Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.9.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * KVM/MIPS MMU handling in the KVM module.
  7 *
  8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
  9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10 */
 11
 12#include <linux/highmem.h>
 13#include <linux/kvm_host.h>
 14#include <linux/uaccess.h>
 15#include <asm/mmu_context.h>
 16#include <asm/pgalloc.h>
 17
 18/*
 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
 20 * for which pages need to be cached.
 21 */
 22#if defined(__PAGETABLE_PMD_FOLDED)
 23#define KVM_MMU_CACHE_MIN_PAGES 1
 24#else
 25#define KVM_MMU_CACHE_MIN_PAGES 2
 26#endif
 27
 28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 29{
 30	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 31}
 32
 33/**
 34 * kvm_pgd_init() - Initialise KVM GPA page directory.
 35 * @page:	Pointer to page directory (PGD) for KVM GPA.
 36 *
 37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
 38 * representing no mappings. This is similar to pgd_init(), however it
 39 * initialises all the page directory pointers, not just the ones corresponding
 40 * to the userland address space (since it is for the guest physical address
 41 * space rather than a virtual address space).
 42 */
 43static void kvm_pgd_init(void *page)
 44{
 45	unsigned long *p, *end;
 46	unsigned long entry;
 47
 48#ifdef __PAGETABLE_PMD_FOLDED
 49	entry = (unsigned long)invalid_pte_table;
 50#else
 51	entry = (unsigned long)invalid_pmd_table;
 52#endif
 53
 54	p = (unsigned long *)page;
 55	end = p + PTRS_PER_PGD;
 56
 57	do {
 58		p[0] = entry;
 59		p[1] = entry;
 60		p[2] = entry;
 61		p[3] = entry;
 62		p[4] = entry;
 63		p += 8;
 64		p[-3] = entry;
 65		p[-2] = entry;
 66		p[-1] = entry;
 67	} while (p != end);
 68}
 69
 70/**
 71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 72 *
 73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 74 * to host physical page mappings.
 75 *
 76 * Returns:	Pointer to new KVM GPA page directory.
 77 *		NULL on allocation failure.
 78 */
 79pgd_t *kvm_pgd_alloc(void)
 80{
 81	pgd_t *ret;
 82
 83	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
 84	if (ret)
 85		kvm_pgd_init(ret);
 86
 87	return ret;
 88}
 89
 90/**
 91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 92 * @pgd:	Page directory pointer.
 93 * @addr:	Address to index page table using.
 94 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 95 *
 96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 97 * address @addr. If page tables don't exist for @addr, they will be created
 98 * from the MMU cache if @cache is not NULL.
 99 *
100 * Returns:	Pointer to pte_t corresponding to @addr.
101 *		NULL if a page table doesn't exist for @addr and !@cache.
102 *		NULL if a page table allocation failed.
103 */
104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105				unsigned long addr)
106{
107	p4d_t *p4d;
108	pud_t *pud;
109	pmd_t *pmd;
110
111	pgd += pgd_index(addr);
112	if (pgd_none(*pgd)) {
113		/* Not used on MIPS yet */
114		BUG();
115		return NULL;
116	}
117	p4d = p4d_offset(pgd, addr);
118	pud = pud_offset(p4d, addr);
119	if (pud_none(*pud)) {
120		pmd_t *new_pmd;
121
122		if (!cache)
123			return NULL;
124		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125		pmd_init(new_pmd);
 
126		pud_populate(NULL, pud, new_pmd);
127	}
128	pmd = pmd_offset(pud, addr);
129	if (pmd_none(*pmd)) {
130		pte_t *new_pte;
131
132		if (!cache)
133			return NULL;
134		new_pte = kvm_mmu_memory_cache_alloc(cache);
135		clear_page(new_pte);
136		pmd_populate_kernel(NULL, pmd, new_pte);
137	}
138	return pte_offset_kernel(pmd, addr);
139}
140
141/* Caller must hold kvm->mm_lock */
142static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143				   struct kvm_mmu_memory_cache *cache,
144				   unsigned long addr)
145{
146	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147}
148
149/*
150 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151 * Flush a range of guest physical address space from the VM's GPA page tables.
152 */
153
154static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155				   unsigned long end_gpa)
156{
157	int i_min = pte_index(start_gpa);
158	int i_max = pte_index(end_gpa);
159	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160	int i;
161
162	for (i = i_min; i <= i_max; ++i) {
163		if (!pte_present(pte[i]))
164			continue;
165
166		set_pte(pte + i, __pte(0));
167	}
168	return safe_to_remove;
169}
170
171static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172				   unsigned long end_gpa)
173{
174	pte_t *pte;
175	unsigned long end = ~0ul;
176	int i_min = pmd_index(start_gpa);
177	int i_max = pmd_index(end_gpa);
178	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179	int i;
180
181	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182		if (!pmd_present(pmd[i]))
183			continue;
184
185		pte = pte_offset_kernel(pmd + i, 0);
186		if (i == i_max)
187			end = end_gpa;
188
189		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190			pmd_clear(pmd + i);
191			pte_free_kernel(NULL, pte);
192		} else {
193			safe_to_remove = false;
194		}
195	}
196	return safe_to_remove;
197}
198
199static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200				   unsigned long end_gpa)
201{
202	pmd_t *pmd;
203	unsigned long end = ~0ul;
204	int i_min = pud_index(start_gpa);
205	int i_max = pud_index(end_gpa);
206	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207	int i;
208
209	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210		if (!pud_present(pud[i]))
211			continue;
212
213		pmd = pmd_offset(pud + i, 0);
214		if (i == i_max)
215			end = end_gpa;
216
217		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218			pud_clear(pud + i);
219			pmd_free(NULL, pmd);
220		} else {
221			safe_to_remove = false;
222		}
223	}
224	return safe_to_remove;
225}
226
227static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228				   unsigned long end_gpa)
229{
230	p4d_t *p4d;
231	pud_t *pud;
232	unsigned long end = ~0ul;
233	int i_min = pgd_index(start_gpa);
234	int i_max = pgd_index(end_gpa);
235	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236	int i;
237
238	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239		if (!pgd_present(pgd[i]))
240			continue;
241
242		p4d = p4d_offset(pgd, 0);
243		pud = pud_offset(p4d + i, 0);
244		if (i == i_max)
245			end = end_gpa;
246
247		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248			pgd_clear(pgd + i);
249			pud_free(NULL, pud);
250		} else {
251			safe_to_remove = false;
252		}
253	}
254	return safe_to_remove;
255}
256
257/**
258 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259 * @kvm:	KVM pointer.
260 * @start_gfn:	Guest frame number of first page in GPA range to flush.
261 * @end_gfn:	Guest frame number of last page in GPA range to flush.
262 *
263 * Flushes a range of GPA mappings from the GPA page tables.
264 *
265 * The caller must hold the @kvm->mmu_lock spinlock.
266 *
267 * Returns:	Whether its safe to remove the top level page directory because
268 *		all lower levels have been removed.
269 */
270bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271{
272	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273				      start_gfn << PAGE_SHIFT,
274				      end_gfn << PAGE_SHIFT);
275}
276
277#define BUILD_PTE_RANGE_OP(name, op)					\
278static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
279				 unsigned long end)			\
280{									\
281	int ret = 0;							\
282	int i_min = pte_index(start);				\
283	int i_max = pte_index(end);					\
284	int i;								\
285	pte_t old, new;							\
286									\
287	for (i = i_min; i <= i_max; ++i) {				\
288		if (!pte_present(pte[i]))				\
289			continue;					\
290									\
291		old = pte[i];						\
292		new = op(old);						\
293		if (pte_val(new) == pte_val(old))			\
294			continue;					\
295		set_pte(pte + i, new);					\
296		ret = 1;						\
297	}								\
298	return ret;							\
299}									\
300									\
301/* returns true if anything was done */					\
302static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
303				 unsigned long end)			\
304{									\
305	int ret = 0;							\
306	pte_t *pte;							\
307	unsigned long cur_end = ~0ul;					\
308	int i_min = pmd_index(start);				\
309	int i_max = pmd_index(end);					\
310	int i;								\
311									\
312	for (i = i_min; i <= i_max; ++i, start = 0) {			\
313		if (!pmd_present(pmd[i]))				\
314			continue;					\
315									\
316		pte = pte_offset_kernel(pmd + i, 0);				\
317		if (i == i_max)						\
318			cur_end = end;					\
319									\
320		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
321	}								\
322	return ret;							\
323}									\
324									\
325static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
326				 unsigned long end)			\
327{									\
328	int ret = 0;							\
329	pmd_t *pmd;							\
330	unsigned long cur_end = ~0ul;					\
331	int i_min = pud_index(start);				\
332	int i_max = pud_index(end);					\
333	int i;								\
334									\
335	for (i = i_min; i <= i_max; ++i, start = 0) {			\
336		if (!pud_present(pud[i]))				\
337			continue;					\
338									\
339		pmd = pmd_offset(pud + i, 0);				\
340		if (i == i_max)						\
341			cur_end = end;					\
342									\
343		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
344	}								\
345	return ret;							\
346}									\
347									\
348static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
349				 unsigned long end)			\
350{									\
351	int ret = 0;							\
352	p4d_t *p4d;							\
353	pud_t *pud;							\
354	unsigned long cur_end = ~0ul;					\
355	int i_min = pgd_index(start);					\
356	int i_max = pgd_index(end);					\
357	int i;								\
358									\
359	for (i = i_min; i <= i_max; ++i, start = 0) {			\
360		if (!pgd_present(pgd[i]))				\
361			continue;					\
362									\
363		p4d = p4d_offset(pgd, 0);				\
364		pud = pud_offset(p4d + i, 0);				\
365		if (i == i_max)						\
366			cur_end = end;					\
367									\
368		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
369	}								\
370	return ret;							\
371}
372
373/*
374 * kvm_mips_mkclean_gpa_pt.
375 * Mark a range of guest physical address space clean (writes fault) in the VM's
376 * GPA page table to allow dirty page tracking.
377 */
378
379BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380
381/**
382 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383 * @kvm:	KVM pointer.
384 * @start_gfn:	Guest frame number of first page in GPA range to flush.
385 * @end_gfn:	Guest frame number of last page in GPA range to flush.
386 *
387 * Make a range of GPA mappings clean so that guest writes will fault and
388 * trigger dirty page logging.
389 *
390 * The caller must hold the @kvm->mmu_lock spinlock.
391 *
392 * Returns:	Whether any GPA mappings were modified, which would require
393 *		derived mappings (GVA page tables & TLB enties) to be
394 *		invalidated.
395 */
396int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397{
398	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399				    start_gfn << PAGE_SHIFT,
400				    end_gfn << PAGE_SHIFT);
401}
402
403/**
404 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405 * @kvm:	The KVM pointer
406 * @slot:	The memory slot associated with mask
407 * @gfn_offset:	The gfn offset in memory slot
408 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
409 *		slot to be write protected
410 *
411 * Walks bits set in mask write protects the associated pte's. Caller must
412 * acquire @kvm->mmu_lock.
413 */
414void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415		struct kvm_memory_slot *slot,
416		gfn_t gfn_offset, unsigned long mask)
417{
418	gfn_t base_gfn = slot->base_gfn + gfn_offset;
419	gfn_t start = base_gfn +  __ffs(mask);
420	gfn_t end = base_gfn + __fls(mask);
421
422	kvm_mips_mkclean_gpa_pt(kvm, start, end);
423}
424
425/*
426 * kvm_mips_mkold_gpa_pt.
427 * Mark a range of guest physical address space old (all accesses fault) in the
428 * VM's GPA page table to allow detection of commonly used pages.
429 */
430
431BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432
433static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434				 gfn_t end_gfn)
435{
436	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437				  start_gfn << PAGE_SHIFT,
438				  end_gfn << PAGE_SHIFT);
439}
440
441bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 
 
 
 
 
 
 
442{
443	kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445}
446
447bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 
448{
449	gpa_t gpa = range->start << PAGE_SHIFT;
450	pte_t hva_pte = range->arg.pte;
 
 
 
 
 
 
 
 
 
451	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
452	pte_t old_pte;
453
454	if (!gpa_pte)
455		return false;
456
457	/* Mapping may need adjusting depending on memslot flags */
458	old_pte = *gpa_pte;
459	if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
460		hva_pte = pte_mkclean(hva_pte);
461	else if (range->slot->flags & KVM_MEM_READONLY)
462		hva_pte = pte_wrprotect(hva_pte);
463
464	set_pte(gpa_pte, hva_pte);
465
466	/* Replacing an absent or old page doesn't need flushes */
467	if (!pte_present(old_pte) || !pte_young(old_pte))
468		return false;
469
470	/* Pages swapped, aged, moved, or cleaned require flushes */
471	return !pte_present(hva_pte) ||
472	       !pte_young(hva_pte) ||
473	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
474	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
475}
476
477bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
478{
479	return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
 
 
 
 
 
 
 
 
 
 
 
 
480}
481
482bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 
483{
484	gpa_t gpa = range->start << PAGE_SHIFT;
485	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
486
487	if (!gpa_pte)
488		return false;
489	return pte_young(*gpa_pte);
490}
491
 
 
 
 
 
 
 
 
 
 
492/**
493 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
494 * @vcpu:		VCPU pointer.
495 * @gpa:		Guest physical address of fault.
496 * @write_fault:	Whether the fault was due to a write.
497 * @out_entry:		New PTE for @gpa (written on success unless NULL).
498 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
499 *			NULL).
500 *
501 * Perform fast path GPA fault handling, doing all that can be done without
502 * calling into KVM. This handles marking old pages young (for idle page
503 * tracking), and dirtying of clean pages (for dirty page logging).
504 *
505 * Returns:	0 on success, in which case we can update derived mappings and
506 *		resume guest execution.
507 *		-EFAULT on failure due to absent GPA mapping or write to
508 *		read-only page, in which case KVM must be consulted.
509 */
510static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
511				   bool write_fault,
512				   pte_t *out_entry, pte_t *out_buddy)
513{
514	struct kvm *kvm = vcpu->kvm;
515	gfn_t gfn = gpa >> PAGE_SHIFT;
516	pte_t *ptep;
517	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
518	bool pfn_valid = false;
519	int ret = 0;
520
521	spin_lock(&kvm->mmu_lock);
522
523	/* Fast path - just check GPA page table for an existing entry */
524	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
525	if (!ptep || !pte_present(*ptep)) {
526		ret = -EFAULT;
527		goto out;
528	}
529
530	/* Track access to pages marked old */
531	if (!pte_young(*ptep)) {
532		set_pte(ptep, pte_mkyoung(*ptep));
533		pfn = pte_pfn(*ptep);
534		pfn_valid = true;
535		/* call kvm_set_pfn_accessed() after unlock */
536	}
537	if (write_fault && !pte_dirty(*ptep)) {
538		if (!pte_write(*ptep)) {
539			ret = -EFAULT;
540			goto out;
541		}
542
543		/* Track dirtying of writeable pages */
544		set_pte(ptep, pte_mkdirty(*ptep));
545		pfn = pte_pfn(*ptep);
546		mark_page_dirty(kvm, gfn);
547		kvm_set_pfn_dirty(pfn);
548	}
549
550	if (out_entry)
551		*out_entry = *ptep;
552	if (out_buddy)
553		*out_buddy = *ptep_buddy(ptep);
554
555out:
556	spin_unlock(&kvm->mmu_lock);
557	if (pfn_valid)
558		kvm_set_pfn_accessed(pfn);
559	return ret;
560}
561
562/**
563 * kvm_mips_map_page() - Map a guest physical page.
564 * @vcpu:		VCPU pointer.
565 * @gpa:		Guest physical address of fault.
566 * @write_fault:	Whether the fault was due to a write.
567 * @out_entry:		New PTE for @gpa (written on success unless NULL).
568 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
569 *			NULL).
570 *
571 * Handle GPA faults by creating a new GPA mapping (or updating an existing
572 * one).
573 *
574 * This takes care of marking pages young or dirty (idle/dirty page tracking),
575 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
576 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
577 * caller.
578 *
579 * Returns:	0 on success, in which case the caller may use the @out_entry
580 *		and @out_buddy PTEs to update derived mappings and resume guest
581 *		execution.
582 *		-EFAULT if there is no memory region at @gpa or a write was
583 *		attempted to a read-only memory region. This is usually handled
584 *		as an MMIO access.
585 */
586static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
587			     bool write_fault,
588			     pte_t *out_entry, pte_t *out_buddy)
589{
590	struct kvm *kvm = vcpu->kvm;
591	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
592	gfn_t gfn = gpa >> PAGE_SHIFT;
593	int srcu_idx, err;
594	kvm_pfn_t pfn;
595	pte_t *ptep, entry;
596	bool writeable;
597	unsigned long prot_bits;
598	unsigned long mmu_seq;
599
600	/* Try the fast path to handle old / clean pages */
601	srcu_idx = srcu_read_lock(&kvm->srcu);
602	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
603				      out_buddy);
604	if (!err)
605		goto out;
606
607	/* We need a minimum of cached pages ready for page table creation */
608	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
609	if (err)
610		goto out;
611
612retry:
613	/*
614	 * Used to check for invalidations in progress, of the pfn that is
615	 * returned by pfn_to_pfn_prot below.
616	 */
617	mmu_seq = kvm->mmu_invalidate_seq;
618	/*
619	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
620	 * in gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
621	 * risk the page we get a reference to getting unmapped before we have a
622	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
623	 *
624	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
625	 * of the pte_unmap_unlock() after the PTE is zapped, and the
626	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
627	 * mmu_invalidate_seq is incremented.
628	 */
629	smp_rmb();
630
631	/* Slow path - ask KVM core whether we can access this GPA */
632	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
633	if (is_error_noslot_pfn(pfn)) {
634		err = -EFAULT;
635		goto out;
636	}
637
638	spin_lock(&kvm->mmu_lock);
639	/* Check if an invalidation has taken place since we got pfn */
640	if (mmu_invalidate_retry(kvm, mmu_seq)) {
641		/*
642		 * This can happen when mappings are changed asynchronously, but
643		 * also synchronously if a COW is triggered by
644		 * gfn_to_pfn_prot().
645		 */
646		spin_unlock(&kvm->mmu_lock);
647		kvm_release_pfn_clean(pfn);
648		goto retry;
649	}
650
651	/* Ensure page tables are allocated */
652	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
653
654	/* Set up the PTE */
655	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
656	if (writeable) {
657		prot_bits |= _PAGE_WRITE;
658		if (write_fault) {
659			prot_bits |= __WRITEABLE;
660			mark_page_dirty(kvm, gfn);
661			kvm_set_pfn_dirty(pfn);
662		}
663	}
664	entry = pfn_pte(pfn, __pgprot(prot_bits));
665
666	/* Write the PTE */
 
667	set_pte(ptep, entry);
668
669	err = 0;
670	if (out_entry)
671		*out_entry = *ptep;
672	if (out_buddy)
673		*out_buddy = *ptep_buddy(ptep);
674
675	spin_unlock(&kvm->mmu_lock);
676	kvm_release_pfn_clean(pfn);
677	kvm_set_pfn_accessed(pfn);
678out:
679	srcu_read_unlock(&kvm->srcu, srcu_idx);
680	return err;
681}
682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
684				      struct kvm_vcpu *vcpu,
685				      bool write_fault)
686{
687	int ret;
688
689	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
690	if (ret)
691		return ret;
692
693	/* Invalidate this entry in the TLB */
694	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
695}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696
697/**
698 * kvm_mips_migrate_count() - Migrate timer.
699 * @vcpu:	Virtual CPU.
700 *
701 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
702 * if it was running prior to being cancelled.
703 *
704 * Must be called when the VCPU is migrated to a different CPU to ensure that
705 * timer expiry during guest execution interrupts the guest and causes the
706 * interrupt to be delivered in a timely manner.
707 */
708static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
709{
710	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
711		hrtimer_restart(&vcpu->arch.comparecount_timer);
712}
713
714/* Restore ASID once we are scheduled back after preemption */
715void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
716{
717	unsigned long flags;
718
719	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
720
721	local_irq_save(flags);
722
723	vcpu->cpu = cpu;
724	if (vcpu->arch.last_sched_cpu != cpu) {
725		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
726			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
727		/*
728		 * Migrate the timer interrupt to the current CPU so that it
729		 * always interrupts the guest and synchronously triggers a
730		 * guest timer interrupt.
731		 */
732		kvm_mips_migrate_count(vcpu);
733	}
734
735	/* restore guest state to registers */
736	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
737
738	local_irq_restore(flags);
739}
740
741/* ASID can change if another task is scheduled during preemption */
742void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
743{
744	unsigned long flags;
745	int cpu;
746
747	local_irq_save(flags);
748
749	cpu = smp_processor_id();
750	vcpu->arch.last_sched_cpu = cpu;
751	vcpu->cpu = -1;
752
753	/* save guest state in registers */
754	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
755
756	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757}
v5.9
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS MMU handling in the KVM module.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/highmem.h>
  13#include <linux/kvm_host.h>
  14#include <linux/uaccess.h>
  15#include <asm/mmu_context.h>
  16#include <asm/pgalloc.h>
  17
  18/*
  19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  20 * for which pages need to be cached.
  21 */
  22#if defined(__PAGETABLE_PMD_FOLDED)
  23#define KVM_MMU_CACHE_MIN_PAGES 1
  24#else
  25#define KVM_MMU_CACHE_MIN_PAGES 2
  26#endif
  27
  28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  29{
  30	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  31}
  32
  33/**
  34 * kvm_pgd_init() - Initialise KVM GPA page directory.
  35 * @page:	Pointer to page directory (PGD) for KVM GPA.
  36 *
  37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  38 * representing no mappings. This is similar to pgd_init(), however it
  39 * initialises all the page directory pointers, not just the ones corresponding
  40 * to the userland address space (since it is for the guest physical address
  41 * space rather than a virtual address space).
  42 */
  43static void kvm_pgd_init(void *page)
  44{
  45	unsigned long *p, *end;
  46	unsigned long entry;
  47
  48#ifdef __PAGETABLE_PMD_FOLDED
  49	entry = (unsigned long)invalid_pte_table;
  50#else
  51	entry = (unsigned long)invalid_pmd_table;
  52#endif
  53
  54	p = (unsigned long *)page;
  55	end = p + PTRS_PER_PGD;
  56
  57	do {
  58		p[0] = entry;
  59		p[1] = entry;
  60		p[2] = entry;
  61		p[3] = entry;
  62		p[4] = entry;
  63		p += 8;
  64		p[-3] = entry;
  65		p[-2] = entry;
  66		p[-1] = entry;
  67	} while (p != end);
  68}
  69
  70/**
  71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
  72 *
  73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
  74 * to host physical page mappings.
  75 *
  76 * Returns:	Pointer to new KVM GPA page directory.
  77 *		NULL on allocation failure.
  78 */
  79pgd_t *kvm_pgd_alloc(void)
  80{
  81	pgd_t *ret;
  82
  83	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
  84	if (ret)
  85		kvm_pgd_init(ret);
  86
  87	return ret;
  88}
  89
  90/**
  91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
  92 * @pgd:	Page directory pointer.
  93 * @addr:	Address to index page table using.
  94 * @cache:	MMU page cache to allocate new page tables from, or NULL.
  95 *
  96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
  97 * address @addr. If page tables don't exist for @addr, they will be created
  98 * from the MMU cache if @cache is not NULL.
  99 *
 100 * Returns:	Pointer to pte_t corresponding to @addr.
 101 *		NULL if a page table doesn't exist for @addr and !@cache.
 102 *		NULL if a page table allocation failed.
 103 */
 104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
 105				unsigned long addr)
 106{
 107	p4d_t *p4d;
 108	pud_t *pud;
 109	pmd_t *pmd;
 110
 111	pgd += pgd_index(addr);
 112	if (pgd_none(*pgd)) {
 113		/* Not used on MIPS yet */
 114		BUG();
 115		return NULL;
 116	}
 117	p4d = p4d_offset(pgd, addr);
 118	pud = pud_offset(p4d, addr);
 119	if (pud_none(*pud)) {
 120		pmd_t *new_pmd;
 121
 122		if (!cache)
 123			return NULL;
 124		new_pmd = kvm_mmu_memory_cache_alloc(cache);
 125		pmd_init((unsigned long)new_pmd,
 126			 (unsigned long)invalid_pte_table);
 127		pud_populate(NULL, pud, new_pmd);
 128	}
 129	pmd = pmd_offset(pud, addr);
 130	if (pmd_none(*pmd)) {
 131		pte_t *new_pte;
 132
 133		if (!cache)
 134			return NULL;
 135		new_pte = kvm_mmu_memory_cache_alloc(cache);
 136		clear_page(new_pte);
 137		pmd_populate_kernel(NULL, pmd, new_pte);
 138	}
 139	return pte_offset_kernel(pmd, addr);
 140}
 141
 142/* Caller must hold kvm->mm_lock */
 143static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
 144				   struct kvm_mmu_memory_cache *cache,
 145				   unsigned long addr)
 146{
 147	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
 148}
 149
 150/*
 151 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
 152 * Flush a range of guest physical address space from the VM's GPA page tables.
 153 */
 154
 155static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
 156				   unsigned long end_gpa)
 157{
 158	int i_min = pte_index(start_gpa);
 159	int i_max = pte_index(end_gpa);
 160	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 161	int i;
 162
 163	for (i = i_min; i <= i_max; ++i) {
 164		if (!pte_present(pte[i]))
 165			continue;
 166
 167		set_pte(pte + i, __pte(0));
 168	}
 169	return safe_to_remove;
 170}
 171
 172static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
 173				   unsigned long end_gpa)
 174{
 175	pte_t *pte;
 176	unsigned long end = ~0ul;
 177	int i_min = pmd_index(start_gpa);
 178	int i_max = pmd_index(end_gpa);
 179	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 180	int i;
 181
 182	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 183		if (!pmd_present(pmd[i]))
 184			continue;
 185
 186		pte = pte_offset_kernel(pmd + i, 0);
 187		if (i == i_max)
 188			end = end_gpa;
 189
 190		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
 191			pmd_clear(pmd + i);
 192			pte_free_kernel(NULL, pte);
 193		} else {
 194			safe_to_remove = false;
 195		}
 196	}
 197	return safe_to_remove;
 198}
 199
 200static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
 201				   unsigned long end_gpa)
 202{
 203	pmd_t *pmd;
 204	unsigned long end = ~0ul;
 205	int i_min = pud_index(start_gpa);
 206	int i_max = pud_index(end_gpa);
 207	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 208	int i;
 209
 210	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 211		if (!pud_present(pud[i]))
 212			continue;
 213
 214		pmd = pmd_offset(pud + i, 0);
 215		if (i == i_max)
 216			end = end_gpa;
 217
 218		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
 219			pud_clear(pud + i);
 220			pmd_free(NULL, pmd);
 221		} else {
 222			safe_to_remove = false;
 223		}
 224	}
 225	return safe_to_remove;
 226}
 227
 228static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
 229				   unsigned long end_gpa)
 230{
 231	p4d_t *p4d;
 232	pud_t *pud;
 233	unsigned long end = ~0ul;
 234	int i_min = pgd_index(start_gpa);
 235	int i_max = pgd_index(end_gpa);
 236	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 237	int i;
 238
 239	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 240		if (!pgd_present(pgd[i]))
 241			continue;
 242
 243		p4d = p4d_offset(pgd, 0);
 244		pud = pud_offset(p4d + i, 0);
 245		if (i == i_max)
 246			end = end_gpa;
 247
 248		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
 249			pgd_clear(pgd + i);
 250			pud_free(NULL, pud);
 251		} else {
 252			safe_to_remove = false;
 253		}
 254	}
 255	return safe_to_remove;
 256}
 257
 258/**
 259 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
 260 * @kvm:	KVM pointer.
 261 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 262 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 263 *
 264 * Flushes a range of GPA mappings from the GPA page tables.
 265 *
 266 * The caller must hold the @kvm->mmu_lock spinlock.
 267 *
 268 * Returns:	Whether its safe to remove the top level page directory because
 269 *		all lower levels have been removed.
 270 */
 271bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 272{
 273	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
 274				      start_gfn << PAGE_SHIFT,
 275				      end_gfn << PAGE_SHIFT);
 276}
 277
 278#define BUILD_PTE_RANGE_OP(name, op)					\
 279static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
 280				 unsigned long end)			\
 281{									\
 282	int ret = 0;							\
 283	int i_min = pte_index(start);				\
 284	int i_max = pte_index(end);					\
 285	int i;								\
 286	pte_t old, new;							\
 287									\
 288	for (i = i_min; i <= i_max; ++i) {				\
 289		if (!pte_present(pte[i]))				\
 290			continue;					\
 291									\
 292		old = pte[i];						\
 293		new = op(old);						\
 294		if (pte_val(new) == pte_val(old))			\
 295			continue;					\
 296		set_pte(pte + i, new);					\
 297		ret = 1;						\
 298	}								\
 299	return ret;							\
 300}									\
 301									\
 302/* returns true if anything was done */					\
 303static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
 304				 unsigned long end)			\
 305{									\
 306	int ret = 0;							\
 307	pte_t *pte;							\
 308	unsigned long cur_end = ~0ul;					\
 309	int i_min = pmd_index(start);				\
 310	int i_max = pmd_index(end);					\
 311	int i;								\
 312									\
 313	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 314		if (!pmd_present(pmd[i]))				\
 315			continue;					\
 316									\
 317		pte = pte_offset_kernel(pmd + i, 0);				\
 318		if (i == i_max)						\
 319			cur_end = end;					\
 320									\
 321		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
 322	}								\
 323	return ret;							\
 324}									\
 325									\
 326static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
 327				 unsigned long end)			\
 328{									\
 329	int ret = 0;							\
 330	pmd_t *pmd;							\
 331	unsigned long cur_end = ~0ul;					\
 332	int i_min = pud_index(start);				\
 333	int i_max = pud_index(end);					\
 334	int i;								\
 335									\
 336	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 337		if (!pud_present(pud[i]))				\
 338			continue;					\
 339									\
 340		pmd = pmd_offset(pud + i, 0);				\
 341		if (i == i_max)						\
 342			cur_end = end;					\
 343									\
 344		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
 345	}								\
 346	return ret;							\
 347}									\
 348									\
 349static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
 350				 unsigned long end)			\
 351{									\
 352	int ret = 0;							\
 353	p4d_t *p4d;							\
 354	pud_t *pud;							\
 355	unsigned long cur_end = ~0ul;					\
 356	int i_min = pgd_index(start);					\
 357	int i_max = pgd_index(end);					\
 358	int i;								\
 359									\
 360	for (i = i_min; i <= i_max; ++i, start = 0) {			\
 361		if (!pgd_present(pgd[i]))				\
 362			continue;					\
 363									\
 364		p4d = p4d_offset(pgd, 0);				\
 365		pud = pud_offset(p4d + i, 0);				\
 366		if (i == i_max)						\
 367			cur_end = end;					\
 368									\
 369		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
 370	}								\
 371	return ret;							\
 372}
 373
 374/*
 375 * kvm_mips_mkclean_gpa_pt.
 376 * Mark a range of guest physical address space clean (writes fault) in the VM's
 377 * GPA page table to allow dirty page tracking.
 378 */
 379
 380BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
 381
 382/**
 383 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
 384 * @kvm:	KVM pointer.
 385 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 386 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 387 *
 388 * Make a range of GPA mappings clean so that guest writes will fault and
 389 * trigger dirty page logging.
 390 *
 391 * The caller must hold the @kvm->mmu_lock spinlock.
 392 *
 393 * Returns:	Whether any GPA mappings were modified, which would require
 394 *		derived mappings (GVA page tables & TLB enties) to be
 395 *		invalidated.
 396 */
 397int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 398{
 399	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
 400				    start_gfn << PAGE_SHIFT,
 401				    end_gfn << PAGE_SHIFT);
 402}
 403
 404/**
 405 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
 406 * @kvm:	The KVM pointer
 407 * @slot:	The memory slot associated with mask
 408 * @gfn_offset:	The gfn offset in memory slot
 409 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 410 *		slot to be write protected
 411 *
 412 * Walks bits set in mask write protects the associated pte's. Caller must
 413 * acquire @kvm->mmu_lock.
 414 */
 415void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 416		struct kvm_memory_slot *slot,
 417		gfn_t gfn_offset, unsigned long mask)
 418{
 419	gfn_t base_gfn = slot->base_gfn + gfn_offset;
 420	gfn_t start = base_gfn +  __ffs(mask);
 421	gfn_t end = base_gfn + __fls(mask);
 422
 423	kvm_mips_mkclean_gpa_pt(kvm, start, end);
 424}
 425
 426/*
 427 * kvm_mips_mkold_gpa_pt.
 428 * Mark a range of guest physical address space old (all accesses fault) in the
 429 * VM's GPA page table to allow detection of commonly used pages.
 430 */
 431
 432BUILD_PTE_RANGE_OP(mkold, pte_mkold)
 433
 434static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
 435				 gfn_t end_gfn)
 436{
 437	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
 438				  start_gfn << PAGE_SHIFT,
 439				  end_gfn << PAGE_SHIFT);
 440}
 441
 442static int handle_hva_to_gpa(struct kvm *kvm,
 443			     unsigned long start,
 444			     unsigned long end,
 445			     int (*handler)(struct kvm *kvm, gfn_t gfn,
 446					    gpa_t gfn_end,
 447					    struct kvm_memory_slot *memslot,
 448					    void *data),
 449			     void *data)
 450{
 451	struct kvm_memslots *slots;
 452	struct kvm_memory_slot *memslot;
 453	int ret = 0;
 454
 455	slots = kvm_memslots(kvm);
 456
 457	/* we only care about the pages that the guest sees */
 458	kvm_for_each_memslot(memslot, slots) {
 459		unsigned long hva_start, hva_end;
 460		gfn_t gfn, gfn_end;
 461
 462		hva_start = max(start, memslot->userspace_addr);
 463		hva_end = min(end, memslot->userspace_addr +
 464					(memslot->npages << PAGE_SHIFT));
 465		if (hva_start >= hva_end)
 466			continue;
 467
 468		/*
 469		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 470		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 471		 */
 472		gfn = hva_to_gfn_memslot(hva_start, memslot);
 473		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 474
 475		ret |= handler(kvm, gfn, gfn_end, memslot, data);
 476	}
 477
 478	return ret;
 479}
 480
 481
 482static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 483				 struct kvm_memory_slot *memslot, void *data)
 484{
 485	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
 486	return 1;
 487}
 488
 489int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
 490			unsigned flags)
 491{
 492	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 493
 494	kvm_mips_callbacks->flush_shadow_all(kvm);
 495	return 0;
 496}
 497
 498static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 499				struct kvm_memory_slot *memslot, void *data)
 500{
 501	gpa_t gpa = gfn << PAGE_SHIFT;
 502	pte_t hva_pte = *(pte_t *)data;
 503	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 504	pte_t old_pte;
 505
 506	if (!gpa_pte)
 507		return 0;
 508
 509	/* Mapping may need adjusting depending on memslot flags */
 510	old_pte = *gpa_pte;
 511	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
 512		hva_pte = pte_mkclean(hva_pte);
 513	else if (memslot->flags & KVM_MEM_READONLY)
 514		hva_pte = pte_wrprotect(hva_pte);
 515
 516	set_pte(gpa_pte, hva_pte);
 517
 518	/* Replacing an absent or old page doesn't need flushes */
 519	if (!pte_present(old_pte) || !pte_young(old_pte))
 520		return 0;
 521
 522	/* Pages swapped, aged, moved, or cleaned require flushes */
 523	return !pte_present(hva_pte) ||
 524	       !pte_young(hva_pte) ||
 525	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
 526	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
 527}
 528
 529int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 530{
 531	unsigned long end = hva + PAGE_SIZE;
 532	int ret;
 533
 534	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
 535	if (ret)
 536		kvm_mips_callbacks->flush_shadow_all(kvm);
 537	return 0;
 538}
 539
 540static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 541			       struct kvm_memory_slot *memslot, void *data)
 542{
 543	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
 544}
 545
 546static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 547				    struct kvm_memory_slot *memslot, void *data)
 548{
 549	gpa_t gpa = gfn << PAGE_SHIFT;
 550	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 551
 552	if (!gpa_pte)
 553		return 0;
 554	return pte_young(*gpa_pte);
 555}
 556
 557int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 558{
 559	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
 560}
 561
 562int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 563{
 564	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
 565}
 566
 567/**
 568 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
 569 * @vcpu:		VCPU pointer.
 570 * @gpa:		Guest physical address of fault.
 571 * @write_fault:	Whether the fault was due to a write.
 572 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 573 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 574 *			NULL).
 575 *
 576 * Perform fast path GPA fault handling, doing all that can be done without
 577 * calling into KVM. This handles marking old pages young (for idle page
 578 * tracking), and dirtying of clean pages (for dirty page logging).
 579 *
 580 * Returns:	0 on success, in which case we can update derived mappings and
 581 *		resume guest execution.
 582 *		-EFAULT on failure due to absent GPA mapping or write to
 583 *		read-only page, in which case KVM must be consulted.
 584 */
 585static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
 586				   bool write_fault,
 587				   pte_t *out_entry, pte_t *out_buddy)
 588{
 589	struct kvm *kvm = vcpu->kvm;
 590	gfn_t gfn = gpa >> PAGE_SHIFT;
 591	pte_t *ptep;
 592	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
 593	bool pfn_valid = false;
 594	int ret = 0;
 595
 596	spin_lock(&kvm->mmu_lock);
 597
 598	/* Fast path - just check GPA page table for an existing entry */
 599	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 600	if (!ptep || !pte_present(*ptep)) {
 601		ret = -EFAULT;
 602		goto out;
 603	}
 604
 605	/* Track access to pages marked old */
 606	if (!pte_young(*ptep)) {
 607		set_pte(ptep, pte_mkyoung(*ptep));
 608		pfn = pte_pfn(*ptep);
 609		pfn_valid = true;
 610		/* call kvm_set_pfn_accessed() after unlock */
 611	}
 612	if (write_fault && !pte_dirty(*ptep)) {
 613		if (!pte_write(*ptep)) {
 614			ret = -EFAULT;
 615			goto out;
 616		}
 617
 618		/* Track dirtying of writeable pages */
 619		set_pte(ptep, pte_mkdirty(*ptep));
 620		pfn = pte_pfn(*ptep);
 621		mark_page_dirty(kvm, gfn);
 622		kvm_set_pfn_dirty(pfn);
 623	}
 624
 625	if (out_entry)
 626		*out_entry = *ptep;
 627	if (out_buddy)
 628		*out_buddy = *ptep_buddy(ptep);
 629
 630out:
 631	spin_unlock(&kvm->mmu_lock);
 632	if (pfn_valid)
 633		kvm_set_pfn_accessed(pfn);
 634	return ret;
 635}
 636
 637/**
 638 * kvm_mips_map_page() - Map a guest physical page.
 639 * @vcpu:		VCPU pointer.
 640 * @gpa:		Guest physical address of fault.
 641 * @write_fault:	Whether the fault was due to a write.
 642 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 643 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 644 *			NULL).
 645 *
 646 * Handle GPA faults by creating a new GPA mapping (or updating an existing
 647 * one).
 648 *
 649 * This takes care of marking pages young or dirty (idle/dirty page tracking),
 650 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
 651 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
 652 * caller.
 653 *
 654 * Returns:	0 on success, in which case the caller may use the @out_entry
 655 *		and @out_buddy PTEs to update derived mappings and resume guest
 656 *		execution.
 657 *		-EFAULT if there is no memory region at @gpa or a write was
 658 *		attempted to a read-only memory region. This is usually handled
 659 *		as an MMIO access.
 660 */
 661static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
 662			     bool write_fault,
 663			     pte_t *out_entry, pte_t *out_buddy)
 664{
 665	struct kvm *kvm = vcpu->kvm;
 666	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 667	gfn_t gfn = gpa >> PAGE_SHIFT;
 668	int srcu_idx, err;
 669	kvm_pfn_t pfn;
 670	pte_t *ptep, entry, old_pte;
 671	bool writeable;
 672	unsigned long prot_bits;
 673	unsigned long mmu_seq;
 674
 675	/* Try the fast path to handle old / clean pages */
 676	srcu_idx = srcu_read_lock(&kvm->srcu);
 677	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
 678				      out_buddy);
 679	if (!err)
 680		goto out;
 681
 682	/* We need a minimum of cached pages ready for page table creation */
 683	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
 684	if (err)
 685		goto out;
 686
 687retry:
 688	/*
 689	 * Used to check for invalidations in progress, of the pfn that is
 690	 * returned by pfn_to_pfn_prot below.
 691	 */
 692	mmu_seq = kvm->mmu_notifier_seq;
 693	/*
 694	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
 695	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
 696	 * risk the page we get a reference to getting unmapped before we have a
 697	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
 698	 *
 699	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
 700	 * of the pte_unmap_unlock() after the PTE is zapped, and the
 701	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
 702	 * mmu_notifier_seq is incremented.
 703	 */
 704	smp_rmb();
 705
 706	/* Slow path - ask KVM core whether we can access this GPA */
 707	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
 708	if (is_error_noslot_pfn(pfn)) {
 709		err = -EFAULT;
 710		goto out;
 711	}
 712
 713	spin_lock(&kvm->mmu_lock);
 714	/* Check if an invalidation has taken place since we got pfn */
 715	if (mmu_notifier_retry(kvm, mmu_seq)) {
 716		/*
 717		 * This can happen when mappings are changed asynchronously, but
 718		 * also synchronously if a COW is triggered by
 719		 * gfn_to_pfn_prot().
 720		 */
 721		spin_unlock(&kvm->mmu_lock);
 722		kvm_release_pfn_clean(pfn);
 723		goto retry;
 724	}
 725
 726	/* Ensure page tables are allocated */
 727	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
 728
 729	/* Set up the PTE */
 730	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
 731	if (writeable) {
 732		prot_bits |= _PAGE_WRITE;
 733		if (write_fault) {
 734			prot_bits |= __WRITEABLE;
 735			mark_page_dirty(kvm, gfn);
 736			kvm_set_pfn_dirty(pfn);
 737		}
 738	}
 739	entry = pfn_pte(pfn, __pgprot(prot_bits));
 740
 741	/* Write the PTE */
 742	old_pte = *ptep;
 743	set_pte(ptep, entry);
 744
 745	err = 0;
 746	if (out_entry)
 747		*out_entry = *ptep;
 748	if (out_buddy)
 749		*out_buddy = *ptep_buddy(ptep);
 750
 751	spin_unlock(&kvm->mmu_lock);
 752	kvm_release_pfn_clean(pfn);
 753	kvm_set_pfn_accessed(pfn);
 754out:
 755	srcu_read_unlock(&kvm->srcu, srcu_idx);
 756	return err;
 757}
 758
 759static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
 760					unsigned long addr)
 761{
 762	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 763	pgd_t *pgdp;
 764	int ret;
 765
 766	/* We need a minimum of cached pages ready for page table creation */
 767	ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
 768	if (ret)
 769		return NULL;
 770
 771	if (KVM_GUEST_KERNEL_MODE(vcpu))
 772		pgdp = vcpu->arch.guest_kernel_mm.pgd;
 773	else
 774		pgdp = vcpu->arch.guest_user_mm.pgd;
 775
 776	return kvm_mips_walk_pgd(pgdp, memcache, addr);
 777}
 778
 779void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
 780				  bool user)
 781{
 782	pgd_t *pgdp;
 783	pte_t *ptep;
 784
 785	addr &= PAGE_MASK << 1;
 786
 787	pgdp = vcpu->arch.guest_kernel_mm.pgd;
 788	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 789	if (ptep) {
 790		ptep[0] = pfn_pte(0, __pgprot(0));
 791		ptep[1] = pfn_pte(0, __pgprot(0));
 792	}
 793
 794	if (user) {
 795		pgdp = vcpu->arch.guest_user_mm.pgd;
 796		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 797		if (ptep) {
 798			ptep[0] = pfn_pte(0, __pgprot(0));
 799			ptep[1] = pfn_pte(0, __pgprot(0));
 800		}
 801	}
 802}
 803
 804/*
 805 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 806 * Flush a range of guest physical address space from the VM's GPA page tables.
 807 */
 808
 809static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
 810				   unsigned long end_gva)
 811{
 812	int i_min = pte_index(start_gva);
 813	int i_max = pte_index(end_gva);
 814	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 815	int i;
 816
 817	/*
 818	 * There's no freeing to do, so there's no point clearing individual
 819	 * entries unless only part of the last level page table needs flushing.
 820	 */
 821	if (safe_to_remove)
 822		return true;
 823
 824	for (i = i_min; i <= i_max; ++i) {
 825		if (!pte_present(pte[i]))
 826			continue;
 827
 828		set_pte(pte + i, __pte(0));
 829	}
 830	return false;
 831}
 832
 833static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
 834				   unsigned long end_gva)
 835{
 836	pte_t *pte;
 837	unsigned long end = ~0ul;
 838	int i_min = pmd_index(start_gva);
 839	int i_max = pmd_index(end_gva);
 840	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 841	int i;
 842
 843	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 844		if (!pmd_present(pmd[i]))
 845			continue;
 846
 847		pte = pte_offset_kernel(pmd + i, 0);
 848		if (i == i_max)
 849			end = end_gva;
 850
 851		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
 852			pmd_clear(pmd + i);
 853			pte_free_kernel(NULL, pte);
 854		} else {
 855			safe_to_remove = false;
 856		}
 857	}
 858	return safe_to_remove;
 859}
 860
 861static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
 862				   unsigned long end_gva)
 863{
 864	pmd_t *pmd;
 865	unsigned long end = ~0ul;
 866	int i_min = pud_index(start_gva);
 867	int i_max = pud_index(end_gva);
 868	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 869	int i;
 870
 871	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 872		if (!pud_present(pud[i]))
 873			continue;
 874
 875		pmd = pmd_offset(pud + i, 0);
 876		if (i == i_max)
 877			end = end_gva;
 878
 879		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
 880			pud_clear(pud + i);
 881			pmd_free(NULL, pmd);
 882		} else {
 883			safe_to_remove = false;
 884		}
 885	}
 886	return safe_to_remove;
 887}
 888
 889static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
 890				   unsigned long end_gva)
 891{
 892	p4d_t *p4d;
 893	pud_t *pud;
 894	unsigned long end = ~0ul;
 895	int i_min = pgd_index(start_gva);
 896	int i_max = pgd_index(end_gva);
 897	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 898	int i;
 899
 900	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 901		if (!pgd_present(pgd[i]))
 902			continue;
 903
 904		p4d = p4d_offset(pgd, 0);
 905		pud = pud_offset(p4d + i, 0);
 906		if (i == i_max)
 907			end = end_gva;
 908
 909		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
 910			pgd_clear(pgd + i);
 911			pud_free(NULL, pud);
 912		} else {
 913			safe_to_remove = false;
 914		}
 915	}
 916	return safe_to_remove;
 917}
 918
 919void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
 920{
 921	if (flags & KMF_GPA) {
 922		/* all of guest virtual address space could be affected */
 923		if (flags & KMF_KERN)
 924			/* useg, kseg0, seg2/3 */
 925			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
 926		else
 927			/* useg */
 928			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 929	} else {
 930		/* useg */
 931		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 932
 933		/* kseg2/3 */
 934		if (flags & KMF_KERN)
 935			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
 936	}
 937}
 938
 939static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
 940{
 941	/*
 942	 * Don't leak writeable but clean entries from GPA page tables. We don't
 943	 * want the normal Linux tlbmod handler to handle dirtying when KVM
 944	 * accesses guest memory.
 945	 */
 946	if (!pte_dirty(pte))
 947		pte = pte_wrprotect(pte);
 948
 949	return pte;
 950}
 951
 952static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
 953{
 954	/* Guest EntryLo overrides host EntryLo */
 955	if (!(entrylo & ENTRYLO_D))
 956		pte = pte_mkclean(pte);
 957
 958	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
 959}
 960
 961#ifdef CONFIG_KVM_MIPS_VZ
 962int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
 963				      struct kvm_vcpu *vcpu,
 964				      bool write_fault)
 965{
 966	int ret;
 967
 968	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
 969	if (ret)
 970		return ret;
 971
 972	/* Invalidate this entry in the TLB */
 973	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
 974}
 975#endif
 976
 977/* XXXKYMA: Must be called with interrupts disabled */
 978int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
 979				    struct kvm_vcpu *vcpu,
 980				    bool write_fault)
 981{
 982	unsigned long gpa;
 983	pte_t pte_gpa[2], *ptep_gva;
 984	int idx;
 985
 986	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
 987		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
 988		kvm_mips_dump_host_tlbs();
 989		return -1;
 990	}
 991
 992	/* Get the GPA page table entry */
 993	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
 994	idx = (badvaddr >> PAGE_SHIFT) & 1;
 995	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
 996			      &pte_gpa[!idx]) < 0)
 997		return -1;
 998
 999	/* Get the GVA page table entry */
1000	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1001	if (!ptep_gva) {
1002		kvm_err("No ptep for gva %lx\n", badvaddr);
1003		return -1;
1004	}
1005
1006	/* Copy a pair of entries from GPA page table to GVA page table */
1007	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1008	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1009
1010	/* Invalidate this entry in the TLB, guest kernel ASID only */
1011	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1012	return 0;
1013}
1014
1015int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1016					 struct kvm_mips_tlb *tlb,
1017					 unsigned long gva,
1018					 bool write_fault)
1019{
1020	struct kvm *kvm = vcpu->kvm;
1021	long tlb_lo[2];
1022	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1023	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1024	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1025
1026	tlb_lo[0] = tlb->tlb_lo[0];
1027	tlb_lo[1] = tlb->tlb_lo[1];
1028
1029	/*
1030	 * The commpage address must not be mapped to anything else if the guest
1031	 * TLB contains entries nearby, or commpage accesses will break.
1032	 */
1033	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1034		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1035
1036	/* Get the GPA page table entry */
1037	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1038			      write_fault, &pte_gpa[idx], NULL) < 0)
1039		return -1;
1040
1041	/* And its GVA buddy's GPA page table entry if it also exists */
1042	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1043	if (tlb_lo[!idx] & ENTRYLO_V) {
1044		spin_lock(&kvm->mmu_lock);
1045		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1046					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1047		if (ptep_buddy)
1048			pte_gpa[!idx] = *ptep_buddy;
1049		spin_unlock(&kvm->mmu_lock);
1050	}
1051
1052	/* Get the GVA page table entry pair */
1053	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1054	if (!ptep_gva) {
1055		kvm_err("No ptep for gva %lx\n", gva);
1056		return -1;
1057	}
1058
1059	/* Copy a pair of entries from GPA page table to GVA page table */
1060	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1061	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1062
1063	/* Invalidate this entry in the TLB, current guest mode ASID only */
1064	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1065
1066	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1067		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1068
1069	return 0;
1070}
1071
1072int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1073				       struct kvm_vcpu *vcpu)
1074{
1075	kvm_pfn_t pfn;
1076	pte_t *ptep;
1077
1078	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1079	if (!ptep) {
1080		kvm_err("No ptep for commpage %lx\n", badvaddr);
1081		return -1;
1082	}
1083
1084	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1085	/* Also set valid and dirty, so refill handler doesn't have to */
1086	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1087
1088	/* Invalidate this entry in the TLB, guest kernel ASID only */
1089	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1090	return 0;
1091}
1092
1093/**
1094 * kvm_mips_migrate_count() - Migrate timer.
1095 * @vcpu:	Virtual CPU.
1096 *
1097 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1098 * if it was running prior to being cancelled.
1099 *
1100 * Must be called when the VCPU is migrated to a different CPU to ensure that
1101 * timer expiry during guest execution interrupts the guest and causes the
1102 * interrupt to be delivered in a timely manner.
1103 */
1104static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1105{
1106	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1107		hrtimer_restart(&vcpu->arch.comparecount_timer);
1108}
1109
1110/* Restore ASID once we are scheduled back after preemption */
1111void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1112{
1113	unsigned long flags;
1114
1115	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1116
1117	local_irq_save(flags);
1118
1119	vcpu->cpu = cpu;
1120	if (vcpu->arch.last_sched_cpu != cpu) {
1121		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1122			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1123		/*
1124		 * Migrate the timer interrupt to the current CPU so that it
1125		 * always interrupts the guest and synchronously triggers a
1126		 * guest timer interrupt.
1127		 */
1128		kvm_mips_migrate_count(vcpu);
1129	}
1130
1131	/* restore guest state to registers */
1132	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1133
1134	local_irq_restore(flags);
1135}
1136
1137/* ASID can change if another task is scheduled during preemption */
1138void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1139{
1140	unsigned long flags;
1141	int cpu;
1142
1143	local_irq_save(flags);
1144
1145	cpu = smp_processor_id();
1146	vcpu->arch.last_sched_cpu = cpu;
1147	vcpu->cpu = -1;
1148
1149	/* save guest state in registers */
1150	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1151
1152	local_irq_restore(flags);
1153}
1154
1155/**
1156 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1157 * @vcpu:	Virtual CPU.
1158 * @gva:	Guest virtual address to be accessed.
1159 * @write:	True if write attempted (must be dirtied and made writable).
1160 *
1161 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1162 * dirtying the page if @write so that guest instructions can be modified.
1163 *
1164 * Returns:	KVM_MIPS_MAPPED on success.
1165 *		KVM_MIPS_GVA if bad guest virtual address.
1166 *		KVM_MIPS_GPA if bad guest physical address.
1167 *		KVM_MIPS_TLB if guest TLB not present.
1168 *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1169 *		KVM_MIPS_TLBMOD if guest TLB read only.
1170 */
1171enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1172						   unsigned long gva,
1173						   bool write)
1174{
1175	struct mips_coproc *cop0 = vcpu->arch.cop0;
1176	struct kvm_mips_tlb *tlb;
1177	int index;
1178
1179	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1180		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1181			return KVM_MIPS_GPA;
1182	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1183		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1184		/* Address should be in the guest TLB */
1185		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1186			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1187		if (index < 0)
1188			return KVM_MIPS_TLB;
1189		tlb = &vcpu->arch.guest_tlb[index];
1190
1191		/* Entry should be valid, and dirty for writes */
1192		if (!TLB_IS_VALID(*tlb, gva))
1193			return KVM_MIPS_TLBINV;
1194		if (write && !TLB_IS_DIRTY(*tlb, gva))
1195			return KVM_MIPS_TLBMOD;
1196
1197		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1198			return KVM_MIPS_GPA;
1199	} else {
1200		return KVM_MIPS_GVA;
1201	}
1202
1203	return KVM_MIPS_MAPPED;
1204}
1205
1206int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1207{
1208	int err;
1209
1210	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1211		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1212		return -EINVAL;
1213
1214retry:
1215	kvm_trap_emul_gva_lockless_begin(vcpu);
1216	err = get_user(*out, opc);
1217	kvm_trap_emul_gva_lockless_end(vcpu);
1218
1219	if (unlikely(err)) {
1220		/*
1221		 * Try to handle the fault, maybe we just raced with a GVA
1222		 * invalidation.
1223		 */
1224		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1225					      false);
1226		if (unlikely(err)) {
1227			kvm_err("%s: illegal address: %p\n",
1228				__func__, opc);
1229			return -EFAULT;
1230		}
1231
1232		/* Hopefully it'll work now */
1233		goto retry;
1234	}
1235	return 0;
1236}