Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
   5#include <linux/prefetch.h>
   6
   7#include "iavf.h"
   8#include "iavf_trace.h"
   9#include "iavf_prototype.h"
  10
  11static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  12			 u32 td_tag)
  13{
  14	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  15			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  16			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  17			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  18			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  19}
  20
  21#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  22
  23/**
  24 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  25 * @ring:      the ring that owns the buffer
  26 * @tx_buffer: the buffer to free
  27 **/
  28static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  29					    struct iavf_tx_buffer *tx_buffer)
  30{
  31	if (tx_buffer->skb) {
  32		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  33			kfree(tx_buffer->raw_buf);
  34		else
  35			dev_kfree_skb_any(tx_buffer->skb);
  36		if (dma_unmap_len(tx_buffer, len))
  37			dma_unmap_single(ring->dev,
  38					 dma_unmap_addr(tx_buffer, dma),
  39					 dma_unmap_len(tx_buffer, len),
  40					 DMA_TO_DEVICE);
  41	} else if (dma_unmap_len(tx_buffer, len)) {
  42		dma_unmap_page(ring->dev,
  43			       dma_unmap_addr(tx_buffer, dma),
  44			       dma_unmap_len(tx_buffer, len),
  45			       DMA_TO_DEVICE);
  46	}
  47
  48	tx_buffer->next_to_watch = NULL;
  49	tx_buffer->skb = NULL;
  50	dma_unmap_len_set(tx_buffer, len, 0);
  51	/* tx_buffer must be completely set up in the transmit path */
  52}
  53
  54/**
  55 * iavf_clean_tx_ring - Free any empty Tx buffers
  56 * @tx_ring: ring to be cleaned
  57 **/
  58static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  59{
  60	unsigned long bi_size;
  61	u16 i;
  62
  63	/* ring already cleared, nothing to do */
  64	if (!tx_ring->tx_bi)
  65		return;
  66
  67	/* Free all the Tx ring sk_buffs */
  68	for (i = 0; i < tx_ring->count; i++)
  69		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  70
  71	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  72	memset(tx_ring->tx_bi, 0, bi_size);
  73
  74	/* Zero out the descriptor ring */
  75	memset(tx_ring->desc, 0, tx_ring->size);
  76
  77	tx_ring->next_to_use = 0;
  78	tx_ring->next_to_clean = 0;
  79
  80	if (!tx_ring->netdev)
  81		return;
  82
  83	/* cleanup Tx queue statistics */
  84	netdev_tx_reset_queue(txring_txq(tx_ring));
  85}
  86
  87/**
  88 * iavf_free_tx_resources - Free Tx resources per queue
  89 * @tx_ring: Tx descriptor ring for a specific queue
  90 *
  91 * Free all transmit software resources
  92 **/
  93void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  94{
  95	iavf_clean_tx_ring(tx_ring);
  96	kfree(tx_ring->tx_bi);
  97	tx_ring->tx_bi = NULL;
  98
  99	if (tx_ring->desc) {
 100		dma_free_coherent(tx_ring->dev, tx_ring->size,
 101				  tx_ring->desc, tx_ring->dma);
 102		tx_ring->desc = NULL;
 103	}
 104}
 105
 106/**
 107 * iavf_get_tx_pending - how many Tx descriptors not processed
 108 * @ring: the ring of descriptors
 109 * @in_sw: is tx_pending being checked in SW or HW
 110 *
 111 * Since there is no access to the ring head register
 112 * in XL710, we need to use our local copies
 113 **/
 114static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 115{
 116	u32 head, tail;
 117
 118	/* underlying hardware might not allow access and/or always return
 119	 * 0 for the head/tail registers so just use the cached values
 120	 */
 121	head = ring->next_to_clean;
 122	tail = ring->next_to_use;
 123
 124	if (head != tail)
 125		return (head < tail) ?
 126			tail - head : (tail + ring->count - head);
 127
 128	return 0;
 129}
 130
 131/**
 132 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 133 * @vsi: the VSI we care about
 134 * @q_vector: the vector on which to force writeback
 135 **/
 136static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 137{
 138	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 139		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 140		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 141		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 142		  /* allow 00 to be written to the index */;
 143
 144	wr32(&vsi->back->hw,
 145	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 146	     val);
 147}
 148
 149/**
 150 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 151 * @vsi:  pointer to vsi struct with tx queues
 152 *
 153 * VSI has netdev and netdev has TX queues. This function is to check each of
 154 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 155 **/
 156void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 157{
 158	struct iavf_ring *tx_ring = NULL;
 159	struct net_device *netdev;
 160	unsigned int i;
 161	int packets;
 162
 163	if (!vsi)
 164		return;
 165
 166	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 167		return;
 168
 169	netdev = vsi->netdev;
 170	if (!netdev)
 171		return;
 172
 173	if (!netif_carrier_ok(netdev))
 174		return;
 175
 176	for (i = 0; i < vsi->back->num_active_queues; i++) {
 177		tx_ring = &vsi->back->tx_rings[i];
 178		if (tx_ring && tx_ring->desc) {
 179			/* If packet counter has not changed the queue is
 180			 * likely stalled, so force an interrupt for this
 181			 * queue.
 182			 *
 183			 * prev_pkt_ctr would be negative if there was no
 184			 * pending work.
 185			 */
 186			packets = tx_ring->stats.packets & INT_MAX;
 187			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 188				iavf_force_wb(vsi, tx_ring->q_vector);
 189				continue;
 190			}
 191
 192			/* Memory barrier between read of packet count and call
 193			 * to iavf_get_tx_pending()
 194			 */
 195			smp_rmb();
 196			tx_ring->tx_stats.prev_pkt_ctr =
 197			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 198		}
 199	}
 200}
 201
 202#define WB_STRIDE 4
 203
 204/**
 205 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 206 * @vsi: the VSI we care about
 207 * @tx_ring: Tx ring to clean
 208 * @napi_budget: Used to determine if we are in netpoll
 209 *
 210 * Returns true if there's any budget left (e.g. the clean is finished)
 211 **/
 212static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 213			      struct iavf_ring *tx_ring, int napi_budget)
 214{
 215	int i = tx_ring->next_to_clean;
 216	struct iavf_tx_buffer *tx_buf;
 217	struct iavf_tx_desc *tx_desc;
 218	unsigned int total_bytes = 0, total_packets = 0;
 219	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
 220
 221	tx_buf = &tx_ring->tx_bi[i];
 222	tx_desc = IAVF_TX_DESC(tx_ring, i);
 223	i -= tx_ring->count;
 224
 225	do {
 226		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 227
 228		/* if next_to_watch is not set then there is no work pending */
 229		if (!eop_desc)
 230			break;
 231
 232		/* prevent any other reads prior to eop_desc */
 233		smp_rmb();
 234
 235		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 236		/* if the descriptor isn't done, no work yet to do */
 237		if (!(eop_desc->cmd_type_offset_bsz &
 238		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 239			break;
 240
 241		/* clear next_to_watch to prevent false hangs */
 242		tx_buf->next_to_watch = NULL;
 243
 244		/* update the statistics for this packet */
 245		total_bytes += tx_buf->bytecount;
 246		total_packets += tx_buf->gso_segs;
 247
 248		/* free the skb */
 249		napi_consume_skb(tx_buf->skb, napi_budget);
 250
 251		/* unmap skb header data */
 252		dma_unmap_single(tx_ring->dev,
 253				 dma_unmap_addr(tx_buf, dma),
 254				 dma_unmap_len(tx_buf, len),
 255				 DMA_TO_DEVICE);
 256
 257		/* clear tx_buffer data */
 258		tx_buf->skb = NULL;
 259		dma_unmap_len_set(tx_buf, len, 0);
 260
 261		/* unmap remaining buffers */
 262		while (tx_desc != eop_desc) {
 263			iavf_trace(clean_tx_irq_unmap,
 264				   tx_ring, tx_desc, tx_buf);
 265
 266			tx_buf++;
 267			tx_desc++;
 268			i++;
 269			if (unlikely(!i)) {
 270				i -= tx_ring->count;
 271				tx_buf = tx_ring->tx_bi;
 272				tx_desc = IAVF_TX_DESC(tx_ring, 0);
 273			}
 274
 275			/* unmap any remaining paged data */
 276			if (dma_unmap_len(tx_buf, len)) {
 277				dma_unmap_page(tx_ring->dev,
 278					       dma_unmap_addr(tx_buf, dma),
 279					       dma_unmap_len(tx_buf, len),
 280					       DMA_TO_DEVICE);
 281				dma_unmap_len_set(tx_buf, len, 0);
 282			}
 283		}
 284
 285		/* move us one more past the eop_desc for start of next pkt */
 286		tx_buf++;
 287		tx_desc++;
 288		i++;
 289		if (unlikely(!i)) {
 290			i -= tx_ring->count;
 291			tx_buf = tx_ring->tx_bi;
 292			tx_desc = IAVF_TX_DESC(tx_ring, 0);
 293		}
 294
 295		prefetch(tx_desc);
 296
 297		/* update budget accounting */
 298		budget--;
 299	} while (likely(budget));
 300
 301	i += tx_ring->count;
 302	tx_ring->next_to_clean = i;
 303	u64_stats_update_begin(&tx_ring->syncp);
 304	tx_ring->stats.bytes += total_bytes;
 305	tx_ring->stats.packets += total_packets;
 306	u64_stats_update_end(&tx_ring->syncp);
 307	tx_ring->q_vector->tx.total_bytes += total_bytes;
 308	tx_ring->q_vector->tx.total_packets += total_packets;
 309
 310	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 311		/* check to see if there are < 4 descriptors
 312		 * waiting to be written back, then kick the hardware to force
 313		 * them to be written back in case we stay in NAPI.
 314		 * In this mode on X722 we do not enable Interrupt.
 315		 */
 316		unsigned int j = iavf_get_tx_pending(tx_ring, false);
 317
 318		if (budget &&
 319		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 320		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 321		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 322			tx_ring->arm_wb = true;
 323	}
 324
 325	/* notify netdev of completed buffers */
 326	netdev_tx_completed_queue(txring_txq(tx_ring),
 327				  total_packets, total_bytes);
 328
 329#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 330	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 331		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 332		/* Make sure that anybody stopping the queue after this
 333		 * sees the new next_to_clean.
 334		 */
 335		smp_mb();
 336		if (__netif_subqueue_stopped(tx_ring->netdev,
 337					     tx_ring->queue_index) &&
 338		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 339			netif_wake_subqueue(tx_ring->netdev,
 340					    tx_ring->queue_index);
 341			++tx_ring->tx_stats.restart_queue;
 342		}
 343	}
 344
 345	return !!budget;
 346}
 347
 348/**
 349 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 350 * @vsi: the VSI we care about
 351 * @q_vector: the vector on which to enable writeback
 352 *
 353 **/
 354static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 355				  struct iavf_q_vector *q_vector)
 356{
 357	u16 flags = q_vector->tx.ring[0].flags;
 358	u32 val;
 359
 360	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 361		return;
 362
 363	if (q_vector->arm_wb_state)
 364		return;
 365
 366	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 367	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 368
 369	wr32(&vsi->back->hw,
 370	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 371	q_vector->arm_wb_state = true;
 372}
 373
 374static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 375				 struct iavf_ring_container *rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376{
 377	return &q_vector->rx == rc;
 378}
 379
 380#define IAVF_AIM_MULTIPLIER_100G	2560
 381#define IAVF_AIM_MULTIPLIER_50G		1280
 382#define IAVF_AIM_MULTIPLIER_40G		1024
 383#define IAVF_AIM_MULTIPLIER_20G		512
 384#define IAVF_AIM_MULTIPLIER_10G		256
 385#define IAVF_AIM_MULTIPLIER_1G		32
 386
 387static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
 388{
 389	switch (speed_mbps) {
 390	case SPEED_100000:
 391		return IAVF_AIM_MULTIPLIER_100G;
 392	case SPEED_50000:
 393		return IAVF_AIM_MULTIPLIER_50G;
 394	case SPEED_40000:
 395		return IAVF_AIM_MULTIPLIER_40G;
 396	case SPEED_25000:
 397	case SPEED_20000:
 398		return IAVF_AIM_MULTIPLIER_20G;
 399	case SPEED_10000:
 400	default:
 401		return IAVF_AIM_MULTIPLIER_10G;
 402	case SPEED_1000:
 403	case SPEED_100:
 404		return IAVF_AIM_MULTIPLIER_1G;
 405	}
 406}
 407
 408static unsigned int
 409iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
 410{
 411	switch (speed_virtchnl) {
 412	case VIRTCHNL_LINK_SPEED_40GB:
 413		return IAVF_AIM_MULTIPLIER_40G;
 414	case VIRTCHNL_LINK_SPEED_25GB:
 415	case VIRTCHNL_LINK_SPEED_20GB:
 416		return IAVF_AIM_MULTIPLIER_20G;
 417	case VIRTCHNL_LINK_SPEED_10GB:
 418	default:
 419		return IAVF_AIM_MULTIPLIER_10G;
 420	case VIRTCHNL_LINK_SPEED_1GB:
 421	case VIRTCHNL_LINK_SPEED_100MB:
 422		return IAVF_AIM_MULTIPLIER_1G;
 
 
 
 423	}
 424}
 425
 426static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
 427{
 428	if (ADV_LINK_SUPPORT(adapter))
 429		return IAVF_ITR_ADAPTIVE_MIN_INC *
 430			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
 431	else
 432		return IAVF_ITR_ADAPTIVE_MIN_INC *
 433			iavf_virtchnl_itr_multiplier(adapter->link_speed);
 434}
 435
 436/**
 437 * iavf_update_itr - update the dynamic ITR value based on statistics
 438 * @q_vector: structure containing interrupt and ring information
 439 * @rc: structure containing ring performance data
 440 *
 441 * Stores a new ITR value based on packets and byte
 442 * counts during the last interrupt.  The advantage of per interrupt
 443 * computation is faster updates and more accurate ITR for the current
 444 * traffic pattern.  Constants in this function were computed
 445 * based on theoretical maximum wire speed and thresholds were set based
 446 * on testing data as well as attempting to minimize response time
 447 * while increasing bulk throughput.
 448 **/
 449static void iavf_update_itr(struct iavf_q_vector *q_vector,
 450			    struct iavf_ring_container *rc)
 451{
 452	unsigned int avg_wire_size, packets, bytes, itr;
 453	unsigned long next_update = jiffies;
 454
 455	/* If we don't have any rings just leave ourselves set for maximum
 456	 * possible latency so we take ourselves out of the equation.
 457	 */
 458	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 459		return;
 460
 461	/* For Rx we want to push the delay up and default to low latency.
 462	 * for Tx we want to pull the delay down and default to high latency.
 463	 */
 464	itr = iavf_container_is_rx(q_vector, rc) ?
 465	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 466	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 467
 468	/* If we didn't update within up to 1 - 2 jiffies we can assume
 469	 * that either packets are coming in so slow there hasn't been
 470	 * any work, or that there is so much work that NAPI is dealing
 471	 * with interrupt moderation and we don't need to do anything.
 472	 */
 473	if (time_after(next_update, rc->next_update))
 474		goto clear_counts;
 475
 476	/* If itr_countdown is set it means we programmed an ITR within
 477	 * the last 4 interrupt cycles. This has a side effect of us
 478	 * potentially firing an early interrupt. In order to work around
 479	 * this we need to throw out any data received for a few
 480	 * interrupts following the update.
 481	 */
 482	if (q_vector->itr_countdown) {
 483		itr = rc->target_itr;
 484		goto clear_counts;
 485	}
 486
 487	packets = rc->total_packets;
 488	bytes = rc->total_bytes;
 489
 490	if (iavf_container_is_rx(q_vector, rc)) {
 491		/* If Rx there are 1 to 4 packets and bytes are less than
 492		 * 9000 assume insufficient data to use bulk rate limiting
 493		 * approach unless Tx is already in bulk rate limiting. We
 494		 * are likely latency driven.
 495		 */
 496		if (packets && packets < 4 && bytes < 9000 &&
 497		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 498			itr = IAVF_ITR_ADAPTIVE_LATENCY;
 499			goto adjust_by_size;
 500		}
 501	} else if (packets < 4) {
 502		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
 503		 * bulk mode and we are receiving 4 or fewer packets just
 504		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 505		 * that the Rx can relax.
 506		 */
 507		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 508		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 509		     IAVF_ITR_ADAPTIVE_MAX_USECS)
 510			goto clear_counts;
 511	} else if (packets > 32) {
 512		/* If we have processed over 32 packets in a single interrupt
 513		 * for Tx assume we need to switch over to "bulk" mode.
 514		 */
 515		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 516	}
 517
 518	/* We have no packets to actually measure against. This means
 519	 * either one of the other queues on this vector is active or
 520	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 521	 *
 522	 * Between 4 and 56 we can assume that our current interrupt delay
 523	 * is only slightly too low. As such we should increase it by a small
 524	 * fixed amount.
 525	 */
 526	if (packets < 56) {
 527		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 528		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 529			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 530			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 531		}
 532		goto clear_counts;
 533	}
 534
 535	if (packets <= 256) {
 536		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 537		itr &= IAVF_ITR_MASK;
 538
 539		/* Between 56 and 112 is our "goldilocks" zone where we are
 540		 * working out "just right". Just report that our current
 541		 * ITR is good for us.
 542		 */
 543		if (packets <= 112)
 544			goto clear_counts;
 545
 546		/* If packet count is 128 or greater we are likely looking
 547		 * at a slight overrun of the delay we want. Try halving
 548		 * our delay to see if that will cut the number of packets
 549		 * in half per interrupt.
 550		 */
 551		itr /= 2;
 552		itr &= IAVF_ITR_MASK;
 553		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 554			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 555
 556		goto clear_counts;
 557	}
 558
 559	/* The paths below assume we are dealing with a bulk ITR since
 560	 * number of packets is greater than 256. We are just going to have
 561	 * to compute a value and try to bring the count under control,
 562	 * though for smaller packet sizes there isn't much we can do as
 563	 * NAPI polling will likely be kicking in sooner rather than later.
 564	 */
 565	itr = IAVF_ITR_ADAPTIVE_BULK;
 566
 567adjust_by_size:
 568	/* If packet counts are 256 or greater we can assume we have a gross
 569	 * overestimation of what the rate should be. Instead of trying to fine
 570	 * tune it just use the formula below to try and dial in an exact value
 571	 * give the current packet size of the frame.
 572	 */
 573	avg_wire_size = bytes / packets;
 574
 575	/* The following is a crude approximation of:
 576	 *  wmem_default / (size + overhead) = desired_pkts_per_int
 577	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 578	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 579	 *
 580	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 581	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 582	 * formula down to
 583	 *
 584	 *  (170 * (size + 24)) / (size + 640) = ITR
 585	 *
 586	 * We first do some math on the packet size and then finally bitshift
 587	 * by 8 after rounding up. We also have to account for PCIe link speed
 588	 * difference as ITR scales based on this.
 589	 */
 590	if (avg_wire_size <= 60) {
 591		/* Start at 250k ints/sec */
 592		avg_wire_size = 4096;
 593	} else if (avg_wire_size <= 380) {
 594		/* 250K ints/sec to 60K ints/sec */
 595		avg_wire_size *= 40;
 596		avg_wire_size += 1696;
 597	} else if (avg_wire_size <= 1084) {
 598		/* 60K ints/sec to 36K ints/sec */
 599		avg_wire_size *= 15;
 600		avg_wire_size += 11452;
 601	} else if (avg_wire_size <= 1980) {
 602		/* 36K ints/sec to 30K ints/sec */
 603		avg_wire_size *= 5;
 604		avg_wire_size += 22420;
 605	} else {
 606		/* plateau at a limit of 30K ints/sec */
 607		avg_wire_size = 32256;
 608	}
 609
 610	/* If we are in low latency mode halve our delay which doubles the
 611	 * rate to somewhere between 100K to 16K ints/sec
 612	 */
 613	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 614		avg_wire_size /= 2;
 615
 616	/* Resultant value is 256 times larger than it needs to be. This
 617	 * gives us room to adjust the value as needed to either increase
 618	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 619	 *
 620	 * Use addition as we have already recorded the new latency flag
 621	 * for the ITR value.
 622	 */
 623	itr += DIV_ROUND_UP(avg_wire_size,
 624			    iavf_itr_divisor(q_vector->adapter)) *
 625		IAVF_ITR_ADAPTIVE_MIN_INC;
 626
 627	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 628		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 629		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 630	}
 631
 632clear_counts:
 633	/* write back value */
 634	rc->target_itr = itr;
 635
 636	/* next update should occur within next jiffy */
 637	rc->next_update = next_update + 1;
 638
 639	rc->total_bytes = 0;
 640	rc->total_packets = 0;
 641}
 642
 643/**
 644 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 645 * @tx_ring: the tx ring to set up
 646 *
 647 * Return 0 on success, negative on error
 648 **/
 649int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 650{
 651	struct device *dev = tx_ring->dev;
 652	int bi_size;
 653
 654	if (!dev)
 655		return -ENOMEM;
 656
 657	/* warn if we are about to overwrite the pointer */
 658	WARN_ON(tx_ring->tx_bi);
 659	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 660	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 661	if (!tx_ring->tx_bi)
 662		goto err;
 663
 664	/* round up to nearest 4K */
 665	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 666	tx_ring->size = ALIGN(tx_ring->size, 4096);
 667	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 668					   &tx_ring->dma, GFP_KERNEL);
 669	if (!tx_ring->desc) {
 670		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 671			 tx_ring->size);
 672		goto err;
 673	}
 674
 675	tx_ring->next_to_use = 0;
 676	tx_ring->next_to_clean = 0;
 677	tx_ring->tx_stats.prev_pkt_ctr = -1;
 678	return 0;
 679
 680err:
 681	kfree(tx_ring->tx_bi);
 682	tx_ring->tx_bi = NULL;
 683	return -ENOMEM;
 684}
 685
 686/**
 687 * iavf_clean_rx_ring - Free Rx buffers
 688 * @rx_ring: ring to be cleaned
 689 **/
 690static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 691{
 692	unsigned long bi_size;
 693	u16 i;
 694
 695	/* ring already cleared, nothing to do */
 696	if (!rx_ring->rx_bi)
 697		return;
 698
 699	if (rx_ring->skb) {
 700		dev_kfree_skb(rx_ring->skb);
 701		rx_ring->skb = NULL;
 702	}
 703
 704	/* Free all the Rx ring sk_buffs */
 705	for (i = 0; i < rx_ring->count; i++) {
 706		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 707
 708		if (!rx_bi->page)
 709			continue;
 710
 711		/* Invalidate cache lines that may have been written to by
 712		 * device so that we avoid corrupting memory.
 713		 */
 714		dma_sync_single_range_for_cpu(rx_ring->dev,
 715					      rx_bi->dma,
 716					      rx_bi->page_offset,
 717					      rx_ring->rx_buf_len,
 718					      DMA_FROM_DEVICE);
 719
 720		/* free resources associated with mapping */
 721		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 722				     iavf_rx_pg_size(rx_ring),
 723				     DMA_FROM_DEVICE,
 724				     IAVF_RX_DMA_ATTR);
 725
 726		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 727
 728		rx_bi->page = NULL;
 729		rx_bi->page_offset = 0;
 730	}
 731
 732	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 733	memset(rx_ring->rx_bi, 0, bi_size);
 734
 735	/* Zero out the descriptor ring */
 736	memset(rx_ring->desc, 0, rx_ring->size);
 737
 738	rx_ring->next_to_alloc = 0;
 739	rx_ring->next_to_clean = 0;
 740	rx_ring->next_to_use = 0;
 741}
 742
 743/**
 744 * iavf_free_rx_resources - Free Rx resources
 745 * @rx_ring: ring to clean the resources from
 746 *
 747 * Free all receive software resources
 748 **/
 749void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 750{
 751	iavf_clean_rx_ring(rx_ring);
 752	kfree(rx_ring->rx_bi);
 753	rx_ring->rx_bi = NULL;
 754
 755	if (rx_ring->desc) {
 756		dma_free_coherent(rx_ring->dev, rx_ring->size,
 757				  rx_ring->desc, rx_ring->dma);
 758		rx_ring->desc = NULL;
 759	}
 760}
 761
 762/**
 763 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 764 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 765 *
 766 * Returns 0 on success, negative on failure
 767 **/
 768int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 769{
 770	struct device *dev = rx_ring->dev;
 771	int bi_size;
 772
 773	/* warn if we are about to overwrite the pointer */
 774	WARN_ON(rx_ring->rx_bi);
 775	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 776	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 777	if (!rx_ring->rx_bi)
 778		goto err;
 779
 780	u64_stats_init(&rx_ring->syncp);
 781
 782	/* Round up to nearest 4K */
 783	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 784	rx_ring->size = ALIGN(rx_ring->size, 4096);
 785	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 786					   &rx_ring->dma, GFP_KERNEL);
 787
 788	if (!rx_ring->desc) {
 789		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 790			 rx_ring->size);
 791		goto err;
 792	}
 793
 794	rx_ring->next_to_alloc = 0;
 795	rx_ring->next_to_clean = 0;
 796	rx_ring->next_to_use = 0;
 797
 798	return 0;
 799err:
 800	kfree(rx_ring->rx_bi);
 801	rx_ring->rx_bi = NULL;
 802	return -ENOMEM;
 803}
 804
 805/**
 806 * iavf_release_rx_desc - Store the new tail and head values
 807 * @rx_ring: ring to bump
 808 * @val: new head index
 809 **/
 810static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 811{
 812	rx_ring->next_to_use = val;
 813
 814	/* update next to alloc since we have filled the ring */
 815	rx_ring->next_to_alloc = val;
 816
 817	/* Force memory writes to complete before letting h/w
 818	 * know there are new descriptors to fetch.  (Only
 819	 * applicable for weak-ordered memory model archs,
 820	 * such as IA-64).
 821	 */
 822	wmb();
 823	writel(val, rx_ring->tail);
 824}
 825
 826/**
 827 * iavf_rx_offset - Return expected offset into page to access data
 828 * @rx_ring: Ring we are requesting offset of
 829 *
 830 * Returns the offset value for ring into the data buffer.
 831 */
 832static unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 833{
 834	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 835}
 836
 837/**
 838 * iavf_alloc_mapped_page - recycle or make a new page
 839 * @rx_ring: ring to use
 840 * @bi: rx_buffer struct to modify
 841 *
 842 * Returns true if the page was successfully allocated or
 843 * reused.
 844 **/
 845static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 846				   struct iavf_rx_buffer *bi)
 847{
 848	struct page *page = bi->page;
 849	dma_addr_t dma;
 850
 851	/* since we are recycling buffers we should seldom need to alloc */
 852	if (likely(page)) {
 853		rx_ring->rx_stats.page_reuse_count++;
 854		return true;
 855	}
 856
 857	/* alloc new page for storage */
 858	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 859	if (unlikely(!page)) {
 860		rx_ring->rx_stats.alloc_page_failed++;
 861		return false;
 862	}
 863
 864	/* map page for use */
 865	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 866				 iavf_rx_pg_size(rx_ring),
 867				 DMA_FROM_DEVICE,
 868				 IAVF_RX_DMA_ATTR);
 869
 870	/* if mapping failed free memory back to system since
 871	 * there isn't much point in holding memory we can't use
 872	 */
 873	if (dma_mapping_error(rx_ring->dev, dma)) {
 874		__free_pages(page, iavf_rx_pg_order(rx_ring));
 875		rx_ring->rx_stats.alloc_page_failed++;
 876		return false;
 877	}
 878
 879	bi->dma = dma;
 880	bi->page = page;
 881	bi->page_offset = iavf_rx_offset(rx_ring);
 882
 883	/* initialize pagecnt_bias to 1 representing we fully own page */
 884	bi->pagecnt_bias = 1;
 885
 886	return true;
 887}
 888
 889/**
 890 * iavf_receive_skb - Send a completed packet up the stack
 891 * @rx_ring:  rx ring in play
 892 * @skb: packet to send up
 893 * @vlan_tag: vlan tag for packet
 894 **/
 895static void iavf_receive_skb(struct iavf_ring *rx_ring,
 896			     struct sk_buff *skb, u16 vlan_tag)
 897{
 898	struct iavf_q_vector *q_vector = rx_ring->q_vector;
 899
 900	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 901	    (vlan_tag & VLAN_VID_MASK))
 902		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 903	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
 904		 vlan_tag & VLAN_VID_MASK)
 905		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
 906
 907	napi_gro_receive(&q_vector->napi, skb);
 908}
 909
 910/**
 911 * iavf_alloc_rx_buffers - Replace used receive buffers
 912 * @rx_ring: ring to place buffers on
 913 * @cleaned_count: number of buffers to replace
 914 *
 915 * Returns false if all allocations were successful, true if any fail
 916 **/
 917bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 918{
 919	u16 ntu = rx_ring->next_to_use;
 920	union iavf_rx_desc *rx_desc;
 921	struct iavf_rx_buffer *bi;
 922
 923	/* do nothing if no valid netdev defined */
 924	if (!rx_ring->netdev || !cleaned_count)
 925		return false;
 926
 927	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 928	bi = &rx_ring->rx_bi[ntu];
 929
 930	do {
 931		if (!iavf_alloc_mapped_page(rx_ring, bi))
 932			goto no_buffers;
 933
 934		/* sync the buffer for use by the device */
 935		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 936						 bi->page_offset,
 937						 rx_ring->rx_buf_len,
 938						 DMA_FROM_DEVICE);
 939
 940		/* Refresh the desc even if buffer_addrs didn't change
 941		 * because each write-back erases this info.
 942		 */
 943		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 944
 945		rx_desc++;
 946		bi++;
 947		ntu++;
 948		if (unlikely(ntu == rx_ring->count)) {
 949			rx_desc = IAVF_RX_DESC(rx_ring, 0);
 950			bi = rx_ring->rx_bi;
 951			ntu = 0;
 952		}
 953
 954		/* clear the status bits for the next_to_use descriptor */
 955		rx_desc->wb.qword1.status_error_len = 0;
 956
 957		cleaned_count--;
 958	} while (cleaned_count);
 959
 960	if (rx_ring->next_to_use != ntu)
 961		iavf_release_rx_desc(rx_ring, ntu);
 962
 963	return false;
 964
 965no_buffers:
 966	if (rx_ring->next_to_use != ntu)
 967		iavf_release_rx_desc(rx_ring, ntu);
 968
 969	/* make sure to come back via polling to try again after
 970	 * allocation failure
 971	 */
 972	return true;
 973}
 974
 975/**
 976 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 977 * @vsi: the VSI we care about
 978 * @skb: skb currently being received and modified
 979 * @rx_desc: the receive descriptor
 980 **/
 981static void iavf_rx_checksum(struct iavf_vsi *vsi,
 982			     struct sk_buff *skb,
 983			     union iavf_rx_desc *rx_desc)
 984{
 985	struct iavf_rx_ptype_decoded decoded;
 986	u32 rx_error, rx_status;
 987	bool ipv4, ipv6;
 988	u8 ptype;
 989	u64 qword;
 990
 991	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 992	ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
 993	rx_error = FIELD_GET(IAVF_RXD_QW1_ERROR_MASK, qword);
 994	rx_status = FIELD_GET(IAVF_RXD_QW1_STATUS_MASK, qword);
 
 
 995	decoded = decode_rx_desc_ptype(ptype);
 996
 997	skb->ip_summed = CHECKSUM_NONE;
 998
 999	skb_checksum_none_assert(skb);
1000
1001	/* Rx csum enabled and ip headers found? */
1002	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1003		return;
1004
1005	/* did the hardware decode the packet and checksum? */
1006	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1007		return;
1008
1009	/* both known and outer_ip must be set for the below code to work */
1010	if (!(decoded.known && decoded.outer_ip))
1011		return;
1012
1013	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1014	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1015	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1016	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1017
1018	if (ipv4 &&
1019	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1020			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1021		goto checksum_fail;
1022
1023	/* likely incorrect csum if alternate IP extension headers found */
1024	if (ipv6 &&
1025	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1026		/* don't increment checksum err here, non-fatal err */
1027		return;
1028
1029	/* there was some L4 error, count error and punt packet to the stack */
1030	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1031		goto checksum_fail;
1032
1033	/* handle packets that were not able to be checksummed due
1034	 * to arrival speed, in this case the stack can compute
1035	 * the csum.
1036	 */
1037	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1038		return;
1039
1040	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1041	switch (decoded.inner_prot) {
1042	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1043	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1044	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1045		skb->ip_summed = CHECKSUM_UNNECESSARY;
1046		fallthrough;
1047	default:
1048		break;
1049	}
1050
1051	return;
1052
1053checksum_fail:
1054	vsi->back->hw_csum_rx_error++;
1055}
1056
1057/**
1058 * iavf_ptype_to_htype - get a hash type
1059 * @ptype: the ptype value from the descriptor
1060 *
1061 * Returns a hash type to be used by skb_set_hash
1062 **/
1063static int iavf_ptype_to_htype(u8 ptype)
1064{
1065	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1066
1067	if (!decoded.known)
1068		return PKT_HASH_TYPE_NONE;
1069
1070	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1071	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1072		return PKT_HASH_TYPE_L4;
1073	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1074		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1075		return PKT_HASH_TYPE_L3;
1076	else
1077		return PKT_HASH_TYPE_L2;
1078}
1079
1080/**
1081 * iavf_rx_hash - set the hash value in the skb
1082 * @ring: descriptor ring
1083 * @rx_desc: specific descriptor
1084 * @skb: skb currently being received and modified
1085 * @rx_ptype: Rx packet type
1086 **/
1087static void iavf_rx_hash(struct iavf_ring *ring,
1088			 union iavf_rx_desc *rx_desc,
1089			 struct sk_buff *skb,
1090			 u8 rx_ptype)
1091{
1092	u32 hash;
1093	const __le64 rss_mask =
1094		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1095			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1096
1097	if (!(ring->netdev->features & NETIF_F_RXHASH))
1098		return;
1099
1100	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1101		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1102		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1103	}
1104}
1105
1106/**
1107 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1108 * @rx_ring: rx descriptor ring packet is being transacted on
1109 * @rx_desc: pointer to the EOP Rx descriptor
1110 * @skb: pointer to current skb being populated
1111 * @rx_ptype: the packet type decoded by hardware
1112 *
1113 * This function checks the ring, descriptor, and packet information in
1114 * order to populate the hash, checksum, VLAN, protocol, and
1115 * other fields within the skb.
1116 **/
1117static void
1118iavf_process_skb_fields(struct iavf_ring *rx_ring,
1119			union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1120			u8 rx_ptype)
1121{
1122	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1123
1124	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1125
1126	skb_record_rx_queue(skb, rx_ring->queue_index);
1127
1128	/* modifies the skb - consumes the enet header */
1129	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1130}
1131
1132/**
1133 * iavf_cleanup_headers - Correct empty headers
1134 * @rx_ring: rx descriptor ring packet is being transacted on
1135 * @skb: pointer to current skb being fixed
1136 *
1137 * Also address the case where we are pulling data in on pages only
1138 * and as such no data is present in the skb header.
1139 *
1140 * In addition if skb is not at least 60 bytes we need to pad it so that
1141 * it is large enough to qualify as a valid Ethernet frame.
1142 *
1143 * Returns true if an error was encountered and skb was freed.
1144 **/
1145static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1146{
1147	/* if eth_skb_pad returns an error the skb was freed */
1148	if (eth_skb_pad(skb))
1149		return true;
1150
1151	return false;
1152}
1153
1154/**
1155 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1156 * @rx_ring: rx descriptor ring to store buffers on
1157 * @old_buff: donor buffer to have page reused
1158 *
1159 * Synchronizes page for reuse by the adapter
1160 **/
1161static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1162			       struct iavf_rx_buffer *old_buff)
1163{
1164	struct iavf_rx_buffer *new_buff;
1165	u16 nta = rx_ring->next_to_alloc;
1166
1167	new_buff = &rx_ring->rx_bi[nta];
1168
1169	/* update, and store next to alloc */
1170	nta++;
1171	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1172
1173	/* transfer page from old buffer to new buffer */
1174	new_buff->dma		= old_buff->dma;
1175	new_buff->page		= old_buff->page;
1176	new_buff->page_offset	= old_buff->page_offset;
1177	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1178}
1179
1180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
1181 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1182 * the adapter for another receive
1183 *
1184 * @rx_buffer: buffer containing the page
1185 *
1186 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1187 * an unused region in the page.
1188 *
1189 * For small pages, @truesize will be a constant value, half the size
1190 * of the memory at page.  We'll attempt to alternate between high and
1191 * low halves of the page, with one half ready for use by the hardware
1192 * and the other half being consumed by the stack.  We use the page
1193 * ref count to determine whether the stack has finished consuming the
1194 * portion of this page that was passed up with a previous packet.  If
1195 * the page ref count is >1, we'll assume the "other" half page is
1196 * still busy, and this page cannot be reused.
1197 *
1198 * For larger pages, @truesize will be the actual space used by the
1199 * received packet (adjusted upward to an even multiple of the cache
1200 * line size).  This will advance through the page by the amount
1201 * actually consumed by the received packets while there is still
1202 * space for a buffer.  Each region of larger pages will be used at
1203 * most once, after which the page will not be reused.
1204 *
1205 * In either case, if the page is reusable its refcount is increased.
1206 **/
1207static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1208{
1209	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1210	struct page *page = rx_buffer->page;
1211
1212	/* Is any reuse possible? */
1213	if (!dev_page_is_reusable(page))
1214		return false;
1215
1216#if (PAGE_SIZE < 8192)
1217	/* if we are only owner of page we can reuse it */
1218	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1219		return false;
1220#else
1221#define IAVF_LAST_OFFSET \
1222	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1223	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1224		return false;
1225#endif
1226
1227	/* If we have drained the page fragment pool we need to update
1228	 * the pagecnt_bias and page count so that we fully restock the
1229	 * number of references the driver holds.
1230	 */
1231	if (unlikely(!pagecnt_bias)) {
1232		page_ref_add(page, USHRT_MAX);
1233		rx_buffer->pagecnt_bias = USHRT_MAX;
1234	}
1235
1236	return true;
1237}
1238
1239/**
1240 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1241 * @rx_ring: rx descriptor ring to transact packets on
1242 * @rx_buffer: buffer containing page to add
1243 * @skb: sk_buff to place the data into
1244 * @size: packet length from rx_desc
1245 *
1246 * This function will add the data contained in rx_buffer->page to the skb.
1247 * It will just attach the page as a frag to the skb.
1248 *
1249 * The function will then update the page offset.
1250 **/
1251static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1252			     struct iavf_rx_buffer *rx_buffer,
1253			     struct sk_buff *skb,
1254			     unsigned int size)
1255{
1256#if (PAGE_SIZE < 8192)
1257	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1258#else
1259	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1260#endif
1261
1262	if (!size)
1263		return;
1264
1265	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1266			rx_buffer->page_offset, size, truesize);
1267
1268	/* page is being used so we must update the page offset */
1269#if (PAGE_SIZE < 8192)
1270	rx_buffer->page_offset ^= truesize;
1271#else
1272	rx_buffer->page_offset += truesize;
1273#endif
1274}
1275
1276/**
1277 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1278 * @rx_ring: rx descriptor ring to transact packets on
1279 * @size: size of buffer to add to skb
1280 *
1281 * This function will pull an Rx buffer from the ring and synchronize it
1282 * for use by the CPU.
1283 */
1284static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1285						 const unsigned int size)
1286{
1287	struct iavf_rx_buffer *rx_buffer;
1288
 
 
 
1289	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1290	prefetchw(rx_buffer->page);
1291	if (!size)
1292		return rx_buffer;
1293
1294	/* we are reusing so sync this buffer for CPU use */
1295	dma_sync_single_range_for_cpu(rx_ring->dev,
1296				      rx_buffer->dma,
1297				      rx_buffer->page_offset,
1298				      size,
1299				      DMA_FROM_DEVICE);
1300
1301	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1302	rx_buffer->pagecnt_bias--;
1303
1304	return rx_buffer;
1305}
1306
1307/**
1308 * iavf_construct_skb - Allocate skb and populate it
1309 * @rx_ring: rx descriptor ring to transact packets on
1310 * @rx_buffer: rx buffer to pull data from
1311 * @size: size of buffer to add to skb
1312 *
1313 * This function allocates an skb.  It then populates it with the page
1314 * data from the current receive descriptor, taking care to set up the
1315 * skb correctly.
1316 */
1317static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1318					  struct iavf_rx_buffer *rx_buffer,
1319					  unsigned int size)
1320{
1321	void *va;
1322#if (PAGE_SIZE < 8192)
1323	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1324#else
1325	unsigned int truesize = SKB_DATA_ALIGN(size);
1326#endif
1327	unsigned int headlen;
1328	struct sk_buff *skb;
1329
1330	if (!rx_buffer)
1331		return NULL;
1332	/* prefetch first cache line of first page */
1333	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1334	net_prefetch(va);
 
 
 
1335
1336	/* allocate a skb to store the frags */
1337	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1338			       IAVF_RX_HDR_SIZE,
1339			       GFP_ATOMIC | __GFP_NOWARN);
1340	if (unlikely(!skb))
1341		return NULL;
1342
1343	/* Determine available headroom for copy */
1344	headlen = size;
1345	if (headlen > IAVF_RX_HDR_SIZE)
1346		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1347
1348	/* align pull length to size of long to optimize memcpy performance */
1349	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1350
1351	/* update all of the pointers */
1352	size -= headlen;
1353	if (size) {
1354		skb_add_rx_frag(skb, 0, rx_buffer->page,
1355				rx_buffer->page_offset + headlen,
1356				size, truesize);
1357
1358		/* buffer is used by skb, update page_offset */
1359#if (PAGE_SIZE < 8192)
1360		rx_buffer->page_offset ^= truesize;
1361#else
1362		rx_buffer->page_offset += truesize;
1363#endif
1364	} else {
1365		/* buffer is unused, reset bias back to rx_buffer */
1366		rx_buffer->pagecnt_bias++;
1367	}
1368
1369	return skb;
1370}
1371
1372/**
1373 * iavf_build_skb - Build skb around an existing buffer
1374 * @rx_ring: Rx descriptor ring to transact packets on
1375 * @rx_buffer: Rx buffer to pull data from
1376 * @size: size of buffer to add to skb
1377 *
1378 * This function builds an skb around an existing Rx buffer, taking care
1379 * to set up the skb correctly and avoid any memcpy overhead.
1380 */
1381static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1382				      struct iavf_rx_buffer *rx_buffer,
1383				      unsigned int size)
1384{
1385	void *va;
1386#if (PAGE_SIZE < 8192)
1387	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1388#else
1389	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1390				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1391#endif
1392	struct sk_buff *skb;
1393
1394	if (!rx_buffer || !size)
1395		return NULL;
1396	/* prefetch first cache line of first page */
1397	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1398	net_prefetch(va);
1399
 
 
1400	/* build an skb around the page buffer */
1401	skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1402	if (unlikely(!skb))
1403		return NULL;
1404
1405	/* update pointers within the skb to store the data */
1406	skb_reserve(skb, IAVF_SKB_PAD);
1407	__skb_put(skb, size);
1408
1409	/* buffer is used by skb, update page_offset */
1410#if (PAGE_SIZE < 8192)
1411	rx_buffer->page_offset ^= truesize;
1412#else
1413	rx_buffer->page_offset += truesize;
1414#endif
1415
1416	return skb;
1417}
1418
1419/**
1420 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1421 * @rx_ring: rx descriptor ring to transact packets on
1422 * @rx_buffer: rx buffer to pull data from
1423 *
1424 * This function will clean up the contents of the rx_buffer.  It will
1425 * either recycle the buffer or unmap it and free the associated resources.
1426 */
1427static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1428			       struct iavf_rx_buffer *rx_buffer)
1429{
1430	if (!rx_buffer)
1431		return;
1432
1433	if (iavf_can_reuse_rx_page(rx_buffer)) {
1434		/* hand second half of page back to the ring */
1435		iavf_reuse_rx_page(rx_ring, rx_buffer);
1436		rx_ring->rx_stats.page_reuse_count++;
1437	} else {
1438		/* we are not reusing the buffer so unmap it */
1439		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1440				     iavf_rx_pg_size(rx_ring),
1441				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1442		__page_frag_cache_drain(rx_buffer->page,
1443					rx_buffer->pagecnt_bias);
1444	}
1445
1446	/* clear contents of buffer_info */
1447	rx_buffer->page = NULL;
1448}
1449
1450/**
1451 * iavf_is_non_eop - process handling of non-EOP buffers
1452 * @rx_ring: Rx ring being processed
1453 * @rx_desc: Rx descriptor for current buffer
1454 * @skb: Current socket buffer containing buffer in progress
1455 *
1456 * This function updates next to clean.  If the buffer is an EOP buffer
1457 * this function exits returning false, otherwise it will place the
1458 * sk_buff in the next buffer to be chained and return true indicating
1459 * that this is in fact a non-EOP buffer.
1460 **/
1461static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1462			    union iavf_rx_desc *rx_desc,
1463			    struct sk_buff *skb)
1464{
1465	u32 ntc = rx_ring->next_to_clean + 1;
1466
1467	/* fetch, update, and store next to clean */
1468	ntc = (ntc < rx_ring->count) ? ntc : 0;
1469	rx_ring->next_to_clean = ntc;
1470
1471	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1472
1473	/* if we are the last buffer then there is nothing else to do */
1474#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1475	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1476		return false;
1477
1478	rx_ring->rx_stats.non_eop_descs++;
1479
1480	return true;
1481}
1482
1483/**
1484 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1485 * @rx_ring: rx descriptor ring to transact packets on
1486 * @budget: Total limit on number of packets to process
1487 *
1488 * This function provides a "bounce buffer" approach to Rx interrupt
1489 * processing.  The advantage to this is that on systems that have
1490 * expensive overhead for IOMMU access this provides a means of avoiding
1491 * it by maintaining the mapping of the page to the system.
1492 *
1493 * Returns amount of work completed
1494 **/
1495static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1496{
1497	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1498	struct sk_buff *skb = rx_ring->skb;
1499	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1500	bool failure = false;
1501
1502	while (likely(total_rx_packets < (unsigned int)budget)) {
1503		struct iavf_rx_buffer *rx_buffer;
1504		union iavf_rx_desc *rx_desc;
1505		unsigned int size;
1506		u16 vlan_tag = 0;
1507		u8 rx_ptype;
1508		u64 qword;
1509
1510		/* return some buffers to hardware, one at a time is too slow */
1511		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1512			failure = failure ||
1513				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1514			cleaned_count = 0;
1515		}
1516
1517		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1518
1519		/* status_error_len will always be zero for unused descriptors
1520		 * because it's cleared in cleanup, and overlaps with hdr_addr
1521		 * which is always zero because packet split isn't used, if the
1522		 * hardware wrote DD then the length will be non-zero
1523		 */
1524		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1525
1526		/* This memory barrier is needed to keep us from reading
1527		 * any other fields out of the rx_desc until we have
1528		 * verified the descriptor has been written back.
1529		 */
1530		dma_rmb();
1531#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1532		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1533			break;
1534
1535		size = FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK, qword);
 
1536
1537		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1538		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1539
1540		/* retrieve a buffer from the ring */
1541		if (skb)
1542			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1543		else if (ring_uses_build_skb(rx_ring))
1544			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1545		else
1546			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1547
1548		/* exit if we failed to retrieve a buffer */
1549		if (!skb) {
1550			rx_ring->rx_stats.alloc_buff_failed++;
1551			if (rx_buffer && size)
1552				rx_buffer->pagecnt_bias++;
1553			break;
1554		}
1555
1556		iavf_put_rx_buffer(rx_ring, rx_buffer);
1557		cleaned_count++;
1558
1559		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1560			continue;
1561
1562		/* ERR_MASK will only have valid bits if EOP set, and
1563		 * what we are doing here is actually checking
1564		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1565		 * the error field
1566		 */
1567		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1568			dev_kfree_skb_any(skb);
1569			skb = NULL;
1570			continue;
1571		}
1572
1573		if (iavf_cleanup_headers(rx_ring, skb)) {
1574			skb = NULL;
1575			continue;
1576		}
1577
1578		/* probably a little skewed due to removing CRC */
1579		total_rx_bytes += skb->len;
1580
1581		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1582		rx_ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
 
1583
1584		/* populate checksum, VLAN, and protocol */
1585		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1586
1587		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1588		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1589			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1590		if (rx_desc->wb.qword2.ext_status &
1591		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1592		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1593			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1594
1595		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1596		iavf_receive_skb(rx_ring, skb, vlan_tag);
1597		skb = NULL;
1598
1599		/* update budget accounting */
1600		total_rx_packets++;
1601	}
1602
1603	rx_ring->skb = skb;
1604
1605	u64_stats_update_begin(&rx_ring->syncp);
1606	rx_ring->stats.packets += total_rx_packets;
1607	rx_ring->stats.bytes += total_rx_bytes;
1608	u64_stats_update_end(&rx_ring->syncp);
1609	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1610	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1611
1612	/* guarantee a trip back through this routine if there was a failure */
1613	return failure ? budget : (int)total_rx_packets;
1614}
1615
1616static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1617{
1618	u32 val;
1619
1620	/* We don't bother with setting the CLEARPBA bit as the data sheet
1621	 * points out doing so is "meaningless since it was already
1622	 * auto-cleared". The auto-clearing happens when the interrupt is
1623	 * asserted.
1624	 *
1625	 * Hardware errata 28 for also indicates that writing to a
1626	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1627	 * an event in the PBA anyway so we need to rely on the automask
1628	 * to hold pending events for us until the interrupt is re-enabled
1629	 *
1630	 * The itr value is reported in microseconds, and the register
1631	 * value is recorded in 2 microsecond units. For this reason we
1632	 * only need to shift by the interval shift - 1 instead of the
1633	 * full value.
1634	 */
1635	itr &= IAVF_ITR_MASK;
1636
1637	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1638	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1639	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1640
1641	return val;
1642}
1643
1644/* a small macro to shorten up some long lines */
1645#define INTREG IAVF_VFINT_DYN_CTLN1
1646
1647/* The act of updating the ITR will cause it to immediately trigger. In order
1648 * to prevent this from throwing off adaptive update statistics we defer the
1649 * update so that it can only happen so often. So after either Tx or Rx are
1650 * updated we make the adaptive scheme wait until either the ITR completely
1651 * expires via the next_update expiration or we have been through at least
1652 * 3 interrupts.
1653 */
1654#define ITR_COUNTDOWN_START 3
1655
1656/**
1657 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1658 * @vsi: the VSI we care about
1659 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1660 *
1661 **/
1662static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1663				   struct iavf_q_vector *q_vector)
1664{
1665	struct iavf_hw *hw = &vsi->back->hw;
1666	u32 intval;
1667
1668	/* These will do nothing if dynamic updates are not enabled */
1669	iavf_update_itr(q_vector, &q_vector->tx);
1670	iavf_update_itr(q_vector, &q_vector->rx);
1671
1672	/* This block of logic allows us to get away with only updating
1673	 * one ITR value with each interrupt. The idea is to perform a
1674	 * pseudo-lazy update with the following criteria.
1675	 *
1676	 * 1. Rx is given higher priority than Tx if both are in same state
1677	 * 2. If we must reduce an ITR that is given highest priority.
1678	 * 3. We then give priority to increasing ITR based on amount.
1679	 */
1680	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1681		/* Rx ITR needs to be reduced, this is highest priority */
1682		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1683					   q_vector->rx.target_itr);
1684		q_vector->rx.current_itr = q_vector->rx.target_itr;
1685		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1686	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1687		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1688		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1689		/* Tx ITR needs to be reduced, this is second priority
1690		 * Tx ITR needs to be increased more than Rx, fourth priority
1691		 */
1692		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1693					   q_vector->tx.target_itr);
1694		q_vector->tx.current_itr = q_vector->tx.target_itr;
1695		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1696	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1697		/* Rx ITR needs to be increased, third priority */
1698		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1699					   q_vector->rx.target_itr);
1700		q_vector->rx.current_itr = q_vector->rx.target_itr;
1701		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1702	} else {
1703		/* No ITR update, lowest priority */
1704		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1705		if (q_vector->itr_countdown)
1706			q_vector->itr_countdown--;
1707	}
1708
1709	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1710		wr32(hw, INTREG(q_vector->reg_idx), intval);
1711}
1712
1713/**
1714 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1715 * @napi: napi struct with our devices info in it
1716 * @budget: amount of work driver is allowed to do this pass, in packets
1717 *
1718 * This function will clean all queues associated with a q_vector.
1719 *
1720 * Returns the amount of work done
1721 **/
1722int iavf_napi_poll(struct napi_struct *napi, int budget)
1723{
1724	struct iavf_q_vector *q_vector =
1725			       container_of(napi, struct iavf_q_vector, napi);
1726	struct iavf_vsi *vsi = q_vector->vsi;
1727	struct iavf_ring *ring;
1728	bool clean_complete = true;
1729	bool arm_wb = false;
1730	int budget_per_ring;
1731	int work_done = 0;
1732
1733	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1734		napi_complete(napi);
1735		return 0;
1736	}
1737
1738	/* Since the actual Tx work is minimal, we can give the Tx a larger
1739	 * budget and be more aggressive about cleaning up the Tx descriptors.
1740	 */
1741	iavf_for_each_ring(ring, q_vector->tx) {
1742		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1743			clean_complete = false;
1744			continue;
1745		}
1746		arm_wb |= ring->arm_wb;
1747		ring->arm_wb = false;
1748	}
1749
1750	/* Handle case where we are called by netpoll with a budget of 0 */
1751	if (budget <= 0)
1752		goto tx_only;
1753
1754	/* We attempt to distribute budget to each Rx queue fairly, but don't
1755	 * allow the budget to go below 1 because that would exit polling early.
1756	 */
1757	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1758
1759	iavf_for_each_ring(ring, q_vector->rx) {
1760		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1761
1762		work_done += cleaned;
1763		/* if we clean as many as budgeted, we must not be done */
1764		if (cleaned >= budget_per_ring)
1765			clean_complete = false;
1766	}
1767
1768	/* If work not completed, return budget and polling will return */
1769	if (!clean_complete) {
1770		int cpu_id = smp_processor_id();
1771
1772		/* It is possible that the interrupt affinity has changed but,
1773		 * if the cpu is pegged at 100%, polling will never exit while
1774		 * traffic continues and the interrupt will be stuck on this
1775		 * cpu.  We check to make sure affinity is correct before we
1776		 * continue to poll, otherwise we must stop polling so the
1777		 * interrupt can move to the correct cpu.
1778		 */
1779		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1780			/* Tell napi that we are done polling */
1781			napi_complete_done(napi, work_done);
1782
1783			/* Force an interrupt */
1784			iavf_force_wb(vsi, q_vector);
1785
1786			/* Return budget-1 so that polling stops */
1787			return budget - 1;
1788		}
1789tx_only:
1790		if (arm_wb) {
1791			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1792			iavf_enable_wb_on_itr(vsi, q_vector);
1793		}
1794		return budget;
1795	}
1796
1797	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1798		q_vector->arm_wb_state = false;
1799
1800	/* Exit the polling mode, but don't re-enable interrupts if stack might
1801	 * poll us due to busy-polling
1802	 */
1803	if (likely(napi_complete_done(napi, work_done)))
1804		iavf_update_enable_itr(vsi, q_vector);
1805
1806	return min_t(int, work_done, budget - 1);
1807}
1808
1809/**
1810 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1811 * @skb:     send buffer
1812 * @tx_ring: ring to send buffer on
1813 * @flags:   the tx flags to be set
1814 *
1815 * Checks the skb and set up correspondingly several generic transmit flags
1816 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1817 *
1818 * Returns error code indicate the frame should be dropped upon error and the
1819 * otherwise  returns 0 to indicate the flags has been set properly.
1820 **/
1821static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1822				       struct iavf_ring *tx_ring, u32 *flags)
 
1823{
 
1824	u32  tx_flags = 0;
1825
 
 
 
 
 
 
 
 
 
 
 
 
1826
1827	/* stack will only request hardware VLAN insertion offload for protocols
1828	 * that the driver supports and has enabled
1829	 */
1830	if (!skb_vlan_tag_present(skb))
1831		return;
1832
1833	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1834	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1835		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1836	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1837		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1838	} else {
1839		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1840		return;
 
 
 
 
 
 
 
 
1841	}
1842
 
1843	*flags = tx_flags;
 
1844}
1845
1846/**
1847 * iavf_tso - set up the tso context descriptor
1848 * @first:    pointer to first Tx buffer for xmit
1849 * @hdr_len:  ptr to the size of the packet header
1850 * @cd_type_cmd_tso_mss: Quad Word 1
1851 *
1852 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1853 **/
1854static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1855		    u64 *cd_type_cmd_tso_mss)
1856{
1857	struct sk_buff *skb = first->skb;
1858	u64 cd_cmd, cd_tso_len, cd_mss;
1859	union {
1860		struct iphdr *v4;
1861		struct ipv6hdr *v6;
1862		unsigned char *hdr;
1863	} ip;
1864	union {
1865		struct tcphdr *tcp;
1866		struct udphdr *udp;
1867		unsigned char *hdr;
1868	} l4;
1869	u32 paylen, l4_offset;
1870	u16 gso_segs, gso_size;
1871	int err;
1872
1873	if (skb->ip_summed != CHECKSUM_PARTIAL)
1874		return 0;
1875
1876	if (!skb_is_gso(skb))
1877		return 0;
1878
1879	err = skb_cow_head(skb, 0);
1880	if (err < 0)
1881		return err;
1882
1883	ip.hdr = skb_network_header(skb);
1884	l4.hdr = skb_transport_header(skb);
1885
1886	/* initialize outer IP header fields */
1887	if (ip.v4->version == 4) {
1888		ip.v4->tot_len = 0;
1889		ip.v4->check = 0;
1890	} else {
1891		ip.v6->payload_len = 0;
1892	}
1893
1894	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1895					 SKB_GSO_GRE_CSUM |
1896					 SKB_GSO_IPXIP4 |
1897					 SKB_GSO_IPXIP6 |
1898					 SKB_GSO_UDP_TUNNEL |
1899					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1900		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1901		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1902			l4.udp->len = 0;
1903
1904			/* determine offset of outer transport header */
1905			l4_offset = l4.hdr - skb->data;
1906
1907			/* remove payload length from outer checksum */
1908			paylen = skb->len - l4_offset;
1909			csum_replace_by_diff(&l4.udp->check,
1910					     (__force __wsum)htonl(paylen));
1911		}
1912
1913		/* reset pointers to inner headers */
1914		ip.hdr = skb_inner_network_header(skb);
1915		l4.hdr = skb_inner_transport_header(skb);
1916
1917		/* initialize inner IP header fields */
1918		if (ip.v4->version == 4) {
1919			ip.v4->tot_len = 0;
1920			ip.v4->check = 0;
1921		} else {
1922			ip.v6->payload_len = 0;
1923		}
1924	}
1925
1926	/* determine offset of inner transport header */
1927	l4_offset = l4.hdr - skb->data;
 
1928	/* remove payload length from inner checksum */
1929	paylen = skb->len - l4_offset;
 
1930
1931	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1932		csum_replace_by_diff(&l4.udp->check,
1933				     (__force __wsum)htonl(paylen));
1934		/* compute length of UDP segmentation header */
1935		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1936	} else {
1937		csum_replace_by_diff(&l4.tcp->check,
1938				     (__force __wsum)htonl(paylen));
1939		/* compute length of TCP segmentation header */
1940		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1941	}
1942
1943	/* pull values out of skb_shinfo */
1944	gso_size = skb_shinfo(skb)->gso_size;
1945	gso_segs = skb_shinfo(skb)->gso_segs;
1946
1947	/* update GSO size and bytecount with header size */
1948	first->gso_segs = gso_segs;
1949	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1950
1951	/* find the field values */
1952	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1953	cd_tso_len = skb->len - *hdr_len;
1954	cd_mss = gso_size;
1955	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1956				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1957				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1958	return 1;
1959}
1960
1961/**
1962 * iavf_tx_enable_csum - Enable Tx checksum offloads
1963 * @skb: send buffer
1964 * @tx_flags: pointer to Tx flags currently set
1965 * @td_cmd: Tx descriptor command bits to set
1966 * @td_offset: Tx descriptor header offsets to set
1967 * @tx_ring: Tx descriptor ring
1968 * @cd_tunneling: ptr to context desc bits
1969 **/
1970static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1971			       u32 *td_cmd, u32 *td_offset,
1972			       struct iavf_ring *tx_ring,
1973			       u32 *cd_tunneling)
1974{
1975	union {
1976		struct iphdr *v4;
1977		struct ipv6hdr *v6;
1978		unsigned char *hdr;
1979	} ip;
1980	union {
1981		struct tcphdr *tcp;
1982		struct udphdr *udp;
1983		unsigned char *hdr;
1984	} l4;
1985	unsigned char *exthdr;
1986	u32 offset, cmd = 0;
1987	__be16 frag_off;
1988	u8 l4_proto = 0;
1989
1990	if (skb->ip_summed != CHECKSUM_PARTIAL)
1991		return 0;
1992
1993	ip.hdr = skb_network_header(skb);
1994	l4.hdr = skb_transport_header(skb);
1995
1996	/* compute outer L2 header size */
1997	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1998
1999	if (skb->encapsulation) {
2000		u32 tunnel = 0;
2001		/* define outer network header type */
2002		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2003			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2004				  IAVF_TX_CTX_EXT_IP_IPV4 :
2005				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2006
2007			l4_proto = ip.v4->protocol;
2008		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2009			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2010
2011			exthdr = ip.hdr + sizeof(*ip.v6);
2012			l4_proto = ip.v6->nexthdr;
2013			if (l4.hdr != exthdr)
2014				ipv6_skip_exthdr(skb, exthdr - skb->data,
2015						 &l4_proto, &frag_off);
2016		}
2017
2018		/* define outer transport */
2019		switch (l4_proto) {
2020		case IPPROTO_UDP:
2021			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2022			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2023			break;
2024		case IPPROTO_GRE:
2025			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2026			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2027			break;
2028		case IPPROTO_IPIP:
2029		case IPPROTO_IPV6:
2030			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2031			l4.hdr = skb_inner_network_header(skb);
2032			break;
2033		default:
2034			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2035				return -1;
2036
2037			skb_checksum_help(skb);
2038			return 0;
2039		}
2040
2041		/* compute outer L3 header size */
2042		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2043			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2044
2045		/* switch IP header pointer from outer to inner header */
2046		ip.hdr = skb_inner_network_header(skb);
2047
2048		/* compute tunnel header size */
2049		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2050			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2051
2052		/* indicate if we need to offload outer UDP header */
2053		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2054		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2055		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2056			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2057
2058		/* record tunnel offload values */
2059		*cd_tunneling |= tunnel;
2060
2061		/* switch L4 header pointer from outer to inner */
2062		l4.hdr = skb_inner_transport_header(skb);
2063		l4_proto = 0;
2064
2065		/* reset type as we transition from outer to inner headers */
2066		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2067		if (ip.v4->version == 4)
2068			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2069		if (ip.v6->version == 6)
2070			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2071	}
2072
2073	/* Enable IP checksum offloads */
2074	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2075		l4_proto = ip.v4->protocol;
2076		/* the stack computes the IP header already, the only time we
2077		 * need the hardware to recompute it is in the case of TSO.
2078		 */
2079		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2080		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2081		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2082	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2083		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2084
2085		exthdr = ip.hdr + sizeof(*ip.v6);
2086		l4_proto = ip.v6->nexthdr;
2087		if (l4.hdr != exthdr)
2088			ipv6_skip_exthdr(skb, exthdr - skb->data,
2089					 &l4_proto, &frag_off);
2090	}
2091
2092	/* compute inner L3 header size */
2093	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2094
2095	/* Enable L4 checksum offloads */
2096	switch (l4_proto) {
2097	case IPPROTO_TCP:
2098		/* enable checksum offloads */
2099		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2100		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2101		break;
2102	case IPPROTO_SCTP:
2103		/* enable SCTP checksum offload */
2104		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2105		offset |= (sizeof(struct sctphdr) >> 2) <<
2106			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2107		break;
2108	case IPPROTO_UDP:
2109		/* enable UDP checksum offload */
2110		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2111		offset |= (sizeof(struct udphdr) >> 2) <<
2112			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2113		break;
2114	default:
2115		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2116			return -1;
2117		skb_checksum_help(skb);
2118		return 0;
2119	}
2120
2121	*td_cmd |= cmd;
2122	*td_offset |= offset;
2123
2124	return 1;
2125}
2126
2127/**
2128 * iavf_create_tx_ctx - Build the Tx context descriptor
2129 * @tx_ring:  ring to create the descriptor on
2130 * @cd_type_cmd_tso_mss: Quad Word 1
2131 * @cd_tunneling: Quad Word 0 - bits 0-31
2132 * @cd_l2tag2: Quad Word 0 - bits 32-63
2133 **/
2134static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2135			       const u64 cd_type_cmd_tso_mss,
2136			       const u32 cd_tunneling, const u32 cd_l2tag2)
2137{
2138	struct iavf_tx_context_desc *context_desc;
2139	int i = tx_ring->next_to_use;
2140
2141	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2142	    !cd_tunneling && !cd_l2tag2)
2143		return;
2144
2145	/* grab the next descriptor */
2146	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2147
2148	i++;
2149	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2150
2151	/* cpu_to_le32 and assign to struct fields */
2152	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2153	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2154	context_desc->rsvd = cpu_to_le16(0);
2155	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2156}
2157
2158/**
2159 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2160 * @skb:      send buffer
2161 *
2162 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2163 * and so we need to figure out the cases where we need to linearize the skb.
2164 *
2165 * For TSO we need to count the TSO header and segment payload separately.
2166 * As such we need to check cases where we have 7 fragments or more as we
2167 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2168 * the segment payload in the first descriptor, and another 7 for the
2169 * fragments.
2170 **/
2171bool __iavf_chk_linearize(struct sk_buff *skb)
2172{
2173	const skb_frag_t *frag, *stale;
2174	int nr_frags, sum;
2175
2176	/* no need to check if number of frags is less than 7 */
2177	nr_frags = skb_shinfo(skb)->nr_frags;
2178	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2179		return false;
2180
2181	/* We need to walk through the list and validate that each group
2182	 * of 6 fragments totals at least gso_size.
2183	 */
2184	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2185	frag = &skb_shinfo(skb)->frags[0];
2186
2187	/* Initialize size to the negative value of gso_size minus 1.  We
2188	 * use this as the worst case scenerio in which the frag ahead
2189	 * of us only provides one byte which is why we are limited to 6
2190	 * descriptors for a single transmit as the header and previous
2191	 * fragment are already consuming 2 descriptors.
2192	 */
2193	sum = 1 - skb_shinfo(skb)->gso_size;
2194
2195	/* Add size of frags 0 through 4 to create our initial sum */
2196	sum += skb_frag_size(frag++);
2197	sum += skb_frag_size(frag++);
2198	sum += skb_frag_size(frag++);
2199	sum += skb_frag_size(frag++);
2200	sum += skb_frag_size(frag++);
2201
2202	/* Walk through fragments adding latest fragment, testing it, and
2203	 * then removing stale fragments from the sum.
2204	 */
2205	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2206		int stale_size = skb_frag_size(stale);
2207
2208		sum += skb_frag_size(frag++);
2209
2210		/* The stale fragment may present us with a smaller
2211		 * descriptor than the actual fragment size. To account
2212		 * for that we need to remove all the data on the front and
2213		 * figure out what the remainder would be in the last
2214		 * descriptor associated with the fragment.
2215		 */
2216		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2217			int align_pad = -(skb_frag_off(stale)) &
2218					(IAVF_MAX_READ_REQ_SIZE - 1);
2219
2220			sum -= align_pad;
2221			stale_size -= align_pad;
2222
2223			do {
2224				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2225				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2226			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2227		}
2228
2229		/* if sum is negative we failed to make sufficient progress */
2230		if (sum < 0)
2231			return true;
2232
2233		if (!nr_frags--)
2234			break;
2235
2236		sum -= stale_size;
2237	}
2238
2239	return false;
2240}
2241
2242/**
2243 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2244 * @tx_ring: the ring to be checked
2245 * @size:    the size buffer we want to assure is available
2246 *
2247 * Returns -EBUSY if a stop is needed, else 0
2248 **/
2249int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2250{
2251	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2252	/* Memory barrier before checking head and tail */
2253	smp_mb();
2254
2255	/* Check again in a case another CPU has just made room available. */
2256	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2257		return -EBUSY;
2258
2259	/* A reprieve! - use start_queue because it doesn't call schedule */
2260	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2261	++tx_ring->tx_stats.restart_queue;
2262	return 0;
2263}
2264
2265/**
2266 * iavf_tx_map - Build the Tx descriptor
2267 * @tx_ring:  ring to send buffer on
2268 * @skb:      send buffer
2269 * @first:    first buffer info buffer to use
2270 * @tx_flags: collected send information
2271 * @hdr_len:  size of the packet header
2272 * @td_cmd:   the command field in the descriptor
2273 * @td_offset: offset for checksum or crc
2274 **/
2275static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2276			struct iavf_tx_buffer *first, u32 tx_flags,
2277			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2278{
2279	unsigned int data_len = skb->data_len;
2280	unsigned int size = skb_headlen(skb);
2281	skb_frag_t *frag;
2282	struct iavf_tx_buffer *tx_bi;
2283	struct iavf_tx_desc *tx_desc;
2284	u16 i = tx_ring->next_to_use;
2285	u32 td_tag = 0;
2286	dma_addr_t dma;
2287
2288	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2289		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2290		td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
 
2291	}
2292
2293	first->tx_flags = tx_flags;
2294
2295	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2296
2297	tx_desc = IAVF_TX_DESC(tx_ring, i);
2298	tx_bi = first;
2299
2300	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2301		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2302
2303		if (dma_mapping_error(tx_ring->dev, dma))
2304			goto dma_error;
2305
2306		/* record length, and DMA address */
2307		dma_unmap_len_set(tx_bi, len, size);
2308		dma_unmap_addr_set(tx_bi, dma, dma);
2309
2310		/* align size to end of page */
2311		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2312		tx_desc->buffer_addr = cpu_to_le64(dma);
2313
2314		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2315			tx_desc->cmd_type_offset_bsz =
2316				build_ctob(td_cmd, td_offset,
2317					   max_data, td_tag);
2318
2319			tx_desc++;
2320			i++;
2321
2322			if (i == tx_ring->count) {
2323				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2324				i = 0;
2325			}
2326
2327			dma += max_data;
2328			size -= max_data;
2329
2330			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2331			tx_desc->buffer_addr = cpu_to_le64(dma);
2332		}
2333
2334		if (likely(!data_len))
2335			break;
2336
2337		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2338							  size, td_tag);
2339
2340		tx_desc++;
2341		i++;
2342
2343		if (i == tx_ring->count) {
2344			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2345			i = 0;
2346		}
2347
2348		size = skb_frag_size(frag);
2349		data_len -= size;
2350
2351		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2352				       DMA_TO_DEVICE);
2353
2354		tx_bi = &tx_ring->tx_bi[i];
2355	}
2356
2357	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2358
2359	i++;
2360	if (i == tx_ring->count)
2361		i = 0;
2362
2363	tx_ring->next_to_use = i;
2364
2365	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2366
2367	/* write last descriptor with RS and EOP bits */
2368	td_cmd |= IAVF_TXD_CMD;
2369	tx_desc->cmd_type_offset_bsz =
2370			build_ctob(td_cmd, td_offset, size, td_tag);
2371
2372	skb_tx_timestamp(skb);
2373
2374	/* Force memory writes to complete before letting h/w know there
2375	 * are new descriptors to fetch.
2376	 *
2377	 * We also use this memory barrier to make certain all of the
2378	 * status bits have been updated before next_to_watch is written.
2379	 */
2380	wmb();
2381
2382	/* set next_to_watch value indicating a packet is present */
2383	first->next_to_watch = tx_desc;
2384
2385	/* notify HW of packet */
2386	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2387		writel(i, tx_ring->tail);
2388	}
2389
2390	return;
2391
2392dma_error:
2393	dev_info(tx_ring->dev, "TX DMA map failed\n");
2394
2395	/* clear dma mappings for failed tx_bi map */
2396	for (;;) {
2397		tx_bi = &tx_ring->tx_bi[i];
2398		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2399		if (tx_bi == first)
2400			break;
2401		if (i == 0)
2402			i = tx_ring->count;
2403		i--;
2404	}
2405
2406	tx_ring->next_to_use = i;
2407}
2408
2409/**
2410 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2411 * @skb:     send buffer
2412 * @tx_ring: ring to send buffer on
2413 *
2414 * Returns NETDEV_TX_OK if sent, else an error code
2415 **/
2416static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2417					struct iavf_ring *tx_ring)
2418{
2419	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2420	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2421	struct iavf_tx_buffer *first;
2422	u32 td_offset = 0;
2423	u32 tx_flags = 0;
2424	__be16 protocol;
2425	u32 td_cmd = 0;
2426	u8 hdr_len = 0;
2427	int tso, count;
2428
2429	/* prefetch the data, we'll need it later */
2430	prefetch(skb->data);
2431
2432	iavf_trace(xmit_frame_ring, skb, tx_ring);
2433
2434	count = iavf_xmit_descriptor_count(skb);
2435	if (iavf_chk_linearize(skb, count)) {
2436		if (__skb_linearize(skb)) {
2437			dev_kfree_skb_any(skb);
2438			return NETDEV_TX_OK;
2439		}
2440		count = iavf_txd_use_count(skb->len);
2441		tx_ring->tx_stats.tx_linearize++;
2442	}
2443
2444	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2445	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2446	 *       + 4 desc gap to avoid the cache line where head is,
2447	 *       + 1 desc for context descriptor,
2448	 * otherwise try next time
2449	 */
2450	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2451		tx_ring->tx_stats.tx_busy++;
2452		return NETDEV_TX_BUSY;
2453	}
2454
2455	/* record the location of the first descriptor for this packet */
2456	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2457	first->skb = skb;
2458	first->bytecount = skb->len;
2459	first->gso_segs = 1;
2460
2461	/* prepare the xmit flags */
2462	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2463	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2464		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2465			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2466		cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2467	}
2468
2469	/* obtain protocol of skb */
2470	protocol = vlan_get_protocol(skb);
2471
2472	/* setup IPv4/IPv6 offloads */
2473	if (protocol == htons(ETH_P_IP))
2474		tx_flags |= IAVF_TX_FLAGS_IPV4;
2475	else if (protocol == htons(ETH_P_IPV6))
2476		tx_flags |= IAVF_TX_FLAGS_IPV6;
2477
2478	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2479
2480	if (tso < 0)
2481		goto out_drop;
2482	else if (tso)
2483		tx_flags |= IAVF_TX_FLAGS_TSO;
2484
2485	/* Always offload the checksum, since it's in the data descriptor */
2486	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2487				  tx_ring, &cd_tunneling);
2488	if (tso < 0)
2489		goto out_drop;
2490
2491	/* always enable CRC insertion offload */
2492	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2493
2494	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2495			   cd_tunneling, cd_l2tag2);
2496
2497	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2498		    td_cmd, td_offset);
2499
2500	return NETDEV_TX_OK;
2501
2502out_drop:
2503	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2504	dev_kfree_skb_any(first->skb);
2505	first->skb = NULL;
2506	return NETDEV_TX_OK;
2507}
2508
2509/**
2510 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2511 * @skb:    send buffer
2512 * @netdev: network interface device structure
2513 *
2514 * Returns NETDEV_TX_OK if sent, else an error code
2515 **/
2516netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2517{
2518	struct iavf_adapter *adapter = netdev_priv(netdev);
2519	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2520
2521	/* hardware can't handle really short frames, hardware padding works
2522	 * beyond this point
2523	 */
2524	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2525		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2526			return NETDEV_TX_OK;
2527		skb->len = IAVF_MIN_TX_LEN;
2528		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2529	}
2530
2531	return iavf_xmit_frame_ring(skb, tx_ring);
2532}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
   4#include <linux/prefetch.h>
   5
   6#include "iavf.h"
   7#include "iavf_trace.h"
   8#include "iavf_prototype.h"
   9
  10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  11				u32 td_tag)
  12{
  13	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  14			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  15			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  16			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  17			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  18}
  19
  20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  21
  22/**
  23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  24 * @ring:      the ring that owns the buffer
  25 * @tx_buffer: the buffer to free
  26 **/
  27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  28					    struct iavf_tx_buffer *tx_buffer)
  29{
  30	if (tx_buffer->skb) {
  31		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  32			kfree(tx_buffer->raw_buf);
  33		else
  34			dev_kfree_skb_any(tx_buffer->skb);
  35		if (dma_unmap_len(tx_buffer, len))
  36			dma_unmap_single(ring->dev,
  37					 dma_unmap_addr(tx_buffer, dma),
  38					 dma_unmap_len(tx_buffer, len),
  39					 DMA_TO_DEVICE);
  40	} else if (dma_unmap_len(tx_buffer, len)) {
  41		dma_unmap_page(ring->dev,
  42			       dma_unmap_addr(tx_buffer, dma),
  43			       dma_unmap_len(tx_buffer, len),
  44			       DMA_TO_DEVICE);
  45	}
  46
  47	tx_buffer->next_to_watch = NULL;
  48	tx_buffer->skb = NULL;
  49	dma_unmap_len_set(tx_buffer, len, 0);
  50	/* tx_buffer must be completely set up in the transmit path */
  51}
  52
  53/**
  54 * iavf_clean_tx_ring - Free any empty Tx buffers
  55 * @tx_ring: ring to be cleaned
  56 **/
  57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  58{
  59	unsigned long bi_size;
  60	u16 i;
  61
  62	/* ring already cleared, nothing to do */
  63	if (!tx_ring->tx_bi)
  64		return;
  65
  66	/* Free all the Tx ring sk_buffs */
  67	for (i = 0; i < tx_ring->count; i++)
  68		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  69
  70	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  71	memset(tx_ring->tx_bi, 0, bi_size);
  72
  73	/* Zero out the descriptor ring */
  74	memset(tx_ring->desc, 0, tx_ring->size);
  75
  76	tx_ring->next_to_use = 0;
  77	tx_ring->next_to_clean = 0;
  78
  79	if (!tx_ring->netdev)
  80		return;
  81
  82	/* cleanup Tx queue statistics */
  83	netdev_tx_reset_queue(txring_txq(tx_ring));
  84}
  85
  86/**
  87 * iavf_free_tx_resources - Free Tx resources per queue
  88 * @tx_ring: Tx descriptor ring for a specific queue
  89 *
  90 * Free all transmit software resources
  91 **/
  92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  93{
  94	iavf_clean_tx_ring(tx_ring);
  95	kfree(tx_ring->tx_bi);
  96	tx_ring->tx_bi = NULL;
  97
  98	if (tx_ring->desc) {
  99		dma_free_coherent(tx_ring->dev, tx_ring->size,
 100				  tx_ring->desc, tx_ring->dma);
 101		tx_ring->desc = NULL;
 102	}
 103}
 104
 105/**
 106 * iavf_get_tx_pending - how many Tx descriptors not processed
 107 * @ring: the ring of descriptors
 108 * @in_sw: is tx_pending being checked in SW or HW
 109 *
 110 * Since there is no access to the ring head register
 111 * in XL710, we need to use our local copies
 112 **/
 113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 114{
 115	u32 head, tail;
 116
 
 
 
 117	head = ring->next_to_clean;
 118	tail = readl(ring->tail);
 119
 120	if (head != tail)
 121		return (head < tail) ?
 122			tail - head : (tail + ring->count - head);
 123
 124	return 0;
 125}
 126
 127/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 129 * @vsi:  pointer to vsi struct with tx queues
 130 *
 131 * VSI has netdev and netdev has TX queues. This function is to check each of
 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 133 **/
 134void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 135{
 136	struct iavf_ring *tx_ring = NULL;
 137	struct net_device *netdev;
 138	unsigned int i;
 139	int packets;
 140
 141	if (!vsi)
 142		return;
 143
 144	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 145		return;
 146
 147	netdev = vsi->netdev;
 148	if (!netdev)
 149		return;
 150
 151	if (!netif_carrier_ok(netdev))
 152		return;
 153
 154	for (i = 0; i < vsi->back->num_active_queues; i++) {
 155		tx_ring = &vsi->back->tx_rings[i];
 156		if (tx_ring && tx_ring->desc) {
 157			/* If packet counter has not changed the queue is
 158			 * likely stalled, so force an interrupt for this
 159			 * queue.
 160			 *
 161			 * prev_pkt_ctr would be negative if there was no
 162			 * pending work.
 163			 */
 164			packets = tx_ring->stats.packets & INT_MAX;
 165			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 166				iavf_force_wb(vsi, tx_ring->q_vector);
 167				continue;
 168			}
 169
 170			/* Memory barrier between read of packet count and call
 171			 * to iavf_get_tx_pending()
 172			 */
 173			smp_rmb();
 174			tx_ring->tx_stats.prev_pkt_ctr =
 175			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 176		}
 177	}
 178}
 179
 180#define WB_STRIDE 4
 181
 182/**
 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 184 * @vsi: the VSI we care about
 185 * @tx_ring: Tx ring to clean
 186 * @napi_budget: Used to determine if we are in netpoll
 187 *
 188 * Returns true if there's any budget left (e.g. the clean is finished)
 189 **/
 190static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 191			      struct iavf_ring *tx_ring, int napi_budget)
 192{
 193	int i = tx_ring->next_to_clean;
 194	struct iavf_tx_buffer *tx_buf;
 195	struct iavf_tx_desc *tx_desc;
 196	unsigned int total_bytes = 0, total_packets = 0;
 197	unsigned int budget = vsi->work_limit;
 198
 199	tx_buf = &tx_ring->tx_bi[i];
 200	tx_desc = IAVF_TX_DESC(tx_ring, i);
 201	i -= tx_ring->count;
 202
 203	do {
 204		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 205
 206		/* if next_to_watch is not set then there is no work pending */
 207		if (!eop_desc)
 208			break;
 209
 210		/* prevent any other reads prior to eop_desc */
 211		smp_rmb();
 212
 213		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 214		/* if the descriptor isn't done, no work yet to do */
 215		if (!(eop_desc->cmd_type_offset_bsz &
 216		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 217			break;
 218
 219		/* clear next_to_watch to prevent false hangs */
 220		tx_buf->next_to_watch = NULL;
 221
 222		/* update the statistics for this packet */
 223		total_bytes += tx_buf->bytecount;
 224		total_packets += tx_buf->gso_segs;
 225
 226		/* free the skb */
 227		napi_consume_skb(tx_buf->skb, napi_budget);
 228
 229		/* unmap skb header data */
 230		dma_unmap_single(tx_ring->dev,
 231				 dma_unmap_addr(tx_buf, dma),
 232				 dma_unmap_len(tx_buf, len),
 233				 DMA_TO_DEVICE);
 234
 235		/* clear tx_buffer data */
 236		tx_buf->skb = NULL;
 237		dma_unmap_len_set(tx_buf, len, 0);
 238
 239		/* unmap remaining buffers */
 240		while (tx_desc != eop_desc) {
 241			iavf_trace(clean_tx_irq_unmap,
 242				   tx_ring, tx_desc, tx_buf);
 243
 244			tx_buf++;
 245			tx_desc++;
 246			i++;
 247			if (unlikely(!i)) {
 248				i -= tx_ring->count;
 249				tx_buf = tx_ring->tx_bi;
 250				tx_desc = IAVF_TX_DESC(tx_ring, 0);
 251			}
 252
 253			/* unmap any remaining paged data */
 254			if (dma_unmap_len(tx_buf, len)) {
 255				dma_unmap_page(tx_ring->dev,
 256					       dma_unmap_addr(tx_buf, dma),
 257					       dma_unmap_len(tx_buf, len),
 258					       DMA_TO_DEVICE);
 259				dma_unmap_len_set(tx_buf, len, 0);
 260			}
 261		}
 262
 263		/* move us one more past the eop_desc for start of next pkt */
 264		tx_buf++;
 265		tx_desc++;
 266		i++;
 267		if (unlikely(!i)) {
 268			i -= tx_ring->count;
 269			tx_buf = tx_ring->tx_bi;
 270			tx_desc = IAVF_TX_DESC(tx_ring, 0);
 271		}
 272
 273		prefetch(tx_desc);
 274
 275		/* update budget accounting */
 276		budget--;
 277	} while (likely(budget));
 278
 279	i += tx_ring->count;
 280	tx_ring->next_to_clean = i;
 281	u64_stats_update_begin(&tx_ring->syncp);
 282	tx_ring->stats.bytes += total_bytes;
 283	tx_ring->stats.packets += total_packets;
 284	u64_stats_update_end(&tx_ring->syncp);
 285	tx_ring->q_vector->tx.total_bytes += total_bytes;
 286	tx_ring->q_vector->tx.total_packets += total_packets;
 287
 288	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 289		/* check to see if there are < 4 descriptors
 290		 * waiting to be written back, then kick the hardware to force
 291		 * them to be written back in case we stay in NAPI.
 292		 * In this mode on X722 we do not enable Interrupt.
 293		 */
 294		unsigned int j = iavf_get_tx_pending(tx_ring, false);
 295
 296		if (budget &&
 297		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 298		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 299		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 300			tx_ring->arm_wb = true;
 301	}
 302
 303	/* notify netdev of completed buffers */
 304	netdev_tx_completed_queue(txring_txq(tx_ring),
 305				  total_packets, total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 309		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310		/* Make sure that anybody stopping the queue after this
 311		 * sees the new next_to_clean.
 312		 */
 313		smp_mb();
 314		if (__netif_subqueue_stopped(tx_ring->netdev,
 315					     tx_ring->queue_index) &&
 316		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 317			netif_wake_subqueue(tx_ring->netdev,
 318					    tx_ring->queue_index);
 319			++tx_ring->tx_stats.restart_queue;
 320		}
 321	}
 322
 323	return !!budget;
 324}
 325
 326/**
 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 328 * @vsi: the VSI we care about
 329 * @q_vector: the vector on which to enable writeback
 330 *
 331 **/
 332static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 333				  struct iavf_q_vector *q_vector)
 334{
 335	u16 flags = q_vector->tx.ring[0].flags;
 336	u32 val;
 337
 338	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 339		return;
 340
 341	if (q_vector->arm_wb_state)
 342		return;
 343
 344	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 345	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 346
 347	wr32(&vsi->back->hw,
 348	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 349	q_vector->arm_wb_state = true;
 350}
 351
 352/**
 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 354 * @vsi: the VSI we care about
 355 * @q_vector: the vector  on which to force writeback
 356 *
 357 **/
 358void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 359{
 360	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 361		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 362		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 363		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 364		  /* allow 00 to be written to the index */;
 365
 366	wr32(&vsi->back->hw,
 367	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 368	     val);
 369}
 370
 371static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 372					struct iavf_ring_container *rc)
 373{
 374	return &q_vector->rx == rc;
 375}
 376
 377static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
 378{
 379	unsigned int divisor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380
 381	switch (q_vector->adapter->link_speed) {
 382	case IAVF_LINK_SPEED_40GB:
 383		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
 384		break;
 385	case IAVF_LINK_SPEED_25GB:
 386	case IAVF_LINK_SPEED_20GB:
 387		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
 388		break;
 
 
 389	default:
 390	case IAVF_LINK_SPEED_10GB:
 391		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
 392		break;
 393	case IAVF_LINK_SPEED_1GB:
 394	case IAVF_LINK_SPEED_100MB:
 395		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
 396		break;
 397	}
 
 398
 399	return divisor;
 
 
 
 
 
 
 
 400}
 401
 402/**
 403 * iavf_update_itr - update the dynamic ITR value based on statistics
 404 * @q_vector: structure containing interrupt and ring information
 405 * @rc: structure containing ring performance data
 406 *
 407 * Stores a new ITR value based on packets and byte
 408 * counts during the last interrupt.  The advantage of per interrupt
 409 * computation is faster updates and more accurate ITR for the current
 410 * traffic pattern.  Constants in this function were computed
 411 * based on theoretical maximum wire speed and thresholds were set based
 412 * on testing data as well as attempting to minimize response time
 413 * while increasing bulk throughput.
 414 **/
 415static void iavf_update_itr(struct iavf_q_vector *q_vector,
 416			    struct iavf_ring_container *rc)
 417{
 418	unsigned int avg_wire_size, packets, bytes, itr;
 419	unsigned long next_update = jiffies;
 420
 421	/* If we don't have any rings just leave ourselves set for maximum
 422	 * possible latency so we take ourselves out of the equation.
 423	 */
 424	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 425		return;
 426
 427	/* For Rx we want to push the delay up and default to low latency.
 428	 * for Tx we want to pull the delay down and default to high latency.
 429	 */
 430	itr = iavf_container_is_rx(q_vector, rc) ?
 431	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 432	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 433
 434	/* If we didn't update within up to 1 - 2 jiffies we can assume
 435	 * that either packets are coming in so slow there hasn't been
 436	 * any work, or that there is so much work that NAPI is dealing
 437	 * with interrupt moderation and we don't need to do anything.
 438	 */
 439	if (time_after(next_update, rc->next_update))
 440		goto clear_counts;
 441
 442	/* If itr_countdown is set it means we programmed an ITR within
 443	 * the last 4 interrupt cycles. This has a side effect of us
 444	 * potentially firing an early interrupt. In order to work around
 445	 * this we need to throw out any data received for a few
 446	 * interrupts following the update.
 447	 */
 448	if (q_vector->itr_countdown) {
 449		itr = rc->target_itr;
 450		goto clear_counts;
 451	}
 452
 453	packets = rc->total_packets;
 454	bytes = rc->total_bytes;
 455
 456	if (iavf_container_is_rx(q_vector, rc)) {
 457		/* If Rx there are 1 to 4 packets and bytes are less than
 458		 * 9000 assume insufficient data to use bulk rate limiting
 459		 * approach unless Tx is already in bulk rate limiting. We
 460		 * are likely latency driven.
 461		 */
 462		if (packets && packets < 4 && bytes < 9000 &&
 463		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 464			itr = IAVF_ITR_ADAPTIVE_LATENCY;
 465			goto adjust_by_size;
 466		}
 467	} else if (packets < 4) {
 468		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
 469		 * bulk mode and we are receiving 4 or fewer packets just
 470		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 471		 * that the Rx can relax.
 472		 */
 473		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 474		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 475		     IAVF_ITR_ADAPTIVE_MAX_USECS)
 476			goto clear_counts;
 477	} else if (packets > 32) {
 478		/* If we have processed over 32 packets in a single interrupt
 479		 * for Tx assume we need to switch over to "bulk" mode.
 480		 */
 481		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 482	}
 483
 484	/* We have no packets to actually measure against. This means
 485	 * either one of the other queues on this vector is active or
 486	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 487	 *
 488	 * Between 4 and 56 we can assume that our current interrupt delay
 489	 * is only slightly too low. As such we should increase it by a small
 490	 * fixed amount.
 491	 */
 492	if (packets < 56) {
 493		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 494		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 495			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 496			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 497		}
 498		goto clear_counts;
 499	}
 500
 501	if (packets <= 256) {
 502		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 503		itr &= IAVF_ITR_MASK;
 504
 505		/* Between 56 and 112 is our "goldilocks" zone where we are
 506		 * working out "just right". Just report that our current
 507		 * ITR is good for us.
 508		 */
 509		if (packets <= 112)
 510			goto clear_counts;
 511
 512		/* If packet count is 128 or greater we are likely looking
 513		 * at a slight overrun of the delay we want. Try halving
 514		 * our delay to see if that will cut the number of packets
 515		 * in half per interrupt.
 516		 */
 517		itr /= 2;
 518		itr &= IAVF_ITR_MASK;
 519		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 520			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 521
 522		goto clear_counts;
 523	}
 524
 525	/* The paths below assume we are dealing with a bulk ITR since
 526	 * number of packets is greater than 256. We are just going to have
 527	 * to compute a value and try to bring the count under control,
 528	 * though for smaller packet sizes there isn't much we can do as
 529	 * NAPI polling will likely be kicking in sooner rather than later.
 530	 */
 531	itr = IAVF_ITR_ADAPTIVE_BULK;
 532
 533adjust_by_size:
 534	/* If packet counts are 256 or greater we can assume we have a gross
 535	 * overestimation of what the rate should be. Instead of trying to fine
 536	 * tune it just use the formula below to try and dial in an exact value
 537	 * give the current packet size of the frame.
 538	 */
 539	avg_wire_size = bytes / packets;
 540
 541	/* The following is a crude approximation of:
 542	 *  wmem_default / (size + overhead) = desired_pkts_per_int
 543	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 544	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 545	 *
 546	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 547	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 548	 * formula down to
 549	 *
 550	 *  (170 * (size + 24)) / (size + 640) = ITR
 551	 *
 552	 * We first do some math on the packet size and then finally bitshift
 553	 * by 8 after rounding up. We also have to account for PCIe link speed
 554	 * difference as ITR scales based on this.
 555	 */
 556	if (avg_wire_size <= 60) {
 557		/* Start at 250k ints/sec */
 558		avg_wire_size = 4096;
 559	} else if (avg_wire_size <= 380) {
 560		/* 250K ints/sec to 60K ints/sec */
 561		avg_wire_size *= 40;
 562		avg_wire_size += 1696;
 563	} else if (avg_wire_size <= 1084) {
 564		/* 60K ints/sec to 36K ints/sec */
 565		avg_wire_size *= 15;
 566		avg_wire_size += 11452;
 567	} else if (avg_wire_size <= 1980) {
 568		/* 36K ints/sec to 30K ints/sec */
 569		avg_wire_size *= 5;
 570		avg_wire_size += 22420;
 571	} else {
 572		/* plateau at a limit of 30K ints/sec */
 573		avg_wire_size = 32256;
 574	}
 575
 576	/* If we are in low latency mode halve our delay which doubles the
 577	 * rate to somewhere between 100K to 16K ints/sec
 578	 */
 579	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 580		avg_wire_size /= 2;
 581
 582	/* Resultant value is 256 times larger than it needs to be. This
 583	 * gives us room to adjust the value as needed to either increase
 584	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 585	 *
 586	 * Use addition as we have already recorded the new latency flag
 587	 * for the ITR value.
 588	 */
 589	itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
 590	       IAVF_ITR_ADAPTIVE_MIN_INC;
 
 591
 592	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 593		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 594		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 595	}
 596
 597clear_counts:
 598	/* write back value */
 599	rc->target_itr = itr;
 600
 601	/* next update should occur within next jiffy */
 602	rc->next_update = next_update + 1;
 603
 604	rc->total_bytes = 0;
 605	rc->total_packets = 0;
 606}
 607
 608/**
 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 610 * @tx_ring: the tx ring to set up
 611 *
 612 * Return 0 on success, negative on error
 613 **/
 614int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 615{
 616	struct device *dev = tx_ring->dev;
 617	int bi_size;
 618
 619	if (!dev)
 620		return -ENOMEM;
 621
 622	/* warn if we are about to overwrite the pointer */
 623	WARN_ON(tx_ring->tx_bi);
 624	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 625	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 626	if (!tx_ring->tx_bi)
 627		goto err;
 628
 629	/* round up to nearest 4K */
 630	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 631	tx_ring->size = ALIGN(tx_ring->size, 4096);
 632	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 633					   &tx_ring->dma, GFP_KERNEL);
 634	if (!tx_ring->desc) {
 635		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 636			 tx_ring->size);
 637		goto err;
 638	}
 639
 640	tx_ring->next_to_use = 0;
 641	tx_ring->next_to_clean = 0;
 642	tx_ring->tx_stats.prev_pkt_ctr = -1;
 643	return 0;
 644
 645err:
 646	kfree(tx_ring->tx_bi);
 647	tx_ring->tx_bi = NULL;
 648	return -ENOMEM;
 649}
 650
 651/**
 652 * iavf_clean_rx_ring - Free Rx buffers
 653 * @rx_ring: ring to be cleaned
 654 **/
 655void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 656{
 657	unsigned long bi_size;
 658	u16 i;
 659
 660	/* ring already cleared, nothing to do */
 661	if (!rx_ring->rx_bi)
 662		return;
 663
 664	if (rx_ring->skb) {
 665		dev_kfree_skb(rx_ring->skb);
 666		rx_ring->skb = NULL;
 667	}
 668
 669	/* Free all the Rx ring sk_buffs */
 670	for (i = 0; i < rx_ring->count; i++) {
 671		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 672
 673		if (!rx_bi->page)
 674			continue;
 675
 676		/* Invalidate cache lines that may have been written to by
 677		 * device so that we avoid corrupting memory.
 678		 */
 679		dma_sync_single_range_for_cpu(rx_ring->dev,
 680					      rx_bi->dma,
 681					      rx_bi->page_offset,
 682					      rx_ring->rx_buf_len,
 683					      DMA_FROM_DEVICE);
 684
 685		/* free resources associated with mapping */
 686		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 687				     iavf_rx_pg_size(rx_ring),
 688				     DMA_FROM_DEVICE,
 689				     IAVF_RX_DMA_ATTR);
 690
 691		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 692
 693		rx_bi->page = NULL;
 694		rx_bi->page_offset = 0;
 695	}
 696
 697	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 698	memset(rx_ring->rx_bi, 0, bi_size);
 699
 700	/* Zero out the descriptor ring */
 701	memset(rx_ring->desc, 0, rx_ring->size);
 702
 703	rx_ring->next_to_alloc = 0;
 704	rx_ring->next_to_clean = 0;
 705	rx_ring->next_to_use = 0;
 706}
 707
 708/**
 709 * iavf_free_rx_resources - Free Rx resources
 710 * @rx_ring: ring to clean the resources from
 711 *
 712 * Free all receive software resources
 713 **/
 714void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 715{
 716	iavf_clean_rx_ring(rx_ring);
 717	kfree(rx_ring->rx_bi);
 718	rx_ring->rx_bi = NULL;
 719
 720	if (rx_ring->desc) {
 721		dma_free_coherent(rx_ring->dev, rx_ring->size,
 722				  rx_ring->desc, rx_ring->dma);
 723		rx_ring->desc = NULL;
 724	}
 725}
 726
 727/**
 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 730 *
 731 * Returns 0 on success, negative on failure
 732 **/
 733int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 734{
 735	struct device *dev = rx_ring->dev;
 736	int bi_size;
 737
 738	/* warn if we are about to overwrite the pointer */
 739	WARN_ON(rx_ring->rx_bi);
 740	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 741	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 742	if (!rx_ring->rx_bi)
 743		goto err;
 744
 745	u64_stats_init(&rx_ring->syncp);
 746
 747	/* Round up to nearest 4K */
 748	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 749	rx_ring->size = ALIGN(rx_ring->size, 4096);
 750	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 751					   &rx_ring->dma, GFP_KERNEL);
 752
 753	if (!rx_ring->desc) {
 754		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 755			 rx_ring->size);
 756		goto err;
 757	}
 758
 759	rx_ring->next_to_alloc = 0;
 760	rx_ring->next_to_clean = 0;
 761	rx_ring->next_to_use = 0;
 762
 763	return 0;
 764err:
 765	kfree(rx_ring->rx_bi);
 766	rx_ring->rx_bi = NULL;
 767	return -ENOMEM;
 768}
 769
 770/**
 771 * iavf_release_rx_desc - Store the new tail and head values
 772 * @rx_ring: ring to bump
 773 * @val: new head index
 774 **/
 775static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 776{
 777	rx_ring->next_to_use = val;
 778
 779	/* update next to alloc since we have filled the ring */
 780	rx_ring->next_to_alloc = val;
 781
 782	/* Force memory writes to complete before letting h/w
 783	 * know there are new descriptors to fetch.  (Only
 784	 * applicable for weak-ordered memory model archs,
 785	 * such as IA-64).
 786	 */
 787	wmb();
 788	writel(val, rx_ring->tail);
 789}
 790
 791/**
 792 * iavf_rx_offset - Return expected offset into page to access data
 793 * @rx_ring: Ring we are requesting offset of
 794 *
 795 * Returns the offset value for ring into the data buffer.
 796 */
 797static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 798{
 799	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 800}
 801
 802/**
 803 * iavf_alloc_mapped_page - recycle or make a new page
 804 * @rx_ring: ring to use
 805 * @bi: rx_buffer struct to modify
 806 *
 807 * Returns true if the page was successfully allocated or
 808 * reused.
 809 **/
 810static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 811				   struct iavf_rx_buffer *bi)
 812{
 813	struct page *page = bi->page;
 814	dma_addr_t dma;
 815
 816	/* since we are recycling buffers we should seldom need to alloc */
 817	if (likely(page)) {
 818		rx_ring->rx_stats.page_reuse_count++;
 819		return true;
 820	}
 821
 822	/* alloc new page for storage */
 823	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 824	if (unlikely(!page)) {
 825		rx_ring->rx_stats.alloc_page_failed++;
 826		return false;
 827	}
 828
 829	/* map page for use */
 830	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 831				 iavf_rx_pg_size(rx_ring),
 832				 DMA_FROM_DEVICE,
 833				 IAVF_RX_DMA_ATTR);
 834
 835	/* if mapping failed free memory back to system since
 836	 * there isn't much point in holding memory we can't use
 837	 */
 838	if (dma_mapping_error(rx_ring->dev, dma)) {
 839		__free_pages(page, iavf_rx_pg_order(rx_ring));
 840		rx_ring->rx_stats.alloc_page_failed++;
 841		return false;
 842	}
 843
 844	bi->dma = dma;
 845	bi->page = page;
 846	bi->page_offset = iavf_rx_offset(rx_ring);
 847
 848	/* initialize pagecnt_bias to 1 representing we fully own page */
 849	bi->pagecnt_bias = 1;
 850
 851	return true;
 852}
 853
 854/**
 855 * iavf_receive_skb - Send a completed packet up the stack
 856 * @rx_ring:  rx ring in play
 857 * @skb: packet to send up
 858 * @vlan_tag: vlan tag for packet
 859 **/
 860static void iavf_receive_skb(struct iavf_ring *rx_ring,
 861			     struct sk_buff *skb, u16 vlan_tag)
 862{
 863	struct iavf_q_vector *q_vector = rx_ring->q_vector;
 864
 865	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 866	    (vlan_tag & VLAN_VID_MASK))
 867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 
 
 
 868
 869	napi_gro_receive(&q_vector->napi, skb);
 870}
 871
 872/**
 873 * iavf_alloc_rx_buffers - Replace used receive buffers
 874 * @rx_ring: ring to place buffers on
 875 * @cleaned_count: number of buffers to replace
 876 *
 877 * Returns false if all allocations were successful, true if any fail
 878 **/
 879bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 880{
 881	u16 ntu = rx_ring->next_to_use;
 882	union iavf_rx_desc *rx_desc;
 883	struct iavf_rx_buffer *bi;
 884
 885	/* do nothing if no valid netdev defined */
 886	if (!rx_ring->netdev || !cleaned_count)
 887		return false;
 888
 889	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 890	bi = &rx_ring->rx_bi[ntu];
 891
 892	do {
 893		if (!iavf_alloc_mapped_page(rx_ring, bi))
 894			goto no_buffers;
 895
 896		/* sync the buffer for use by the device */
 897		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 898						 bi->page_offset,
 899						 rx_ring->rx_buf_len,
 900						 DMA_FROM_DEVICE);
 901
 902		/* Refresh the desc even if buffer_addrs didn't change
 903		 * because each write-back erases this info.
 904		 */
 905		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 906
 907		rx_desc++;
 908		bi++;
 909		ntu++;
 910		if (unlikely(ntu == rx_ring->count)) {
 911			rx_desc = IAVF_RX_DESC(rx_ring, 0);
 912			bi = rx_ring->rx_bi;
 913			ntu = 0;
 914		}
 915
 916		/* clear the status bits for the next_to_use descriptor */
 917		rx_desc->wb.qword1.status_error_len = 0;
 918
 919		cleaned_count--;
 920	} while (cleaned_count);
 921
 922	if (rx_ring->next_to_use != ntu)
 923		iavf_release_rx_desc(rx_ring, ntu);
 924
 925	return false;
 926
 927no_buffers:
 928	if (rx_ring->next_to_use != ntu)
 929		iavf_release_rx_desc(rx_ring, ntu);
 930
 931	/* make sure to come back via polling to try again after
 932	 * allocation failure
 933	 */
 934	return true;
 935}
 936
 937/**
 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 939 * @vsi: the VSI we care about
 940 * @skb: skb currently being received and modified
 941 * @rx_desc: the receive descriptor
 942 **/
 943static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
 944				    struct sk_buff *skb,
 945				    union iavf_rx_desc *rx_desc)
 946{
 947	struct iavf_rx_ptype_decoded decoded;
 948	u32 rx_error, rx_status;
 949	bool ipv4, ipv6;
 950	u8 ptype;
 951	u64 qword;
 952
 953	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 954	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
 955	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
 956		   IAVF_RXD_QW1_ERROR_SHIFT;
 957	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
 958		    IAVF_RXD_QW1_STATUS_SHIFT;
 959	decoded = decode_rx_desc_ptype(ptype);
 960
 961	skb->ip_summed = CHECKSUM_NONE;
 962
 963	skb_checksum_none_assert(skb);
 964
 965	/* Rx csum enabled and ip headers found? */
 966	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 967		return;
 968
 969	/* did the hardware decode the packet and checksum? */
 970	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 971		return;
 972
 973	/* both known and outer_ip must be set for the below code to work */
 974	if (!(decoded.known && decoded.outer_ip))
 975		return;
 976
 977	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 978	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
 979	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 980	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
 981
 982	if (ipv4 &&
 983	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 984			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 985		goto checksum_fail;
 986
 987	/* likely incorrect csum if alternate IP extension headers found */
 988	if (ipv6 &&
 989	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 990		/* don't increment checksum err here, non-fatal err */
 991		return;
 992
 993	/* there was some L4 error, count error and punt packet to the stack */
 994	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
 995		goto checksum_fail;
 996
 997	/* handle packets that were not able to be checksummed due
 998	 * to arrival speed, in this case the stack can compute
 999	 * the csum.
1000	 */
1001	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1002		return;
1003
1004	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1005	switch (decoded.inner_prot) {
1006	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1007	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1008	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1009		skb->ip_summed = CHECKSUM_UNNECESSARY;
1010		/* fall though */
1011	default:
1012		break;
1013	}
1014
1015	return;
1016
1017checksum_fail:
1018	vsi->back->hw_csum_rx_error++;
1019}
1020
1021/**
1022 * iavf_ptype_to_htype - get a hash type
1023 * @ptype: the ptype value from the descriptor
1024 *
1025 * Returns a hash type to be used by skb_set_hash
1026 **/
1027static inline int iavf_ptype_to_htype(u8 ptype)
1028{
1029	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1030
1031	if (!decoded.known)
1032		return PKT_HASH_TYPE_NONE;
1033
1034	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1035	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1036		return PKT_HASH_TYPE_L4;
1037	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1039		return PKT_HASH_TYPE_L3;
1040	else
1041		return PKT_HASH_TYPE_L2;
1042}
1043
1044/**
1045 * iavf_rx_hash - set the hash value in the skb
1046 * @ring: descriptor ring
1047 * @rx_desc: specific descriptor
1048 * @skb: skb currently being received and modified
1049 * @rx_ptype: Rx packet type
1050 **/
1051static inline void iavf_rx_hash(struct iavf_ring *ring,
1052				union iavf_rx_desc *rx_desc,
1053				struct sk_buff *skb,
1054				u8 rx_ptype)
1055{
1056	u32 hash;
1057	const __le64 rss_mask =
1058		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1059			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1060
1061	if (ring->netdev->features & NETIF_F_RXHASH)
1062		return;
1063
1064	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1065		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1066		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1067	}
1068}
1069
1070/**
1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1072 * @rx_ring: rx descriptor ring packet is being transacted on
1073 * @rx_desc: pointer to the EOP Rx descriptor
1074 * @skb: pointer to current skb being populated
1075 * @rx_ptype: the packet type decoded by hardware
1076 *
1077 * This function checks the ring, descriptor, and packet information in
1078 * order to populate the hash, checksum, VLAN, protocol, and
1079 * other fields within the skb.
1080 **/
1081static inline
1082void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1083			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1084			     u8 rx_ptype)
1085{
1086	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1087
1088	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1089
1090	skb_record_rx_queue(skb, rx_ring->queue_index);
1091
1092	/* modifies the skb - consumes the enet header */
1093	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1094}
1095
1096/**
1097 * iavf_cleanup_headers - Correct empty headers
1098 * @rx_ring: rx descriptor ring packet is being transacted on
1099 * @skb: pointer to current skb being fixed
1100 *
1101 * Also address the case where we are pulling data in on pages only
1102 * and as such no data is present in the skb header.
1103 *
1104 * In addition if skb is not at least 60 bytes we need to pad it so that
1105 * it is large enough to qualify as a valid Ethernet frame.
1106 *
1107 * Returns true if an error was encountered and skb was freed.
1108 **/
1109static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1110{
1111	/* if eth_skb_pad returns an error the skb was freed */
1112	if (eth_skb_pad(skb))
1113		return true;
1114
1115	return false;
1116}
1117
1118/**
1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1120 * @rx_ring: rx descriptor ring to store buffers on
1121 * @old_buff: donor buffer to have page reused
1122 *
1123 * Synchronizes page for reuse by the adapter
1124 **/
1125static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1126			       struct iavf_rx_buffer *old_buff)
1127{
1128	struct iavf_rx_buffer *new_buff;
1129	u16 nta = rx_ring->next_to_alloc;
1130
1131	new_buff = &rx_ring->rx_bi[nta];
1132
1133	/* update, and store next to alloc */
1134	nta++;
1135	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1136
1137	/* transfer page from old buffer to new buffer */
1138	new_buff->dma		= old_buff->dma;
1139	new_buff->page		= old_buff->page;
1140	new_buff->page_offset	= old_buff->page_offset;
1141	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1142}
1143
1144/**
1145 * iavf_page_is_reusable - check if any reuse is possible
1146 * @page: page struct to check
1147 *
1148 * A page is not reusable if it was allocated under low memory
1149 * conditions, or it's not in the same NUMA node as this CPU.
1150 */
1151static inline bool iavf_page_is_reusable(struct page *page)
1152{
1153	return (page_to_nid(page) == numa_mem_id()) &&
1154		!page_is_pfmemalloc(page);
1155}
1156
1157/**
1158 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1159 * the adapter for another receive
1160 *
1161 * @rx_buffer: buffer containing the page
1162 *
1163 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1164 * an unused region in the page.
1165 *
1166 * For small pages, @truesize will be a constant value, half the size
1167 * of the memory at page.  We'll attempt to alternate between high and
1168 * low halves of the page, with one half ready for use by the hardware
1169 * and the other half being consumed by the stack.  We use the page
1170 * ref count to determine whether the stack has finished consuming the
1171 * portion of this page that was passed up with a previous packet.  If
1172 * the page ref count is >1, we'll assume the "other" half page is
1173 * still busy, and this page cannot be reused.
1174 *
1175 * For larger pages, @truesize will be the actual space used by the
1176 * received packet (adjusted upward to an even multiple of the cache
1177 * line size).  This will advance through the page by the amount
1178 * actually consumed by the received packets while there is still
1179 * space for a buffer.  Each region of larger pages will be used at
1180 * most once, after which the page will not be reused.
1181 *
1182 * In either case, if the page is reusable its refcount is increased.
1183 **/
1184static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1185{
1186	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1187	struct page *page = rx_buffer->page;
1188
1189	/* Is any reuse possible? */
1190	if (unlikely(!iavf_page_is_reusable(page)))
1191		return false;
1192
1193#if (PAGE_SIZE < 8192)
1194	/* if we are only owner of page we can reuse it */
1195	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1196		return false;
1197#else
1198#define IAVF_LAST_OFFSET \
1199	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1200	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1201		return false;
1202#endif
1203
1204	/* If we have drained the page fragment pool we need to update
1205	 * the pagecnt_bias and page count so that we fully restock the
1206	 * number of references the driver holds.
1207	 */
1208	if (unlikely(!pagecnt_bias)) {
1209		page_ref_add(page, USHRT_MAX);
1210		rx_buffer->pagecnt_bias = USHRT_MAX;
1211	}
1212
1213	return true;
1214}
1215
1216/**
1217 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1218 * @rx_ring: rx descriptor ring to transact packets on
1219 * @rx_buffer: buffer containing page to add
1220 * @skb: sk_buff to place the data into
1221 * @size: packet length from rx_desc
1222 *
1223 * This function will add the data contained in rx_buffer->page to the skb.
1224 * It will just attach the page as a frag to the skb.
1225 *
1226 * The function will then update the page offset.
1227 **/
1228static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1229			     struct iavf_rx_buffer *rx_buffer,
1230			     struct sk_buff *skb,
1231			     unsigned int size)
1232{
1233#if (PAGE_SIZE < 8192)
1234	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1235#else
1236	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1237#endif
1238
1239	if (!size)
1240		return;
1241
1242	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1243			rx_buffer->page_offset, size, truesize);
1244
1245	/* page is being used so we must update the page offset */
1246#if (PAGE_SIZE < 8192)
1247	rx_buffer->page_offset ^= truesize;
1248#else
1249	rx_buffer->page_offset += truesize;
1250#endif
1251}
1252
1253/**
1254 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1255 * @rx_ring: rx descriptor ring to transact packets on
1256 * @size: size of buffer to add to skb
1257 *
1258 * This function will pull an Rx buffer from the ring and synchronize it
1259 * for use by the CPU.
1260 */
1261static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1262						 const unsigned int size)
1263{
1264	struct iavf_rx_buffer *rx_buffer;
1265
1266	if (!size)
1267		return NULL;
1268
1269	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1270	prefetchw(rx_buffer->page);
 
 
1271
1272	/* we are reusing so sync this buffer for CPU use */
1273	dma_sync_single_range_for_cpu(rx_ring->dev,
1274				      rx_buffer->dma,
1275				      rx_buffer->page_offset,
1276				      size,
1277				      DMA_FROM_DEVICE);
1278
1279	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1280	rx_buffer->pagecnt_bias--;
1281
1282	return rx_buffer;
1283}
1284
1285/**
1286 * iavf_construct_skb - Allocate skb and populate it
1287 * @rx_ring: rx descriptor ring to transact packets on
1288 * @rx_buffer: rx buffer to pull data from
1289 * @size: size of buffer to add to skb
1290 *
1291 * This function allocates an skb.  It then populates it with the page
1292 * data from the current receive descriptor, taking care to set up the
1293 * skb correctly.
1294 */
1295static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1296					  struct iavf_rx_buffer *rx_buffer,
1297					  unsigned int size)
1298{
1299	void *va;
1300#if (PAGE_SIZE < 8192)
1301	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1302#else
1303	unsigned int truesize = SKB_DATA_ALIGN(size);
1304#endif
1305	unsigned int headlen;
1306	struct sk_buff *skb;
1307
1308	if (!rx_buffer)
1309		return NULL;
1310	/* prefetch first cache line of first page */
1311	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1312	prefetch(va);
1313#if L1_CACHE_BYTES < 128
1314	prefetch(va + L1_CACHE_BYTES);
1315#endif
1316
1317	/* allocate a skb to store the frags */
1318	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1319			       IAVF_RX_HDR_SIZE,
1320			       GFP_ATOMIC | __GFP_NOWARN);
1321	if (unlikely(!skb))
1322		return NULL;
1323
1324	/* Determine available headroom for copy */
1325	headlen = size;
1326	if (headlen > IAVF_RX_HDR_SIZE)
1327		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1328
1329	/* align pull length to size of long to optimize memcpy performance */
1330	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1331
1332	/* update all of the pointers */
1333	size -= headlen;
1334	if (size) {
1335		skb_add_rx_frag(skb, 0, rx_buffer->page,
1336				rx_buffer->page_offset + headlen,
1337				size, truesize);
1338
1339		/* buffer is used by skb, update page_offset */
1340#if (PAGE_SIZE < 8192)
1341		rx_buffer->page_offset ^= truesize;
1342#else
1343		rx_buffer->page_offset += truesize;
1344#endif
1345	} else {
1346		/* buffer is unused, reset bias back to rx_buffer */
1347		rx_buffer->pagecnt_bias++;
1348	}
1349
1350	return skb;
1351}
1352
1353/**
1354 * iavf_build_skb - Build skb around an existing buffer
1355 * @rx_ring: Rx descriptor ring to transact packets on
1356 * @rx_buffer: Rx buffer to pull data from
1357 * @size: size of buffer to add to skb
1358 *
1359 * This function builds an skb around an existing Rx buffer, taking care
1360 * to set up the skb correctly and avoid any memcpy overhead.
1361 */
1362static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1363				      struct iavf_rx_buffer *rx_buffer,
1364				      unsigned int size)
1365{
1366	void *va;
1367#if (PAGE_SIZE < 8192)
1368	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1369#else
1370	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1371				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1372#endif
1373	struct sk_buff *skb;
1374
1375	if (!rx_buffer)
1376		return NULL;
1377	/* prefetch first cache line of first page */
1378	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1379	prefetch(va);
1380#if L1_CACHE_BYTES < 128
1381	prefetch(va + L1_CACHE_BYTES);
1382#endif
1383	/* build an skb around the page buffer */
1384	skb = build_skb(va - IAVF_SKB_PAD, truesize);
1385	if (unlikely(!skb))
1386		return NULL;
1387
1388	/* update pointers within the skb to store the data */
1389	skb_reserve(skb, IAVF_SKB_PAD);
1390	__skb_put(skb, size);
1391
1392	/* buffer is used by skb, update page_offset */
1393#if (PAGE_SIZE < 8192)
1394	rx_buffer->page_offset ^= truesize;
1395#else
1396	rx_buffer->page_offset += truesize;
1397#endif
1398
1399	return skb;
1400}
1401
1402/**
1403 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1404 * @rx_ring: rx descriptor ring to transact packets on
1405 * @rx_buffer: rx buffer to pull data from
1406 *
1407 * This function will clean up the contents of the rx_buffer.  It will
1408 * either recycle the buffer or unmap it and free the associated resources.
1409 */
1410static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1411			       struct iavf_rx_buffer *rx_buffer)
1412{
1413	if (!rx_buffer)
1414		return;
1415
1416	if (iavf_can_reuse_rx_page(rx_buffer)) {
1417		/* hand second half of page back to the ring */
1418		iavf_reuse_rx_page(rx_ring, rx_buffer);
1419		rx_ring->rx_stats.page_reuse_count++;
1420	} else {
1421		/* we are not reusing the buffer so unmap it */
1422		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1423				     iavf_rx_pg_size(rx_ring),
1424				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1425		__page_frag_cache_drain(rx_buffer->page,
1426					rx_buffer->pagecnt_bias);
1427	}
1428
1429	/* clear contents of buffer_info */
1430	rx_buffer->page = NULL;
1431}
1432
1433/**
1434 * iavf_is_non_eop - process handling of non-EOP buffers
1435 * @rx_ring: Rx ring being processed
1436 * @rx_desc: Rx descriptor for current buffer
1437 * @skb: Current socket buffer containing buffer in progress
1438 *
1439 * This function updates next to clean.  If the buffer is an EOP buffer
1440 * this function exits returning false, otherwise it will place the
1441 * sk_buff in the next buffer to be chained and return true indicating
1442 * that this is in fact a non-EOP buffer.
1443 **/
1444static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1445			    union iavf_rx_desc *rx_desc,
1446			    struct sk_buff *skb)
1447{
1448	u32 ntc = rx_ring->next_to_clean + 1;
1449
1450	/* fetch, update, and store next to clean */
1451	ntc = (ntc < rx_ring->count) ? ntc : 0;
1452	rx_ring->next_to_clean = ntc;
1453
1454	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1455
1456	/* if we are the last buffer then there is nothing else to do */
1457#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1458	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1459		return false;
1460
1461	rx_ring->rx_stats.non_eop_descs++;
1462
1463	return true;
1464}
1465
1466/**
1467 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1468 * @rx_ring: rx descriptor ring to transact packets on
1469 * @budget: Total limit on number of packets to process
1470 *
1471 * This function provides a "bounce buffer" approach to Rx interrupt
1472 * processing.  The advantage to this is that on systems that have
1473 * expensive overhead for IOMMU access this provides a means of avoiding
1474 * it by maintaining the mapping of the page to the system.
1475 *
1476 * Returns amount of work completed
1477 **/
1478static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1479{
1480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1481	struct sk_buff *skb = rx_ring->skb;
1482	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1483	bool failure = false;
1484
1485	while (likely(total_rx_packets < (unsigned int)budget)) {
1486		struct iavf_rx_buffer *rx_buffer;
1487		union iavf_rx_desc *rx_desc;
1488		unsigned int size;
1489		u16 vlan_tag;
1490		u8 rx_ptype;
1491		u64 qword;
1492
1493		/* return some buffers to hardware, one at a time is too slow */
1494		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1495			failure = failure ||
1496				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1497			cleaned_count = 0;
1498		}
1499
1500		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1501
1502		/* status_error_len will always be zero for unused descriptors
1503		 * because it's cleared in cleanup, and overlaps with hdr_addr
1504		 * which is always zero because packet split isn't used, if the
1505		 * hardware wrote DD then the length will be non-zero
1506		 */
1507		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1508
1509		/* This memory barrier is needed to keep us from reading
1510		 * any other fields out of the rx_desc until we have
1511		 * verified the descriptor has been written back.
1512		 */
1513		dma_rmb();
1514#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1515		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1516			break;
1517
1518		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1519		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1520
1521		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1522		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1523
1524		/* retrieve a buffer from the ring */
1525		if (skb)
1526			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1527		else if (ring_uses_build_skb(rx_ring))
1528			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1529		else
1530			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1531
1532		/* exit if we failed to retrieve a buffer */
1533		if (!skb) {
1534			rx_ring->rx_stats.alloc_buff_failed++;
1535			if (rx_buffer)
1536				rx_buffer->pagecnt_bias++;
1537			break;
1538		}
1539
1540		iavf_put_rx_buffer(rx_ring, rx_buffer);
1541		cleaned_count++;
1542
1543		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1544			continue;
1545
1546		/* ERR_MASK will only have valid bits if EOP set, and
1547		 * what we are doing here is actually checking
1548		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1549		 * the error field
1550		 */
1551		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1552			dev_kfree_skb_any(skb);
1553			skb = NULL;
1554			continue;
1555		}
1556
1557		if (iavf_cleanup_headers(rx_ring, skb)) {
1558			skb = NULL;
1559			continue;
1560		}
1561
1562		/* probably a little skewed due to removing CRC */
1563		total_rx_bytes += skb->len;
1564
1565		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1566		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1567			   IAVF_RXD_QW1_PTYPE_SHIFT;
1568
1569		/* populate checksum, VLAN, and protocol */
1570		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1571
1572
1573		vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1574			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
 
 
 
 
1575
1576		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1577		iavf_receive_skb(rx_ring, skb, vlan_tag);
1578		skb = NULL;
1579
1580		/* update budget accounting */
1581		total_rx_packets++;
1582	}
1583
1584	rx_ring->skb = skb;
1585
1586	u64_stats_update_begin(&rx_ring->syncp);
1587	rx_ring->stats.packets += total_rx_packets;
1588	rx_ring->stats.bytes += total_rx_bytes;
1589	u64_stats_update_end(&rx_ring->syncp);
1590	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1591	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1592
1593	/* guarantee a trip back through this routine if there was a failure */
1594	return failure ? budget : (int)total_rx_packets;
1595}
1596
1597static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1598{
1599	u32 val;
1600
1601	/* We don't bother with setting the CLEARPBA bit as the data sheet
1602	 * points out doing so is "meaningless since it was already
1603	 * auto-cleared". The auto-clearing happens when the interrupt is
1604	 * asserted.
1605	 *
1606	 * Hardware errata 28 for also indicates that writing to a
1607	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1608	 * an event in the PBA anyway so we need to rely on the automask
1609	 * to hold pending events for us until the interrupt is re-enabled
1610	 *
1611	 * The itr value is reported in microseconds, and the register
1612	 * value is recorded in 2 microsecond units. For this reason we
1613	 * only need to shift by the interval shift - 1 instead of the
1614	 * full value.
1615	 */
1616	itr &= IAVF_ITR_MASK;
1617
1618	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1619	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1620	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1621
1622	return val;
1623}
1624
1625/* a small macro to shorten up some long lines */
1626#define INTREG IAVF_VFINT_DYN_CTLN1
1627
1628/* The act of updating the ITR will cause it to immediately trigger. In order
1629 * to prevent this from throwing off adaptive update statistics we defer the
1630 * update so that it can only happen so often. So after either Tx or Rx are
1631 * updated we make the adaptive scheme wait until either the ITR completely
1632 * expires via the next_update expiration or we have been through at least
1633 * 3 interrupts.
1634 */
1635#define ITR_COUNTDOWN_START 3
1636
1637/**
1638 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1639 * @vsi: the VSI we care about
1640 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1641 *
1642 **/
1643static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1644					  struct iavf_q_vector *q_vector)
1645{
1646	struct iavf_hw *hw = &vsi->back->hw;
1647	u32 intval;
1648
1649	/* These will do nothing if dynamic updates are not enabled */
1650	iavf_update_itr(q_vector, &q_vector->tx);
1651	iavf_update_itr(q_vector, &q_vector->rx);
1652
1653	/* This block of logic allows us to get away with only updating
1654	 * one ITR value with each interrupt. The idea is to perform a
1655	 * pseudo-lazy update with the following criteria.
1656	 *
1657	 * 1. Rx is given higher priority than Tx if both are in same state
1658	 * 2. If we must reduce an ITR that is given highest priority.
1659	 * 3. We then give priority to increasing ITR based on amount.
1660	 */
1661	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1662		/* Rx ITR needs to be reduced, this is highest priority */
1663		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1664					   q_vector->rx.target_itr);
1665		q_vector->rx.current_itr = q_vector->rx.target_itr;
1666		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1667	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1668		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1669		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1670		/* Tx ITR needs to be reduced, this is second priority
1671		 * Tx ITR needs to be increased more than Rx, fourth priority
1672		 */
1673		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1674					   q_vector->tx.target_itr);
1675		q_vector->tx.current_itr = q_vector->tx.target_itr;
1676		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1677	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1678		/* Rx ITR needs to be increased, third priority */
1679		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1680					   q_vector->rx.target_itr);
1681		q_vector->rx.current_itr = q_vector->rx.target_itr;
1682		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1683	} else {
1684		/* No ITR update, lowest priority */
1685		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1686		if (q_vector->itr_countdown)
1687			q_vector->itr_countdown--;
1688	}
1689
1690	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1691		wr32(hw, INTREG(q_vector->reg_idx), intval);
1692}
1693
1694/**
1695 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1696 * @napi: napi struct with our devices info in it
1697 * @budget: amount of work driver is allowed to do this pass, in packets
1698 *
1699 * This function will clean all queues associated with a q_vector.
1700 *
1701 * Returns the amount of work done
1702 **/
1703int iavf_napi_poll(struct napi_struct *napi, int budget)
1704{
1705	struct iavf_q_vector *q_vector =
1706			       container_of(napi, struct iavf_q_vector, napi);
1707	struct iavf_vsi *vsi = q_vector->vsi;
1708	struct iavf_ring *ring;
1709	bool clean_complete = true;
1710	bool arm_wb = false;
1711	int budget_per_ring;
1712	int work_done = 0;
1713
1714	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1715		napi_complete(napi);
1716		return 0;
1717	}
1718
1719	/* Since the actual Tx work is minimal, we can give the Tx a larger
1720	 * budget and be more aggressive about cleaning up the Tx descriptors.
1721	 */
1722	iavf_for_each_ring(ring, q_vector->tx) {
1723		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1724			clean_complete = false;
1725			continue;
1726		}
1727		arm_wb |= ring->arm_wb;
1728		ring->arm_wb = false;
1729	}
1730
1731	/* Handle case where we are called by netpoll with a budget of 0 */
1732	if (budget <= 0)
1733		goto tx_only;
1734
1735	/* We attempt to distribute budget to each Rx queue fairly, but don't
1736	 * allow the budget to go below 1 because that would exit polling early.
1737	 */
1738	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1739
1740	iavf_for_each_ring(ring, q_vector->rx) {
1741		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1742
1743		work_done += cleaned;
1744		/* if we clean as many as budgeted, we must not be done */
1745		if (cleaned >= budget_per_ring)
1746			clean_complete = false;
1747	}
1748
1749	/* If work not completed, return budget and polling will return */
1750	if (!clean_complete) {
1751		int cpu_id = smp_processor_id();
1752
1753		/* It is possible that the interrupt affinity has changed but,
1754		 * if the cpu is pegged at 100%, polling will never exit while
1755		 * traffic continues and the interrupt will be stuck on this
1756		 * cpu.  We check to make sure affinity is correct before we
1757		 * continue to poll, otherwise we must stop polling so the
1758		 * interrupt can move to the correct cpu.
1759		 */
1760		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1761			/* Tell napi that we are done polling */
1762			napi_complete_done(napi, work_done);
1763
1764			/* Force an interrupt */
1765			iavf_force_wb(vsi, q_vector);
1766
1767			/* Return budget-1 so that polling stops */
1768			return budget - 1;
1769		}
1770tx_only:
1771		if (arm_wb) {
1772			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1773			iavf_enable_wb_on_itr(vsi, q_vector);
1774		}
1775		return budget;
1776	}
1777
1778	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1779		q_vector->arm_wb_state = false;
1780
1781	/* Exit the polling mode, but don't re-enable interrupts if stack might
1782	 * poll us due to busy-polling
1783	 */
1784	if (likely(napi_complete_done(napi, work_done)))
1785		iavf_update_enable_itr(vsi, q_vector);
1786
1787	return min(work_done, budget - 1);
1788}
1789
1790/**
1791 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1792 * @skb:     send buffer
1793 * @tx_ring: ring to send buffer on
1794 * @flags:   the tx flags to be set
1795 *
1796 * Checks the skb and set up correspondingly several generic transmit flags
1797 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1798 *
1799 * Returns error code indicate the frame should be dropped upon error and the
1800 * otherwise  returns 0 to indicate the flags has been set properly.
1801 **/
1802static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1803					     struct iavf_ring *tx_ring,
1804					     u32 *flags)
1805{
1806	__be16 protocol = skb->protocol;
1807	u32  tx_flags = 0;
1808
1809	if (protocol == htons(ETH_P_8021Q) &&
1810	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1811		/* When HW VLAN acceleration is turned off by the user the
1812		 * stack sets the protocol to 8021q so that the driver
1813		 * can take any steps required to support the SW only
1814		 * VLAN handling.  In our case the driver doesn't need
1815		 * to take any further steps so just set the protocol
1816		 * to the encapsulated ethertype.
1817		 */
1818		skb->protocol = vlan_get_protocol(skb);
1819		goto out;
1820	}
1821
1822	/* if we have a HW VLAN tag being added, default to the HW one */
1823	if (skb_vlan_tag_present(skb)) {
1824		tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
 
 
 
 
 
 
 
1825		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1826	/* else if it is a SW VLAN, check the next protocol and store the tag */
1827	} else if (protocol == htons(ETH_P_8021Q)) {
1828		struct vlan_hdr *vhdr, _vhdr;
1829
1830		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1831		if (!vhdr)
1832			return -EINVAL;
1833
1834		protocol = vhdr->h_vlan_encapsulated_proto;
1835		tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1836		tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1837	}
1838
1839out:
1840	*flags = tx_flags;
1841	return 0;
1842}
1843
1844/**
1845 * iavf_tso - set up the tso context descriptor
1846 * @first:    pointer to first Tx buffer for xmit
1847 * @hdr_len:  ptr to the size of the packet header
1848 * @cd_type_cmd_tso_mss: Quad Word 1
1849 *
1850 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1851 **/
1852static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1853		    u64 *cd_type_cmd_tso_mss)
1854{
1855	struct sk_buff *skb = first->skb;
1856	u64 cd_cmd, cd_tso_len, cd_mss;
1857	union {
1858		struct iphdr *v4;
1859		struct ipv6hdr *v6;
1860		unsigned char *hdr;
1861	} ip;
1862	union {
1863		struct tcphdr *tcp;
1864		struct udphdr *udp;
1865		unsigned char *hdr;
1866	} l4;
1867	u32 paylen, l4_offset;
1868	u16 gso_segs, gso_size;
1869	int err;
1870
1871	if (skb->ip_summed != CHECKSUM_PARTIAL)
1872		return 0;
1873
1874	if (!skb_is_gso(skb))
1875		return 0;
1876
1877	err = skb_cow_head(skb, 0);
1878	if (err < 0)
1879		return err;
1880
1881	ip.hdr = skb_network_header(skb);
1882	l4.hdr = skb_transport_header(skb);
1883
1884	/* initialize outer IP header fields */
1885	if (ip.v4->version == 4) {
1886		ip.v4->tot_len = 0;
1887		ip.v4->check = 0;
1888	} else {
1889		ip.v6->payload_len = 0;
1890	}
1891
1892	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1893					 SKB_GSO_GRE_CSUM |
1894					 SKB_GSO_IPXIP4 |
1895					 SKB_GSO_IPXIP6 |
1896					 SKB_GSO_UDP_TUNNEL |
1897					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1898		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1899		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1900			l4.udp->len = 0;
1901
1902			/* determine offset of outer transport header */
1903			l4_offset = l4.hdr - skb->data;
1904
1905			/* remove payload length from outer checksum */
1906			paylen = skb->len - l4_offset;
1907			csum_replace_by_diff(&l4.udp->check,
1908					     (__force __wsum)htonl(paylen));
1909		}
1910
1911		/* reset pointers to inner headers */
1912		ip.hdr = skb_inner_network_header(skb);
1913		l4.hdr = skb_inner_transport_header(skb);
1914
1915		/* initialize inner IP header fields */
1916		if (ip.v4->version == 4) {
1917			ip.v4->tot_len = 0;
1918			ip.v4->check = 0;
1919		} else {
1920			ip.v6->payload_len = 0;
1921		}
1922	}
1923
1924	/* determine offset of inner transport header */
1925	l4_offset = l4.hdr - skb->data;
1926
1927	/* remove payload length from inner checksum */
1928	paylen = skb->len - l4_offset;
1929	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1930
1931	/* compute length of segmentation header */
1932	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
 
 
1933
1934	/* pull values out of skb_shinfo */
1935	gso_size = skb_shinfo(skb)->gso_size;
1936	gso_segs = skb_shinfo(skb)->gso_segs;
1937
1938	/* update GSO size and bytecount with header size */
1939	first->gso_segs = gso_segs;
1940	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1941
1942	/* find the field values */
1943	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1944	cd_tso_len = skb->len - *hdr_len;
1945	cd_mss = gso_size;
1946	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1947				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1948				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1949	return 1;
1950}
1951
1952/**
1953 * iavf_tx_enable_csum - Enable Tx checksum offloads
1954 * @skb: send buffer
1955 * @tx_flags: pointer to Tx flags currently set
1956 * @td_cmd: Tx descriptor command bits to set
1957 * @td_offset: Tx descriptor header offsets to set
1958 * @tx_ring: Tx descriptor ring
1959 * @cd_tunneling: ptr to context desc bits
1960 **/
1961static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1962			       u32 *td_cmd, u32 *td_offset,
1963			       struct iavf_ring *tx_ring,
1964			       u32 *cd_tunneling)
1965{
1966	union {
1967		struct iphdr *v4;
1968		struct ipv6hdr *v6;
1969		unsigned char *hdr;
1970	} ip;
1971	union {
1972		struct tcphdr *tcp;
1973		struct udphdr *udp;
1974		unsigned char *hdr;
1975	} l4;
1976	unsigned char *exthdr;
1977	u32 offset, cmd = 0;
1978	__be16 frag_off;
1979	u8 l4_proto = 0;
1980
1981	if (skb->ip_summed != CHECKSUM_PARTIAL)
1982		return 0;
1983
1984	ip.hdr = skb_network_header(skb);
1985	l4.hdr = skb_transport_header(skb);
1986
1987	/* compute outer L2 header size */
1988	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1989
1990	if (skb->encapsulation) {
1991		u32 tunnel = 0;
1992		/* define outer network header type */
1993		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1994			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1995				  IAVF_TX_CTX_EXT_IP_IPV4 :
1996				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1997
1998			l4_proto = ip.v4->protocol;
1999		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2000			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2001
2002			exthdr = ip.hdr + sizeof(*ip.v6);
2003			l4_proto = ip.v6->nexthdr;
2004			if (l4.hdr != exthdr)
2005				ipv6_skip_exthdr(skb, exthdr - skb->data,
2006						 &l4_proto, &frag_off);
2007		}
2008
2009		/* define outer transport */
2010		switch (l4_proto) {
2011		case IPPROTO_UDP:
2012			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2013			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2014			break;
2015		case IPPROTO_GRE:
2016			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2017			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2018			break;
2019		case IPPROTO_IPIP:
2020		case IPPROTO_IPV6:
2021			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2022			l4.hdr = skb_inner_network_header(skb);
2023			break;
2024		default:
2025			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2026				return -1;
2027
2028			skb_checksum_help(skb);
2029			return 0;
2030		}
2031
2032		/* compute outer L3 header size */
2033		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2034			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2035
2036		/* switch IP header pointer from outer to inner header */
2037		ip.hdr = skb_inner_network_header(skb);
2038
2039		/* compute tunnel header size */
2040		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2041			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2042
2043		/* indicate if we need to offload outer UDP header */
2044		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2045		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2046		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2047			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2048
2049		/* record tunnel offload values */
2050		*cd_tunneling |= tunnel;
2051
2052		/* switch L4 header pointer from outer to inner */
2053		l4.hdr = skb_inner_transport_header(skb);
2054		l4_proto = 0;
2055
2056		/* reset type as we transition from outer to inner headers */
2057		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2058		if (ip.v4->version == 4)
2059			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2060		if (ip.v6->version == 6)
2061			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2062	}
2063
2064	/* Enable IP checksum offloads */
2065	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2066		l4_proto = ip.v4->protocol;
2067		/* the stack computes the IP header already, the only time we
2068		 * need the hardware to recompute it is in the case of TSO.
2069		 */
2070		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2071		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2072		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2073	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2074		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2075
2076		exthdr = ip.hdr + sizeof(*ip.v6);
2077		l4_proto = ip.v6->nexthdr;
2078		if (l4.hdr != exthdr)
2079			ipv6_skip_exthdr(skb, exthdr - skb->data,
2080					 &l4_proto, &frag_off);
2081	}
2082
2083	/* compute inner L3 header size */
2084	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2085
2086	/* Enable L4 checksum offloads */
2087	switch (l4_proto) {
2088	case IPPROTO_TCP:
2089		/* enable checksum offloads */
2090		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2091		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2092		break;
2093	case IPPROTO_SCTP:
2094		/* enable SCTP checksum offload */
2095		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2096		offset |= (sizeof(struct sctphdr) >> 2) <<
2097			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2098		break;
2099	case IPPROTO_UDP:
2100		/* enable UDP checksum offload */
2101		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2102		offset |= (sizeof(struct udphdr) >> 2) <<
2103			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2104		break;
2105	default:
2106		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2107			return -1;
2108		skb_checksum_help(skb);
2109		return 0;
2110	}
2111
2112	*td_cmd |= cmd;
2113	*td_offset |= offset;
2114
2115	return 1;
2116}
2117
2118/**
2119 * iavf_create_tx_ctx Build the Tx context descriptor
2120 * @tx_ring:  ring to create the descriptor on
2121 * @cd_type_cmd_tso_mss: Quad Word 1
2122 * @cd_tunneling: Quad Word 0 - bits 0-31
2123 * @cd_l2tag2: Quad Word 0 - bits 32-63
2124 **/
2125static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2126			       const u64 cd_type_cmd_tso_mss,
2127			       const u32 cd_tunneling, const u32 cd_l2tag2)
2128{
2129	struct iavf_tx_context_desc *context_desc;
2130	int i = tx_ring->next_to_use;
2131
2132	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2133	    !cd_tunneling && !cd_l2tag2)
2134		return;
2135
2136	/* grab the next descriptor */
2137	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2138
2139	i++;
2140	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2141
2142	/* cpu_to_le32 and assign to struct fields */
2143	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2144	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2145	context_desc->rsvd = cpu_to_le16(0);
2146	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2147}
2148
2149/**
2150 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2151 * @skb:      send buffer
2152 *
2153 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2154 * and so we need to figure out the cases where we need to linearize the skb.
2155 *
2156 * For TSO we need to count the TSO header and segment payload separately.
2157 * As such we need to check cases where we have 7 fragments or more as we
2158 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2159 * the segment payload in the first descriptor, and another 7 for the
2160 * fragments.
2161 **/
2162bool __iavf_chk_linearize(struct sk_buff *skb)
2163{
2164	const skb_frag_t *frag, *stale;
2165	int nr_frags, sum;
2166
2167	/* no need to check if number of frags is less than 7 */
2168	nr_frags = skb_shinfo(skb)->nr_frags;
2169	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2170		return false;
2171
2172	/* We need to walk through the list and validate that each group
2173	 * of 6 fragments totals at least gso_size.
2174	 */
2175	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2176	frag = &skb_shinfo(skb)->frags[0];
2177
2178	/* Initialize size to the negative value of gso_size minus 1.  We
2179	 * use this as the worst case scenerio in which the frag ahead
2180	 * of us only provides one byte which is why we are limited to 6
2181	 * descriptors for a single transmit as the header and previous
2182	 * fragment are already consuming 2 descriptors.
2183	 */
2184	sum = 1 - skb_shinfo(skb)->gso_size;
2185
2186	/* Add size of frags 0 through 4 to create our initial sum */
2187	sum += skb_frag_size(frag++);
2188	sum += skb_frag_size(frag++);
2189	sum += skb_frag_size(frag++);
2190	sum += skb_frag_size(frag++);
2191	sum += skb_frag_size(frag++);
2192
2193	/* Walk through fragments adding latest fragment, testing it, and
2194	 * then removing stale fragments from the sum.
2195	 */
2196	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2197		int stale_size = skb_frag_size(stale);
2198
2199		sum += skb_frag_size(frag++);
2200
2201		/* The stale fragment may present us with a smaller
2202		 * descriptor than the actual fragment size. To account
2203		 * for that we need to remove all the data on the front and
2204		 * figure out what the remainder would be in the last
2205		 * descriptor associated with the fragment.
2206		 */
2207		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2208			int align_pad = -(skb_frag_off(stale)) &
2209					(IAVF_MAX_READ_REQ_SIZE - 1);
2210
2211			sum -= align_pad;
2212			stale_size -= align_pad;
2213
2214			do {
2215				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2216				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2217			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2218		}
2219
2220		/* if sum is negative we failed to make sufficient progress */
2221		if (sum < 0)
2222			return true;
2223
2224		if (!nr_frags--)
2225			break;
2226
2227		sum -= stale_size;
2228	}
2229
2230	return false;
2231}
2232
2233/**
2234 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2235 * @tx_ring: the ring to be checked
2236 * @size:    the size buffer we want to assure is available
2237 *
2238 * Returns -EBUSY if a stop is needed, else 0
2239 **/
2240int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2241{
2242	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2243	/* Memory barrier before checking head and tail */
2244	smp_mb();
2245
2246	/* Check again in a case another CPU has just made room available. */
2247	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2248		return -EBUSY;
2249
2250	/* A reprieve! - use start_queue because it doesn't call schedule */
2251	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2252	++tx_ring->tx_stats.restart_queue;
2253	return 0;
2254}
2255
2256/**
2257 * iavf_tx_map - Build the Tx descriptor
2258 * @tx_ring:  ring to send buffer on
2259 * @skb:      send buffer
2260 * @first:    first buffer info buffer to use
2261 * @tx_flags: collected send information
2262 * @hdr_len:  size of the packet header
2263 * @td_cmd:   the command field in the descriptor
2264 * @td_offset: offset for checksum or crc
2265 **/
2266static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2267			       struct iavf_tx_buffer *first, u32 tx_flags,
2268			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2269{
2270	unsigned int data_len = skb->data_len;
2271	unsigned int size = skb_headlen(skb);
2272	skb_frag_t *frag;
2273	struct iavf_tx_buffer *tx_bi;
2274	struct iavf_tx_desc *tx_desc;
2275	u16 i = tx_ring->next_to_use;
2276	u32 td_tag = 0;
2277	dma_addr_t dma;
2278
2279	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2280		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2281		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2282			 IAVF_TX_FLAGS_VLAN_SHIFT;
2283	}
2284
2285	first->tx_flags = tx_flags;
2286
2287	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2288
2289	tx_desc = IAVF_TX_DESC(tx_ring, i);
2290	tx_bi = first;
2291
2292	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2293		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2294
2295		if (dma_mapping_error(tx_ring->dev, dma))
2296			goto dma_error;
2297
2298		/* record length, and DMA address */
2299		dma_unmap_len_set(tx_bi, len, size);
2300		dma_unmap_addr_set(tx_bi, dma, dma);
2301
2302		/* align size to end of page */
2303		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2304		tx_desc->buffer_addr = cpu_to_le64(dma);
2305
2306		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2307			tx_desc->cmd_type_offset_bsz =
2308				build_ctob(td_cmd, td_offset,
2309					   max_data, td_tag);
2310
2311			tx_desc++;
2312			i++;
2313
2314			if (i == tx_ring->count) {
2315				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2316				i = 0;
2317			}
2318
2319			dma += max_data;
2320			size -= max_data;
2321
2322			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2323			tx_desc->buffer_addr = cpu_to_le64(dma);
2324		}
2325
2326		if (likely(!data_len))
2327			break;
2328
2329		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2330							  size, td_tag);
2331
2332		tx_desc++;
2333		i++;
2334
2335		if (i == tx_ring->count) {
2336			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2337			i = 0;
2338		}
2339
2340		size = skb_frag_size(frag);
2341		data_len -= size;
2342
2343		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2344				       DMA_TO_DEVICE);
2345
2346		tx_bi = &tx_ring->tx_bi[i];
2347	}
2348
2349	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2350
2351	i++;
2352	if (i == tx_ring->count)
2353		i = 0;
2354
2355	tx_ring->next_to_use = i;
2356
2357	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2358
2359	/* write last descriptor with RS and EOP bits */
2360	td_cmd |= IAVF_TXD_CMD;
2361	tx_desc->cmd_type_offset_bsz =
2362			build_ctob(td_cmd, td_offset, size, td_tag);
2363
2364	skb_tx_timestamp(skb);
2365
2366	/* Force memory writes to complete before letting h/w know there
2367	 * are new descriptors to fetch.
2368	 *
2369	 * We also use this memory barrier to make certain all of the
2370	 * status bits have been updated before next_to_watch is written.
2371	 */
2372	wmb();
2373
2374	/* set next_to_watch value indicating a packet is present */
2375	first->next_to_watch = tx_desc;
2376
2377	/* notify HW of packet */
2378	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2379		writel(i, tx_ring->tail);
2380	}
2381
2382	return;
2383
2384dma_error:
2385	dev_info(tx_ring->dev, "TX DMA map failed\n");
2386
2387	/* clear dma mappings for failed tx_bi map */
2388	for (;;) {
2389		tx_bi = &tx_ring->tx_bi[i];
2390		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2391		if (tx_bi == first)
2392			break;
2393		if (i == 0)
2394			i = tx_ring->count;
2395		i--;
2396	}
2397
2398	tx_ring->next_to_use = i;
2399}
2400
2401/**
2402 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2403 * @skb:     send buffer
2404 * @tx_ring: ring to send buffer on
2405 *
2406 * Returns NETDEV_TX_OK if sent, else an error code
2407 **/
2408static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2409					struct iavf_ring *tx_ring)
2410{
2411	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2412	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2413	struct iavf_tx_buffer *first;
2414	u32 td_offset = 0;
2415	u32 tx_flags = 0;
2416	__be16 protocol;
2417	u32 td_cmd = 0;
2418	u8 hdr_len = 0;
2419	int tso, count;
2420
2421	/* prefetch the data, we'll need it later */
2422	prefetch(skb->data);
2423
2424	iavf_trace(xmit_frame_ring, skb, tx_ring);
2425
2426	count = iavf_xmit_descriptor_count(skb);
2427	if (iavf_chk_linearize(skb, count)) {
2428		if (__skb_linearize(skb)) {
2429			dev_kfree_skb_any(skb);
2430			return NETDEV_TX_OK;
2431		}
2432		count = iavf_txd_use_count(skb->len);
2433		tx_ring->tx_stats.tx_linearize++;
2434	}
2435
2436	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2437	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2438	 *       + 4 desc gap to avoid the cache line where head is,
2439	 *       + 1 desc for context descriptor,
2440	 * otherwise try next time
2441	 */
2442	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2443		tx_ring->tx_stats.tx_busy++;
2444		return NETDEV_TX_BUSY;
2445	}
2446
2447	/* record the location of the first descriptor for this packet */
2448	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2449	first->skb = skb;
2450	first->bytecount = skb->len;
2451	first->gso_segs = 1;
2452
2453	/* prepare the xmit flags */
2454	if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2455		goto out_drop;
 
 
 
 
2456
2457	/* obtain protocol of skb */
2458	protocol = vlan_get_protocol(skb);
2459
2460	/* setup IPv4/IPv6 offloads */
2461	if (protocol == htons(ETH_P_IP))
2462		tx_flags |= IAVF_TX_FLAGS_IPV4;
2463	else if (protocol == htons(ETH_P_IPV6))
2464		tx_flags |= IAVF_TX_FLAGS_IPV6;
2465
2466	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2467
2468	if (tso < 0)
2469		goto out_drop;
2470	else if (tso)
2471		tx_flags |= IAVF_TX_FLAGS_TSO;
2472
2473	/* Always offload the checksum, since it's in the data descriptor */
2474	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2475				  tx_ring, &cd_tunneling);
2476	if (tso < 0)
2477		goto out_drop;
2478
2479	/* always enable CRC insertion offload */
2480	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2481
2482	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2483			   cd_tunneling, cd_l2tag2);
2484
2485	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2486		    td_cmd, td_offset);
2487
2488	return NETDEV_TX_OK;
2489
2490out_drop:
2491	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2492	dev_kfree_skb_any(first->skb);
2493	first->skb = NULL;
2494	return NETDEV_TX_OK;
2495}
2496
2497/**
2498 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2499 * @skb:    send buffer
2500 * @netdev: network interface device structure
2501 *
2502 * Returns NETDEV_TX_OK if sent, else an error code
2503 **/
2504netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2505{
2506	struct iavf_adapter *adapter = netdev_priv(netdev);
2507	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2508
2509	/* hardware can't handle really short frames, hardware padding works
2510	 * beyond this point
2511	 */
2512	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2513		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2514			return NETDEV_TX_OK;
2515		skb->len = IAVF_MIN_TX_LEN;
2516		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2517	}
2518
2519	return iavf_xmit_frame_ring(skb, tx_ring);
2520}