Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
 
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/rw_hint.h>
  51#include <linux/major.h>
  52#include <linux/mutex.h>
  53#include <linux/string_helpers.h>
 
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <asm/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_driver.h>
  67#include <scsi/scsi_eh.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_ioctl.h>
  70#include <scsi/scsicam.h>
  71#include <scsi/scsi_common.h>
  72
  73#include "sd.h"
  74#include "scsi_priv.h"
  75#include "scsi_logging.h"
  76
  77MODULE_AUTHOR("Eric Youngdale");
  78MODULE_DESCRIPTION("SCSI disk (sd) driver");
  79MODULE_LICENSE("GPL");
  80
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  96MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
 100MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 101
 
 102#define SD_MINORS	16
 
 
 
 103
 104static void sd_config_discard(struct scsi_disk *, unsigned int);
 105static void sd_config_write_same(struct scsi_disk *);
 106static int  sd_revalidate_disk(struct gendisk *);
 107static void sd_unlock_native_capacity(struct gendisk *disk);
 
 
 108static void sd_shutdown(struct device *);
 
 
 
 
 
 
 
 
 
 109static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 110static void scsi_disk_release(struct device *cdev);
 
 
 111
 112static DEFINE_IDA(sd_index_ida);
 113
 
 
 
 
 
 
 
 114static mempool_t *sd_page_pool;
 115static struct lock_class_key sd_bio_compl_lkclass;
 116
 117static const char *sd_cache_types[] = {
 118	"write through", "none", "write back",
 119	"write back, no read (daft)"
 120};
 121
 122static void sd_set_flush_flag(struct scsi_disk *sdkp)
 123{
 124	bool wc = false, fua = false;
 125
 126	if (sdkp->WCE) {
 127		wc = true;
 128		if (sdkp->DPOFUA)
 129			fua = true;
 130	}
 131
 132	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 133}
 134
 135static ssize_t
 136cache_type_store(struct device *dev, struct device_attribute *attr,
 137		 const char *buf, size_t count)
 138{
 139	int ct, rcd, wce, sp;
 140	struct scsi_disk *sdkp = to_scsi_disk(dev);
 141	struct scsi_device *sdp = sdkp->device;
 142	char buffer[64];
 143	char *buffer_data;
 144	struct scsi_mode_data data;
 145	struct scsi_sense_hdr sshdr;
 146	static const char temp[] = "temporary ";
 147	int len, ret;
 148
 149	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 150		/* no cache control on RBC devices; theoretically they
 151		 * can do it, but there's probably so many exceptions
 152		 * it's not worth the risk */
 153		return -EINVAL;
 154
 155	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 156		buf += sizeof(temp) - 1;
 157		sdkp->cache_override = 1;
 158	} else {
 159		sdkp->cache_override = 0;
 160	}
 161
 162	ct = sysfs_match_string(sd_cache_types, buf);
 163	if (ct < 0)
 164		return -EINVAL;
 165
 166	rcd = ct & 0x01 ? 1 : 0;
 167	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 168
 169	if (sdkp->cache_override) {
 170		sdkp->WCE = wce;
 171		sdkp->RCD = rcd;
 172		sd_set_flush_flag(sdkp);
 173		return count;
 174	}
 175
 176	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 177			    sdkp->max_retries, &data, NULL))
 178		return -EINVAL;
 179	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 180		  data.block_descriptor_length);
 181	buffer_data = buffer + data.header_length +
 182		data.block_descriptor_length;
 183	buffer_data[2] &= ~0x05;
 184	buffer_data[2] |= wce << 2 | rcd;
 185	sp = buffer_data[0] & 0x80 ? 1 : 0;
 186	buffer_data[0] &= ~0x80;
 187
 188	/*
 189	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 190	 * received mode parameter buffer before doing MODE SELECT.
 191	 */
 192	data.device_specific = 0;
 193
 194	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 195			       sdkp->max_retries, &data, &sshdr);
 196	if (ret) {
 197		if (ret > 0 && scsi_sense_valid(&sshdr))
 198			sd_print_sense_hdr(sdkp, &sshdr);
 199		return -EINVAL;
 200	}
 201	sd_revalidate_disk(sdkp->disk);
 202	return count;
 203}
 204
 205static ssize_t
 206manage_start_stop_show(struct device *dev,
 207		       struct device_attribute *attr, char *buf)
 208{
 209	struct scsi_disk *sdkp = to_scsi_disk(dev);
 210	struct scsi_device *sdp = sdkp->device;
 211
 212	return sysfs_emit(buf, "%u\n",
 213			  sdp->manage_system_start_stop &&
 214			  sdp->manage_runtime_start_stop &&
 215			  sdp->manage_shutdown);
 216}
 217static DEVICE_ATTR_RO(manage_start_stop);
 218
 219static ssize_t
 220manage_system_start_stop_show(struct device *dev,
 221			      struct device_attribute *attr, char *buf)
 222{
 223	struct scsi_disk *sdkp = to_scsi_disk(dev);
 224	struct scsi_device *sdp = sdkp->device;
 225
 226	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 227}
 228
 229static ssize_t
 230manage_system_start_stop_store(struct device *dev,
 231			       struct device_attribute *attr,
 232			       const char *buf, size_t count)
 233{
 234	struct scsi_disk *sdkp = to_scsi_disk(dev);
 235	struct scsi_device *sdp = sdkp->device;
 236	bool v;
 237
 238	if (!capable(CAP_SYS_ADMIN))
 239		return -EACCES;
 240
 241	if (kstrtobool(buf, &v))
 242		return -EINVAL;
 243
 244	sdp->manage_system_start_stop = v;
 245
 246	return count;
 247}
 248static DEVICE_ATTR_RW(manage_system_start_stop);
 249
 250static ssize_t
 251manage_runtime_start_stop_show(struct device *dev,
 252			       struct device_attribute *attr, char *buf)
 253{
 254	struct scsi_disk *sdkp = to_scsi_disk(dev);
 255	struct scsi_device *sdp = sdkp->device;
 256
 257	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 258}
 259
 260static ssize_t
 261manage_runtime_start_stop_store(struct device *dev,
 262				struct device_attribute *attr,
 263				const char *buf, size_t count)
 264{
 265	struct scsi_disk *sdkp = to_scsi_disk(dev);
 266	struct scsi_device *sdp = sdkp->device;
 267	bool v;
 268
 269	if (!capable(CAP_SYS_ADMIN))
 270		return -EACCES;
 271
 272	if (kstrtobool(buf, &v))
 273		return -EINVAL;
 274
 275	sdp->manage_runtime_start_stop = v;
 276
 277	return count;
 278}
 279static DEVICE_ATTR_RW(manage_runtime_start_stop);
 280
 281static ssize_t manage_shutdown_show(struct device *dev,
 282				    struct device_attribute *attr, char *buf)
 283{
 284	struct scsi_disk *sdkp = to_scsi_disk(dev);
 285	struct scsi_device *sdp = sdkp->device;
 286
 287	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 288}
 289
 290static ssize_t manage_shutdown_store(struct device *dev,
 291				     struct device_attribute *attr,
 292				     const char *buf, size_t count)
 293{
 294	struct scsi_disk *sdkp = to_scsi_disk(dev);
 295	struct scsi_device *sdp = sdkp->device;
 296	bool v;
 297
 298	if (!capable(CAP_SYS_ADMIN))
 299		return -EACCES;
 300
 301	if (kstrtobool(buf, &v))
 302		return -EINVAL;
 303
 304	sdp->manage_shutdown = v;
 305
 306	return count;
 307}
 308static DEVICE_ATTR_RW(manage_shutdown);
 309
 310static ssize_t
 311allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 312{
 313	struct scsi_disk *sdkp = to_scsi_disk(dev);
 314
 315	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 316}
 317
 318static ssize_t
 319allow_restart_store(struct device *dev, struct device_attribute *attr,
 320		    const char *buf, size_t count)
 321{
 322	bool v;
 323	struct scsi_disk *sdkp = to_scsi_disk(dev);
 324	struct scsi_device *sdp = sdkp->device;
 325
 326	if (!capable(CAP_SYS_ADMIN))
 327		return -EACCES;
 328
 329	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 330		return -EINVAL;
 331
 332	if (kstrtobool(buf, &v))
 333		return -EINVAL;
 334
 335	sdp->allow_restart = v;
 336
 337	return count;
 338}
 339static DEVICE_ATTR_RW(allow_restart);
 340
 341static ssize_t
 342cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 343{
 344	struct scsi_disk *sdkp = to_scsi_disk(dev);
 345	int ct = sdkp->RCD + 2*sdkp->WCE;
 346
 347	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 348}
 349static DEVICE_ATTR_RW(cache_type);
 350
 351static ssize_t
 352FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 353{
 354	struct scsi_disk *sdkp = to_scsi_disk(dev);
 355
 356	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 357}
 358static DEVICE_ATTR_RO(FUA);
 359
 360static ssize_t
 361protection_type_show(struct device *dev, struct device_attribute *attr,
 362		     char *buf)
 363{
 364	struct scsi_disk *sdkp = to_scsi_disk(dev);
 365
 366	return sprintf(buf, "%u\n", sdkp->protection_type);
 367}
 368
 369static ssize_t
 370protection_type_store(struct device *dev, struct device_attribute *attr,
 371		      const char *buf, size_t count)
 372{
 373	struct scsi_disk *sdkp = to_scsi_disk(dev);
 374	unsigned int val;
 375	int err;
 376
 377	if (!capable(CAP_SYS_ADMIN))
 378		return -EACCES;
 379
 380	err = kstrtouint(buf, 10, &val);
 381
 382	if (err)
 383		return err;
 384
 385	if (val <= T10_PI_TYPE3_PROTECTION)
 386		sdkp->protection_type = val;
 387
 388	return count;
 389}
 390static DEVICE_ATTR_RW(protection_type);
 391
 392static ssize_t
 393protection_mode_show(struct device *dev, struct device_attribute *attr,
 394		     char *buf)
 395{
 396	struct scsi_disk *sdkp = to_scsi_disk(dev);
 397	struct scsi_device *sdp = sdkp->device;
 398	unsigned int dif, dix;
 399
 400	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 401	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 402
 403	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 404		dif = 0;
 405		dix = 1;
 406	}
 407
 408	if (!dif && !dix)
 409		return sprintf(buf, "none\n");
 410
 411	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 412}
 413static DEVICE_ATTR_RO(protection_mode);
 414
 415static ssize_t
 416app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 417{
 418	struct scsi_disk *sdkp = to_scsi_disk(dev);
 419
 420	return sprintf(buf, "%u\n", sdkp->ATO);
 421}
 422static DEVICE_ATTR_RO(app_tag_own);
 423
 424static ssize_t
 425thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 426		       char *buf)
 427{
 428	struct scsi_disk *sdkp = to_scsi_disk(dev);
 429
 430	return sprintf(buf, "%u\n", sdkp->lbpme);
 431}
 432static DEVICE_ATTR_RO(thin_provisioning);
 433
 434/* sysfs_match_string() requires dense arrays */
 435static const char *lbp_mode[] = {
 436	[SD_LBP_FULL]		= "full",
 437	[SD_LBP_UNMAP]		= "unmap",
 438	[SD_LBP_WS16]		= "writesame_16",
 439	[SD_LBP_WS10]		= "writesame_10",
 440	[SD_LBP_ZERO]		= "writesame_zero",
 441	[SD_LBP_DISABLE]	= "disabled",
 442};
 443
 444static ssize_t
 445provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 446		       char *buf)
 447{
 448	struct scsi_disk *sdkp = to_scsi_disk(dev);
 449
 450	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 451}
 452
 453static ssize_t
 454provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 455			const char *buf, size_t count)
 456{
 457	struct scsi_disk *sdkp = to_scsi_disk(dev);
 458	struct scsi_device *sdp = sdkp->device;
 459	int mode;
 460
 461	if (!capable(CAP_SYS_ADMIN))
 462		return -EACCES;
 463
 464	if (sd_is_zoned(sdkp)) {
 465		sd_config_discard(sdkp, SD_LBP_DISABLE);
 466		return count;
 467	}
 468
 469	if (sdp->type != TYPE_DISK)
 470		return -EINVAL;
 471
 472	mode = sysfs_match_string(lbp_mode, buf);
 473	if (mode < 0)
 474		return -EINVAL;
 475
 476	sd_config_discard(sdkp, mode);
 477
 478	return count;
 479}
 480static DEVICE_ATTR_RW(provisioning_mode);
 481
 482/* sysfs_match_string() requires dense arrays */
 483static const char *zeroing_mode[] = {
 484	[SD_ZERO_WRITE]		= "write",
 485	[SD_ZERO_WS]		= "writesame",
 486	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 487	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 488};
 489
 490static ssize_t
 491zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 492		  char *buf)
 493{
 494	struct scsi_disk *sdkp = to_scsi_disk(dev);
 495
 496	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 497}
 498
 499static ssize_t
 500zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 501		   const char *buf, size_t count)
 502{
 503	struct scsi_disk *sdkp = to_scsi_disk(dev);
 504	int mode;
 505
 506	if (!capable(CAP_SYS_ADMIN))
 507		return -EACCES;
 508
 509	mode = sysfs_match_string(zeroing_mode, buf);
 510	if (mode < 0)
 511		return -EINVAL;
 512
 513	sdkp->zeroing_mode = mode;
 514
 515	return count;
 516}
 517static DEVICE_ATTR_RW(zeroing_mode);
 518
 519static ssize_t
 520max_medium_access_timeouts_show(struct device *dev,
 521				struct device_attribute *attr, char *buf)
 522{
 523	struct scsi_disk *sdkp = to_scsi_disk(dev);
 524
 525	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 526}
 527
 528static ssize_t
 529max_medium_access_timeouts_store(struct device *dev,
 530				 struct device_attribute *attr, const char *buf,
 531				 size_t count)
 532{
 533	struct scsi_disk *sdkp = to_scsi_disk(dev);
 534	int err;
 535
 536	if (!capable(CAP_SYS_ADMIN))
 537		return -EACCES;
 538
 539	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 540
 541	return err ? err : count;
 542}
 543static DEVICE_ATTR_RW(max_medium_access_timeouts);
 544
 545static ssize_t
 546max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 547			   char *buf)
 548{
 549	struct scsi_disk *sdkp = to_scsi_disk(dev);
 550
 551	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 552}
 553
 554static ssize_t
 555max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 556			    const char *buf, size_t count)
 557{
 558	struct scsi_disk *sdkp = to_scsi_disk(dev);
 559	struct scsi_device *sdp = sdkp->device;
 560	unsigned long max;
 561	int err;
 562
 563	if (!capable(CAP_SYS_ADMIN))
 564		return -EACCES;
 565
 566	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 567		return -EINVAL;
 568
 569	err = kstrtoul(buf, 10, &max);
 570
 571	if (err)
 572		return err;
 573
 574	if (max == 0)
 575		sdp->no_write_same = 1;
 576	else if (max <= SD_MAX_WS16_BLOCKS) {
 577		sdp->no_write_same = 0;
 578		sdkp->max_ws_blocks = max;
 579	}
 580
 581	sd_config_write_same(sdkp);
 582
 583	return count;
 584}
 585static DEVICE_ATTR_RW(max_write_same_blocks);
 586
 587static ssize_t
 588zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 589{
 590	struct scsi_disk *sdkp = to_scsi_disk(dev);
 591
 592	if (sdkp->device->type == TYPE_ZBC)
 593		return sprintf(buf, "host-managed\n");
 594	if (sdkp->zoned == 1)
 595		return sprintf(buf, "host-aware\n");
 596	if (sdkp->zoned == 2)
 597		return sprintf(buf, "drive-managed\n");
 598	return sprintf(buf, "none\n");
 599}
 600static DEVICE_ATTR_RO(zoned_cap);
 601
 602static ssize_t
 603max_retries_store(struct device *dev, struct device_attribute *attr,
 604		  const char *buf, size_t count)
 605{
 606	struct scsi_disk *sdkp = to_scsi_disk(dev);
 607	struct scsi_device *sdev = sdkp->device;
 608	int retries, err;
 609
 610	err = kstrtoint(buf, 10, &retries);
 611	if (err)
 612		return err;
 613
 614	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 615		sdkp->max_retries = retries;
 616		return count;
 617	}
 618
 619	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 620		    SD_MAX_RETRIES);
 621	return -EINVAL;
 622}
 623
 624static ssize_t
 625max_retries_show(struct device *dev, struct device_attribute *attr,
 626		 char *buf)
 627{
 628	struct scsi_disk *sdkp = to_scsi_disk(dev);
 629
 630	return sprintf(buf, "%d\n", sdkp->max_retries);
 631}
 632
 633static DEVICE_ATTR_RW(max_retries);
 634
 635static struct attribute *sd_disk_attrs[] = {
 636	&dev_attr_cache_type.attr,
 637	&dev_attr_FUA.attr,
 638	&dev_attr_allow_restart.attr,
 639	&dev_attr_manage_start_stop.attr,
 640	&dev_attr_manage_system_start_stop.attr,
 641	&dev_attr_manage_runtime_start_stop.attr,
 642	&dev_attr_manage_shutdown.attr,
 643	&dev_attr_protection_type.attr,
 644	&dev_attr_protection_mode.attr,
 645	&dev_attr_app_tag_own.attr,
 646	&dev_attr_thin_provisioning.attr,
 647	&dev_attr_provisioning_mode.attr,
 648	&dev_attr_zeroing_mode.attr,
 649	&dev_attr_max_write_same_blocks.attr,
 650	&dev_attr_max_medium_access_timeouts.attr,
 651	&dev_attr_zoned_cap.attr,
 652	&dev_attr_max_retries.attr,
 653	NULL,
 654};
 655ATTRIBUTE_GROUPS(sd_disk);
 656
 657static struct class sd_disk_class = {
 658	.name		= "scsi_disk",
 
 659	.dev_release	= scsi_disk_release,
 660	.dev_groups	= sd_disk_groups,
 661};
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663/*
 664 * Don't request a new module, as that could deadlock in multipath
 665 * environment.
 
 666 */
 667static void sd_default_probe(dev_t devt)
 668{
 
 669}
 670
 671/*
 672 * Device no to disk mapping:
 673 * 
 674 *       major         disc2     disc  p1
 675 *   |............|.............|....|....| <- dev_t
 676 *    31        20 19          8 7  4 3  0
 677 * 
 678 * Inside a major, we have 16k disks, however mapped non-
 679 * contiguously. The first 16 disks are for major0, the next
 680 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 681 * for major1, ... 
 682 * As we stay compatible with our numbering scheme, we can reuse 
 683 * the well-know SCSI majors 8, 65--71, 136--143.
 684 */
 685static int sd_major(int major_idx)
 686{
 687	switch (major_idx) {
 688	case 0:
 689		return SCSI_DISK0_MAJOR;
 690	case 1 ... 7:
 691		return SCSI_DISK1_MAJOR + major_idx - 1;
 692	case 8 ... 15:
 693		return SCSI_DISK8_MAJOR + major_idx - 8;
 694	default:
 695		BUG();
 696		return 0;	/* shut up gcc */
 697	}
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700#ifdef CONFIG_BLK_SED_OPAL
 701static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 702		size_t len, bool send)
 703{
 704	struct scsi_disk *sdkp = data;
 705	struct scsi_device *sdev = sdkp->device;
 706	u8 cdb[12] = { 0, };
 707	const struct scsi_exec_args exec_args = {
 708		.req_flags = BLK_MQ_REQ_PM,
 709	};
 710	int ret;
 711
 712	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 713	cdb[1] = secp;
 714	put_unaligned_be16(spsp, &cdb[2]);
 715	put_unaligned_be32(len, &cdb[6]);
 716
 717	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 718			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 719			       &exec_args);
 720	return ret <= 0 ? ret : -EIO;
 721}
 722#endif /* CONFIG_BLK_SED_OPAL */
 723
 724/*
 725 * Look up the DIX operation based on whether the command is read or
 726 * write and whether dix and dif are enabled.
 727 */
 728static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 729{
 730	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 731	static const unsigned int ops[] = {	/* wrt dix dif */
 732		SCSI_PROT_NORMAL,		/*  0	0   0  */
 733		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 734		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 735		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 736		SCSI_PROT_NORMAL,		/*  1	0   0  */
 737		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 738		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 739		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 740	};
 741
 742	return ops[write << 2 | dix << 1 | dif];
 743}
 744
 745/*
 746 * Returns a mask of the protection flags that are valid for a given DIX
 747 * operation.
 748 */
 749static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 750{
 751	static const unsigned int flag_mask[] = {
 752		[SCSI_PROT_NORMAL]		= 0,
 753
 754		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 755						  SCSI_PROT_GUARD_CHECK |
 756						  SCSI_PROT_REF_CHECK |
 757						  SCSI_PROT_REF_INCREMENT,
 758
 759		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 760						  SCSI_PROT_IP_CHECKSUM,
 761
 762		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 763						  SCSI_PROT_GUARD_CHECK |
 764						  SCSI_PROT_REF_CHECK |
 765						  SCSI_PROT_REF_INCREMENT |
 766						  SCSI_PROT_IP_CHECKSUM,
 767
 768		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 769						  SCSI_PROT_REF_INCREMENT,
 770
 771		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 772						  SCSI_PROT_REF_CHECK |
 773						  SCSI_PROT_REF_INCREMENT |
 774						  SCSI_PROT_IP_CHECKSUM,
 775
 776		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 777						  SCSI_PROT_GUARD_CHECK |
 778						  SCSI_PROT_REF_CHECK |
 779						  SCSI_PROT_REF_INCREMENT |
 780						  SCSI_PROT_IP_CHECKSUM,
 781	};
 782
 783	return flag_mask[prot_op];
 784}
 785
 786static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 787					   unsigned int dix, unsigned int dif)
 788{
 789	struct request *rq = scsi_cmd_to_rq(scmd);
 790	struct bio *bio = rq->bio;
 791	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 792	unsigned int protect = 0;
 793
 794	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 795		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 796			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 797
 798		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 799			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 800	}
 801
 802	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 803		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 804
 805		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 806			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 807	}
 808
 809	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 810		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 811
 812		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 813			protect = 3 << 5;	/* Disable target PI checking */
 814		else
 815			protect = 1 << 5;	/* Enable target PI checking */
 816	}
 817
 818	scsi_set_prot_op(scmd, prot_op);
 819	scsi_set_prot_type(scmd, dif);
 820	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 821
 822	return protect;
 823}
 824
 825static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 826{
 827	struct request_queue *q = sdkp->disk->queue;
 828	unsigned int logical_block_size = sdkp->device->sector_size;
 829	unsigned int max_blocks = 0;
 830
 831	q->limits.discard_alignment =
 832		sdkp->unmap_alignment * logical_block_size;
 833	q->limits.discard_granularity =
 834		max(sdkp->physical_block_size,
 835		    sdkp->unmap_granularity * logical_block_size);
 836	sdkp->provisioning_mode = mode;
 837
 838	switch (mode) {
 839
 840	case SD_LBP_FULL:
 841	case SD_LBP_DISABLE:
 842		blk_queue_max_discard_sectors(q, 0);
 
 843		return;
 844
 845	case SD_LBP_UNMAP:
 846		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 847					  (u32)SD_MAX_WS16_BLOCKS);
 848		break;
 849
 850	case SD_LBP_WS16:
 851		if (sdkp->device->unmap_limit_for_ws)
 852			max_blocks = sdkp->max_unmap_blocks;
 853		else
 854			max_blocks = sdkp->max_ws_blocks;
 855
 856		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 857		break;
 858
 859	case SD_LBP_WS10:
 860		if (sdkp->device->unmap_limit_for_ws)
 861			max_blocks = sdkp->max_unmap_blocks;
 862		else
 863			max_blocks = sdkp->max_ws_blocks;
 864
 865		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 866		break;
 867
 868	case SD_LBP_ZERO:
 869		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 870					  (u32)SD_MAX_WS10_BLOCKS);
 871		break;
 872	}
 873
 874	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 875}
 876
 877static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 878{
 879	struct page *page;
 880
 881	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 882	if (!page)
 883		return NULL;
 884	clear_highpage(page);
 885	bvec_set_page(&rq->special_vec, page, data_len, 0);
 886	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 887	return bvec_virt(&rq->special_vec);
 888}
 889
 890static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 891{
 892	struct scsi_device *sdp = cmd->device;
 893	struct request *rq = scsi_cmd_to_rq(cmd);
 894	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 895	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 896	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 897	unsigned int data_len = 24;
 898	char *buf;
 899
 900	buf = sd_set_special_bvec(rq, data_len);
 901	if (!buf)
 902		return BLK_STS_RESOURCE;
 
 
 
 
 903
 904	cmd->cmd_len = 10;
 905	cmd->cmnd[0] = UNMAP;
 906	cmd->cmnd[8] = 24;
 907
 
 908	put_unaligned_be16(6 + 16, &buf[0]);
 909	put_unaligned_be16(16, &buf[2]);
 910	put_unaligned_be64(lba, &buf[8]);
 911	put_unaligned_be32(nr_blocks, &buf[16]);
 912
 913	cmd->allowed = sdkp->max_retries;
 914	cmd->transfersize = data_len;
 915	rq->timeout = SD_TIMEOUT;
 916
 917	return scsi_alloc_sgtables(cmd);
 918}
 919
 920static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 921		bool unmap)
 922{
 923	struct scsi_device *sdp = cmd->device;
 924	struct request *rq = scsi_cmd_to_rq(cmd);
 925	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 926	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 927	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 928	u32 data_len = sdp->sector_size;
 929
 930	if (!sd_set_special_bvec(rq, data_len))
 
 931		return BLK_STS_RESOURCE;
 
 
 
 
 932
 933	cmd->cmd_len = 16;
 934	cmd->cmnd[0] = WRITE_SAME_16;
 935	if (unmap)
 936		cmd->cmnd[1] = 0x8; /* UNMAP */
 937	put_unaligned_be64(lba, &cmd->cmnd[2]);
 938	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 939
 940	cmd->allowed = sdkp->max_retries;
 941	cmd->transfersize = data_len;
 942	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 943
 944	return scsi_alloc_sgtables(cmd);
 945}
 946
 947static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 948		bool unmap)
 949{
 950	struct scsi_device *sdp = cmd->device;
 951	struct request *rq = scsi_cmd_to_rq(cmd);
 952	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 953	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 954	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 955	u32 data_len = sdp->sector_size;
 956
 957	if (!sd_set_special_bvec(rq, data_len))
 
 958		return BLK_STS_RESOURCE;
 
 
 
 
 959
 960	cmd->cmd_len = 10;
 961	cmd->cmnd[0] = WRITE_SAME;
 962	if (unmap)
 963		cmd->cmnd[1] = 0x8; /* UNMAP */
 964	put_unaligned_be32(lba, &cmd->cmnd[2]);
 965	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 966
 967	cmd->allowed = sdkp->max_retries;
 968	cmd->transfersize = data_len;
 969	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 970
 971	return scsi_alloc_sgtables(cmd);
 972}
 973
 974static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 975{
 976	struct request *rq = scsi_cmd_to_rq(cmd);
 977	struct scsi_device *sdp = cmd->device;
 978	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 979	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 980	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 981
 982	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 983		switch (sdkp->zeroing_mode) {
 984		case SD_ZERO_WS16_UNMAP:
 985			return sd_setup_write_same16_cmnd(cmd, true);
 986		case SD_ZERO_WS10_UNMAP:
 987			return sd_setup_write_same10_cmnd(cmd, true);
 988		}
 989	}
 990
 991	if (sdp->no_write_same) {
 992		rq->rq_flags |= RQF_QUIET;
 993		return BLK_STS_TARGET;
 994	}
 995
 996	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 997		return sd_setup_write_same16_cmnd(cmd, false);
 998
 999	return sd_setup_write_same10_cmnd(cmd, false);
1000}
1001
1002static void sd_config_write_same(struct scsi_disk *sdkp)
1003{
1004	struct request_queue *q = sdkp->disk->queue;
1005	unsigned int logical_block_size = sdkp->device->sector_size;
1006
1007	if (sdkp->device->no_write_same) {
1008		sdkp->max_ws_blocks = 0;
1009		goto out;
1010	}
1011
1012	/* Some devices can not handle block counts above 0xffff despite
1013	 * supporting WRITE SAME(16). Consequently we default to 64k
1014	 * blocks per I/O unless the device explicitly advertises a
1015	 * bigger limit.
1016	 */
1017	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019						   (u32)SD_MAX_WS16_BLOCKS);
1020	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022						   (u32)SD_MAX_WS10_BLOCKS);
1023	else {
1024		sdkp->device->no_write_same = 1;
1025		sdkp->max_ws_blocks = 0;
1026	}
1027
1028	if (sdkp->lbprz && sdkp->lbpws)
1029		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030	else if (sdkp->lbprz && sdkp->lbpws10)
1031		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032	else if (sdkp->max_ws_blocks)
1033		sdkp->zeroing_mode = SD_ZERO_WS;
1034	else
1035		sdkp->zeroing_mode = SD_ZERO_WRITE;
1036
1037	if (sdkp->max_ws_blocks &&
1038	    sdkp->physical_block_size > logical_block_size) {
1039		/*
1040		 * Reporting a maximum number of blocks that is not aligned
1041		 * on the device physical size would cause a large write same
1042		 * request to be split into physically unaligned chunks by
1043		 * __blkdev_issue_write_zeroes() even if the caller of this
1044		 * functions took care to align the large request. So make sure
1045		 * the maximum reported is aligned to the device physical block
1046		 * size. This is only an optional optimization for regular
1047		 * disks, but this is mandatory to avoid failure of large write
1048		 * same requests directed at sequential write required zones of
1049		 * host-managed ZBC disks.
1050		 */
1051		sdkp->max_ws_blocks =
1052			round_down(sdkp->max_ws_blocks,
1053				   bytes_to_logical(sdkp->device,
1054						    sdkp->physical_block_size));
1055	}
1056
1057out:
 
 
1058	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059					 (logical_block_size >> 9));
1060}
1061
1062static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
1063{
1064	struct request *rq = scsi_cmd_to_rq(cmd);
1065	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 
 
 
 
 
1066
1067	/* flush requests don't perform I/O, zero the S/G table */
1068	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 
1069
1070	if (cmd->device->use_16_for_sync) {
1071		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
 
1072		cmd->cmd_len = 16;
 
 
 
1073	} else {
1074		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075		cmd->cmd_len = 10;
 
 
 
1076	}
1077	cmd->transfersize = 0;
1078	cmd->allowed = sdkp->max_retries;
1079
1080	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082}
1083
1084/**
1085 * sd_group_number() - Compute the GROUP NUMBER field
1086 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087 *	field.
1088 *
1089 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090 * 0: no relative lifetime.
1091 * 1: shortest relative lifetime.
1092 * 2: second shortest relative lifetime.
1093 * 3 - 0x3d: intermediate relative lifetimes.
1094 * 0x3e: second longest relative lifetime.
1095 * 0x3f: longest relative lifetime.
1096 */
1097static u8 sd_group_number(struct scsi_cmnd *cmd)
1098{
1099	const struct request *rq = scsi_cmd_to_rq(cmd);
1100	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1101
1102	if (!sdkp->rscs)
1103		return 0;
1104
1105	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106		    0x3fu);
 
 
 
 
 
1107}
1108
1109static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110				       sector_t lba, unsigned int nr_blocks,
1111				       unsigned char flags, unsigned int dld)
1112{
 
 
 
 
1113	cmd->cmd_len = SD_EXT_CDB_SIZE;
 
 
1114	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1115	cmd->cmnd[6]  = sd_group_number(cmd);
1116	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1117	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1118	cmd->cmnd[10] = flags;
1119	cmd->cmnd[11] = dld & 0x07;
1120	put_unaligned_be64(lba, &cmd->cmnd[12]);
1121	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1122	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1123
1124	return BLK_STS_OK;
1125}
1126
1127static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128				       sector_t lba, unsigned int nr_blocks,
1129				       unsigned char flags, unsigned int dld)
1130{
1131	cmd->cmd_len  = 16;
1132	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1133	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1134	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135	cmd->cmnd[15] = 0;
1136	put_unaligned_be64(lba, &cmd->cmnd[2]);
1137	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1138
1139	return BLK_STS_OK;
1140}
1141
1142static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143				       sector_t lba, unsigned int nr_blocks,
1144				       unsigned char flags)
1145{
1146	cmd->cmd_len = 10;
1147	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148	cmd->cmnd[1] = flags;
1149	cmd->cmnd[6] = sd_group_number(cmd);
1150	cmd->cmnd[9] = 0;
1151	put_unaligned_be32(lba, &cmd->cmnd[2]);
1152	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1153
1154	return BLK_STS_OK;
1155}
1156
1157static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158				      sector_t lba, unsigned int nr_blocks,
1159				      unsigned char flags)
1160{
1161	/* Avoid that 0 blocks gets translated into 256 blocks. */
1162	if (WARN_ON_ONCE(nr_blocks == 0))
1163		return BLK_STS_IOERR;
1164
1165	if (unlikely(flags & 0x8)) {
1166		/*
1167		 * This happens only if this drive failed 10byte rw
1168		 * command with ILLEGAL_REQUEST during operation and
1169		 * thus turned off use_10_for_rw.
1170		 */
1171		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172		return BLK_STS_IOERR;
1173	}
1174
1175	cmd->cmd_len = 6;
1176	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178	cmd->cmnd[2] = (lba >> 8) & 0xff;
1179	cmd->cmnd[3] = lba & 0xff;
1180	cmd->cmnd[4] = nr_blocks;
1181	cmd->cmnd[5] = 0;
1182
1183	return BLK_STS_OK;
1184}
1185
1186/*
1187 * Check if a command has a duration limit set. If it does, and the target
1188 * device supports CDL and the feature is enabled, return the limit
1189 * descriptor index to use. Return 0 (no limit) otherwise.
1190 */
1191static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192{
1193	struct scsi_device *sdp = sdkp->device;
1194	int hint;
1195
1196	if (!sdp->cdl_supported || !sdp->cdl_enable)
1197		return 0;
1198
1199	/*
1200	 * Use "no limit" if the request ioprio does not specify a duration
1201	 * limit hint.
1202	 */
1203	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206		return 0;
1207
1208	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209}
1210
1211static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212{
1213	struct request *rq = scsi_cmd_to_rq(cmd);
1214	struct scsi_device *sdp = cmd->device;
1215	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1216	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217	sector_t threshold;
1218	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220	bool write = rq_data_dir(rq) == WRITE;
1221	unsigned char protect, fua;
1222	unsigned int dld;
1223	blk_status_t ret;
1224	unsigned int dif;
1225	bool dix;
1226
1227	ret = scsi_alloc_sgtables(cmd);
1228	if (ret != BLK_STS_OK)
1229		return ret;
1230
1231	ret = BLK_STS_IOERR;
1232	if (!scsi_device_online(sdp) || sdp->changed) {
1233		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234		goto fail;
1235	}
1236
1237	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1238		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239		goto fail;
1240	}
1241
1242	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244		goto fail;
1245	}
1246
1247	/*
1248	 * Some SD card readers can't handle accesses which touch the
1249	 * last one or two logical blocks. Split accesses as needed.
1250	 */
1251	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252
1253	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254		if (lba < threshold) {
1255			/* Access up to the threshold but not beyond */
1256			nr_blocks = threshold - lba;
1257		} else {
1258			/* Access only a single logical block */
1259			nr_blocks = 1;
1260		}
1261	}
1262
1263	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1264		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1265		if (ret)
1266			goto fail;
1267	}
1268
1269	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1270	dix = scsi_prot_sg_count(cmd);
1271	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1272	dld = sd_cdl_dld(sdkp, cmd);
1273
1274	if (dif || dix)
1275		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1276	else
1277		protect = 0;
1278
1279	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281					 protect | fua, dld);
1282	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284					 protect | fua, dld);
1285	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286		   sdp->use_10_for_rw || protect || rq->write_hint) {
1287		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288					 protect | fua);
1289	} else {
1290		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291					protect | fua);
1292	}
1293
1294	if (unlikely(ret != BLK_STS_OK))
1295		goto fail;
1296
1297	/*
1298	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299	 * host adapter, it's safe to assume that we can at least transfer
1300	 * this many bytes between each connect / disconnect.
1301	 */
1302	cmd->transfersize = sdp->sector_size;
1303	cmd->underflow = nr_blocks << 9;
1304	cmd->allowed = sdkp->max_retries;
1305	cmd->sdb.length = nr_blocks * sdp->sector_size;
1306
1307	SCSI_LOG_HLQUEUE(1,
1308			 scmd_printk(KERN_INFO, cmd,
1309				     "%s: block=%llu, count=%d\n", __func__,
1310				     (unsigned long long)blk_rq_pos(rq),
1311				     blk_rq_sectors(rq)));
1312	SCSI_LOG_HLQUEUE(2,
1313			 scmd_printk(KERN_INFO, cmd,
1314				     "%s %d/%u 512 byte blocks.\n",
1315				     write ? "writing" : "reading", nr_blocks,
1316				     blk_rq_sectors(rq)));
1317
1318	/*
1319	 * This indicates that the command is ready from our end to be queued.
 
1320	 */
1321	return BLK_STS_OK;
1322fail:
1323	scsi_free_sgtables(cmd);
1324	return ret;
1325}
1326
1327static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328{
1329	struct request *rq = scsi_cmd_to_rq(cmd);
1330
1331	switch (req_op(rq)) {
1332	case REQ_OP_DISCARD:
1333		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1334		case SD_LBP_UNMAP:
1335			return sd_setup_unmap_cmnd(cmd);
1336		case SD_LBP_WS16:
1337			return sd_setup_write_same16_cmnd(cmd, true);
1338		case SD_LBP_WS10:
1339			return sd_setup_write_same10_cmnd(cmd, true);
1340		case SD_LBP_ZERO:
1341			return sd_setup_write_same10_cmnd(cmd, false);
1342		default:
1343			return BLK_STS_TARGET;
1344		}
1345	case REQ_OP_WRITE_ZEROES:
1346		return sd_setup_write_zeroes_cmnd(cmd);
 
 
1347	case REQ_OP_FLUSH:
1348		return sd_setup_flush_cmnd(cmd);
1349	case REQ_OP_READ:
1350	case REQ_OP_WRITE:
1351	case REQ_OP_ZONE_APPEND:
1352		return sd_setup_read_write_cmnd(cmd);
1353	case REQ_OP_ZONE_RESET:
1354		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1355						   false);
1356	case REQ_OP_ZONE_RESET_ALL:
1357		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358						   true);
1359	case REQ_OP_ZONE_OPEN:
1360		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1361	case REQ_OP_ZONE_CLOSE:
1362		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1363	case REQ_OP_ZONE_FINISH:
1364		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1365	default:
1366		WARN_ON_ONCE(1);
1367		return BLK_STS_NOTSUPP;
1368	}
1369}
1370
1371static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1372{
1373	struct request *rq = scsi_cmd_to_rq(SCpnt);
 
1374
1375	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1377}
1378
1379static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1380{
1381	if (sdkp->device->removable || sdkp->write_prot) {
1382		if (disk_check_media_change(disk))
1383			return true;
1384	}
1385
1386	/*
1387	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1388	 * nothing to do with partitions, BLKRRPART is used to force a full
1389	 * revalidate after things like a format for historical reasons.
1390	 */
1391	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1392}
1393
1394/**
1395 *	sd_open - open a scsi disk device
1396 *	@disk: disk to open
1397 *	@mode: open mode
1398 *
1399 *	Returns 0 if successful. Returns a negated errno value in case 
1400 *	of error.
1401 *
1402 *	Note: This can be called from a user context (e.g. fsck(1) )
1403 *	or from within the kernel (e.g. as a result of a mount(1) ).
1404 *	In the latter case @inode and @filp carry an abridged amount
1405 *	of information as noted above.
1406 *
1407 *	Locking: called with disk->open_mutex held.
1408 **/
1409static int sd_open(struct gendisk *disk, blk_mode_t mode)
1410{
1411	struct scsi_disk *sdkp = scsi_disk(disk);
1412	struct scsi_device *sdev = sdkp->device;
1413	int retval;
1414
1415	if (scsi_device_get(sdev))
1416		return -ENXIO;
1417
1418	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1419
 
 
1420	/*
1421	 * If the device is in error recovery, wait until it is done.
1422	 * If the device is offline, then disallow any access to it.
1423	 */
1424	retval = -ENXIO;
1425	if (!scsi_block_when_processing_errors(sdev))
1426		goto error_out;
1427
1428	if (sd_need_revalidate(disk, sdkp))
1429		sd_revalidate_disk(disk);
1430
1431	/*
1432	 * If the drive is empty, just let the open fail.
1433	 */
1434	retval = -ENOMEDIUM;
1435	if (sdev->removable && !sdkp->media_present &&
1436	    !(mode & BLK_OPEN_NDELAY))
1437		goto error_out;
1438
1439	/*
1440	 * If the device has the write protect tab set, have the open fail
1441	 * if the user expects to be able to write to the thing.
1442	 */
1443	retval = -EROFS;
1444	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1445		goto error_out;
1446
1447	/*
1448	 * It is possible that the disk changing stuff resulted in
1449	 * the device being taken offline.  If this is the case,
1450	 * report this to the user, and don't pretend that the
1451	 * open actually succeeded.
1452	 */
1453	retval = -ENXIO;
1454	if (!scsi_device_online(sdev))
1455		goto error_out;
1456
1457	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1458		if (scsi_block_when_processing_errors(sdev))
1459			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1460	}
1461
1462	return 0;
1463
1464error_out:
1465	scsi_device_put(sdev);
1466	return retval;	
1467}
1468
1469/**
1470 *	sd_release - invoked when the (last) close(2) is called on this
1471 *	scsi disk.
1472 *	@disk: disk to release
 
1473 *
1474 *	Returns 0. 
1475 *
1476 *	Note: may block (uninterruptible) if error recovery is underway
1477 *	on this disk.
1478 *
1479 *	Locking: called with disk->open_mutex held.
1480 **/
1481static void sd_release(struct gendisk *disk)
1482{
1483	struct scsi_disk *sdkp = scsi_disk(disk);
1484	struct scsi_device *sdev = sdkp->device;
1485
1486	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487
1488	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1489		if (scsi_block_when_processing_errors(sdev))
1490			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491	}
1492
1493	scsi_device_put(sdev);
1494}
1495
1496static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497{
1498	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1499	struct scsi_device *sdp = sdkp->device;
1500	struct Scsi_Host *host = sdp->host;
1501	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1502	int diskinfo[4];
1503
1504	/* default to most commonly used values */
1505	diskinfo[0] = 0x40;	/* 1 << 6 */
1506	diskinfo[1] = 0x20;	/* 1 << 5 */
1507	diskinfo[2] = capacity >> 11;
1508
1509	/* override with calculated, extended default, or driver values */
1510	if (host->hostt->bios_param)
1511		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512	else
1513		scsicam_bios_param(bdev, capacity, diskinfo);
1514
1515	geo->heads = diskinfo[0];
1516	geo->sectors = diskinfo[1];
1517	geo->cylinders = diskinfo[2];
1518	return 0;
1519}
1520
1521/**
1522 *	sd_ioctl - process an ioctl
1523 *	@bdev: target block device
1524 *	@mode: open mode
1525 *	@cmd: ioctl command number
1526 *	@arg: this is third argument given to ioctl(2) system call.
1527 *	Often contains a pointer.
1528 *
1529 *	Returns 0 if successful (some ioctls return positive numbers on
1530 *	success as well). Returns a negated errno value in case of error.
1531 *
1532 *	Note: most ioctls are forward onto the block subsystem or further
1533 *	down in the scsi subsystem.
1534 **/
1535static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1536		    unsigned int cmd, unsigned long arg)
1537{
1538	struct gendisk *disk = bdev->bd_disk;
1539	struct scsi_disk *sdkp = scsi_disk(disk);
1540	struct scsi_device *sdp = sdkp->device;
1541	void __user *p = (void __user *)arg;
1542	int error;
1543    
1544	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1545				    "cmd=0x%x\n", disk->disk_name, cmd));
1546
1547	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1548		return -ENOIOCTLCMD;
 
1549
1550	/*
1551	 * If we are in the middle of error recovery, don't let anyone
1552	 * else try and use this device.  Also, if error recovery fails, it
1553	 * may try and take the device offline, in which case all further
1554	 * access to the device is prohibited.
1555	 */
1556	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1557			(mode & BLK_OPEN_NDELAY));
1558	if (error)
1559		return error;
1560
1561	if (is_sed_ioctl(cmd))
1562		return sed_ioctl(sdkp->opal_dev, cmd, p);
1563	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564}
1565
1566static void set_media_not_present(struct scsi_disk *sdkp)
1567{
1568	if (sdkp->media_present)
1569		sdkp->device->changed = 1;
1570
1571	if (sdkp->device->removable) {
1572		sdkp->media_present = 0;
1573		sdkp->capacity = 0;
1574	}
1575}
1576
1577static int media_not_present(struct scsi_disk *sdkp,
1578			     struct scsi_sense_hdr *sshdr)
1579{
1580	if (!scsi_sense_valid(sshdr))
1581		return 0;
1582
1583	/* not invoked for commands that could return deferred errors */
1584	switch (sshdr->sense_key) {
1585	case UNIT_ATTENTION:
1586	case NOT_READY:
1587		/* medium not present */
1588		if (sshdr->asc == 0x3A) {
1589			set_media_not_present(sdkp);
1590			return 1;
1591		}
1592	}
1593	return 0;
1594}
1595
1596/**
1597 *	sd_check_events - check media events
1598 *	@disk: kernel device descriptor
1599 *	@clearing: disk events currently being cleared
1600 *
1601 *	Returns mask of DISK_EVENT_*.
1602 *
1603 *	Note: this function is invoked from the block subsystem.
1604 **/
1605static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1606{
1607	struct scsi_disk *sdkp = disk->private_data;
1608	struct scsi_device *sdp;
1609	int retval;
1610	bool disk_changed;
1611
1612	if (!sdkp)
1613		return 0;
1614
1615	sdp = sdkp->device;
1616	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1617
1618	/*
1619	 * If the device is offline, don't send any commands - just pretend as
1620	 * if the command failed.  If the device ever comes back online, we
1621	 * can deal with it then.  It is only because of unrecoverable errors
1622	 * that we would ever take a device offline in the first place.
1623	 */
1624	if (!scsi_device_online(sdp)) {
1625		set_media_not_present(sdkp);
1626		goto out;
1627	}
1628
1629	/*
1630	 * Using TEST_UNIT_READY enables differentiation between drive with
1631	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1632	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1633	 *
1634	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1635	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1636	 * sd_revalidate() is called.
1637	 */
1638	if (scsi_block_when_processing_errors(sdp)) {
1639		struct scsi_sense_hdr sshdr = { 0, };
1640
1641		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1642					      &sshdr);
1643
1644		/* failed to execute TUR, assume media not present */
1645		if (retval < 0 || host_byte(retval)) {
1646			set_media_not_present(sdkp);
1647			goto out;
1648		}
1649
1650		if (media_not_present(sdkp, &sshdr))
1651			goto out;
1652	}
1653
1654	/*
1655	 * For removable scsi disk we have to recognise the presence
1656	 * of a disk in the drive.
1657	 */
1658	if (!sdkp->media_present)
1659		sdp->changed = 1;
1660	sdkp->media_present = 1;
1661out:
1662	/*
1663	 * sdp->changed is set under the following conditions:
1664	 *
1665	 *	Medium present state has changed in either direction.
1666	 *	Device has indicated UNIT_ATTENTION.
1667	 */
1668	disk_changed = sdp->changed;
1669	sdp->changed = 0;
1670	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
 
1671}
1672
1673static int sd_sync_cache(struct scsi_disk *sdkp)
1674{
1675	int res;
1676	struct scsi_device *sdp = sdkp->device;
1677	const int timeout = sdp->request_queue->rq_timeout
1678		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1679	/* Leave the rest of the command zero to indicate flush everything. */
1680	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1681				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1682	struct scsi_sense_hdr sshdr;
1683	struct scsi_failure failure_defs[] = {
1684		{
1685			.allowed = 3,
1686			.result = SCMD_FAILURE_RESULT_ANY,
1687		},
1688		{}
1689	};
1690	struct scsi_failures failures = {
1691		.failure_definitions = failure_defs,
1692	};
1693	const struct scsi_exec_args exec_args = {
1694		.req_flags = BLK_MQ_REQ_PM,
1695		.sshdr = &sshdr,
1696		.failures = &failures,
1697	};
1698
1699	if (!scsi_device_online(sdp))
1700		return -ENODEV;
1701
1702	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1703			       sdkp->max_retries, &exec_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	if (res) {
1705		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1706
1707		if (res < 0)
1708			return res;
1709
1710		if (scsi_status_is_check_condition(res) &&
1711		    scsi_sense_valid(&sshdr)) {
1712			sd_print_sense_hdr(sdkp, &sshdr);
1713
1714			/* we need to evaluate the error return  */
1715			if (sshdr.asc == 0x3a ||	/* medium not present */
1716			    sshdr.asc == 0x20 ||	/* invalid command */
1717			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
 
1718				/* this is no error here */
1719				return 0;
1720			/*
1721			 * This drive doesn't support sync and there's not much
1722			 * we can do because this is called during shutdown
1723			 * or suspend so just return success so those operations
1724			 * can proceed.
1725			 */
1726			if (sshdr.sense_key == ILLEGAL_REQUEST)
1727				return 0;
1728		}
1729
1730		switch (host_byte(res)) {
1731		/* ignore errors due to racing a disconnection */
1732		case DID_BAD_TARGET:
1733		case DID_NO_CONNECT:
1734			return 0;
1735		/* signal the upper layer it might try again */
1736		case DID_BUS_BUSY:
1737		case DID_IMM_RETRY:
1738		case DID_REQUEUE:
1739		case DID_SOFT_ERROR:
1740			return -EBUSY;
1741		default:
1742			return -EIO;
1743		}
1744	}
1745	return 0;
1746}
1747
1748static void sd_rescan(struct device *dev)
1749{
1750	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1751
1752	sd_revalidate_disk(sdkp->disk);
1753}
1754
1755static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1756		enum blk_unique_id type)
1757{
1758	struct scsi_device *sdev = scsi_disk(disk)->device;
1759	const struct scsi_vpd *vpd;
1760	const unsigned char *d;
1761	int ret = -ENXIO, len;
1762
1763	rcu_read_lock();
1764	vpd = rcu_dereference(sdev->vpd_pg83);
1765	if (!vpd)
1766		goto out_unlock;
1767
1768	ret = -EINVAL;
1769	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1770		/* we only care about designators with LU association */
1771		if (((d[1] >> 4) & 0x3) != 0x00)
1772			continue;
1773		if ((d[1] & 0xf) != type)
1774			continue;
1775
1776		/*
1777		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1778		 * keep looking as one with more entropy might still show up.
1779		 */
1780		len = d[3];
1781		if (len != 8 && len != 12 && len != 16)
1782			continue;
1783		ret = len;
1784		memcpy(id, d + 4, len);
1785		if (len == 16)
1786			break;
1787	}
1788out_unlock:
1789	rcu_read_unlock();
1790	return ret;
1791}
1792
1793static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1794{
1795	switch (host_byte(result)) {
1796	case DID_TRANSPORT_MARGINAL:
1797	case DID_TRANSPORT_DISRUPTED:
1798	case DID_BUS_BUSY:
1799		return PR_STS_RETRY_PATH_FAILURE;
1800	case DID_NO_CONNECT:
1801		return PR_STS_PATH_FAILED;
1802	case DID_TRANSPORT_FAILFAST:
1803		return PR_STS_PATH_FAST_FAILED;
1804	}
1805
1806	switch (status_byte(result)) {
1807	case SAM_STAT_RESERVATION_CONFLICT:
1808		return PR_STS_RESERVATION_CONFLICT;
1809	case SAM_STAT_CHECK_CONDITION:
1810		if (!scsi_sense_valid(sshdr))
1811			return PR_STS_IOERR;
1812
1813		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1814		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1815			return -EINVAL;
1816
1817		fallthrough;
1818	default:
1819		return PR_STS_IOERR;
1820	}
1821}
1822
1823static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1824			    unsigned char *data, int data_len)
1825{
1826	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1827	struct scsi_device *sdev = sdkp->device;
1828	struct scsi_sense_hdr sshdr;
1829	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1830	struct scsi_failure failure_defs[] = {
1831		{
1832			.sense = UNIT_ATTENTION,
1833			.asc = SCMD_FAILURE_ASC_ANY,
1834			.ascq = SCMD_FAILURE_ASCQ_ANY,
1835			.allowed = 5,
1836			.result = SAM_STAT_CHECK_CONDITION,
1837		},
1838		{}
1839	};
1840	struct scsi_failures failures = {
1841		.failure_definitions = failure_defs,
1842	};
1843	const struct scsi_exec_args exec_args = {
1844		.sshdr = &sshdr,
1845		.failures = &failures,
1846	};
1847	int result;
1848
1849	put_unaligned_be16(data_len, &cmd[7]);
1850
1851	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1852				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1853	if (scsi_status_is_check_condition(result) &&
1854	    scsi_sense_valid(&sshdr)) {
1855		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1856		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1857	}
1858
1859	if (result <= 0)
1860		return result;
1861
1862	return sd_scsi_to_pr_err(&sshdr, result);
1863}
1864
1865static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1866{
1867	int result, i, data_offset, num_copy_keys;
1868	u32 num_keys = keys_info->num_keys;
1869	int data_len = num_keys * 8 + 8;
1870	u8 *data;
1871
1872	data = kzalloc(data_len, GFP_KERNEL);
1873	if (!data)
1874		return -ENOMEM;
1875
1876	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1877	if (result)
1878		goto free_data;
1879
1880	keys_info->generation = get_unaligned_be32(&data[0]);
1881	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1882
1883	data_offset = 8;
1884	num_copy_keys = min(num_keys, keys_info->num_keys);
1885
1886	for (i = 0; i < num_copy_keys; i++) {
1887		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1888		data_offset += 8;
1889	}
1890
1891free_data:
1892	kfree(data);
1893	return result;
 
 
 
 
 
 
 
 
1894}
 
1895
1896static int sd_pr_read_reservation(struct block_device *bdev,
1897				  struct pr_held_reservation *rsv)
1898{
1899	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1900	struct scsi_device *sdev = sdkp->device;
1901	u8 data[24] = { };
1902	int result, len;
1903
1904	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1905	if (result)
1906		return result;
1907
1908	len = get_unaligned_be32(&data[4]);
1909	if (!len)
 
 
 
1910		return 0;
1911
1912	/* Make sure we have at least the key and type */
1913	if (len < 14) {
1914		sdev_printk(KERN_INFO, sdev,
1915			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1916			    len);
1917		return -EINVAL;
1918	}
 
1919
1920	rsv->generation = get_unaligned_be32(&data[0]);
1921	rsv->key = get_unaligned_be64(&data[8]);
1922	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1923	return 0;
1924}
1925
1926static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1927			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1928{
1929	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1930	struct scsi_device *sdev = sdkp->device;
1931	struct scsi_sense_hdr sshdr;
1932	struct scsi_failure failure_defs[] = {
1933		{
1934			.sense = UNIT_ATTENTION,
1935			.asc = SCMD_FAILURE_ASC_ANY,
1936			.ascq = SCMD_FAILURE_ASCQ_ANY,
1937			.allowed = 5,
1938			.result = SAM_STAT_CHECK_CONDITION,
1939		},
1940		{}
1941	};
1942	struct scsi_failures failures = {
1943		.failure_definitions = failure_defs,
1944	};
1945	const struct scsi_exec_args exec_args = {
1946		.sshdr = &sshdr,
1947		.failures = &failures,
1948	};
1949	int result;
1950	u8 cmd[16] = { 0, };
1951	u8 data[24] = { 0, };
1952
1953	cmd[0] = PERSISTENT_RESERVE_OUT;
1954	cmd[1] = sa;
1955	cmd[2] = type;
1956	put_unaligned_be32(sizeof(data), &cmd[5]);
1957
1958	put_unaligned_be64(key, &data[0]);
1959	put_unaligned_be64(sa_key, &data[8]);
1960	data[20] = flags;
1961
1962	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1963				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1964				  &exec_args);
1965
1966	if (scsi_status_is_check_condition(result) &&
1967	    scsi_sense_valid(&sshdr)) {
1968		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1969		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1970	}
1971
1972	if (result <= 0)
1973		return result;
1974
1975	return sd_scsi_to_pr_err(&sshdr, result);
1976}
1977
1978static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1979		u32 flags)
1980{
1981	if (flags & ~PR_FL_IGNORE_KEY)
1982		return -EOPNOTSUPP;
1983	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1984			old_key, new_key, 0,
1985			(1 << 0) /* APTPL */);
1986}
1987
1988static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1989		u32 flags)
1990{
1991	if (flags)
1992		return -EOPNOTSUPP;
1993	return sd_pr_out_command(bdev, 0x01, key, 0,
1994				 block_pr_type_to_scsi(type), 0);
1995}
1996
1997static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1998{
1999	return sd_pr_out_command(bdev, 0x02, key, 0,
2000				 block_pr_type_to_scsi(type), 0);
2001}
2002
2003static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2004		enum pr_type type, bool abort)
2005{
2006	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2007				 block_pr_type_to_scsi(type), 0);
2008}
2009
2010static int sd_pr_clear(struct block_device *bdev, u64 key)
2011{
2012	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2013}
2014
2015static const struct pr_ops sd_pr_ops = {
2016	.pr_register	= sd_pr_register,
2017	.pr_reserve	= sd_pr_reserve,
2018	.pr_release	= sd_pr_release,
2019	.pr_preempt	= sd_pr_preempt,
2020	.pr_clear	= sd_pr_clear,
2021	.pr_read_keys	= sd_pr_read_keys,
2022	.pr_read_reservation = sd_pr_read_reservation,
2023};
2024
2025static void scsi_disk_free_disk(struct gendisk *disk)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(disk);
2028
2029	put_device(&sdkp->disk_dev);
2030}
2031
2032static const struct block_device_operations sd_fops = {
2033	.owner			= THIS_MODULE,
2034	.open			= sd_open,
2035	.release		= sd_release,
2036	.ioctl			= sd_ioctl,
2037	.getgeo			= sd_getgeo,
2038	.compat_ioctl		= blkdev_compat_ptr_ioctl,
 
 
2039	.check_events		= sd_check_events,
 
2040	.unlock_native_capacity	= sd_unlock_native_capacity,
2041	.report_zones		= sd_zbc_report_zones,
2042	.get_unique_id		= sd_get_unique_id,
2043	.free_disk		= scsi_disk_free_disk,
2044	.pr_ops			= &sd_pr_ops,
2045};
2046
2047/**
2048 *	sd_eh_reset - reset error handling callback
2049 *	@scmd:		sd-issued command that has failed
2050 *
2051 *	This function is called by the SCSI midlayer before starting
2052 *	SCSI EH. When counting medium access failures we have to be
2053 *	careful to register it only only once per device and SCSI EH run;
2054 *	there might be several timed out commands which will cause the
2055 *	'max_medium_access_timeouts' counter to trigger after the first
2056 *	SCSI EH run already and set the device to offline.
2057 *	So this function resets the internal counter before starting SCSI EH.
2058 **/
2059static void sd_eh_reset(struct scsi_cmnd *scmd)
2060{
2061	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2062
2063	/* New SCSI EH run, reset gate variable */
2064	sdkp->ignore_medium_access_errors = false;
2065}
2066
2067/**
2068 *	sd_eh_action - error handling callback
2069 *	@scmd:		sd-issued command that has failed
2070 *	@eh_disp:	The recovery disposition suggested by the midlayer
2071 *
2072 *	This function is called by the SCSI midlayer upon completion of an
2073 *	error test command (currently TEST UNIT READY). The result of sending
2074 *	the eh command is passed in eh_disp.  We're looking for devices that
2075 *	fail medium access commands but are OK with non access commands like
2076 *	test unit ready (so wrongly see the device as having a successful
2077 *	recovery)
2078 **/
2079static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2080{
2081	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2082	struct scsi_device *sdev = scmd->device;
2083
2084	if (!scsi_device_online(sdev) ||
2085	    !scsi_medium_access_command(scmd) ||
2086	    host_byte(scmd->result) != DID_TIME_OUT ||
2087	    eh_disp != SUCCESS)
2088		return eh_disp;
2089
2090	/*
2091	 * The device has timed out executing a medium access command.
2092	 * However, the TEST UNIT READY command sent during error
2093	 * handling completed successfully. Either the device is in the
2094	 * process of recovering or has it suffered an internal failure
2095	 * that prevents access to the storage medium.
2096	 */
2097	if (!sdkp->ignore_medium_access_errors) {
2098		sdkp->medium_access_timed_out++;
2099		sdkp->ignore_medium_access_errors = true;
2100	}
2101
2102	/*
2103	 * If the device keeps failing read/write commands but TEST UNIT
2104	 * READY always completes successfully we assume that medium
2105	 * access is no longer possible and take the device offline.
2106	 */
2107	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2108		scmd_printk(KERN_ERR, scmd,
2109			    "Medium access timeout failure. Offlining disk!\n");
2110		mutex_lock(&sdev->state_mutex);
2111		scsi_device_set_state(sdev, SDEV_OFFLINE);
2112		mutex_unlock(&sdev->state_mutex);
2113
2114		return SUCCESS;
2115	}
2116
2117	return eh_disp;
2118}
2119
2120static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2121{
2122	struct request *req = scsi_cmd_to_rq(scmd);
2123	struct scsi_device *sdev = scmd->device;
2124	unsigned int transferred, good_bytes;
2125	u64 start_lba, end_lba, bad_lba;
2126
2127	/*
2128	 * Some commands have a payload smaller than the device logical
2129	 * block size (e.g. INQUIRY on a 4K disk).
2130	 */
2131	if (scsi_bufflen(scmd) <= sdev->sector_size)
2132		return 0;
2133
2134	/* Check if we have a 'bad_lba' information */
2135	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2136				     SCSI_SENSE_BUFFERSIZE,
2137				     &bad_lba))
2138		return 0;
2139
2140	/*
2141	 * If the bad lba was reported incorrectly, we have no idea where
2142	 * the error is.
2143	 */
2144	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2145	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2146	if (bad_lba < start_lba || bad_lba >= end_lba)
2147		return 0;
2148
2149	/*
2150	 * resid is optional but mostly filled in.  When it's unused,
2151	 * its value is zero, so we assume the whole buffer transferred
2152	 */
2153	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2154
2155	/* This computation should always be done in terms of the
2156	 * resolution of the device's medium.
2157	 */
2158	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2159
2160	return min(good_bytes, transferred);
2161}
2162
2163/**
2164 *	sd_done - bottom half handler: called when the lower level
2165 *	driver has completed (successfully or otherwise) a scsi command.
2166 *	@SCpnt: mid-level's per command structure.
2167 *
2168 *	Note: potentially run from within an ISR. Must not block.
2169 **/
2170static int sd_done(struct scsi_cmnd *SCpnt)
2171{
2172	int result = SCpnt->result;
2173	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2174	unsigned int sector_size = SCpnt->device->sector_size;
2175	unsigned int resid;
2176	struct scsi_sense_hdr sshdr;
2177	struct request *req = scsi_cmd_to_rq(SCpnt);
2178	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2179	int sense_valid = 0;
2180	int sense_deferred = 0;
2181
2182	switch (req_op(req)) {
2183	case REQ_OP_DISCARD:
2184	case REQ_OP_WRITE_ZEROES:
 
2185	case REQ_OP_ZONE_RESET:
2186	case REQ_OP_ZONE_RESET_ALL:
2187	case REQ_OP_ZONE_OPEN:
2188	case REQ_OP_ZONE_CLOSE:
2189	case REQ_OP_ZONE_FINISH:
2190		if (!result) {
2191			good_bytes = blk_rq_bytes(req);
2192			scsi_set_resid(SCpnt, 0);
2193		} else {
2194			good_bytes = 0;
2195			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2196		}
2197		break;
2198	default:
2199		/*
2200		 * In case of bogus fw or device, we could end up having
2201		 * an unaligned partial completion. Check this here and force
2202		 * alignment.
2203		 */
2204		resid = scsi_get_resid(SCpnt);
2205		if (resid & (sector_size - 1)) {
2206			sd_printk(KERN_INFO, sdkp,
2207				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2208				resid, sector_size);
2209			scsi_print_command(SCpnt);
2210			resid = min(scsi_bufflen(SCpnt),
2211				    round_up(resid, sector_size));
2212			scsi_set_resid(SCpnt, resid);
2213		}
2214	}
2215
2216	if (result) {
2217		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2218		if (sense_valid)
2219			sense_deferred = scsi_sense_is_deferred(&sshdr);
2220	}
2221	sdkp->medium_access_timed_out = 0;
2222
2223	if (!scsi_status_is_check_condition(result) &&
2224	    (!sense_valid || sense_deferred))
2225		goto out;
2226
2227	switch (sshdr.sense_key) {
2228	case HARDWARE_ERROR:
2229	case MEDIUM_ERROR:
2230		good_bytes = sd_completed_bytes(SCpnt);
2231		break;
2232	case RECOVERED_ERROR:
2233		good_bytes = scsi_bufflen(SCpnt);
2234		break;
2235	case NO_SENSE:
2236		/* This indicates a false check condition, so ignore it.  An
2237		 * unknown amount of data was transferred so treat it as an
2238		 * error.
2239		 */
2240		SCpnt->result = 0;
2241		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2242		break;
2243	case ABORTED_COMMAND:
2244		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2245			good_bytes = sd_completed_bytes(SCpnt);
2246		break;
2247	case ILLEGAL_REQUEST:
2248		switch (sshdr.asc) {
2249		case 0x10:	/* DIX: Host detected corruption */
2250			good_bytes = sd_completed_bytes(SCpnt);
2251			break;
2252		case 0x20:	/* INVALID COMMAND OPCODE */
2253		case 0x24:	/* INVALID FIELD IN CDB */
2254			switch (SCpnt->cmnd[0]) {
2255			case UNMAP:
2256				sd_config_discard(sdkp, SD_LBP_DISABLE);
2257				break;
2258			case WRITE_SAME_16:
2259			case WRITE_SAME:
2260				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2261					sd_config_discard(sdkp, SD_LBP_DISABLE);
2262				} else {
2263					sdkp->device->no_write_same = 1;
2264					sd_config_write_same(sdkp);
2265					req->rq_flags |= RQF_QUIET;
2266				}
2267				break;
2268			}
2269		}
2270		break;
2271	default:
2272		break;
2273	}
2274
2275 out:
2276	if (sd_is_zoned(sdkp))
2277		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2278
2279	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2280					   "sd_done: completed %d of %d bytes\n",
2281					   good_bytes, scsi_bufflen(SCpnt)));
2282
2283	return good_bytes;
2284}
2285
2286/*
2287 * spinup disk - called only in sd_revalidate_disk()
2288 */
2289static void
2290sd_spinup_disk(struct scsi_disk *sdkp)
2291{
2292	static const u8 cmd[10] = { TEST_UNIT_READY };
2293	unsigned long spintime_expire = 0;
2294	int spintime, sense_valid = 0;
2295	unsigned int the_result;
2296	struct scsi_sense_hdr sshdr;
2297	struct scsi_failure failure_defs[] = {
2298		/* Do not retry Medium Not Present */
2299		{
2300			.sense = UNIT_ATTENTION,
2301			.asc = 0x3A,
2302			.ascq = SCMD_FAILURE_ASCQ_ANY,
2303			.result = SAM_STAT_CHECK_CONDITION,
2304		},
2305		{
2306			.sense = NOT_READY,
2307			.asc = 0x3A,
2308			.ascq = SCMD_FAILURE_ASCQ_ANY,
2309			.result = SAM_STAT_CHECK_CONDITION,
2310		},
2311		/* Retry when scsi_status_is_good would return false 3 times */
2312		{
2313			.result = SCMD_FAILURE_STAT_ANY,
2314			.allowed = 3,
2315		},
2316		{}
2317	};
2318	struct scsi_failures failures = {
2319		.failure_definitions = failure_defs,
2320	};
2321	const struct scsi_exec_args exec_args = {
2322		.sshdr = &sshdr,
2323		.failures = &failures,
2324	};
2325
2326	spintime = 0;
2327
2328	/* Spin up drives, as required.  Only do this at boot time */
2329	/* Spinup needs to be done for module loads too. */
2330	do {
2331		bool media_was_present = sdkp->media_present;
2332
2333		scsi_failures_reset_retries(&failures);
 
 
 
 
 
 
 
2334
2335		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2336					      NULL, 0, SD_TIMEOUT,
2337					      sdkp->max_retries, &exec_args);
2338
2339
2340		if (the_result > 0) {
2341			/*
2342			 * If the drive has indicated to us that it doesn't
2343			 * have any media in it, don't bother with any more
2344			 * polling.
2345			 */
2346			if (media_not_present(sdkp, &sshdr)) {
2347				if (media_was_present)
2348					sd_printk(KERN_NOTICE, sdkp,
2349						  "Media removed, stopped polling\n");
2350				return;
2351			}
2352			sense_valid = scsi_sense_valid(&sshdr);
2353		}
2354
2355		if (!scsi_status_is_check_condition(the_result)) {
 
 
 
 
 
 
 
 
2356			/* no sense, TUR either succeeded or failed
2357			 * with a status error */
2358			if(!spintime && !scsi_status_is_good(the_result)) {
2359				sd_print_result(sdkp, "Test Unit Ready failed",
2360						the_result);
2361			}
2362			break;
2363		}
2364
2365		/*
2366		 * The device does not want the automatic start to be issued.
2367		 */
2368		if (sdkp->device->no_start_on_add)
2369			break;
2370
2371		if (sense_valid && sshdr.sense_key == NOT_READY) {
2372			if (sshdr.asc == 4 && sshdr.ascq == 3)
2373				break;	/* manual intervention required */
2374			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2375				break;	/* standby */
2376			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2377				break;	/* unavailable */
2378			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2379				break;	/* sanitize in progress */
2380			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2381				break;	/* depopulation in progress */
2382			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2383				break;	/* depopulation restoration in progress */
2384			/*
2385			 * Issue command to spin up drive when not ready
2386			 */
2387			if (!spintime) {
2388				/* Return immediately and start spin cycle */
2389				const u8 start_cmd[10] = {
2390					[0] = START_STOP,
2391					[1] = 1,
2392					[4] = sdkp->device->start_stop_pwr_cond ?
2393						0x11 : 1,
2394				};
2395
2396				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2397				scsi_execute_cmd(sdkp->device, start_cmd,
2398						 REQ_OP_DRV_IN, NULL, 0,
2399						 SD_TIMEOUT, sdkp->max_retries,
2400						 &exec_args);
 
 
 
 
 
 
2401				spintime_expire = jiffies + 100 * HZ;
2402				spintime = 1;
2403			}
2404			/* Wait 1 second for next try */
2405			msleep(1000);
2406			printk(KERN_CONT ".");
2407
2408		/*
2409		 * Wait for USB flash devices with slow firmware.
2410		 * Yes, this sense key/ASC combination shouldn't
2411		 * occur here.  It's characteristic of these devices.
2412		 */
2413		} else if (sense_valid &&
2414				sshdr.sense_key == UNIT_ATTENTION &&
2415				sshdr.asc == 0x28) {
2416			if (!spintime) {
2417				spintime_expire = jiffies + 5 * HZ;
2418				spintime = 1;
2419			}
2420			/* Wait 1 second for next try */
2421			msleep(1000);
2422		} else {
2423			/* we don't understand the sense code, so it's
2424			 * probably pointless to loop */
2425			if(!spintime) {
2426				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2427				sd_print_sense_hdr(sdkp, &sshdr);
2428			}
2429			break;
2430		}
2431				
2432	} while (spintime && time_before_eq(jiffies, spintime_expire));
2433
2434	if (spintime) {
2435		if (scsi_status_is_good(the_result))
2436			printk(KERN_CONT "ready\n");
2437		else
2438			printk(KERN_CONT "not responding...\n");
2439	}
2440}
2441
2442/*
2443 * Determine whether disk supports Data Integrity Field.
2444 */
2445static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2446{
2447	struct scsi_device *sdp = sdkp->device;
2448	u8 type;
 
2449
2450	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2451		sdkp->protection_type = 0;
2452		return 0;
2453	}
2454
2455	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2456
2457	if (type > T10_PI_TYPE3_PROTECTION) {
2458		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2459			  " protection type %u. Disabling disk!\n",
2460			  type);
2461		sdkp->protection_type = 0;
2462		return -ENODEV;
2463	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465	sdkp->protection_type = type;
2466
2467	return 0;
2468}
2469
2470static void sd_config_protection(struct scsi_disk *sdkp)
2471{
2472	struct scsi_device *sdp = sdkp->device;
2473
2474	sd_dif_config_host(sdkp);
2475
2476	if (!sdkp->protection_type)
2477		return;
2478
2479	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2480		sd_first_printk(KERN_NOTICE, sdkp,
2481				"Disabling DIF Type %u protection\n",
2482				sdkp->protection_type);
2483		sdkp->protection_type = 0;
2484	}
2485
2486	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2487			sdkp->protection_type);
2488}
2489
2490static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2491			struct scsi_sense_hdr *sshdr, int sense_valid,
2492			int the_result)
2493{
2494	if (sense_valid)
2495		sd_print_sense_hdr(sdkp, sshdr);
2496	else
2497		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2498
2499	/*
2500	 * Set dirty bit for removable devices if not ready -
2501	 * sometimes drives will not report this properly.
2502	 */
2503	if (sdp->removable &&
2504	    sense_valid && sshdr->sense_key == NOT_READY)
2505		set_media_not_present(sdkp);
2506
2507	/*
2508	 * We used to set media_present to 0 here to indicate no media
2509	 * in the drive, but some drives fail read capacity even with
2510	 * media present, so we can't do that.
2511	 */
2512	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2513}
2514
2515#define RC16_LEN 32
2516#if RC16_LEN > SD_BUF_SIZE
2517#error RC16_LEN must not be more than SD_BUF_SIZE
2518#endif
2519
2520#define READ_CAPACITY_RETRIES_ON_RESET	10
2521
2522static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2523						unsigned char *buffer)
2524{
2525	unsigned char cmd[16];
2526	struct scsi_sense_hdr sshdr;
2527	const struct scsi_exec_args exec_args = {
2528		.sshdr = &sshdr,
2529	};
2530	int sense_valid = 0;
2531	int the_result;
2532	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2533	unsigned int alignment;
2534	unsigned long long lba;
2535	unsigned sector_size;
2536
2537	if (sdp->no_read_capacity_16)
2538		return -EINVAL;
2539
2540	do {
2541		memset(cmd, 0, 16);
2542		cmd[0] = SERVICE_ACTION_IN_16;
2543		cmd[1] = SAI_READ_CAPACITY_16;
2544		cmd[13] = RC16_LEN;
2545		memset(buffer, 0, RC16_LEN);
2546
2547		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2548					      buffer, RC16_LEN, SD_TIMEOUT,
2549					      sdkp->max_retries, &exec_args);
2550		if (the_result > 0) {
2551			if (media_not_present(sdkp, &sshdr))
2552				return -ENODEV;
2553
 
2554			sense_valid = scsi_sense_valid(&sshdr);
2555			if (sense_valid &&
2556			    sshdr.sense_key == ILLEGAL_REQUEST &&
2557			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2558			    sshdr.ascq == 0x00)
2559				/* Invalid Command Operation Code or
2560				 * Invalid Field in CDB, just retry
2561				 * silently with RC10 */
2562				return -EINVAL;
2563			if (sense_valid &&
2564			    sshdr.sense_key == UNIT_ATTENTION &&
2565			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566				/* Device reset might occur several times,
2567				 * give it one more chance */
2568				if (--reset_retries > 0)
2569					continue;
2570		}
2571		retries--;
2572
2573	} while (the_result && retries);
2574
2575	if (the_result) {
2576		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2577		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2578		return -EINVAL;
2579	}
2580
2581	sector_size = get_unaligned_be32(&buffer[8]);
2582	lba = get_unaligned_be64(&buffer[0]);
2583
2584	if (sd_read_protection_type(sdkp, buffer) < 0) {
2585		sdkp->capacity = 0;
2586		return -ENODEV;
2587	}
2588
2589	/* Logical blocks per physical block exponent */
2590	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2591
2592	/* RC basis */
2593	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2594
2595	/* Lowest aligned logical block */
2596	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2597	blk_queue_alignment_offset(sdp->request_queue, alignment);
2598	if (alignment && sdkp->first_scan)
2599		sd_printk(KERN_NOTICE, sdkp,
2600			  "physical block alignment offset: %u\n", alignment);
2601
2602	if (buffer[14] & 0x80) { /* LBPME */
2603		sdkp->lbpme = 1;
2604
2605		if (buffer[14] & 0x40) /* LBPRZ */
2606			sdkp->lbprz = 1;
2607
2608		sd_config_discard(sdkp, SD_LBP_WS16);
2609	}
2610
2611	sdkp->capacity = lba + 1;
2612	return sector_size;
2613}
2614
2615static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2616						unsigned char *buffer)
2617{
2618	static const u8 cmd[10] = { READ_CAPACITY };
2619	struct scsi_sense_hdr sshdr;
2620	struct scsi_failure failure_defs[] = {
2621		/* Do not retry Medium Not Present */
2622		{
2623			.sense = UNIT_ATTENTION,
2624			.asc = 0x3A,
2625			.result = SAM_STAT_CHECK_CONDITION,
2626		},
2627		{
2628			.sense = NOT_READY,
2629			.asc = 0x3A,
2630			.result = SAM_STAT_CHECK_CONDITION,
2631		},
2632		 /* Device reset might occur several times so retry a lot */
2633		{
2634			.sense = UNIT_ATTENTION,
2635			.asc = 0x29,
2636			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2637			.result = SAM_STAT_CHECK_CONDITION,
2638		},
2639		/* Any other error not listed above retry 3 times */
2640		{
2641			.result = SCMD_FAILURE_RESULT_ANY,
2642			.allowed = 3,
2643		},
2644		{}
2645	};
2646	struct scsi_failures failures = {
2647		.failure_definitions = failure_defs,
2648	};
2649	const struct scsi_exec_args exec_args = {
2650		.sshdr = &sshdr,
2651		.failures = &failures,
2652	};
2653	int sense_valid = 0;
2654	int the_result;
 
2655	sector_t lba;
2656	unsigned sector_size;
2657
2658	memset(buffer, 0, 8);
2659
2660	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2661				      8, SD_TIMEOUT, sdkp->max_retries,
2662				      &exec_args);
2663
2664	if (the_result > 0) {
2665		sense_valid = scsi_sense_valid(&sshdr);
2666
2667		if (media_not_present(sdkp, &sshdr))
2668			return -ENODEV;
2669	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2670
2671	if (the_result) {
2672		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2673		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2674		return -EINVAL;
2675	}
2676
2677	sector_size = get_unaligned_be32(&buffer[4]);
2678	lba = get_unaligned_be32(&buffer[0]);
2679
2680	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2681		/* Some buggy (usb cardreader) devices return an lba of
2682		   0xffffffff when the want to report a size of 0 (with
2683		   which they really mean no media is present) */
2684		sdkp->capacity = 0;
2685		sdkp->physical_block_size = sector_size;
2686		return sector_size;
2687	}
2688
2689	sdkp->capacity = lba + 1;
2690	sdkp->physical_block_size = sector_size;
2691	return sector_size;
2692}
2693
2694static int sd_try_rc16_first(struct scsi_device *sdp)
2695{
2696	if (sdp->host->max_cmd_len < 16)
2697		return 0;
2698	if (sdp->try_rc_10_first)
2699		return 0;
2700	if (sdp->scsi_level > SCSI_SPC_2)
2701		return 1;
2702	if (scsi_device_protection(sdp))
2703		return 1;
2704	return 0;
2705}
2706
2707/*
2708 * read disk capacity
2709 */
2710static void
2711sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2712{
2713	int sector_size;
2714	struct scsi_device *sdp = sdkp->device;
2715
2716	if (sd_try_rc16_first(sdp)) {
2717		sector_size = read_capacity_16(sdkp, sdp, buffer);
2718		if (sector_size == -EOVERFLOW)
2719			goto got_data;
2720		if (sector_size == -ENODEV)
2721			return;
2722		if (sector_size < 0)
2723			sector_size = read_capacity_10(sdkp, sdp, buffer);
2724		if (sector_size < 0)
2725			return;
2726	} else {
2727		sector_size = read_capacity_10(sdkp, sdp, buffer);
2728		if (sector_size == -EOVERFLOW)
2729			goto got_data;
2730		if (sector_size < 0)
2731			return;
2732		if ((sizeof(sdkp->capacity) > 4) &&
2733		    (sdkp->capacity > 0xffffffffULL)) {
2734			int old_sector_size = sector_size;
2735			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2736					"Trying to use READ CAPACITY(16).\n");
2737			sector_size = read_capacity_16(sdkp, sdp, buffer);
2738			if (sector_size < 0) {
2739				sd_printk(KERN_NOTICE, sdkp,
2740					"Using 0xffffffff as device size\n");
2741				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2742				sector_size = old_sector_size;
2743				goto got_data;
2744			}
2745			/* Remember that READ CAPACITY(16) succeeded */
2746			sdp->try_rc_10_first = 0;
2747		}
2748	}
2749
2750	/* Some devices are known to return the total number of blocks,
2751	 * not the highest block number.  Some devices have versions
2752	 * which do this and others which do not.  Some devices we might
2753	 * suspect of doing this but we don't know for certain.
2754	 *
2755	 * If we know the reported capacity is wrong, decrement it.  If
2756	 * we can only guess, then assume the number of blocks is even
2757	 * (usually true but not always) and err on the side of lowering
2758	 * the capacity.
2759	 */
2760	if (sdp->fix_capacity ||
2761	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2762		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2763				"from its reported value: %llu\n",
2764				(unsigned long long) sdkp->capacity);
2765		--sdkp->capacity;
2766	}
2767
2768got_data:
2769	if (sector_size == 0) {
2770		sector_size = 512;
2771		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2772			  "assuming 512.\n");
2773	}
2774
2775	if (sector_size != 512 &&
2776	    sector_size != 1024 &&
2777	    sector_size != 2048 &&
2778	    sector_size != 4096) {
2779		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2780			  sector_size);
2781		/*
2782		 * The user might want to re-format the drive with
2783		 * a supported sectorsize.  Once this happens, it
2784		 * would be relatively trivial to set the thing up.
2785		 * For this reason, we leave the thing in the table.
2786		 */
2787		sdkp->capacity = 0;
2788		/*
2789		 * set a bogus sector size so the normal read/write
2790		 * logic in the block layer will eventually refuse any
2791		 * request on this device without tripping over power
2792		 * of two sector size assumptions
2793		 */
2794		sector_size = 512;
2795	}
2796	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2797	blk_queue_physical_block_size(sdp->request_queue,
2798				      sdkp->physical_block_size);
2799	sdkp->device->sector_size = sector_size;
2800
2801	if (sdkp->capacity > 0xffffffff)
2802		sdp->use_16_for_rw = 1;
2803
2804}
2805
2806/*
2807 * Print disk capacity
2808 */
2809static void
2810sd_print_capacity(struct scsi_disk *sdkp,
2811		  sector_t old_capacity)
2812{
2813	int sector_size = sdkp->device->sector_size;
2814	char cap_str_2[10], cap_str_10[10];
2815
2816	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2817		return;
2818
2819	string_get_size(sdkp->capacity, sector_size,
2820			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2821	string_get_size(sdkp->capacity, sector_size,
2822			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2823
2824	sd_printk(KERN_NOTICE, sdkp,
2825		  "%llu %d-byte logical blocks: (%s/%s)\n",
2826		  (unsigned long long)sdkp->capacity,
2827		  sector_size, cap_str_10, cap_str_2);
2828
2829	if (sdkp->physical_block_size != sector_size)
2830		sd_printk(KERN_NOTICE, sdkp,
2831			  "%u-byte physical blocks\n",
2832			  sdkp->physical_block_size);
 
 
2833}
2834
2835/* called with buffer of length 512 */
2836static inline int
2837sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2838		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2839		 struct scsi_sense_hdr *sshdr)
2840{
2841	/*
2842	 * If we must use MODE SENSE(10), make sure that the buffer length
2843	 * is at least 8 bytes so that the mode sense header fits.
2844	 */
2845	if (sdkp->device->use_10_for_ms && len < 8)
2846		len = 8;
2847
2848	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2849			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2850}
2851
2852/*
2853 * read write protect setting, if possible - called only in sd_revalidate_disk()
2854 * called with buffer of length SD_BUF_SIZE
2855 */
2856static void
2857sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2858{
2859	int res;
2860	struct scsi_device *sdp = sdkp->device;
2861	struct scsi_mode_data data;
2862	int old_wp = sdkp->write_prot;
2863
2864	set_disk_ro(sdkp->disk, 0);
2865	if (sdp->skip_ms_page_3f) {
2866		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2867		return;
2868	}
2869
2870	if (sdp->use_192_bytes_for_3f) {
2871		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2872	} else {
2873		/*
2874		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2875		 * We have to start carefully: some devices hang if we ask
2876		 * for more than is available.
2877		 */
2878		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2879
2880		/*
2881		 * Second attempt: ask for page 0 When only page 0 is
2882		 * implemented, a request for page 3F may return Sense Key
2883		 * 5: Illegal Request, Sense Code 24: Invalid field in
2884		 * CDB.
2885		 */
2886		if (res < 0)
2887			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2888
2889		/*
2890		 * Third attempt: ask 255 bytes, as we did earlier.
2891		 */
2892		if (res < 0)
2893			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2894					       &data, NULL);
2895	}
2896
2897	if (res < 0) {
2898		sd_first_printk(KERN_WARNING, sdkp,
2899			  "Test WP failed, assume Write Enabled\n");
2900	} else {
2901		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2902		set_disk_ro(sdkp->disk, sdkp->write_prot);
2903		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2904			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2905				  sdkp->write_prot ? "on" : "off");
2906			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2907		}
2908	}
2909}
2910
2911/*
2912 * sd_read_cache_type - called only from sd_revalidate_disk()
2913 * called with buffer of length SD_BUF_SIZE
2914 */
2915static void
2916sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2917{
2918	int len = 0, res;
2919	struct scsi_device *sdp = sdkp->device;
2920
2921	int dbd;
2922	int modepage;
2923	int first_len;
2924	struct scsi_mode_data data;
2925	struct scsi_sense_hdr sshdr;
2926	int old_wce = sdkp->WCE;
2927	int old_rcd = sdkp->RCD;
2928	int old_dpofua = sdkp->DPOFUA;
2929
2930
2931	if (sdkp->cache_override)
2932		return;
2933
2934	first_len = 4;
2935	if (sdp->skip_ms_page_8) {
2936		if (sdp->type == TYPE_RBC)
2937			goto defaults;
2938		else {
2939			if (sdp->skip_ms_page_3f)
2940				goto defaults;
2941			modepage = 0x3F;
2942			if (sdp->use_192_bytes_for_3f)
2943				first_len = 192;
2944			dbd = 0;
2945		}
2946	} else if (sdp->type == TYPE_RBC) {
2947		modepage = 6;
2948		dbd = 8;
2949	} else {
2950		modepage = 8;
2951		dbd = 0;
2952	}
2953
2954	/* cautiously ask */
2955	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2956			&data, &sshdr);
2957
2958	if (res < 0)
2959		goto bad_sense;
2960
2961	if (!data.header_length) {
2962		modepage = 6;
2963		first_len = 0;
2964		sd_first_printk(KERN_ERR, sdkp,
2965				"Missing header in MODE_SENSE response\n");
2966	}
2967
2968	/* that went OK, now ask for the proper length */
2969	len = data.length;
2970
2971	/*
2972	 * We're only interested in the first three bytes, actually.
2973	 * But the data cache page is defined for the first 20.
2974	 */
2975	if (len < 3)
2976		goto bad_sense;
2977	else if (len > SD_BUF_SIZE) {
2978		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2979			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2980		len = SD_BUF_SIZE;
2981	}
2982	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2983		len = 192;
2984
2985	/* Get the data */
2986	if (len > first_len)
2987		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2988				&data, &sshdr);
2989
2990	if (!res) {
2991		int offset = data.header_length + data.block_descriptor_length;
2992
2993		while (offset < len) {
2994			u8 page_code = buffer[offset] & 0x3F;
2995			u8 spf       = buffer[offset] & 0x40;
2996
2997			if (page_code == 8 || page_code == 6) {
2998				/* We're interested only in the first 3 bytes.
2999				 */
3000				if (len - offset <= 2) {
3001					sd_first_printk(KERN_ERR, sdkp,
3002						"Incomplete mode parameter "
3003							"data\n");
3004					goto defaults;
3005				} else {
3006					modepage = page_code;
3007					goto Page_found;
3008				}
3009			} else {
3010				/* Go to the next page */
3011				if (spf && len - offset > 3)
3012					offset += 4 + (buffer[offset+2] << 8) +
3013						buffer[offset+3];
3014				else if (!spf && len - offset > 1)
3015					offset += 2 + buffer[offset+1];
3016				else {
3017					sd_first_printk(KERN_ERR, sdkp,
3018							"Incomplete mode "
3019							"parameter data\n");
3020					goto defaults;
3021				}
3022			}
3023		}
3024
3025		sd_first_printk(KERN_WARNING, sdkp,
3026				"No Caching mode page found\n");
3027		goto defaults;
3028
3029	Page_found:
3030		if (modepage == 8) {
3031			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3032			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3033		} else {
3034			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3035			sdkp->RCD = 0;
3036		}
3037
3038		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3039		if (sdp->broken_fua) {
3040			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3041			sdkp->DPOFUA = 0;
3042		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3043			   !sdkp->device->use_16_for_rw) {
3044			sd_first_printk(KERN_NOTICE, sdkp,
3045				  "Uses READ/WRITE(6), disabling FUA\n");
3046			sdkp->DPOFUA = 0;
3047		}
3048
3049		/* No cache flush allowed for write protected devices */
3050		if (sdkp->WCE && sdkp->write_prot)
3051			sdkp->WCE = 0;
3052
3053		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3054		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3055			sd_printk(KERN_NOTICE, sdkp,
3056				  "Write cache: %s, read cache: %s, %s\n",
3057				  sdkp->WCE ? "enabled" : "disabled",
3058				  sdkp->RCD ? "disabled" : "enabled",
3059				  sdkp->DPOFUA ? "supports DPO and FUA"
3060				  : "doesn't support DPO or FUA");
3061
3062		return;
3063	}
3064
3065bad_sense:
3066	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3067	    sshdr.sense_key == ILLEGAL_REQUEST &&
3068	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3069		/* Invalid field in CDB */
3070		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3071	else
3072		sd_first_printk(KERN_ERR, sdkp,
3073				"Asking for cache data failed\n");
3074
3075defaults:
3076	if (sdp->wce_default_on) {
3077		sd_first_printk(KERN_NOTICE, sdkp,
3078				"Assuming drive cache: write back\n");
3079		sdkp->WCE = 1;
3080	} else {
3081		sd_first_printk(KERN_WARNING, sdkp,
3082				"Assuming drive cache: write through\n");
3083		sdkp->WCE = 0;
3084	}
3085	sdkp->RCD = 0;
3086	sdkp->DPOFUA = 0;
3087}
3088
3089static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3090{
3091	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3092	struct {
3093		struct scsi_stream_status_header h;
3094		struct scsi_stream_status s;
3095	} buf;
3096	struct scsi_device *sdev = sdkp->device;
3097	struct scsi_sense_hdr sshdr;
3098	const struct scsi_exec_args exec_args = {
3099		.sshdr = &sshdr,
3100	};
3101	int res;
3102
3103	put_unaligned_be16(stream_id, &cdb[4]);
3104	put_unaligned_be32(sizeof(buf), &cdb[10]);
3105
3106	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3107			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3108	if (res < 0)
3109		return false;
3110	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3111		sd_print_sense_hdr(sdkp, &sshdr);
3112	if (res)
3113		return false;
3114	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3115		return false;
3116	return buf.h.stream_status[0].perm;
3117}
3118
3119static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3120{
3121	struct scsi_device *sdp = sdkp->device;
3122	const struct scsi_io_group_descriptor *desc, *start, *end;
3123	u16 permanent_stream_count_old;
3124	struct scsi_sense_hdr sshdr;
3125	struct scsi_mode_data data;
3126	int res;
3127
3128	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3129			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3130			      sdkp->max_retries, &data, &sshdr);
3131	if (res < 0)
3132		return;
3133	start = (void *)buffer + data.header_length + 16;
3134	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3135					  sizeof(*end));
3136	/*
3137	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3138	 * should assign the lowest numbered stream identifiers to permanent
3139	 * streams.
3140	 */
3141	for (desc = start; desc < end; desc++)
3142		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3143			break;
3144	permanent_stream_count_old = sdkp->permanent_stream_count;
3145	sdkp->permanent_stream_count = desc - start;
3146	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3147		sd_printk(KERN_INFO, sdkp,
3148			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3149			  sdkp->permanent_stream_count);
3150	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3151		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3152			  sdkp->permanent_stream_count);
3153}
3154
3155/*
3156 * The ATO bit indicates whether the DIF application tag is available
3157 * for use by the operating system.
3158 */
3159static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3160{
3161	int res, offset;
3162	struct scsi_device *sdp = sdkp->device;
3163	struct scsi_mode_data data;
3164	struct scsi_sense_hdr sshdr;
3165
3166	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3167		return;
3168
3169	if (sdkp->protection_type == 0)
3170		return;
3171
3172	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3173			      sdkp->max_retries, &data, &sshdr);
3174
3175	if (res < 0 || !data.header_length ||
3176	    data.length < 6) {
3177		sd_first_printk(KERN_WARNING, sdkp,
3178			  "getting Control mode page failed, assume no ATO\n");
3179
3180		if (res == -EIO && scsi_sense_valid(&sshdr))
3181			sd_print_sense_hdr(sdkp, &sshdr);
3182
3183		return;
3184	}
3185
3186	offset = data.header_length + data.block_descriptor_length;
3187
3188	if ((buffer[offset] & 0x3f) != 0x0a) {
3189		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3190		return;
3191	}
3192
3193	if ((buffer[offset + 5] & 0x80) == 0)
3194		return;
3195
3196	sdkp->ATO = 1;
3197
3198	return;
3199}
3200
3201/**
3202 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3203 * @sdkp: disk to query
3204 */
3205static void sd_read_block_limits(struct scsi_disk *sdkp)
3206{
3207	struct scsi_vpd *vpd;
3208
3209	rcu_read_lock();
3210
3211	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3212	if (!vpd || vpd->len < 16)
 
3213		goto out;
3214
3215	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3216	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3217	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
 
 
3218
3219	if (vpd->len >= 64) {
3220		unsigned int lba_count, desc_count;
3221
3222		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3223
3224		if (!sdkp->lbpme)
3225			goto out;
3226
3227		lba_count = get_unaligned_be32(&vpd->data[20]);
3228		desc_count = get_unaligned_be32(&vpd->data[24]);
3229
3230		if (lba_count && desc_count)
3231			sdkp->max_unmap_blocks = lba_count;
3232
3233		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3234
3235		if (vpd->data[32] & 0x80)
3236			sdkp->unmap_alignment =
3237				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3238
3239		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3240
3241			if (sdkp->max_unmap_blocks)
3242				sd_config_discard(sdkp, SD_LBP_UNMAP);
3243			else
3244				sd_config_discard(sdkp, SD_LBP_WS16);
3245
3246		} else {	/* LBP VPD page tells us what to use */
3247			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3248				sd_config_discard(sdkp, SD_LBP_UNMAP);
3249			else if (sdkp->lbpws)
3250				sd_config_discard(sdkp, SD_LBP_WS16);
3251			else if (sdkp->lbpws10)
3252				sd_config_discard(sdkp, SD_LBP_WS10);
3253			else
3254				sd_config_discard(sdkp, SD_LBP_DISABLE);
3255		}
3256	}
3257
3258 out:
3259	rcu_read_unlock();
3260}
3261
3262/* Parse the Block Limits Extension VPD page (0xb7) */
3263static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3264{
3265	struct scsi_vpd *vpd;
3266
3267	rcu_read_lock();
3268	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3269	if (vpd && vpd->len >= 2)
3270		sdkp->rscs = vpd->data[5] & 1;
3271	rcu_read_unlock();
3272}
3273
3274/**
3275 * sd_read_block_characteristics - Query block dev. characteristics
3276 * @sdkp: disk to query
3277 */
3278static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3279{
3280	struct request_queue *q = sdkp->disk->queue;
3281	struct scsi_vpd *vpd;
3282	u16 rot;
 
3283
3284	rcu_read_lock();
3285	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3286
3287	if (!vpd || vpd->len < 8) {
3288		rcu_read_unlock();
3289	        return;
3290	}
3291
3292	rot = get_unaligned_be16(&vpd->data[4]);
3293	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3294	rcu_read_unlock();
3295
3296	if (rot == 1) {
3297		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3298		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3299	}
3300
3301
3302#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3303	if (sdkp->device->type == TYPE_ZBC) {
3304		/*
3305		 * Host-managed.
3306		 */
3307		disk_set_zoned(sdkp->disk);
3308
3309		/*
3310		 * Per ZBC and ZAC specifications, writes in sequential write
3311		 * required zones of host-managed devices must be aligned to
3312		 * the device physical block size.
3313		 */
3314		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3315	} else {
3316		/*
3317		 * Host-aware devices are treated as conventional.
3318		 */
3319		WARN_ON_ONCE(blk_queue_is_zoned(q));
 
 
 
 
 
 
3320	}
3321#endif /* CONFIG_BLK_DEV_ZONED */
3322
3323	if (!sdkp->first_scan)
3324		return;
3325
3326	if (blk_queue_is_zoned(q))
3327		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3328	else if (sdkp->zoned == 1)
3329		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3330	else if (sdkp->zoned == 2)
3331		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3332}
3333
3334/**
3335 * sd_read_block_provisioning - Query provisioning VPD page
3336 * @sdkp: disk to query
3337 */
3338static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3339{
3340	struct scsi_vpd *vpd;
 
3341
3342	if (sdkp->lbpme == 0)
3343		return;
3344
3345	rcu_read_lock();
3346	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3347
3348	if (!vpd || vpd->len < 8) {
3349		rcu_read_unlock();
3350		return;
3351	}
3352
3353	sdkp->lbpvpd	= 1;
3354	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3355	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3356	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3357	rcu_read_unlock();
 
 
3358}
3359
3360static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3361{
3362	struct scsi_device *sdev = sdkp->device;
3363
3364	if (sdev->host->no_write_same) {
3365		sdev->no_write_same = 1;
3366
3367		return;
3368	}
3369
3370	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3371		struct scsi_vpd *vpd;
 
3372
3373		sdev->no_report_opcodes = 1;
3374
3375		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3376		 * CODES is unsupported and the device has an ATA
3377		 * Information VPD page (SAT).
3378		 */
3379		rcu_read_lock();
3380		vpd = rcu_dereference(sdev->vpd_pg89);
3381		if (vpd)
3382			sdev->no_write_same = 1;
3383		rcu_read_unlock();
3384	}
3385
3386	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3387		sdkp->ws16 = 1;
3388
3389	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3390		sdkp->ws10 = 1;
3391}
3392
3393static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3394{
3395	struct scsi_device *sdev = sdkp->device;
3396
3397	if (!sdev->security_supported)
3398		return;
3399
3400	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3401			SECURITY_PROTOCOL_IN, 0) == 1 &&
3402	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3403			SECURITY_PROTOCOL_OUT, 0) == 1)
3404		sdkp->security = 1;
3405}
3406
3407static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3408{
3409	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3410}
3411
3412/**
3413 * sd_read_cpr - Query concurrent positioning ranges
3414 * @sdkp:	disk to query
3415 */
3416static void sd_read_cpr(struct scsi_disk *sdkp)
3417{
3418	struct blk_independent_access_ranges *iars = NULL;
3419	unsigned char *buffer = NULL;
3420	unsigned int nr_cpr = 0;
3421	int i, vpd_len, buf_len = SD_BUF_SIZE;
3422	u8 *desc;
3423
3424	/*
3425	 * We need to have the capacity set first for the block layer to be
3426	 * able to check the ranges.
3427	 */
3428	if (sdkp->first_scan)
3429		return;
3430
3431	if (!sdkp->capacity)
3432		goto out;
3433
3434	/*
3435	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3436	 * leading to a maximum page size of 64 + 256*32 bytes.
3437	 */
3438	buf_len = 64 + 256*32;
3439	buffer = kmalloc(buf_len, GFP_KERNEL);
3440	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3441		goto out;
3442
3443	/* We must have at least a 64B header and one 32B range descriptor */
3444	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3445	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3446		sd_printk(KERN_ERR, sdkp,
3447			  "Invalid Concurrent Positioning Ranges VPD page\n");
3448		goto out;
3449	}
3450
3451	nr_cpr = (vpd_len - 64) / 32;
3452	if (nr_cpr == 1) {
3453		nr_cpr = 0;
3454		goto out;
3455	}
3456
3457	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3458	if (!iars) {
3459		nr_cpr = 0;
3460		goto out;
3461	}
3462
3463	desc = &buffer[64];
3464	for (i = 0; i < nr_cpr; i++, desc += 32) {
3465		if (desc[0] != i) {
3466			sd_printk(KERN_ERR, sdkp,
3467				"Invalid Concurrent Positioning Range number\n");
3468			nr_cpr = 0;
3469			break;
3470		}
3471
3472		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3473		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3474	}
3475
3476out:
3477	disk_set_independent_access_ranges(sdkp->disk, iars);
3478	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3479		sd_printk(KERN_NOTICE, sdkp,
3480			  "%u concurrent positioning ranges\n", nr_cpr);
3481		sdkp->nr_actuators = nr_cpr;
3482	}
3483
3484	kfree(buffer);
3485}
3486
3487static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3488{
3489	struct scsi_device *sdp = sdkp->device;
3490	unsigned int min_xfer_bytes =
3491		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3492
3493	if (sdkp->min_xfer_blocks == 0)
3494		return false;
3495
3496	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3497		sd_first_printk(KERN_WARNING, sdkp,
3498				"Preferred minimum I/O size %u bytes not a " \
3499				"multiple of physical block size (%u bytes)\n",
3500				min_xfer_bytes, sdkp->physical_block_size);
3501		sdkp->min_xfer_blocks = 0;
3502		return false;
3503	}
3504
3505	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3506			min_xfer_bytes);
3507	return true;
3508}
3509
3510/*
3511 * Determine the device's preferred I/O size for reads and writes
3512 * unless the reported value is unreasonably small, large, not a
3513 * multiple of the physical block size, or simply garbage.
3514 */
3515static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3516				      unsigned int dev_max)
3517{
3518	struct scsi_device *sdp = sdkp->device;
3519	unsigned int opt_xfer_bytes =
3520		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3521	unsigned int min_xfer_bytes =
3522		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3523
3524	if (sdkp->opt_xfer_blocks == 0)
3525		return false;
3526
3527	if (sdkp->opt_xfer_blocks > dev_max) {
3528		sd_first_printk(KERN_WARNING, sdkp,
3529				"Optimal transfer size %u logical blocks " \
3530				"> dev_max (%u logical blocks)\n",
3531				sdkp->opt_xfer_blocks, dev_max);
3532		return false;
3533	}
3534
3535	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3536		sd_first_printk(KERN_WARNING, sdkp,
3537				"Optimal transfer size %u logical blocks " \
3538				"> sd driver limit (%u logical blocks)\n",
3539				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3540		return false;
3541	}
3542
3543	if (opt_xfer_bytes < PAGE_SIZE) {
3544		sd_first_printk(KERN_WARNING, sdkp,
3545				"Optimal transfer size %u bytes < " \
3546				"PAGE_SIZE (%u bytes)\n",
3547				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3548		return false;
3549	}
3550
3551	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3552		sd_first_printk(KERN_WARNING, sdkp,
3553				"Optimal transfer size %u bytes not a " \
3554				"multiple of preferred minimum block " \
3555				"size (%u bytes)\n",
3556				opt_xfer_bytes, min_xfer_bytes);
3557		return false;
3558	}
3559
3560	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3561		sd_first_printk(KERN_WARNING, sdkp,
3562				"Optimal transfer size %u bytes not a " \
3563				"multiple of physical block size (%u bytes)\n",
3564				opt_xfer_bytes, sdkp->physical_block_size);
3565		return false;
3566	}
3567
3568	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3569			opt_xfer_bytes);
3570	return true;
3571}
3572
3573static void sd_read_block_zero(struct scsi_disk *sdkp)
3574{
3575	unsigned int buf_len = sdkp->device->sector_size;
3576	char *buffer, cmd[10] = { };
3577
3578	buffer = kmalloc(buf_len, GFP_KERNEL);
3579	if (!buffer)
3580		return;
3581
3582	cmd[0] = READ_10;
3583	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3584	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3585
3586	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3587			 SD_TIMEOUT, sdkp->max_retries, NULL);
3588	kfree(buffer);
3589}
3590
3591/**
3592 *	sd_revalidate_disk - called the first time a new disk is seen,
3593 *	performs disk spin up, read_capacity, etc.
3594 *	@disk: struct gendisk we care about
3595 **/
3596static int sd_revalidate_disk(struct gendisk *disk)
3597{
3598	struct scsi_disk *sdkp = scsi_disk(disk);
3599	struct scsi_device *sdp = sdkp->device;
3600	struct request_queue *q = sdkp->disk->queue;
3601	sector_t old_capacity = sdkp->capacity;
3602	unsigned char *buffer;
3603	unsigned int dev_max, rw_max;
3604
3605	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3606				      "sd_revalidate_disk\n"));
3607
3608	/*
3609	 * If the device is offline, don't try and read capacity or any
3610	 * of the other niceties.
3611	 */
3612	if (!scsi_device_online(sdp))
3613		goto out;
3614
3615	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3616	if (!buffer) {
3617		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3618			  "allocation failure.\n");
3619		goto out;
3620	}
3621
3622	sd_spinup_disk(sdkp);
3623
3624	/*
3625	 * Without media there is no reason to ask; moreover, some devices
3626	 * react badly if we do.
3627	 */
3628	if (sdkp->media_present) {
3629		sd_read_capacity(sdkp, buffer);
3630		/*
3631		 * Some USB/UAS devices return generic values for mode pages
3632		 * until the media has been accessed. Trigger a READ operation
3633		 * to force the device to populate mode pages.
3634		 */
3635		if (sdp->read_before_ms)
3636			sd_read_block_zero(sdkp);
3637		/*
3638		 * set the default to rotational.  All non-rotational devices
3639		 * support the block characteristics VPD page, which will
3640		 * cause this to be updated correctly and any device which
3641		 * doesn't support it should be treated as rotational.
3642		 */
3643		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3644		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3645
3646		if (scsi_device_supports_vpd(sdp)) {
3647			sd_read_block_provisioning(sdkp);
3648			sd_read_block_limits(sdkp);
3649			sd_read_block_limits_ext(sdkp);
3650			sd_read_block_characteristics(sdkp);
3651			sd_zbc_read_zones(sdkp, buffer);
3652			sd_read_cpr(sdkp);
3653		}
3654
3655		sd_print_capacity(sdkp, old_capacity);
3656
3657		sd_read_write_protect_flag(sdkp, buffer);
3658		sd_read_cache_type(sdkp, buffer);
3659		sd_read_io_hints(sdkp, buffer);
3660		sd_read_app_tag_own(sdkp, buffer);
3661		sd_read_write_same(sdkp, buffer);
3662		sd_read_security(sdkp, buffer);
3663		sd_config_protection(sdkp);
3664	}
3665
3666	/*
3667	 * We now have all cache related info, determine how we deal
3668	 * with flush requests.
3669	 */
3670	sd_set_flush_flag(sdkp);
3671
3672	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3673	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3674
3675	/* Some devices report a maximum block count for READ/WRITE requests. */
3676	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3677	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3678
3679	if (sd_validate_min_xfer_size(sdkp))
3680		blk_queue_io_min(sdkp->disk->queue,
3681				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3682	else
3683		blk_queue_io_min(sdkp->disk->queue, 0);
3684
3685	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3686		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3687		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3688	} else {
3689		q->limits.io_opt = 0;
3690		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3691				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3692	}
3693
3694	/*
3695	 * Limit default to SCSI host optimal sector limit if set. There may be
3696	 * an impact on performance for when the size of a request exceeds this
3697	 * host limit.
3698	 */
3699	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3700
3701	/* Do not exceed controller limit */
3702	rw_max = min(rw_max, queue_max_hw_sectors(q));
3703
3704	/*
3705	 * Only update max_sectors if previously unset or if the current value
3706	 * exceeds the capabilities of the hardware.
3707	 */
3708	if (sdkp->first_scan ||
3709	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3710	    q->limits.max_sectors > q->limits.max_hw_sectors) {
3711		q->limits.max_sectors = rw_max;
3712		q->limits.max_user_sectors = rw_max;
3713	}
3714
3715	sdkp->first_scan = 0;
3716
3717	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3718	sd_config_write_same(sdkp);
3719	kfree(buffer);
3720
3721	/*
3722	 * For a zoned drive, revalidating the zones can be done only once
3723	 * the gendisk capacity is set. So if this fails, set back the gendisk
3724	 * capacity to 0.
3725	 */
3726	if (sd_zbc_revalidate_zones(sdkp))
3727		set_capacity_and_notify(disk, 0);
3728
3729 out:
3730	return 0;
3731}
3732
3733/**
3734 *	sd_unlock_native_capacity - unlock native capacity
3735 *	@disk: struct gendisk to set capacity for
3736 *
3737 *	Block layer calls this function if it detects that partitions
3738 *	on @disk reach beyond the end of the device.  If the SCSI host
3739 *	implements ->unlock_native_capacity() method, it's invoked to
3740 *	give it a chance to adjust the device capacity.
3741 *
3742 *	CONTEXT:
3743 *	Defined by block layer.  Might sleep.
3744 */
3745static void sd_unlock_native_capacity(struct gendisk *disk)
3746{
3747	struct scsi_device *sdev = scsi_disk(disk)->device;
3748
3749	if (sdev->host->hostt->unlock_native_capacity)
3750		sdev->host->hostt->unlock_native_capacity(sdev);
3751}
3752
3753/**
3754 *	sd_format_disk_name - format disk name
3755 *	@prefix: name prefix - ie. "sd" for SCSI disks
3756 *	@index: index of the disk to format name for
3757 *	@buf: output buffer
3758 *	@buflen: length of the output buffer
3759 *
3760 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3761 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3762 *	which is followed by sdaaa.
3763 *
3764 *	This is basically 26 base counting with one extra 'nil' entry
3765 *	at the beginning from the second digit on and can be
3766 *	determined using similar method as 26 base conversion with the
3767 *	index shifted -1 after each digit is computed.
3768 *
3769 *	CONTEXT:
3770 *	Don't care.
3771 *
3772 *	RETURNS:
3773 *	0 on success, -errno on failure.
3774 */
3775static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3776{
3777	const int base = 'z' - 'a' + 1;
3778	char *begin = buf + strlen(prefix);
3779	char *end = buf + buflen;
3780	char *p;
3781	int unit;
3782
3783	p = end - 1;
3784	*p = '\0';
3785	unit = base;
3786	do {
3787		if (p == begin)
3788			return -EINVAL;
3789		*--p = 'a' + (index % unit);
3790		index = (index / unit) - 1;
3791	} while (index >= 0);
3792
3793	memmove(begin, p, end - p);
3794	memcpy(buf, prefix, strlen(prefix));
3795
3796	return 0;
3797}
3798
3799/**
3800 *	sd_probe - called during driver initialization and whenever a
3801 *	new scsi device is attached to the system. It is called once
3802 *	for each scsi device (not just disks) present.
3803 *	@dev: pointer to device object
3804 *
3805 *	Returns 0 if successful (or not interested in this scsi device 
3806 *	(e.g. scanner)); 1 when there is an error.
3807 *
3808 *	Note: this function is invoked from the scsi mid-level.
3809 *	This function sets up the mapping between a given 
3810 *	<host,channel,id,lun> (found in sdp) and new device name 
3811 *	(e.g. /dev/sda). More precisely it is the block device major 
3812 *	and minor number that is chosen here.
3813 *
3814 *	Assume sd_probe is not re-entrant (for time being)
3815 *	Also think about sd_probe() and sd_remove() running coincidentally.
3816 **/
3817static int sd_probe(struct device *dev)
3818{
3819	struct scsi_device *sdp = to_scsi_device(dev);
3820	struct scsi_disk *sdkp;
3821	struct gendisk *gd;
3822	int index;
3823	int error;
3824
3825	scsi_autopm_get_device(sdp);
3826	error = -ENODEV;
3827	if (sdp->type != TYPE_DISK &&
3828	    sdp->type != TYPE_ZBC &&
3829	    sdp->type != TYPE_MOD &&
3830	    sdp->type != TYPE_RBC)
3831		goto out;
3832
3833	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3834		sdev_printk(KERN_WARNING, sdp,
3835			    "Unsupported ZBC host-managed device.\n");
3836		goto out;
3837	}
3838
3839	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3840					"sd_probe\n"));
3841
3842	error = -ENOMEM;
3843	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3844	if (!sdkp)
3845		goto out;
3846
3847	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3848					 &sd_bio_compl_lkclass);
3849	if (!gd)
3850		goto out_free;
3851
3852	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3853	if (index < 0) {
3854		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3855		goto out_put;
3856	}
3857
3858	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3859	if (error) {
3860		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3861		goto out_free_index;
3862	}
3863
3864	sdkp->device = sdp;
 
3865	sdkp->disk = gd;
3866	sdkp->index = index;
3867	sdkp->max_retries = SD_MAX_RETRIES;
3868	atomic_set(&sdkp->openers, 0);
3869	atomic_set(&sdkp->device->ioerr_cnt, 0);
3870
3871	if (!sdp->request_queue->rq_timeout) {
3872		if (sdp->type != TYPE_MOD)
3873			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3874		else
3875			blk_queue_rq_timeout(sdp->request_queue,
3876					     SD_MOD_TIMEOUT);
3877	}
3878
3879	device_initialize(&sdkp->disk_dev);
3880	sdkp->disk_dev.parent = get_device(dev);
3881	sdkp->disk_dev.class = &sd_disk_class;
3882	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3883
3884	error = device_add(&sdkp->disk_dev);
3885	if (error) {
3886		put_device(&sdkp->disk_dev);
3887		goto out;
3888	}
3889
 
3890	dev_set_drvdata(dev, sdkp);
3891
3892	gd->major = sd_major((index & 0xf0) >> 4);
3893	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3894	gd->minors = SD_MINORS;
3895
3896	gd->fops = &sd_fops;
3897	gd->private_data = sdkp;
 
3898
3899	/* defaults, until the device tells us otherwise */
3900	sdp->sector_size = 512;
3901	sdkp->capacity = 0;
3902	sdkp->media_present = 1;
3903	sdkp->write_prot = 0;
3904	sdkp->cache_override = 0;
3905	sdkp->WCE = 0;
3906	sdkp->RCD = 0;
3907	sdkp->ATO = 0;
3908	sdkp->first_scan = 1;
3909	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3910
3911	sd_revalidate_disk(gd);
3912
 
3913	if (sdp->removable) {
3914		gd->flags |= GENHD_FL_REMOVABLE;
3915		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3916		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3917	}
3918
3919	blk_pm_runtime_init(sdp->request_queue, dev);
3920	if (sdp->rpm_autosuspend) {
3921		pm_runtime_set_autosuspend_delay(dev,
3922			sdp->host->rpm_autosuspend_delay);
3923	}
3924
3925	error = device_add_disk(dev, gd, NULL);
3926	if (error) {
3927		device_unregister(&sdkp->disk_dev);
3928		put_disk(gd);
3929		goto out;
3930	}
3931
3932	if (sdkp->security) {
3933		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3934		if (sdkp->opal_dev)
3935			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3936	}
3937
3938	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3939		  sdp->removable ? "removable " : "");
3940	scsi_autopm_put_device(sdp);
3941
3942	return 0;
3943
3944 out_free_index:
3945	ida_free(&sd_index_ida, index);
3946 out_put:
3947	put_disk(gd);
3948 out_free:
3949	kfree(sdkp);
3950 out:
3951	scsi_autopm_put_device(sdp);
3952	return error;
3953}
3954
3955/**
3956 *	sd_remove - called whenever a scsi disk (previously recognized by
3957 *	sd_probe) is detached from the system. It is called (potentially
3958 *	multiple times) during sd module unload.
3959 *	@dev: pointer to device object
3960 *
3961 *	Note: this function is invoked from the scsi mid-level.
3962 *	This function potentially frees up a device name (e.g. /dev/sdc)
3963 *	that could be re-used by a subsequent sd_probe().
3964 *	This function is not called when the built-in sd driver is "exit-ed".
3965 **/
3966static int sd_remove(struct device *dev)
3967{
3968	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3969
 
 
3970	scsi_autopm_get_device(sdkp->device);
3971
3972	device_del(&sdkp->disk_dev);
 
3973	del_gendisk(sdkp->disk);
3974	if (!sdkp->suspended)
3975		sd_shutdown(dev);
 
 
 
 
 
 
 
 
 
3976
3977	put_disk(sdkp->disk);
3978	return 0;
3979}
3980
 
 
 
 
 
 
 
 
 
3981static void scsi_disk_release(struct device *dev)
3982{
3983	struct scsi_disk *sdkp = to_scsi_disk(dev);
 
 
3984
3985	ida_free(&sd_index_ida, sdkp->index);
3986	sd_zbc_free_zone_info(sdkp);
 
 
 
 
 
 
 
 
 
 
 
 
 
3987	put_device(&sdkp->device->sdev_gendev);
3988	free_opal_dev(sdkp->opal_dev);
3989
3990	kfree(sdkp);
3991}
3992
3993static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3994{
3995	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3996	struct scsi_sense_hdr sshdr;
3997	const struct scsi_exec_args exec_args = {
3998		.sshdr = &sshdr,
3999		.req_flags = BLK_MQ_REQ_PM,
4000	};
4001	struct scsi_device *sdp = sdkp->device;
4002	int res;
4003
4004	if (start)
4005		cmd[4] |= 1;	/* START */
4006
4007	if (sdp->start_stop_pwr_cond)
4008		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4009
4010	if (!scsi_device_online(sdp))
4011		return -ENODEV;
4012
4013	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4014			       sdkp->max_retries, &exec_args);
4015	if (res) {
4016		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4017		if (res > 0 && scsi_sense_valid(&sshdr)) {
4018			sd_print_sense_hdr(sdkp, &sshdr);
 
4019			/* 0x3a is medium not present */
4020			if (sshdr.asc == 0x3a)
4021				res = 0;
4022		}
4023	}
4024
4025	/* SCSI error codes must not go to the generic layer */
4026	if (res)
4027		return -EIO;
4028
4029	return 0;
4030}
4031
4032/*
4033 * Send a SYNCHRONIZE CACHE instruction down to the device through
4034 * the normal SCSI command structure.  Wait for the command to
4035 * complete.
4036 */
4037static void sd_shutdown(struct device *dev)
4038{
4039	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4040
4041	if (!sdkp)
4042		return;         /* this can happen */
4043
4044	if (pm_runtime_suspended(dev))
4045		return;
4046
4047	if (sdkp->WCE && sdkp->media_present) {
4048		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4049		sd_sync_cache(sdkp);
4050	}
4051
4052	if ((system_state != SYSTEM_RESTART &&
4053	     sdkp->device->manage_system_start_stop) ||
4054	    (system_state == SYSTEM_POWER_OFF &&
4055	     sdkp->device->manage_shutdown)) {
4056		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4057		sd_start_stop_device(sdkp, 0);
4058	}
4059}
4060
4061static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4062{
4063	return (sdev->manage_system_start_stop && !runtime) ||
4064		(sdev->manage_runtime_start_stop && runtime);
4065}
4066
4067static int sd_suspend_common(struct device *dev, bool runtime)
4068{
4069	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
4070	int ret = 0;
4071
4072	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4073		return 0;
4074
4075	if (sdkp->WCE && sdkp->media_present) {
4076		if (!sdkp->device->silence_suspend)
4077			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4078		ret = sd_sync_cache(sdkp);
4079		/* ignore OFFLINE device */
4080		if (ret == -ENODEV)
4081			return 0;
 
4082
4083		if (ret)
4084			return ret;
 
 
 
 
 
 
 
 
 
4085	}
4086
4087	if (sd_do_start_stop(sdkp->device, runtime)) {
4088		if (!sdkp->device->silence_suspend)
4089			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4090		/* an error is not worth aborting a system sleep */
4091		ret = sd_start_stop_device(sdkp, 0);
4092		if (!runtime)
4093			ret = 0;
4094	}
4095
4096	if (!ret)
4097		sdkp->suspended = true;
4098
4099	return ret;
4100}
4101
4102static int sd_suspend_system(struct device *dev)
4103{
4104	if (pm_runtime_suspended(dev))
4105		return 0;
4106
4107	return sd_suspend_common(dev, false);
4108}
4109
4110static int sd_suspend_runtime(struct device *dev)
4111{
4112	return sd_suspend_common(dev, true);
4113}
4114
4115static int sd_resume(struct device *dev)
4116{
4117	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4118
4119	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4120
4121	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4122		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4123		return -EIO;
4124	}
4125
4126	return 0;
4127}
4128
4129static int sd_resume_common(struct device *dev, bool runtime)
4130{
4131	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4132	int ret;
4133
4134	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4135		return 0;
4136
4137	if (!sd_do_start_stop(sdkp->device, runtime)) {
4138		sdkp->suspended = false;
4139		return 0;
4140	}
4141
4142	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4143	ret = sd_start_stop_device(sdkp, 1);
4144	if (!ret) {
4145		sd_resume(dev);
4146		sdkp->suspended = false;
4147	}
4148
4149	return ret;
4150}
4151
4152static int sd_resume_system(struct device *dev)
4153{
4154	if (pm_runtime_suspended(dev)) {
4155		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4156		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4157
4158		if (sdp && sdp->force_runtime_start_on_system_start)
4159			pm_request_resume(dev);
4160
4161		return 0;
4162	}
4163
4164	return sd_resume_common(dev, false);
4165}
4166
4167static int sd_resume_runtime(struct device *dev)
4168{
4169	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4170	struct scsi_device *sdp;
4171
4172	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4173		return 0;
4174
4175	sdp = sdkp->device;
4176
4177	if (sdp->ignore_media_change) {
4178		/* clear the device's sense data */
4179		static const u8 cmd[10] = { REQUEST_SENSE };
4180		const struct scsi_exec_args exec_args = {
4181			.req_flags = BLK_MQ_REQ_PM,
4182		};
4183
4184		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4185				     sdp->request_queue->rq_timeout, 1,
4186				     &exec_args))
4187			sd_printk(KERN_NOTICE, sdkp,
4188				  "Failed to clear sense data\n");
4189	}
4190
4191	return sd_resume_common(dev, true);
4192}
4193
4194static const struct dev_pm_ops sd_pm_ops = {
4195	.suspend		= sd_suspend_system,
4196	.resume			= sd_resume_system,
4197	.poweroff		= sd_suspend_system,
4198	.restore		= sd_resume_system,
4199	.runtime_suspend	= sd_suspend_runtime,
4200	.runtime_resume		= sd_resume_runtime,
4201};
4202
4203static struct scsi_driver sd_template = {
4204	.gendrv = {
4205		.name		= "sd",
4206		.owner		= THIS_MODULE,
4207		.probe		= sd_probe,
4208		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4209		.remove		= sd_remove,
4210		.shutdown	= sd_shutdown,
4211		.pm		= &sd_pm_ops,
4212	},
4213	.rescan			= sd_rescan,
4214	.resume			= sd_resume,
4215	.init_command		= sd_init_command,
4216	.uninit_command		= sd_uninit_command,
4217	.done			= sd_done,
4218	.eh_action		= sd_eh_action,
4219	.eh_reset		= sd_eh_reset,
4220};
4221
4222/**
4223 *	init_sd - entry point for this driver (both when built in or when
4224 *	a module).
4225 *
4226 *	Note: this function registers this driver with the scsi mid-level.
4227 **/
4228static int __init init_sd(void)
4229{
4230	int majors = 0, i, err;
4231
4232	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4233
4234	for (i = 0; i < SD_MAJORS; i++) {
4235		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4236			continue;
4237		majors++;
 
 
4238	}
4239
4240	if (!majors)
4241		return -ENODEV;
4242
4243	err = class_register(&sd_disk_class);
4244	if (err)
4245		goto err_out;
4246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4247	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4248	if (!sd_page_pool) {
4249		printk(KERN_ERR "sd: can't init discard page pool\n");
4250		err = -ENOMEM;
4251		goto err_out_class;
4252	}
4253
4254	err = scsi_register_driver(&sd_template.gendrv);
4255	if (err)
4256		goto err_out_driver;
4257
4258	return 0;
4259
4260err_out_driver:
4261	mempool_destroy(sd_page_pool);
 
 
 
 
 
 
 
4262err_out_class:
4263	class_unregister(&sd_disk_class);
4264err_out:
4265	for (i = 0; i < SD_MAJORS; i++)
4266		unregister_blkdev(sd_major(i), "sd");
4267	return err;
4268}
4269
4270/**
4271 *	exit_sd - exit point for this driver (when it is a module).
4272 *
4273 *	Note: this function unregisters this driver from the scsi mid-level.
4274 **/
4275static void __exit exit_sd(void)
4276{
4277	int i;
4278
4279	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4280
4281	scsi_unregister_driver(&sd_template.gendrv);
 
4282	mempool_destroy(sd_page_pool);
 
4283
4284	class_unregister(&sd_disk_class);
4285
4286	for (i = 0; i < SD_MAJORS; i++)
 
4287		unregister_blkdev(sd_major(i), "sd");
 
4288}
4289
4290module_init(init_sd);
4291module_exit(exit_sd);
4292
4293void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
 
4294{
4295	scsi_print_sense_hdr(sdkp->device,
4296			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4297}
4298
4299void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
 
4300{
4301	const char *hb_string = scsi_hostbyte_string(result);
 
4302
4303	if (hb_string)
4304		sd_printk(KERN_INFO, sdkp,
4305			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4306			  hb_string ? hb_string : "invalid",
4307			  "DRIVER_OK");
4308	else
4309		sd_printk(KERN_INFO, sdkp,
4310			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4311			  msg, host_byte(result), "DRIVER_OK");
4312}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/genhd.h>
  42#include <linux/hdreg.h>
  43#include <linux/errno.h>
  44#include <linux/idr.h>
  45#include <linux/interrupt.h>
  46#include <linux/init.h>
  47#include <linux/blkdev.h>
  48#include <linux/blkpg.h>
  49#include <linux/blk-pm.h>
  50#include <linux/delay.h>
 
 
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/async.h>
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <asm/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_driver.h>
  67#include <scsi/scsi_eh.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_ioctl.h>
  70#include <scsi/scsicam.h>
 
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 102#define SD_MINORS	16
 103#else
 104#define SD_MINORS	0
 105#endif
 106
 107static void sd_config_discard(struct scsi_disk *, unsigned int);
 108static void sd_config_write_same(struct scsi_disk *);
 109static int  sd_revalidate_disk(struct gendisk *);
 110static void sd_unlock_native_capacity(struct gendisk *disk);
 111static int  sd_probe(struct device *);
 112static int  sd_remove(struct device *);
 113static void sd_shutdown(struct device *);
 114static int sd_suspend_system(struct device *);
 115static int sd_suspend_runtime(struct device *);
 116static int sd_resume(struct device *);
 117static void sd_rescan(struct device *);
 118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
 119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 120static int sd_done(struct scsi_cmnd *);
 121static void sd_eh_reset(struct scsi_cmnd *);
 122static int sd_eh_action(struct scsi_cmnd *, int);
 123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 124static void scsi_disk_release(struct device *cdev);
 125static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 126static void sd_print_result(const struct scsi_disk *, const char *, int);
 127
 128static DEFINE_IDA(sd_index_ida);
 129
 130/* This semaphore is used to mediate the 0->1 reference get in the
 131 * face of object destruction (i.e. we can't allow a get on an
 132 * object after last put) */
 133static DEFINE_MUTEX(sd_ref_mutex);
 134
 135static struct kmem_cache *sd_cdb_cache;
 136static mempool_t *sd_cdb_pool;
 137static mempool_t *sd_page_pool;
 
 138
 139static const char *sd_cache_types[] = {
 140	"write through", "none", "write back",
 141	"write back, no read (daft)"
 142};
 143
 144static void sd_set_flush_flag(struct scsi_disk *sdkp)
 145{
 146	bool wc = false, fua = false;
 147
 148	if (sdkp->WCE) {
 149		wc = true;
 150		if (sdkp->DPOFUA)
 151			fua = true;
 152	}
 153
 154	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 155}
 156
 157static ssize_t
 158cache_type_store(struct device *dev, struct device_attribute *attr,
 159		 const char *buf, size_t count)
 160{
 161	int ct, rcd, wce, sp;
 162	struct scsi_disk *sdkp = to_scsi_disk(dev);
 163	struct scsi_device *sdp = sdkp->device;
 164	char buffer[64];
 165	char *buffer_data;
 166	struct scsi_mode_data data;
 167	struct scsi_sense_hdr sshdr;
 168	static const char temp[] = "temporary ";
 169	int len;
 170
 171	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 172		/* no cache control on RBC devices; theoretically they
 173		 * can do it, but there's probably so many exceptions
 174		 * it's not worth the risk */
 175		return -EINVAL;
 176
 177	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 178		buf += sizeof(temp) - 1;
 179		sdkp->cache_override = 1;
 180	} else {
 181		sdkp->cache_override = 0;
 182	}
 183
 184	ct = sysfs_match_string(sd_cache_types, buf);
 185	if (ct < 0)
 186		return -EINVAL;
 187
 188	rcd = ct & 0x01 ? 1 : 0;
 189	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 190
 191	if (sdkp->cache_override) {
 192		sdkp->WCE = wce;
 193		sdkp->RCD = rcd;
 194		sd_set_flush_flag(sdkp);
 195		return count;
 196	}
 197
 198	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 199			    SD_MAX_RETRIES, &data, NULL))
 200		return -EINVAL;
 201	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 202		  data.block_descriptor_length);
 203	buffer_data = buffer + data.header_length +
 204		data.block_descriptor_length;
 205	buffer_data[2] &= ~0x05;
 206	buffer_data[2] |= wce << 2 | rcd;
 207	sp = buffer_data[0] & 0x80 ? 1 : 0;
 208	buffer_data[0] &= ~0x80;
 209
 210	/*
 211	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 212	 * received mode parameter buffer before doing MODE SELECT.
 213	 */
 214	data.device_specific = 0;
 215
 216	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 217			     SD_MAX_RETRIES, &data, &sshdr)) {
 218		if (scsi_sense_valid(&sshdr))
 
 219			sd_print_sense_hdr(sdkp, &sshdr);
 220		return -EINVAL;
 221	}
 222	revalidate_disk(sdkp->disk);
 223	return count;
 224}
 225
 226static ssize_t
 227manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 228		       char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229{
 230	struct scsi_disk *sdkp = to_scsi_disk(dev);
 231	struct scsi_device *sdp = sdkp->device;
 232
 233	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 234}
 235
 236static ssize_t
 237manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 238			const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239{
 240	struct scsi_disk *sdkp = to_scsi_disk(dev);
 241	struct scsi_device *sdp = sdkp->device;
 242	bool v;
 243
 244	if (!capable(CAP_SYS_ADMIN))
 245		return -EACCES;
 246
 247	if (kstrtobool(buf, &v))
 248		return -EINVAL;
 249
 250	sdp->manage_start_stop = v;
 251
 252	return count;
 253}
 254static DEVICE_ATTR_RW(manage_start_stop);
 255
 256static ssize_t
 257allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 258{
 259	struct scsi_disk *sdkp = to_scsi_disk(dev);
 260
 261	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 262}
 263
 264static ssize_t
 265allow_restart_store(struct device *dev, struct device_attribute *attr,
 266		    const char *buf, size_t count)
 267{
 268	bool v;
 269	struct scsi_disk *sdkp = to_scsi_disk(dev);
 270	struct scsi_device *sdp = sdkp->device;
 271
 272	if (!capable(CAP_SYS_ADMIN))
 273		return -EACCES;
 274
 275	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 276		return -EINVAL;
 277
 278	if (kstrtobool(buf, &v))
 279		return -EINVAL;
 280
 281	sdp->allow_restart = v;
 282
 283	return count;
 284}
 285static DEVICE_ATTR_RW(allow_restart);
 286
 287static ssize_t
 288cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 289{
 290	struct scsi_disk *sdkp = to_scsi_disk(dev);
 291	int ct = sdkp->RCD + 2*sdkp->WCE;
 292
 293	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 294}
 295static DEVICE_ATTR_RW(cache_type);
 296
 297static ssize_t
 298FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 299{
 300	struct scsi_disk *sdkp = to_scsi_disk(dev);
 301
 302	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 303}
 304static DEVICE_ATTR_RO(FUA);
 305
 306static ssize_t
 307protection_type_show(struct device *dev, struct device_attribute *attr,
 308		     char *buf)
 309{
 310	struct scsi_disk *sdkp = to_scsi_disk(dev);
 311
 312	return sprintf(buf, "%u\n", sdkp->protection_type);
 313}
 314
 315static ssize_t
 316protection_type_store(struct device *dev, struct device_attribute *attr,
 317		      const char *buf, size_t count)
 318{
 319	struct scsi_disk *sdkp = to_scsi_disk(dev);
 320	unsigned int val;
 321	int err;
 322
 323	if (!capable(CAP_SYS_ADMIN))
 324		return -EACCES;
 325
 326	err = kstrtouint(buf, 10, &val);
 327
 328	if (err)
 329		return err;
 330
 331	if (val <= T10_PI_TYPE3_PROTECTION)
 332		sdkp->protection_type = val;
 333
 334	return count;
 335}
 336static DEVICE_ATTR_RW(protection_type);
 337
 338static ssize_t
 339protection_mode_show(struct device *dev, struct device_attribute *attr,
 340		     char *buf)
 341{
 342	struct scsi_disk *sdkp = to_scsi_disk(dev);
 343	struct scsi_device *sdp = sdkp->device;
 344	unsigned int dif, dix;
 345
 346	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 347	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 348
 349	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 350		dif = 0;
 351		dix = 1;
 352	}
 353
 354	if (!dif && !dix)
 355		return sprintf(buf, "none\n");
 356
 357	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 358}
 359static DEVICE_ATTR_RO(protection_mode);
 360
 361static ssize_t
 362app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 363{
 364	struct scsi_disk *sdkp = to_scsi_disk(dev);
 365
 366	return sprintf(buf, "%u\n", sdkp->ATO);
 367}
 368static DEVICE_ATTR_RO(app_tag_own);
 369
 370static ssize_t
 371thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 372		       char *buf)
 373{
 374	struct scsi_disk *sdkp = to_scsi_disk(dev);
 375
 376	return sprintf(buf, "%u\n", sdkp->lbpme);
 377}
 378static DEVICE_ATTR_RO(thin_provisioning);
 379
 380/* sysfs_match_string() requires dense arrays */
 381static const char *lbp_mode[] = {
 382	[SD_LBP_FULL]		= "full",
 383	[SD_LBP_UNMAP]		= "unmap",
 384	[SD_LBP_WS16]		= "writesame_16",
 385	[SD_LBP_WS10]		= "writesame_10",
 386	[SD_LBP_ZERO]		= "writesame_zero",
 387	[SD_LBP_DISABLE]	= "disabled",
 388};
 389
 390static ssize_t
 391provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 392		       char *buf)
 393{
 394	struct scsi_disk *sdkp = to_scsi_disk(dev);
 395
 396	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 397}
 398
 399static ssize_t
 400provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 401			const char *buf, size_t count)
 402{
 403	struct scsi_disk *sdkp = to_scsi_disk(dev);
 404	struct scsi_device *sdp = sdkp->device;
 405	int mode;
 406
 407	if (!capable(CAP_SYS_ADMIN))
 408		return -EACCES;
 409
 410	if (sd_is_zoned(sdkp)) {
 411		sd_config_discard(sdkp, SD_LBP_DISABLE);
 412		return count;
 413	}
 414
 415	if (sdp->type != TYPE_DISK)
 416		return -EINVAL;
 417
 418	mode = sysfs_match_string(lbp_mode, buf);
 419	if (mode < 0)
 420		return -EINVAL;
 421
 422	sd_config_discard(sdkp, mode);
 423
 424	return count;
 425}
 426static DEVICE_ATTR_RW(provisioning_mode);
 427
 428/* sysfs_match_string() requires dense arrays */
 429static const char *zeroing_mode[] = {
 430	[SD_ZERO_WRITE]		= "write",
 431	[SD_ZERO_WS]		= "writesame",
 432	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 433	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 434};
 435
 436static ssize_t
 437zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 438		  char *buf)
 439{
 440	struct scsi_disk *sdkp = to_scsi_disk(dev);
 441
 442	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 443}
 444
 445static ssize_t
 446zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 447		   const char *buf, size_t count)
 448{
 449	struct scsi_disk *sdkp = to_scsi_disk(dev);
 450	int mode;
 451
 452	if (!capable(CAP_SYS_ADMIN))
 453		return -EACCES;
 454
 455	mode = sysfs_match_string(zeroing_mode, buf);
 456	if (mode < 0)
 457		return -EINVAL;
 458
 459	sdkp->zeroing_mode = mode;
 460
 461	return count;
 462}
 463static DEVICE_ATTR_RW(zeroing_mode);
 464
 465static ssize_t
 466max_medium_access_timeouts_show(struct device *dev,
 467				struct device_attribute *attr, char *buf)
 468{
 469	struct scsi_disk *sdkp = to_scsi_disk(dev);
 470
 471	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 472}
 473
 474static ssize_t
 475max_medium_access_timeouts_store(struct device *dev,
 476				 struct device_attribute *attr, const char *buf,
 477				 size_t count)
 478{
 479	struct scsi_disk *sdkp = to_scsi_disk(dev);
 480	int err;
 481
 482	if (!capable(CAP_SYS_ADMIN))
 483		return -EACCES;
 484
 485	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 486
 487	return err ? err : count;
 488}
 489static DEVICE_ATTR_RW(max_medium_access_timeouts);
 490
 491static ssize_t
 492max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 493			   char *buf)
 494{
 495	struct scsi_disk *sdkp = to_scsi_disk(dev);
 496
 497	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 498}
 499
 500static ssize_t
 501max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 502			    const char *buf, size_t count)
 503{
 504	struct scsi_disk *sdkp = to_scsi_disk(dev);
 505	struct scsi_device *sdp = sdkp->device;
 506	unsigned long max;
 507	int err;
 508
 509	if (!capable(CAP_SYS_ADMIN))
 510		return -EACCES;
 511
 512	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 513		return -EINVAL;
 514
 515	err = kstrtoul(buf, 10, &max);
 516
 517	if (err)
 518		return err;
 519
 520	if (max == 0)
 521		sdp->no_write_same = 1;
 522	else if (max <= SD_MAX_WS16_BLOCKS) {
 523		sdp->no_write_same = 0;
 524		sdkp->max_ws_blocks = max;
 525	}
 526
 527	sd_config_write_same(sdkp);
 528
 529	return count;
 530}
 531static DEVICE_ATTR_RW(max_write_same_blocks);
 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533static struct attribute *sd_disk_attrs[] = {
 534	&dev_attr_cache_type.attr,
 535	&dev_attr_FUA.attr,
 536	&dev_attr_allow_restart.attr,
 537	&dev_attr_manage_start_stop.attr,
 
 
 
 538	&dev_attr_protection_type.attr,
 539	&dev_attr_protection_mode.attr,
 540	&dev_attr_app_tag_own.attr,
 541	&dev_attr_thin_provisioning.attr,
 542	&dev_attr_provisioning_mode.attr,
 543	&dev_attr_zeroing_mode.attr,
 544	&dev_attr_max_write_same_blocks.attr,
 545	&dev_attr_max_medium_access_timeouts.attr,
 
 
 546	NULL,
 547};
 548ATTRIBUTE_GROUPS(sd_disk);
 549
 550static struct class sd_disk_class = {
 551	.name		= "scsi_disk",
 552	.owner		= THIS_MODULE,
 553	.dev_release	= scsi_disk_release,
 554	.dev_groups	= sd_disk_groups,
 555};
 556
 557static const struct dev_pm_ops sd_pm_ops = {
 558	.suspend		= sd_suspend_system,
 559	.resume			= sd_resume,
 560	.poweroff		= sd_suspend_system,
 561	.restore		= sd_resume,
 562	.runtime_suspend	= sd_suspend_runtime,
 563	.runtime_resume		= sd_resume,
 564};
 565
 566static struct scsi_driver sd_template = {
 567	.gendrv = {
 568		.name		= "sd",
 569		.owner		= THIS_MODULE,
 570		.probe		= sd_probe,
 571		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
 572		.remove		= sd_remove,
 573		.shutdown	= sd_shutdown,
 574		.pm		= &sd_pm_ops,
 575	},
 576	.rescan			= sd_rescan,
 577	.init_command		= sd_init_command,
 578	.uninit_command		= sd_uninit_command,
 579	.done			= sd_done,
 580	.eh_action		= sd_eh_action,
 581	.eh_reset		= sd_eh_reset,
 582};
 583
 584/*
 585 * Dummy kobj_map->probe function.
 586 * The default ->probe function will call modprobe, which is
 587 * pointless as this module is already loaded.
 588 */
 589static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 590{
 591	return NULL;
 592}
 593
 594/*
 595 * Device no to disk mapping:
 596 * 
 597 *       major         disc2     disc  p1
 598 *   |............|.............|....|....| <- dev_t
 599 *    31        20 19          8 7  4 3  0
 600 * 
 601 * Inside a major, we have 16k disks, however mapped non-
 602 * contiguously. The first 16 disks are for major0, the next
 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 604 * for major1, ... 
 605 * As we stay compatible with our numbering scheme, we can reuse 
 606 * the well-know SCSI majors 8, 65--71, 136--143.
 607 */
 608static int sd_major(int major_idx)
 609{
 610	switch (major_idx) {
 611	case 0:
 612		return SCSI_DISK0_MAJOR;
 613	case 1 ... 7:
 614		return SCSI_DISK1_MAJOR + major_idx - 1;
 615	case 8 ... 15:
 616		return SCSI_DISK8_MAJOR + major_idx - 8;
 617	default:
 618		BUG();
 619		return 0;	/* shut up gcc */
 620	}
 621}
 622
 623static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 624{
 625	struct scsi_disk *sdkp = NULL;
 626
 627	mutex_lock(&sd_ref_mutex);
 628
 629	if (disk->private_data) {
 630		sdkp = scsi_disk(disk);
 631		if (scsi_device_get(sdkp->device) == 0)
 632			get_device(&sdkp->dev);
 633		else
 634			sdkp = NULL;
 635	}
 636	mutex_unlock(&sd_ref_mutex);
 637	return sdkp;
 638}
 639
 640static void scsi_disk_put(struct scsi_disk *sdkp)
 641{
 642	struct scsi_device *sdev = sdkp->device;
 643
 644	mutex_lock(&sd_ref_mutex);
 645	put_device(&sdkp->dev);
 646	scsi_device_put(sdev);
 647	mutex_unlock(&sd_ref_mutex);
 648}
 649
 650#ifdef CONFIG_BLK_SED_OPAL
 651static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 652		size_t len, bool send)
 653{
 654	struct scsi_device *sdev = data;
 
 655	u8 cdb[12] = { 0, };
 
 
 
 656	int ret;
 657
 658	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 659	cdb[1] = secp;
 660	put_unaligned_be16(spsp, &cdb[2]);
 661	put_unaligned_be32(len, &cdb[6]);
 662
 663	ret = scsi_execute_req(sdev, cdb,
 664			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 665			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 666	return ret <= 0 ? ret : -EIO;
 667}
 668#endif /* CONFIG_BLK_SED_OPAL */
 669
 670/*
 671 * Look up the DIX operation based on whether the command is read or
 672 * write and whether dix and dif are enabled.
 673 */
 674static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 675{
 676	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 677	static const unsigned int ops[] = {	/* wrt dix dif */
 678		SCSI_PROT_NORMAL,		/*  0	0   0  */
 679		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 680		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 681		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 682		SCSI_PROT_NORMAL,		/*  1	0   0  */
 683		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 684		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 685		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 686	};
 687
 688	return ops[write << 2 | dix << 1 | dif];
 689}
 690
 691/*
 692 * Returns a mask of the protection flags that are valid for a given DIX
 693 * operation.
 694 */
 695static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 696{
 697	static const unsigned int flag_mask[] = {
 698		[SCSI_PROT_NORMAL]		= 0,
 699
 700		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 701						  SCSI_PROT_GUARD_CHECK |
 702						  SCSI_PROT_REF_CHECK |
 703						  SCSI_PROT_REF_INCREMENT,
 704
 705		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 706						  SCSI_PROT_IP_CHECKSUM,
 707
 708		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 709						  SCSI_PROT_GUARD_CHECK |
 710						  SCSI_PROT_REF_CHECK |
 711						  SCSI_PROT_REF_INCREMENT |
 712						  SCSI_PROT_IP_CHECKSUM,
 713
 714		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 715						  SCSI_PROT_REF_INCREMENT,
 716
 717		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 718						  SCSI_PROT_REF_CHECK |
 719						  SCSI_PROT_REF_INCREMENT |
 720						  SCSI_PROT_IP_CHECKSUM,
 721
 722		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 723						  SCSI_PROT_GUARD_CHECK |
 724						  SCSI_PROT_REF_CHECK |
 725						  SCSI_PROT_REF_INCREMENT |
 726						  SCSI_PROT_IP_CHECKSUM,
 727	};
 728
 729	return flag_mask[prot_op];
 730}
 731
 732static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 733					   unsigned int dix, unsigned int dif)
 734{
 735	struct bio *bio = scmd->request->bio;
 736	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 
 737	unsigned int protect = 0;
 738
 739	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 740		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 741			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 742
 743		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 744			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 745	}
 746
 747	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 748		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 749
 750		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 751			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 752	}
 753
 754	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 755		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 756
 757		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 758			protect = 3 << 5;	/* Disable target PI checking */
 759		else
 760			protect = 1 << 5;	/* Enable target PI checking */
 761	}
 762
 763	scsi_set_prot_op(scmd, prot_op);
 764	scsi_set_prot_type(scmd, dif);
 765	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 766
 767	return protect;
 768}
 769
 770static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 771{
 772	struct request_queue *q = sdkp->disk->queue;
 773	unsigned int logical_block_size = sdkp->device->sector_size;
 774	unsigned int max_blocks = 0;
 775
 776	q->limits.discard_alignment =
 777		sdkp->unmap_alignment * logical_block_size;
 778	q->limits.discard_granularity =
 779		max(sdkp->physical_block_size,
 780		    sdkp->unmap_granularity * logical_block_size);
 781	sdkp->provisioning_mode = mode;
 782
 783	switch (mode) {
 784
 785	case SD_LBP_FULL:
 786	case SD_LBP_DISABLE:
 787		blk_queue_max_discard_sectors(q, 0);
 788		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 789		return;
 790
 791	case SD_LBP_UNMAP:
 792		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 793					  (u32)SD_MAX_WS16_BLOCKS);
 794		break;
 795
 796	case SD_LBP_WS16:
 797		if (sdkp->device->unmap_limit_for_ws)
 798			max_blocks = sdkp->max_unmap_blocks;
 799		else
 800			max_blocks = sdkp->max_ws_blocks;
 801
 802		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 803		break;
 804
 805	case SD_LBP_WS10:
 806		if (sdkp->device->unmap_limit_for_ws)
 807			max_blocks = sdkp->max_unmap_blocks;
 808		else
 809			max_blocks = sdkp->max_ws_blocks;
 810
 811		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 812		break;
 813
 814	case SD_LBP_ZERO:
 815		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 816					  (u32)SD_MAX_WS10_BLOCKS);
 817		break;
 818	}
 819
 820	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 821	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 
 
 
 
 
 
 
 
 
 
 
 
 822}
 823
 824static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 825{
 826	struct scsi_device *sdp = cmd->device;
 827	struct request *rq = cmd->request;
 
 828	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 829	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 830	unsigned int data_len = 24;
 831	char *buf;
 832
 833	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 834	if (!rq->special_vec.bv_page)
 835		return BLK_STS_RESOURCE;
 836	clear_highpage(rq->special_vec.bv_page);
 837	rq->special_vec.bv_offset = 0;
 838	rq->special_vec.bv_len = data_len;
 839	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 840
 841	cmd->cmd_len = 10;
 842	cmd->cmnd[0] = UNMAP;
 843	cmd->cmnd[8] = 24;
 844
 845	buf = page_address(rq->special_vec.bv_page);
 846	put_unaligned_be16(6 + 16, &buf[0]);
 847	put_unaligned_be16(16, &buf[2]);
 848	put_unaligned_be64(lba, &buf[8]);
 849	put_unaligned_be32(nr_blocks, &buf[16]);
 850
 851	cmd->allowed = SD_MAX_RETRIES;
 852	cmd->transfersize = data_len;
 853	rq->timeout = SD_TIMEOUT;
 854
 855	return scsi_init_io(cmd);
 856}
 857
 858static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 859		bool unmap)
 860{
 861	struct scsi_device *sdp = cmd->device;
 862	struct request *rq = cmd->request;
 
 863	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 864	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 865	u32 data_len = sdp->sector_size;
 866
 867	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 868	if (!rq->special_vec.bv_page)
 869		return BLK_STS_RESOURCE;
 870	clear_highpage(rq->special_vec.bv_page);
 871	rq->special_vec.bv_offset = 0;
 872	rq->special_vec.bv_len = data_len;
 873	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 874
 875	cmd->cmd_len = 16;
 876	cmd->cmnd[0] = WRITE_SAME_16;
 877	if (unmap)
 878		cmd->cmnd[1] = 0x8; /* UNMAP */
 879	put_unaligned_be64(lba, &cmd->cmnd[2]);
 880	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 881
 882	cmd->allowed = SD_MAX_RETRIES;
 883	cmd->transfersize = data_len;
 884	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 885
 886	return scsi_init_io(cmd);
 887}
 888
 889static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 890		bool unmap)
 891{
 892	struct scsi_device *sdp = cmd->device;
 893	struct request *rq = cmd->request;
 
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	u32 data_len = sdp->sector_size;
 897
 898	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 899	if (!rq->special_vec.bv_page)
 900		return BLK_STS_RESOURCE;
 901	clear_highpage(rq->special_vec.bv_page);
 902	rq->special_vec.bv_offset = 0;
 903	rq->special_vec.bv_len = data_len;
 904	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 905
 906	cmd->cmd_len = 10;
 907	cmd->cmnd[0] = WRITE_SAME;
 908	if (unmap)
 909		cmd->cmnd[1] = 0x8; /* UNMAP */
 910	put_unaligned_be32(lba, &cmd->cmnd[2]);
 911	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 912
 913	cmd->allowed = SD_MAX_RETRIES;
 914	cmd->transfersize = data_len;
 915	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 916
 917	return scsi_init_io(cmd);
 918}
 919
 920static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 921{
 922	struct request *rq = cmd->request;
 923	struct scsi_device *sdp = cmd->device;
 924	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927
 928	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 929		switch (sdkp->zeroing_mode) {
 930		case SD_ZERO_WS16_UNMAP:
 931			return sd_setup_write_same16_cmnd(cmd, true);
 932		case SD_ZERO_WS10_UNMAP:
 933			return sd_setup_write_same10_cmnd(cmd, true);
 934		}
 935	}
 936
 937	if (sdp->no_write_same)
 
 938		return BLK_STS_TARGET;
 
 939
 940	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 941		return sd_setup_write_same16_cmnd(cmd, false);
 942
 943	return sd_setup_write_same10_cmnd(cmd, false);
 944}
 945
 946static void sd_config_write_same(struct scsi_disk *sdkp)
 947{
 948	struct request_queue *q = sdkp->disk->queue;
 949	unsigned int logical_block_size = sdkp->device->sector_size;
 950
 951	if (sdkp->device->no_write_same) {
 952		sdkp->max_ws_blocks = 0;
 953		goto out;
 954	}
 955
 956	/* Some devices can not handle block counts above 0xffff despite
 957	 * supporting WRITE SAME(16). Consequently we default to 64k
 958	 * blocks per I/O unless the device explicitly advertises a
 959	 * bigger limit.
 960	 */
 961	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 962		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 963						   (u32)SD_MAX_WS16_BLOCKS);
 964	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 965		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 966						   (u32)SD_MAX_WS10_BLOCKS);
 967	else {
 968		sdkp->device->no_write_same = 1;
 969		sdkp->max_ws_blocks = 0;
 970	}
 971
 972	if (sdkp->lbprz && sdkp->lbpws)
 973		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 974	else if (sdkp->lbprz && sdkp->lbpws10)
 975		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 976	else if (sdkp->max_ws_blocks)
 977		sdkp->zeroing_mode = SD_ZERO_WS;
 978	else
 979		sdkp->zeroing_mode = SD_ZERO_WRITE;
 980
 981	if (sdkp->max_ws_blocks &&
 982	    sdkp->physical_block_size > logical_block_size) {
 983		/*
 984		 * Reporting a maximum number of blocks that is not aligned
 985		 * on the device physical size would cause a large write same
 986		 * request to be split into physically unaligned chunks by
 987		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
 988		 * even if the caller of these functions took care to align the
 989		 * large request. So make sure the maximum reported is aligned
 990		 * to the device physical block size. This is only an optional
 991		 * optimization for regular disks, but this is mandatory to
 992		 * avoid failure of large write same requests directed at
 993		 * sequential write required zones of host-managed ZBC disks.
 994		 */
 995		sdkp->max_ws_blocks =
 996			round_down(sdkp->max_ws_blocks,
 997				   bytes_to_logical(sdkp->device,
 998						    sdkp->physical_block_size));
 999	}
1000
1001out:
1002	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003					 (logical_block_size >> 9));
1004	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005					 (logical_block_size >> 9));
1006}
1007
1008/**
1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010 * @cmd: command to prepare
1011 *
1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013 * the preference indicated by the target device.
1014 **/
1015static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016{
1017	struct request *rq = cmd->request;
1018	struct scsi_device *sdp = cmd->device;
1019	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020	struct bio *bio = rq->bio;
1021	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023	blk_status_t ret;
1024
1025	if (sdkp->device->no_write_same)
1026		return BLK_STS_TARGET;
1027
1028	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
1030	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033		cmd->cmd_len = 16;
1034		cmd->cmnd[0] = WRITE_SAME_16;
1035		put_unaligned_be64(lba, &cmd->cmnd[2]);
1036		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037	} else {
 
1038		cmd->cmd_len = 10;
1039		cmd->cmnd[0] = WRITE_SAME;
1040		put_unaligned_be32(lba, &cmd->cmnd[2]);
1041		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042	}
 
 
1043
1044	cmd->transfersize = sdp->sector_size;
1045	cmd->allowed = SD_MAX_RETRIES;
1046
1047	/*
1048	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049	 * different from the amount of data actually written to the target.
1050	 *
1051	 * We set up __data_len to the amount of data transferred via the
1052	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053	 * to transfer a single sector of data first, but then reset it to
1054	 * the amount of data to be written right after so that the I/O path
1055	 * knows how much to actually write.
1056	 */
1057	rq->__data_len = sdp->sector_size;
1058	ret = scsi_init_io(cmd);
1059	rq->__data_len = blk_rq_bytes(rq);
1060
1061	return ret;
1062}
1063
1064static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
1065{
1066	struct request *rq = cmd->request;
 
1067
1068	/* flush requests don't perform I/O, zero the S/G table */
1069	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072	cmd->cmd_len = 10;
1073	cmd->transfersize = 0;
1074	cmd->allowed = SD_MAX_RETRIES;
1075
1076	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077	return BLK_STS_OK;
1078}
1079
1080static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081				       sector_t lba, unsigned int nr_blocks,
1082				       unsigned char flags)
1083{
1084	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085	if (unlikely(cmd->cmnd == NULL))
1086		return BLK_STS_RESOURCE;
1087
1088	cmd->cmd_len = SD_EXT_CDB_SIZE;
1089	memset(cmd->cmnd, 0, cmd->cmd_len);
1090
1091	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
 
1092	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094	cmd->cmnd[10] = flags;
 
1095	put_unaligned_be64(lba, &cmd->cmnd[12]);
1096	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099	return BLK_STS_OK;
1100}
1101
1102static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103				       sector_t lba, unsigned int nr_blocks,
1104				       unsigned char flags)
1105{
1106	cmd->cmd_len  = 16;
1107	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108	cmd->cmnd[1]  = flags;
1109	cmd->cmnd[14] = 0;
1110	cmd->cmnd[15] = 0;
1111	put_unaligned_be64(lba, &cmd->cmnd[2]);
1112	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114	return BLK_STS_OK;
1115}
1116
1117static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118				       sector_t lba, unsigned int nr_blocks,
1119				       unsigned char flags)
1120{
1121	cmd->cmd_len = 10;
1122	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123	cmd->cmnd[1] = flags;
1124	cmd->cmnd[6] = 0;
1125	cmd->cmnd[9] = 0;
1126	put_unaligned_be32(lba, &cmd->cmnd[2]);
1127	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129	return BLK_STS_OK;
1130}
1131
1132static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133				      sector_t lba, unsigned int nr_blocks,
1134				      unsigned char flags)
1135{
1136	/* Avoid that 0 blocks gets translated into 256 blocks. */
1137	if (WARN_ON_ONCE(nr_blocks == 0))
1138		return BLK_STS_IOERR;
1139
1140	if (unlikely(flags & 0x8)) {
1141		/*
1142		 * This happens only if this drive failed 10byte rw
1143		 * command with ILLEGAL_REQUEST during operation and
1144		 * thus turned off use_10_for_rw.
1145		 */
1146		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147		return BLK_STS_IOERR;
1148	}
1149
1150	cmd->cmd_len = 6;
1151	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153	cmd->cmnd[2] = (lba >> 8) & 0xff;
1154	cmd->cmnd[3] = lba & 0xff;
1155	cmd->cmnd[4] = nr_blocks;
1156	cmd->cmnd[5] = 0;
1157
1158	return BLK_STS_OK;
1159}
1160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162{
1163	struct request *rq = cmd->request;
1164	struct scsi_device *sdp = cmd->device;
1165	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167	sector_t threshold;
1168	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170	bool write = rq_data_dir(rq) == WRITE;
1171	unsigned char protect, fua;
 
1172	blk_status_t ret;
1173	unsigned int dif;
1174	bool dix;
1175
1176	ret = scsi_init_io(cmd);
1177	if (ret != BLK_STS_OK)
1178		return ret;
1179
 
1180	if (!scsi_device_online(sdp) || sdp->changed) {
1181		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1182		return BLK_STS_IOERR;
1183	}
1184
1185	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1186		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1187		return BLK_STS_IOERR;
1188	}
1189
1190	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1191		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1192		return BLK_STS_IOERR;
1193	}
1194
1195	/*
1196	 * Some SD card readers can't handle accesses which touch the
1197	 * last one or two logical blocks. Split accesses as needed.
1198	 */
1199	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1200
1201	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1202		if (lba < threshold) {
1203			/* Access up to the threshold but not beyond */
1204			nr_blocks = threshold - lba;
1205		} else {
1206			/* Access only a single logical block */
1207			nr_blocks = 1;
1208		}
1209	}
1210
 
 
 
 
 
 
1211	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1212	dix = scsi_prot_sg_count(cmd);
1213	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
 
1214
1215	if (dif || dix)
1216		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217	else
1218		protect = 0;
1219
1220	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222					 protect | fua);
1223	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225					 protect | fua);
1226	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227		   sdp->use_10_for_rw || protect) {
1228		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229					 protect | fua);
1230	} else {
1231		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232					protect | fua);
1233	}
1234
1235	if (unlikely(ret != BLK_STS_OK))
1236		return ret;
1237
1238	/*
1239	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1240	 * host adapter, it's safe to assume that we can at least transfer
1241	 * this many bytes between each connect / disconnect.
1242	 */
1243	cmd->transfersize = sdp->sector_size;
1244	cmd->underflow = nr_blocks << 9;
1245	cmd->allowed = SD_MAX_RETRIES;
1246	cmd->sdb.length = nr_blocks * sdp->sector_size;
1247
1248	SCSI_LOG_HLQUEUE(1,
1249			 scmd_printk(KERN_INFO, cmd,
1250				     "%s: block=%llu, count=%d\n", __func__,
1251				     (unsigned long long)blk_rq_pos(rq),
1252				     blk_rq_sectors(rq)));
1253	SCSI_LOG_HLQUEUE(2,
1254			 scmd_printk(KERN_INFO, cmd,
1255				     "%s %d/%u 512 byte blocks.\n",
1256				     write ? "writing" : "reading", nr_blocks,
1257				     blk_rq_sectors(rq)));
1258
1259	/*
1260	 * This indicates that the command is ready from our end to be
1261	 * queued.
1262	 */
1263	return BLK_STS_OK;
 
 
 
1264}
1265
1266static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1267{
1268	struct request *rq = cmd->request;
1269
1270	switch (req_op(rq)) {
1271	case REQ_OP_DISCARD:
1272		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273		case SD_LBP_UNMAP:
1274			return sd_setup_unmap_cmnd(cmd);
1275		case SD_LBP_WS16:
1276			return sd_setup_write_same16_cmnd(cmd, true);
1277		case SD_LBP_WS10:
1278			return sd_setup_write_same10_cmnd(cmd, true);
1279		case SD_LBP_ZERO:
1280			return sd_setup_write_same10_cmnd(cmd, false);
1281		default:
1282			return BLK_STS_TARGET;
1283		}
1284	case REQ_OP_WRITE_ZEROES:
1285		return sd_setup_write_zeroes_cmnd(cmd);
1286	case REQ_OP_WRITE_SAME:
1287		return sd_setup_write_same_cmnd(cmd);
1288	case REQ_OP_FLUSH:
1289		return sd_setup_flush_cmnd(cmd);
1290	case REQ_OP_READ:
1291	case REQ_OP_WRITE:
 
1292		return sd_setup_read_write_cmnd(cmd);
1293	case REQ_OP_ZONE_RESET:
1294		return sd_zbc_setup_reset_cmnd(cmd, false);
 
1295	case REQ_OP_ZONE_RESET_ALL:
1296		return sd_zbc_setup_reset_cmnd(cmd, true);
 
 
 
 
 
 
 
1297	default:
1298		WARN_ON_ONCE(1);
1299		return BLK_STS_NOTSUPP;
1300	}
1301}
1302
1303static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1304{
1305	struct request *rq = SCpnt->request;
1306	u8 *cmnd;
1307
1308	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1309		mempool_free(rq->special_vec.bv_page, sd_page_pool);
 
1310
1311	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1312		cmnd = SCpnt->cmnd;
1313		SCpnt->cmnd = NULL;
1314		SCpnt->cmd_len = 0;
1315		mempool_free(cmnd, sd_cdb_pool);
1316	}
 
 
 
 
 
 
 
1317}
1318
1319/**
1320 *	sd_open - open a scsi disk device
1321 *	@bdev: Block device of the scsi disk to open
1322 *	@mode: FMODE_* mask
1323 *
1324 *	Returns 0 if successful. Returns a negated errno value in case 
1325 *	of error.
1326 *
1327 *	Note: This can be called from a user context (e.g. fsck(1) )
1328 *	or from within the kernel (e.g. as a result of a mount(1) ).
1329 *	In the latter case @inode and @filp carry an abridged amount
1330 *	of information as noted above.
1331 *
1332 *	Locking: called with bdev->bd_mutex held.
1333 **/
1334static int sd_open(struct block_device *bdev, fmode_t mode)
1335{
1336	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1337	struct scsi_device *sdev;
1338	int retval;
1339
1340	if (!sdkp)
1341		return -ENXIO;
1342
1343	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1344
1345	sdev = sdkp->device;
1346
1347	/*
1348	 * If the device is in error recovery, wait until it is done.
1349	 * If the device is offline, then disallow any access to it.
1350	 */
1351	retval = -ENXIO;
1352	if (!scsi_block_when_processing_errors(sdev))
1353		goto error_out;
1354
1355	if (sdev->removable || sdkp->write_prot)
1356		check_disk_change(bdev);
1357
1358	/*
1359	 * If the drive is empty, just let the open fail.
1360	 */
1361	retval = -ENOMEDIUM;
1362	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
 
1363		goto error_out;
1364
1365	/*
1366	 * If the device has the write protect tab set, have the open fail
1367	 * if the user expects to be able to write to the thing.
1368	 */
1369	retval = -EROFS;
1370	if (sdkp->write_prot && (mode & FMODE_WRITE))
1371		goto error_out;
1372
1373	/*
1374	 * It is possible that the disk changing stuff resulted in
1375	 * the device being taken offline.  If this is the case,
1376	 * report this to the user, and don't pretend that the
1377	 * open actually succeeded.
1378	 */
1379	retval = -ENXIO;
1380	if (!scsi_device_online(sdev))
1381		goto error_out;
1382
1383	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1384		if (scsi_block_when_processing_errors(sdev))
1385			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1386	}
1387
1388	return 0;
1389
1390error_out:
1391	scsi_disk_put(sdkp);
1392	return retval;	
1393}
1394
1395/**
1396 *	sd_release - invoked when the (last) close(2) is called on this
1397 *	scsi disk.
1398 *	@disk: disk to release
1399 *	@mode: FMODE_* mask
1400 *
1401 *	Returns 0. 
1402 *
1403 *	Note: may block (uninterruptible) if error recovery is underway
1404 *	on this disk.
1405 *
1406 *	Locking: called with bdev->bd_mutex held.
1407 **/
1408static void sd_release(struct gendisk *disk, fmode_t mode)
1409{
1410	struct scsi_disk *sdkp = scsi_disk(disk);
1411	struct scsi_device *sdev = sdkp->device;
1412
1413	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1414
1415	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1416		if (scsi_block_when_processing_errors(sdev))
1417			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1418	}
1419
1420	scsi_disk_put(sdkp);
1421}
1422
1423static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1424{
1425	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1426	struct scsi_device *sdp = sdkp->device;
1427	struct Scsi_Host *host = sdp->host;
1428	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1429	int diskinfo[4];
1430
1431	/* default to most commonly used values */
1432	diskinfo[0] = 0x40;	/* 1 << 6 */
1433	diskinfo[1] = 0x20;	/* 1 << 5 */
1434	diskinfo[2] = capacity >> 11;
1435
1436	/* override with calculated, extended default, or driver values */
1437	if (host->hostt->bios_param)
1438		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1439	else
1440		scsicam_bios_param(bdev, capacity, diskinfo);
1441
1442	geo->heads = diskinfo[0];
1443	geo->sectors = diskinfo[1];
1444	geo->cylinders = diskinfo[2];
1445	return 0;
1446}
1447
1448/**
1449 *	sd_ioctl - process an ioctl
1450 *	@bdev: target block device
1451 *	@mode: FMODE_* mask
1452 *	@cmd: ioctl command number
1453 *	@arg: this is third argument given to ioctl(2) system call.
1454 *	Often contains a pointer.
1455 *
1456 *	Returns 0 if successful (some ioctls return positive numbers on
1457 *	success as well). Returns a negated errno value in case of error.
1458 *
1459 *	Note: most ioctls are forward onto the block subsystem or further
1460 *	down in the scsi subsystem.
1461 **/
1462static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1463		    unsigned int cmd, unsigned long arg)
1464{
1465	struct gendisk *disk = bdev->bd_disk;
1466	struct scsi_disk *sdkp = scsi_disk(disk);
1467	struct scsi_device *sdp = sdkp->device;
1468	void __user *p = (void __user *)arg;
1469	int error;
1470    
1471	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1472				    "cmd=0x%x\n", disk->disk_name, cmd));
1473
1474	error = scsi_verify_blk_ioctl(bdev, cmd);
1475	if (error < 0)
1476		return error;
1477
1478	/*
1479	 * If we are in the middle of error recovery, don't let anyone
1480	 * else try and use this device.  Also, if error recovery fails, it
1481	 * may try and take the device offline, in which case all further
1482	 * access to the device is prohibited.
1483	 */
1484	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1485			(mode & FMODE_NDELAY) != 0);
1486	if (error)
1487		goto out;
1488
1489	if (is_sed_ioctl(cmd))
1490		return sed_ioctl(sdkp->opal_dev, cmd, p);
1491
1492	/*
1493	 * Send SCSI addressing ioctls directly to mid level, send other
1494	 * ioctls to block level and then onto mid level if they can't be
1495	 * resolved.
1496	 */
1497	switch (cmd) {
1498		case SCSI_IOCTL_GET_IDLUN:
1499		case SCSI_IOCTL_GET_BUS_NUMBER:
1500			error = scsi_ioctl(sdp, cmd, p);
1501			break;
1502		default:
1503			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1504			if (error != -ENOTTY)
1505				break;
1506			error = scsi_ioctl(sdp, cmd, p);
1507			break;
1508	}
1509out:
1510	return error;
1511}
1512
1513static void set_media_not_present(struct scsi_disk *sdkp)
1514{
1515	if (sdkp->media_present)
1516		sdkp->device->changed = 1;
1517
1518	if (sdkp->device->removable) {
1519		sdkp->media_present = 0;
1520		sdkp->capacity = 0;
1521	}
1522}
1523
1524static int media_not_present(struct scsi_disk *sdkp,
1525			     struct scsi_sense_hdr *sshdr)
1526{
1527	if (!scsi_sense_valid(sshdr))
1528		return 0;
1529
1530	/* not invoked for commands that could return deferred errors */
1531	switch (sshdr->sense_key) {
1532	case UNIT_ATTENTION:
1533	case NOT_READY:
1534		/* medium not present */
1535		if (sshdr->asc == 0x3A) {
1536			set_media_not_present(sdkp);
1537			return 1;
1538		}
1539	}
1540	return 0;
1541}
1542
1543/**
1544 *	sd_check_events - check media events
1545 *	@disk: kernel device descriptor
1546 *	@clearing: disk events currently being cleared
1547 *
1548 *	Returns mask of DISK_EVENT_*.
1549 *
1550 *	Note: this function is invoked from the block subsystem.
1551 **/
1552static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1553{
1554	struct scsi_disk *sdkp = scsi_disk_get(disk);
1555	struct scsi_device *sdp;
1556	int retval;
 
1557
1558	if (!sdkp)
1559		return 0;
1560
1561	sdp = sdkp->device;
1562	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1563
1564	/*
1565	 * If the device is offline, don't send any commands - just pretend as
1566	 * if the command failed.  If the device ever comes back online, we
1567	 * can deal with it then.  It is only because of unrecoverable errors
1568	 * that we would ever take a device offline in the first place.
1569	 */
1570	if (!scsi_device_online(sdp)) {
1571		set_media_not_present(sdkp);
1572		goto out;
1573	}
1574
1575	/*
1576	 * Using TEST_UNIT_READY enables differentiation between drive with
1577	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1578	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1579	 *
1580	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1581	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1582	 * sd_revalidate() is called.
1583	 */
1584	if (scsi_block_when_processing_errors(sdp)) {
1585		struct scsi_sense_hdr sshdr = { 0, };
1586
1587		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1588					      &sshdr);
1589
1590		/* failed to execute TUR, assume media not present */
1591		if (host_byte(retval)) {
1592			set_media_not_present(sdkp);
1593			goto out;
1594		}
1595
1596		if (media_not_present(sdkp, &sshdr))
1597			goto out;
1598	}
1599
1600	/*
1601	 * For removable scsi disk we have to recognise the presence
1602	 * of a disk in the drive.
1603	 */
1604	if (!sdkp->media_present)
1605		sdp->changed = 1;
1606	sdkp->media_present = 1;
1607out:
1608	/*
1609	 * sdp->changed is set under the following conditions:
1610	 *
1611	 *	Medium present state has changed in either direction.
1612	 *	Device has indicated UNIT_ATTENTION.
1613	 */
1614	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1615	sdp->changed = 0;
1616	scsi_disk_put(sdkp);
1617	return retval;
1618}
1619
1620static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1621{
1622	int retries, res;
1623	struct scsi_device *sdp = sdkp->device;
1624	const int timeout = sdp->request_queue->rq_timeout
1625		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1626	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627
1628	if (!scsi_device_online(sdp))
1629		return -ENODEV;
1630
1631	/* caller might not be interested in sense, but we need it */
1632	if (!sshdr)
1633		sshdr = &my_sshdr;
1634
1635	for (retries = 3; retries > 0; --retries) {
1636		unsigned char cmd[10] = { 0 };
1637
1638		cmd[0] = SYNCHRONIZE_CACHE;
1639		/*
1640		 * Leave the rest of the command zero to indicate
1641		 * flush everything.
1642		 */
1643		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1644				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1645		if (res == 0)
1646			break;
1647	}
1648
1649	if (res) {
1650		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1651
1652		if (driver_byte(res) == DRIVER_SENSE)
1653			sd_print_sense_hdr(sdkp, sshdr);
 
 
 
 
1654
1655		/* we need to evaluate the error return  */
1656		if (scsi_sense_valid(sshdr) &&
1657			(sshdr->asc == 0x3a ||	/* medium not present */
1658			 sshdr->asc == 0x20 ||	/* invalid command */
1659			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1660				/* this is no error here */
1661				return 0;
 
 
 
 
 
 
 
 
 
1662
1663		switch (host_byte(res)) {
1664		/* ignore errors due to racing a disconnection */
1665		case DID_BAD_TARGET:
1666		case DID_NO_CONNECT:
1667			return 0;
1668		/* signal the upper layer it might try again */
1669		case DID_BUS_BUSY:
1670		case DID_IMM_RETRY:
1671		case DID_REQUEUE:
1672		case DID_SOFT_ERROR:
1673			return -EBUSY;
1674		default:
1675			return -EIO;
1676		}
1677	}
1678	return 0;
1679}
1680
1681static void sd_rescan(struct device *dev)
1682{
1683	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1684
1685	revalidate_disk(sdkp->disk);
1686}
1687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688
1689#ifdef CONFIG_COMPAT
1690/* 
1691 * This gets directly called from VFS. When the ioctl 
1692 * is not recognized we go back to the other translation paths. 
1693 */
1694static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1695			   unsigned int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696{
1697	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1698	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699
1700	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1701			(mode & FMODE_NDELAY) != 0);
1702	if (error)
1703		return error;
1704	       
1705	/* 
1706	 * Let the static ioctl translation table take care of it.
1707	 */
1708	if (!sdev->host->hostt->compat_ioctl)
1709		return -ENOIOCTLCMD; 
1710	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1711}
1712#endif
1713
1714static char sd_pr_type(enum pr_type type)
 
1715{
1716	switch (type) {
1717	case PR_WRITE_EXCLUSIVE:
1718		return 0x01;
1719	case PR_EXCLUSIVE_ACCESS:
1720		return 0x03;
1721	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1722		return 0x05;
1723	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1724		return 0x06;
1725	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1726		return 0x07;
1727	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1728		return 0x08;
1729	default:
1730		return 0;
 
 
 
 
 
 
 
1731	}
1732};
1733
1734static int sd_pr_command(struct block_device *bdev, u8 sa,
1735		u64 key, u64 sa_key, u8 type, u8 flags)
 
 
 
 
 
 
1736{
1737	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
 
1738	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739	int result;
1740	u8 cmd[16] = { 0, };
1741	u8 data[24] = { 0, };
1742
1743	cmd[0] = PERSISTENT_RESERVE_OUT;
1744	cmd[1] = sa;
1745	cmd[2] = type;
1746	put_unaligned_be32(sizeof(data), &cmd[5]);
1747
1748	put_unaligned_be64(key, &data[0]);
1749	put_unaligned_be64(sa_key, &data[8]);
1750	data[20] = flags;
1751
1752	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1753			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 
1754
1755	if (driver_byte(result) == DRIVER_SENSE &&
1756	    scsi_sense_valid(&sshdr)) {
1757		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1758		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1759	}
1760
1761	return result;
 
 
 
1762}
1763
1764static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1765		u32 flags)
1766{
1767	if (flags & ~PR_FL_IGNORE_KEY)
1768		return -EOPNOTSUPP;
1769	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1770			old_key, new_key, 0,
1771			(1 << 0) /* APTPL */);
1772}
1773
1774static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1775		u32 flags)
1776{
1777	if (flags)
1778		return -EOPNOTSUPP;
1779	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
 
1780}
1781
1782static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1783{
1784	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
 
1785}
1786
1787static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1788		enum pr_type type, bool abort)
1789{
1790	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1791			     sd_pr_type(type), 0);
1792}
1793
1794static int sd_pr_clear(struct block_device *bdev, u64 key)
1795{
1796	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1797}
1798
1799static const struct pr_ops sd_pr_ops = {
1800	.pr_register	= sd_pr_register,
1801	.pr_reserve	= sd_pr_reserve,
1802	.pr_release	= sd_pr_release,
1803	.pr_preempt	= sd_pr_preempt,
1804	.pr_clear	= sd_pr_clear,
 
 
1805};
1806
 
 
 
 
 
 
 
1807static const struct block_device_operations sd_fops = {
1808	.owner			= THIS_MODULE,
1809	.open			= sd_open,
1810	.release		= sd_release,
1811	.ioctl			= sd_ioctl,
1812	.getgeo			= sd_getgeo,
1813#ifdef CONFIG_COMPAT
1814	.compat_ioctl		= sd_compat_ioctl,
1815#endif
1816	.check_events		= sd_check_events,
1817	.revalidate_disk	= sd_revalidate_disk,
1818	.unlock_native_capacity	= sd_unlock_native_capacity,
1819	.report_zones		= sd_zbc_report_zones,
 
 
1820	.pr_ops			= &sd_pr_ops,
1821};
1822
1823/**
1824 *	sd_eh_reset - reset error handling callback
1825 *	@scmd:		sd-issued command that has failed
1826 *
1827 *	This function is called by the SCSI midlayer before starting
1828 *	SCSI EH. When counting medium access failures we have to be
1829 *	careful to register it only only once per device and SCSI EH run;
1830 *	there might be several timed out commands which will cause the
1831 *	'max_medium_access_timeouts' counter to trigger after the first
1832 *	SCSI EH run already and set the device to offline.
1833 *	So this function resets the internal counter before starting SCSI EH.
1834 **/
1835static void sd_eh_reset(struct scsi_cmnd *scmd)
1836{
1837	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1838
1839	/* New SCSI EH run, reset gate variable */
1840	sdkp->ignore_medium_access_errors = false;
1841}
1842
1843/**
1844 *	sd_eh_action - error handling callback
1845 *	@scmd:		sd-issued command that has failed
1846 *	@eh_disp:	The recovery disposition suggested by the midlayer
1847 *
1848 *	This function is called by the SCSI midlayer upon completion of an
1849 *	error test command (currently TEST UNIT READY). The result of sending
1850 *	the eh command is passed in eh_disp.  We're looking for devices that
1851 *	fail medium access commands but are OK with non access commands like
1852 *	test unit ready (so wrongly see the device as having a successful
1853 *	recovery)
1854 **/
1855static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1856{
1857	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1858	struct scsi_device *sdev = scmd->device;
1859
1860	if (!scsi_device_online(sdev) ||
1861	    !scsi_medium_access_command(scmd) ||
1862	    host_byte(scmd->result) != DID_TIME_OUT ||
1863	    eh_disp != SUCCESS)
1864		return eh_disp;
1865
1866	/*
1867	 * The device has timed out executing a medium access command.
1868	 * However, the TEST UNIT READY command sent during error
1869	 * handling completed successfully. Either the device is in the
1870	 * process of recovering or has it suffered an internal failure
1871	 * that prevents access to the storage medium.
1872	 */
1873	if (!sdkp->ignore_medium_access_errors) {
1874		sdkp->medium_access_timed_out++;
1875		sdkp->ignore_medium_access_errors = true;
1876	}
1877
1878	/*
1879	 * If the device keeps failing read/write commands but TEST UNIT
1880	 * READY always completes successfully we assume that medium
1881	 * access is no longer possible and take the device offline.
1882	 */
1883	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1884		scmd_printk(KERN_ERR, scmd,
1885			    "Medium access timeout failure. Offlining disk!\n");
1886		mutex_lock(&sdev->state_mutex);
1887		scsi_device_set_state(sdev, SDEV_OFFLINE);
1888		mutex_unlock(&sdev->state_mutex);
1889
1890		return SUCCESS;
1891	}
1892
1893	return eh_disp;
1894}
1895
1896static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1897{
1898	struct request *req = scmd->request;
1899	struct scsi_device *sdev = scmd->device;
1900	unsigned int transferred, good_bytes;
1901	u64 start_lba, end_lba, bad_lba;
1902
1903	/*
1904	 * Some commands have a payload smaller than the device logical
1905	 * block size (e.g. INQUIRY on a 4K disk).
1906	 */
1907	if (scsi_bufflen(scmd) <= sdev->sector_size)
1908		return 0;
1909
1910	/* Check if we have a 'bad_lba' information */
1911	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1912				     SCSI_SENSE_BUFFERSIZE,
1913				     &bad_lba))
1914		return 0;
1915
1916	/*
1917	 * If the bad lba was reported incorrectly, we have no idea where
1918	 * the error is.
1919	 */
1920	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1921	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1922	if (bad_lba < start_lba || bad_lba >= end_lba)
1923		return 0;
1924
1925	/*
1926	 * resid is optional but mostly filled in.  When it's unused,
1927	 * its value is zero, so we assume the whole buffer transferred
1928	 */
1929	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1930
1931	/* This computation should always be done in terms of the
1932	 * resolution of the device's medium.
1933	 */
1934	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1935
1936	return min(good_bytes, transferred);
1937}
1938
1939/**
1940 *	sd_done - bottom half handler: called when the lower level
1941 *	driver has completed (successfully or otherwise) a scsi command.
1942 *	@SCpnt: mid-level's per command structure.
1943 *
1944 *	Note: potentially run from within an ISR. Must not block.
1945 **/
1946static int sd_done(struct scsi_cmnd *SCpnt)
1947{
1948	int result = SCpnt->result;
1949	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1950	unsigned int sector_size = SCpnt->device->sector_size;
1951	unsigned int resid;
1952	struct scsi_sense_hdr sshdr;
1953	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1954	struct request *req = SCpnt->request;
1955	int sense_valid = 0;
1956	int sense_deferred = 0;
1957
1958	switch (req_op(req)) {
1959	case REQ_OP_DISCARD:
1960	case REQ_OP_WRITE_ZEROES:
1961	case REQ_OP_WRITE_SAME:
1962	case REQ_OP_ZONE_RESET:
1963	case REQ_OP_ZONE_RESET_ALL:
 
 
 
1964		if (!result) {
1965			good_bytes = blk_rq_bytes(req);
1966			scsi_set_resid(SCpnt, 0);
1967		} else {
1968			good_bytes = 0;
1969			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1970		}
1971		break;
1972	default:
1973		/*
1974		 * In case of bogus fw or device, we could end up having
1975		 * an unaligned partial completion. Check this here and force
1976		 * alignment.
1977		 */
1978		resid = scsi_get_resid(SCpnt);
1979		if (resid & (sector_size - 1)) {
1980			sd_printk(KERN_INFO, sdkp,
1981				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1982				resid, sector_size);
1983			scsi_print_command(SCpnt);
1984			resid = min(scsi_bufflen(SCpnt),
1985				    round_up(resid, sector_size));
1986			scsi_set_resid(SCpnt, resid);
1987		}
1988	}
1989
1990	if (result) {
1991		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1992		if (sense_valid)
1993			sense_deferred = scsi_sense_is_deferred(&sshdr);
1994	}
1995	sdkp->medium_access_timed_out = 0;
1996
1997	if (driver_byte(result) != DRIVER_SENSE &&
1998	    (!sense_valid || sense_deferred))
1999		goto out;
2000
2001	switch (sshdr.sense_key) {
2002	case HARDWARE_ERROR:
2003	case MEDIUM_ERROR:
2004		good_bytes = sd_completed_bytes(SCpnt);
2005		break;
2006	case RECOVERED_ERROR:
2007		good_bytes = scsi_bufflen(SCpnt);
2008		break;
2009	case NO_SENSE:
2010		/* This indicates a false check condition, so ignore it.  An
2011		 * unknown amount of data was transferred so treat it as an
2012		 * error.
2013		 */
2014		SCpnt->result = 0;
2015		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2016		break;
2017	case ABORTED_COMMAND:
2018		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2019			good_bytes = sd_completed_bytes(SCpnt);
2020		break;
2021	case ILLEGAL_REQUEST:
2022		switch (sshdr.asc) {
2023		case 0x10:	/* DIX: Host detected corruption */
2024			good_bytes = sd_completed_bytes(SCpnt);
2025			break;
2026		case 0x20:	/* INVALID COMMAND OPCODE */
2027		case 0x24:	/* INVALID FIELD IN CDB */
2028			switch (SCpnt->cmnd[0]) {
2029			case UNMAP:
2030				sd_config_discard(sdkp, SD_LBP_DISABLE);
2031				break;
2032			case WRITE_SAME_16:
2033			case WRITE_SAME:
2034				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2035					sd_config_discard(sdkp, SD_LBP_DISABLE);
2036				} else {
2037					sdkp->device->no_write_same = 1;
2038					sd_config_write_same(sdkp);
2039					req->rq_flags |= RQF_QUIET;
2040				}
2041				break;
2042			}
2043		}
2044		break;
2045	default:
2046		break;
2047	}
2048
2049 out:
2050	if (sd_is_zoned(sdkp))
2051		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2052
2053	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2054					   "sd_done: completed %d of %d bytes\n",
2055					   good_bytes, scsi_bufflen(SCpnt)));
2056
2057	return good_bytes;
2058}
2059
2060/*
2061 * spinup disk - called only in sd_revalidate_disk()
2062 */
2063static void
2064sd_spinup_disk(struct scsi_disk *sdkp)
2065{
2066	unsigned char cmd[10];
2067	unsigned long spintime_expire = 0;
2068	int retries, spintime;
2069	unsigned int the_result;
2070	struct scsi_sense_hdr sshdr;
2071	int sense_valid = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	spintime = 0;
2074
2075	/* Spin up drives, as required.  Only do this at boot time */
2076	/* Spinup needs to be done for module loads too. */
2077	do {
2078		retries = 0;
2079
2080		do {
2081			cmd[0] = TEST_UNIT_READY;
2082			memset((void *) &cmd[1], 0, 9);
2083
2084			the_result = scsi_execute_req(sdkp->device, cmd,
2085						      DMA_NONE, NULL, 0,
2086						      &sshdr, SD_TIMEOUT,
2087						      SD_MAX_RETRIES, NULL);
2088
 
 
 
 
 
 
2089			/*
2090			 * If the drive has indicated to us that it
2091			 * doesn't have any media in it, don't bother
2092			 * with any more polling.
2093			 */
2094			if (media_not_present(sdkp, &sshdr))
 
 
 
2095				return;
 
 
 
2096
2097			if (the_result)
2098				sense_valid = scsi_sense_valid(&sshdr);
2099			retries++;
2100		} while (retries < 3 && 
2101			 (!scsi_status_is_good(the_result) ||
2102			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2103			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2104
2105		if (driver_byte(the_result) != DRIVER_SENSE) {
2106			/* no sense, TUR either succeeded or failed
2107			 * with a status error */
2108			if(!spintime && !scsi_status_is_good(the_result)) {
2109				sd_print_result(sdkp, "Test Unit Ready failed",
2110						the_result);
2111			}
2112			break;
2113		}
2114
2115		/*
2116		 * The device does not want the automatic start to be issued.
2117		 */
2118		if (sdkp->device->no_start_on_add)
2119			break;
2120
2121		if (sense_valid && sshdr.sense_key == NOT_READY) {
2122			if (sshdr.asc == 4 && sshdr.ascq == 3)
2123				break;	/* manual intervention required */
2124			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2125				break;	/* standby */
2126			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2127				break;	/* unavailable */
2128			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2129				break;	/* sanitize in progress */
 
 
 
 
2130			/*
2131			 * Issue command to spin up drive when not ready
2132			 */
2133			if (!spintime) {
 
 
 
 
 
 
 
 
2134				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2135				cmd[0] = START_STOP;
2136				cmd[1] = 1;	/* Return immediately */
2137				memset((void *) &cmd[2], 0, 8);
2138				cmd[4] = 1;	/* Start spin cycle */
2139				if (sdkp->device->start_stop_pwr_cond)
2140					cmd[4] |= 1 << 4;
2141				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2142						 NULL, 0, &sshdr,
2143						 SD_TIMEOUT, SD_MAX_RETRIES,
2144						 NULL);
2145				spintime_expire = jiffies + 100 * HZ;
2146				spintime = 1;
2147			}
2148			/* Wait 1 second for next try */
2149			msleep(1000);
2150			printk(KERN_CONT ".");
2151
2152		/*
2153		 * Wait for USB flash devices with slow firmware.
2154		 * Yes, this sense key/ASC combination shouldn't
2155		 * occur here.  It's characteristic of these devices.
2156		 */
2157		} else if (sense_valid &&
2158				sshdr.sense_key == UNIT_ATTENTION &&
2159				sshdr.asc == 0x28) {
2160			if (!spintime) {
2161				spintime_expire = jiffies + 5 * HZ;
2162				spintime = 1;
2163			}
2164			/* Wait 1 second for next try */
2165			msleep(1000);
2166		} else {
2167			/* we don't understand the sense code, so it's
2168			 * probably pointless to loop */
2169			if(!spintime) {
2170				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2171				sd_print_sense_hdr(sdkp, &sshdr);
2172			}
2173			break;
2174		}
2175				
2176	} while (spintime && time_before_eq(jiffies, spintime_expire));
2177
2178	if (spintime) {
2179		if (scsi_status_is_good(the_result))
2180			printk(KERN_CONT "ready\n");
2181		else
2182			printk(KERN_CONT "not responding...\n");
2183	}
2184}
2185
2186/*
2187 * Determine whether disk supports Data Integrity Field.
2188 */
2189static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2190{
2191	struct scsi_device *sdp = sdkp->device;
2192	u8 type;
2193	int ret = 0;
2194
2195	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2196		return ret;
 
 
2197
2198	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2199
2200	if (type > T10_PI_TYPE3_PROTECTION)
2201		ret = -ENODEV;
2202	else if (scsi_host_dif_capable(sdp->host, type))
2203		ret = 1;
2204
2205	if (sdkp->first_scan || type != sdkp->protection_type)
2206		switch (ret) {
2207		case -ENODEV:
2208			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2209				  " protection type %u. Disabling disk!\n",
2210				  type);
2211			break;
2212		case 1:
2213			sd_printk(KERN_NOTICE, sdkp,
2214				  "Enabling DIF Type %u protection\n", type);
2215			break;
2216		case 0:
2217			sd_printk(KERN_NOTICE, sdkp,
2218				  "Disabling DIF Type %u protection\n", type);
2219			break;
2220		}
2221
2222	sdkp->protection_type = type;
2223
2224	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225}
2226
2227static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2228			struct scsi_sense_hdr *sshdr, int sense_valid,
2229			int the_result)
2230{
2231	if (driver_byte(the_result) == DRIVER_SENSE)
2232		sd_print_sense_hdr(sdkp, sshdr);
2233	else
2234		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2235
2236	/*
2237	 * Set dirty bit for removable devices if not ready -
2238	 * sometimes drives will not report this properly.
2239	 */
2240	if (sdp->removable &&
2241	    sense_valid && sshdr->sense_key == NOT_READY)
2242		set_media_not_present(sdkp);
2243
2244	/*
2245	 * We used to set media_present to 0 here to indicate no media
2246	 * in the drive, but some drives fail read capacity even with
2247	 * media present, so we can't do that.
2248	 */
2249	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2250}
2251
2252#define RC16_LEN 32
2253#if RC16_LEN > SD_BUF_SIZE
2254#error RC16_LEN must not be more than SD_BUF_SIZE
2255#endif
2256
2257#define READ_CAPACITY_RETRIES_ON_RESET	10
2258
2259static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260						unsigned char *buffer)
2261{
2262	unsigned char cmd[16];
2263	struct scsi_sense_hdr sshdr;
 
 
 
2264	int sense_valid = 0;
2265	int the_result;
2266	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2267	unsigned int alignment;
2268	unsigned long long lba;
2269	unsigned sector_size;
2270
2271	if (sdp->no_read_capacity_16)
2272		return -EINVAL;
2273
2274	do {
2275		memset(cmd, 0, 16);
2276		cmd[0] = SERVICE_ACTION_IN_16;
2277		cmd[1] = SAI_READ_CAPACITY_16;
2278		cmd[13] = RC16_LEN;
2279		memset(buffer, 0, RC16_LEN);
2280
2281		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2282					buffer, RC16_LEN, &sshdr,
2283					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2284
2285		if (media_not_present(sdkp, &sshdr))
2286			return -ENODEV;
2287
2288		if (the_result) {
2289			sense_valid = scsi_sense_valid(&sshdr);
2290			if (sense_valid &&
2291			    sshdr.sense_key == ILLEGAL_REQUEST &&
2292			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2293			    sshdr.ascq == 0x00)
2294				/* Invalid Command Operation Code or
2295				 * Invalid Field in CDB, just retry
2296				 * silently with RC10 */
2297				return -EINVAL;
2298			if (sense_valid &&
2299			    sshdr.sense_key == UNIT_ATTENTION &&
2300			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2301				/* Device reset might occur several times,
2302				 * give it one more chance */
2303				if (--reset_retries > 0)
2304					continue;
2305		}
2306		retries--;
2307
2308	} while (the_result && retries);
2309
2310	if (the_result) {
2311		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2312		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2313		return -EINVAL;
2314	}
2315
2316	sector_size = get_unaligned_be32(&buffer[8]);
2317	lba = get_unaligned_be64(&buffer[0]);
2318
2319	if (sd_read_protection_type(sdkp, buffer) < 0) {
2320		sdkp->capacity = 0;
2321		return -ENODEV;
2322	}
2323
2324	/* Logical blocks per physical block exponent */
2325	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2326
2327	/* RC basis */
2328	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2329
2330	/* Lowest aligned logical block */
2331	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2332	blk_queue_alignment_offset(sdp->request_queue, alignment);
2333	if (alignment && sdkp->first_scan)
2334		sd_printk(KERN_NOTICE, sdkp,
2335			  "physical block alignment offset: %u\n", alignment);
2336
2337	if (buffer[14] & 0x80) { /* LBPME */
2338		sdkp->lbpme = 1;
2339
2340		if (buffer[14] & 0x40) /* LBPRZ */
2341			sdkp->lbprz = 1;
2342
2343		sd_config_discard(sdkp, SD_LBP_WS16);
2344	}
2345
2346	sdkp->capacity = lba + 1;
2347	return sector_size;
2348}
2349
2350static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2351						unsigned char *buffer)
2352{
2353	unsigned char cmd[16];
2354	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355	int sense_valid = 0;
2356	int the_result;
2357	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2358	sector_t lba;
2359	unsigned sector_size;
2360
2361	do {
2362		cmd[0] = READ_CAPACITY;
2363		memset(&cmd[1], 0, 9);
2364		memset(buffer, 0, 8);
2365
2366		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2367					buffer, 8, &sshdr,
2368					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2369
2370		if (media_not_present(sdkp, &sshdr))
2371			return -ENODEV;
2372
2373		if (the_result) {
2374			sense_valid = scsi_sense_valid(&sshdr);
2375			if (sense_valid &&
2376			    sshdr.sense_key == UNIT_ATTENTION &&
2377			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2378				/* Device reset might occur several times,
2379				 * give it one more chance */
2380				if (--reset_retries > 0)
2381					continue;
2382		}
2383		retries--;
2384
2385	} while (the_result && retries);
2386
2387	if (the_result) {
2388		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2389		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2390		return -EINVAL;
2391	}
2392
2393	sector_size = get_unaligned_be32(&buffer[4]);
2394	lba = get_unaligned_be32(&buffer[0]);
2395
2396	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2397		/* Some buggy (usb cardreader) devices return an lba of
2398		   0xffffffff when the want to report a size of 0 (with
2399		   which they really mean no media is present) */
2400		sdkp->capacity = 0;
2401		sdkp->physical_block_size = sector_size;
2402		return sector_size;
2403	}
2404
2405	sdkp->capacity = lba + 1;
2406	sdkp->physical_block_size = sector_size;
2407	return sector_size;
2408}
2409
2410static int sd_try_rc16_first(struct scsi_device *sdp)
2411{
2412	if (sdp->host->max_cmd_len < 16)
2413		return 0;
2414	if (sdp->try_rc_10_first)
2415		return 0;
2416	if (sdp->scsi_level > SCSI_SPC_2)
2417		return 1;
2418	if (scsi_device_protection(sdp))
2419		return 1;
2420	return 0;
2421}
2422
2423/*
2424 * read disk capacity
2425 */
2426static void
2427sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2428{
2429	int sector_size;
2430	struct scsi_device *sdp = sdkp->device;
2431
2432	if (sd_try_rc16_first(sdp)) {
2433		sector_size = read_capacity_16(sdkp, sdp, buffer);
2434		if (sector_size == -EOVERFLOW)
2435			goto got_data;
2436		if (sector_size == -ENODEV)
2437			return;
2438		if (sector_size < 0)
2439			sector_size = read_capacity_10(sdkp, sdp, buffer);
2440		if (sector_size < 0)
2441			return;
2442	} else {
2443		sector_size = read_capacity_10(sdkp, sdp, buffer);
2444		if (sector_size == -EOVERFLOW)
2445			goto got_data;
2446		if (sector_size < 0)
2447			return;
2448		if ((sizeof(sdkp->capacity) > 4) &&
2449		    (sdkp->capacity > 0xffffffffULL)) {
2450			int old_sector_size = sector_size;
2451			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2452					"Trying to use READ CAPACITY(16).\n");
2453			sector_size = read_capacity_16(sdkp, sdp, buffer);
2454			if (sector_size < 0) {
2455				sd_printk(KERN_NOTICE, sdkp,
2456					"Using 0xffffffff as device size\n");
2457				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2458				sector_size = old_sector_size;
2459				goto got_data;
2460			}
2461			/* Remember that READ CAPACITY(16) succeeded */
2462			sdp->try_rc_10_first = 0;
2463		}
2464	}
2465
2466	/* Some devices are known to return the total number of blocks,
2467	 * not the highest block number.  Some devices have versions
2468	 * which do this and others which do not.  Some devices we might
2469	 * suspect of doing this but we don't know for certain.
2470	 *
2471	 * If we know the reported capacity is wrong, decrement it.  If
2472	 * we can only guess, then assume the number of blocks is even
2473	 * (usually true but not always) and err on the side of lowering
2474	 * the capacity.
2475	 */
2476	if (sdp->fix_capacity ||
2477	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2478		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2479				"from its reported value: %llu\n",
2480				(unsigned long long) sdkp->capacity);
2481		--sdkp->capacity;
2482	}
2483
2484got_data:
2485	if (sector_size == 0) {
2486		sector_size = 512;
2487		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2488			  "assuming 512.\n");
2489	}
2490
2491	if (sector_size != 512 &&
2492	    sector_size != 1024 &&
2493	    sector_size != 2048 &&
2494	    sector_size != 4096) {
2495		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2496			  sector_size);
2497		/*
2498		 * The user might want to re-format the drive with
2499		 * a supported sectorsize.  Once this happens, it
2500		 * would be relatively trivial to set the thing up.
2501		 * For this reason, we leave the thing in the table.
2502		 */
2503		sdkp->capacity = 0;
2504		/*
2505		 * set a bogus sector size so the normal read/write
2506		 * logic in the block layer will eventually refuse any
2507		 * request on this device without tripping over power
2508		 * of two sector size assumptions
2509		 */
2510		sector_size = 512;
2511	}
2512	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2513	blk_queue_physical_block_size(sdp->request_queue,
2514				      sdkp->physical_block_size);
2515	sdkp->device->sector_size = sector_size;
2516
2517	if (sdkp->capacity > 0xffffffff)
2518		sdp->use_16_for_rw = 1;
2519
2520}
2521
2522/*
2523 * Print disk capacity
2524 */
2525static void
2526sd_print_capacity(struct scsi_disk *sdkp,
2527		  sector_t old_capacity)
2528{
2529	int sector_size = sdkp->device->sector_size;
2530	char cap_str_2[10], cap_str_10[10];
2531
2532	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2533		return;
2534
2535	string_get_size(sdkp->capacity, sector_size,
2536			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2537	string_get_size(sdkp->capacity, sector_size,
2538			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2539
2540	sd_printk(KERN_NOTICE, sdkp,
2541		  "%llu %d-byte logical blocks: (%s/%s)\n",
2542		  (unsigned long long)sdkp->capacity,
2543		  sector_size, cap_str_10, cap_str_2);
2544
2545	if (sdkp->physical_block_size != sector_size)
2546		sd_printk(KERN_NOTICE, sdkp,
2547			  "%u-byte physical blocks\n",
2548			  sdkp->physical_block_size);
2549
2550	sd_zbc_print_zones(sdkp);
2551}
2552
2553/* called with buffer of length 512 */
2554static inline int
2555sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2556		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2557		 struct scsi_sense_hdr *sshdr)
2558{
2559	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2560			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2561			       sshdr);
 
 
 
 
 
 
2562}
2563
2564/*
2565 * read write protect setting, if possible - called only in sd_revalidate_disk()
2566 * called with buffer of length SD_BUF_SIZE
2567 */
2568static void
2569sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2570{
2571	int res;
2572	struct scsi_device *sdp = sdkp->device;
2573	struct scsi_mode_data data;
2574	int old_wp = sdkp->write_prot;
2575
2576	set_disk_ro(sdkp->disk, 0);
2577	if (sdp->skip_ms_page_3f) {
2578		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2579		return;
2580	}
2581
2582	if (sdp->use_192_bytes_for_3f) {
2583		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2584	} else {
2585		/*
2586		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2587		 * We have to start carefully: some devices hang if we ask
2588		 * for more than is available.
2589		 */
2590		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2591
2592		/*
2593		 * Second attempt: ask for page 0 When only page 0 is
2594		 * implemented, a request for page 3F may return Sense Key
2595		 * 5: Illegal Request, Sense Code 24: Invalid field in
2596		 * CDB.
2597		 */
2598		if (!scsi_status_is_good(res))
2599			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2600
2601		/*
2602		 * Third attempt: ask 255 bytes, as we did earlier.
2603		 */
2604		if (!scsi_status_is_good(res))
2605			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2606					       &data, NULL);
2607	}
2608
2609	if (!scsi_status_is_good(res)) {
2610		sd_first_printk(KERN_WARNING, sdkp,
2611			  "Test WP failed, assume Write Enabled\n");
2612	} else {
2613		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2614		set_disk_ro(sdkp->disk, sdkp->write_prot);
2615		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2616			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2617				  sdkp->write_prot ? "on" : "off");
2618			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2619		}
2620	}
2621}
2622
2623/*
2624 * sd_read_cache_type - called only from sd_revalidate_disk()
2625 * called with buffer of length SD_BUF_SIZE
2626 */
2627static void
2628sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2629{
2630	int len = 0, res;
2631	struct scsi_device *sdp = sdkp->device;
2632
2633	int dbd;
2634	int modepage;
2635	int first_len;
2636	struct scsi_mode_data data;
2637	struct scsi_sense_hdr sshdr;
2638	int old_wce = sdkp->WCE;
2639	int old_rcd = sdkp->RCD;
2640	int old_dpofua = sdkp->DPOFUA;
2641
2642
2643	if (sdkp->cache_override)
2644		return;
2645
2646	first_len = 4;
2647	if (sdp->skip_ms_page_8) {
2648		if (sdp->type == TYPE_RBC)
2649			goto defaults;
2650		else {
2651			if (sdp->skip_ms_page_3f)
2652				goto defaults;
2653			modepage = 0x3F;
2654			if (sdp->use_192_bytes_for_3f)
2655				first_len = 192;
2656			dbd = 0;
2657		}
2658	} else if (sdp->type == TYPE_RBC) {
2659		modepage = 6;
2660		dbd = 8;
2661	} else {
2662		modepage = 8;
2663		dbd = 0;
2664	}
2665
2666	/* cautiously ask */
2667	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2668			&data, &sshdr);
2669
2670	if (!scsi_status_is_good(res))
2671		goto bad_sense;
2672
2673	if (!data.header_length) {
2674		modepage = 6;
2675		first_len = 0;
2676		sd_first_printk(KERN_ERR, sdkp,
2677				"Missing header in MODE_SENSE response\n");
2678	}
2679
2680	/* that went OK, now ask for the proper length */
2681	len = data.length;
2682
2683	/*
2684	 * We're only interested in the first three bytes, actually.
2685	 * But the data cache page is defined for the first 20.
2686	 */
2687	if (len < 3)
2688		goto bad_sense;
2689	else if (len > SD_BUF_SIZE) {
2690		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2691			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2692		len = SD_BUF_SIZE;
2693	}
2694	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2695		len = 192;
2696
2697	/* Get the data */
2698	if (len > first_len)
2699		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2700				&data, &sshdr);
2701
2702	if (scsi_status_is_good(res)) {
2703		int offset = data.header_length + data.block_descriptor_length;
2704
2705		while (offset < len) {
2706			u8 page_code = buffer[offset] & 0x3F;
2707			u8 spf       = buffer[offset] & 0x40;
2708
2709			if (page_code == 8 || page_code == 6) {
2710				/* We're interested only in the first 3 bytes.
2711				 */
2712				if (len - offset <= 2) {
2713					sd_first_printk(KERN_ERR, sdkp,
2714						"Incomplete mode parameter "
2715							"data\n");
2716					goto defaults;
2717				} else {
2718					modepage = page_code;
2719					goto Page_found;
2720				}
2721			} else {
2722				/* Go to the next page */
2723				if (spf && len - offset > 3)
2724					offset += 4 + (buffer[offset+2] << 8) +
2725						buffer[offset+3];
2726				else if (!spf && len - offset > 1)
2727					offset += 2 + buffer[offset+1];
2728				else {
2729					sd_first_printk(KERN_ERR, sdkp,
2730							"Incomplete mode "
2731							"parameter data\n");
2732					goto defaults;
2733				}
2734			}
2735		}
2736
2737		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
 
2738		goto defaults;
2739
2740	Page_found:
2741		if (modepage == 8) {
2742			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744		} else {
2745			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746			sdkp->RCD = 0;
2747		}
2748
2749		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750		if (sdp->broken_fua) {
2751			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752			sdkp->DPOFUA = 0;
2753		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754			   !sdkp->device->use_16_for_rw) {
2755			sd_first_printk(KERN_NOTICE, sdkp,
2756				  "Uses READ/WRITE(6), disabling FUA\n");
2757			sdkp->DPOFUA = 0;
2758		}
2759
2760		/* No cache flush allowed for write protected devices */
2761		if (sdkp->WCE && sdkp->write_prot)
2762			sdkp->WCE = 0;
2763
2764		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766			sd_printk(KERN_NOTICE, sdkp,
2767				  "Write cache: %s, read cache: %s, %s\n",
2768				  sdkp->WCE ? "enabled" : "disabled",
2769				  sdkp->RCD ? "disabled" : "enabled",
2770				  sdkp->DPOFUA ? "supports DPO and FUA"
2771				  : "doesn't support DPO or FUA");
2772
2773		return;
2774	}
2775
2776bad_sense:
2777	if (scsi_sense_valid(&sshdr) &&
2778	    sshdr.sense_key == ILLEGAL_REQUEST &&
2779	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780		/* Invalid field in CDB */
2781		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782	else
2783		sd_first_printk(KERN_ERR, sdkp,
2784				"Asking for cache data failed\n");
2785
2786defaults:
2787	if (sdp->wce_default_on) {
2788		sd_first_printk(KERN_NOTICE, sdkp,
2789				"Assuming drive cache: write back\n");
2790		sdkp->WCE = 1;
2791	} else {
2792		sd_first_printk(KERN_ERR, sdkp,
2793				"Assuming drive cache: write through\n");
2794		sdkp->WCE = 0;
2795	}
2796	sdkp->RCD = 0;
2797	sdkp->DPOFUA = 0;
2798}
2799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2800/*
2801 * The ATO bit indicates whether the DIF application tag is available
2802 * for use by the operating system.
2803 */
2804static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805{
2806	int res, offset;
2807	struct scsi_device *sdp = sdkp->device;
2808	struct scsi_mode_data data;
2809	struct scsi_sense_hdr sshdr;
2810
2811	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812		return;
2813
2814	if (sdkp->protection_type == 0)
2815		return;
2816
2817	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818			      SD_MAX_RETRIES, &data, &sshdr);
2819
2820	if (!scsi_status_is_good(res) || !data.header_length ||
2821	    data.length < 6) {
2822		sd_first_printk(KERN_WARNING, sdkp,
2823			  "getting Control mode page failed, assume no ATO\n");
2824
2825		if (scsi_sense_valid(&sshdr))
2826			sd_print_sense_hdr(sdkp, &sshdr);
2827
2828		return;
2829	}
2830
2831	offset = data.header_length + data.block_descriptor_length;
2832
2833	if ((buffer[offset] & 0x3f) != 0x0a) {
2834		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835		return;
2836	}
2837
2838	if ((buffer[offset + 5] & 0x80) == 0)
2839		return;
2840
2841	sdkp->ATO = 1;
2842
2843	return;
2844}
2845
2846/**
2847 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848 * @sdkp: disk to query
2849 */
2850static void sd_read_block_limits(struct scsi_disk *sdkp)
2851{
2852	unsigned int sector_sz = sdkp->device->sector_size;
2853	const int vpd_len = 64;
2854	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2855
2856	if (!buffer ||
2857	    /* Block Limits VPD */
2858	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2859		goto out;
2860
2861	blk_queue_io_min(sdkp->disk->queue,
2862			 get_unaligned_be16(&buffer[6]) * sector_sz);
2863
2864	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2865	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2866
2867	if (buffer[3] == 0x3c) {
2868		unsigned int lba_count, desc_count;
2869
2870		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2871
2872		if (!sdkp->lbpme)
2873			goto out;
2874
2875		lba_count = get_unaligned_be32(&buffer[20]);
2876		desc_count = get_unaligned_be32(&buffer[24]);
2877
2878		if (lba_count && desc_count)
2879			sdkp->max_unmap_blocks = lba_count;
2880
2881		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2882
2883		if (buffer[32] & 0x80)
2884			sdkp->unmap_alignment =
2885				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2886
2887		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2888
2889			if (sdkp->max_unmap_blocks)
2890				sd_config_discard(sdkp, SD_LBP_UNMAP);
2891			else
2892				sd_config_discard(sdkp, SD_LBP_WS16);
2893
2894		} else {	/* LBP VPD page tells us what to use */
2895			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2896				sd_config_discard(sdkp, SD_LBP_UNMAP);
2897			else if (sdkp->lbpws)
2898				sd_config_discard(sdkp, SD_LBP_WS16);
2899			else if (sdkp->lbpws10)
2900				sd_config_discard(sdkp, SD_LBP_WS10);
2901			else
2902				sd_config_discard(sdkp, SD_LBP_DISABLE);
2903		}
2904	}
2905
2906 out:
2907	kfree(buffer);
 
 
 
 
 
 
 
 
 
 
 
 
2908}
2909
2910/**
2911 * sd_read_block_characteristics - Query block dev. characteristics
2912 * @sdkp: disk to query
2913 */
2914static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2915{
2916	struct request_queue *q = sdkp->disk->queue;
2917	unsigned char *buffer;
2918	u16 rot;
2919	const int vpd_len = 64;
2920
2921	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2922
2923	if (!buffer ||
2924	    /* Block Device Characteristics VPD */
2925	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2926		goto out;
2927
2928	rot = get_unaligned_be16(&buffer[4]);
 
 
2929
2930	if (rot == 1) {
2931		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933	}
2934
 
 
2935	if (sdkp->device->type == TYPE_ZBC) {
2936		/* Host-managed */
2937		q->limits.zoned = BLK_ZONED_HM;
 
 
 
 
 
 
 
 
 
2938	} else {
2939		sdkp->zoned = (buffer[8] >> 4) & 3;
2940		if (sdkp->zoned == 1)
2941			/* Host-aware */
2942			q->limits.zoned = BLK_ZONED_HA;
2943		else
2944			/*
2945			 * Treat drive-managed devices as
2946			 * regular block devices.
2947			 */
2948			q->limits.zoned = BLK_ZONED_NONE;
2949	}
2950	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2951		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2952		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
 
2953
2954 out:
2955	kfree(buffer);
 
 
 
 
2956}
2957
2958/**
2959 * sd_read_block_provisioning - Query provisioning VPD page
2960 * @sdkp: disk to query
2961 */
2962static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2963{
2964	unsigned char *buffer;
2965	const int vpd_len = 8;
2966
2967	if (sdkp->lbpme == 0)
2968		return;
2969
2970	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2971
2972	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2973		goto out;
 
 
2974
2975	sdkp->lbpvpd	= 1;
2976	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2977	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2978	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2979
2980 out:
2981	kfree(buffer);
2982}
2983
2984static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2985{
2986	struct scsi_device *sdev = sdkp->device;
2987
2988	if (sdev->host->no_write_same) {
2989		sdev->no_write_same = 1;
2990
2991		return;
2992	}
2993
2994	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2995		/* too large values might cause issues with arcmsr */
2996		int vpd_buf_len = 64;
2997
2998		sdev->no_report_opcodes = 1;
2999
3000		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3001		 * CODES is unsupported and the device has an ATA
3002		 * Information VPD page (SAT).
3003		 */
3004		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
 
 
3005			sdev->no_write_same = 1;
 
3006	}
3007
3008	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3009		sdkp->ws16 = 1;
3010
3011	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3012		sdkp->ws10 = 1;
3013}
3014
3015static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3016{
3017	struct scsi_device *sdev = sdkp->device;
3018
3019	if (!sdev->security_supported)
3020		return;
3021
3022	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3023			SECURITY_PROTOCOL_IN) == 1 &&
3024	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3025			SECURITY_PROTOCOL_OUT) == 1)
3026		sdkp->security = 1;
3027}
3028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029/*
3030 * Determine the device's preferred I/O size for reads and writes
3031 * unless the reported value is unreasonably small, large, not a
3032 * multiple of the physical block size, or simply garbage.
3033 */
3034static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3035				      unsigned int dev_max)
3036{
3037	struct scsi_device *sdp = sdkp->device;
3038	unsigned int opt_xfer_bytes =
3039		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
 
 
3040
3041	if (sdkp->opt_xfer_blocks == 0)
3042		return false;
3043
3044	if (sdkp->opt_xfer_blocks > dev_max) {
3045		sd_first_printk(KERN_WARNING, sdkp,
3046				"Optimal transfer size %u logical blocks " \
3047				"> dev_max (%u logical blocks)\n",
3048				sdkp->opt_xfer_blocks, dev_max);
3049		return false;
3050	}
3051
3052	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3053		sd_first_printk(KERN_WARNING, sdkp,
3054				"Optimal transfer size %u logical blocks " \
3055				"> sd driver limit (%u logical blocks)\n",
3056				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3057		return false;
3058	}
3059
3060	if (opt_xfer_bytes < PAGE_SIZE) {
3061		sd_first_printk(KERN_WARNING, sdkp,
3062				"Optimal transfer size %u bytes < " \
3063				"PAGE_SIZE (%u bytes)\n",
3064				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3065		return false;
3066	}
3067
 
 
 
 
 
 
 
 
 
3068	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3069		sd_first_printk(KERN_WARNING, sdkp,
3070				"Optimal transfer size %u bytes not a " \
3071				"multiple of physical block size (%u bytes)\n",
3072				opt_xfer_bytes, sdkp->physical_block_size);
3073		return false;
3074	}
3075
3076	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3077			opt_xfer_bytes);
3078	return true;
3079}
3080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081/**
3082 *	sd_revalidate_disk - called the first time a new disk is seen,
3083 *	performs disk spin up, read_capacity, etc.
3084 *	@disk: struct gendisk we care about
3085 **/
3086static int sd_revalidate_disk(struct gendisk *disk)
3087{
3088	struct scsi_disk *sdkp = scsi_disk(disk);
3089	struct scsi_device *sdp = sdkp->device;
3090	struct request_queue *q = sdkp->disk->queue;
3091	sector_t old_capacity = sdkp->capacity;
3092	unsigned char *buffer;
3093	unsigned int dev_max, rw_max;
3094
3095	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3096				      "sd_revalidate_disk\n"));
3097
3098	/*
3099	 * If the device is offline, don't try and read capacity or any
3100	 * of the other niceties.
3101	 */
3102	if (!scsi_device_online(sdp))
3103		goto out;
3104
3105	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3106	if (!buffer) {
3107		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3108			  "allocation failure.\n");
3109		goto out;
3110	}
3111
3112	sd_spinup_disk(sdkp);
3113
3114	/*
3115	 * Without media there is no reason to ask; moreover, some devices
3116	 * react badly if we do.
3117	 */
3118	if (sdkp->media_present) {
3119		sd_read_capacity(sdkp, buffer);
3120
 
 
 
 
 
 
3121		/*
3122		 * set the default to rotational.  All non-rotational devices
3123		 * support the block characteristics VPD page, which will
3124		 * cause this to be updated correctly and any device which
3125		 * doesn't support it should be treated as rotational.
3126		 */
3127		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3128		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3129
3130		if (scsi_device_supports_vpd(sdp)) {
3131			sd_read_block_provisioning(sdkp);
3132			sd_read_block_limits(sdkp);
 
3133			sd_read_block_characteristics(sdkp);
3134			sd_zbc_read_zones(sdkp, buffer);
 
3135		}
3136
3137		sd_print_capacity(sdkp, old_capacity);
3138
3139		sd_read_write_protect_flag(sdkp, buffer);
3140		sd_read_cache_type(sdkp, buffer);
 
3141		sd_read_app_tag_own(sdkp, buffer);
3142		sd_read_write_same(sdkp, buffer);
3143		sd_read_security(sdkp, buffer);
 
3144	}
3145
3146	/*
3147	 * We now have all cache related info, determine how we deal
3148	 * with flush requests.
3149	 */
3150	sd_set_flush_flag(sdkp);
3151
3152	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3153	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3154
3155	/* Some devices report a maximum block count for READ/WRITE requests. */
3156	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3157	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3158
 
 
 
 
 
 
3159	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3160		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3161		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3162	} else
 
3163		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3164				      (sector_t)BLK_DEF_MAX_SECTORS);
 
 
 
 
 
 
 
 
3165
3166	/* Do not exceed controller limit */
3167	rw_max = min(rw_max, queue_max_hw_sectors(q));
3168
3169	/*
3170	 * Only update max_sectors if previously unset or if the current value
3171	 * exceeds the capabilities of the hardware.
3172	 */
3173	if (sdkp->first_scan ||
3174	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3175	    q->limits.max_sectors > q->limits.max_hw_sectors)
3176		q->limits.max_sectors = rw_max;
 
 
3177
3178	sdkp->first_scan = 0;
3179
3180	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3181	sd_config_write_same(sdkp);
3182	kfree(buffer);
3183
 
 
 
 
 
 
 
 
3184 out:
3185	return 0;
3186}
3187
3188/**
3189 *	sd_unlock_native_capacity - unlock native capacity
3190 *	@disk: struct gendisk to set capacity for
3191 *
3192 *	Block layer calls this function if it detects that partitions
3193 *	on @disk reach beyond the end of the device.  If the SCSI host
3194 *	implements ->unlock_native_capacity() method, it's invoked to
3195 *	give it a chance to adjust the device capacity.
3196 *
3197 *	CONTEXT:
3198 *	Defined by block layer.  Might sleep.
3199 */
3200static void sd_unlock_native_capacity(struct gendisk *disk)
3201{
3202	struct scsi_device *sdev = scsi_disk(disk)->device;
3203
3204	if (sdev->host->hostt->unlock_native_capacity)
3205		sdev->host->hostt->unlock_native_capacity(sdev);
3206}
3207
3208/**
3209 *	sd_format_disk_name - format disk name
3210 *	@prefix: name prefix - ie. "sd" for SCSI disks
3211 *	@index: index of the disk to format name for
3212 *	@buf: output buffer
3213 *	@buflen: length of the output buffer
3214 *
3215 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3216 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3217 *	which is followed by sdaaa.
3218 *
3219 *	This is basically 26 base counting with one extra 'nil' entry
3220 *	at the beginning from the second digit on and can be
3221 *	determined using similar method as 26 base conversion with the
3222 *	index shifted -1 after each digit is computed.
3223 *
3224 *	CONTEXT:
3225 *	Don't care.
3226 *
3227 *	RETURNS:
3228 *	0 on success, -errno on failure.
3229 */
3230static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3231{
3232	const int base = 'z' - 'a' + 1;
3233	char *begin = buf + strlen(prefix);
3234	char *end = buf + buflen;
3235	char *p;
3236	int unit;
3237
3238	p = end - 1;
3239	*p = '\0';
3240	unit = base;
3241	do {
3242		if (p == begin)
3243			return -EINVAL;
3244		*--p = 'a' + (index % unit);
3245		index = (index / unit) - 1;
3246	} while (index >= 0);
3247
3248	memmove(begin, p, end - p);
3249	memcpy(buf, prefix, strlen(prefix));
3250
3251	return 0;
3252}
3253
3254/**
3255 *	sd_probe - called during driver initialization and whenever a
3256 *	new scsi device is attached to the system. It is called once
3257 *	for each scsi device (not just disks) present.
3258 *	@dev: pointer to device object
3259 *
3260 *	Returns 0 if successful (or not interested in this scsi device 
3261 *	(e.g. scanner)); 1 when there is an error.
3262 *
3263 *	Note: this function is invoked from the scsi mid-level.
3264 *	This function sets up the mapping between a given 
3265 *	<host,channel,id,lun> (found in sdp) and new device name 
3266 *	(e.g. /dev/sda). More precisely it is the block device major 
3267 *	and minor number that is chosen here.
3268 *
3269 *	Assume sd_probe is not re-entrant (for time being)
3270 *	Also think about sd_probe() and sd_remove() running coincidentally.
3271 **/
3272static int sd_probe(struct device *dev)
3273{
3274	struct scsi_device *sdp = to_scsi_device(dev);
3275	struct scsi_disk *sdkp;
3276	struct gendisk *gd;
3277	int index;
3278	int error;
3279
3280	scsi_autopm_get_device(sdp);
3281	error = -ENODEV;
3282	if (sdp->type != TYPE_DISK &&
3283	    sdp->type != TYPE_ZBC &&
3284	    sdp->type != TYPE_MOD &&
3285	    sdp->type != TYPE_RBC)
3286		goto out;
3287
3288#ifndef CONFIG_BLK_DEV_ZONED
3289	if (sdp->type == TYPE_ZBC)
 
3290		goto out;
3291#endif
 
3292	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3293					"sd_probe\n"));
3294
3295	error = -ENOMEM;
3296	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3297	if (!sdkp)
3298		goto out;
3299
3300	gd = alloc_disk(SD_MINORS);
 
3301	if (!gd)
3302		goto out_free;
3303
3304	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3305	if (index < 0) {
3306		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3307		goto out_put;
3308	}
3309
3310	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3311	if (error) {
3312		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3313		goto out_free_index;
3314	}
3315
3316	sdkp->device = sdp;
3317	sdkp->driver = &sd_template;
3318	sdkp->disk = gd;
3319	sdkp->index = index;
 
3320	atomic_set(&sdkp->openers, 0);
3321	atomic_set(&sdkp->device->ioerr_cnt, 0);
3322
3323	if (!sdp->request_queue->rq_timeout) {
3324		if (sdp->type != TYPE_MOD)
3325			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3326		else
3327			blk_queue_rq_timeout(sdp->request_queue,
3328					     SD_MOD_TIMEOUT);
3329	}
3330
3331	device_initialize(&sdkp->dev);
3332	sdkp->dev.parent = dev;
3333	sdkp->dev.class = &sd_disk_class;
3334	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3335
3336	error = device_add(&sdkp->dev);
3337	if (error)
3338		goto out_free_index;
 
 
3339
3340	get_device(dev);
3341	dev_set_drvdata(dev, sdkp);
3342
3343	gd->major = sd_major((index & 0xf0) >> 4);
3344	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
 
3345
3346	gd->fops = &sd_fops;
3347	gd->private_data = &sdkp->driver;
3348	gd->queue = sdkp->device->request_queue;
3349
3350	/* defaults, until the device tells us otherwise */
3351	sdp->sector_size = 512;
3352	sdkp->capacity = 0;
3353	sdkp->media_present = 1;
3354	sdkp->write_prot = 0;
3355	sdkp->cache_override = 0;
3356	sdkp->WCE = 0;
3357	sdkp->RCD = 0;
3358	sdkp->ATO = 0;
3359	sdkp->first_scan = 1;
3360	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3361
3362	sd_revalidate_disk(gd);
3363
3364	gd->flags = GENHD_FL_EXT_DEVT;
3365	if (sdp->removable) {
3366		gd->flags |= GENHD_FL_REMOVABLE;
3367		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3368		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3369	}
3370
3371	blk_pm_runtime_init(sdp->request_queue, dev);
3372	device_add_disk(dev, gd, NULL);
3373	if (sdkp->capacity)
3374		sd_dif_config_host(sdkp);
 
3375
3376	sd_revalidate_disk(gd);
 
 
 
 
 
3377
3378	if (sdkp->security) {
3379		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3380		if (sdkp->opal_dev)
3381			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3382	}
3383
3384	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3385		  sdp->removable ? "removable " : "");
3386	scsi_autopm_put_device(sdp);
3387
3388	return 0;
3389
3390 out_free_index:
3391	ida_free(&sd_index_ida, index);
3392 out_put:
3393	put_disk(gd);
3394 out_free:
3395	kfree(sdkp);
3396 out:
3397	scsi_autopm_put_device(sdp);
3398	return error;
3399}
3400
3401/**
3402 *	sd_remove - called whenever a scsi disk (previously recognized by
3403 *	sd_probe) is detached from the system. It is called (potentially
3404 *	multiple times) during sd module unload.
3405 *	@dev: pointer to device object
3406 *
3407 *	Note: this function is invoked from the scsi mid-level.
3408 *	This function potentially frees up a device name (e.g. /dev/sdc)
3409 *	that could be re-used by a subsequent sd_probe().
3410 *	This function is not called when the built-in sd driver is "exit-ed".
3411 **/
3412static int sd_remove(struct device *dev)
3413{
3414	struct scsi_disk *sdkp;
3415	dev_t devt;
3416
3417	sdkp = dev_get_drvdata(dev);
3418	devt = disk_devt(sdkp->disk);
3419	scsi_autopm_get_device(sdkp->device);
3420
3421	async_synchronize_full_domain(&scsi_sd_pm_domain);
3422	device_del(&sdkp->dev);
3423	del_gendisk(sdkp->disk);
3424	sd_shutdown(dev);
3425
3426	free_opal_dev(sdkp->opal_dev);
3427
3428	blk_register_region(devt, SD_MINORS, NULL,
3429			    sd_default_probe, NULL, NULL);
3430
3431	mutex_lock(&sd_ref_mutex);
3432	dev_set_drvdata(dev, NULL);
3433	put_device(&sdkp->dev);
3434	mutex_unlock(&sd_ref_mutex);
3435
 
3436	return 0;
3437}
3438
3439/**
3440 *	scsi_disk_release - Called to free the scsi_disk structure
3441 *	@dev: pointer to embedded class device
3442 *
3443 *	sd_ref_mutex must be held entering this routine.  Because it is
3444 *	called on last put, you should always use the scsi_disk_get()
3445 *	scsi_disk_put() helpers which manipulate the semaphore directly
3446 *	and never do a direct put_device.
3447 **/
3448static void scsi_disk_release(struct device *dev)
3449{
3450	struct scsi_disk *sdkp = to_scsi_disk(dev);
3451	struct gendisk *disk = sdkp->disk;
3452	struct request_queue *q = disk->queue;
3453
3454	ida_free(&sd_index_ida, sdkp->index);
3455
3456	/*
3457	 * Wait until all requests that are in progress have completed.
3458	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3459	 * due to clearing the disk->private_data pointer. Wait from inside
3460	 * scsi_disk_release() instead of from sd_release() to avoid that
3461	 * freezing and unfreezing the request queue affects user space I/O
3462	 * in case multiple processes open a /dev/sd... node concurrently.
3463	 */
3464	blk_mq_freeze_queue(q);
3465	blk_mq_unfreeze_queue(q);
3466
3467	disk->private_data = NULL;
3468	put_disk(disk);
3469	put_device(&sdkp->device->sdev_gendev);
 
3470
3471	kfree(sdkp);
3472}
3473
3474static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3475{
3476	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3477	struct scsi_sense_hdr sshdr;
 
 
 
 
3478	struct scsi_device *sdp = sdkp->device;
3479	int res;
3480
3481	if (start)
3482		cmd[4] |= 1;	/* START */
3483
3484	if (sdp->start_stop_pwr_cond)
3485		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3486
3487	if (!scsi_device_online(sdp))
3488		return -ENODEV;
3489
3490	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3491			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3492	if (res) {
3493		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3494		if (driver_byte(res) == DRIVER_SENSE)
3495			sd_print_sense_hdr(sdkp, &sshdr);
3496		if (scsi_sense_valid(&sshdr) &&
3497			/* 0x3a is medium not present */
3498			sshdr.asc == 0x3a)
3499			res = 0;
 
3500	}
3501
3502	/* SCSI error codes must not go to the generic layer */
3503	if (res)
3504		return -EIO;
3505
3506	return 0;
3507}
3508
3509/*
3510 * Send a SYNCHRONIZE CACHE instruction down to the device through
3511 * the normal SCSI command structure.  Wait for the command to
3512 * complete.
3513 */
3514static void sd_shutdown(struct device *dev)
3515{
3516	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3517
3518	if (!sdkp)
3519		return;         /* this can happen */
3520
3521	if (pm_runtime_suspended(dev))
3522		return;
3523
3524	if (sdkp->WCE && sdkp->media_present) {
3525		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526		sd_sync_cache(sdkp, NULL);
3527	}
3528
3529	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
 
 
 
3530		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3531		sd_start_stop_device(sdkp, 0);
3532	}
3533}
3534
3535static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
 
 
 
 
 
 
3536{
3537	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3538	struct scsi_sense_hdr sshdr;
3539	int ret = 0;
3540
3541	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3542		return 0;
3543
3544	if (sdkp->WCE && sdkp->media_present) {
3545		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3546		ret = sd_sync_cache(sdkp, &sshdr);
3547
3548		if (ret) {
3549			/* ignore OFFLINE device */
3550			if (ret == -ENODEV)
3551				return 0;
3552
3553			if (!scsi_sense_valid(&sshdr) ||
3554			    sshdr.sense_key != ILLEGAL_REQUEST)
3555				return ret;
3556
3557			/*
3558			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3559			 * doesn't support sync. There's not much to do and
3560			 * suspend shouldn't fail.
3561			 */
3562			ret = 0;
3563		}
3564	}
3565
3566	if (sdkp->device->manage_start_stop) {
3567		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
 
3568		/* an error is not worth aborting a system sleep */
3569		ret = sd_start_stop_device(sdkp, 0);
3570		if (ignore_stop_errors)
3571			ret = 0;
3572	}
3573
 
 
 
3574	return ret;
3575}
3576
3577static int sd_suspend_system(struct device *dev)
3578{
3579	return sd_suspend_common(dev, true);
 
 
 
3580}
3581
3582static int sd_suspend_runtime(struct device *dev)
3583{
3584	return sd_suspend_common(dev, false);
3585}
3586
3587static int sd_resume(struct device *dev)
3588{
3589	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590	int ret;
3591
3592	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3593		return 0;
3594
3595	if (!sdkp->device->manage_start_stop)
 
3596		return 0;
 
3597
3598	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3599	ret = sd_start_stop_device(sdkp, 1);
3600	if (!ret)
3601		opal_unlock_from_suspend(sdkp->opal_dev);
 
 
 
3602	return ret;
3603}
3604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605/**
3606 *	init_sd - entry point for this driver (both when built in or when
3607 *	a module).
3608 *
3609 *	Note: this function registers this driver with the scsi mid-level.
3610 **/
3611static int __init init_sd(void)
3612{
3613	int majors = 0, i, err;
3614
3615	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3616
3617	for (i = 0; i < SD_MAJORS; i++) {
3618		if (register_blkdev(sd_major(i), "sd") != 0)
3619			continue;
3620		majors++;
3621		blk_register_region(sd_major(i), SD_MINORS, NULL,
3622				    sd_default_probe, NULL, NULL);
3623	}
3624
3625	if (!majors)
3626		return -ENODEV;
3627
3628	err = class_register(&sd_disk_class);
3629	if (err)
3630		goto err_out;
3631
3632	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3633					 0, 0, NULL);
3634	if (!sd_cdb_cache) {
3635		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3636		err = -ENOMEM;
3637		goto err_out_class;
3638	}
3639
3640	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3641	if (!sd_cdb_pool) {
3642		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3643		err = -ENOMEM;
3644		goto err_out_cache;
3645	}
3646
3647	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3648	if (!sd_page_pool) {
3649		printk(KERN_ERR "sd: can't init discard page pool\n");
3650		err = -ENOMEM;
3651		goto err_out_ppool;
3652	}
3653
3654	err = scsi_register_driver(&sd_template.gendrv);
3655	if (err)
3656		goto err_out_driver;
3657
3658	return 0;
3659
3660err_out_driver:
3661	mempool_destroy(sd_page_pool);
3662
3663err_out_ppool:
3664	mempool_destroy(sd_cdb_pool);
3665
3666err_out_cache:
3667	kmem_cache_destroy(sd_cdb_cache);
3668
3669err_out_class:
3670	class_unregister(&sd_disk_class);
3671err_out:
3672	for (i = 0; i < SD_MAJORS; i++)
3673		unregister_blkdev(sd_major(i), "sd");
3674	return err;
3675}
3676
3677/**
3678 *	exit_sd - exit point for this driver (when it is a module).
3679 *
3680 *	Note: this function unregisters this driver from the scsi mid-level.
3681 **/
3682static void __exit exit_sd(void)
3683{
3684	int i;
3685
3686	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3687
3688	scsi_unregister_driver(&sd_template.gendrv);
3689	mempool_destroy(sd_cdb_pool);
3690	mempool_destroy(sd_page_pool);
3691	kmem_cache_destroy(sd_cdb_cache);
3692
3693	class_unregister(&sd_disk_class);
3694
3695	for (i = 0; i < SD_MAJORS; i++) {
3696		blk_unregister_region(sd_major(i), SD_MINORS);
3697		unregister_blkdev(sd_major(i), "sd");
3698	}
3699}
3700
3701module_init(init_sd);
3702module_exit(exit_sd);
3703
3704static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3705			       struct scsi_sense_hdr *sshdr)
3706{
3707	scsi_print_sense_hdr(sdkp->device,
3708			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3709}
3710
3711static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3712			    int result)
3713{
3714	const char *hb_string = scsi_hostbyte_string(result);
3715	const char *db_string = scsi_driverbyte_string(result);
3716
3717	if (hb_string || db_string)
3718		sd_printk(KERN_INFO, sdkp,
3719			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3720			  hb_string ? hb_string : "invalid",
3721			  db_string ? db_string : "invalid");
3722	else
3723		sd_printk(KERN_INFO, sdkp,
3724			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3725			  msg, host_byte(result), driver_byte(result));
3726}
3727