acting as the clock provider (used for DT node and lifetime)
5107 * @get: callback for decoding clk_hw
5108 * @data: context pointer for @get callback
5109 *
5110 * Registers clock provider for given device's node. If the device has no DT
5111 * node or if the device node lacks of clock provider information (#clock-cells)
5112 * then the parent device's node is scanned for this information. If parent node
5113 * has the #clock-cells then it is used in registration. Provider is
5114 * automatically released at device exit.
5115 *
5116 * Return: 0 on success or an errno on failure.
5117 */
5118int devm_of_clk_add_hw_provider(struct device *dev,
5119			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5120					      void *data),
5121			void *data)
5122{
5123	struct device_node **ptr, *np;
5124	int ret;
5125
5126	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5127			   GFP_KERNEL);
5128	if (!ptr)
5129		return -ENOMEM;
5130
5131	np = get_clk_provider_node(dev);
5132	ret = of_clk_add_hw_provider(np, get, data);
5133	if (!ret) {
5134		*ptr = np;
5135		devres_add(dev, ptr);
5136	} else {
5137		devres_free(ptr);
5138	}
5139
5140	return ret;
5141}
5142EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5143
5144/**
5145 * of_clk_del_provider() - Remove a previously registered clock provider
5146 * @np: Device node pointer associated with clock provider
5147 */
5148void of_clk_del_provider(struct device_node *np)
5149{
5150	struct of_clk_provider *cp;
5151
5152	if (!np)
5153		return;
5154
5155	mutex_lock(&of_clk_mutex);
5156	list_for_each_entry(cp, &of_clk_providers, link) {
5157		if (cp->node == np) {
5158			list_del(&cp->link);
5159			fwnode_dev_initialized(&np->fwnode, false);
5160			of_node_put(cp->node);
5161			kfree(cp);
5162			break;
5163		}
5164	}
5165	mutex_unlock(&of_clk_mutex);
5166}
5167EXPORT_SYMBOL_GPL(of_clk_del_provider);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5168
5169/**
5170 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5171 * @np: device node to parse clock specifier from
5172 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5173 * @name: clock name to find and parse. If name is NULL, the index is used
5174 * @out_args: Result of parsing the clock specifier
5175 *
5176 * Parses a device node's "clocks" and "clock-names" properties to find the
5177 * phandle and cells for the index or name that is desired. The resulting clock
5178 * specifier is placed into @out_args, or an errno is returned when there's a
5179 * parsing error. The @index argument is ignored if @name is non-NULL.
5180 *
5181 * Example:
5182 *
5183 * phandle1: clock-controller@1 {
5184 *	#clock-cells = <2>;
5185 * }
5186 *
5187 * phandle2: clock-controller@2 {
5188 *	#clock-cells = <1>;
5189 * }
5190 *
5191 * clock-consumer@3 {
5192 *	clocks = <&phandle1 1 2 &phandle2 3>;
5193 *	clock-names = "name1", "name2";
5194 * }
5195 *
5196 * To get a device_node for `clock-controller@2' node you may call this
5197 * function a few different ways:
5198 *
5199 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5200 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5201 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5202 *
5203 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5204 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5205 * the "clock-names" property of @np.
5206 */
5207static int of_parse_clkspec(const struct device_node *np, int index,
5208			    const char *name, struct of_phandle_args *out_args)
5209{
5210	int ret = -ENOENT;
5211
5212	/* Walk up the tree of devices looking for a clock property that matches */
5213	while (np) {
5214		/*
5215		 * For named clocks, first look up the name in the
5216		 * "clock-names" property.  If it cannot be found, then index
5217		 * will be an error code and of_parse_phandle_with_args() will
5218		 * return -EINVAL.
5219		 */
5220		if (name)
5221			index = of_property_match_string(np, "clock-names", name);
5222		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5223						 index, out_args);
5224		if (!ret)
5225			break;
5226		if (name && index >= 0)
5227			break;
5228
5229		/*
5230		 * No matching clock found on this node.  If the parent node
5231		 * has a "clock-ranges" property, then we can try one of its
5232		 * clocks.
5233		 */
5234		np = np->parent;
5235		if (np && !of_get_property(np, "clock-ranges", NULL))
5236			break;
5237		index = 0;
5238	}
5239
5240	return ret;
5241}
5242
5243static struct clk_hw *
5244__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5245			      struct of_phandle_args *clkspec)
5246{
5247	struct clk *clk;
5248
5249	if (provider->get_hw)
5250		return provider->get_hw(clkspec, provider->data);
5251
5252	clk = provider->get(clkspec, provider->data);
5253	if (IS_ERR(clk))
5254		return ERR_CAST(clk);
5255	return __clk_get_hw(clk);
5256}
5257
5258static struct clk_hw *
5259of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5260{
5261	struct of_clk_provider *provider;
5262	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5263
5264	if (!clkspec)
5265		return ERR_PTR(-EINVAL);
5266
5267	mutex_lock(&of_clk_mutex);
5268	list_for_each_entry(provider, &of_clk_providers, link) {
5269		if (provider->node == clkspec->np) {
5270			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5271			if (!IS_ERR(hw))
5272				break;
5273		}
5274	}
5275	mutex_unlock(&of_clk_mutex);
5276
5277	return hw;
5278}
5279
5280/**
5281 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5282 * @clkspec: pointer to a clock specifier data structure
5283 *
5284 * This function looks up a struct clk from the registered list of clock
5285 * providers, an input is a clock specifier data structure as returned
5286 * from the of_parse_phandle_with_args() function call.
5287 */
5288struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5289{
5290	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5291
5292	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5293}
5294EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5295
5296struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5297			     const char *con_id)
5298{
5299	int ret;
5300	struct clk_hw *hw;
5301	struct of_phandle_args clkspec;
5302
5303	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5304	if (ret)
5305		return ERR_PTR(ret);
5306
5307	hw = of_clk_get_hw_from_clkspec(&clkspec);
5308	of_node_put(clkspec.np);
5309
5310	return hw;
5311}
5312
5313static struct clk *__of_clk_get(struct device_node *np,
5314				int index, const char *dev_id,
5315				const char *con_id)
5316{
5317	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5318
5319	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5320}
5321
5322struct clk *of_clk_get(struct device_node *np, int index)
5323{
5324	return __of_clk_get(np, index, np->full_name, NULL);
5325}
5326EXPORT_SYMBOL(of_clk_get);
5327
5328/**
5329 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5330 * @np: pointer to clock consumer node
5331 * @name: name of consumer's clock input, or NULL for the first clock reference
5332 *
5333 * This function parses the clocks and clock-names properties,
5334 * and uses them to look up the struct clk from the registered list of clock
5335 * providers.
5336 */
5337struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5338{
5339	if (!np)
5340		return ERR_PTR(-ENOENT);
5341
5342	return __of_clk_get(np, 0, np->full_name, name);
5343}
5344EXPORT_SYMBOL(of_clk_get_by_name);
5345
5346/**
5347 * of_clk_get_parent_count() - Count the number of clocks a device node has
5348 * @np: device node to count
5349 *
5350 * Returns: The number of clocks that are possible parents of this node
5351 */
5352unsigned int of_clk_get_parent_count(const struct device_node *np)
5353{
5354	int count;
5355
5356	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5357	if (count < 0)
5358		return 0;
5359
5360	return count;
5361}
5362EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5363
5364const char *of_clk_get_parent_name(const struct device_node *np, int index)
5365{
5366	struct of_phandle_args clkspec;
5367	struct property *prop;
5368	const char *clk_name;
5369	const __be32 *vp;
5370	u32 pv;
5371	int rc;
5372	int count;
5373	struct clk *clk;
5374
5375	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5376					&clkspec);
5377	if (rc)
5378		return NULL;
5379
5380	index = clkspec.args_count ? clkspec.args[0] : 0;
5381	count = 0;
5382
5383	/* if there is an indices property, use it to transfer the index
5384	 * specified into an array offset for the clock-output-names property.
5385	 */
5386	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5387		if (index == pv) {
5388			index = count;
5389			break;
5390		}
5391		count++;
5392	}
5393	/* We went off the end of 'clock-indices' without finding it */
5394	if (prop && !vp)
5395		return NULL;
5396
5397	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5398					  index,
5399					  &clk_name) < 0) {
5400		/*
5401		 * Best effort to get the name if the clock has been
5402		 * registered with the framework. If the clock isn't
5403		 * registered, we return the node name as the name of
5404		 * the clock as long as #clock-cells = 0.
5405		 */
5406		clk = of_clk_get_from_provider(&clkspec);
5407		if (IS_ERR(clk)) {
5408			if (clkspec.args_count == 0)
5409				clk_name = clkspec.np->name;
5410			else
5411				clk_name = NULL;
5412		} else {
5413			clk_name = __clk_get_name(clk);
5414			clk_put(clk);
5415		}
5416	}
5417
5418
5419	of_node_put(clkspec.np);
5420	return clk_name;
5421}
5422EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5423
5424/**
5425 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5426 * number of parents
5427 * @np: Device node pointer associated with clock provider
5428 * @parents: pointer to char array that hold the parents' names
5429 * @size: size of the @parents array
5430 *
5431 * Return: number of parents for the clock node.
5432 */
5433int of_clk_parent_fill(struct device_node *np, const char **parents,
5434		       unsigned int size)
5435{
5436	unsigned int i = 0;
5437
5438	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5439		i++;
5440
5441	return i;
5442}
5443EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5444
5445struct clock_provider {
5446	void (*clk_init_cb)(struct device_node *);
5447	struct device_node *np;
5448	struct list_head node;
5449};
5450
5451/*
5452 * This function looks for a parent clock. If there is one, then it
5453 * checks that the provider for this parent clock was initialized, in
5454 * this case the parent clock will be ready.
5455 */
5456static int parent_ready(struct device_node *np)
5457{
5458	int i = 0;
5459
5460	while (true) {
5461		struct clk *clk = of_clk_get(np, i);
5462
5463		/* this parent is ready we can check the next one */
5464		if (!IS_ERR(clk)) {
5465			clk_put(clk);
5466			i++;
5467			continue;
5468		}
5469
5470		/* at least one parent is not ready, we exit now */
5471		if (PTR_ERR(clk) == -EPROBE_DEFER)
5472			return 0;
5473
5474		/*
5475		 * Here we make assumption that the device tree is
5476		 * written correctly. So an error means that there is
5477		 * no more parent. As we didn't exit yet, then the
5478		 * previous parent are ready. If there is no clock
5479		 * parent, no need to wait for them, then we can
5480		 * consider their absence as being ready
5481		 */
5482		return 1;
5483	}
5484}
5485
5486/**
5487 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5488 * @np: Device node pointer associated with clock provider
5489 * @index: clock index
5490 * @flags: pointer to top-level framework flags
5491 *
5492 * Detects if the clock-critical property exists and, if so, sets the
5493 * corresponding CLK_IS_CRITICAL flag.
5494 *
5495 * Do not use this function. It exists only for legacy Device Tree
5496 * bindings, such as the one-clock-per-node style that are outdated.
5497 * Those bindings typically put all clock data into .dts and the Linux
5498 * driver has no clock data, thus making it impossible to set this flag
5499 * correctly from the driver. Only those drivers may call
5500 * of_clk_detect_critical from their setup functions.
5501 *
5502 * Return: error code or zero on success
5503 */
5504int of_clk_detect_critical(struct device_node *np, int index,
5505			   unsigned long *flags)
5506{
5507	struct property *prop;
5508	const __be32 *cur;
5509	uint32_t idx;
5510
5511	if (!np || !flags)
5512		return -EINVAL;
5513
5514	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5515		if (index == idx)
5516			*flags |= CLK_IS_CRITICAL;
5517
5518	return 0;
5519}
5520
5521/**
5522 * of_clk_init() - Scan and init clock providers from the DT
5523 * @matches: array of compatible values and init functions for providers.
5524 *
5525 * This function scans the device tree for matching clock providers
5526 * and calls their initialization functions. It also does it by trying
5527 * to follow the dependencies.
5528 */
5529void __init of_clk_init(const struct of_device_id *matches)
5530{
5531	const struct of_device_id *match;
5532	struct device_node *np;
5533	struct clock_provider *clk_provider, *next;
5534	bool is_init_done;
5535	bool force = false;
5536	LIST_HEAD(clk_provider_list);
5537
5538	if (!matches)
5539		matches = &__clk_of_table;
5540
5541	/* First prepare the list of the clocks providers */
5542	for_each_matching_node_and_match(np, matches, &match) {
5543		struct clock_provider *parent;
5544
5545		if (!of_device_is_available(np))
5546			continue;
5547
5548		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5549		if (!parent) {
5550			list_for_each_entry_safe(clk_provider, next,
5551						 &clk_provider_list, node) {
5552				list_del(&clk_provider->node);
5553				of_node_put(clk_provider->np);
5554				kfree(clk_provider);
5555			}
5556			of_node_put(np);
5557			return;
5558		}
5559
5560		parent->clk_init_cb = match->data;
5561		parent->np = of_node_get(np);
5562		list_add_tail(&parent->node, &clk_provider_list);
5563	}
5564
5565	while (!list_empty(&clk_provider_list)) {
5566		is_init_done = false;
5567		list_for_each_entry_safe(clk_provider, next,
5568					&clk_provider_list, node) {
5569			if (force || parent_ready(clk_provider->np)) {
5570
5571				/* Don't populate platform devices */
5572				of_node_set_flag(clk_provider->np,
5573						 OF_POPULATED);
5574
5575				clk_provider->clk_init_cb(clk_provider->np);
5576				of_clk_set_defaults(clk_provider->np, true);
5577
5578				list_del(&clk_provider->node);
5579				of_node_put(clk_provider->np);
5580				kfree(clk_provider);
5581				is_init_done = true;
5582			}
5583		}
5584
5585		/*
5586		 * We didn't manage to initialize any of the
5587		 * remaining providers during the last loop, so now we
5588		 * initialize all the remaining ones unconditionally
5589		 * in case the clock parent was not mandatory
5590		 */
5591		if (!is_init_done)
5592			force = true;
5593	}
5594}
5595#endif
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static struct hlist_head *all_lists[] = {
 
 
 
 
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
 
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	int ret;
 112
 113	if (!core->rpm_enabled)
 114		return 0;
 115
 116	ret = pm_runtime_get_sync(core->dev);
 117	if (ret < 0) {
 118		pm_runtime_put_noidle(core->dev);
 119		return ret;
 120	}
 121	return 0;
 122}
 123
 124static void clk_pm_runtime_put(struct clk_core *core)
 125{
 126	if (!core->rpm_enabled)
 127		return;
 128
 129	pm_runtime_put_sync(core->dev);
 130}
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132/***           locking             ***/
 133static void clk_prepare_lock(void)
 134{
 135	if (!mutex_trylock(&prepare_lock)) {
 136		if (prepare_owner == current) {
 137			prepare_refcnt++;
 138			return;
 139		}
 140		mutex_lock(&prepare_lock);
 141	}
 142	WARN_ON_ONCE(prepare_owner != NULL);
 143	WARN_ON_ONCE(prepare_refcnt != 0);
 144	prepare_owner = current;
 145	prepare_refcnt = 1;
 146}
 147
 148static void clk_prepare_unlock(void)
 149{
 150	WARN_ON_ONCE(prepare_owner != current);
 151	WARN_ON_ONCE(prepare_refcnt == 0);
 152
 153	if (--prepare_refcnt)
 154		return;
 155	prepare_owner = NULL;
 156	mutex_unlock(&prepare_lock);
 157}
 158
 159static unsigned long clk_enable_lock(void)
 160	__acquires(enable_lock)
 161{
 162	unsigned long flags;
 163
 164	/*
 165	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 166	 * we already hold the lock. So, in that case, we rely only on
 167	 * reference counting.
 168	 */
 169	if (!IS_ENABLED(CONFIG_SMP) ||
 170	    !spin_trylock_irqsave(&enable_lock, flags)) {
 171		if (enable_owner == current) {
 172			enable_refcnt++;
 173			__acquire(enable_lock);
 174			if (!IS_ENABLED(CONFIG_SMP))
 175				local_save_flags(flags);
 176			return flags;
 177		}
 178		spin_lock_irqsave(&enable_lock, flags);
 179	}
 180	WARN_ON_ONCE(enable_owner != NULL);
 181	WARN_ON_ONCE(enable_refcnt != 0);
 182	enable_owner = current;
 183	enable_refcnt = 1;
 184	return flags;
 185}
 186
 187static void clk_enable_unlock(unsigned long flags)
 188	__releases(enable_lock)
 189{
 190	WARN_ON_ONCE(enable_owner != current);
 191	WARN_ON_ONCE(enable_refcnt == 0);
 192
 193	if (--enable_refcnt) {
 194		__release(enable_lock);
 195		return;
 196	}
 197	enable_owner = NULL;
 198	spin_unlock_irqrestore(&enable_lock, flags);
 199}
 200
 201static bool clk_core_rate_is_protected(struct clk_core *core)
 202{
 203	return core->protect_count;
 204}
 205
 206static bool clk_core_is_prepared(struct clk_core *core)
 207{
 208	bool ret = false;
 209
 210	/*
 211	 * .is_prepared is optional for clocks that can prepare
 212	 * fall back to software usage counter if it is missing
 213	 */
 214	if (!core->ops->is_prepared)
 215		return core->prepare_count;
 216
 217	if (!clk_pm_runtime_get(core)) {
 218		ret = core->ops->is_prepared(core->hw);
 219		clk_pm_runtime_put(core);
 220	}
 221
 222	return ret;
 223}
 224
 225static bool clk_core_is_enabled(struct clk_core *core)
 226{
 227	bool ret = false;
 228
 229	/*
 230	 * .is_enabled is only mandatory for clocks that gate
 231	 * fall back to software usage counter if .is_enabled is missing
 232	 */
 233	if (!core->ops->is_enabled)
 234		return core->enable_count;
 235
 236	/*
 237	 * Check if clock controller's device is runtime active before
 238	 * calling .is_enabled callback. If not, assume that clock is
 239	 * disabled, because we might be called from atomic context, from
 240	 * which pm_runtime_get() is not allowed.
 241	 * This function is called mainly from clk_disable_unused_subtree,
 242	 * which ensures proper runtime pm activation of controller before
 243	 * taking enable spinlock, but the below check is needed if one tries
 244	 * to call it from other places.
 245	 */
 246	if (core->rpm_enabled) {
 247		pm_runtime_get_noresume(core->dev);
 248		if (!pm_runtime_active(core->dev)) {
 249			ret = false;
 250			goto done;
 251		}
 252	}
 253
 
 
 
 
 
 
 
 
 
 
 
 254	ret = core->ops->is_enabled(core->hw);
 255done:
 256	if (core->rpm_enabled)
 257		pm_runtime_put(core->dev);
 258
 259	return ret;
 260}
 261
 262/***    helper functions   ***/
 263
 264const char *__clk_get_name(const struct clk *clk)
 265{
 266	return !clk ? NULL : clk->core->name;
 267}
 268EXPORT_SYMBOL_GPL(__clk_get_name);
 269
 270const char *clk_hw_get_name(const struct clk_hw *hw)
 271{
 272	return hw->core->name;
 273}
 274EXPORT_SYMBOL_GPL(clk_hw_get_name);
 275
 276struct clk_hw *__clk_get_hw(struct clk *clk)
 277{
 278	return !clk ? NULL : clk->core->hw;
 279}
 280EXPORT_SYMBOL_GPL(__clk_get_hw);
 281
 282unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 283{
 284	return hw->core->num_parents;
 285}
 286EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 287
 288struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 289{
 290	return hw->core->parent ? hw->core->parent->hw : NULL;
 291}
 292EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 293
 294static struct clk_core *__clk_lookup_subtree(const char *name,
 295					     struct clk_core *core)
 296{
 297	struct clk_core *child;
 298	struct clk_core *ret;
 299
 300	if (!strcmp(core->name, name))
 301		return core;
 302
 303	hlist_for_each_entry(child, &core->children, child_node) {
 304		ret = __clk_lookup_subtree(name, child);
 305		if (ret)
 306			return ret;
 307	}
 308
 309	return NULL;
 310}
 311
 312static struct clk_core *clk_core_lookup(const char *name)
 313{
 314	struct clk_core *root_clk;
 315	struct clk_core *ret;
 316
 317	if (!name)
 318		return NULL;
 319
 320	/* search the 'proper' clk tree first */
 321	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 322		ret = __clk_lookup_subtree(name, root_clk);
 323		if (ret)
 324			return ret;
 325	}
 326
 327	/* if not found, then search the orphan tree */
 328	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 329		ret = __clk_lookup_subtree(name, root_clk);
 330		if (ret)
 331			return ret;
 332	}
 333
 334	return NULL;
 335}
 336
 337#ifdef CONFIG_OF
 338static int of_parse_clkspec(const struct device_node *np, int index,
 339			    const char *name, struct of_phandle_args *out_args);
 340static struct clk_hw *
 341of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 342#else
 343static inline int of_parse_clkspec(const struct device_node *np, int index,
 344				   const char *name,
 345				   struct of_phandle_args *out_args)
 346{
 347	return -ENOENT;
 348}
 349static inline struct clk_hw *
 350of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 351{
 352	return ERR_PTR(-ENOENT);
 353}
 354#endif
 355
 356/**
 357 * clk_core_get - Find the clk_core parent of a clk
 358 * @core: clk to find parent of
 359 * @p_index: parent index to search for
 360 *
 361 * This is the preferred method for clk providers to find the parent of a
 362 * clk when that parent is external to the clk controller. The parent_names
 363 * array is indexed and treated as a local name matching a string in the device
 364 * node's 'clock-names' property or as the 'con_id' matching the device's
 365 * dev_name() in a clk_lookup. This allows clk providers to use their own
 366 * namespace instead of looking for a globally unique parent string.
 367 *
 368 * For example the following DT snippet would allow a clock registered by the
 369 * clock-controller@c001 that has a clk_init_data::parent_data array
 370 * with 'xtal' in the 'name' member to find the clock provided by the
 371 * clock-controller@f00abcd without needing to get the globally unique name of
 372 * the xtal clk.
 373 *
 374 *      parent: clock-controller@f00abcd {
 375 *              reg = <0xf00abcd 0xabcd>;
 376 *              #clock-cells = <0>;
 377 *      };
 378 *
 379 *      clock-controller@c001 {
 380 *              reg = <0xc001 0xf00d>;
 381 *              clocks = <&parent>;
 382 *              clock-names = "xtal";
 383 *              #clock-cells = <1>;
 384 *      };
 385 *
 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 387 * exist in the provider or the name can't be found in the DT node or
 388 * in a clkdev lookup. NULL when the provider knows about the clk but it
 389 * isn't provided on this system.
 390 * A valid clk_core pointer when the clk can be found in the provider.
 391 */
 392static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 393{
 394	const char *name = core->parents[p_index].fw_name;
 395	int index = core->parents[p_index].index;
 396	struct clk_hw *hw = ERR_PTR(-ENOENT);
 397	struct device *dev = core->dev;
 398	const char *dev_id = dev ? dev_name(dev) : NULL;
 399	struct device_node *np = core->of_node;
 400	struct of_phandle_args clkspec;
 401
 402	if (np && (name || index >= 0) &&
 403	    !of_parse_clkspec(np, index, name, &clkspec)) {
 404		hw = of_clk_get_hw_from_clkspec(&clkspec);
 405		of_node_put(clkspec.np);
 406	} else if (name) {
 407		/*
 408		 * If the DT search above couldn't find the provider fallback to
 409		 * looking up via clkdev based clk_lookups.
 410		 */
 411		hw = clk_find_hw(dev_id, name);
 412	}
 413
 414	if (IS_ERR(hw))
 415		return ERR_CAST(hw);
 416
 
 
 
 417	return hw->core;
 418}
 419
 420static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 421{
 422	struct clk_parent_map *entry = &core->parents[index];
 423	struct clk_core *parent = ERR_PTR(-ENOENT);
 424
 425	if (entry->hw) {
 426		parent = entry->hw->core;
 427		/*
 428		 * We have a direct reference but it isn't registered yet?
 429		 * Orphan it and let clk_reparent() update the orphan status
 430		 * when the parent is registered.
 431		 */
 432		if (!parent)
 433			parent = ERR_PTR(-EPROBE_DEFER);
 434	} else {
 435		parent = clk_core_get(core, index);
 436		if (PTR_ERR(parent) == -ENOENT && entry->name)
 437			parent = clk_core_lookup(entry->name);
 438	}
 439
 
 
 
 
 
 
 
 
 440	/* Only cache it if it's not an error */
 441	if (!IS_ERR(parent))
 442		entry->core = parent;
 443}
 444
 445static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 446							 u8 index)
 447{
 448	if (!core || index >= core->num_parents || !core->parents)
 449		return NULL;
 450
 451	if (!core->parents[index].core)
 452		clk_core_fill_parent_index(core, index);
 453
 454	return core->parents[index].core;
 455}
 456
 457struct clk_hw *
 458clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 459{
 460	struct clk_core *parent;
 461
 462	parent = clk_core_get_parent_by_index(hw->core, index);
 463
 464	return !parent ? NULL : parent->hw;
 465}
 466EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 467
 468unsigned int __clk_get_enable_count(struct clk *clk)
 469{
 470	return !clk ? 0 : clk->core->enable_count;
 471}
 472
 473static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 474{
 475	if (!core)
 476		return 0;
 477
 478	if (!core->num_parents || core->parent)
 479		return core->rate;
 480
 481	/*
 482	 * Clk must have a parent because num_parents > 0 but the parent isn't
 483	 * known yet. Best to return 0 as the rate of this clk until we can
 484	 * properly recalc the rate based on the parent's rate.
 485	 */
 486	return 0;
 487}
 488
 489unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 490{
 491	return clk_core_get_rate_nolock(hw->core);
 492}
 493EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 494
 495static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 496{
 497	if (!core)
 498		return 0;
 499
 500	return core->accuracy;
 501}
 502
 503unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 504{
 505	return hw->core->flags;
 506}
 507EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 508
 509bool clk_hw_is_prepared(const struct clk_hw *hw)
 510{
 511	return clk_core_is_prepared(hw->core);
 512}
 513EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 514
 515bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 516{
 517	return clk_core_rate_is_protected(hw->core);
 518}
 519EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 520
 521bool clk_hw_is_enabled(const struct clk_hw *hw)
 522{
 523	return clk_core_is_enabled(hw->core);
 524}
 525EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 526
 527bool __clk_is_enabled(struct clk *clk)
 528{
 529	if (!clk)
 530		return false;
 531
 532	return clk_core_is_enabled(clk->core);
 533}
 534EXPORT_SYMBOL_GPL(__clk_is_enabled);
 535
 536static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 537			   unsigned long best, unsigned long flags)
 538{
 539	if (flags & CLK_MUX_ROUND_CLOSEST)
 540		return abs(now - rate) < abs(best - rate);
 541
 542	return now <= rate && now > best;
 543}
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545int clk_mux_determine_rate_flags(struct clk_hw *hw,
 546				 struct clk_rate_request *req,
 547				 unsigned long flags)
 548{
 549	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 550	int i, num_parents, ret;
 551	unsigned long best = 0;
 552	struct clk_rate_request parent_req = *req;
 553
 554	/* if NO_REPARENT flag set, pass through to current parent */
 555	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 556		parent = core->parent;
 557		if (core->flags & CLK_SET_RATE_PARENT) {
 558			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 559						   &parent_req);
 560			if (ret)
 561				return ret;
 562
 563			best = parent_req.rate;
 564		} else if (parent) {
 565			best = clk_core_get_rate_nolock(parent);
 566		} else {
 567			best = clk_core_get_rate_nolock(core);
 568		}
 569
 570		goto out;
 571	}
 572
 573	/* find the parent that can provide the fastest rate <= rate */
 574	num_parents = core->num_parents;
 575	for (i = 0; i < num_parents; i++) {
 
 
 576		parent = clk_core_get_parent_by_index(core, i);
 577		if (!parent)
 578			continue;
 579
 580		if (core->flags & CLK_SET_RATE_PARENT) {
 581			parent_req = *req;
 582			ret = __clk_determine_rate(parent->hw, &parent_req);
 
 
 
 
 
 583			if (ret)
 584				continue;
 
 
 
 
 585		} else {
 586			parent_req.rate = clk_core_get_rate_nolock(parent);
 587		}
 588
 589		if (mux_is_better_rate(req->rate, parent_req.rate,
 590				       best, flags)) {
 591			best_parent = parent;
 592			best = parent_req.rate;
 593		}
 594	}
 595
 596	if (!best_parent)
 597		return -EINVAL;
 598
 599out:
 600	if (best_parent)
 601		req->best_parent_hw = best_parent->hw;
 602	req->best_parent_rate = best;
 603	req->rate = best;
 604
 605	return 0;
 606}
 607EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 608
 609struct clk *__clk_lookup(const char *name)
 610{
 611	struct clk_core *core = clk_core_lookup(name);
 612
 613	return !core ? NULL : core->hw->clk;
 614}
 615
 616static void clk_core_get_boundaries(struct clk_core *core,
 617				    unsigned long *min_rate,
 618				    unsigned long *max_rate)
 619{
 620	struct clk *clk_user;
 621
 622	lockdep_assert_held(&prepare_lock);
 623
 624	*min_rate = core->min_rate;
 625	*max_rate = core->max_rate;
 626
 627	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 628		*min_rate = max(*min_rate, clk_user->min_rate);
 629
 630	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 631		*max_rate = min(*max_rate, clk_user->max_rate);
 632}
 633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 635			   unsigned long max_rate)
 636{
 637	hw->core->min_rate = min_rate;
 638	hw->core->max_rate = max_rate;
 639}
 640EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 641
 642/*
 643 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 644 * @hw: mux type clk to determine rate on
 645 * @req: rate request, also used to return preferred parent and frequencies
 646 *
 647 * Helper for finding best parent to provide a given frequency. This can be used
 648 * directly as a determine_rate callback (e.g. for a mux), or from a more
 649 * complex clock that may combine a mux with other operations.
 650 *
 651 * Returns: 0 on success, -EERROR value on error
 652 */
 653int __clk_mux_determine_rate(struct clk_hw *hw,
 654			     struct clk_rate_request *req)
 655{
 656	return clk_mux_determine_rate_flags(hw, req, 0);
 657}
 658EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 659
 660int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 661				     struct clk_rate_request *req)
 662{
 663	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 664}
 665EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667/***        clk api        ***/
 668
 669static void clk_core_rate_unprotect(struct clk_core *core)
 670{
 671	lockdep_assert_held(&prepare_lock);
 672
 673	if (!core)
 674		return;
 675
 676	if (WARN(core->protect_count == 0,
 677	    "%s already unprotected\n", core->name))
 678		return;
 679
 680	if (--core->protect_count > 0)
 681		return;
 682
 683	clk_core_rate_unprotect(core->parent);
 684}
 685
 686static int clk_core_rate_nuke_protect(struct clk_core *core)
 687{
 688	int ret;
 689
 690	lockdep_assert_held(&prepare_lock);
 691
 692	if (!core)
 693		return -EINVAL;
 694
 695	if (core->protect_count == 0)
 696		return 0;
 697
 698	ret = core->protect_count;
 699	core->protect_count = 1;
 700	clk_core_rate_unprotect(core);
 701
 702	return ret;
 703}
 704
 705/**
 706 * clk_rate_exclusive_put - release exclusivity over clock rate control
 707 * @clk: the clk over which the exclusivity is released
 708 *
 709 * clk_rate_exclusive_put() completes a critical section during which a clock
 710 * consumer cannot tolerate any other consumer making any operation on the
 711 * clock which could result in a rate change or rate glitch. Exclusive clocks
 712 * cannot have their rate changed, either directly or indirectly due to changes
 713 * further up the parent chain of clocks. As a result, clocks up parent chain
 714 * also get under exclusive control of the calling consumer.
 715 *
 716 * If exlusivity is claimed more than once on clock, even by the same consumer,
 717 * the rate effectively gets locked as exclusivity can't be preempted.
 718 *
 719 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 720 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 721 * error status.
 722 */
 723void clk_rate_exclusive_put(struct clk *clk)
 724{
 725	if (!clk)
 726		return;
 727
 728	clk_prepare_lock();
 729
 730	/*
 731	 * if there is something wrong with this consumer protect count, stop
 732	 * here before messing with the provider
 733	 */
 734	if (WARN_ON(clk->exclusive_count <= 0))
 735		goto out;
 736
 737	clk_core_rate_unprotect(clk->core);
 738	clk->exclusive_count--;
 739out:
 740	clk_prepare_unlock();
 741}
 742EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 743
 744static void clk_core_rate_protect(struct clk_core *core)
 745{
 746	lockdep_assert_held(&prepare_lock);
 747
 748	if (!core)
 749		return;
 750
 751	if (core->protect_count == 0)
 752		clk_core_rate_protect(core->parent);
 753
 754	core->protect_count++;
 755}
 756
 757static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 758{
 759	lockdep_assert_held(&prepare_lock);
 760
 761	if (!core)
 762		return;
 763
 764	if (count == 0)
 765		return;
 766
 767	clk_core_rate_protect(core);
 768	core->protect_count = count;
 769}
 770
 771/**
 772 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 773 * @clk: the clk over which the exclusity of rate control is requested
 774 *
 775 * clk_rate_exclusive_get() begins a critical section during which a clock
 776 * consumer cannot tolerate any other consumer making any operation on the
 777 * clock which could result in a rate change or rate glitch. Exclusive clocks
 778 * cannot have their rate changed, either directly or indirectly due to changes
 779 * further up the parent chain of clocks. As a result, clocks up parent chain
 780 * also get under exclusive control of the calling consumer.
 781 *
 782 * If exlusivity is claimed more than once on clock, even by the same consumer,
 783 * the rate effectively gets locked as exclusivity can't be preempted.
 784 *
 785 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 786 * clk_rate_exclusive_put(). Calls to this function may sleep.
 787 * Returns 0 on success, -EERROR otherwise
 788 */
 789int clk_rate_exclusive_get(struct clk *clk)
 790{
 791	if (!clk)
 792		return 0;
 793
 794	clk_prepare_lock();
 795	clk_core_rate_protect(clk->core);
 796	clk->exclusive_count++;
 797	clk_prepare_unlock();
 798
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803static void clk_core_unprepare(struct clk_core *core)
 804{
 805	lockdep_assert_held(&prepare_lock);
 806
 807	if (!core)
 808		return;
 809
 810	if (WARN(core->prepare_count == 0,
 811	    "%s already unprepared\n", core->name))
 812		return;
 813
 814	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 815	    "Unpreparing critical %s\n", core->name))
 816		return;
 817
 818	if (core->flags & CLK_SET_RATE_GATE)
 819		clk_core_rate_unprotect(core);
 820
 821	if (--core->prepare_count > 0)
 822		return;
 823
 824	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 825
 826	trace_clk_unprepare(core);
 827
 828	if (core->ops->unprepare)
 829		core->ops->unprepare(core->hw);
 830
 831	clk_pm_runtime_put(core);
 832
 833	trace_clk_unprepare_complete(core);
 834	clk_core_unprepare(core->parent);
 
 835}
 836
 837static void clk_core_unprepare_lock(struct clk_core *core)
 838{
 839	clk_prepare_lock();
 840	clk_core_unprepare(core);
 841	clk_prepare_unlock();
 842}
 843
 844/**
 845 * clk_unprepare - undo preparation of a clock source
 846 * @clk: the clk being unprepared
 847 *
 848 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 849 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 850 * if the operation may sleep.  One example is a clk which is accessed over
 851 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 852 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 853 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 854 */
 855void clk_unprepare(struct clk *clk)
 856{
 857	if (IS_ERR_OR_NULL(clk))
 858		return;
 859
 860	clk_core_unprepare_lock(clk->core);
 861}
 862EXPORT_SYMBOL_GPL(clk_unprepare);
 863
 864static int clk_core_prepare(struct clk_core *core)
 865{
 866	int ret = 0;
 867
 868	lockdep_assert_held(&prepare_lock);
 869
 870	if (!core)
 871		return 0;
 872
 873	if (core->prepare_count == 0) {
 874		ret = clk_pm_runtime_get(core);
 875		if (ret)
 876			return ret;
 877
 878		ret = clk_core_prepare(core->parent);
 879		if (ret)
 880			goto runtime_put;
 881
 882		trace_clk_prepare(core);
 883
 884		if (core->ops->prepare)
 885			ret = core->ops->prepare(core->hw);
 886
 887		trace_clk_prepare_complete(core);
 888
 889		if (ret)
 890			goto unprepare;
 891	}
 892
 893	core->prepare_count++;
 894
 895	/*
 896	 * CLK_SET_RATE_GATE is a special case of clock protection
 897	 * Instead of a consumer claiming exclusive rate control, it is
 898	 * actually the provider which prevents any consumer from making any
 899	 * operation which could result in a rate change or rate glitch while
 900	 * the clock is prepared.
 901	 */
 902	if (core->flags & CLK_SET_RATE_GATE)
 903		clk_core_rate_protect(core);
 904
 905	return 0;
 906unprepare:
 907	clk_core_unprepare(core->parent);
 908runtime_put:
 909	clk_pm_runtime_put(core);
 910	return ret;
 911}
 912
 913static int clk_core_prepare_lock(struct clk_core *core)
 914{
 915	int ret;
 916
 917	clk_prepare_lock();
 918	ret = clk_core_prepare(core);
 919	clk_prepare_unlock();
 920
 921	return ret;
 922}
 923
 924/**
 925 * clk_prepare - prepare a clock source
 926 * @clk: the clk being prepared
 927 *
 928 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 929 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 930 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 931 * the complex case a clk ungate operation may require a fast and a slow part.
 932 * It is this reason that clk_prepare and clk_enable are not mutually
 933 * exclusive.  In fact clk_prepare must be called before clk_enable.
 934 * Returns 0 on success, -EERROR otherwise.
 935 */
 936int clk_prepare(struct clk *clk)
 937{
 938	if (!clk)
 939		return 0;
 940
 941	return clk_core_prepare_lock(clk->core);
 942}
 943EXPORT_SYMBOL_GPL(clk_prepare);
 944
 945static void clk_core_disable(struct clk_core *core)
 946{
 947	lockdep_assert_held(&enable_lock);
 948
 949	if (!core)
 950		return;
 951
 952	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 953		return;
 954
 955	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 956	    "Disabling critical %s\n", core->name))
 957		return;
 958
 959	if (--core->enable_count > 0)
 960		return;
 961
 962	trace_clk_disable_rcuidle(core);
 963
 964	if (core->ops->disable)
 965		core->ops->disable(core->hw);
 966
 967	trace_clk_disable_complete_rcuidle(core);
 968
 969	clk_core_disable(core->parent);
 970}
 971
 972static void clk_core_disable_lock(struct clk_core *core)
 973{
 974	unsigned long flags;
 975
 976	flags = clk_enable_lock();
 977	clk_core_disable(core);
 978	clk_enable_unlock(flags);
 979}
 980
 981/**
 982 * clk_disable - gate a clock
 983 * @clk: the clk being gated
 984 *
 985 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 986 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 987 * clk if the operation is fast and will never sleep.  One example is a
 988 * SoC-internal clk which is controlled via simple register writes.  In the
 989 * complex case a clk gate operation may require a fast and a slow part.  It is
 990 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 991 * In fact clk_disable must be called before clk_unprepare.
 992 */
 993void clk_disable(struct clk *clk)
 994{
 995	if (IS_ERR_OR_NULL(clk))
 996		return;
 997
 998	clk_core_disable_lock(clk->core);
 999}
1000EXPORT_SYMBOL_GPL(clk_disable);
1001
1002static int clk_core_enable(struct clk_core *core)
1003{
1004	int ret = 0;
1005
1006	lockdep_assert_held(&enable_lock);
1007
1008	if (!core)
1009		return 0;
1010
1011	if (WARN(core->prepare_count == 0,
1012	    "Enabling unprepared %s\n", core->name))
1013		return -ESHUTDOWN;
1014
1015	if (core->enable_count == 0) {
1016		ret = clk_core_enable(core->parent);
1017
1018		if (ret)
1019			return ret;
1020
1021		trace_clk_enable_rcuidle(core);
1022
1023		if (core->ops->enable)
1024			ret = core->ops->enable(core->hw);
1025
1026		trace_clk_enable_complete_rcuidle(core);
1027
1028		if (ret) {
1029			clk_core_disable(core->parent);
1030			return ret;
1031		}
1032	}
1033
1034	core->enable_count++;
1035	return 0;
1036}
1037
1038static int clk_core_enable_lock(struct clk_core *core)
1039{
1040	unsigned long flags;
1041	int ret;
1042
1043	flags = clk_enable_lock();
1044	ret = clk_core_enable(core);
1045	clk_enable_unlock(flags);
1046
1047	return ret;
1048}
1049
1050/**
1051 * clk_gate_restore_context - restore context for poweroff
1052 * @hw: the clk_hw pointer of clock whose state is to be restored
1053 *
1054 * The clock gate restore context function enables or disables
1055 * the gate clocks based on the enable_count. This is done in cases
1056 * where the clock context is lost and based on the enable_count
1057 * the clock either needs to be enabled/disabled. This
1058 * helps restore the state of gate clocks.
1059 */
1060void clk_gate_restore_context(struct clk_hw *hw)
1061{
1062	struct clk_core *core = hw->core;
1063
1064	if (core->enable_count)
1065		core->ops->enable(hw);
1066	else
1067		core->ops->disable(hw);
1068}
1069EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070
1071static int clk_core_save_context(struct clk_core *core)
1072{
1073	struct clk_core *child;
1074	int ret = 0;
1075
1076	hlist_for_each_entry(child, &core->children, child_node) {
1077		ret = clk_core_save_context(child);
1078		if (ret < 0)
1079			return ret;
1080	}
1081
1082	if (core->ops && core->ops->save_context)
1083		ret = core->ops->save_context(core->hw);
1084
1085	return ret;
1086}
1087
1088static void clk_core_restore_context(struct clk_core *core)
1089{
1090	struct clk_core *child;
1091
1092	if (core->ops && core->ops->restore_context)
1093		core->ops->restore_context(core->hw);
1094
1095	hlist_for_each_entry(child, &core->children, child_node)
1096		clk_core_restore_context(child);
1097}
1098
1099/**
1100 * clk_save_context - save clock context for poweroff
1101 *
1102 * Saves the context of the clock register for powerstates in which the
1103 * contents of the registers will be lost. Occurs deep within the suspend
1104 * code.  Returns 0 on success.
1105 */
1106int clk_save_context(void)
1107{
1108	struct clk_core *clk;
1109	int ret;
1110
1111	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112		ret = clk_core_save_context(clk);
1113		if (ret < 0)
1114			return ret;
1115	}
1116
1117	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118		ret = clk_core_save_context(clk);
1119		if (ret < 0)
1120			return ret;
1121	}
1122
1123	return 0;
1124}
1125EXPORT_SYMBOL_GPL(clk_save_context);
1126
1127/**
1128 * clk_restore_context - restore clock context after poweroff
1129 *
1130 * Restore the saved clock context upon resume.
1131 *
1132 */
1133void clk_restore_context(void)
1134{
1135	struct clk_core *core;
1136
1137	hlist_for_each_entry(core, &clk_root_list, child_node)
1138		clk_core_restore_context(core);
1139
1140	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141		clk_core_restore_context(core);
1142}
1143EXPORT_SYMBOL_GPL(clk_restore_context);
1144
1145/**
1146 * clk_enable - ungate a clock
1147 * @clk: the clk being ungated
1148 *
1149 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151 * if the operation will never sleep.  One example is a SoC-internal clk which
1152 * is controlled via simple register writes.  In the complex case a clk ungate
1153 * operation may require a fast and a slow part.  It is this reason that
1154 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155 * must be called before clk_enable.  Returns 0 on success, -EERROR
1156 * otherwise.
1157 */
1158int clk_enable(struct clk *clk)
1159{
1160	if (!clk)
1161		return 0;
1162
1163	return clk_core_enable_lock(clk->core);
1164}
1165EXPORT_SYMBOL_GPL(clk_enable);
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167static int clk_core_prepare_enable(struct clk_core *core)
1168{
1169	int ret;
1170
1171	ret = clk_core_prepare_lock(core);
1172	if (ret)
1173		return ret;
1174
1175	ret = clk_core_enable_lock(core);
1176	if (ret)
1177		clk_core_unprepare_lock(core);
1178
1179	return ret;
1180}
1181
1182static void clk_core_disable_unprepare(struct clk_core *core)
1183{
1184	clk_core_disable_lock(core);
1185	clk_core_unprepare_lock(core);
1186}
1187
1188static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1189{
1190	struct clk_core *child;
1191
1192	lockdep_assert_held(&prepare_lock);
1193
1194	hlist_for_each_entry(child, &core->children, child_node)
1195		clk_unprepare_unused_subtree(child);
1196
1197	if (core->prepare_count)
1198		return;
1199
1200	if (core->flags & CLK_IGNORE_UNUSED)
1201		return;
1202
1203	if (clk_pm_runtime_get(core))
1204		return;
1205
1206	if (clk_core_is_prepared(core)) {
1207		trace_clk_unprepare(core);
1208		if (core->ops->unprepare_unused)
1209			core->ops->unprepare_unused(core->hw);
1210		else if (core->ops->unprepare)
1211			core->ops->unprepare(core->hw);
1212		trace_clk_unprepare_complete(core);
1213	}
1214
1215	clk_pm_runtime_put(core);
1216}
1217
1218static void __init clk_disable_unused_subtree(struct clk_core *core)
1219{
1220	struct clk_core *child;
1221	unsigned long flags;
1222
1223	lockdep_assert_held(&prepare_lock);
1224
1225	hlist_for_each_entry(child, &core->children, child_node)
1226		clk_disable_unused_subtree(child);
1227
1228	if (core->flags & CLK_OPS_PARENT_ENABLE)
1229		clk_core_prepare_enable(core->parent);
1230
1231	if (clk_pm_runtime_get(core))
1232		goto unprepare_out;
1233
1234	flags = clk_enable_lock();
1235
1236	if (core->enable_count)
1237		goto unlock_out;
1238
1239	if (core->flags & CLK_IGNORE_UNUSED)
1240		goto unlock_out;
1241
1242	/*
1243	 * some gate clocks have special needs during the disable-unused
1244	 * sequence.  call .disable_unused if available, otherwise fall
1245	 * back to .disable
1246	 */
1247	if (clk_core_is_enabled(core)) {
1248		trace_clk_disable(core);
1249		if (core->ops->disable_unused)
1250			core->ops->disable_unused(core->hw);
1251		else if (core->ops->disable)
1252			core->ops->disable(core->hw);
1253		trace_clk_disable_complete(core);
1254	}
1255
1256unlock_out:
1257	clk_enable_unlock(flags);
1258	clk_pm_runtime_put(core);
1259unprepare_out:
1260	if (core->flags & CLK_OPS_PARENT_ENABLE)
1261		clk_core_disable_unprepare(core->parent);
1262}
1263
1264static bool clk_ignore_unused __initdata;
1265static int __init clk_ignore_unused_setup(char *__unused)
1266{
1267	clk_ignore_unused = true;
1268	return 1;
1269}
1270__setup("clk_ignore_unused", clk_ignore_unused_setup);
1271
1272static int __init clk_disable_unused(void)
1273{
1274	struct clk_core *core;
 
1275
1276	if (clk_ignore_unused) {
1277		pr_warn("clk: Not disabling unused clocks\n");
1278		return 0;
1279	}
1280
 
 
 
 
 
 
 
 
 
1281	clk_prepare_lock();
1282
1283	hlist_for_each_entry(core, &clk_root_list, child_node)
1284		clk_disable_unused_subtree(core);
1285
1286	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1287		clk_disable_unused_subtree(core);
1288
1289	hlist_for_each_entry(core, &clk_root_list, child_node)
1290		clk_unprepare_unused_subtree(core);
1291
1292	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293		clk_unprepare_unused_subtree(core);
1294
1295	clk_prepare_unlock();
1296
 
 
1297	return 0;
1298}
1299late_initcall_sync(clk_disable_unused);
1300
1301static int clk_core_determine_round_nolock(struct clk_core *core,
1302					   struct clk_rate_request *req)
1303{
1304	long rate;
1305
1306	lockdep_assert_held(&prepare_lock);
1307
1308	if (!core)
1309		return 0;
1310
1311	/*
1312	 * At this point, core protection will be disabled if
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	 * - if the provider is not protected at all
1314	 * - if the calling consumer is the only one which has exclusivity
1315	 *   over the provider
1316	 */
1317	if (clk_core_rate_is_protected(core)) {
1318		req->rate = core->rate;
1319	} else if (core->ops->determine_rate) {
1320		return core->ops->determine_rate(core->hw, req);
1321	} else if (core->ops->round_rate) {
1322		rate = core->ops->round_rate(core->hw, req->rate,
1323					     &req->best_parent_rate);
1324		if (rate < 0)
1325			return rate;
1326
1327		req->rate = rate;
1328	} else {
1329		return -EINVAL;
1330	}
1331
1332	return 0;
1333}
1334
1335static void clk_core_init_rate_req(struct clk_core * const core,
1336				   struct clk_rate_request *req)
 
1337{
1338	struct clk_core *parent;
1339
1340	if (WARN_ON(!core || !req))
 
 
 
 
 
 
1341		return;
1342
 
 
 
 
1343	parent = core->parent;
1344	if (parent) {
1345		req->best_parent_hw = parent->hw;
1346		req->best_parent_rate = parent->rate;
1347	} else {
1348		req->best_parent_hw = NULL;
1349		req->best_parent_rate = 0;
1350	}
1351}
1352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353static bool clk_core_can_round(struct clk_core * const core)
1354{
1355	return core->ops->determine_rate || core->ops->round_rate;
1356}
1357
1358static int clk_core_round_rate_nolock(struct clk_core *core,
1359				      struct clk_rate_request *req)
1360{
 
 
1361	lockdep_assert_held(&prepare_lock);
1362
1363	if (!core) {
1364		req->rate = 0;
1365		return 0;
1366	}
1367
1368	clk_core_init_rate_req(core, req);
1369
1370	if (clk_core_can_round(core))
1371		return clk_core_determine_round_nolock(core, req);
1372	else if (core->flags & CLK_SET_RATE_PARENT)
1373		return clk_core_round_rate_nolock(core->parent, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
1375	req->rate = core->rate;
1376	return 0;
1377}
1378
1379/**
1380 * __clk_determine_rate - get the closest rate actually supported by a clock
1381 * @hw: determine the rate of this clock
1382 * @req: target rate request
1383 *
1384 * Useful for clk_ops such as .set_rate and .determine_rate.
1385 */
1386int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1387{
1388	if (!hw) {
1389		req->rate = 0;
1390		return 0;
1391	}
1392
1393	return clk_core_round_rate_nolock(hw->core, req);
1394}
1395EXPORT_SYMBOL_GPL(__clk_determine_rate);
1396
1397/**
1398 * clk_hw_round_rate() - round the given rate for a hw clk
1399 * @hw: the hw clk for which we are rounding a rate
1400 * @rate: the rate which is to be rounded
1401 *
1402 * Takes in a rate as input and rounds it to a rate that the clk can actually
1403 * use.
1404 *
1405 * Context: prepare_lock must be held.
1406 *          For clk providers to call from within clk_ops such as .round_rate,
1407 *          .determine_rate.
1408 *
1409 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1410 *         else returns the parent rate.
1411 */
1412unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1413{
1414	int ret;
1415	struct clk_rate_request req;
1416
1417	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1418	req.rate = rate;
 
1419
1420	ret = clk_core_round_rate_nolock(hw->core, &req);
1421	if (ret)
1422		return 0;
1423
 
 
1424	return req.rate;
1425}
1426EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1427
1428/**
1429 * clk_round_rate - round the given rate for a clk
1430 * @clk: the clk for which we are rounding a rate
1431 * @rate: the rate which is to be rounded
1432 *
1433 * Takes in a rate as input and rounds it to a rate that the clk can actually
1434 * use which is then returned.  If clk doesn't support round_rate operation
1435 * then the parent rate is returned.
1436 */
1437long clk_round_rate(struct clk *clk, unsigned long rate)
1438{
1439	struct clk_rate_request req;
1440	int ret;
1441
1442	if (!clk)
1443		return 0;
1444
1445	clk_prepare_lock();
1446
1447	if (clk->exclusive_count)
1448		clk_core_rate_unprotect(clk->core);
1449
1450	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1451	req.rate = rate;
 
1452
1453	ret = clk_core_round_rate_nolock(clk->core, &req);
1454
 
 
1455	if (clk->exclusive_count)
1456		clk_core_rate_protect(clk->core);
1457
1458	clk_prepare_unlock();
1459
1460	if (ret)
1461		return ret;
1462
1463	return req.rate;
1464}
1465EXPORT_SYMBOL_GPL(clk_round_rate);
1466
1467/**
1468 * __clk_notify - call clk notifier chain
1469 * @core: clk that is changing rate
1470 * @msg: clk notifier type (see include/linux/clk.h)
1471 * @old_rate: old clk rate
1472 * @new_rate: new clk rate
1473 *
1474 * Triggers a notifier call chain on the clk rate-change notification
1475 * for 'clk'.  Passes a pointer to the struct clk and the previous
1476 * and current rates to the notifier callback.  Intended to be called by
1477 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1478 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1479 * a driver returns that.
1480 */
1481static int __clk_notify(struct clk_core *core, unsigned long msg,
1482		unsigned long old_rate, unsigned long new_rate)
1483{
1484	struct clk_notifier *cn;
1485	struct clk_notifier_data cnd;
1486	int ret = NOTIFY_DONE;
1487
1488	cnd.old_rate = old_rate;
1489	cnd.new_rate = new_rate;
1490
1491	list_for_each_entry(cn, &clk_notifier_list, node) {
1492		if (cn->clk->core == core) {
1493			cnd.clk = cn->clk;
1494			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1495					&cnd);
1496			if (ret & NOTIFY_STOP_MASK)
1497				return ret;
1498		}
1499	}
1500
1501	return ret;
1502}
1503
1504/**
1505 * __clk_recalc_accuracies
1506 * @core: first clk in the subtree
1507 *
1508 * Walks the subtree of clks starting with clk and recalculates accuracies as
1509 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1510 * callback then it is assumed that the clock will take on the accuracy of its
1511 * parent.
1512 */
1513static void __clk_recalc_accuracies(struct clk_core *core)
1514{
1515	unsigned long parent_accuracy = 0;
1516	struct clk_core *child;
1517
1518	lockdep_assert_held(&prepare_lock);
1519
1520	if (core->parent)
1521		parent_accuracy = core->parent->accuracy;
1522
1523	if (core->ops->recalc_accuracy)
1524		core->accuracy = core->ops->recalc_accuracy(core->hw,
1525							  parent_accuracy);
1526	else
1527		core->accuracy = parent_accuracy;
1528
1529	hlist_for_each_entry(child, &core->children, child_node)
1530		__clk_recalc_accuracies(child);
1531}
1532
1533static long clk_core_get_accuracy_recalc(struct clk_core *core)
1534{
1535	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1536		__clk_recalc_accuracies(core);
1537
1538	return clk_core_get_accuracy_no_lock(core);
1539}
1540
1541/**
1542 * clk_get_accuracy - return the accuracy of clk
1543 * @clk: the clk whose accuracy is being returned
1544 *
1545 * Simply returns the cached accuracy of the clk, unless
1546 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1547 * issued.
1548 * If clk is NULL then returns 0.
1549 */
1550long clk_get_accuracy(struct clk *clk)
1551{
1552	long accuracy;
1553
1554	if (!clk)
1555		return 0;
1556
1557	clk_prepare_lock();
1558	accuracy = clk_core_get_accuracy_recalc(clk->core);
1559	clk_prepare_unlock();
1560
1561	return accuracy;
1562}
1563EXPORT_SYMBOL_GPL(clk_get_accuracy);
1564
1565static unsigned long clk_recalc(struct clk_core *core,
1566				unsigned long parent_rate)
1567{
1568	unsigned long rate = parent_rate;
1569
1570	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1571		rate = core->ops->recalc_rate(core->hw, parent_rate);
1572		clk_pm_runtime_put(core);
1573	}
1574	return rate;
1575}
1576
1577/**
1578 * __clk_recalc_rates
1579 * @core: first clk in the subtree
 
1580 * @msg: notification type (see include/linux/clk.h)
1581 *
1582 * Walks the subtree of clks starting with clk and recalculates rates as it
1583 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1584 * it is assumed that the clock will take on the rate of its parent.
1585 *
1586 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1587 * if necessary.
1588 */
1589static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
 
1590{
1591	unsigned long old_rate;
1592	unsigned long parent_rate = 0;
1593	struct clk_core *child;
1594
1595	lockdep_assert_held(&prepare_lock);
1596
1597	old_rate = core->rate;
1598
1599	if (core->parent)
1600		parent_rate = core->parent->rate;
1601
1602	core->rate = clk_recalc(core, parent_rate);
 
 
1603
1604	/*
1605	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1606	 * & ABORT_RATE_CHANGE notifiers
1607	 */
1608	if (core->notifier_count && msg)
1609		__clk_notify(core, msg, old_rate, core->rate);
1610
1611	hlist_for_each_entry(child, &core->children, child_node)
1612		__clk_recalc_rates(child, msg);
1613}
1614
1615static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1616{
1617	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1618		__clk_recalc_rates(core, 0);
1619
1620	return clk_core_get_rate_nolock(core);
1621}
1622
1623/**
1624 * clk_get_rate - return the rate of clk
1625 * @clk: the clk whose rate is being returned
1626 *
1627 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1628 * is set, which means a recalc_rate will be issued.
1629 * If clk is NULL then returns 0.
 
1630 */
1631unsigned long clk_get_rate(struct clk *clk)
1632{
1633	unsigned long rate;
1634
1635	if (!clk)
1636		return 0;
1637
1638	clk_prepare_lock();
1639	rate = clk_core_get_rate_recalc(clk->core);
1640	clk_prepare_unlock();
1641
1642	return rate;
1643}
1644EXPORT_SYMBOL_GPL(clk_get_rate);
1645
1646static int clk_fetch_parent_index(struct clk_core *core,
1647				  struct clk_core *parent)
1648{
1649	int i;
1650
1651	if (!parent)
1652		return -EINVAL;
1653
1654	for (i = 0; i < core->num_parents; i++) {
1655		/* Found it first try! */
1656		if (core->parents[i].core == parent)
1657			return i;
1658
1659		/* Something else is here, so keep looking */
1660		if (core->parents[i].core)
1661			continue;
1662
1663		/* Maybe core hasn't been cached but the hw is all we know? */
1664		if (core->parents[i].hw) {
1665			if (core->parents[i].hw == parent->hw)
1666				break;
1667
1668			/* Didn't match, but we're expecting a clk_hw */
1669			continue;
1670		}
1671
1672		/* Maybe it hasn't been cached (clk_set_parent() path) */
1673		if (parent == clk_core_get(core, i))
1674			break;
1675
1676		/* Fallback to comparing globally unique names */
1677		if (core->parents[i].name &&
1678		    !strcmp(parent->name, core->parents[i].name))
1679			break;
1680	}
1681
1682	if (i == core->num_parents)
1683		return -EINVAL;
1684
1685	core->parents[i].core = parent;
1686	return i;
1687}
1688
1689/**
1690 * clk_hw_get_parent_index - return the index of the parent clock
1691 * @hw: clk_hw associated with the clk being consumed
1692 *
1693 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1694 * clock does not have a current parent.
1695 */
1696int clk_hw_get_parent_index(struct clk_hw *hw)
1697{
1698	struct clk_hw *parent = clk_hw_get_parent(hw);
1699
1700	if (WARN_ON(parent == NULL))
1701		return -EINVAL;
1702
1703	return clk_fetch_parent_index(hw->core, parent->core);
1704}
1705EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1706
1707/*
1708 * Update the orphan status of @core and all its children.
1709 */
1710static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1711{
1712	struct clk_core *child;
1713
1714	core->orphan = is_orphan;
1715
1716	hlist_for_each_entry(child, &core->children, child_node)
1717		clk_core_update_orphan_status(child, is_orphan);
1718}
1719
1720static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1721{
1722	bool was_orphan = core->orphan;
1723
1724	hlist_del(&core->child_node);
1725
1726	if (new_parent) {
1727		bool becomes_orphan = new_parent->orphan;
1728
1729		/* avoid duplicate POST_RATE_CHANGE notifications */
1730		if (new_parent->new_child == core)
1731			new_parent->new_child = NULL;
1732
1733		hlist_add_head(&core->child_node, &new_parent->children);
1734
1735		if (was_orphan != becomes_orphan)
1736			clk_core_update_orphan_status(core, becomes_orphan);
1737	} else {
1738		hlist_add_head(&core->child_node, &clk_orphan_list);
1739		if (!was_orphan)
1740			clk_core_update_orphan_status(core, true);
1741	}
1742
1743	core->parent = new_parent;
1744}
1745
1746static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1747					   struct clk_core *parent)
1748{
1749	unsigned long flags;
1750	struct clk_core *old_parent = core->parent;
1751
1752	/*
1753	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1754	 *
1755	 * 2. Migrate prepare state between parents and prevent race with
1756	 * clk_enable().
1757	 *
1758	 * If the clock is not prepared, then a race with
1759	 * clk_enable/disable() is impossible since we already have the
1760	 * prepare lock (future calls to clk_enable() need to be preceded by
1761	 * a clk_prepare()).
1762	 *
1763	 * If the clock is prepared, migrate the prepared state to the new
1764	 * parent and also protect against a race with clk_enable() by
1765	 * forcing the clock and the new parent on.  This ensures that all
1766	 * future calls to clk_enable() are practically NOPs with respect to
1767	 * hardware and software states.
1768	 *
1769	 * See also: Comment for clk_set_parent() below.
1770	 */
1771
1772	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1773	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1774		clk_core_prepare_enable(old_parent);
1775		clk_core_prepare_enable(parent);
1776	}
1777
1778	/* migrate prepare count if > 0 */
1779	if (core->prepare_count) {
1780		clk_core_prepare_enable(parent);
1781		clk_core_enable_lock(core);
1782	}
1783
1784	/* update the clk tree topology */
1785	flags = clk_enable_lock();
1786	clk_reparent(core, parent);
1787	clk_enable_unlock(flags);
1788
1789	return old_parent;
1790}
1791
1792static void __clk_set_parent_after(struct clk_core *core,
1793				   struct clk_core *parent,
1794				   struct clk_core *old_parent)
1795{
1796	/*
1797	 * Finish the migration of prepare state and undo the changes done
1798	 * for preventing a race with clk_enable().
1799	 */
1800	if (core->prepare_count) {
1801		clk_core_disable_lock(core);
1802		clk_core_disable_unprepare(old_parent);
1803	}
1804
1805	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1806	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1807		clk_core_disable_unprepare(parent);
1808		clk_core_disable_unprepare(old_parent);
1809	}
1810}
1811
1812static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1813			    u8 p_index)
1814{
1815	unsigned long flags;
1816	int ret = 0;
1817	struct clk_core *old_parent;
1818
1819	old_parent = __clk_set_parent_before(core, parent);
1820
1821	trace_clk_set_parent(core, parent);
1822
1823	/* change clock input source */
1824	if (parent && core->ops->set_parent)
1825		ret = core->ops->set_parent(core->hw, p_index);
1826
1827	trace_clk_set_parent_complete(core, parent);
1828
1829	if (ret) {
1830		flags = clk_enable_lock();
1831		clk_reparent(core, old_parent);
1832		clk_enable_unlock(flags);
 
1833		__clk_set_parent_after(core, old_parent, parent);
1834
1835		return ret;
1836	}
1837
1838	__clk_set_parent_after(core, parent, old_parent);
1839
1840	return 0;
1841}
1842
1843/**
1844 * __clk_speculate_rates
1845 * @core: first clk in the subtree
1846 * @parent_rate: the "future" rate of clk's parent
1847 *
1848 * Walks the subtree of clks starting with clk, speculating rates as it
1849 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1850 *
1851 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1852 * pre-rate change notifications and returns early if no clks in the
1853 * subtree have subscribed to the notifications.  Note that if a clk does not
1854 * implement the .recalc_rate callback then it is assumed that the clock will
1855 * take on the rate of its parent.
1856 */
1857static int __clk_speculate_rates(struct clk_core *core,
1858				 unsigned long parent_rate)
1859{
1860	struct clk_core *child;
1861	unsigned long new_rate;
1862	int ret = NOTIFY_DONE;
1863
1864	lockdep_assert_held(&prepare_lock);
1865
1866	new_rate = clk_recalc(core, parent_rate);
1867
1868	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1869	if (core->notifier_count)
1870		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1871
1872	if (ret & NOTIFY_STOP_MASK) {
1873		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1874				__func__, core->name, ret);
1875		goto out;
1876	}
1877
1878	hlist_for_each_entry(child, &core->children, child_node) {
1879		ret = __clk_speculate_rates(child, new_rate);
1880		if (ret & NOTIFY_STOP_MASK)
1881			break;
1882	}
1883
1884out:
1885	return ret;
1886}
1887
1888static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1889			     struct clk_core *new_parent, u8 p_index)
1890{
1891	struct clk_core *child;
1892
1893	core->new_rate = new_rate;
1894	core->new_parent = new_parent;
1895	core->new_parent_index = p_index;
1896	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1897	core->new_child = NULL;
1898	if (new_parent && new_parent != core->parent)
1899		new_parent->new_child = core;
1900
1901	hlist_for_each_entry(child, &core->children, child_node) {
1902		child->new_rate = clk_recalc(child, new_rate);
1903		clk_calc_subtree(child, child->new_rate, NULL, 0);
1904	}
1905}
1906
1907/*
1908 * calculate the new rates returning the topmost clock that has to be
1909 * changed.
1910 */
1911static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1912					   unsigned long rate)
1913{
1914	struct clk_core *top = core;
1915	struct clk_core *old_parent, *parent;
1916	unsigned long best_parent_rate = 0;
1917	unsigned long new_rate;
1918	unsigned long min_rate;
1919	unsigned long max_rate;
1920	int p_index = 0;
1921	long ret;
1922
1923	/* sanity */
1924	if (IS_ERR_OR_NULL(core))
1925		return NULL;
1926
1927	/* save parent rate, if it exists */
1928	parent = old_parent = core->parent;
1929	if (parent)
1930		best_parent_rate = parent->rate;
1931
1932	clk_core_get_boundaries(core, &min_rate, &max_rate);
1933
1934	/* find the closest rate and parent clk/rate */
1935	if (clk_core_can_round(core)) {
1936		struct clk_rate_request req;
1937
1938		req.rate = rate;
1939		req.min_rate = min_rate;
1940		req.max_rate = max_rate;
1941
1942		clk_core_init_rate_req(core, &req);
1943
1944		ret = clk_core_determine_round_nolock(core, &req);
1945		if (ret < 0)
1946			return NULL;
1947
 
 
1948		best_parent_rate = req.best_parent_rate;
1949		new_rate = req.rate;
1950		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1951
1952		if (new_rate < min_rate || new_rate > max_rate)
1953			return NULL;
1954	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1955		/* pass-through clock without adjustable parent */
1956		core->new_rate = core->rate;
1957		return NULL;
1958	} else {
1959		/* pass-through clock with adjustable parent */
1960		top = clk_calc_new_rates(parent, rate);
1961		new_rate = parent->new_rate;
1962		goto out;
1963	}
1964
1965	/* some clocks must be gated to change parent */
1966	if (parent != old_parent &&
1967	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1968		pr_debug("%s: %s not gated but wants to reparent\n",
1969			 __func__, core->name);
1970		return NULL;
1971	}
1972
1973	/* try finding the new parent index */
1974	if (parent && core->num_parents > 1) {
1975		p_index = clk_fetch_parent_index(core, parent);
1976		if (p_index < 0) {
1977			pr_debug("%s: clk %s can not be parent of clk %s\n",
1978				 __func__, parent->name, core->name);
1979			return NULL;
1980		}
1981	}
1982
1983	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1984	    best_parent_rate != parent->rate)
1985		top = clk_calc_new_rates(parent, best_parent_rate);
1986
1987out:
1988	clk_calc_subtree(core, new_rate, parent, p_index);
1989
1990	return top;
1991}
1992
1993/*
1994 * Notify about rate changes in a subtree. Always walk down the whole tree
1995 * so that in case of an error we can walk down the whole tree again and
1996 * abort the change.
1997 */
1998static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1999						  unsigned long event)
2000{
2001	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2002	int ret = NOTIFY_DONE;
2003
2004	if (core->rate == core->new_rate)
2005		return NULL;
2006
2007	if (core->notifier_count) {
2008		ret = __clk_notify(core, event, core->rate, core->new_rate);
2009		if (ret & NOTIFY_STOP_MASK)
2010			fail_clk = core;
2011	}
2012
2013	hlist_for_each_entry(child, &core->children, child_node) {
2014		/* Skip children who will be reparented to another clock */
2015		if (child->new_parent && child->new_parent != core)
2016			continue;
2017		tmp_clk = clk_propagate_rate_change(child, event);
2018		if (tmp_clk)
2019			fail_clk = tmp_clk;
2020	}
2021
2022	/* handle the new child who might not be in core->children yet */
2023	if (core->new_child) {
2024		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2025		if (tmp_clk)
2026			fail_clk = tmp_clk;
2027	}
2028
2029	return fail_clk;
2030}
2031
2032/*
2033 * walk down a subtree and set the new rates notifying the rate
2034 * change on the way
2035 */
2036static void clk_change_rate(struct clk_core *core)
2037{
2038	struct clk_core *child;
2039	struct hlist_node *tmp;
2040	unsigned long old_rate;
2041	unsigned long best_parent_rate = 0;
2042	bool skip_set_rate = false;
2043	struct clk_core *old_parent;
2044	struct clk_core *parent = NULL;
2045
2046	old_rate = core->rate;
2047
2048	if (core->new_parent) {
2049		parent = core->new_parent;
2050		best_parent_rate = core->new_parent->rate;
2051	} else if (core->parent) {
2052		parent = core->parent;
2053		best_parent_rate = core->parent->rate;
2054	}
2055
2056	if (clk_pm_runtime_get(core))
2057		return;
2058
2059	if (core->flags & CLK_SET_RATE_UNGATE) {
2060		unsigned long flags;
2061
2062		clk_core_prepare(core);
2063		flags = clk_enable_lock();
2064		clk_core_enable(core);
2065		clk_enable_unlock(flags);
2066	}
2067
2068	if (core->new_parent && core->new_parent != core->parent) {
2069		old_parent = __clk_set_parent_before(core, core->new_parent);
2070		trace_clk_set_parent(core, core->new_parent);
2071
2072		if (core->ops->set_rate_and_parent) {
2073			skip_set_rate = true;
2074			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2075					best_parent_rate,
2076					core->new_parent_index);
2077		} else if (core->ops->set_parent) {
2078			core->ops->set_parent(core->hw, core->new_parent_index);
2079		}
2080
2081		trace_clk_set_parent_complete(core, core->new_parent);
2082		__clk_set_parent_after(core, core->new_parent, old_parent);
2083	}
2084
2085	if (core->flags & CLK_OPS_PARENT_ENABLE)
2086		clk_core_prepare_enable(parent);
2087
2088	trace_clk_set_rate(core, core->new_rate);
2089
2090	if (!skip_set_rate && core->ops->set_rate)
2091		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2092
2093	trace_clk_set_rate_complete(core, core->new_rate);
2094
2095	core->rate = clk_recalc(core, best_parent_rate);
2096
2097	if (core->flags & CLK_SET_RATE_UNGATE) {
2098		unsigned long flags;
2099
2100		flags = clk_enable_lock();
2101		clk_core_disable(core);
2102		clk_enable_unlock(flags);
2103		clk_core_unprepare(core);
2104	}
2105
2106	if (core->flags & CLK_OPS_PARENT_ENABLE)
2107		clk_core_disable_unprepare(parent);
2108
2109	if (core->notifier_count && old_rate != core->rate)
2110		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2111
2112	if (core->flags & CLK_RECALC_NEW_RATES)
2113		(void)clk_calc_new_rates(core, core->new_rate);
2114
2115	/*
2116	 * Use safe iteration, as change_rate can actually swap parents
2117	 * for certain clock types.
2118	 */
2119	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2120		/* Skip children who will be reparented to another clock */
2121		if (child->new_parent && child->new_parent != core)
2122			continue;
2123		clk_change_rate(child);
2124	}
2125
2126	/* handle the new child who might not be in core->children yet */
2127	if (core->new_child)
2128		clk_change_rate(core->new_child);
2129
2130	clk_pm_runtime_put(core);
2131}
2132
2133static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2134						     unsigned long req_rate)
2135{
2136	int ret, cnt;
2137	struct clk_rate_request req;
2138
2139	lockdep_assert_held(&prepare_lock);
2140
2141	if (!core)
2142		return 0;
2143
2144	/* simulate what the rate would be if it could be freely set */
2145	cnt = clk_core_rate_nuke_protect(core);
2146	if (cnt < 0)
2147		return cnt;
2148
2149	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2150	req.rate = req_rate;
 
2151
2152	ret = clk_core_round_rate_nolock(core, &req);
2153
 
 
2154	/* restore the protection */
2155	clk_core_rate_restore_protect(core, cnt);
2156
2157	return ret ? 0 : req.rate;
2158}
2159
2160static int clk_core_set_rate_nolock(struct clk_core *core,
2161				    unsigned long req_rate)
2162{
2163	struct clk_core *top, *fail_clk;
2164	unsigned long rate;
2165	int ret = 0;
2166
2167	if (!core)
2168		return 0;
2169
2170	rate = clk_core_req_round_rate_nolock(core, req_rate);
2171
2172	/* bail early if nothing to do */
2173	if (rate == clk_core_get_rate_nolock(core))
2174		return 0;
2175
2176	/* fail on a direct rate set of a protected provider */
2177	if (clk_core_rate_is_protected(core))
2178		return -EBUSY;
2179
2180	/* calculate new rates and get the topmost changed clock */
2181	top = clk_calc_new_rates(core, req_rate);
2182	if (!top)
2183		return -EINVAL;
2184
2185	ret = clk_pm_runtime_get(core);
2186	if (ret)
2187		return ret;
2188
2189	/* notify that we are about to change rates */
2190	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2191	if (fail_clk) {
2192		pr_debug("%s: failed to set %s rate\n", __func__,
2193				fail_clk->name);
2194		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2195		ret = -EBUSY;
2196		goto err;
2197	}
2198
2199	/* change the rates */
2200	clk_change_rate(top);
2201
2202	core->req_rate = req_rate;
2203err:
2204	clk_pm_runtime_put(core);
2205
2206	return ret;
2207}
2208
2209/**
2210 * clk_set_rate - specify a new rate for clk
2211 * @clk: the clk whose rate is being changed
2212 * @rate: the new rate for clk
2213 *
2214 * In the simplest case clk_set_rate will only adjust the rate of clk.
2215 *
2216 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2217 * propagate up to clk's parent; whether or not this happens depends on the
2218 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2219 * after calling .round_rate then upstream parent propagation is ignored.  If
2220 * *parent_rate comes back with a new rate for clk's parent then we propagate
2221 * up to clk's parent and set its rate.  Upward propagation will continue
2222 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2223 * .round_rate stops requesting changes to clk's parent_rate.
2224 *
2225 * Rate changes are accomplished via tree traversal that also recalculates the
2226 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2227 *
2228 * Returns 0 on success, -EERROR otherwise.
2229 */
2230int clk_set_rate(struct clk *clk, unsigned long rate)
2231{
2232	int ret;
2233
2234	if (!clk)
2235		return 0;
2236
2237	/* prevent racing with updates to the clock topology */
2238	clk_prepare_lock();
2239
2240	if (clk->exclusive_count)
2241		clk_core_rate_unprotect(clk->core);
2242
2243	ret = clk_core_set_rate_nolock(clk->core, rate);
2244
2245	if (clk->exclusive_count)
2246		clk_core_rate_protect(clk->core);
2247
2248	clk_prepare_unlock();
2249
2250	return ret;
2251}
2252EXPORT_SYMBOL_GPL(clk_set_rate);
2253
2254/**
2255 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2256 * @clk: the clk whose rate is being changed
2257 * @rate: the new rate for clk
2258 *
2259 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2260 * within a critical section
2261 *
2262 * This can be used initially to ensure that at least 1 consumer is
2263 * satisfied when several consumers are competing for exclusivity over the
2264 * same clock provider.
2265 *
2266 * The exclusivity is not applied if setting the rate failed.
2267 *
2268 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2269 * clk_rate_exclusive_put().
2270 *
2271 * Returns 0 on success, -EERROR otherwise.
2272 */
2273int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2274{
2275	int ret;
2276
2277	if (!clk)
2278		return 0;
2279
2280	/* prevent racing with updates to the clock topology */
2281	clk_prepare_lock();
2282
2283	/*
2284	 * The temporary protection removal is not here, on purpose
2285	 * This function is meant to be used instead of clk_rate_protect,
2286	 * so before the consumer code path protect the clock provider
2287	 */
2288
2289	ret = clk_core_set_rate_nolock(clk->core, rate);
2290	if (!ret) {
2291		clk_core_rate_protect(clk->core);
2292		clk->exclusive_count++;
2293	}
2294
2295	clk_prepare_unlock();
2296
2297	return ret;
2298}
2299EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2300
2301/**
2302 * clk_set_rate_range - set a rate range for a clock source
2303 * @clk: clock source
2304 * @min: desired minimum clock rate in Hz, inclusive
2305 * @max: desired maximum clock rate in Hz, inclusive
2306 *
2307 * Returns success (0) or negative errno.
2308 */
2309int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2310{
2311	int ret = 0;
2312	unsigned long old_min, old_max, rate;
2313
 
 
2314	if (!clk)
2315		return 0;
2316
 
 
2317	if (min > max) {
2318		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2319		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2320		       min, max);
2321		return -EINVAL;
2322	}
2323
2324	clk_prepare_lock();
2325
2326	if (clk->exclusive_count)
2327		clk_core_rate_unprotect(clk->core);
2328
2329	/* Save the current values in case we need to rollback the change */
2330	old_min = clk->min_rate;
2331	old_max = clk->max_rate;
2332	clk->min_rate = min;
2333	clk->max_rate = max;
2334
2335	rate = clk_core_get_rate_nolock(clk->core);
2336	if (rate < min || rate > max) {
2337		/*
2338		 * FIXME:
2339		 * We are in bit of trouble here, current rate is outside the
2340		 * the requested range. We are going try to request appropriate
2341		 * range boundary but there is a catch. It may fail for the
2342		 * usual reason (clock broken, clock protected, etc) but also
2343		 * because:
2344		 * - round_rate() was not favorable and fell on the wrong
2345		 *   side of the boundary
2346		 * - the determine_rate() callback does not really check for
2347		 *   this corner case when determining the rate
2348		 */
2349
2350		if (rate < min)
2351			rate = min;
2352		else
2353			rate = max;
2354
2355		ret = clk_core_set_rate_nolock(clk->core, rate);
2356		if (ret) {
2357			/* rollback the changes */
2358			clk->min_rate = old_min;
2359			clk->max_rate = old_max;
2360		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361	}
2362
 
2363	if (clk->exclusive_count)
2364		clk_core_rate_protect(clk->core);
2365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366	clk_prepare_unlock();
2367
2368	return ret;
2369}
2370EXPORT_SYMBOL_GPL(clk_set_rate_range);
2371
2372/**
2373 * clk_set_min_rate - set a minimum clock rate for a clock source
2374 * @clk: clock source
2375 * @rate: desired minimum clock rate in Hz, inclusive
2376 *
2377 * Returns success (0) or negative errno.
2378 */
2379int clk_set_min_rate(struct clk *clk, unsigned long rate)
2380{
2381	if (!clk)
2382		return 0;
2383
 
 
2384	return clk_set_rate_range(clk, rate, clk->max_rate);
2385}
2386EXPORT_SYMBOL_GPL(clk_set_min_rate);
2387
2388/**
2389 * clk_set_max_rate - set a maximum clock rate for a clock source
2390 * @clk: clock source
2391 * @rate: desired maximum clock rate in Hz, inclusive
2392 *
2393 * Returns success (0) or negative errno.
2394 */
2395int clk_set_max_rate(struct clk *clk, unsigned long rate)
2396{
2397	if (!clk)
2398		return 0;
2399
 
 
2400	return clk_set_rate_range(clk, clk->min_rate, rate);
2401}
2402EXPORT_SYMBOL_GPL(clk_set_max_rate);
2403
2404/**
2405 * clk_get_parent - return the parent of a clk
2406 * @clk: the clk whose parent gets returned
2407 *
2408 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2409 */
2410struct clk *clk_get_parent(struct clk *clk)
2411{
2412	struct clk *parent;
2413
2414	if (!clk)
2415		return NULL;
2416
2417	clk_prepare_lock();
2418	/* TODO: Create a per-user clk and change callers to call clk_put */
2419	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2420	clk_prepare_unlock();
2421
2422	return parent;
2423}
2424EXPORT_SYMBOL_GPL(clk_get_parent);
2425
2426static struct clk_core *__clk_init_parent(struct clk_core *core)
2427{
2428	u8 index = 0;
2429
2430	if (core->num_parents > 1 && core->ops->get_parent)
2431		index = core->ops->get_parent(core->hw);
2432
2433	return clk_core_get_parent_by_index(core, index);
2434}
2435
2436static void clk_core_reparent(struct clk_core *core,
2437				  struct clk_core *new_parent)
2438{
2439	clk_reparent(core, new_parent);
2440	__clk_recalc_accuracies(core);
2441	__clk_recalc_rates(core, POST_RATE_CHANGE);
2442}
2443
2444void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2445{
2446	if (!hw)
2447		return;
2448
2449	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2450}
2451
2452/**
2453 * clk_has_parent - check if a clock is a possible parent for another
2454 * @clk: clock source
2455 * @parent: parent clock source
2456 *
2457 * This function can be used in drivers that need to check that a clock can be
2458 * the parent of another without actually changing the parent.
2459 *
2460 * Returns true if @parent is a possible parent for @clk, false otherwise.
2461 */
2462bool clk_has_parent(struct clk *clk, struct clk *parent)
2463{
2464	struct clk_core *core, *parent_core;
2465	int i;
2466
2467	/* NULL clocks should be nops, so return success if either is NULL. */
2468	if (!clk || !parent)
2469		return true;
2470
2471	core = clk->core;
2472	parent_core = parent->core;
2473
2474	/* Optimize for the case where the parent is already the parent. */
2475	if (core->parent == parent_core)
2476		return true;
2477
2478	for (i = 0; i < core->num_parents; i++)
2479		if (!strcmp(core->parents[i].name, parent_core->name))
2480			return true;
2481
2482	return false;
2483}
2484EXPORT_SYMBOL_GPL(clk_has_parent);
2485
2486static int clk_core_set_parent_nolock(struct clk_core *core,
2487				      struct clk_core *parent)
2488{
2489	int ret = 0;
2490	int p_index = 0;
2491	unsigned long p_rate = 0;
2492
2493	lockdep_assert_held(&prepare_lock);
2494
2495	if (!core)
2496		return 0;
2497
2498	if (core->parent == parent)
2499		return 0;
2500
2501	/* verify ops for multi-parent clks */
2502	if (core->num_parents > 1 && !core->ops->set_parent)
2503		return -EPERM;
2504
2505	/* check that we are allowed to re-parent if the clock is in use */
2506	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2507		return -EBUSY;
2508
2509	if (clk_core_rate_is_protected(core))
2510		return -EBUSY;
2511
2512	/* try finding the new parent index */
2513	if (parent) {
2514		p_index = clk_fetch_parent_index(core, parent);
2515		if (p_index < 0) {
2516			pr_debug("%s: clk %s can not be parent of clk %s\n",
2517					__func__, parent->name, core->name);
2518			return p_index;
2519		}
2520		p_rate = parent->rate;
2521	}
2522
2523	ret = clk_pm_runtime_get(core);
2524	if (ret)
2525		return ret;
2526
2527	/* propagate PRE_RATE_CHANGE notifications */
2528	ret = __clk_speculate_rates(core, p_rate);
2529
2530	/* abort if a driver objects */
2531	if (ret & NOTIFY_STOP_MASK)
2532		goto runtime_put;
2533
2534	/* do the re-parent */
2535	ret = __clk_set_parent(core, parent, p_index);
2536
2537	/* propagate rate an accuracy recalculation accordingly */
2538	if (ret) {
2539		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2540	} else {
2541		__clk_recalc_rates(core, POST_RATE_CHANGE);
2542		__clk_recalc_accuracies(core);
2543	}
2544
2545runtime_put:
2546	clk_pm_runtime_put(core);
2547
2548	return ret;
2549}
2550
2551int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2552{
2553	return clk_core_set_parent_nolock(hw->core, parent->core);
2554}
2555EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2556
2557/**
2558 * clk_set_parent - switch the parent of a mux clk
2559 * @clk: the mux clk whose input we are switching
2560 * @parent: the new input to clk
2561 *
2562 * Re-parent clk to use parent as its new input source.  If clk is in
2563 * prepared state, the clk will get enabled for the duration of this call. If
2564 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2565 * that, the reparenting is glitchy in hardware, etc), use the
2566 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2567 *
2568 * After successfully changing clk's parent clk_set_parent will update the
2569 * clk topology, sysfs topology and propagate rate recalculation via
2570 * __clk_recalc_rates.
2571 *
2572 * Returns 0 on success, -EERROR otherwise.
2573 */
2574int clk_set_parent(struct clk *clk, struct clk *parent)
2575{
2576	int ret;
2577
2578	if (!clk)
2579		return 0;
2580
2581	clk_prepare_lock();
2582
2583	if (clk->exclusive_count)
2584		clk_core_rate_unprotect(clk->core);
2585
2586	ret = clk_core_set_parent_nolock(clk->core,
2587					 parent ? parent->core : NULL);
2588
2589	if (clk->exclusive_count)
2590		clk_core_rate_protect(clk->core);
2591
2592	clk_prepare_unlock();
2593
2594	return ret;
2595}
2596EXPORT_SYMBOL_GPL(clk_set_parent);
2597
2598static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2599{
2600	int ret = -EINVAL;
2601
2602	lockdep_assert_held(&prepare_lock);
2603
2604	if (!core)
2605		return 0;
2606
2607	if (clk_core_rate_is_protected(core))
2608		return -EBUSY;
2609
2610	trace_clk_set_phase(core, degrees);
2611
2612	if (core->ops->set_phase) {
2613		ret = core->ops->set_phase(core->hw, degrees);
2614		if (!ret)
2615			core->phase = degrees;
2616	}
2617
2618	trace_clk_set_phase_complete(core, degrees);
2619
2620	return ret;
2621}
2622
2623/**
2624 * clk_set_phase - adjust the phase shift of a clock signal
2625 * @clk: clock signal source
2626 * @degrees: number of degrees the signal is shifted
2627 *
2628 * Shifts the phase of a clock signal by the specified
2629 * degrees. Returns 0 on success, -EERROR otherwise.
2630 *
2631 * This function makes no distinction about the input or reference
2632 * signal that we adjust the clock signal phase against. For example
2633 * phase locked-loop clock signal generators we may shift phase with
2634 * respect to feedback clock signal input, but for other cases the
2635 * clock phase may be shifted with respect to some other, unspecified
2636 * signal.
2637 *
2638 * Additionally the concept of phase shift does not propagate through
2639 * the clock tree hierarchy, which sets it apart from clock rates and
2640 * clock accuracy. A parent clock phase attribute does not have an
2641 * impact on the phase attribute of a child clock.
2642 */
2643int clk_set_phase(struct clk *clk, int degrees)
2644{
2645	int ret;
2646
2647	if (!clk)
2648		return 0;
2649
2650	/* sanity check degrees */
2651	degrees %= 360;
2652	if (degrees < 0)
2653		degrees += 360;
2654
2655	clk_prepare_lock();
2656
2657	if (clk->exclusive_count)
2658		clk_core_rate_unprotect(clk->core);
2659
2660	ret = clk_core_set_phase_nolock(clk->core, degrees);
2661
2662	if (clk->exclusive_count)
2663		clk_core_rate_protect(clk->core);
2664
2665	clk_prepare_unlock();
2666
2667	return ret;
2668}
2669EXPORT_SYMBOL_GPL(clk_set_phase);
2670
2671static int clk_core_get_phase(struct clk_core *core)
2672{
2673	int ret;
2674
2675	lockdep_assert_held(&prepare_lock);
2676	if (!core->ops->get_phase)
2677		return 0;
2678
2679	/* Always try to update cached phase if possible */
2680	ret = core->ops->get_phase(core->hw);
2681	if (ret >= 0)
2682		core->phase = ret;
2683
2684	return ret;
2685}
2686
2687/**
2688 * clk_get_phase - return the phase shift of a clock signal
2689 * @clk: clock signal source
2690 *
2691 * Returns the phase shift of a clock node in degrees, otherwise returns
2692 * -EERROR.
2693 */
2694int clk_get_phase(struct clk *clk)
2695{
2696	int ret;
2697
2698	if (!clk)
2699		return 0;
2700
2701	clk_prepare_lock();
2702	ret = clk_core_get_phase(clk->core);
2703	clk_prepare_unlock();
2704
2705	return ret;
2706}
2707EXPORT_SYMBOL_GPL(clk_get_phase);
2708
2709static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2710{
2711	/* Assume a default value of 50% */
2712	core->duty.num = 1;
2713	core->duty.den = 2;
2714}
2715
2716static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2717
2718static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2719{
2720	struct clk_duty *duty = &core->duty;
2721	int ret = 0;
2722
2723	if (!core->ops->get_duty_cycle)
2724		return clk_core_update_duty_cycle_parent_nolock(core);
2725
2726	ret = core->ops->get_duty_cycle(core->hw, duty);
2727	if (ret)
2728		goto reset;
2729
2730	/* Don't trust the clock provider too much */
2731	if (duty->den == 0 || duty->num > duty->den) {
2732		ret = -EINVAL;
2733		goto reset;
2734	}
2735
2736	return 0;
2737
2738reset:
2739	clk_core_reset_duty_cycle_nolock(core);
2740	return ret;
2741}
2742
2743static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2744{
2745	int ret = 0;
2746
2747	if (core->parent &&
2748	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2749		ret = clk_core_update_duty_cycle_nolock(core->parent);
2750		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2751	} else {
2752		clk_core_reset_duty_cycle_nolock(core);
2753	}
2754
2755	return ret;
2756}
2757
2758static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2759						 struct clk_duty *duty);
2760
2761static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2762					  struct clk_duty *duty)
2763{
2764	int ret;
2765
2766	lockdep_assert_held(&prepare_lock);
2767
2768	if (clk_core_rate_is_protected(core))
2769		return -EBUSY;
2770
2771	trace_clk_set_duty_cycle(core, duty);
2772
2773	if (!core->ops->set_duty_cycle)
2774		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2775
2776	ret = core->ops->set_duty_cycle(core->hw, duty);
2777	if (!ret)
2778		memcpy(&core->duty, duty, sizeof(*duty));
2779
2780	trace_clk_set_duty_cycle_complete(core, duty);
2781
2782	return ret;
2783}
2784
2785static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2786						 struct clk_duty *duty)
2787{
2788	int ret = 0;
2789
2790	if (core->parent &&
2791	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2792		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2793		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2794	}
2795
2796	return ret;
2797}
2798
2799/**
2800 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2801 * @clk: clock signal source
2802 * @num: numerator of the duty cycle ratio to be applied
2803 * @den: denominator of the duty cycle ratio to be applied
2804 *
2805 * Apply the duty cycle ratio if the ratio is valid and the clock can
2806 * perform this operation
2807 *
2808 * Returns (0) on success, a negative errno otherwise.
2809 */
2810int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2811{
2812	int ret;
2813	struct clk_duty duty;
2814
2815	if (!clk)
2816		return 0;
2817
2818	/* sanity check the ratio */
2819	if (den == 0 || num > den)
2820		return -EINVAL;
2821
2822	duty.num = num;
2823	duty.den = den;
2824
2825	clk_prepare_lock();
2826
2827	if (clk->exclusive_count)
2828		clk_core_rate_unprotect(clk->core);
2829
2830	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2831
2832	if (clk->exclusive_count)
2833		clk_core_rate_protect(clk->core);
2834
2835	clk_prepare_unlock();
2836
2837	return ret;
2838}
2839EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2840
2841static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2842					  unsigned int scale)
2843{
2844	struct clk_duty *duty = &core->duty;
2845	int ret;
2846
2847	clk_prepare_lock();
2848
2849	ret = clk_core_update_duty_cycle_nolock(core);
2850	if (!ret)
2851		ret = mult_frac(scale, duty->num, duty->den);
2852
2853	clk_prepare_unlock();
2854
2855	return ret;
2856}
2857
2858/**
2859 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2860 * @clk: clock signal source
2861 * @scale: scaling factor to be applied to represent the ratio as an integer
2862 *
2863 * Returns the duty cycle ratio of a clock node multiplied by the provided
2864 * scaling factor, or negative errno on error.
2865 */
2866int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2867{
2868	if (!clk)
2869		return 0;
2870
2871	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2872}
2873EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2874
2875/**
2876 * clk_is_match - check if two clk's point to the same hardware clock
2877 * @p: clk compared against q
2878 * @q: clk compared against p
2879 *
2880 * Returns true if the two struct clk pointers both point to the same hardware
2881 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2882 * share the same struct clk_core object.
2883 *
2884 * Returns false otherwise. Note that two NULL clks are treated as matching.
2885 */
2886bool clk_is_match(const struct clk *p, const struct clk *q)
2887{
2888	/* trivial case: identical struct clk's or both NULL */
2889	if (p == q)
2890		return true;
2891
2892	/* true if clk->core pointers match. Avoid dereferencing garbage */
2893	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2894		if (p->core == q->core)
2895			return true;
2896
2897	return false;
2898}
2899EXPORT_SYMBOL_GPL(clk_is_match);
2900
2901/***        debugfs support        ***/
2902
2903#ifdef CONFIG_DEBUG_FS
2904#include <linux/debugfs.h>
2905
2906static struct dentry *rootdir;
2907static int inited = 0;
2908static DEFINE_MUTEX(clk_debug_lock);
2909static HLIST_HEAD(clk_debug_list);
2910
2911static struct hlist_head *orphan_list[] = {
2912	&clk_orphan_list,
2913	NULL,
2914};
2915
2916static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2917				 int level)
2918{
2919	int phase;
 
 
2920
2921	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2922		   level * 3 + 1, "",
2923		   30 - level * 3, c->name,
2924		   c->enable_count, c->prepare_count, c->protect_count,
2925		   clk_core_get_rate_recalc(c),
2926		   clk_core_get_accuracy_recalc(c));
2927
2928	phase = clk_core_get_phase(c);
2929	if (phase >= 0)
2930		seq_printf(s, "%5d", phase);
2931	else
2932		seq_puts(s, "-----");
2933
2934	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935}
2936
2937static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2938				     int level)
2939{
2940	struct clk_core *child;
2941
2942	clk_summary_show_one(s, c, level);
2943
2944	hlist_for_each_entry(child, &c->children, child_node)
2945		clk_summary_show_subtree(s, child, level + 1);
2946}
2947
2948static int clk_summary_show(struct seq_file *s, void *data)
2949{
2950	struct clk_core *c;
2951	struct hlist_head **lists = (struct hlist_head **)s->private;
 
 
 
 
 
2952
2953	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2954	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2955	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2956
2957	clk_prepare_lock();
2958
2959	for (; *lists; lists++)
2960		hlist_for_each_entry(c, *lists, child_node)
2961			clk_summary_show_subtree(s, c, 0);
2962
2963	clk_prepare_unlock();
 
2964
2965	return 0;
2966}
2967DEFINE_SHOW_ATTRIBUTE(clk_summary);
2968
2969static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2970{
2971	int phase;
2972	unsigned long min_rate, max_rate;
2973
2974	clk_core_get_boundaries(c, &min_rate, &max_rate);
2975
2976	/* This should be JSON format, i.e. elements separated with a comma */
2977	seq_printf(s, "\"%s\": { ", c->name);
2978	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2979	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2980	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2981	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2982	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2983	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2984	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2985	phase = clk_core_get_phase(c);
2986	if (phase >= 0)
2987		seq_printf(s, "\"phase\": %d,", phase);
2988	seq_printf(s, "\"duty_cycle\": %u",
2989		   clk_core_get_scaled_duty_cycle(c, 100000));
2990}
2991
2992static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2993{
2994	struct clk_core *child;
2995
2996	clk_dump_one(s, c, level);
2997
2998	hlist_for_each_entry(child, &c->children, child_node) {
2999		seq_putc(s, ',');
3000		clk_dump_subtree(s, child, level + 1);
3001	}
3002
3003	seq_putc(s, '}');
3004}
3005
3006static int clk_dump_show(struct seq_file *s, void *data)
3007{
3008	struct clk_core *c;
3009	bool first_node = true;
3010	struct hlist_head **lists = (struct hlist_head **)s->private;
 
 
 
 
 
3011
3012	seq_putc(s, '{');
 
3013	clk_prepare_lock();
3014
3015	for (; *lists; lists++) {
3016		hlist_for_each_entry(c, *lists, child_node) {
3017			if (!first_node)
3018				seq_putc(s, ',');
3019			first_node = false;
3020			clk_dump_subtree(s, c, 0);
3021		}
3022	}
3023
3024	clk_prepare_unlock();
 
3025
3026	seq_puts(s, "}\n");
3027	return 0;
3028}
3029DEFINE_SHOW_ATTRIBUTE(clk_dump);
3030
3031#undef CLOCK_ALLOW_WRITE_DEBUGFS
3032#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3033/*
3034 * This can be dangerous, therefore don't provide any real compile time
3035 * configuration option for this feature.
3036 * People who want to use this will need to modify the source code directly.
3037 */
3038static int clk_rate_set(void *data, u64 val)
3039{
3040	struct clk_core *core = data;
3041	int ret;
3042
3043	clk_prepare_lock();
3044	ret = clk_core_set_rate_nolock(core, val);
3045	clk_prepare_unlock();
3046
3047	return ret;
3048}
3049
3050#define clk_rate_mode	0644
3051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3052static int clk_prepare_enable_set(void *data, u64 val)
3053{
3054	struct clk_core *core = data;
3055	int ret = 0;
3056
3057	if (val)
3058		ret = clk_prepare_enable(core->hw->clk);
3059	else
3060		clk_disable_unprepare(core->hw->clk);
3061
3062	return ret;
3063}
3064
3065static int clk_prepare_enable_get(void *data, u64 *val)
3066{
3067	struct clk_core *core = data;
3068
3069	*val = core->enable_count && core->prepare_count;
3070	return 0;
3071}
3072
3073DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3074			 clk_prepare_enable_set, "%llu\n");
3075
3076#else
3077#define clk_rate_set	NULL
3078#define clk_rate_mode	0444
 
 
 
3079#endif
3080
3081static int clk_rate_get(void *data, u64 *val)
3082{
3083	struct clk_core *core = data;
3084
3085	*val = core->rate;
 
 
 
3086	return 0;
3087}
3088
3089DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3090
 
 
 
 
 
 
 
 
 
 
3091static const struct {
3092	unsigned long flag;
3093	const char *name;
3094} clk_flags[] = {
3095#define ENTRY(f) { f, #f }
3096	ENTRY(CLK_SET_RATE_GATE),
3097	ENTRY(CLK_SET_PARENT_GATE),
3098	ENTRY(CLK_SET_RATE_PARENT),
3099	ENTRY(CLK_IGNORE_UNUSED),
3100	ENTRY(CLK_GET_RATE_NOCACHE),
3101	ENTRY(CLK_SET_RATE_NO_REPARENT),
3102	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3103	ENTRY(CLK_RECALC_NEW_RATES),
3104	ENTRY(CLK_SET_RATE_UNGATE),
3105	ENTRY(CLK_IS_CRITICAL),
3106	ENTRY(CLK_OPS_PARENT_ENABLE),
3107	ENTRY(CLK_DUTY_CYCLE_PARENT),
3108#undef ENTRY
3109};
3110
3111static int clk_flags_show(struct seq_file *s, void *data)
3112{
3113	struct clk_core *core = s->private;
3114	unsigned long flags = core->flags;
3115	unsigned int i;
3116
3117	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3118		if (flags & clk_flags[i].flag) {
3119			seq_printf(s, "%s\n", clk_flags[i].name);
3120			flags &= ~clk_flags[i].flag;
3121		}
3122	}
3123	if (flags) {
3124		/* Unknown flags */
3125		seq_printf(s, "0x%lx\n", flags);
3126	}
3127
3128	return 0;
3129}
3130DEFINE_SHOW_ATTRIBUTE(clk_flags);
3131
3132static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3133				 unsigned int i, char terminator)
3134{
3135	struct clk_core *parent;
 
3136
3137	/*
3138	 * Go through the following options to fetch a parent's name.
3139	 *
3140	 * 1. Fetch the registered parent clock and use its name
3141	 * 2. Use the global (fallback) name if specified
3142	 * 3. Use the local fw_name if provided
3143	 * 4. Fetch parent clock's clock-output-name if DT index was set
3144	 *
3145	 * This may still fail in some cases, such as when the parent is
3146	 * specified directly via a struct clk_hw pointer, but it isn't
3147	 * registered (yet).
3148	 */
3149	parent = clk_core_get_parent_by_index(core, i);
3150	if (parent)
3151		seq_puts(s, parent->name);
3152	else if (core->parents[i].name)
3153		seq_puts(s, core->parents[i].name);
3154	else if (core->parents[i].fw_name)
3155		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3156	else if (core->parents[i].index >= 0)
3157		seq_puts(s,
3158			 of_clk_get_parent_name(core->of_node,
3159						core->parents[i].index));
3160	else
3161		seq_puts(s, "(missing)");
 
 
3162
3163	seq_putc(s, terminator);
3164}
3165
3166static int possible_parents_show(struct seq_file *s, void *data)
3167{
3168	struct clk_core *core = s->private;
3169	int i;
3170
3171	for (i = 0; i < core->num_parents - 1; i++)
3172		possible_parent_show(s, core, i, ' ');
3173
3174	possible_parent_show(s, core, i, '\n');
3175
3176	return 0;
3177}
3178DEFINE_SHOW_ATTRIBUTE(possible_parents);
3179
3180static int current_parent_show(struct seq_file *s, void *data)
3181{
3182	struct clk_core *core = s->private;
3183
3184	if (core->parent)
3185		seq_printf(s, "%s\n", core->parent->name);
3186
3187	return 0;
3188}
3189DEFINE_SHOW_ATTRIBUTE(current_parent);
3190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191static int clk_duty_cycle_show(struct seq_file *s, void *data)
3192{
3193	struct clk_core *core = s->private;
3194	struct clk_duty *duty = &core->duty;
3195
3196	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3197
3198	return 0;
3199}
3200DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3201
3202static int clk_min_rate_show(struct seq_file *s, void *data)
3203{
3204	struct clk_core *core = s->private;
3205	unsigned long min_rate, max_rate;
3206
3207	clk_prepare_lock();
3208	clk_core_get_boundaries(core, &min_rate, &max_rate);
3209	clk_prepare_unlock();
3210	seq_printf(s, "%lu\n", min_rate);
3211
3212	return 0;
3213}
3214DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3215
3216static int clk_max_rate_show(struct seq_file *s, void *data)
3217{
3218	struct clk_core *core = s->private;
3219	unsigned long min_rate, max_rate;
3220
3221	clk_prepare_lock();
3222	clk_core_get_boundaries(core, &min_rate, &max_rate);
3223	clk_prepare_unlock();
3224	seq_printf(s, "%lu\n", max_rate);
3225
3226	return 0;
3227}
3228DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3229
3230static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3231{
3232	struct dentry *root;
3233
3234	if (!core || !pdentry)
3235		return;
3236
3237	root = debugfs_create_dir(core->name, pdentry);
3238	core->dentry = root;
3239
3240	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3241			    &clk_rate_fops);
3242	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3243	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3244	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3245	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
 
3246	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3247	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3248	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3249	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3250	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3251	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3252			    &clk_duty_cycle_fops);
3253#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3254	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3255			    &clk_prepare_enable_fops);
 
 
 
 
 
3256#endif
3257
3258	if (core->num_parents > 0)
3259		debugfs_create_file("clk_parent", 0444, root, core,
3260				    &current_parent_fops);
3261
3262	if (core->num_parents > 1)
3263		debugfs_create_file("clk_possible_parents", 0444, root, core,
3264				    &possible_parents_fops);
3265
3266	if (core->ops->debug_init)
3267		core->ops->debug_init(core->hw, core->dentry);
3268}
3269
3270/**
3271 * clk_debug_register - add a clk node to the debugfs clk directory
3272 * @core: the clk being added to the debugfs clk directory
3273 *
3274 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3275 * initialized.  Otherwise it bails out early since the debugfs clk directory
3276 * will be created lazily by clk_debug_init as part of a late_initcall.
3277 */
3278static void clk_debug_register(struct clk_core *core)
3279{
3280	mutex_lock(&clk_debug_lock);
3281	hlist_add_head(&core->debug_node, &clk_debug_list);
3282	if (inited)
3283		clk_debug_create_one(core, rootdir);
3284	mutex_unlock(&clk_debug_lock);
3285}
3286
3287 /**
3288 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3289 * @core: the clk being removed from the debugfs clk directory
3290 *
3291 * Dynamically removes a clk and all its child nodes from the
3292 * debugfs clk directory if clk->dentry points to debugfs created by
3293 * clk_debug_register in __clk_core_init.
3294 */
3295static void clk_debug_unregister(struct clk_core *core)
3296{
3297	mutex_lock(&clk_debug_lock);
3298	hlist_del_init(&core->debug_node);
3299	debugfs_remove_recursive(core->dentry);
3300	core->dentry = NULL;
3301	mutex_unlock(&clk_debug_lock);
3302}
3303
3304/**
3305 * clk_debug_init - lazily populate the debugfs clk directory
3306 *
3307 * clks are often initialized very early during boot before memory can be
3308 * dynamically allocated and well before debugfs is setup. This function
3309 * populates the debugfs clk directory once at boot-time when we know that
3310 * debugfs is setup. It should only be called once at boot-time, all other clks
3311 * added dynamically will be done so with clk_debug_register.
3312 */
3313static int __init clk_debug_init(void)
3314{
3315	struct clk_core *core;
3316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3317	rootdir = debugfs_create_dir("clk", NULL);
3318
3319	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3320			    &clk_summary_fops);
3321	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3322			    &clk_dump_fops);
3323	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3324			    &clk_summary_fops);
3325	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3326			    &clk_dump_fops);
3327
3328	mutex_lock(&clk_debug_lock);
3329	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3330		clk_debug_create_one(core, rootdir);
3331
3332	inited = 1;
3333	mutex_unlock(&clk_debug_lock);
3334
3335	return 0;
3336}
3337late_initcall(clk_debug_init);
3338#else
3339static inline void clk_debug_register(struct clk_core *core) { }
3340static inline void clk_debug_unregister(struct clk_core *core)
3341{
3342}
3343#endif
3344
3345static void clk_core_reparent_orphans_nolock(void)
3346{
3347	struct clk_core *orphan;
3348	struct hlist_node *tmp2;
3349
3350	/*
3351	 * walk the list of orphan clocks and reparent any that newly finds a
3352	 * parent.
3353	 */
3354	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3355		struct clk_core *parent = __clk_init_parent(orphan);
3356
3357		/*
3358		 * We need to use __clk_set_parent_before() and _after() to
3359		 * to properly migrate any prepare/enable count of the orphan
3360		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3361		 * are enabled during init but might not have a parent yet.
3362		 */
3363		if (parent) {
3364			/* update the clk tree topology */
3365			__clk_set_parent_before(orphan, parent);
3366			__clk_set_parent_after(orphan, parent, NULL);
3367			__clk_recalc_accuracies(orphan);
3368			__clk_recalc_rates(orphan, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
3369		}
3370	}
3371}
3372
3373/**
3374 * __clk_core_init - initialize the data structures in a struct clk_core
3375 * @core:	clk_core being initialized
3376 *
3377 * Initializes the lists in struct clk_core, queries the hardware for the
3378 * parent and rate and sets them both.
3379 */
3380static int __clk_core_init(struct clk_core *core)
3381{
3382	int ret;
3383	struct clk_core *parent;
3384	unsigned long rate;
3385	int phase;
3386
3387	if (!core)
3388		return -EINVAL;
3389
3390	clk_prepare_lock();
 
 
 
 
 
 
3391
3392	ret = clk_pm_runtime_get(core);
3393	if (ret)
3394		goto unlock;
3395
3396	/* check to see if a clock with this name is already registered */
3397	if (clk_core_lookup(core->name)) {
3398		pr_debug("%s: clk %s already initialized\n",
3399				__func__, core->name);
3400		ret = -EEXIST;
3401		goto out;
3402	}
3403
3404	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3405	if (core->ops->set_rate &&
3406	    !((core->ops->round_rate || core->ops->determine_rate) &&
3407	      core->ops->recalc_rate)) {
3408		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3409		       __func__, core->name);
3410		ret = -EINVAL;
3411		goto out;
3412	}
3413
3414	if (core->ops->set_parent && !core->ops->get_parent) {
3415		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3416		       __func__, core->name);
3417		ret = -EINVAL;
3418		goto out;
3419	}
3420
 
 
 
 
 
 
 
3421	if (core->num_parents > 1 && !core->ops->get_parent) {
3422		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3423		       __func__, core->name);
3424		ret = -EINVAL;
3425		goto out;
3426	}
3427
3428	if (core->ops->set_rate_and_parent &&
3429			!(core->ops->set_parent && core->ops->set_rate)) {
3430		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3431				__func__, core->name);
3432		ret = -EINVAL;
3433		goto out;
3434	}
3435
3436	/*
3437	 * optional platform-specific magic
3438	 *
3439	 * The .init callback is not used by any of the basic clock types, but
3440	 * exists for weird hardware that must perform initialization magic for
3441	 * CCF to get an accurate view of clock for any other callbacks. It may
3442	 * also be used needs to perform dynamic allocations. Such allocation
3443	 * must be freed in the terminate() callback.
3444	 * This callback shall not be used to initialize the parameters state,
3445	 * such as rate, parent, etc ...
3446	 *
3447	 * If it exist, this callback should called before any other callback of
3448	 * the clock
3449	 */
3450	if (core->ops->init) {
3451		ret = core->ops->init(core->hw);
3452		if (ret)
3453			goto out;
3454	}
3455
3456	parent = core->parent = __clk_init_parent(core);
3457
3458	/*
3459	 * Populate core->parent if parent has already been clk_core_init'd. If
3460	 * parent has not yet been clk_core_init'd then place clk in the orphan
3461	 * list.  If clk doesn't have any parents then place it in the root
3462	 * clk list.
3463	 *
3464	 * Every time a new clk is clk_init'd then we walk the list of orphan
3465	 * clocks and re-parent any that are children of the clock currently
3466	 * being clk_init'd.
3467	 */
3468	if (parent) {
3469		hlist_add_head(&core->child_node, &parent->children);
3470		core->orphan = parent->orphan;
3471	} else if (!core->num_parents) {
3472		hlist_add_head(&core->child_node, &clk_root_list);
3473		core->orphan = false;
3474	} else {
3475		hlist_add_head(&core->child_node, &clk_orphan_list);
3476		core->orphan = true;
3477	}
3478
3479	/*
3480	 * Set clk's accuracy.  The preferred method is to use
3481	 * .recalc_accuracy. For simple clocks and lazy developers the default
3482	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3483	 * parent (or is orphaned) then accuracy is set to zero (perfect
3484	 * clock).
3485	 */
3486	if (core->ops->recalc_accuracy)
3487		core->accuracy = core->ops->recalc_accuracy(core->hw,
3488					clk_core_get_accuracy_no_lock(parent));
3489	else if (parent)
3490		core->accuracy = parent->accuracy;
3491	else
3492		core->accuracy = 0;
3493
3494	/*
3495	 * Set clk's phase by clk_core_get_phase() caching the phase.
3496	 * Since a phase is by definition relative to its parent, just
3497	 * query the current clock phase, or just assume it's in phase.
3498	 */
3499	phase = clk_core_get_phase(core);
3500	if (phase < 0) {
3501		ret = phase;
3502		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3503			core->name);
3504		goto out;
3505	}
3506
3507	/*
3508	 * Set clk's duty cycle.
3509	 */
3510	clk_core_update_duty_cycle_nolock(core);
3511
3512	/*
3513	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3514	 * simple clocks and lazy developers the default fallback is to use the
3515	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3516	 * then rate is set to zero.
3517	 */
3518	if (core->ops->recalc_rate)
3519		rate = core->ops->recalc_rate(core->hw,
3520				clk_core_get_rate_nolock(parent));
3521	else if (parent)
3522		rate = parent->rate;
3523	else
3524		rate = 0;
3525	core->rate = core->req_rate = rate;
3526
3527	/*
3528	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3529	 * don't get accidentally disabled when walking the orphan tree and
3530	 * reparenting clocks
3531	 */
3532	if (core->flags & CLK_IS_CRITICAL) {
3533		unsigned long flags;
3534
3535		ret = clk_core_prepare(core);
3536		if (ret) {
3537			pr_warn("%s: critical clk '%s' failed to prepare\n",
3538			       __func__, core->name);
3539			goto out;
3540		}
3541
3542		flags = clk_enable_lock();
3543		ret = clk_core_enable(core);
3544		clk_enable_unlock(flags);
3545		if (ret) {
3546			pr_warn("%s: critical clk '%s' failed to enable\n",
3547			       __func__, core->name);
3548			clk_core_unprepare(core);
3549			goto out;
3550		}
3551	}
3552
3553	clk_core_reparent_orphans_nolock();
3554
3555
3556	kref_init(&core->ref);
3557out:
3558	clk_pm_runtime_put(core);
3559unlock:
3560	if (ret)
3561		hlist_del_init(&core->child_node);
 
 
3562
3563	clk_prepare_unlock();
3564
3565	if (!ret)
3566		clk_debug_register(core);
3567
3568	return ret;
3569}
3570
3571/**
3572 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3573 * @core: clk to add consumer to
3574 * @clk: consumer to link to a clk
3575 */
3576static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3577{
3578	clk_prepare_lock();
3579	hlist_add_head(&clk->clks_node, &core->clks);
3580	clk_prepare_unlock();
3581}
3582
3583/**
3584 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3585 * @clk: consumer to unlink
3586 */
3587static void clk_core_unlink_consumer(struct clk *clk)
3588{
3589	lockdep_assert_held(&prepare_lock);
3590	hlist_del(&clk->clks_node);
3591}
3592
3593/**
3594 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3595 * @core: clk to allocate a consumer for
3596 * @dev_id: string describing device name
3597 * @con_id: connection ID string on device
3598 *
3599 * Returns: clk consumer left unlinked from the consumer list
3600 */
3601static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3602			     const char *con_id)
3603{
3604	struct clk *clk;
3605
3606	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3607	if (!clk)
3608		return ERR_PTR(-ENOMEM);
3609
3610	clk->core = core;
3611	clk->dev_id = dev_id;
3612	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3613	clk->max_rate = ULONG_MAX;
3614
3615	return clk;
3616}
3617
3618/**
3619 * free_clk - Free a clk consumer
3620 * @clk: clk consumer to free
3621 *
3622 * Note, this assumes the clk has been unlinked from the clk_core consumer
3623 * list.
3624 */
3625static void free_clk(struct clk *clk)
3626{
3627	kfree_const(clk->con_id);
3628	kfree(clk);
3629}
3630
3631/**
3632 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3633 * a clk_hw
3634 * @dev: clk consumer device
3635 * @hw: clk_hw associated with the clk being consumed
3636 * @dev_id: string describing device name
3637 * @con_id: connection ID string on device
3638 *
3639 * This is the main function used to create a clk pointer for use by clk
3640 * consumers. It connects a consumer to the clk_core and clk_hw structures
3641 * used by the framework and clk provider respectively.
3642 */
3643struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3644			      const char *dev_id, const char *con_id)
3645{
3646	struct clk *clk;
3647	struct clk_core *core;
3648
3649	/* This is to allow this function to be chained to others */
3650	if (IS_ERR_OR_NULL(hw))
3651		return ERR_CAST(hw);
3652
3653	core = hw->core;
3654	clk = alloc_clk(core, dev_id, con_id);
3655	if (IS_ERR(clk))
3656		return clk;
3657	clk->dev = dev;
3658
3659	if (!try_module_get(core->owner)) {
3660		free_clk(clk);
3661		return ERR_PTR(-ENOENT);
3662	}
3663
3664	kref_get(&core->ref);
3665	clk_core_link_consumer(core, clk);
3666
3667	return clk;
3668}
3669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3670static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3671{
3672	const char *dst;
3673
3674	if (!src) {
3675		if (must_exist)
3676			return -EINVAL;
3677		return 0;
3678	}
3679
3680	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3681	if (!dst)
3682		return -ENOMEM;
3683
3684	return 0;
3685}
3686
3687static int clk_core_populate_parent_map(struct clk_core *core,
3688					const struct clk_init_data *init)
3689{
3690	u8 num_parents = init->num_parents;
3691	const char * const *parent_names = init->parent_names;
3692	const struct clk_hw **parent_hws = init->parent_hws;
3693	const struct clk_parent_data *parent_data = init->parent_data;
3694	int i, ret = 0;
3695	struct clk_parent_map *parents, *parent;
3696
3697	if (!num_parents)
3698		return 0;
3699
3700	/*
3701	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3702	 * having a cache of names/clk_hw pointers to clk_core pointers.
3703	 */
3704	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3705	core->parents = parents;
3706	if (!parents)
3707		return -ENOMEM;
3708
3709	/* Copy everything over because it might be __initdata */
3710	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3711		parent->index = -1;
3712		if (parent_names) {
3713			/* throw a WARN if any entries are NULL */
3714			WARN(!parent_names[i],
3715				"%s: invalid NULL in %s's .parent_names\n",
3716				__func__, core->name);
3717			ret = clk_cpy_name(&parent->name, parent_names[i],
3718					   true);
3719		} else if (parent_data) {
3720			parent->hw = parent_data[i].hw;
3721			parent->index = parent_data[i].index;
3722			ret = clk_cpy_name(&parent->fw_name,
3723					   parent_data[i].fw_name, false);
3724			if (!ret)
3725				ret = clk_cpy_name(&parent->name,
3726						   parent_data[i].name,
3727						   false);
3728		} else if (parent_hws) {
3729			parent->hw = parent_hws[i];
3730		} else {
3731			ret = -EINVAL;
3732			WARN(1, "Must specify parents if num_parents > 0\n");
3733		}
3734
3735		if (ret) {
3736			do {
3737				kfree_const(parents[i].name);
3738				kfree_const(parents[i].fw_name);
3739			} while (--i >= 0);
3740			kfree(parents);
3741
3742			return ret;
3743		}
3744	}
3745
3746	return 0;
3747}
3748
3749static void clk_core_free_parent_map(struct clk_core *core)
3750{
3751	int i = core->num_parents;
3752
3753	if (!core->num_parents)
3754		return;
3755
3756	while (--i >= 0) {
3757		kfree_const(core->parents[i].name);
3758		kfree_const(core->parents[i].fw_name);
3759	}
3760
3761	kfree(core->parents);
3762}
3763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3764static struct clk *
3765__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3766{
3767	int ret;
3768	struct clk_core *core;
3769	const struct clk_init_data *init = hw->init;
3770
3771	/*
3772	 * The init data is not supposed to be used outside of registration path.
3773	 * Set it to NULL so that provider drivers can't use it either and so that
3774	 * we catch use of hw->init early on in the core.
3775	 */
3776	hw->init = NULL;
3777
3778	core = kzalloc(sizeof(*core), GFP_KERNEL);
3779	if (!core) {
3780		ret = -ENOMEM;
3781		goto fail_out;
3782	}
3783
 
 
3784	core->name = kstrdup_const(init->name, GFP_KERNEL);
3785	if (!core->name) {
3786		ret = -ENOMEM;
3787		goto fail_name;
3788	}
3789
3790	if (WARN_ON(!init->ops)) {
3791		ret = -EINVAL;
3792		goto fail_ops;
3793	}
3794	core->ops = init->ops;
3795
3796	if (dev && pm_runtime_enabled(dev))
3797		core->rpm_enabled = true;
3798	core->dev = dev;
 
3799	core->of_node = np;
3800	if (dev && dev->driver)
3801		core->owner = dev->driver->owner;
3802	core->hw = hw;
3803	core->flags = init->flags;
3804	core->num_parents = init->num_parents;
3805	core->min_rate = 0;
3806	core->max_rate = ULONG_MAX;
3807	hw->core = core;
3808
3809	ret = clk_core_populate_parent_map(core, init);
3810	if (ret)
3811		goto fail_parents;
3812
3813	INIT_HLIST_HEAD(&core->clks);
3814
3815	/*
3816	 * Don't call clk_hw_create_clk() here because that would pin the
3817	 * provider module to itself and prevent it from ever being removed.
3818	 */
3819	hw->clk = alloc_clk(core, NULL, NULL);
3820	if (IS_ERR(hw->clk)) {
3821		ret = PTR_ERR(hw->clk);
3822		goto fail_create_clk;
3823	}
3824
3825	clk_core_link_consumer(hw->core, hw->clk);
3826
3827	ret = __clk_core_init(core);
3828	if (!ret)
3829		return hw->clk;
3830
3831	clk_prepare_lock();
3832	clk_core_unlink_consumer(hw->clk);
3833	clk_prepare_unlock();
3834
3835	free_clk(hw->clk);
3836	hw->clk = NULL;
3837
3838fail_create_clk:
3839	clk_core_free_parent_map(core);
3840fail_parents:
3841fail_ops:
3842	kfree_const(core->name);
3843fail_name:
3844	kfree(core);
3845fail_out:
3846	return ERR_PTR(ret);
3847}
3848
3849/**
3850 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3851 * @dev: Device to get device node of
3852 *
3853 * Return: device node pointer of @dev, or the device node pointer of
3854 * @dev->parent if dev doesn't have a device node, or NULL if neither
3855 * @dev or @dev->parent have a device node.
3856 */
3857static struct device_node *dev_or_parent_of_node(struct device *dev)
3858{
3859	struct device_node *np;
3860
3861	if (!dev)
3862		return NULL;
3863
3864	np = dev_of_node(dev);
3865	if (!np)
3866		np = dev_of_node(dev->parent);
3867
3868	return np;
3869}
3870
3871/**
3872 * clk_register - allocate a new clock, register it and return an opaque cookie
3873 * @dev: device that is registering this clock
3874 * @hw: link to hardware-specific clock data
3875 *
3876 * clk_register is the *deprecated* interface for populating the clock tree with
3877 * new clock nodes. Use clk_hw_register() instead.
3878 *
3879 * Returns: a pointer to the newly allocated struct clk which
3880 * cannot be dereferenced by driver code but may be used in conjunction with the
3881 * rest of the clock API.  In the event of an error clk_register will return an
3882 * error code; drivers must test for an error code after calling clk_register.
3883 */
3884struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3885{
3886	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3887}
3888EXPORT_SYMBOL_GPL(clk_register);
3889
3890/**
3891 * clk_hw_register - register a clk_hw and return an error code
3892 * @dev: device that is registering this clock
3893 * @hw: link to hardware-specific clock data
3894 *
3895 * clk_hw_register is the primary interface for populating the clock tree with
3896 * new clock nodes. It returns an integer equal to zero indicating success or
3897 * less than zero indicating failure. Drivers must test for an error code after
3898 * calling clk_hw_register().
3899 */
3900int clk_hw_register(struct device *dev, struct clk_hw *hw)
3901{
3902	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3903			       hw));
3904}
3905EXPORT_SYMBOL_GPL(clk_hw_register);
3906
3907/*
3908 * of_clk_hw_register - register a clk_hw and return an error code
3909 * @node: device_node of device that is registering this clock
3910 * @hw: link to hardware-specific clock data
3911 *
3912 * of_clk_hw_register() is the primary interface for populating the clock tree
3913 * with new clock nodes when a struct device is not available, but a struct
3914 * device_node is. It returns an integer equal to zero indicating success or
3915 * less than zero indicating failure. Drivers must test for an error code after
3916 * calling of_clk_hw_register().
3917 */
3918int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3919{
3920	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3921}
3922EXPORT_SYMBOL_GPL(of_clk_hw_register);
3923
3924/* Free memory allocated for a clock. */
3925static void __clk_release(struct kref *ref)
3926{
3927	struct clk_core *core = container_of(ref, struct clk_core, ref);
3928
3929	lockdep_assert_held(&prepare_lock);
3930
3931	clk_core_free_parent_map(core);
3932	kfree_const(core->name);
3933	kfree(core);
3934}
3935
3936/*
3937 * Empty clk_ops for unregistered clocks. These are used temporarily
3938 * after clk_unregister() was called on a clock and until last clock
3939 * consumer calls clk_put() and the struct clk object is freed.
3940 */
3941static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3942{
3943	return -ENXIO;
3944}
3945
3946static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3947{
3948	WARN_ON_ONCE(1);
3949}
3950
3951static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3952					unsigned long parent_rate)
3953{
3954	return -ENXIO;
3955}
3956
3957static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3958{
3959	return -ENXIO;
3960}
3961
 
 
 
 
 
 
3962static const struct clk_ops clk_nodrv_ops = {
3963	.enable		= clk_nodrv_prepare_enable,
3964	.disable	= clk_nodrv_disable_unprepare,
3965	.prepare	= clk_nodrv_prepare_enable,
3966	.unprepare	= clk_nodrv_disable_unprepare,
 
3967	.set_rate	= clk_nodrv_set_rate,
3968	.set_parent	= clk_nodrv_set_parent,
3969};
3970
3971static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3972						struct clk_core *target)
3973{
3974	int i;
3975	struct clk_core *child;
3976
3977	for (i = 0; i < root->num_parents; i++)
3978		if (root->parents[i].core == target)
3979			root->parents[i].core = NULL;
3980
3981	hlist_for_each_entry(child, &root->children, child_node)
3982		clk_core_evict_parent_cache_subtree(child, target);
3983}
3984
3985/* Remove this clk from all parent caches */
3986static void clk_core_evict_parent_cache(struct clk_core *core)
3987{
3988	struct hlist_head **lists;
3989	struct clk_core *root;
3990
3991	lockdep_assert_held(&prepare_lock);
3992
3993	for (lists = all_lists; *lists; lists++)
3994		hlist_for_each_entry(root, *lists, child_node)
3995			clk_core_evict_parent_cache_subtree(root, core);
3996
3997}
3998
3999/**
4000 * clk_unregister - unregister a currently registered clock
4001 * @clk: clock to unregister
4002 */
4003void clk_unregister(struct clk *clk)
4004{
4005	unsigned long flags;
4006	const struct clk_ops *ops;
4007
4008	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4009		return;
4010
4011	clk_debug_unregister(clk->core);
4012
4013	clk_prepare_lock();
4014
4015	ops = clk->core->ops;
4016	if (ops == &clk_nodrv_ops) {
4017		pr_err("%s: unregistered clock: %s\n", __func__,
4018		       clk->core->name);
4019		goto unlock;
 
4020	}
4021	/*
4022	 * Assign empty clock ops for consumers that might still hold
4023	 * a reference to this clock.
4024	 */
4025	flags = clk_enable_lock();
4026	clk->core->ops = &clk_nodrv_ops;
4027	clk_enable_unlock(flags);
4028
4029	if (ops->terminate)
4030		ops->terminate(clk->core->hw);
4031
4032	if (!hlist_empty(&clk->core->children)) {
4033		struct clk_core *child;
4034		struct hlist_node *t;
4035
4036		/* Reparent all children to the orphan list. */
4037		hlist_for_each_entry_safe(child, t, &clk->core->children,
4038					  child_node)
4039			clk_core_set_parent_nolock(child, NULL);
4040	}
4041
4042	clk_core_evict_parent_cache(clk->core);
4043
4044	hlist_del_init(&clk->core->child_node);
4045
4046	if (clk->core->prepare_count)
4047		pr_warn("%s: unregistering prepared clock: %s\n",
4048					__func__, clk->core->name);
4049
4050	if (clk->core->protect_count)
4051		pr_warn("%s: unregistering protected clock: %s\n",
4052					__func__, clk->core->name);
 
4053
4054	kref_put(&clk->core->ref, __clk_release);
4055	free_clk(clk);
4056unlock:
4057	clk_prepare_unlock();
4058}
4059EXPORT_SYMBOL_GPL(clk_unregister);
4060
4061/**
4062 * clk_hw_unregister - unregister a currently registered clk_hw
4063 * @hw: hardware-specific clock data to unregister
4064 */
4065void clk_hw_unregister(struct clk_hw *hw)
4066{
4067	clk_unregister(hw->clk);
4068}
4069EXPORT_SYMBOL_GPL(clk_hw_unregister);
4070
4071static void devm_clk_release(struct device *dev, void *res)
4072{
4073	clk_unregister(*(struct clk **)res);
4074}
4075
4076static void devm_clk_hw_release(struct device *dev, void *res)
4077{
4078	clk_hw_unregister(*(struct clk_hw **)res);
4079}
4080
4081/**
4082 * devm_clk_register - resource managed clk_register()
4083 * @dev: device that is registering this clock
4084 * @hw: link to hardware-specific clock data
4085 *
4086 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4087 *
4088 * Clocks returned from this function are automatically clk_unregister()ed on
4089 * driver detach. See clk_register() for more information.
4090 */
4091struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4092{
4093	struct clk *clk;
4094	struct clk **clkp;
4095
4096	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4097	if (!clkp)
4098		return ERR_PTR(-ENOMEM);
4099
4100	clk = clk_register(dev, hw);
4101	if (!IS_ERR(clk)) {
4102		*clkp = clk;
4103		devres_add(dev, clkp);
4104	} else {
4105		devres_free(clkp);
4106	}
4107
4108	return clk;
4109}
4110EXPORT_SYMBOL_GPL(devm_clk_register);
4111
4112/**
4113 * devm_clk_hw_register - resource managed clk_hw_register()
4114 * @dev: device that is registering this clock
4115 * @hw: link to hardware-specific clock data
4116 *
4117 * Managed clk_hw_register(). Clocks registered by this function are
4118 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4119 * for more information.
4120 */
4121int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4122{
4123	struct clk_hw **hwp;
4124	int ret;
4125
4126	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4127	if (!hwp)
4128		return -ENOMEM;
4129
4130	ret = clk_hw_register(dev, hw);
4131	if (!ret) {
4132		*hwp = hw;
4133		devres_add(dev, hwp);
4134	} else {
4135		devres_free(hwp);
4136	}
4137
4138	return ret;
4139}
4140EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4141
4142static int devm_clk_match(struct device *dev, void *res, void *data)
4143{
4144	struct clk *c = res;
4145	if (WARN_ON(!c))
4146		return 0;
4147	return c == data;
4148}
4149
4150static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4151{
4152	struct clk_hw *hw = res;
4153
4154	if (WARN_ON(!hw))
4155		return 0;
4156	return hw == data;
4157}
4158
4159/**
4160 * devm_clk_unregister - resource managed clk_unregister()
4161 * @dev: device that is unregistering the clock data
4162 * @clk: clock to unregister
 
4163 *
4164 * Deallocate a clock allocated with devm_clk_register(). Normally
4165 * this function will not need to be called and the resource management
4166 * code will ensure that the resource is freed.
4167 */
4168void devm_clk_unregister(struct device *dev, struct clk *clk)
 
4169{
4170	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4171}
4172EXPORT_SYMBOL_GPL(devm_clk_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4173
4174/**
4175 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4176 * @dev: device that is unregistering the hardware-specific clock data
4177 * @hw: link to hardware-specific clock data
4178 *
4179 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4180 * this function will not need to be called and the resource management
4181 * code will ensure that the resource is freed.
4182 */
4183void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4184{
4185	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4186				hw));
4187}
4188EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4189
4190/*
4191 * clkdev helpers
4192 */
4193
4194void __clk_put(struct clk *clk)
4195{
4196	struct module *owner;
4197
4198	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4199		return;
4200
4201	clk_prepare_lock();
4202
4203	/*
4204	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4205	 * given user should be balanced with calls to clk_rate_exclusive_put()
4206	 * and by that same consumer
4207	 */
4208	if (WARN_ON(clk->exclusive_count)) {
4209		/* We voiced our concern, let's sanitize the situation */
4210		clk->core->protect_count -= (clk->exclusive_count - 1);
4211		clk_core_rate_unprotect(clk->core);
4212		clk->exclusive_count = 0;
4213	}
4214
4215	hlist_del(&clk->clks_node);
4216	if (clk->min_rate > clk->core->req_rate ||
4217	    clk->max_rate < clk->core->req_rate)
4218		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4219
4220	owner = clk->core->owner;
4221	kref_put(&clk->core->ref, __clk_release);
 
4222
4223	clk_prepare_unlock();
4224
 
 
4225	module_put(owner);
4226
4227	free_clk(clk);
4228}
4229
4230/***        clk rate change notifiers        ***/
4231
4232/**
4233 * clk_notifier_register - add a clk rate change notifier
4234 * @clk: struct clk * to watch
4235 * @nb: struct notifier_block * with callback info
4236 *
4237 * Request notification when clk's rate changes.  This uses an SRCU
4238 * notifier because we want it to block and notifier unregistrations are
4239 * uncommon.  The callbacks associated with the notifier must not
4240 * re-enter into the clk framework by calling any top-level clk APIs;
4241 * this will cause a nested prepare_lock mutex.
4242 *
4243 * In all notification cases (pre, post and abort rate change) the original
4244 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4245 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4246 *
4247 * clk_notifier_register() must be called from non-atomic context.
4248 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4249 * allocation failure; otherwise, passes along the return value of
4250 * srcu_notifier_chain_register().
4251 */
4252int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4253{
4254	struct clk_notifier *cn;
4255	int ret = -ENOMEM;
4256
4257	if (!clk || !nb)
4258		return -EINVAL;
4259
4260	clk_prepare_lock();
4261
4262	/* search the list of notifiers for this clk */
4263	list_for_each_entry(cn, &clk_notifier_list, node)
4264		if (cn->clk == clk)
4265			break;
4266
4267	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4268	if (cn->clk != clk) {
4269		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4270		if (!cn)
4271			goto out;
4272
4273		cn->clk = clk;
4274		srcu_init_notifier_head(&cn->notifier_head);
4275
4276		list_add(&cn->node, &clk_notifier_list);
4277	}
4278
 
4279	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4280
4281	clk->core->notifier_count++;
4282
4283out:
4284	clk_prepare_unlock();
4285
4286	return ret;
4287}
4288EXPORT_SYMBOL_GPL(clk_notifier_register);
4289
4290/**
4291 * clk_notifier_unregister - remove a clk rate change notifier
4292 * @clk: struct clk *
4293 * @nb: struct notifier_block * with callback info
4294 *
4295 * Request no further notification for changes to 'clk' and frees memory
4296 * allocated in clk_notifier_register.
4297 *
4298 * Returns -EINVAL if called with null arguments; otherwise, passes
4299 * along the return value of srcu_notifier_chain_unregister().
4300 */
4301int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4302{
4303	struct clk_notifier *cn = NULL;
4304	int ret = -EINVAL;
4305
4306	if (!clk || !nb)
4307		return -EINVAL;
4308
4309	clk_prepare_lock();
4310
4311	list_for_each_entry(cn, &clk_notifier_list, node)
4312		if (cn->clk == clk)
 
 
 
 
 
 
 
 
 
 
4313			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4314
4315	if (cn->clk == clk) {
4316		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
 
 
 
4317
4318		clk->core->notifier_count--;
 
4319
4320		/* XXX the notifier code should handle this better */
4321		if (!cn->notifier_head.head) {
4322			srcu_cleanup_notifier_head(&cn->notifier_head);
4323			list_del(&cn->node);
4324			kfree(cn);
4325		}
4326
 
 
 
 
 
4327	} else {
4328		ret = -ENOENT;
4329	}
4330
4331	clk_prepare_unlock();
4332
4333	return ret;
4334}
4335EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4336
4337#ifdef CONFIG_OF
4338static void clk_core_reparent_orphans(void)
4339{
4340	clk_prepare_lock();
4341	clk_core_reparent_orphans_nolock();
4342	clk_prepare_unlock();
4343}
4344
4345/**
4346 * struct of_clk_provider - Clock provider registration structure
4347 * @link: Entry in global list of clock providers
4348 * @node: Pointer to device tree node of clock provider
4349 * @get: Get clock callback.  Returns NULL or a struct clk for the
4350 *       given clock specifier
4351 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4352 *       struct clk_hw for the given clock specifier
4353 * @data: context pointer to be passed into @get callback
4354 */
4355struct of_clk_provider {
4356	struct list_head link;
4357
4358	struct device_node *node;
4359	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4360	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4361	void *data;
4362};
4363
4364extern struct of_device_id __clk_of_table;
4365static const struct of_device_id __clk_of_table_sentinel
4366	__used __section(__clk_of_table_end);
4367
4368static LIST_HEAD(of_clk_providers);
4369static DEFINE_MUTEX(of_clk_mutex);
4370
4371struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4372				     void *data)
4373{
4374	return data;
4375}
4376EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4377
4378struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4379{
4380	return data;
4381}
4382EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4383
4384struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4385{
4386	struct clk_onecell_data *clk_data = data;
4387	unsigned int idx = clkspec->args[0];
4388
4389	if (idx >= clk_data->clk_num) {
4390		pr_err("%s: invalid clock index %u\n", __func__, idx);
4391		return ERR_PTR(-EINVAL);
4392	}
4393
4394	return clk_data->clks[idx];
4395}
4396EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4397
4398struct clk_hw *
4399of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4400{
4401	struct clk_hw_onecell_data *hw_data = data;
4402	unsigned int idx = clkspec->args[0];
4403
4404	if (idx >= hw_data->num) {
4405		pr_err("%s: invalid index %u\n", __func__, idx);
4406		return ERR_PTR(-EINVAL);
4407	}
4408
4409	return hw_data->hws[idx];
4410}
4411EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4412
4413/**
4414 * of_clk_add_provider() - Register a clock provider for a node
4415 * @np: Device node pointer associated with clock provider
4416 * @clk_src_get: callback for decoding clock
4417 * @data: context pointer for @clk_src_get callback.
4418 *
4419 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4420 */
4421int of_clk_add_provider(struct device_node *np,
4422			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4423						   void *data),
4424			void *data)
4425{
4426	struct of_clk_provider *cp;
4427	int ret;
4428
 
 
 
4429	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4430	if (!cp)
4431		return -ENOMEM;
4432
4433	cp->node = of_node_get(np);
4434	cp->data = data;
4435	cp->get = clk_src_get;
4436
4437	mutex_lock(&of_clk_mutex);
4438	list_add(&cp->link, &of_clk_providers);
4439	mutex_unlock(&of_clk_mutex);
4440	pr_debug("Added clock from %pOF\n", np);
4441
4442	clk_core_reparent_orphans();
4443
4444	ret = of_clk_set_defaults(np, true);
4445	if (ret < 0)
4446		of_clk_del_provider(np);
4447
 
 
4448	return ret;
4449}
4450EXPORT_SYMBOL_GPL(of_clk_add_provider);
4451
4452/**
4453 * of_clk_add_hw_provider() - Register a clock provider for a node
4454 * @np: Device node pointer associated with clock provider
4455 * @get: callback for decoding clk_hw
4456 * @data: context pointer for @get callback.
4457 */
4458int of_clk_add_hw_provider(struct device_node *np,
4459			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4460						 void *data),
4461			   void *data)
4462{
4463	struct of_clk_provider *cp;
4464	int ret;
4465
 
 
 
4466	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4467	if (!cp)
4468		return -ENOMEM;
4469
4470	cp->node = of_node_get(np);
4471	cp->data = data;
4472	cp->get_hw = get;
4473
4474	mutex_lock(&of_clk_mutex);
4475	list_add(&cp->link, &of_clk_providers);
4476	mutex_unlock(&of_clk_mutex);
4477	pr_debug("Added clk_hw provider from %pOF\n", np);
4478
4479	clk_core_reparent_orphans();
4480
4481	ret = of_clk_set_defaults(np, true);
4482	if (ret < 0)
4483		of_clk_del_provider(np);
4484
 
 
4485	return ret;
4486}
4487EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4488
4489static void devm_of_clk_release_provider(struct device *dev, void *res)
4490{
4491	of_clk_del_provider(*(struct device_node **)res);
4492}
4493
4494/*
4495 * We allow a child device to use its parent device as the clock provider node
4496 * for cases like MFD sub-devices where the child device driver wants to use
4497 * devm_*() APIs but not list the device in DT as a sub-node.
4498 */
4499static struct device_node *get_clk_provider_node(struct device *dev)
4500{
4501	struct device_node *np, *parent_np;
4502
4503	np = dev->of_node;
4504	parent_np = dev->parent ? dev->parent->of_node : NULL;
4505
4506	if (!of_find_property(np, "#clock-cells", NULL))
4507		if (of_find_property(parent_np, "#clock-cells", NULL))
4508			np = parent_np;
4509
4510	return np;
4511}
4512
4513/**
4514 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4515 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4516 * @get: callback for decoding clk_hw
4517 * @data: context pointer for @get callback
4518 *
4519 * Registers clock provider for given device's node. If the device has no DT
4520 * node or if the device node lacks of clock provider information (#clock-cells)
4521 * then the parent device's node is scanned for this information. If parent node
4522 * has the #clock-cells then it is used in registration. Provider is
4523 * automatically released at device exit.
4524 *
4525 * Return: 0 on success or an errno on failure.
4526 */
4527int devm_of_clk_add_hw_provider(struct device *dev,
4528			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4529					      void *data),
4530			void *data)
4531{
4532	struct device_node **ptr, *np;
4533	int ret;
4534
4535	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4536			   GFP_KERNEL);
4537	if (!ptr)
4538		return -ENOMEM;
4539
4540	np = get_clk_provider_node(dev);
4541	ret = of_clk_add_hw_provider(np, get, data);
4542	if (!ret) {
4543		*ptr = np;
4544		devres_add(dev, ptr);
4545	} else {
4546		devres_free(ptr);
4547	}
4548
4549	return ret;
4550}
4551EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4552
4553/**
4554 * of_clk_del_provider() - Remove a previously registered clock provider
4555 * @np: Device node pointer associated with clock provider
4556 */
4557void of_clk_del_provider(struct device_node *np)
4558{
4559	struct of_clk_provider *cp;
4560
 
 
 
4561	mutex_lock(&of_clk_mutex);
4562	list_for_each_entry(cp, &of_clk_providers, link) {
4563		if (cp->node == np) {
4564			list_del(&cp->link);
 
4565			of_node_put(cp->node);
4566			kfree(cp);
4567			break;
4568		}
4569	}
4570	mutex_unlock(&of_clk_mutex);
4571}
4572EXPORT_SYMBOL_GPL(of_clk_del_provider);
4573
4574static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4575{
4576	struct device_node **np = res;
4577
4578	if (WARN_ON(!np || !*np))
4579		return 0;
4580
4581	return *np == data;
4582}
4583
4584/**
4585 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4586 * @dev: Device to whose lifetime the clock provider was bound
4587 */
4588void devm_of_clk_del_provider(struct device *dev)
4589{
4590	int ret;
4591	struct device_node *np = get_clk_provider_node(dev);
4592
4593	ret = devres_release(dev, devm_of_clk_release_provider,
4594			     devm_clk_provider_match, np);
4595
4596	WARN_ON(ret);
4597}
4598EXPORT_SYMBOL(devm_of_clk_del_provider);
4599
4600/**
4601 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4602 * @np: device node to parse clock specifier from
4603 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4604 * @name: clock name to find and parse. If name is NULL, the index is used
4605 * @out_args: Result of parsing the clock specifier
4606 *
4607 * Parses a device node's "clocks" and "clock-names" properties to find the
4608 * phandle and cells for the index or name that is desired. The resulting clock
4609 * specifier is placed into @out_args, or an errno is returned when there's a
4610 * parsing error. The @index argument is ignored if @name is non-NULL.
4611 *
4612 * Example:
4613 *
4614 * phandle1: clock-controller@1 {
4615 *	#clock-cells = <2>;
4616 * }
4617 *
4618 * phandle2: clock-controller@2 {
4619 *	#clock-cells = <1>;
4620 * }
4621 *
4622 * clock-consumer@3 {
4623 *	clocks = <&phandle1 1 2 &phandle2 3>;
4624 *	clock-names = "name1", "name2";
4625 * }
4626 *
4627 * To get a device_node for `clock-controller@2' node you may call this
4628 * function a few different ways:
4629 *
4630 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4631 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4632 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4633 *
4634 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4635 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4636 * the "clock-names" property of @np.
4637 */
4638static int of_parse_clkspec(const struct device_node *np, int index,
4639			    const char *name, struct of_phandle_args *out_args)
4640{
4641	int ret = -ENOENT;
4642
4643	/* Walk up the tree of devices looking for a clock property that matches */
4644	while (np) {
4645		/*
4646		 * For named clocks, first look up the name in the
4647		 * "clock-names" property.  If it cannot be found, then index
4648		 * will be an error code and of_parse_phandle_with_args() will
4649		 * return -EINVAL.
4650		 */
4651		if (name)
4652			index = of_property_match_string(np, "clock-names", name);
4653		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4654						 index, out_args);
4655		if (!ret)
4656			break;
4657		if (name && index >= 0)
4658			break;
4659
4660		/*
4661		 * No matching clock found on this node.  If the parent node
4662		 * has a "clock-ranges" property, then we can try one of its
4663		 * clocks.
4664		 */
4665		np = np->parent;
4666		if (np && !of_get_property(np, "clock-ranges", NULL))
4667			break;
4668		index = 0;
4669	}
4670
4671	return ret;
4672}
4673
4674static struct clk_hw *
4675__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4676			      struct of_phandle_args *clkspec)
4677{
4678	struct clk *clk;
4679
4680	if (provider->get_hw)
4681		return provider->get_hw(clkspec, provider->data);
4682
4683	clk = provider->get(clkspec, provider->data);
4684	if (IS_ERR(clk))
4685		return ERR_CAST(clk);
4686	return __clk_get_hw(clk);
4687}
4688
4689static struct clk_hw *
4690of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4691{
4692	struct of_clk_provider *provider;
4693	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4694
4695	if (!clkspec)
4696		return ERR_PTR(-EINVAL);
4697
4698	mutex_lock(&of_clk_mutex);
4699	list_for_each_entry(provider, &of_clk_providers, link) {
4700		if (provider->node == clkspec->np) {
4701			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4702			if (!IS_ERR(hw))
4703				break;
4704		}
4705	}
4706	mutex_unlock(&of_clk_mutex);
4707
4708	return hw;
4709}
4710
4711/**
4712 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4713 * @clkspec: pointer to a clock specifier data structure
4714 *
4715 * This function looks up a struct clk from the registered list of clock
4716 * providers, an input is a clock specifier data structure as returned
4717 * from the of_parse_phandle_with_args() function call.
4718 */
4719struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4720{
4721	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4722
4723	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4724}
4725EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4726
4727struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4728			     const char *con_id)
4729{
4730	int ret;
4731	struct clk_hw *hw;
4732	struct of_phandle_args clkspec;
4733
4734	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4735	if (ret)
4736		return ERR_PTR(ret);
4737
4738	hw = of_clk_get_hw_from_clkspec(&clkspec);
4739	of_node_put(clkspec.np);
4740
4741	return hw;
4742}
4743
4744static struct clk *__of_clk_get(struct device_node *np,
4745				int index, const char *dev_id,
4746				const char *con_id)
4747{
4748	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4749
4750	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4751}
4752
4753struct clk *of_clk_get(struct device_node *np, int index)
4754{
4755	return __of_clk_get(np, index, np->full_name, NULL);
4756}
4757EXPORT_SYMBOL(of_clk_get);
4758
4759/**
4760 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4761 * @np: pointer to clock consumer node
4762 * @name: name of consumer's clock input, or NULL for the first clock reference
4763 *
4764 * This function parses the clocks and clock-names properties,
4765 * and uses them to look up the struct clk from the registered list of clock
4766 * providers.
4767 */
4768struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4769{
4770	if (!np)
4771		return ERR_PTR(-ENOENT);
4772
4773	return __of_clk_get(np, 0, np->full_name, name);
4774}
4775EXPORT_SYMBOL(of_clk_get_by_name);
4776
4777/**
4778 * of_clk_get_parent_count() - Count the number of clocks a device node has
4779 * @np: device node to count
4780 *
4781 * Returns: The number of clocks that are possible parents of this node
4782 */
4783unsigned int of_clk_get_parent_count(const struct device_node *np)
4784{
4785	int count;
4786
4787	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4788	if (count < 0)
4789		return 0;
4790
4791	return count;
4792}
4793EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4794
4795const char *of_clk_get_parent_name(const struct device_node *np, int index)
4796{
4797	struct of_phandle_args clkspec;
4798	struct property *prop;
4799	const char *clk_name;
4800	const __be32 *vp;
4801	u32 pv;
4802	int rc;
4803	int count;
4804	struct clk *clk;
4805
4806	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4807					&clkspec);
4808	if (rc)
4809		return NULL;
4810
4811	index = clkspec.args_count ? clkspec.args[0] : 0;
4812	count = 0;
4813
4814	/* if there is an indices property, use it to transfer the index
4815	 * specified into an array offset for the clock-output-names property.
4816	 */
4817	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4818		if (index == pv) {
4819			index = count;
4820			break;
4821		}
4822		count++;
4823	}
4824	/* We went off the end of 'clock-indices' without finding it */
4825	if (prop && !vp)
4826		return NULL;
4827
4828	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4829					  index,
4830					  &clk_name) < 0) {
4831		/*
4832		 * Best effort to get the name if the clock has been
4833		 * registered with the framework. If the clock isn't
4834		 * registered, we return the node name as the name of
4835		 * the clock as long as #clock-cells = 0.
4836		 */
4837		clk = of_clk_get_from_provider(&clkspec);
4838		if (IS_ERR(clk)) {
4839			if (clkspec.args_count == 0)
4840				clk_name = clkspec.np->name;
4841			else
4842				clk_name = NULL;
4843		} else {
4844			clk_name = __clk_get_name(clk);
4845			clk_put(clk);
4846		}
4847	}
4848
4849
4850	of_node_put(clkspec.np);
4851	return clk_name;
4852}
4853EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4854
4855/**
4856 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4857 * number of parents
4858 * @np: Device node pointer associated with clock provider
4859 * @parents: pointer to char array that hold the parents' names
4860 * @size: size of the @parents array
4861 *
4862 * Return: number of parents for the clock node.
4863 */
4864int of_clk_parent_fill(struct device_node *np, const char **parents,
4865		       unsigned int size)
4866{
4867	unsigned int i = 0;
4868
4869	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4870		i++;
4871
4872	return i;
4873}
4874EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4875
4876struct clock_provider {
4877	void (*clk_init_cb)(struct device_node *);
4878	struct device_node *np;
4879	struct list_head node;
4880};
4881
4882/*
4883 * This function looks for a parent clock. If there is one, then it
4884 * checks that the provider for this parent clock was initialized, in
4885 * this case the parent clock will be ready.
4886 */
4887static int parent_ready(struct device_node *np)
4888{
4889	int i = 0;
4890
4891	while (true) {
4892		struct clk *clk = of_clk_get(np, i);
4893
4894		/* this parent is ready we can check the next one */
4895		if (!IS_ERR(clk)) {
4896			clk_put(clk);
4897			i++;
4898			continue;
4899		}
4900
4901		/* at least one parent is not ready, we exit now */
4902		if (PTR_ERR(clk) == -EPROBE_DEFER)
4903			return 0;
4904
4905		/*
4906		 * Here we make assumption that the device tree is
4907		 * written correctly. So an error means that there is
4908		 * no more parent. As we didn't exit yet, then the
4909		 * previous parent are ready. If there is no clock
4910		 * parent, no need to wait for them, then we can
4911		 * consider their absence as being ready
4912		 */
4913		return 1;
4914	}
4915}
4916
4917/**
4918 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4919 * @np: Device node pointer associated with clock provider
4920 * @index: clock index
4921 * @flags: pointer to top-level framework flags
4922 *
4923 * Detects if the clock-critical property exists and, if so, sets the
4924 * corresponding CLK_IS_CRITICAL flag.
4925 *
4926 * Do not use this function. It exists only for legacy Device Tree
4927 * bindings, such as the one-clock-per-node style that are outdated.
4928 * Those bindings typically put all clock data into .dts and the Linux
4929 * driver has no clock data, thus making it impossible to set this flag
4930 * correctly from the driver. Only those drivers may call
4931 * of_clk_detect_critical from their setup functions.
4932 *
4933 * Return: error code or zero on success
4934 */
4935int of_clk_detect_critical(struct device_node *np, int index,
4936			   unsigned long *flags)
4937{
4938	struct property *prop;
4939	const __be32 *cur;
4940	uint32_t idx;
4941
4942	if (!np || !flags)
4943		return -EINVAL;
4944
4945	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4946		if (index == idx)
4947			*flags |= CLK_IS_CRITICAL;
4948
4949	return 0;
4950}
4951
4952/**
4953 * of_clk_init() - Scan and init clock providers from the DT
4954 * @matches: array of compatible values and init functions for providers.
4955 *
4956 * This function scans the device tree for matching clock providers
4957 * and calls their initialization functions. It also does it by trying
4958 * to follow the dependencies.
4959 */
4960void __init of_clk_init(const struct of_device_id *matches)
4961{
4962	const struct of_device_id *match;
4963	struct device_node *np;
4964	struct clock_provider *clk_provider, *next;
4965	bool is_init_done;
4966	bool force = false;
4967	LIST_HEAD(clk_provider_list);
4968
4969	if (!matches)
4970		matches = &__clk_of_table;
4971
4972	/* First prepare the list of the clocks providers */
4973	for_each_matching_node_and_match(np, matches, &match) {
4974		struct clock_provider *parent;
4975
4976		if (!of_device_is_available(np))
4977			continue;
4978
4979		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4980		if (!parent) {
4981			list_for_each_entry_safe(clk_provider, next,
4982						 &clk_provider_list, node) {
4983				list_del(&clk_provider->node);
4984				of_node_put(clk_provider->np);
4985				kfree(clk_provider);
4986			}
4987			of_node_put(np);
4988			return;
4989		}
4990
4991		parent->clk_init_cb = match->data;
4992		parent->np = of_node_get(np);
4993		list_add_tail(&parent->node, &clk_provider_list);
4994	}
4995
4996	while (!list_empty(&clk_provider_list)) {
4997		is_init_done = false;
4998		list_for_each_entry_safe(clk_provider, next,
4999					&clk_provider_list, node) {
5000			if (force || parent_ready(clk_provider->np)) {
5001
5002				/* Don't populate platform devices */
5003				of_node_set_flag(clk_provider->np,
5004						 OF_POPULATED);
5005
5006				clk_provider->clk_init_cb(clk_provider->np);
5007				of_clk_set_defaults(clk_provider->np, true);
5008
5009				list_del(&clk_provider->node);
5010				of_node_put(clk_provider->np);
5011				kfree(clk_provider);
5012				is_init_done = true;
5013			}
5014		}
5015
5016		/*
5017		 * We didn't manage to initialize any of the
5018		 * remaining providers during the last loop, so now we
5019		 * initialize all the remaining ones unconditionally
5020		 * in case the clock parent was not mandatory
5021		 */
5022		if (!is_init_done)
5023			force = true;
5024	}
5025}
5026#endif