Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
 
 
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
 
 
 
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
 
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
 
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  70}
  71
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
  84	struct i40e_tx_buffer *tx_buf, *first;
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 
 230{
 
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 
 
 
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 340
 341	return ret;
 342}
 
 
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 
 
 386	u8 *raw_packet;
 387	int ret;
 
 
 
 
 
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 434	u8 *raw_packet;
 435	int ret;
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 
 
 
 
 454		kfree(raw_packet);
 455		return ret;
 
 
 
 
 
 
 
 
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 466	}
 
 467	return 0;
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 
 
 488	u8 *raw_packet;
 489	int ret;
 
 
 
 
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 
 
 
 
 
 
 
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 
 
 508	if (ret) {
 
 
 
 
 509		kfree(raw_packet);
 510		return ret;
 
 
 
 
 
 
 
 
 
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 
 
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 
 
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 
 
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 591	int ret;
 592
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
 
 
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
 
 
1397{
 
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
 
 
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
 
 
 
 
 
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
 
1551
1552	u64_stats_init(&rx_ring->syncp);
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
 
 
 
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
1721
1722	return false;
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
 
1754	decoded = decode_rx_desc_ptype(ptype);
1755
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
 
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
 
 
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
 
 
 
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
 
 
 
 
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
 
 
 
 
 
 
 
 
 
2003{
2004#if (PAGE_SIZE < 8192)
 
 
 
 
 
 
 
 
 
 
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
 
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
 
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
 
 
 
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
 
 
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
 
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
 
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
 
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
 
 
 
 
 
 
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
 
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258	}
2259
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
 
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
 
 
 
2273{
 
 
 
 
 
 
 
 
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
 
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
 
2307	u32 act;
2308
 
 
 
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
 
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
 
 
 
 
 
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
2598			}
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
 
 
 
 
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
2611		}
2612
 
 
 
 
 
 
 
 
 
 
2613		/* update budget accounting */
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627	*rx_cleaned = total_rx_packets;
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633/**
2634 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2635 * @itr_idx: interrupt throttling index
2636 * @interval: interrupt throttling interval value in usecs
2637 * @force_swint: force software interrupt
2638 *
2639 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2640 * is used to update interrupt throttling interval for specified ITR index
2641 * and optionally enforces a software interrupt. If the @itr_idx is equal
2642 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2643 * parameter is taken into account. If the interval change and enforced
2644 * software interrupt are not requested then the built value just enables
2645 * appropriate vector interrupt.
2646 **/
2647static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2648			     bool force_swint)
2649{
2650	u32 val;
2651
2652	/* We don't bother with setting the CLEARPBA bit as the data sheet
2653	 * points out doing so is "meaningless since it was already
2654	 * auto-cleared". The auto-clearing happens when the interrupt is
2655	 * asserted.
2656	 *
2657	 * Hardware errata 28 for also indicates that writing to a
2658	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2659	 * an event in the PBA anyway so we need to rely on the automask
2660	 * to hold pending events for us until the interrupt is re-enabled
2661	 *
2662	 * We have to shift the given value as it is reported in microseconds
2663	 * and the register value is recorded in 2 microsecond units.
 
 
2664	 */
2665	interval >>= 1;
2666
2667	/* 1. Enable vector interrupt
2668	 * 2. Update the interval for the specified ITR index
2669	 *    (I40E_ITR_NONE in the register is used to indicate that
2670	 *     no interval update is requested)
2671	 */
2672	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2673	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2674	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2675
2676	/* 3. Enforce software interrupt trigger if requested
2677	 *    (These software interrupts rate is limited by ITR2 that is
2678	 *     set to 20K interrupts per second)
2679	 */
2680	if (force_swint)
2681		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2682		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2683		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2684				  I40E_SW_ITR);
2685
2686	return val;
2687}
2688
 
 
 
2689/* The act of updating the ITR will cause it to immediately trigger. In order
2690 * to prevent this from throwing off adaptive update statistics we defer the
2691 * update so that it can only happen so often. So after either Tx or Rx are
2692 * updated we make the adaptive scheme wait until either the ITR completely
2693 * expires via the next_update expiration or we have been through at least
2694 * 3 interrupts.
2695 */
2696#define ITR_COUNTDOWN_START 3
2697
2698/**
2699 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2700 * @vsi: the VSI we care about
2701 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2702 *
2703 **/
2704static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2705					  struct i40e_q_vector *q_vector)
2706{
2707	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2708	struct i40e_hw *hw = &vsi->back->hw;
2709	u16 interval = 0;
2710	u32 itr_val;
2711
2712	/* If we don't have MSIX, then we only need to re-enable icr0 */
2713	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2714		i40e_irq_dynamic_enable_icr0(vsi->back);
2715		return;
2716	}
2717
2718	/* These will do nothing if dynamic updates are not enabled */
2719	i40e_update_itr(q_vector, &q_vector->tx);
2720	i40e_update_itr(q_vector, &q_vector->rx);
2721
2722	/* This block of logic allows us to get away with only updating
2723	 * one ITR value with each interrupt. The idea is to perform a
2724	 * pseudo-lazy update with the following criteria.
2725	 *
2726	 * 1. Rx is given higher priority than Tx if both are in same state
2727	 * 2. If we must reduce an ITR that is given highest priority.
2728	 * 3. We then give priority to increasing ITR based on amount.
2729	 */
2730	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2731		/* Rx ITR needs to be reduced, this is highest priority */
2732		itr_idx = I40E_RX_ITR;
2733		interval = q_vector->rx.target_itr;
2734		q_vector->rx.current_itr = q_vector->rx.target_itr;
2735		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2737		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2738		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2739		/* Tx ITR needs to be reduced, this is second priority
2740		 * Tx ITR needs to be increased more than Rx, fourth priority
2741		 */
2742		itr_idx = I40E_TX_ITR;
2743		interval = q_vector->tx.target_itr;
2744		q_vector->tx.current_itr = q_vector->tx.target_itr;
2745		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2746	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2747		/* Rx ITR needs to be increased, third priority */
2748		itr_idx = I40E_RX_ITR;
2749		interval = q_vector->rx.target_itr;
2750		q_vector->rx.current_itr = q_vector->rx.target_itr;
2751		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2752	} else {
2753		/* No ITR update, lowest priority */
 
2754		if (q_vector->itr_countdown)
2755			q_vector->itr_countdown--;
2756	}
2757
2758	/* Do not update interrupt control register if VSI is down */
2759	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2760		return;
2761
2762	/* Update ITR interval if necessary and enforce software interrupt
2763	 * if we are exiting busy poll.
2764	 */
2765	if (q_vector->in_busy_poll) {
2766		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2767		q_vector->in_busy_poll = false;
2768	} else {
2769		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2770	}
2771	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2772}
2773
2774/**
2775 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2776 * @napi: napi struct with our devices info in it
2777 * @budget: amount of work driver is allowed to do this pass, in packets
2778 *
2779 * This function will clean all queues associated with a q_vector.
2780 *
2781 * Returns the amount of work done
2782 **/
2783int i40e_napi_poll(struct napi_struct *napi, int budget)
2784{
2785	struct i40e_q_vector *q_vector =
2786			       container_of(napi, struct i40e_q_vector, napi);
2787	struct i40e_vsi *vsi = q_vector->vsi;
2788	struct i40e_ring *ring;
2789	bool tx_clean_complete = true;
2790	bool rx_clean_complete = true;
2791	unsigned int tx_cleaned = 0;
2792	unsigned int rx_cleaned = 0;
2793	bool clean_complete = true;
2794	bool arm_wb = false;
2795	int budget_per_ring;
2796	int work_done = 0;
2797
2798	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2799		napi_complete(napi);
2800		return 0;
2801	}
2802
2803	/* Since the actual Tx work is minimal, we can give the Tx a larger
2804	 * budget and be more aggressive about cleaning up the Tx descriptors.
2805	 */
2806	i40e_for_each_ring(ring, q_vector->tx) {
2807		bool wd = ring->xsk_pool ?
2808			  i40e_clean_xdp_tx_irq(vsi, ring) :
2809			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2810
2811		if (!wd) {
2812			clean_complete = tx_clean_complete = false;
2813			continue;
2814		}
2815		arm_wb |= ring->arm_wb;
2816		ring->arm_wb = false;
2817	}
2818
2819	/* Handle case where we are called by netpoll with a budget of 0 */
2820	if (budget <= 0)
2821		goto tx_only;
2822
2823	/* normally we have 1 Rx ring per q_vector */
2824	if (unlikely(q_vector->num_ringpairs > 1))
2825		/* We attempt to distribute budget to each Rx queue fairly, but
2826		 * don't allow the budget to go below 1 because that would exit
2827		 * polling early.
2828		 */
2829		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2830	else
2831		/* Max of 1 Rx ring in this q_vector so give it the budget */
2832		budget_per_ring = budget;
2833
2834	i40e_for_each_ring(ring, q_vector->rx) {
2835		int cleaned = ring->xsk_pool ?
2836			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2837			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2838
2839		work_done += cleaned;
2840		/* if we clean as many as budgeted, we must not be done */
2841		if (cleaned >= budget_per_ring)
2842			clean_complete = rx_clean_complete = false;
2843	}
2844
2845	if (!i40e_enabled_xdp_vsi(vsi))
2846		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2847				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2848
2849	/* If work not completed, return budget and polling will return */
2850	if (!clean_complete) {
2851		int cpu_id = smp_processor_id();
2852
2853		/* It is possible that the interrupt affinity has changed but,
2854		 * if the cpu is pegged at 100%, polling will never exit while
2855		 * traffic continues and the interrupt will be stuck on this
2856		 * cpu.  We check to make sure affinity is correct before we
2857		 * continue to poll, otherwise we must stop polling so the
2858		 * interrupt can move to the correct cpu.
2859		 */
2860		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2861			/* Tell napi that we are done polling */
2862			napi_complete_done(napi, work_done);
2863
2864			/* Force an interrupt */
2865			i40e_force_wb(vsi, q_vector);
2866
2867			/* Return budget-1 so that polling stops */
2868			return budget - 1;
2869		}
2870tx_only:
2871		if (arm_wb) {
2872			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2873			i40e_enable_wb_on_itr(vsi, q_vector);
2874		}
2875		return budget;
2876	}
2877
2878	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2879		q_vector->arm_wb_state = false;
2880
2881	/* Exit the polling mode, but don't re-enable interrupts if stack might
2882	 * poll us due to busy-polling
2883	 */
2884	if (likely(napi_complete_done(napi, work_done)))
2885		i40e_update_enable_itr(vsi, q_vector);
2886	else
2887		q_vector->in_busy_poll = true;
2888
2889	return min(work_done, budget - 1);
2890}
2891
2892/**
2893 * i40e_atr - Add a Flow Director ATR filter
2894 * @tx_ring:  ring to add programming descriptor to
2895 * @skb:      send buffer
2896 * @tx_flags: send tx flags
2897 **/
2898static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2899		     u32 tx_flags)
2900{
2901	struct i40e_filter_program_desc *fdir_desc;
2902	struct i40e_pf *pf = tx_ring->vsi->back;
2903	union {
2904		unsigned char *network;
2905		struct iphdr *ipv4;
2906		struct ipv6hdr *ipv6;
2907	} hdr;
2908	struct tcphdr *th;
2909	unsigned int hlen;
2910	u32 flex_ptype, dtype_cmd;
2911	int l4_proto;
2912	u16 i;
2913
2914	/* make sure ATR is enabled */
2915	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2916		return;
2917
2918	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920
2921	/* if sampling is disabled do nothing */
2922	if (!tx_ring->atr_sample_rate)
2923		return;
2924
2925	/* Currently only IPv4/IPv6 with TCP is supported */
2926	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2927		return;
2928
2929	/* snag network header to get L4 type and address */
2930	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2931		      skb_inner_network_header(skb) : skb_network_header(skb);
2932
2933	/* Note: tx_flags gets modified to reflect inner protocols in
2934	 * tx_enable_csum function if encap is enabled.
2935	 */
2936	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2937		/* access ihl as u8 to avoid unaligned access on ia64 */
2938		hlen = (hdr.network[0] & 0x0F) << 2;
2939		l4_proto = hdr.ipv4->protocol;
2940	} else {
2941		/* find the start of the innermost ipv6 header */
2942		unsigned int inner_hlen = hdr.network - skb->data;
2943		unsigned int h_offset = inner_hlen;
2944
2945		/* this function updates h_offset to the end of the header */
2946		l4_proto =
2947		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2948		/* hlen will contain our best estimate of the tcp header */
2949		hlen = h_offset - inner_hlen;
2950	}
2951
2952	if (l4_proto != IPPROTO_TCP)
2953		return;
2954
2955	th = (struct tcphdr *)(hdr.network + hlen);
2956
2957	/* Due to lack of space, no more new filters can be programmed */
2958	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2959		return;
2960	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2961		/* HW ATR eviction will take care of removing filters on FIN
2962		 * and RST packets.
2963		 */
2964		if (th->fin || th->rst)
2965			return;
2966	}
2967
2968	tx_ring->atr_count++;
2969
2970	/* sample on all syn/fin/rst packets or once every atr sample rate */
2971	if (!th->fin &&
2972	    !th->syn &&
2973	    !th->rst &&
2974	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2975		return;
2976
2977	tx_ring->atr_count = 0;
2978
2979	/* grab the next descriptor */
2980	i = tx_ring->next_to_use;
2981	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2982
2983	i++;
2984	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2985
2986	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2987				tx_ring->queue_index);
2988	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2989		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2990		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2991		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2992		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2993
2994	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2995
2996	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2997
2998	dtype_cmd |= (th->fin || th->rst) ?
2999		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
3000		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
3001		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
3002		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
3003
3004	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
3005		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
3006
3007	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
3008		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
3009
3010	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
3011	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
3012		dtype_cmd |=
3013			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3014				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
3015	else
3016		dtype_cmd |=
3017			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3018				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
3019
3020	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
3021		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3022
3023	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3024	fdir_desc->rsvd = cpu_to_le32(0);
3025	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3026	fdir_desc->fd_id = cpu_to_le32(0);
3027}
3028
3029/**
3030 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3031 * @skb:     send buffer
3032 * @tx_ring: ring to send buffer on
3033 * @flags:   the tx flags to be set
3034 *
3035 * Checks the skb and set up correspondingly several generic transmit flags
3036 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3037 *
3038 * Returns error code indicate the frame should be dropped upon error and the
3039 * otherwise  returns 0 to indicate the flags has been set properly.
3040 **/
3041static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3042					     struct i40e_ring *tx_ring,
3043					     u32 *flags)
3044{
3045	__be16 protocol = skb->protocol;
3046	u32  tx_flags = 0;
3047
3048	if (protocol == htons(ETH_P_8021Q) &&
3049	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3050		/* When HW VLAN acceleration is turned off by the user the
3051		 * stack sets the protocol to 8021q so that the driver
3052		 * can take any steps required to support the SW only
3053		 * VLAN handling.  In our case the driver doesn't need
3054		 * to take any further steps so just set the protocol
3055		 * to the encapsulated ethertype.
3056		 */
3057		skb->protocol = vlan_get_protocol(skb);
3058		goto out;
3059	}
3060
3061	/* if we have a HW VLAN tag being added, default to the HW one */
3062	if (skb_vlan_tag_present(skb)) {
3063		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3064		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3065	/* else if it is a SW VLAN, check the next protocol and store the tag */
3066	} else if (protocol == htons(ETH_P_8021Q)) {
3067		struct vlan_hdr *vhdr, _vhdr;
3068
3069		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3070		if (!vhdr)
3071			return -EINVAL;
3072
3073		protocol = vhdr->h_vlan_encapsulated_proto;
3074		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3075		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3076	}
3077
3078	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3079		goto out;
3080
3081	/* Insert 802.1p priority into VLAN header */
3082	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3083	    (skb->priority != TC_PRIO_CONTROL)) {
3084		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3085		tx_flags |= (skb->priority & 0x7) <<
3086				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3087		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3088			struct vlan_ethhdr *vhdr;
3089			int rc;
3090
3091			rc = skb_cow_head(skb, 0);
3092			if (rc < 0)
3093				return rc;
3094			vhdr = skb_vlan_eth_hdr(skb);
3095			vhdr->h_vlan_TCI = htons(tx_flags >>
3096						 I40E_TX_FLAGS_VLAN_SHIFT);
3097		} else {
3098			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3099		}
3100	}
3101
3102out:
3103	*flags = tx_flags;
3104	return 0;
3105}
3106
3107/**
3108 * i40e_tso - set up the tso context descriptor
3109 * @first:    pointer to first Tx buffer for xmit
3110 * @hdr_len:  ptr to the size of the packet header
3111 * @cd_type_cmd_tso_mss: Quad Word 1
3112 *
3113 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3114 **/
3115static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3116		    u64 *cd_type_cmd_tso_mss)
3117{
3118	struct sk_buff *skb = first->skb;
3119	u64 cd_cmd, cd_tso_len, cd_mss;
3120	__be16 protocol;
3121	union {
3122		struct iphdr *v4;
3123		struct ipv6hdr *v6;
3124		unsigned char *hdr;
3125	} ip;
3126	union {
3127		struct tcphdr *tcp;
3128		struct udphdr *udp;
3129		unsigned char *hdr;
3130	} l4;
3131	u32 paylen, l4_offset;
3132	u16 gso_size;
3133	int err;
3134
3135	if (skb->ip_summed != CHECKSUM_PARTIAL)
3136		return 0;
3137
3138	if (!skb_is_gso(skb))
3139		return 0;
3140
3141	err = skb_cow_head(skb, 0);
3142	if (err < 0)
3143		return err;
3144
3145	protocol = vlan_get_protocol(skb);
3146
3147	if (eth_p_mpls(protocol))
3148		ip.hdr = skb_inner_network_header(skb);
3149	else
3150		ip.hdr = skb_network_header(skb);
3151	l4.hdr = skb_checksum_start(skb);
3152
3153	/* initialize outer IP header fields */
3154	if (ip.v4->version == 4) {
3155		ip.v4->tot_len = 0;
3156		ip.v4->check = 0;
3157
3158		first->tx_flags |= I40E_TX_FLAGS_TSO;
3159	} else {
3160		ip.v6->payload_len = 0;
3161		first->tx_flags |= I40E_TX_FLAGS_TSO;
3162	}
3163
3164	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3165					 SKB_GSO_GRE_CSUM |
3166					 SKB_GSO_IPXIP4 |
3167					 SKB_GSO_IPXIP6 |
3168					 SKB_GSO_UDP_TUNNEL |
3169					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3170		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3171		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3172			l4.udp->len = 0;
3173
3174			/* determine offset of outer transport header */
3175			l4_offset = l4.hdr - skb->data;
3176
3177			/* remove payload length from outer checksum */
3178			paylen = skb->len - l4_offset;
3179			csum_replace_by_diff(&l4.udp->check,
3180					     (__force __wsum)htonl(paylen));
3181		}
3182
3183		/* reset pointers to inner headers */
3184		ip.hdr = skb_inner_network_header(skb);
3185		l4.hdr = skb_inner_transport_header(skb);
3186
3187		/* initialize inner IP header fields */
3188		if (ip.v4->version == 4) {
3189			ip.v4->tot_len = 0;
3190			ip.v4->check = 0;
3191		} else {
3192			ip.v6->payload_len = 0;
3193		}
3194	}
3195
3196	/* determine offset of inner transport header */
3197	l4_offset = l4.hdr - skb->data;
3198
3199	/* remove payload length from inner checksum */
3200	paylen = skb->len - l4_offset;
 
3201
3202	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3203		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3204		/* compute length of segmentation header */
3205		*hdr_len = sizeof(*l4.udp) + l4_offset;
3206	} else {
3207		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3208		/* compute length of segmentation header */
3209		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3210	}
3211
3212	/* pull values out of skb_shinfo */
3213	gso_size = skb_shinfo(skb)->gso_size;
 
3214
3215	/* update GSO size and bytecount with header size */
3216	first->gso_segs = skb_shinfo(skb)->gso_segs;
3217	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3218
3219	/* find the field values */
3220	cd_cmd = I40E_TX_CTX_DESC_TSO;
3221	cd_tso_len = skb->len - *hdr_len;
3222	cd_mss = gso_size;
3223	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3224				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3225				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3226	return 1;
3227}
3228
3229/**
3230 * i40e_tsyn - set up the tsyn context descriptor
3231 * @tx_ring:  ptr to the ring to send
3232 * @skb:      ptr to the skb we're sending
3233 * @tx_flags: the collected send information
3234 * @cd_type_cmd_tso_mss: Quad Word 1
3235 *
3236 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3237 **/
3238static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3239		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3240{
3241	struct i40e_pf *pf;
3242
3243	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3244		return 0;
3245
3246	/* Tx timestamps cannot be sampled when doing TSO */
3247	if (tx_flags & I40E_TX_FLAGS_TSO)
3248		return 0;
3249
3250	/* only timestamp the outbound packet if the user has requested it and
3251	 * we are not already transmitting a packet to be timestamped
3252	 */
3253	pf = i40e_netdev_to_pf(tx_ring->netdev);
3254	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3255		return 0;
3256
3257	if (pf->ptp_tx &&
3258	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3259		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3260		pf->ptp_tx_start = jiffies;
3261		pf->ptp_tx_skb = skb_get(skb);
3262	} else {
3263		pf->tx_hwtstamp_skipped++;
3264		return 0;
3265	}
3266
3267	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3268				I40E_TXD_CTX_QW1_CMD_SHIFT;
3269
3270	return 1;
3271}
3272
3273/**
3274 * i40e_tx_enable_csum - Enable Tx checksum offloads
3275 * @skb: send buffer
3276 * @tx_flags: pointer to Tx flags currently set
3277 * @td_cmd: Tx descriptor command bits to set
3278 * @td_offset: Tx descriptor header offsets to set
3279 * @tx_ring: Tx descriptor ring
3280 * @cd_tunneling: ptr to context desc bits
3281 **/
3282static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3283			       u32 *td_cmd, u32 *td_offset,
3284			       struct i40e_ring *tx_ring,
3285			       u32 *cd_tunneling)
3286{
3287	union {
3288		struct iphdr *v4;
3289		struct ipv6hdr *v6;
3290		unsigned char *hdr;
3291	} ip;
3292	union {
3293		struct tcphdr *tcp;
3294		struct udphdr *udp;
3295		unsigned char *hdr;
3296	} l4;
3297	unsigned char *exthdr;
3298	u32 offset, cmd = 0;
3299	__be16 frag_off;
3300	__be16 protocol;
3301	u8 l4_proto = 0;
3302
3303	if (skb->ip_summed != CHECKSUM_PARTIAL)
3304		return 0;
3305
3306	protocol = vlan_get_protocol(skb);
3307
3308	if (eth_p_mpls(protocol)) {
3309		ip.hdr = skb_inner_network_header(skb);
3310		l4.hdr = skb_checksum_start(skb);
3311	} else {
3312		ip.hdr = skb_network_header(skb);
3313		l4.hdr = skb_transport_header(skb);
3314	}
3315
3316	/* set the tx_flags to indicate the IP protocol type. this is
3317	 * required so that checksum header computation below is accurate.
3318	 */
3319	if (ip.v4->version == 4)
3320		*tx_flags |= I40E_TX_FLAGS_IPV4;
3321	else
3322		*tx_flags |= I40E_TX_FLAGS_IPV6;
3323
3324	/* compute outer L2 header size */
3325	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3326
3327	if (skb->encapsulation) {
3328		u32 tunnel = 0;
3329		/* define outer network header type */
3330		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3331			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3332				  I40E_TX_CTX_EXT_IP_IPV4 :
3333				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3334
3335			l4_proto = ip.v4->protocol;
3336		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3337			int ret;
3338
3339			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3340
3341			exthdr = ip.hdr + sizeof(*ip.v6);
3342			l4_proto = ip.v6->nexthdr;
3343			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3344					       &l4_proto, &frag_off);
3345			if (ret < 0)
3346				return -1;
3347		}
3348
3349		/* define outer transport */
3350		switch (l4_proto) {
3351		case IPPROTO_UDP:
3352			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3353			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3354			break;
3355		case IPPROTO_GRE:
3356			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3357			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3358			break;
3359		case IPPROTO_IPIP:
3360		case IPPROTO_IPV6:
3361			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3362			l4.hdr = skb_inner_network_header(skb);
3363			break;
3364		default:
3365			if (*tx_flags & I40E_TX_FLAGS_TSO)
3366				return -1;
3367
3368			skb_checksum_help(skb);
3369			return 0;
3370		}
3371
3372		/* compute outer L3 header size */
3373		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3374			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3375
3376		/* switch IP header pointer from outer to inner header */
3377		ip.hdr = skb_inner_network_header(skb);
3378
3379		/* compute tunnel header size */
3380		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3381			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3382
3383		/* indicate if we need to offload outer UDP header */
3384		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3385		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3386		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3387			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3388
3389		/* record tunnel offload values */
3390		*cd_tunneling |= tunnel;
3391
3392		/* switch L4 header pointer from outer to inner */
3393		l4.hdr = skb_inner_transport_header(skb);
3394		l4_proto = 0;
3395
3396		/* reset type as we transition from outer to inner headers */
3397		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3398		if (ip.v4->version == 4)
3399			*tx_flags |= I40E_TX_FLAGS_IPV4;
3400		if (ip.v6->version == 6)
3401			*tx_flags |= I40E_TX_FLAGS_IPV6;
3402	}
3403
3404	/* Enable IP checksum offloads */
3405	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3406		l4_proto = ip.v4->protocol;
3407		/* the stack computes the IP header already, the only time we
3408		 * need the hardware to recompute it is in the case of TSO.
3409		 */
3410		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3411		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3412		       I40E_TX_DESC_CMD_IIPT_IPV4;
3413	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3414		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3415
3416		exthdr = ip.hdr + sizeof(*ip.v6);
3417		l4_proto = ip.v6->nexthdr;
3418		if (l4.hdr != exthdr)
3419			ipv6_skip_exthdr(skb, exthdr - skb->data,
3420					 &l4_proto, &frag_off);
3421	}
3422
3423	/* compute inner L3 header size */
3424	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3425
3426	/* Enable L4 checksum offloads */
3427	switch (l4_proto) {
3428	case IPPROTO_TCP:
3429		/* enable checksum offloads */
3430		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3431		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3432		break;
3433	case IPPROTO_SCTP:
3434		/* enable SCTP checksum offload */
3435		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3436		offset |= (sizeof(struct sctphdr) >> 2) <<
3437			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3438		break;
3439	case IPPROTO_UDP:
3440		/* enable UDP checksum offload */
3441		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3442		offset |= (sizeof(struct udphdr) >> 2) <<
3443			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3444		break;
3445	default:
3446		if (*tx_flags & I40E_TX_FLAGS_TSO)
3447			return -1;
3448		skb_checksum_help(skb);
3449		return 0;
3450	}
3451
3452	*td_cmd |= cmd;
3453	*td_offset |= offset;
3454
3455	return 1;
3456}
3457
3458/**
3459 * i40e_create_tx_ctx - Build the Tx context descriptor
3460 * @tx_ring:  ring to create the descriptor on
3461 * @cd_type_cmd_tso_mss: Quad Word 1
3462 * @cd_tunneling: Quad Word 0 - bits 0-31
3463 * @cd_l2tag2: Quad Word 0 - bits 32-63
3464 **/
3465static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3466			       const u64 cd_type_cmd_tso_mss,
3467			       const u32 cd_tunneling, const u32 cd_l2tag2)
3468{
3469	struct i40e_tx_context_desc *context_desc;
3470	int i = tx_ring->next_to_use;
3471
3472	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3473	    !cd_tunneling && !cd_l2tag2)
3474		return;
3475
3476	/* grab the next descriptor */
3477	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3478
3479	i++;
3480	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3481
3482	/* cpu_to_le32 and assign to struct fields */
3483	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3484	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3485	context_desc->rsvd = cpu_to_le16(0);
3486	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3487}
3488
3489/**
3490 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3491 * @tx_ring: the ring to be checked
3492 * @size:    the size buffer we want to assure is available
3493 *
3494 * Returns -EBUSY if a stop is needed, else 0
3495 **/
3496int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3497{
3498	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3499	/* Memory barrier before checking head and tail */
3500	smp_mb();
3501
3502	++tx_ring->tx_stats.tx_stopped;
3503
3504	/* Check again in a case another CPU has just made room available. */
3505	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3506		return -EBUSY;
3507
3508	/* A reprieve! - use start_queue because it doesn't call schedule */
3509	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3510	++tx_ring->tx_stats.restart_queue;
3511	return 0;
3512}
3513
3514/**
3515 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3516 * @skb:      send buffer
3517 *
3518 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3519 * and so we need to figure out the cases where we need to linearize the skb.
3520 *
3521 * For TSO we need to count the TSO header and segment payload separately.
3522 * As such we need to check cases where we have 7 fragments or more as we
3523 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3524 * the segment payload in the first descriptor, and another 7 for the
3525 * fragments.
3526 **/
3527bool __i40e_chk_linearize(struct sk_buff *skb)
3528{
3529	const skb_frag_t *frag, *stale;
3530	int nr_frags, sum;
3531
3532	/* no need to check if number of frags is less than 7 */
3533	nr_frags = skb_shinfo(skb)->nr_frags;
3534	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3535		return false;
3536
3537	/* We need to walk through the list and validate that each group
3538	 * of 6 fragments totals at least gso_size.
3539	 */
3540	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3541	frag = &skb_shinfo(skb)->frags[0];
3542
3543	/* Initialize size to the negative value of gso_size minus 1.  We
3544	 * use this as the worst case scenerio in which the frag ahead
3545	 * of us only provides one byte which is why we are limited to 6
3546	 * descriptors for a single transmit as the header and previous
3547	 * fragment are already consuming 2 descriptors.
3548	 */
3549	sum = 1 - skb_shinfo(skb)->gso_size;
3550
3551	/* Add size of frags 0 through 4 to create our initial sum */
3552	sum += skb_frag_size(frag++);
3553	sum += skb_frag_size(frag++);
3554	sum += skb_frag_size(frag++);
3555	sum += skb_frag_size(frag++);
3556	sum += skb_frag_size(frag++);
3557
3558	/* Walk through fragments adding latest fragment, testing it, and
3559	 * then removing stale fragments from the sum.
3560	 */
3561	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3562		int stale_size = skb_frag_size(stale);
3563
3564		sum += skb_frag_size(frag++);
3565
3566		/* The stale fragment may present us with a smaller
3567		 * descriptor than the actual fragment size. To account
3568		 * for that we need to remove all the data on the front and
3569		 * figure out what the remainder would be in the last
3570		 * descriptor associated with the fragment.
3571		 */
3572		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3573			int align_pad = -(skb_frag_off(stale)) &
3574					(I40E_MAX_READ_REQ_SIZE - 1);
3575
3576			sum -= align_pad;
3577			stale_size -= align_pad;
3578
3579			do {
3580				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3581				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3582			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3583		}
3584
3585		/* if sum is negative we failed to make sufficient progress */
3586		if (sum < 0)
3587			return true;
3588
3589		if (!nr_frags--)
3590			break;
3591
3592		sum -= stale_size;
3593	}
3594
3595	return false;
3596}
3597
3598/**
3599 * i40e_tx_map - Build the Tx descriptor
3600 * @tx_ring:  ring to send buffer on
3601 * @skb:      send buffer
3602 * @first:    first buffer info buffer to use
3603 * @tx_flags: collected send information
3604 * @hdr_len:  size of the packet header
3605 * @td_cmd:   the command field in the descriptor
3606 * @td_offset: offset for checksum or crc
3607 *
3608 * Returns 0 on success, -1 on failure to DMA
3609 **/
3610static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3611			      struct i40e_tx_buffer *first, u32 tx_flags,
3612			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3613{
3614	unsigned int data_len = skb->data_len;
3615	unsigned int size = skb_headlen(skb);
3616	skb_frag_t *frag;
3617	struct i40e_tx_buffer *tx_bi;
3618	struct i40e_tx_desc *tx_desc;
3619	u16 i = tx_ring->next_to_use;
3620	u32 td_tag = 0;
3621	dma_addr_t dma;
3622	u16 desc_count = 1;
3623
3624	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3625		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3626		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3627	}
3628
3629	first->tx_flags = tx_flags;
3630
3631	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3632
3633	tx_desc = I40E_TX_DESC(tx_ring, i);
3634	tx_bi = first;
3635
3636	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3637		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3638
3639		if (dma_mapping_error(tx_ring->dev, dma))
3640			goto dma_error;
3641
3642		/* record length, and DMA address */
3643		dma_unmap_len_set(tx_bi, len, size);
3644		dma_unmap_addr_set(tx_bi, dma, dma);
3645
3646		/* align size to end of page */
3647		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3648		tx_desc->buffer_addr = cpu_to_le64(dma);
3649
3650		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3651			tx_desc->cmd_type_offset_bsz =
3652				build_ctob(td_cmd, td_offset,
3653					   max_data, td_tag);
3654
3655			tx_desc++;
3656			i++;
3657			desc_count++;
3658
3659			if (i == tx_ring->count) {
3660				tx_desc = I40E_TX_DESC(tx_ring, 0);
3661				i = 0;
3662			}
3663
3664			dma += max_data;
3665			size -= max_data;
3666
3667			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3668			tx_desc->buffer_addr = cpu_to_le64(dma);
3669		}
3670
3671		if (likely(!data_len))
3672			break;
3673
3674		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3675							  size, td_tag);
3676
3677		tx_desc++;
3678		i++;
3679		desc_count++;
3680
3681		if (i == tx_ring->count) {
3682			tx_desc = I40E_TX_DESC(tx_ring, 0);
3683			i = 0;
3684		}
3685
3686		size = skb_frag_size(frag);
3687		data_len -= size;
3688
3689		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3690				       DMA_TO_DEVICE);
3691
3692		tx_bi = &tx_ring->tx_bi[i];
3693	}
3694
3695	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3696
3697	i++;
3698	if (i == tx_ring->count)
3699		i = 0;
3700
3701	tx_ring->next_to_use = i;
3702
3703	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3704
3705	/* write last descriptor with EOP bit */
3706	td_cmd |= I40E_TX_DESC_CMD_EOP;
3707
3708	/* We OR these values together to check both against 4 (WB_STRIDE)
3709	 * below. This is safe since we don't re-use desc_count afterwards.
3710	 */
3711	desc_count |= ++tx_ring->packet_stride;
3712
3713	if (desc_count >= WB_STRIDE) {
3714		/* write last descriptor with RS bit set */
3715		td_cmd |= I40E_TX_DESC_CMD_RS;
3716		tx_ring->packet_stride = 0;
3717	}
3718
3719	tx_desc->cmd_type_offset_bsz =
3720			build_ctob(td_cmd, td_offset, size, td_tag);
3721
3722	skb_tx_timestamp(skb);
3723
3724	/* Force memory writes to complete before letting h/w know there
3725	 * are new descriptors to fetch.
3726	 *
3727	 * We also use this memory barrier to make certain all of the
3728	 * status bits have been updated before next_to_watch is written.
3729	 */
3730	wmb();
3731
3732	/* set next_to_watch value indicating a packet is present */
3733	first->next_to_watch = tx_desc;
3734
3735	/* notify HW of packet */
3736	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3737		writel(i, tx_ring->tail);
3738	}
3739
3740	return 0;
3741
3742dma_error:
3743	dev_info(tx_ring->dev, "TX DMA map failed\n");
3744
3745	/* clear dma mappings for failed tx_bi map */
3746	for (;;) {
3747		tx_bi = &tx_ring->tx_bi[i];
3748		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3749		if (tx_bi == first)
3750			break;
3751		if (i == 0)
3752			i = tx_ring->count;
3753		i--;
3754	}
3755
3756	tx_ring->next_to_use = i;
3757
3758	return -1;
3759}
3760
3761static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3762				  const struct sk_buff *skb,
3763				  u16 num_tx_queues)
3764{
3765	u32 jhash_initval_salt = 0xd631614b;
3766	u32 hash;
3767
3768	if (skb->sk && skb->sk->sk_hash)
3769		hash = skb->sk->sk_hash;
3770	else
3771		hash = (__force u16)skb->protocol ^ skb->hash;
3772
3773	hash = jhash_1word(hash, jhash_initval_salt);
3774
3775	return (u16)(((u64)hash * num_tx_queues) >> 32);
3776}
3777
3778u16 i40e_lan_select_queue(struct net_device *netdev,
3779			  struct sk_buff *skb,
3780			  struct net_device __always_unused *sb_dev)
3781{
3782	struct i40e_netdev_priv *np = netdev_priv(netdev);
3783	struct i40e_vsi *vsi = np->vsi;
3784	struct i40e_hw *hw;
3785	u16 qoffset;
3786	u16 qcount;
3787	u8 tclass;
3788	u16 hash;
3789	u8 prio;
3790
3791	/* is DCB enabled at all? */
3792	if (vsi->tc_config.numtc == 1 ||
3793	    i40e_is_tc_mqprio_enabled(vsi->back))
3794		return netdev_pick_tx(netdev, skb, sb_dev);
3795
3796	prio = skb->priority;
3797	hw = &vsi->back->hw;
3798	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3799	/* sanity check */
3800	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3801		tclass = 0;
3802
3803	/* select a queue assigned for the given TC */
3804	qcount = vsi->tc_config.tc_info[tclass].qcount;
3805	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3806
3807	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3808	return qoffset + hash;
3809}
3810
3811/**
3812 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3813 * @xdpf: data to transmit
3814 * @xdp_ring: XDP Tx ring
3815 **/
3816static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3817			      struct i40e_ring *xdp_ring)
3818{
3819	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3820	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3821	u16 i = 0, index = xdp_ring->next_to_use;
3822	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3823	struct i40e_tx_buffer *tx_bi = tx_head;
3824	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3825	void *data = xdpf->data;
3826	u32 size = xdpf->len;
 
3827
3828	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3829		xdp_ring->tx_stats.tx_busy++;
3830		return I40E_XDP_CONSUMED;
3831	}
 
 
 
3832
3833	tx_head->bytecount = xdp_get_frame_len(xdpf);
3834	tx_head->gso_segs = 1;
3835	tx_head->xdpf = xdpf;
3836
3837	for (;;) {
3838		dma_addr_t dma;
3839
3840		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3841		if (dma_mapping_error(xdp_ring->dev, dma))
3842			goto unmap;
3843
3844		/* record length, and DMA address */
3845		dma_unmap_len_set(tx_bi, len, size);
3846		dma_unmap_addr_set(tx_bi, dma, dma);
3847
3848		tx_desc->buffer_addr = cpu_to_le64(dma);
3849		tx_desc->cmd_type_offset_bsz =
3850			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3851
3852		if (++index == xdp_ring->count)
3853			index = 0;
3854
3855		if (i == nr_frags)
3856			break;
3857
3858		tx_bi = &xdp_ring->tx_bi[index];
3859		tx_desc = I40E_TX_DESC(xdp_ring, index);
3860
3861		data = skb_frag_address(&sinfo->frags[i]);
3862		size = skb_frag_size(&sinfo->frags[i]);
3863		i++;
3864	}
3865
3866	tx_desc->cmd_type_offset_bsz |=
3867		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
 
 
 
3868
3869	/* Make certain all of the status bits have been updated
3870	 * before next_to_watch is written.
3871	 */
3872	smp_wmb();
3873
3874	xdp_ring->xdp_tx_active++;
 
 
3875
3876	tx_head->next_to_watch = tx_desc;
3877	xdp_ring->next_to_use = index;
3878
3879	return I40E_XDP_TX;
3880
3881unmap:
3882	for (;;) {
3883		tx_bi = &xdp_ring->tx_bi[index];
3884		if (dma_unmap_len(tx_bi, len))
3885			dma_unmap_page(xdp_ring->dev,
3886				       dma_unmap_addr(tx_bi, dma),
3887				       dma_unmap_len(tx_bi, len),
3888				       DMA_TO_DEVICE);
3889		dma_unmap_len_set(tx_bi, len, 0);
3890		if (tx_bi == tx_head)
3891			break;
3892
3893		if (!index)
3894			index += xdp_ring->count;
3895		index--;
3896	}
3897
3898	return I40E_XDP_CONSUMED;
3899}
3900
3901/**
3902 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3903 * @skb:     send buffer
3904 * @tx_ring: ring to send buffer on
3905 *
3906 * Returns NETDEV_TX_OK if sent, else an error code
3907 **/
3908static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3909					struct i40e_ring *tx_ring)
3910{
3911	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3912	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3913	struct i40e_tx_buffer *first;
3914	u32 td_offset = 0;
3915	u32 tx_flags = 0;
 
3916	u32 td_cmd = 0;
3917	u8 hdr_len = 0;
3918	int tso, count;
3919	int tsyn;
3920
3921	/* prefetch the data, we'll need it later */
3922	prefetch(skb->data);
3923
3924	i40e_trace(xmit_frame_ring, skb, tx_ring);
3925
3926	count = i40e_xmit_descriptor_count(skb);
3927	if (i40e_chk_linearize(skb, count)) {
3928		if (__skb_linearize(skb)) {
3929			dev_kfree_skb_any(skb);
3930			return NETDEV_TX_OK;
3931		}
3932		count = i40e_txd_use_count(skb->len);
3933		tx_ring->tx_stats.tx_linearize++;
3934	}
3935
3936	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3937	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3938	 *       + 4 desc gap to avoid the cache line where head is,
3939	 *       + 1 desc for context descriptor,
3940	 * otherwise try next time
3941	 */
3942	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3943		tx_ring->tx_stats.tx_busy++;
3944		return NETDEV_TX_BUSY;
3945	}
3946
3947	/* record the location of the first descriptor for this packet */
3948	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3949	first->skb = skb;
3950	first->bytecount = skb->len;
3951	first->gso_segs = 1;
3952
3953	/* prepare the xmit flags */
3954	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3955		goto out_drop;
3956
 
 
 
 
 
 
 
 
 
3957	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3958
3959	if (tso < 0)
3960		goto out_drop;
3961	else if (tso)
3962		tx_flags |= I40E_TX_FLAGS_TSO;
3963
3964	/* Always offload the checksum, since it's in the data descriptor */
3965	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3966				  tx_ring, &cd_tunneling);
3967	if (tso < 0)
3968		goto out_drop;
3969
3970	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3971
3972	if (tsyn)
3973		tx_flags |= I40E_TX_FLAGS_TSYN;
3974
3975	/* always enable CRC insertion offload */
3976	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3977
3978	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3979			   cd_tunneling, cd_l2tag2);
3980
3981	/* Add Flow Director ATR if it's enabled.
3982	 *
3983	 * NOTE: this must always be directly before the data descriptor.
3984	 */
3985	i40e_atr(tx_ring, skb, tx_flags);
3986
3987	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3988			td_cmd, td_offset))
3989		goto cleanup_tx_tstamp;
3990
3991	return NETDEV_TX_OK;
3992
3993out_drop:
3994	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3995	dev_kfree_skb_any(first->skb);
3996	first->skb = NULL;
3997cleanup_tx_tstamp:
3998	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3999		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
4000
4001		dev_kfree_skb_any(pf->ptp_tx_skb);
4002		pf->ptp_tx_skb = NULL;
4003		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
4004	}
4005
4006	return NETDEV_TX_OK;
4007}
4008
4009/**
4010 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
4011 * @skb:    send buffer
4012 * @netdev: network interface device structure
4013 *
4014 * Returns NETDEV_TX_OK if sent, else an error code
4015 **/
4016netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4017{
4018	struct i40e_netdev_priv *np = netdev_priv(netdev);
4019	struct i40e_vsi *vsi = np->vsi;
4020	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4021
4022	/* hardware can't handle really short frames, hardware padding works
4023	 * beyond this point
4024	 */
4025	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4026		return NETDEV_TX_OK;
4027
4028	return i40e_xmit_frame_ring(skb, tx_ring);
4029}
4030
4031/**
4032 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4033 * @dev: netdev
4034 * @n: number of frames
4035 * @frames: array of XDP buffer pointers
4036 * @flags: XDP extra info
4037 *
4038 * Returns number of frames successfully sent. Failed frames
4039 * will be free'ed by XDP core.
4040 *
4041 * For error cases, a negative errno code is returned and no-frames
4042 * are transmitted (caller must handle freeing frames).
4043 **/
4044int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4045		  u32 flags)
4046{
4047	struct i40e_netdev_priv *np = netdev_priv(dev);
4048	unsigned int queue_index = smp_processor_id();
4049	struct i40e_vsi *vsi = np->vsi;
4050	struct i40e_pf *pf = vsi->back;
4051	struct i40e_ring *xdp_ring;
4052	int nxmit = 0;
4053	int i;
4054
4055	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4056		return -ENETDOWN;
4057
4058	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4059	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4060		return -ENXIO;
4061
4062	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4063		return -EINVAL;
4064
4065	xdp_ring = vsi->xdp_rings[queue_index];
4066
4067	for (i = 0; i < n; i++) {
4068		struct xdp_frame *xdpf = frames[i];
4069		int err;
4070
4071		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4072		if (err != I40E_XDP_TX)
4073			break;
4074		nxmit++;
 
4075	}
4076
4077	if (unlikely(flags & XDP_XMIT_FLUSH))
4078		i40e_xdp_ring_update_tail(xdp_ring);
4079
4080	return nxmit;
4081}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
 
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47
  48	/* Use LAN VSI Id if not programmed by user */
  49	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52
  53	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54
  55	dtype_cmd |= add ?
  56		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60
  61	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63
  64	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66
  67	if (fdata->cnt_index) {
  68		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70			     ((u32)fdata->cnt_index <<
  71			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72	}
  73
  74	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75	fdir_desc->rsvd = cpu_to_le32(0);
  76	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78}
  79
  80#define I40E_FD_CLEAN_DELAY 10
  81/**
  82 * i40e_program_fdir_filter - Program a Flow Director filter
  83 * @fdir_data: Packet data that will be filter parameters
  84 * @raw_packet: the pre-allocated packet buffer for FDir
  85 * @pf: The PF pointer
  86 * @add: True for add/update, False for remove
  87 **/
  88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89				    u8 *raw_packet, struct i40e_pf *pf,
  90				    bool add)
  91{
  92	struct i40e_tx_buffer *tx_buf, *first;
  93	struct i40e_tx_desc *tx_desc;
  94	struct i40e_ring *tx_ring;
  95	struct i40e_vsi *vsi;
  96	struct device *dev;
  97	dma_addr_t dma;
  98	u32 td_cmd = 0;
  99	u16 i;
 100
 101	/* find existing FDIR VSI */
 102	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103	if (!vsi)
 104		return -ENOENT;
 105
 106	tx_ring = vsi->tx_rings[0];
 107	dev = tx_ring->dev;
 108
 109	/* we need two descriptors to add/del a filter and we can wait */
 110	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111		if (!i)
 112			return -EAGAIN;
 113		msleep_interruptible(1);
 114	}
 115
 116	dma = dma_map_single(dev, raw_packet,
 117			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118	if (dma_mapping_error(dev, dma))
 119		goto dma_fail;
 120
 121	/* grab the next descriptor */
 122	i = tx_ring->next_to_use;
 123	first = &tx_ring->tx_bi[i];
 124	i40e_fdir(tx_ring, fdir_data, add);
 125
 126	/* Now program a dummy descriptor */
 127	i = tx_ring->next_to_use;
 128	tx_desc = I40E_TX_DESC(tx_ring, i);
 129	tx_buf = &tx_ring->tx_bi[i];
 130
 131	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132
 133	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134
 135	/* record length, and DMA address */
 136	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137	dma_unmap_addr_set(tx_buf, dma, dma);
 138
 139	tx_desc->buffer_addr = cpu_to_le64(dma);
 140	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141
 142	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143	tx_buf->raw_buf = (void *)raw_packet;
 144
 145	tx_desc->cmd_type_offset_bsz =
 146		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147
 148	/* Force memory writes to complete before letting h/w
 149	 * know there are new descriptors to fetch.
 150	 */
 151	wmb();
 152
 153	/* Mark the data descriptor to be watched */
 154	first->next_to_watch = tx_desc;
 155
 156	writel(tx_ring->next_to_use, tx_ring->tail);
 157	return 0;
 158
 159dma_fail:
 160	return -1;
 161}
 162
 163#define IP_HEADER_OFFSET 14
 164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165/**
 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167 * @vsi: pointer to the targeted VSI
 168 * @fd_data: the flow director data required for the FDir descriptor
 169 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 *
 171 * Returns 0 if the filters were successfully added or removed
 172 **/
 173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174				   struct i40e_fdir_filter *fd_data,
 175				   bool add)
 176{
 177	struct i40e_pf *pf = vsi->back;
 178	struct udphdr *udp;
 179	struct iphdr *ip;
 180	u8 *raw_packet;
 181	int ret;
 182	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187	if (!raw_packet)
 188		return -ENOMEM;
 189	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190
 191	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193	      + sizeof(struct iphdr));
 194
 195	ip->daddr = fd_data->dst_ip;
 196	udp->dest = fd_data->dst_port;
 197	ip->saddr = fd_data->src_ip;
 198	udp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200	if (fd_data->flex_filter) {
 201		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202		__be16 pattern = fd_data->flex_word;
 203		u16 off = fd_data->flex_offset;
 204
 
 
 
 
 
 
 205		*((__force __be16 *)(payload + off)) = pattern;
 206	}
 207
 208	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210	if (ret) {
 211		dev_info(&pf->pdev->dev,
 212			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213			 fd_data->pctype, fd_data->fd_id, ret);
 214		/* Free the packet buffer since it wasn't added to the ring */
 215		kfree(raw_packet);
 216		return -EOPNOTSUPP;
 217	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218		if (add)
 219			dev_info(&pf->pdev->dev,
 220				 "Filter OK for PCTYPE %d loc = %d\n",
 221				 fd_data->pctype, fd_data->fd_id);
 222		else
 223			dev_info(&pf->pdev->dev,
 224				 "Filter deleted for PCTYPE %d loc = %d\n",
 225				 fd_data->pctype, fd_data->fd_id);
 226	}
 227
 228	if (add)
 229		pf->fd_udp4_filter_cnt++;
 230	else
 231		pf->fd_udp4_filter_cnt--;
 232
 233	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 235
 236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 237/**
 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239 * @vsi: pointer to the targeted VSI
 240 * @fd_data: the flow director data required for the FDir descriptor
 241 * @add: true adds a filter, false removes it
 
 242 *
 243 * Returns 0 if the filters were successfully added or removed
 244 **/
 245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246				   struct i40e_fdir_filter *fd_data,
 247				   bool add)
 
 248{
 249	struct i40e_pf *pf = vsi->back;
 250	struct tcphdr *tcp;
 251	struct iphdr *ip;
 252	u8 *raw_packet;
 253	int ret;
 254	/* Dummy packet */
 255	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258		0x0, 0x72, 0, 0, 0, 0};
 259
 260	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261	if (!raw_packet)
 262		return -ENOMEM;
 263	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264
 265	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267	      + sizeof(struct iphdr));
 268
 269	ip->daddr = fd_data->dst_ip;
 270	tcp->dest = fd_data->dst_port;
 271	ip->saddr = fd_data->src_ip;
 272	tcp->source = fd_data->src_port;
 273
 274	if (fd_data->flex_filter) {
 275		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276		__be16 pattern = fd_data->flex_word;
 277		u16 off = fd_data->flex_offset;
 
 
 
 
 
 
 278
 279		*((__force __be16 *)(payload + off)) = pattern;
 
 
 280	}
 281
 282	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	if (ret) {
 285		dev_info(&pf->pdev->dev,
 286			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287			 fd_data->pctype, fd_data->fd_id, ret);
 288		/* Free the packet buffer since it wasn't added to the ring */
 289		kfree(raw_packet);
 290		return -EOPNOTSUPP;
 291	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292		if (add)
 293			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294				 fd_data->pctype, fd_data->fd_id);
 295		else
 296			dev_info(&pf->pdev->dev,
 297				 "Filter deleted for PCTYPE %d loc = %d\n",
 298				 fd_data->pctype, fd_data->fd_id);
 299	}
 300
 
 
 
 301	if (add) {
 302		pf->fd_tcp4_filter_cnt++;
 303		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304		    I40E_DEBUG_FD & pf->hw.debug_mask)
 305			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307	} else {
 308		pf->fd_tcp4_filter_cnt--;
 309	}
 310
 311	return 0;
 312}
 313
 314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 
 315/**
 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317 * a specific flow spec
 318 * @vsi: pointer to the targeted VSI
 319 * @fd_data: the flow director data required for the FDir descriptor
 320 * @add: true adds a filter, false removes it
 
 321 *
 322 * Returns 0 if the filters were successfully added or removed
 323 **/
 324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325				    struct i40e_fdir_filter *fd_data,
 326				    bool add)
 
 327{
 328	struct i40e_pf *pf = vsi->back;
 329	struct sctphdr *sctp;
 330	struct iphdr *ip;
 331	u8 *raw_packet;
 332	int ret;
 333	/* Dummy packet */
 334	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337
 338	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339	if (!raw_packet)
 340		return -ENOMEM;
 341	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342
 343	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345	      + sizeof(struct iphdr));
 346
 347	ip->daddr = fd_data->dst_ip;
 348	sctp->dest = fd_data->dst_port;
 349	ip->saddr = fd_data->src_ip;
 350	sctp->source = fd_data->src_port;
 351
 352	if (fd_data->flex_filter) {
 353		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354		__be16 pattern = fd_data->flex_word;
 355		u16 off = fd_data->flex_offset;
 356
 357		*((__force __be16 *)(payload + off)) = pattern;
 358	}
 
 
 
 359
 360	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 362	if (ret) {
 363		dev_info(&pf->pdev->dev,
 364			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365			 fd_data->pctype, fd_data->fd_id, ret);
 366		/* Free the packet buffer since it wasn't added to the ring */
 367		kfree(raw_packet);
 368		return -EOPNOTSUPP;
 369	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370		if (add)
 371			dev_info(&pf->pdev->dev,
 372				 "Filter OK for PCTYPE %d loc = %d\n",
 373				 fd_data->pctype, fd_data->fd_id);
 374		else
 375			dev_info(&pf->pdev->dev,
 376				 "Filter deleted for PCTYPE %d loc = %d\n",
 377				 fd_data->pctype, fd_data->fd_id);
 378	}
 379
 380	if (add)
 381		pf->fd_sctp4_filter_cnt++;
 382	else
 383		pf->fd_sctp4_filter_cnt--;
 384
 385	return 0;
 386}
 387
 388#define I40E_IP_DUMMY_PACKET_LEN 34
 
 389/**
 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391 * a specific flow spec
 392 * @vsi: pointer to the targeted VSI
 393 * @fd_data: the flow director data required for the FDir descriptor
 394 * @add: true adds a filter, false removes it
 
 395 *
 396 * Returns 0 if the filters were successfully added or removed
 397 **/
 398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399				  struct i40e_fdir_filter *fd_data,
 400				  bool add)
 
 401{
 402	struct i40e_pf *pf = vsi->back;
 403	struct iphdr *ip;
 404	u8 *raw_packet;
 
 
 405	int ret;
 406	int i;
 407	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409		0, 0, 0, 0};
 410
 411	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 413		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414		if (!raw_packet)
 415			return -ENOMEM;
 416		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418
 419		ip->saddr = fd_data->src_ip;
 420		ip->daddr = fd_data->dst_ip;
 421		ip->protocol = 0;
 422
 423		if (fd_data->flex_filter) {
 424			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425			__be16 pattern = fd_data->flex_word;
 426			u16 off = fd_data->flex_offset;
 427
 428			*((__force __be16 *)(payload + off)) = pattern;
 429		}
 430
 431		fd_data->pctype = i;
 432		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 433		if (ret) {
 434			dev_info(&pf->pdev->dev,
 435				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436				 fd_data->pctype, fd_data->fd_id, ret);
 437			/* The packet buffer wasn't added to the ring so we
 438			 * need to free it now.
 439			 */
 440			kfree(raw_packet);
 441			return -EOPNOTSUPP;
 442		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443			if (add)
 444				dev_info(&pf->pdev->dev,
 445					 "Filter OK for PCTYPE %d loc = %d\n",
 446					 fd_data->pctype, fd_data->fd_id);
 447			else
 448				dev_info(&pf->pdev->dev,
 449					 "Filter deleted for PCTYPE %d loc = %d\n",
 450					 fd_data->pctype, fd_data->fd_id);
 451		}
 452	}
 453
 454	if (add)
 455		pf->fd_ip4_filter_cnt++;
 456	else
 457		pf->fd_ip4_filter_cnt--;
 458
 459	return 0;
 
 
 
 460}
 461
 462/**
 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464 * @vsi: pointer to the targeted VSI
 465 * @input: filter to add or delete
 466 * @add: true adds a filter, false removes it
 467 *
 468 **/
 469int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470		      struct i40e_fdir_filter *input, bool add)
 471{
 
 472	struct i40e_pf *pf = vsi->back;
 473	int ret;
 474
 475	switch (input->flow_type & ~FLOW_EXT) {
 476	case TCP_V4_FLOW:
 477		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478		break;
 479	case UDP_V4_FLOW:
 480		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481		break;
 482	case SCTP_V4_FLOW:
 483		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 484		break;
 485	case IP_USER_FLOW:
 486		switch (input->ip4_proto) {
 487		case IPPROTO_TCP:
 488			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489			break;
 490		case IPPROTO_UDP:
 491			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492			break;
 493		case IPPROTO_SCTP:
 494			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495			break;
 496		case IPPROTO_IP:
 497			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498			break;
 499		default:
 500			/* We cannot support masking based on protocol */
 501			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502				 input->ip4_proto);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503			return -EINVAL;
 504		}
 505		break;
 506	default:
 507		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 508			 input->flow_type);
 509		return -EINVAL;
 510	}
 511
 512	/* The buffer allocated here will be normally be freed by
 513	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514	 * completion. In the event of an error adding the buffer to the FDIR
 515	 * ring, it will immediately be freed. It may also be freed by
 516	 * i40e_clean_tx_ring() when closing the VSI.
 517	 */
 518	return ret;
 519}
 520
 521/**
 522 * i40e_fd_handle_status - check the Programming Status for FD
 523 * @rx_ring: the Rx ring for this descriptor
 524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 525 * @prog_id: the id originally used for programming
 526 *
 527 * This is used to verify if the FD programming or invalidation
 528 * requested by SW to the HW is successful or not and take actions accordingly.
 529 **/
 530void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 531			   union i40e_rx_desc *rx_desc, u8 prog_id)
 532{
 533	struct i40e_pf *pf = rx_ring->vsi->back;
 534	struct pci_dev *pdev = pf->pdev;
 
 535	u32 fcnt_prog, fcnt_avail;
 536	u32 error;
 537	u64 qw;
 538
 539	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 540	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 541		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 542
 543	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 544		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 545		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 546		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 547			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 548				 pf->fd_inv);
 549
 550		/* Check if the programming error is for ATR.
 551		 * If so, auto disable ATR and set a state for
 552		 * flush in progress. Next time we come here if flush is in
 553		 * progress do nothing, once flush is complete the state will
 554		 * be cleared.
 555		 */
 556		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 557			return;
 558
 559		pf->fd_add_err++;
 560		/* store the current atr filter count */
 561		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 562
 563		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 564		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 565			/* These set_bit() calls aren't atomic with the
 566			 * test_bit() here, but worse case we potentially
 567			 * disable ATR and queue a flush right after SB
 568			 * support is re-enabled. That shouldn't cause an
 569			 * issue in practice
 570			 */
 571			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 572			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 573		}
 574
 575		/* filter programming failed most likely due to table full */
 576		fcnt_prog = i40e_get_global_fd_count(pf);
 577		fcnt_avail = pf->fdir_pf_filter_count;
 578		/* If ATR is running fcnt_prog can quickly change,
 579		 * if we are very close to full, it makes sense to disable
 580		 * FD ATR/SB and then re-enable it when there is room.
 581		 */
 582		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 583			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 584			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 585					      pf->state))
 586				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 587					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 588		}
 589	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 590		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 591			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 592				 rx_desc->wb.qword0.hi_dword.fd_id);
 593	}
 594}
 595
 596/**
 597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 598 * @ring:      the ring that owns the buffer
 599 * @tx_buffer: the buffer to free
 600 **/
 601static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 602					    struct i40e_tx_buffer *tx_buffer)
 603{
 604	if (tx_buffer->skb) {
 605		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 606			kfree(tx_buffer->raw_buf);
 607		else if (ring_is_xdp(ring))
 608			xdp_return_frame(tx_buffer->xdpf);
 609		else
 610			dev_kfree_skb_any(tx_buffer->skb);
 611		if (dma_unmap_len(tx_buffer, len))
 612			dma_unmap_single(ring->dev,
 613					 dma_unmap_addr(tx_buffer, dma),
 614					 dma_unmap_len(tx_buffer, len),
 615					 DMA_TO_DEVICE);
 616	} else if (dma_unmap_len(tx_buffer, len)) {
 617		dma_unmap_page(ring->dev,
 618			       dma_unmap_addr(tx_buffer, dma),
 619			       dma_unmap_len(tx_buffer, len),
 620			       DMA_TO_DEVICE);
 621	}
 622
 623	tx_buffer->next_to_watch = NULL;
 624	tx_buffer->skb = NULL;
 625	dma_unmap_len_set(tx_buffer, len, 0);
 626	/* tx_buffer must be completely set up in the transmit path */
 627}
 628
 629/**
 630 * i40e_clean_tx_ring - Free any empty Tx buffers
 631 * @tx_ring: ring to be cleaned
 632 **/
 633void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 634{
 635	unsigned long bi_size;
 636	u16 i;
 637
 638	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 639		i40e_xsk_clean_tx_ring(tx_ring);
 640	} else {
 641		/* ring already cleared, nothing to do */
 642		if (!tx_ring->tx_bi)
 643			return;
 644
 645		/* Free all the Tx ring sk_buffs */
 646		for (i = 0; i < tx_ring->count; i++)
 647			i40e_unmap_and_free_tx_resource(tx_ring,
 648							&tx_ring->tx_bi[i]);
 649	}
 650
 651	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 652	memset(tx_ring->tx_bi, 0, bi_size);
 653
 654	/* Zero out the descriptor ring */
 655	memset(tx_ring->desc, 0, tx_ring->size);
 656
 657	tx_ring->next_to_use = 0;
 658	tx_ring->next_to_clean = 0;
 659
 660	if (!tx_ring->netdev)
 661		return;
 662
 663	/* cleanup Tx queue statistics */
 664	netdev_tx_reset_queue(txring_txq(tx_ring));
 665}
 666
 667/**
 668 * i40e_free_tx_resources - Free Tx resources per queue
 669 * @tx_ring: Tx descriptor ring for a specific queue
 670 *
 671 * Free all transmit software resources
 672 **/
 673void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 674{
 675	i40e_clean_tx_ring(tx_ring);
 676	kfree(tx_ring->tx_bi);
 677	tx_ring->tx_bi = NULL;
 678
 679	if (tx_ring->desc) {
 680		dma_free_coherent(tx_ring->dev, tx_ring->size,
 681				  tx_ring->desc, tx_ring->dma);
 682		tx_ring->desc = NULL;
 683	}
 684}
 685
 686/**
 687 * i40e_get_tx_pending - how many tx descriptors not processed
 688 * @ring: the ring of descriptors
 689 * @in_sw: use SW variables
 690 *
 691 * Since there is no access to the ring head register
 692 * in XL710, we need to use our local copies
 693 **/
 694u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 695{
 696	u32 head, tail;
 697
 698	if (!in_sw) {
 699		head = i40e_get_head(ring);
 700		tail = readl(ring->tail);
 701	} else {
 702		head = ring->next_to_clean;
 703		tail = ring->next_to_use;
 704	}
 705
 706	if (head != tail)
 707		return (head < tail) ?
 708			tail - head : (tail + ring->count - head);
 709
 710	return 0;
 711}
 712
 713/**
 714 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 715 * @vsi:  pointer to vsi struct with tx queues
 716 *
 717 * VSI has netdev and netdev has TX queues. This function is to check each of
 718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 719 **/
 720void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 721{
 722	struct i40e_ring *tx_ring = NULL;
 723	struct net_device *netdev;
 724	unsigned int i;
 725	int packets;
 726
 727	if (!vsi)
 728		return;
 729
 730	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 731		return;
 732
 733	netdev = vsi->netdev;
 734	if (!netdev)
 735		return;
 736
 737	if (!netif_carrier_ok(netdev))
 738		return;
 739
 740	for (i = 0; i < vsi->num_queue_pairs; i++) {
 741		tx_ring = vsi->tx_rings[i];
 742		if (tx_ring && tx_ring->desc) {
 743			/* If packet counter has not changed the queue is
 744			 * likely stalled, so force an interrupt for this
 745			 * queue.
 746			 *
 747			 * prev_pkt_ctr would be negative if there was no
 748			 * pending work.
 749			 */
 750			packets = tx_ring->stats.packets & INT_MAX;
 751			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 752				i40e_force_wb(vsi, tx_ring->q_vector);
 753				continue;
 754			}
 755
 756			/* Memory barrier between read of packet count and call
 757			 * to i40e_get_tx_pending()
 758			 */
 759			smp_rmb();
 760			tx_ring->tx_stats.prev_pkt_ctr =
 761			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 762		}
 763	}
 764}
 765
 766/**
 767 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 768 * @vsi: the VSI we care about
 769 * @tx_ring: Tx ring to clean
 770 * @napi_budget: Used to determine if we are in netpoll
 
 771 *
 772 * Returns true if there's any budget left (e.g. the clean is finished)
 773 **/
 774static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 775			      struct i40e_ring *tx_ring, int napi_budget)
 
 776{
 777	int i = tx_ring->next_to_clean;
 778	struct i40e_tx_buffer *tx_buf;
 779	struct i40e_tx_desc *tx_head;
 780	struct i40e_tx_desc *tx_desc;
 781	unsigned int total_bytes = 0, total_packets = 0;
 782	unsigned int budget = vsi->work_limit;
 783
 784	tx_buf = &tx_ring->tx_bi[i];
 785	tx_desc = I40E_TX_DESC(tx_ring, i);
 786	i -= tx_ring->count;
 787
 788	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 789
 790	do {
 791		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 792
 793		/* if next_to_watch is not set then there is no work pending */
 794		if (!eop_desc)
 795			break;
 796
 797		/* prevent any other reads prior to eop_desc */
 798		smp_rmb();
 799
 800		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 801		/* we have caught up to head, no work left to do */
 802		if (tx_head == tx_desc)
 803			break;
 804
 805		/* clear next_to_watch to prevent false hangs */
 806		tx_buf->next_to_watch = NULL;
 807
 808		/* update the statistics for this packet */
 809		total_bytes += tx_buf->bytecount;
 810		total_packets += tx_buf->gso_segs;
 811
 812		/* free the skb/XDP data */
 813		if (ring_is_xdp(tx_ring))
 814			xdp_return_frame(tx_buf->xdpf);
 815		else
 816			napi_consume_skb(tx_buf->skb, napi_budget);
 817
 818		/* unmap skb header data */
 819		dma_unmap_single(tx_ring->dev,
 820				 dma_unmap_addr(tx_buf, dma),
 821				 dma_unmap_len(tx_buf, len),
 822				 DMA_TO_DEVICE);
 823
 824		/* clear tx_buffer data */
 825		tx_buf->skb = NULL;
 826		dma_unmap_len_set(tx_buf, len, 0);
 827
 828		/* unmap remaining buffers */
 829		while (tx_desc != eop_desc) {
 830			i40e_trace(clean_tx_irq_unmap,
 831				   tx_ring, tx_desc, tx_buf);
 832
 833			tx_buf++;
 834			tx_desc++;
 835			i++;
 836			if (unlikely(!i)) {
 837				i -= tx_ring->count;
 838				tx_buf = tx_ring->tx_bi;
 839				tx_desc = I40E_TX_DESC(tx_ring, 0);
 840			}
 841
 842			/* unmap any remaining paged data */
 843			if (dma_unmap_len(tx_buf, len)) {
 844				dma_unmap_page(tx_ring->dev,
 845					       dma_unmap_addr(tx_buf, dma),
 846					       dma_unmap_len(tx_buf, len),
 847					       DMA_TO_DEVICE);
 848				dma_unmap_len_set(tx_buf, len, 0);
 849			}
 850		}
 851
 852		/* move us one more past the eop_desc for start of next pkt */
 853		tx_buf++;
 854		tx_desc++;
 855		i++;
 856		if (unlikely(!i)) {
 857			i -= tx_ring->count;
 858			tx_buf = tx_ring->tx_bi;
 859			tx_desc = I40E_TX_DESC(tx_ring, 0);
 860		}
 861
 862		prefetch(tx_desc);
 863
 864		/* update budget accounting */
 865		budget--;
 866	} while (likely(budget));
 867
 868	i += tx_ring->count;
 869	tx_ring->next_to_clean = i;
 870	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 871	i40e_arm_wb(tx_ring, vsi, budget);
 872
 873	if (ring_is_xdp(tx_ring))
 874		return !!budget;
 875
 876	/* notify netdev of completed buffers */
 877	netdev_tx_completed_queue(txring_txq(tx_ring),
 878				  total_packets, total_bytes);
 879
 880#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 881	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 882		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 883		/* Make sure that anybody stopping the queue after this
 884		 * sees the new next_to_clean.
 885		 */
 886		smp_mb();
 887		if (__netif_subqueue_stopped(tx_ring->netdev,
 888					     tx_ring->queue_index) &&
 889		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 890			netif_wake_subqueue(tx_ring->netdev,
 891					    tx_ring->queue_index);
 892			++tx_ring->tx_stats.restart_queue;
 893		}
 894	}
 895
 
 896	return !!budget;
 897}
 898
 899/**
 900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 901 * @vsi: the VSI we care about
 902 * @q_vector: the vector on which to enable writeback
 903 *
 904 **/
 905static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 906				  struct i40e_q_vector *q_vector)
 907{
 908	u16 flags = q_vector->tx.ring[0].flags;
 909	u32 val;
 910
 911	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 912		return;
 913
 914	if (q_vector->arm_wb_state)
 915		return;
 916
 917	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 918		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 919		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 920
 921		wr32(&vsi->back->hw,
 922		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 923		     val);
 924	} else {
 925		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 926		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 927
 928		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 929	}
 930	q_vector->arm_wb_state = true;
 931}
 932
 933/**
 934 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 935 * @vsi: the VSI we care about
 936 * @q_vector: the vector  on which to force writeback
 937 *
 938 **/
 939void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 940{
 941	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 942		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 943			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 944			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 945			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 946			  /* allow 00 to be written to the index */
 947
 948		wr32(&vsi->back->hw,
 949		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 950	} else {
 951		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 952			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 953			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 954			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 955			/* allow 00 to be written to the index */
 956
 957		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 958	}
 959}
 960
 961static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 962					struct i40e_ring_container *rc)
 963{
 964	return &q_vector->rx == rc;
 965}
 966
 967static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 968{
 969	unsigned int divisor;
 970
 971	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 972	case I40E_LINK_SPEED_40GB:
 973		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 974		break;
 975	case I40E_LINK_SPEED_25GB:
 976	case I40E_LINK_SPEED_20GB:
 977		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 978		break;
 979	default:
 980	case I40E_LINK_SPEED_10GB:
 981		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 982		break;
 983	case I40E_LINK_SPEED_1GB:
 984	case I40E_LINK_SPEED_100MB:
 985		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 986		break;
 987	}
 988
 989	return divisor;
 990}
 991
 992/**
 993 * i40e_update_itr - update the dynamic ITR value based on statistics
 994 * @q_vector: structure containing interrupt and ring information
 995 * @rc: structure containing ring performance data
 996 *
 997 * Stores a new ITR value based on packets and byte
 998 * counts during the last interrupt.  The advantage of per interrupt
 999 * computation is faster updates and more accurate ITR for the current
1000 * traffic pattern.  Constants in this function were computed
1001 * based on theoretical maximum wire speed and thresholds were set based
1002 * on testing data as well as attempting to minimize response time
1003 * while increasing bulk throughput.
1004 **/
1005static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006			    struct i40e_ring_container *rc)
1007{
1008	unsigned int avg_wire_size, packets, bytes, itr;
1009	unsigned long next_update = jiffies;
1010
1011	/* If we don't have any rings just leave ourselves set for maximum
1012	 * possible latency so we take ourselves out of the equation.
1013	 */
1014	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015		return;
1016
1017	/* For Rx we want to push the delay up and default to low latency.
1018	 * for Tx we want to pull the delay down and default to high latency.
1019	 */
1020	itr = i40e_container_is_rx(q_vector, rc) ?
1021	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023
1024	/* If we didn't update within up to 1 - 2 jiffies we can assume
1025	 * that either packets are coming in so slow there hasn't been
1026	 * any work, or that there is so much work that NAPI is dealing
1027	 * with interrupt moderation and we don't need to do anything.
1028	 */
1029	if (time_after(next_update, rc->next_update))
1030		goto clear_counts;
1031
1032	/* If itr_countdown is set it means we programmed an ITR within
1033	 * the last 4 interrupt cycles. This has a side effect of us
1034	 * potentially firing an early interrupt. In order to work around
1035	 * this we need to throw out any data received for a few
1036	 * interrupts following the update.
1037	 */
1038	if (q_vector->itr_countdown) {
1039		itr = rc->target_itr;
1040		goto clear_counts;
1041	}
1042
1043	packets = rc->total_packets;
1044	bytes = rc->total_bytes;
1045
1046	if (i40e_container_is_rx(q_vector, rc)) {
1047		/* If Rx there are 1 to 4 packets and bytes are less than
1048		 * 9000 assume insufficient data to use bulk rate limiting
1049		 * approach unless Tx is already in bulk rate limiting. We
1050		 * are likely latency driven.
1051		 */
1052		if (packets && packets < 4 && bytes < 9000 &&
1053		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054			itr = I40E_ITR_ADAPTIVE_LATENCY;
1055			goto adjust_by_size;
1056		}
1057	} else if (packets < 4) {
1058		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059		 * bulk mode and we are receiving 4 or fewer packets just
1060		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061		 * that the Rx can relax.
1062		 */
1063		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065		     I40E_ITR_ADAPTIVE_MAX_USECS)
1066			goto clear_counts;
1067	} else if (packets > 32) {
1068		/* If we have processed over 32 packets in a single interrupt
1069		 * for Tx assume we need to switch over to "bulk" mode.
1070		 */
1071		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072	}
1073
1074	/* We have no packets to actually measure against. This means
1075	 * either one of the other queues on this vector is active or
1076	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1077	 *
1078	 * Between 4 and 56 we can assume that our current interrupt delay
1079	 * is only slightly too low. As such we should increase it by a small
1080	 * fixed amount.
1081	 */
1082	if (packets < 56) {
1083		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087		}
1088		goto clear_counts;
1089	}
1090
1091	if (packets <= 256) {
1092		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093		itr &= I40E_ITR_MASK;
1094
1095		/* Between 56 and 112 is our "goldilocks" zone where we are
1096		 * working out "just right". Just report that our current
1097		 * ITR is good for us.
1098		 */
1099		if (packets <= 112)
1100			goto clear_counts;
1101
1102		/* If packet count is 128 or greater we are likely looking
1103		 * at a slight overrun of the delay we want. Try halving
1104		 * our delay to see if that will cut the number of packets
1105		 * in half per interrupt.
1106		 */
1107		itr /= 2;
1108		itr &= I40E_ITR_MASK;
1109		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111
1112		goto clear_counts;
1113	}
1114
1115	/* The paths below assume we are dealing with a bulk ITR since
1116	 * number of packets is greater than 256. We are just going to have
1117	 * to compute a value and try to bring the count under control,
1118	 * though for smaller packet sizes there isn't much we can do as
1119	 * NAPI polling will likely be kicking in sooner rather than later.
1120	 */
1121	itr = I40E_ITR_ADAPTIVE_BULK;
1122
1123adjust_by_size:
1124	/* If packet counts are 256 or greater we can assume we have a gross
1125	 * overestimation of what the rate should be. Instead of trying to fine
1126	 * tune it just use the formula below to try and dial in an exact value
1127	 * give the current packet size of the frame.
1128	 */
1129	avg_wire_size = bytes / packets;
1130
1131	/* The following is a crude approximation of:
1132	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1133	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135	 *
1136	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138	 * formula down to
1139	 *
1140	 *  (170 * (size + 24)) / (size + 640) = ITR
1141	 *
1142	 * We first do some math on the packet size and then finally bitshift
1143	 * by 8 after rounding up. We also have to account for PCIe link speed
1144	 * difference as ITR scales based on this.
1145	 */
1146	if (avg_wire_size <= 60) {
1147		/* Start at 250k ints/sec */
1148		avg_wire_size = 4096;
1149	} else if (avg_wire_size <= 380) {
1150		/* 250K ints/sec to 60K ints/sec */
1151		avg_wire_size *= 40;
1152		avg_wire_size += 1696;
1153	} else if (avg_wire_size <= 1084) {
1154		/* 60K ints/sec to 36K ints/sec */
1155		avg_wire_size *= 15;
1156		avg_wire_size += 11452;
1157	} else if (avg_wire_size <= 1980) {
1158		/* 36K ints/sec to 30K ints/sec */
1159		avg_wire_size *= 5;
1160		avg_wire_size += 22420;
1161	} else {
1162		/* plateau at a limit of 30K ints/sec */
1163		avg_wire_size = 32256;
1164	}
1165
1166	/* If we are in low latency mode halve our delay which doubles the
1167	 * rate to somewhere between 100K to 16K ints/sec
1168	 */
1169	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170		avg_wire_size /= 2;
1171
1172	/* Resultant value is 256 times larger than it needs to be. This
1173	 * gives us room to adjust the value as needed to either increase
1174	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175	 *
1176	 * Use addition as we have already recorded the new latency flag
1177	 * for the ITR value.
1178	 */
1179	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180	       I40E_ITR_ADAPTIVE_MIN_INC;
1181
1182	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1185	}
1186
1187clear_counts:
1188	/* write back value */
1189	rc->target_itr = itr;
1190
1191	/* next update should occur within next jiffy */
1192	rc->next_update = next_update + 1;
1193
1194	rc->total_bytes = 0;
1195	rc->total_packets = 0;
1196}
1197
 
 
 
 
 
1198/**
1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200 * @rx_ring: rx descriptor ring to store buffers on
1201 * @old_buff: donor buffer to have page reused
1202 *
1203 * Synchronizes page for reuse by the adapter
1204 **/
1205static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206			       struct i40e_rx_buffer *old_buff)
1207{
1208	struct i40e_rx_buffer *new_buff;
1209	u16 nta = rx_ring->next_to_alloc;
1210
1211	new_buff = &rx_ring->rx_bi[nta];
1212
1213	/* update, and store next to alloc */
1214	nta++;
1215	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216
1217	/* transfer page from old buffer to new buffer */
1218	new_buff->dma		= old_buff->dma;
1219	new_buff->page		= old_buff->page;
1220	new_buff->page_offset	= old_buff->page_offset;
1221	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1222
1223	rx_ring->rx_stats.page_reuse_count++;
1224
1225	/* clear contents of buffer_info */
1226	old_buff->page = NULL;
1227}
1228
1229/**
1230 * i40e_rx_is_programming_status - check for programming status descriptor
1231 * @qw: qword representing status_error_len in CPU ordering
1232 *
1233 * The value of in the descriptor length field indicate if this
1234 * is a programming status descriptor for flow director or FCoE
1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236 * it is a packet descriptor.
1237 **/
1238static inline bool i40e_rx_is_programming_status(u64 qw)
1239{
1240	/* The Rx filter programming status and SPH bit occupy the same
1241	 * spot in the descriptor. Since we don't support packet split we
1242	 * can just reuse the bit as an indication that this is a
1243	 * programming status descriptor.
1244	 */
1245	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246}
1247
1248/**
1249 * i40e_clean_programming_status - try clean the programming status descriptor
1250 * @rx_ring: the rx ring that has this descriptor
1251 * @rx_desc: the rx descriptor written back by HW
1252 * @qw: qword representing status_error_len in CPU ordering
1253 *
1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255 * status being successful or not and take actions accordingly. FCoE should
1256 * handle its context/filter programming/invalidation status and take actions.
1257 *
1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259 **/
1260struct i40e_rx_buffer *i40e_clean_programming_status(
1261	struct i40e_ring *rx_ring,
1262	union i40e_rx_desc *rx_desc,
1263	u64 qw)
1264{
1265	struct i40e_rx_buffer *rx_buffer;
1266	u32 ntc;
1267	u8 id;
1268
1269	if (!i40e_rx_is_programming_status(qw))
1270		return NULL;
1271
1272	ntc = rx_ring->next_to_clean;
1273
1274	/* fetch, update, and store next to clean */
1275	rx_buffer = &rx_ring->rx_bi[ntc++];
1276	ntc = (ntc < rx_ring->count) ? ntc : 0;
1277	rx_ring->next_to_clean = ntc;
1278
1279	prefetch(I40E_RX_DESC(rx_ring, ntc));
1280
1281	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283
1284	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285		i40e_fd_handle_status(rx_ring, rx_desc, id);
1286
1287	return rx_buffer;
1288}
1289
1290/**
1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292 * @tx_ring: the tx ring to set up
1293 *
1294 * Return 0 on success, negative on error
1295 **/
1296int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297{
1298	struct device *dev = tx_ring->dev;
1299	int bi_size;
1300
1301	if (!dev)
1302		return -ENOMEM;
1303
1304	/* warn if we are about to overwrite the pointer */
1305	WARN_ON(tx_ring->tx_bi);
1306	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308	if (!tx_ring->tx_bi)
1309		goto err;
1310
1311	u64_stats_init(&tx_ring->syncp);
1312
1313	/* round up to nearest 4K */
1314	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315	/* add u32 for head writeback, align after this takes care of
1316	 * guaranteeing this is at least one cache line in size
1317	 */
1318	tx_ring->size += sizeof(u32);
1319	tx_ring->size = ALIGN(tx_ring->size, 4096);
1320	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321					   &tx_ring->dma, GFP_KERNEL);
1322	if (!tx_ring->desc) {
1323		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324			 tx_ring->size);
1325		goto err;
1326	}
1327
1328	tx_ring->next_to_use = 0;
1329	tx_ring->next_to_clean = 0;
1330	tx_ring->tx_stats.prev_pkt_ctr = -1;
1331	return 0;
1332
1333err:
1334	kfree(tx_ring->tx_bi);
1335	tx_ring->tx_bi = NULL;
1336	return -ENOMEM;
1337}
1338
 
 
 
 
 
1339/**
1340 * i40e_clean_rx_ring - Free Rx buffers
1341 * @rx_ring: ring to be cleaned
1342 **/
1343void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344{
1345	unsigned long bi_size;
1346	u16 i;
1347
1348	/* ring already cleared, nothing to do */
1349	if (!rx_ring->rx_bi)
1350		return;
1351
1352	if (rx_ring->skb) {
1353		dev_kfree_skb(rx_ring->skb);
1354		rx_ring->skb = NULL;
1355	}
1356
1357	if (rx_ring->xsk_umem) {
1358		i40e_xsk_clean_rx_ring(rx_ring);
1359		goto skip_free;
1360	}
1361
1362	/* Free all the Rx ring sk_buffs */
1363	for (i = 0; i < rx_ring->count; i++) {
1364		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365
1366		if (!rx_bi->page)
1367			continue;
1368
1369		/* Invalidate cache lines that may have been written to by
1370		 * device so that we avoid corrupting memory.
1371		 */
1372		dma_sync_single_range_for_cpu(rx_ring->dev,
1373					      rx_bi->dma,
1374					      rx_bi->page_offset,
1375					      rx_ring->rx_buf_len,
1376					      DMA_FROM_DEVICE);
1377
1378		/* free resources associated with mapping */
1379		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380				     i40e_rx_pg_size(rx_ring),
1381				     DMA_FROM_DEVICE,
1382				     I40E_RX_DMA_ATTR);
1383
1384		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385
1386		rx_bi->page = NULL;
1387		rx_bi->page_offset = 0;
1388	}
1389
1390skip_free:
1391	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392	memset(rx_ring->rx_bi, 0, bi_size);
 
 
1393
1394	/* Zero out the descriptor ring */
1395	memset(rx_ring->desc, 0, rx_ring->size);
1396
1397	rx_ring->next_to_alloc = 0;
1398	rx_ring->next_to_clean = 0;
 
1399	rx_ring->next_to_use = 0;
1400}
1401
1402/**
1403 * i40e_free_rx_resources - Free Rx resources
1404 * @rx_ring: ring to clean the resources from
1405 *
1406 * Free all receive software resources
1407 **/
1408void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409{
1410	i40e_clean_rx_ring(rx_ring);
1411	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413	rx_ring->xdp_prog = NULL;
1414	kfree(rx_ring->rx_bi);
1415	rx_ring->rx_bi = NULL;
1416
1417	if (rx_ring->desc) {
1418		dma_free_coherent(rx_ring->dev, rx_ring->size,
1419				  rx_ring->desc, rx_ring->dma);
1420		rx_ring->desc = NULL;
1421	}
1422}
1423
1424/**
1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427 *
1428 * Returns 0 on success, negative on failure
1429 **/
1430int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431{
1432	struct device *dev = rx_ring->dev;
1433	int err = -ENOMEM;
1434	int bi_size;
1435
1436	/* warn if we are about to overwrite the pointer */
1437	WARN_ON(rx_ring->rx_bi);
1438	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440	if (!rx_ring->rx_bi)
1441		goto err;
1442
1443	u64_stats_init(&rx_ring->syncp);
1444
1445	/* Round up to nearest 4K */
1446	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447	rx_ring->size = ALIGN(rx_ring->size, 4096);
1448	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449					   &rx_ring->dma, GFP_KERNEL);
1450
1451	if (!rx_ring->desc) {
1452		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453			 rx_ring->size);
1454		goto err;
1455	}
1456
1457	rx_ring->next_to_alloc = 0;
1458	rx_ring->next_to_clean = 0;
 
1459	rx_ring->next_to_use = 0;
1460
1461	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1462	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464				       rx_ring->queue_index);
1465		if (err < 0)
1466			goto err;
1467	}
1468
1469	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
1470
1471	return 0;
1472err:
1473	kfree(rx_ring->rx_bi);
1474	rx_ring->rx_bi = NULL;
1475	return err;
1476}
1477
1478/**
1479 * i40e_release_rx_desc - Store the new tail and head values
1480 * @rx_ring: ring to bump
1481 * @val: new head index
1482 **/
1483void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484{
1485	rx_ring->next_to_use = val;
1486
1487	/* update next to alloc since we have filled the ring */
1488	rx_ring->next_to_alloc = val;
1489
1490	/* Force memory writes to complete before letting h/w
1491	 * know there are new descriptors to fetch.  (Only
1492	 * applicable for weak-ordered memory model archs,
1493	 * such as IA-64).
1494	 */
1495	wmb();
1496	writel(val, rx_ring->tail);
1497}
1498
1499/**
1500 * i40e_rx_offset - Return expected offset into page to access data
1501 * @rx_ring: Ring we are requesting offset of
1502 *
1503 * Returns the offset value for ring into the data buffer.
1504 */
1505static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506{
1507	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 
 
1508}
 
1509
1510/**
1511 * i40e_alloc_mapped_page - recycle or make a new page
1512 * @rx_ring: ring to use
1513 * @bi: rx_buffer struct to modify
1514 *
1515 * Returns true if the page was successfully allocated or
1516 * reused.
1517 **/
1518static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519				   struct i40e_rx_buffer *bi)
1520{
1521	struct page *page = bi->page;
1522	dma_addr_t dma;
1523
1524	/* since we are recycling buffers we should seldom need to alloc */
1525	if (likely(page)) {
1526		rx_ring->rx_stats.page_reuse_count++;
1527		return true;
1528	}
1529
1530	/* alloc new page for storage */
1531	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1532	if (unlikely(!page)) {
1533		rx_ring->rx_stats.alloc_page_failed++;
1534		return false;
1535	}
1536
 
 
1537	/* map page for use */
1538	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1539				 i40e_rx_pg_size(rx_ring),
1540				 DMA_FROM_DEVICE,
1541				 I40E_RX_DMA_ATTR);
1542
1543	/* if mapping failed free memory back to system since
1544	 * there isn't much point in holding memory we can't use
1545	 */
1546	if (dma_mapping_error(rx_ring->dev, dma)) {
1547		__free_pages(page, i40e_rx_pg_order(rx_ring));
1548		rx_ring->rx_stats.alloc_page_failed++;
1549		return false;
1550	}
1551
1552	bi->dma = dma;
1553	bi->page = page;
1554	bi->page_offset = i40e_rx_offset(rx_ring);
1555	page_ref_add(page, USHRT_MAX - 1);
1556	bi->pagecnt_bias = USHRT_MAX;
1557
1558	return true;
1559}
1560
1561/**
1562 * i40e_alloc_rx_buffers - Replace used receive buffers
1563 * @rx_ring: ring to place buffers on
1564 * @cleaned_count: number of buffers to replace
1565 *
1566 * Returns false if all allocations were successful, true if any fail
1567 **/
1568bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1569{
1570	u16 ntu = rx_ring->next_to_use;
1571	union i40e_rx_desc *rx_desc;
1572	struct i40e_rx_buffer *bi;
1573
1574	/* do nothing if no valid netdev defined */
1575	if (!rx_ring->netdev || !cleaned_count)
1576		return false;
1577
1578	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579	bi = &rx_ring->rx_bi[ntu];
1580
1581	do {
1582		if (!i40e_alloc_mapped_page(rx_ring, bi))
1583			goto no_buffers;
1584
1585		/* sync the buffer for use by the device */
1586		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587						 bi->page_offset,
1588						 rx_ring->rx_buf_len,
1589						 DMA_FROM_DEVICE);
1590
1591		/* Refresh the desc even if buffer_addrs didn't change
1592		 * because each write-back erases this info.
1593		 */
1594		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1595
1596		rx_desc++;
1597		bi++;
1598		ntu++;
1599		if (unlikely(ntu == rx_ring->count)) {
1600			rx_desc = I40E_RX_DESC(rx_ring, 0);
1601			bi = rx_ring->rx_bi;
1602			ntu = 0;
1603		}
1604
1605		/* clear the status bits for the next_to_use descriptor */
1606		rx_desc->wb.qword1.status_error_len = 0;
1607
1608		cleaned_count--;
1609	} while (cleaned_count);
1610
1611	if (rx_ring->next_to_use != ntu)
1612		i40e_release_rx_desc(rx_ring, ntu);
1613
1614	return false;
1615
1616no_buffers:
1617	if (rx_ring->next_to_use != ntu)
1618		i40e_release_rx_desc(rx_ring, ntu);
1619
1620	/* make sure to come back via polling to try again after
1621	 * allocation failure
1622	 */
1623	return true;
1624}
1625
1626/**
1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628 * @vsi: the VSI we care about
1629 * @skb: skb currently being received and modified
1630 * @rx_desc: the receive descriptor
1631 **/
1632static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633				    struct sk_buff *skb,
1634				    union i40e_rx_desc *rx_desc)
1635{
1636	struct i40e_rx_ptype_decoded decoded;
1637	u32 rx_error, rx_status;
1638	bool ipv4, ipv6;
1639	u8 ptype;
1640	u64 qword;
1641
1642	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645		   I40E_RXD_QW1_ERROR_SHIFT;
1646	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647		    I40E_RXD_QW1_STATUS_SHIFT;
1648	decoded = decode_rx_desc_ptype(ptype);
1649
1650	skb->ip_summed = CHECKSUM_NONE;
1651
1652	skb_checksum_none_assert(skb);
1653
1654	/* Rx csum enabled and ip headers found? */
1655	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656		return;
1657
1658	/* did the hardware decode the packet and checksum? */
1659	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1660		return;
1661
1662	/* both known and outer_ip must be set for the below code to work */
1663	if (!(decoded.known && decoded.outer_ip))
1664		return;
1665
1666	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1670
1671	if (ipv4 &&
1672	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1674		goto checksum_fail;
1675
1676	/* likely incorrect csum if alternate IP extension headers found */
1677	if (ipv6 &&
1678	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1679		/* don't increment checksum err here, non-fatal err */
1680		return;
1681
1682	/* there was some L4 error, count error and punt packet to the stack */
1683	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1684		goto checksum_fail;
1685
1686	/* handle packets that were not able to be checksummed due
1687	 * to arrival speed, in this case the stack can compute
1688	 * the csum.
1689	 */
1690	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1691		return;
1692
1693	/* If there is an outer header present that might contain a checksum
1694	 * we need to bump the checksum level by 1 to reflect the fact that
1695	 * we are indicating we validated the inner checksum.
1696	 */
1697	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698		skb->csum_level = 1;
1699
1700	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701	switch (decoded.inner_prot) {
1702	case I40E_RX_PTYPE_INNER_PROT_TCP:
1703	case I40E_RX_PTYPE_INNER_PROT_UDP:
1704	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705		skb->ip_summed = CHECKSUM_UNNECESSARY;
1706		/* fall though */
1707	default:
1708		break;
1709	}
1710
1711	return;
1712
1713checksum_fail:
1714	vsi->back->hw_csum_rx_error++;
1715}
1716
1717/**
1718 * i40e_ptype_to_htype - get a hash type
1719 * @ptype: the ptype value from the descriptor
1720 *
1721 * Returns a hash type to be used by skb_set_hash
1722 **/
1723static inline int i40e_ptype_to_htype(u8 ptype)
1724{
1725	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726
1727	if (!decoded.known)
1728		return PKT_HASH_TYPE_NONE;
1729
1730	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732		return PKT_HASH_TYPE_L4;
1733	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735		return PKT_HASH_TYPE_L3;
1736	else
1737		return PKT_HASH_TYPE_L2;
1738}
1739
1740/**
1741 * i40e_rx_hash - set the hash value in the skb
1742 * @ring: descriptor ring
1743 * @rx_desc: specific descriptor
1744 * @skb: skb currently being received and modified
1745 * @rx_ptype: Rx packet type
1746 **/
1747static inline void i40e_rx_hash(struct i40e_ring *ring,
1748				union i40e_rx_desc *rx_desc,
1749				struct sk_buff *skb,
1750				u8 rx_ptype)
1751{
1752	u32 hash;
1753	const __le64 rss_mask =
1754		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756
1757	if (!(ring->netdev->features & NETIF_F_RXHASH))
1758		return;
1759
1760	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763	}
1764}
1765
1766/**
1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768 * @rx_ring: rx descriptor ring packet is being transacted on
1769 * @rx_desc: pointer to the EOP Rx descriptor
1770 * @skb: pointer to current skb being populated
1771 * @rx_ptype: the packet type decoded by hardware
1772 *
1773 * This function checks the ring, descriptor, and packet information in
1774 * order to populate the hash, checksum, VLAN, protocol, and
1775 * other fields within the skb.
1776 **/
1777void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1778			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1779{
1780	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782			I40E_RXD_QW1_STATUS_SHIFT;
1783	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1785		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1786	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787		      I40E_RXD_QW1_PTYPE_SHIFT;
1788
1789	if (unlikely(tsynvalid))
1790		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1791
1792	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793
1794	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795
1796	skb_record_rx_queue(skb, rx_ring->queue_index);
1797
1798	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1800
1801		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802				       le16_to_cpu(vlan_tag));
1803	}
1804
1805	/* modifies the skb - consumes the enet header */
1806	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1807}
1808
1809/**
1810 * i40e_cleanup_headers - Correct empty headers
1811 * @rx_ring: rx descriptor ring packet is being transacted on
1812 * @skb: pointer to current skb being fixed
1813 * @rx_desc: pointer to the EOP Rx descriptor
1814 *
1815 * Also address the case where we are pulling data in on pages only
1816 * and as such no data is present in the skb header.
1817 *
1818 * In addition if skb is not at least 60 bytes we need to pad it so that
1819 * it is large enough to qualify as a valid Ethernet frame.
1820 *
1821 * Returns true if an error was encountered and skb was freed.
1822 **/
1823static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824				 union i40e_rx_desc *rx_desc)
1825
1826{
1827	/* XDP packets use error pointer so abort at this point */
1828	if (IS_ERR(skb))
1829		return true;
1830
1831	/* ERR_MASK will only have valid bits if EOP set, and
1832	 * what we are doing here is actually checking
1833	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834	 * the error field
1835	 */
1836	if (unlikely(i40e_test_staterr(rx_desc,
1837				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838		dev_kfree_skb_any(skb);
1839		return true;
1840	}
1841
1842	/* if eth_skb_pad returns an error the skb was freed */
1843	if (eth_skb_pad(skb))
1844		return true;
1845
1846	return false;
1847}
1848
1849/**
1850 * i40e_page_is_reusable - check if any reuse is possible
1851 * @page: page struct to check
1852 *
1853 * A page is not reusable if it was allocated under low memory
1854 * conditions, or it's not in the same NUMA node as this CPU.
1855 */
1856static inline bool i40e_page_is_reusable(struct page *page)
1857{
1858	return (page_to_nid(page) == numa_mem_id()) &&
1859		!page_is_pfmemalloc(page);
1860}
1861
1862/**
1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864 * the adapter for another receive
1865 *
1866 * @rx_buffer: buffer containing the page
 
1867 *
1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869 * an unused region in the page.
 
 
1870 *
1871 * For small pages, @truesize will be a constant value, half the size
1872 * of the memory at page.  We'll attempt to alternate between high and
1873 * low halves of the page, with one half ready for use by the hardware
1874 * and the other half being consumed by the stack.  We use the page
1875 * ref count to determine whether the stack has finished consuming the
1876 * portion of this page that was passed up with a previous packet.  If
1877 * the page ref count is >1, we'll assume the "other" half page is
1878 * still busy, and this page cannot be reused.
1879 *
1880 * For larger pages, @truesize will be the actual space used by the
1881 * received packet (adjusted upward to an even multiple of the cache
1882 * line size).  This will advance through the page by the amount
1883 * actually consumed by the received packets while there is still
1884 * space for a buffer.  Each region of larger pages will be used at
1885 * most once, after which the page will not be reused.
1886 *
1887 * In either case, if the page is reusable its refcount is increased.
1888 **/
1889static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1890{
1891	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892	struct page *page = rx_buffer->page;
1893
1894	/* Is any reuse possible? */
1895	if (unlikely(!i40e_page_is_reusable(page)))
 
1896		return false;
 
1897
1898#if (PAGE_SIZE < 8192)
1899	/* if we are only owner of page we can reuse it */
1900	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 
1901		return false;
 
1902#else
1903#define I40E_LAST_OFFSET \
1904	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
 
1906		return false;
 
1907#endif
1908
1909	/* If we have drained the page fragment pool we need to update
1910	 * the pagecnt_bias and page count so that we fully restock the
1911	 * number of references the driver holds.
1912	 */
1913	if (unlikely(pagecnt_bias == 1)) {
1914		page_ref_add(page, USHRT_MAX - 1);
1915		rx_buffer->pagecnt_bias = USHRT_MAX;
1916	}
1917
1918	return true;
1919}
1920
1921/**
1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923 * @rx_ring: rx descriptor ring to transact packets on
1924 * @rx_buffer: buffer containing page to add
1925 * @skb: sk_buff to place the data into
1926 * @size: packet length from rx_desc
1927 *
1928 * This function will add the data contained in rx_buffer->page to the skb.
1929 * It will just attach the page as a frag to the skb.
1930 *
1931 * The function will then update the page offset.
1932 **/
1933static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1934			     struct i40e_rx_buffer *rx_buffer,
1935			     struct sk_buff *skb,
1936			     unsigned int size)
1937{
1938#if (PAGE_SIZE < 8192)
1939	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1940#else
1941	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1942#endif
1943
1944	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1945			rx_buffer->page_offset, size, truesize);
1946
1947	/* page is being used so we must update the page offset */
1948#if (PAGE_SIZE < 8192)
1949	rx_buffer->page_offset ^= truesize;
1950#else
1951	rx_buffer->page_offset += truesize;
1952#endif
1953}
1954
1955/**
1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957 * @rx_ring: rx descriptor ring to transact packets on
1958 * @size: size of buffer to add to skb
1959 *
1960 * This function will pull an Rx buffer from the ring and synchronize it
1961 * for use by the CPU.
1962 */
1963static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964						 const unsigned int size)
1965{
1966	struct i40e_rx_buffer *rx_buffer;
1967
1968	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969	prefetchw(rx_buffer->page);
 
 
 
 
 
 
1970
1971	/* we are reusing so sync this buffer for CPU use */
1972	dma_sync_single_range_for_cpu(rx_ring->dev,
1973				      rx_buffer->dma,
1974				      rx_buffer->page_offset,
1975				      size,
1976				      DMA_FROM_DEVICE);
1977
1978	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1979	rx_buffer->pagecnt_bias--;
1980
1981	return rx_buffer;
1982}
1983
1984/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985 * i40e_construct_skb - Allocate skb and populate it
1986 * @rx_ring: rx descriptor ring to transact packets on
1987 * @rx_buffer: rx buffer to pull data from
1988 * @xdp: xdp_buff pointing to the data
1989 *
1990 * This function allocates an skb.  It then populates it with the page
1991 * data from the current receive descriptor, taking care to set up the
1992 * skb correctly.
1993 */
1994static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995					  struct i40e_rx_buffer *rx_buffer,
1996					  struct xdp_buff *xdp)
1997{
1998	unsigned int size = xdp->data_end - xdp->data;
1999#if (PAGE_SIZE < 8192)
2000	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2001#else
2002	unsigned int truesize = SKB_DATA_ALIGN(size);
2003#endif
2004	unsigned int headlen;
2005	struct sk_buff *skb;
 
2006
2007	/* prefetch first cache line of first page */
2008	prefetch(xdp->data);
2009#if L1_CACHE_BYTES < 128
2010	prefetch(xdp->data + L1_CACHE_BYTES);
2011#endif
2012	/* Note, we get here by enabling legacy-rx via:
2013	 *
2014	 *    ethtool --set-priv-flags <dev> legacy-rx on
2015	 *
2016	 * In this mode, we currently get 0 extra XDP headroom as
2017	 * opposed to having legacy-rx off, where we process XDP
2018	 * packets going to stack via i40e_build_skb(). The latter
2019	 * provides us currently with 192 bytes of headroom.
2020	 *
2021	 * For i40e_construct_skb() mode it means that the
2022	 * xdp->data_meta will always point to xdp->data, since
2023	 * the helper cannot expand the head. Should this ever
2024	 * change in future for legacy-rx mode on, then lets also
2025	 * add xdp->data_meta handling here.
2026	 */
2027
2028	/* allocate a skb to store the frags */
2029	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030			       I40E_RX_HDR_SIZE,
2031			       GFP_ATOMIC | __GFP_NOWARN);
2032	if (unlikely(!skb))
2033		return NULL;
2034
2035	/* Determine available headroom for copy */
2036	headlen = size;
2037	if (headlen > I40E_RX_HDR_SIZE)
2038		headlen = eth_get_headlen(skb->dev, xdp->data,
2039					  I40E_RX_HDR_SIZE);
2040
2041	/* align pull length to size of long to optimize memcpy performance */
2042	memcpy(__skb_put(skb, headlen), xdp->data,
2043	       ALIGN(headlen, sizeof(long)));
2044
 
 
 
 
 
2045	/* update all of the pointers */
2046	size -= headlen;
2047	if (size) {
 
 
 
 
2048		skb_add_rx_frag(skb, 0, rx_buffer->page,
2049				rx_buffer->page_offset + headlen,
2050				size, truesize);
2051
2052		/* buffer is used by skb, update page_offset */
2053#if (PAGE_SIZE < 8192)
2054		rx_buffer->page_offset ^= truesize;
2055#else
2056		rx_buffer->page_offset += truesize;
2057#endif
2058	} else {
2059		/* buffer is unused, reset bias back to rx_buffer */
2060		rx_buffer->pagecnt_bias++;
2061	}
2062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063	return skb;
2064}
2065
2066/**
2067 * i40e_build_skb - Build skb around an existing buffer
2068 * @rx_ring: Rx descriptor ring to transact packets on
2069 * @rx_buffer: Rx buffer to pull data from
2070 * @xdp: xdp_buff pointing to the data
2071 *
2072 * This function builds an skb around an existing Rx buffer, taking care
2073 * to set up the skb correctly and avoid any memcpy overhead.
2074 */
2075static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2076				      struct i40e_rx_buffer *rx_buffer,
2077				      struct xdp_buff *xdp)
2078{
2079	unsigned int metasize = xdp->data - xdp->data_meta;
2080#if (PAGE_SIZE < 8192)
2081	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2082#else
2083	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2084				SKB_DATA_ALIGN(xdp->data_end -
2085					       xdp->data_hard_start);
2086#endif
2087	struct sk_buff *skb;
 
2088
2089	/* Prefetch first cache line of first page. If xdp->data_meta
2090	 * is unused, this points exactly as xdp->data, otherwise we
2091	 * likely have a consumer accessing first few bytes of meta
2092	 * data, and then actual data.
2093	 */
2094	prefetch(xdp->data_meta);
2095#if L1_CACHE_BYTES < 128
2096	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2097#endif
 
 
 
2098	/* build an skb around the page buffer */
2099	skb = build_skb(xdp->data_hard_start, truesize);
2100	if (unlikely(!skb))
2101		return NULL;
2102
2103	/* update pointers within the skb to store the data */
2104	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2105	__skb_put(skb, xdp->data_end - xdp->data);
2106	if (metasize)
2107		skb_metadata_set(skb, metasize);
2108
2109	/* buffer is used by skb, update page_offset */
2110#if (PAGE_SIZE < 8192)
2111	rx_buffer->page_offset ^= truesize;
2112#else
2113	rx_buffer->page_offset += truesize;
2114#endif
2115
2116	return skb;
2117}
 
2118
2119/**
2120 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2121 * @rx_ring: rx descriptor ring to transact packets on
2122 * @rx_buffer: rx buffer to pull data from
2123 *
2124 * This function will clean up the contents of the rx_buffer.  It will
2125 * either recycle the buffer or unmap it and free the associated resources.
2126 */
2127static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128			       struct i40e_rx_buffer *rx_buffer)
2129{
2130	if (i40e_can_reuse_rx_page(rx_buffer)) {
2131		/* hand second half of page back to the ring */
2132		i40e_reuse_rx_page(rx_ring, rx_buffer);
2133	} else {
2134		/* we are not reusing the buffer so unmap it */
2135		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2136				     i40e_rx_pg_size(rx_ring),
2137				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2138		__page_frag_cache_drain(rx_buffer->page,
2139					rx_buffer->pagecnt_bias);
2140		/* clear contents of buffer_info */
2141		rx_buffer->page = NULL;
2142	}
 
 
2143}
2144
2145/**
2146 * i40e_is_non_eop - process handling of non-EOP buffers
2147 * @rx_ring: Rx ring being processed
2148 * @rx_desc: Rx descriptor for current buffer
2149 * @skb: Current socket buffer containing buffer in progress
2150 *
2151 * This function updates next to clean.  If the buffer is an EOP buffer
2152 * this function exits returning false, otherwise it will place the
2153 * sk_buff in the next buffer to be chained and return true indicating
2154 * that this is in fact a non-EOP buffer.
2155 **/
2156static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2157			    union i40e_rx_desc *rx_desc,
2158			    struct sk_buff *skb)
2159{
2160	u32 ntc = rx_ring->next_to_clean + 1;
2161
2162	/* fetch, update, and store next to clean */
2163	ntc = (ntc < rx_ring->count) ? ntc : 0;
2164	rx_ring->next_to_clean = ntc;
2165
2166	prefetch(I40E_RX_DESC(rx_ring, ntc));
2167
2168	/* if we are the last buffer then there is nothing else to do */
2169#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2170	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2171		return false;
2172
2173	rx_ring->rx_stats.non_eop_descs++;
2174
2175	return true;
2176}
2177
2178static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2179			      struct i40e_ring *xdp_ring);
2180
2181int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2182{
2183	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2184
2185	if (unlikely(!xdpf))
2186		return I40E_XDP_CONSUMED;
2187
2188	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2189}
2190
2191/**
2192 * i40e_run_xdp - run an XDP program
2193 * @rx_ring: Rx ring being processed
2194 * @xdp: XDP buffer containing the frame
 
2195 **/
2196static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2197				    struct xdp_buff *xdp)
2198{
2199	int err, result = I40E_XDP_PASS;
2200	struct i40e_ring *xdp_ring;
2201	struct bpf_prog *xdp_prog;
2202	u32 act;
2203
2204	rcu_read_lock();
2205	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206
2207	if (!xdp_prog)
2208		goto xdp_out;
2209
2210	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211
2212	act = bpf_prog_run_xdp(xdp_prog, xdp);
2213	switch (act) {
2214	case XDP_PASS:
2215		break;
2216	case XDP_TX:
2217		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2218		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
 
 
2219		break;
2220	case XDP_REDIRECT:
2221		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2222		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
 
 
2223		break;
2224	default:
2225		bpf_warn_invalid_xdp_action(act);
2226		/* fall through */
2227	case XDP_ABORTED:
 
2228		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2229		/* fall through -- handle aborts by dropping packet */
2230	case XDP_DROP:
2231		result = I40E_XDP_CONSUMED;
2232		break;
2233	}
2234xdp_out:
2235	rcu_read_unlock();
2236	return ERR_PTR(-result);
2237}
2238
2239/**
2240 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241 * @rx_ring: Rx ring
2242 * @rx_buffer: Rx buffer to adjust
2243 * @size: Size of adjustment
2244 **/
2245static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246				struct i40e_rx_buffer *rx_buffer,
2247				unsigned int size)
2248{
2249#if (PAGE_SIZE < 8192)
2250	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251
2252	rx_buffer->page_offset ^= truesize;
2253#else
2254	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255
2256	rx_buffer->page_offset += truesize;
2257#endif
2258}
2259
2260/**
2261 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2262 * @xdp_ring: XDP Tx ring
2263 *
2264 * This function updates the XDP Tx ring tail register.
2265 **/
2266void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2267{
2268	/* Force memory writes to complete before letting h/w
2269	 * know there are new descriptors to fetch.
2270	 */
2271	wmb();
2272	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2273}
2274
2275/**
2276 * i40e_update_rx_stats - Update Rx ring statistics
2277 * @rx_ring: rx descriptor ring
2278 * @total_rx_bytes: number of bytes received
2279 * @total_rx_packets: number of packets received
2280 *
2281 * This function updates the Rx ring statistics.
2282 **/
2283void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2284			  unsigned int total_rx_bytes,
2285			  unsigned int total_rx_packets)
2286{
2287	u64_stats_update_begin(&rx_ring->syncp);
2288	rx_ring->stats.packets += total_rx_packets;
2289	rx_ring->stats.bytes += total_rx_bytes;
2290	u64_stats_update_end(&rx_ring->syncp);
2291	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2292	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2293}
2294
2295/**
2296 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2297 * @rx_ring: Rx ring
2298 * @xdp_res: Result of the receive batch
2299 *
2300 * This function bumps XDP Tx tail and/or flush redirect map, and
2301 * should be called when a batch of packets has been processed in the
2302 * napi loop.
2303 **/
2304void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2305{
2306	if (xdp_res & I40E_XDP_REDIR)
2307		xdp_do_flush_map();
2308
2309	if (xdp_res & I40E_XDP_TX) {
2310		struct i40e_ring *xdp_ring =
2311			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2312
2313		i40e_xdp_ring_update_tail(xdp_ring);
2314	}
2315}
2316
2317/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2319 * @rx_ring: rx descriptor ring to transact packets on
2320 * @budget: Total limit on number of packets to process
 
2321 *
2322 * This function provides a "bounce buffer" approach to Rx interrupt
2323 * processing.  The advantage to this is that on systems that have
2324 * expensive overhead for IOMMU access this provides a means of avoiding
2325 * it by maintaining the mapping of the page to the system.
2326 *
2327 * Returns amount of work completed
2328 **/
2329static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
2330{
2331	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2332	struct sk_buff *skb = rx_ring->skb;
2333	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
 
 
2334	unsigned int xdp_xmit = 0;
 
2335	bool failure = false;
2336	struct xdp_buff xdp;
2337
2338	xdp.rxq = &rx_ring->xdp_rxq;
2339
2340	while (likely(total_rx_packets < (unsigned int)budget)) {
 
2341		struct i40e_rx_buffer *rx_buffer;
2342		union i40e_rx_desc *rx_desc;
 
2343		unsigned int size;
 
 
2344		u64 qword;
2345
2346		/* return some buffers to hardware, one at a time is too slow */
2347		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2348			failure = failure ||
2349				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2350			cleaned_count = 0;
2351		}
2352
2353		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2354
2355		/* status_error_len will always be zero for unused descriptors
2356		 * because it's cleared in cleanup, and overlaps with hdr_addr
2357		 * which is always zero because packet split isn't used, if the
2358		 * hardware wrote DD then the length will be non-zero
2359		 */
2360		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2361
2362		/* This memory barrier is needed to keep us from reading
2363		 * any other fields out of the rx_desc until we have
2364		 * verified the descriptor has been written back.
2365		 */
2366		dma_rmb();
2367
2368		rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2369							  qword);
2370		if (unlikely(rx_buffer)) {
 
 
 
2371			i40e_reuse_rx_page(rx_ring, rx_buffer);
2372			cleaned_count++;
 
 
 
 
 
 
 
2373			continue;
2374		}
2375
2376		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2377		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2378		if (!size)
2379			break;
2380
2381		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
 
2382		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2383
2384		/* retrieve a buffer from the ring */
2385		if (!skb) {
2386			xdp.data = page_address(rx_buffer->page) +
2387				   rx_buffer->page_offset;
2388			xdp.data_meta = xdp.data;
2389			xdp.data_hard_start = xdp.data -
2390					      i40e_rx_offset(rx_ring);
2391			xdp.data_end = xdp.data + size;
2392
2393			skb = i40e_run_xdp(rx_ring, &xdp);
2394		}
2395
2396		if (IS_ERR(skb)) {
2397			unsigned int xdp_res = -PTR_ERR(skb);
2398
2399			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2400				xdp_xmit |= xdp_res;
2401				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402			} else {
2403				rx_buffer->pagecnt_bias++;
2404			}
2405			total_rx_bytes += size;
2406			total_rx_packets++;
2407		} else if (skb) {
2408			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2409		} else if (ring_uses_build_skb(rx_ring)) {
2410			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2411		} else {
2412			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2413		}
 
 
 
 
 
 
 
 
 
2414
2415		/* exit if we failed to retrieve a buffer */
2416		if (!skb) {
2417			rx_ring->rx_stats.alloc_buff_failed++;
2418			rx_buffer->pagecnt_bias++;
2419			break;
2420		}
2421
2422		i40e_put_rx_buffer(rx_ring, rx_buffer);
2423		cleaned_count++;
2424
2425		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2426			continue;
2427
2428		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2429			skb = NULL;
2430			continue;
2431		}
2432
2433		/* probably a little skewed due to removing CRC */
2434		total_rx_bytes += skb->len;
2435
2436		/* populate checksum, VLAN, and protocol */
2437		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2438
2439		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2440		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2441		skb = NULL;
2442
2443		/* update budget accounting */
2444		total_rx_packets++;
 
 
 
 
 
 
2445	}
2446
2447	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2448	rx_ring->skb = skb;
2449
2450	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2451
 
 
2452	/* guarantee a trip back through this routine if there was a failure */
2453	return failure ? budget : (int)total_rx_packets;
2454}
2455
2456static inline u32 i40e_buildreg_itr(const int type, u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457{
2458	u32 val;
2459
2460	/* We don't bother with setting the CLEARPBA bit as the data sheet
2461	 * points out doing so is "meaningless since it was already
2462	 * auto-cleared". The auto-clearing happens when the interrupt is
2463	 * asserted.
2464	 *
2465	 * Hardware errata 28 for also indicates that writing to a
2466	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2467	 * an event in the PBA anyway so we need to rely on the automask
2468	 * to hold pending events for us until the interrupt is re-enabled
2469	 *
2470	 * The itr value is reported in microseconds, and the register
2471	 * value is recorded in 2 microsecond units. For this reason we
2472	 * only need to shift by the interval shift - 1 instead of the
2473	 * full value.
2474	 */
2475	itr &= I40E_ITR_MASK;
2476
 
 
 
 
 
2477	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2478	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2479	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
 
 
 
 
 
 
 
 
 
 
2480
2481	return val;
2482}
2483
2484/* a small macro to shorten up some long lines */
2485#define INTREG I40E_PFINT_DYN_CTLN
2486
2487/* The act of updating the ITR will cause it to immediately trigger. In order
2488 * to prevent this from throwing off adaptive update statistics we defer the
2489 * update so that it can only happen so often. So after either Tx or Rx are
2490 * updated we make the adaptive scheme wait until either the ITR completely
2491 * expires via the next_update expiration or we have been through at least
2492 * 3 interrupts.
2493 */
2494#define ITR_COUNTDOWN_START 3
2495
2496/**
2497 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2498 * @vsi: the VSI we care about
2499 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2500 *
2501 **/
2502static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2503					  struct i40e_q_vector *q_vector)
2504{
 
2505	struct i40e_hw *hw = &vsi->back->hw;
2506	u32 intval;
 
2507
2508	/* If we don't have MSIX, then we only need to re-enable icr0 */
2509	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2510		i40e_irq_dynamic_enable_icr0(vsi->back);
2511		return;
2512	}
2513
2514	/* These will do nothing if dynamic updates are not enabled */
2515	i40e_update_itr(q_vector, &q_vector->tx);
2516	i40e_update_itr(q_vector, &q_vector->rx);
2517
2518	/* This block of logic allows us to get away with only updating
2519	 * one ITR value with each interrupt. The idea is to perform a
2520	 * pseudo-lazy update with the following criteria.
2521	 *
2522	 * 1. Rx is given higher priority than Tx if both are in same state
2523	 * 2. If we must reduce an ITR that is given highest priority.
2524	 * 3. We then give priority to increasing ITR based on amount.
2525	 */
2526	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2527		/* Rx ITR needs to be reduced, this is highest priority */
2528		intval = i40e_buildreg_itr(I40E_RX_ITR,
2529					   q_vector->rx.target_itr);
2530		q_vector->rx.current_itr = q_vector->rx.target_itr;
2531		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2532	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2533		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2534		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2535		/* Tx ITR needs to be reduced, this is second priority
2536		 * Tx ITR needs to be increased more than Rx, fourth priority
2537		 */
2538		intval = i40e_buildreg_itr(I40E_TX_ITR,
2539					   q_vector->tx.target_itr);
2540		q_vector->tx.current_itr = q_vector->tx.target_itr;
2541		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2543		/* Rx ITR needs to be increased, third priority */
2544		intval = i40e_buildreg_itr(I40E_RX_ITR,
2545					   q_vector->rx.target_itr);
2546		q_vector->rx.current_itr = q_vector->rx.target_itr;
2547		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2548	} else {
2549		/* No ITR update, lowest priority */
2550		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2551		if (q_vector->itr_countdown)
2552			q_vector->itr_countdown--;
2553	}
2554
2555	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2556		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
 
 
 
 
 
 
2557}
2558
2559/**
2560 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2561 * @napi: napi struct with our devices info in it
2562 * @budget: amount of work driver is allowed to do this pass, in packets
2563 *
2564 * This function will clean all queues associated with a q_vector.
2565 *
2566 * Returns the amount of work done
2567 **/
2568int i40e_napi_poll(struct napi_struct *napi, int budget)
2569{
2570	struct i40e_q_vector *q_vector =
2571			       container_of(napi, struct i40e_q_vector, napi);
2572	struct i40e_vsi *vsi = q_vector->vsi;
2573	struct i40e_ring *ring;
 
 
 
 
2574	bool clean_complete = true;
2575	bool arm_wb = false;
2576	int budget_per_ring;
2577	int work_done = 0;
2578
2579	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2580		napi_complete(napi);
2581		return 0;
2582	}
2583
2584	/* Since the actual Tx work is minimal, we can give the Tx a larger
2585	 * budget and be more aggressive about cleaning up the Tx descriptors.
2586	 */
2587	i40e_for_each_ring(ring, q_vector->tx) {
2588		bool wd = ring->xsk_umem ?
2589			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2590			  i40e_clean_tx_irq(vsi, ring, budget);
2591
2592		if (!wd) {
2593			clean_complete = false;
2594			continue;
2595		}
2596		arm_wb |= ring->arm_wb;
2597		ring->arm_wb = false;
2598	}
2599
2600	/* Handle case where we are called by netpoll with a budget of 0 */
2601	if (budget <= 0)
2602		goto tx_only;
2603
2604	/* We attempt to distribute budget to each Rx queue fairly, but don't
2605	 * allow the budget to go below 1 because that would exit polling early.
2606	 */
2607	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
2608
2609	i40e_for_each_ring(ring, q_vector->rx) {
2610		int cleaned = ring->xsk_umem ?
2611			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612			      i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614		work_done += cleaned;
2615		/* if we clean as many as budgeted, we must not be done */
2616		if (cleaned >= budget_per_ring)
2617			clean_complete = false;
2618	}
2619
 
 
 
 
2620	/* If work not completed, return budget and polling will return */
2621	if (!clean_complete) {
2622		int cpu_id = smp_processor_id();
2623
2624		/* It is possible that the interrupt affinity has changed but,
2625		 * if the cpu is pegged at 100%, polling will never exit while
2626		 * traffic continues and the interrupt will be stuck on this
2627		 * cpu.  We check to make sure affinity is correct before we
2628		 * continue to poll, otherwise we must stop polling so the
2629		 * interrupt can move to the correct cpu.
2630		 */
2631		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632			/* Tell napi that we are done polling */
2633			napi_complete_done(napi, work_done);
2634
2635			/* Force an interrupt */
2636			i40e_force_wb(vsi, q_vector);
2637
2638			/* Return budget-1 so that polling stops */
2639			return budget - 1;
2640		}
2641tx_only:
2642		if (arm_wb) {
2643			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644			i40e_enable_wb_on_itr(vsi, q_vector);
2645		}
2646		return budget;
2647	}
2648
2649	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650		q_vector->arm_wb_state = false;
2651
2652	/* Exit the polling mode, but don't re-enable interrupts if stack might
2653	 * poll us due to busy-polling
2654	 */
2655	if (likely(napi_complete_done(napi, work_done)))
2656		i40e_update_enable_itr(vsi, q_vector);
 
 
2657
2658	return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring:  ring to add programming descriptor to
2664 * @skb:      send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668		     u32 tx_flags)
2669{
2670	struct i40e_filter_program_desc *fdir_desc;
2671	struct i40e_pf *pf = tx_ring->vsi->back;
2672	union {
2673		unsigned char *network;
2674		struct iphdr *ipv4;
2675		struct ipv6hdr *ipv6;
2676	} hdr;
2677	struct tcphdr *th;
2678	unsigned int hlen;
2679	u32 flex_ptype, dtype_cmd;
2680	int l4_proto;
2681	u16 i;
2682
2683	/* make sure ATR is enabled */
2684	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685		return;
2686
2687	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688		return;
2689
2690	/* if sampling is disabled do nothing */
2691	if (!tx_ring->atr_sample_rate)
2692		return;
2693
2694	/* Currently only IPv4/IPv6 with TCP is supported */
2695	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696		return;
2697
2698	/* snag network header to get L4 type and address */
2699	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700		      skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702	/* Note: tx_flags gets modified to reflect inner protocols in
2703	 * tx_enable_csum function if encap is enabled.
2704	 */
2705	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706		/* access ihl as u8 to avoid unaligned access on ia64 */
2707		hlen = (hdr.network[0] & 0x0F) << 2;
2708		l4_proto = hdr.ipv4->protocol;
2709	} else {
2710		/* find the start of the innermost ipv6 header */
2711		unsigned int inner_hlen = hdr.network - skb->data;
2712		unsigned int h_offset = inner_hlen;
2713
2714		/* this function updates h_offset to the end of the header */
2715		l4_proto =
2716		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717		/* hlen will contain our best estimate of the tcp header */
2718		hlen = h_offset - inner_hlen;
2719	}
2720
2721	if (l4_proto != IPPROTO_TCP)
2722		return;
2723
2724	th = (struct tcphdr *)(hdr.network + hlen);
2725
2726	/* Due to lack of space, no more new filters can be programmed */
2727	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728		return;
2729	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730		/* HW ATR eviction will take care of removing filters on FIN
2731		 * and RST packets.
2732		 */
2733		if (th->fin || th->rst)
2734			return;
2735	}
2736
2737	tx_ring->atr_count++;
2738
2739	/* sample on all syn/fin/rst packets or once every atr sample rate */
2740	if (!th->fin &&
2741	    !th->syn &&
2742	    !th->rst &&
2743	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744		return;
2745
2746	tx_ring->atr_count = 0;
2747
2748	/* grab the next descriptor */
2749	i = tx_ring->next_to_use;
2750	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752	i++;
2753	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767	dtype_cmd |= (th->fin || th->rst) ?
2768		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781		dtype_cmd |=
2782			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785	else
2786		dtype_cmd |=
2787			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795	fdir_desc->rsvd = cpu_to_le32(0);
2796	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797	fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb:     send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags:   the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise  returns 0 to indicate the flags has been set properly.
2811 **/
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813					     struct i40e_ring *tx_ring,
2814					     u32 *flags)
2815{
2816	__be16 protocol = skb->protocol;
2817	u32  tx_flags = 0;
2818
2819	if (protocol == htons(ETH_P_8021Q) &&
2820	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821		/* When HW VLAN acceleration is turned off by the user the
2822		 * stack sets the protocol to 8021q so that the driver
2823		 * can take any steps required to support the SW only
2824		 * VLAN handling.  In our case the driver doesn't need
2825		 * to take any further steps so just set the protocol
2826		 * to the encapsulated ethertype.
2827		 */
2828		skb->protocol = vlan_get_protocol(skb);
2829		goto out;
2830	}
2831
2832	/* if we have a HW VLAN tag being added, default to the HW one */
2833	if (skb_vlan_tag_present(skb)) {
2834		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836	/* else if it is a SW VLAN, check the next protocol and store the tag */
2837	} else if (protocol == htons(ETH_P_8021Q)) {
2838		struct vlan_hdr *vhdr, _vhdr;
2839
2840		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841		if (!vhdr)
2842			return -EINVAL;
2843
2844		protocol = vhdr->h_vlan_encapsulated_proto;
2845		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847	}
2848
2849	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850		goto out;
2851
2852	/* Insert 802.1p priority into VLAN header */
2853	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854	    (skb->priority != TC_PRIO_CONTROL)) {
2855		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856		tx_flags |= (skb->priority & 0x7) <<
2857				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859			struct vlan_ethhdr *vhdr;
2860			int rc;
2861
2862			rc = skb_cow_head(skb, 0);
2863			if (rc < 0)
2864				return rc;
2865			vhdr = (struct vlan_ethhdr *)skb->data;
2866			vhdr->h_vlan_TCI = htons(tx_flags >>
2867						 I40E_TX_FLAGS_VLAN_SHIFT);
2868		} else {
2869			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870		}
2871	}
2872
2873out:
2874	*flags = tx_flags;
2875	return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first:    pointer to first Tx buffer for xmit
2881 * @hdr_len:  ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887		    u64 *cd_type_cmd_tso_mss)
2888{
2889	struct sk_buff *skb = first->skb;
2890	u64 cd_cmd, cd_tso_len, cd_mss;
 
2891	union {
2892		struct iphdr *v4;
2893		struct ipv6hdr *v6;
2894		unsigned char *hdr;
2895	} ip;
2896	union {
2897		struct tcphdr *tcp;
2898		struct udphdr *udp;
2899		unsigned char *hdr;
2900	} l4;
2901	u32 paylen, l4_offset;
2902	u16 gso_segs, gso_size;
2903	int err;
2904
2905	if (skb->ip_summed != CHECKSUM_PARTIAL)
2906		return 0;
2907
2908	if (!skb_is_gso(skb))
2909		return 0;
2910
2911	err = skb_cow_head(skb, 0);
2912	if (err < 0)
2913		return err;
2914
2915	ip.hdr = skb_network_header(skb);
2916	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2917
2918	/* initialize outer IP header fields */
2919	if (ip.v4->version == 4) {
2920		ip.v4->tot_len = 0;
2921		ip.v4->check = 0;
 
 
2922	} else {
2923		ip.v6->payload_len = 0;
 
2924	}
2925
2926	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927					 SKB_GSO_GRE_CSUM |
2928					 SKB_GSO_IPXIP4 |
2929					 SKB_GSO_IPXIP6 |
2930					 SKB_GSO_UDP_TUNNEL |
2931					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2932		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934			l4.udp->len = 0;
2935
2936			/* determine offset of outer transport header */
2937			l4_offset = l4.hdr - skb->data;
2938
2939			/* remove payload length from outer checksum */
2940			paylen = skb->len - l4_offset;
2941			csum_replace_by_diff(&l4.udp->check,
2942					     (__force __wsum)htonl(paylen));
2943		}
2944
2945		/* reset pointers to inner headers */
2946		ip.hdr = skb_inner_network_header(skb);
2947		l4.hdr = skb_inner_transport_header(skb);
2948
2949		/* initialize inner IP header fields */
2950		if (ip.v4->version == 4) {
2951			ip.v4->tot_len = 0;
2952			ip.v4->check = 0;
2953		} else {
2954			ip.v6->payload_len = 0;
2955		}
2956	}
2957
2958	/* determine offset of inner transport header */
2959	l4_offset = l4.hdr - skb->data;
2960
2961	/* remove payload length from inner checksum */
2962	paylen = skb->len - l4_offset;
2963	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2964
2965	/* compute length of segmentation header */
2966	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
2967
2968	/* pull values out of skb_shinfo */
2969	gso_size = skb_shinfo(skb)->gso_size;
2970	gso_segs = skb_shinfo(skb)->gso_segs;
2971
2972	/* update GSO size and bytecount with header size */
2973	first->gso_segs = gso_segs;
2974	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2975
2976	/* find the field values */
2977	cd_cmd = I40E_TX_CTX_DESC_TSO;
2978	cd_tso_len = skb->len - *hdr_len;
2979	cd_mss = gso_size;
2980	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2981				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2982				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2983	return 1;
2984}
2985
2986/**
2987 * i40e_tsyn - set up the tsyn context descriptor
2988 * @tx_ring:  ptr to the ring to send
2989 * @skb:      ptr to the skb we're sending
2990 * @tx_flags: the collected send information
2991 * @cd_type_cmd_tso_mss: Quad Word 1
2992 *
2993 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2994 **/
2995static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2996		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2997{
2998	struct i40e_pf *pf;
2999
3000	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3001		return 0;
3002
3003	/* Tx timestamps cannot be sampled when doing TSO */
3004	if (tx_flags & I40E_TX_FLAGS_TSO)
3005		return 0;
3006
3007	/* only timestamp the outbound packet if the user has requested it and
3008	 * we are not already transmitting a packet to be timestamped
3009	 */
3010	pf = i40e_netdev_to_pf(tx_ring->netdev);
3011	if (!(pf->flags & I40E_FLAG_PTP))
3012		return 0;
3013
3014	if (pf->ptp_tx &&
3015	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3016		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3017		pf->ptp_tx_start = jiffies;
3018		pf->ptp_tx_skb = skb_get(skb);
3019	} else {
3020		pf->tx_hwtstamp_skipped++;
3021		return 0;
3022	}
3023
3024	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3025				I40E_TXD_CTX_QW1_CMD_SHIFT;
3026
3027	return 1;
3028}
3029
3030/**
3031 * i40e_tx_enable_csum - Enable Tx checksum offloads
3032 * @skb: send buffer
3033 * @tx_flags: pointer to Tx flags currently set
3034 * @td_cmd: Tx descriptor command bits to set
3035 * @td_offset: Tx descriptor header offsets to set
3036 * @tx_ring: Tx descriptor ring
3037 * @cd_tunneling: ptr to context desc bits
3038 **/
3039static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3040			       u32 *td_cmd, u32 *td_offset,
3041			       struct i40e_ring *tx_ring,
3042			       u32 *cd_tunneling)
3043{
3044	union {
3045		struct iphdr *v4;
3046		struct ipv6hdr *v6;
3047		unsigned char *hdr;
3048	} ip;
3049	union {
3050		struct tcphdr *tcp;
3051		struct udphdr *udp;
3052		unsigned char *hdr;
3053	} l4;
3054	unsigned char *exthdr;
3055	u32 offset, cmd = 0;
3056	__be16 frag_off;
 
3057	u8 l4_proto = 0;
3058
3059	if (skb->ip_summed != CHECKSUM_PARTIAL)
3060		return 0;
3061
3062	ip.hdr = skb_network_header(skb);
3063	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064
3065	/* compute outer L2 header size */
3066	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3067
3068	if (skb->encapsulation) {
3069		u32 tunnel = 0;
3070		/* define outer network header type */
3071		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3072			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3073				  I40E_TX_CTX_EXT_IP_IPV4 :
3074				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3075
3076			l4_proto = ip.v4->protocol;
3077		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
3078			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3079
3080			exthdr = ip.hdr + sizeof(*ip.v6);
3081			l4_proto = ip.v6->nexthdr;
3082			if (l4.hdr != exthdr)
3083				ipv6_skip_exthdr(skb, exthdr - skb->data,
3084						 &l4_proto, &frag_off);
 
3085		}
3086
3087		/* define outer transport */
3088		switch (l4_proto) {
3089		case IPPROTO_UDP:
3090			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3091			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3092			break;
3093		case IPPROTO_GRE:
3094			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3095			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3096			break;
3097		case IPPROTO_IPIP:
3098		case IPPROTO_IPV6:
3099			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3100			l4.hdr = skb_inner_network_header(skb);
3101			break;
3102		default:
3103			if (*tx_flags & I40E_TX_FLAGS_TSO)
3104				return -1;
3105
3106			skb_checksum_help(skb);
3107			return 0;
3108		}
3109
3110		/* compute outer L3 header size */
3111		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3112			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3113
3114		/* switch IP header pointer from outer to inner header */
3115		ip.hdr = skb_inner_network_header(skb);
3116
3117		/* compute tunnel header size */
3118		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3119			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3120
3121		/* indicate if we need to offload outer UDP header */
3122		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3123		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3124		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3125			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3126
3127		/* record tunnel offload values */
3128		*cd_tunneling |= tunnel;
3129
3130		/* switch L4 header pointer from outer to inner */
3131		l4.hdr = skb_inner_transport_header(skb);
3132		l4_proto = 0;
3133
3134		/* reset type as we transition from outer to inner headers */
3135		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3136		if (ip.v4->version == 4)
3137			*tx_flags |= I40E_TX_FLAGS_IPV4;
3138		if (ip.v6->version == 6)
3139			*tx_flags |= I40E_TX_FLAGS_IPV6;
3140	}
3141
3142	/* Enable IP checksum offloads */
3143	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3144		l4_proto = ip.v4->protocol;
3145		/* the stack computes the IP header already, the only time we
3146		 * need the hardware to recompute it is in the case of TSO.
3147		 */
3148		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3149		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3150		       I40E_TX_DESC_CMD_IIPT_IPV4;
3151	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3152		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3153
3154		exthdr = ip.hdr + sizeof(*ip.v6);
3155		l4_proto = ip.v6->nexthdr;
3156		if (l4.hdr != exthdr)
3157			ipv6_skip_exthdr(skb, exthdr - skb->data,
3158					 &l4_proto, &frag_off);
3159	}
3160
3161	/* compute inner L3 header size */
3162	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3163
3164	/* Enable L4 checksum offloads */
3165	switch (l4_proto) {
3166	case IPPROTO_TCP:
3167		/* enable checksum offloads */
3168		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3169		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3170		break;
3171	case IPPROTO_SCTP:
3172		/* enable SCTP checksum offload */
3173		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3174		offset |= (sizeof(struct sctphdr) >> 2) <<
3175			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176		break;
3177	case IPPROTO_UDP:
3178		/* enable UDP checksum offload */
3179		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3180		offset |= (sizeof(struct udphdr) >> 2) <<
3181			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182		break;
3183	default:
3184		if (*tx_flags & I40E_TX_FLAGS_TSO)
3185			return -1;
3186		skb_checksum_help(skb);
3187		return 0;
3188	}
3189
3190	*td_cmd |= cmd;
3191	*td_offset |= offset;
3192
3193	return 1;
3194}
3195
3196/**
3197 * i40e_create_tx_ctx Build the Tx context descriptor
3198 * @tx_ring:  ring to create the descriptor on
3199 * @cd_type_cmd_tso_mss: Quad Word 1
3200 * @cd_tunneling: Quad Word 0 - bits 0-31
3201 * @cd_l2tag2: Quad Word 0 - bits 32-63
3202 **/
3203static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3204			       const u64 cd_type_cmd_tso_mss,
3205			       const u32 cd_tunneling, const u32 cd_l2tag2)
3206{
3207	struct i40e_tx_context_desc *context_desc;
3208	int i = tx_ring->next_to_use;
3209
3210	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3211	    !cd_tunneling && !cd_l2tag2)
3212		return;
3213
3214	/* grab the next descriptor */
3215	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3216
3217	i++;
3218	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3219
3220	/* cpu_to_le32 and assign to struct fields */
3221	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3222	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3223	context_desc->rsvd = cpu_to_le16(0);
3224	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3225}
3226
3227/**
3228 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3229 * @tx_ring: the ring to be checked
3230 * @size:    the size buffer we want to assure is available
3231 *
3232 * Returns -EBUSY if a stop is needed, else 0
3233 **/
3234int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3235{
3236	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3237	/* Memory barrier before checking head and tail */
3238	smp_mb();
3239
 
 
3240	/* Check again in a case another CPU has just made room available. */
3241	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3242		return -EBUSY;
3243
3244	/* A reprieve! - use start_queue because it doesn't call schedule */
3245	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3246	++tx_ring->tx_stats.restart_queue;
3247	return 0;
3248}
3249
3250/**
3251 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3252 * @skb:      send buffer
3253 *
3254 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3255 * and so we need to figure out the cases where we need to linearize the skb.
3256 *
3257 * For TSO we need to count the TSO header and segment payload separately.
3258 * As such we need to check cases where we have 7 fragments or more as we
3259 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3260 * the segment payload in the first descriptor, and another 7 for the
3261 * fragments.
3262 **/
3263bool __i40e_chk_linearize(struct sk_buff *skb)
3264{
3265	const skb_frag_t *frag, *stale;
3266	int nr_frags, sum;
3267
3268	/* no need to check if number of frags is less than 7 */
3269	nr_frags = skb_shinfo(skb)->nr_frags;
3270	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3271		return false;
3272
3273	/* We need to walk through the list and validate that each group
3274	 * of 6 fragments totals at least gso_size.
3275	 */
3276	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3277	frag = &skb_shinfo(skb)->frags[0];
3278
3279	/* Initialize size to the negative value of gso_size minus 1.  We
3280	 * use this as the worst case scenerio in which the frag ahead
3281	 * of us only provides one byte which is why we are limited to 6
3282	 * descriptors for a single transmit as the header and previous
3283	 * fragment are already consuming 2 descriptors.
3284	 */
3285	sum = 1 - skb_shinfo(skb)->gso_size;
3286
3287	/* Add size of frags 0 through 4 to create our initial sum */
3288	sum += skb_frag_size(frag++);
3289	sum += skb_frag_size(frag++);
3290	sum += skb_frag_size(frag++);
3291	sum += skb_frag_size(frag++);
3292	sum += skb_frag_size(frag++);
3293
3294	/* Walk through fragments adding latest fragment, testing it, and
3295	 * then removing stale fragments from the sum.
3296	 */
3297	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3298		int stale_size = skb_frag_size(stale);
3299
3300		sum += skb_frag_size(frag++);
3301
3302		/* The stale fragment may present us with a smaller
3303		 * descriptor than the actual fragment size. To account
3304		 * for that we need to remove all the data on the front and
3305		 * figure out what the remainder would be in the last
3306		 * descriptor associated with the fragment.
3307		 */
3308		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3309			int align_pad = -(skb_frag_off(stale)) &
3310					(I40E_MAX_READ_REQ_SIZE - 1);
3311
3312			sum -= align_pad;
3313			stale_size -= align_pad;
3314
3315			do {
3316				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3318			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3319		}
3320
3321		/* if sum is negative we failed to make sufficient progress */
3322		if (sum < 0)
3323			return true;
3324
3325		if (!nr_frags--)
3326			break;
3327
3328		sum -= stale_size;
3329	}
3330
3331	return false;
3332}
3333
3334/**
3335 * i40e_tx_map - Build the Tx descriptor
3336 * @tx_ring:  ring to send buffer on
3337 * @skb:      send buffer
3338 * @first:    first buffer info buffer to use
3339 * @tx_flags: collected send information
3340 * @hdr_len:  size of the packet header
3341 * @td_cmd:   the command field in the descriptor
3342 * @td_offset: offset for checksum or crc
3343 *
3344 * Returns 0 on success, -1 on failure to DMA
3345 **/
3346static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3347			      struct i40e_tx_buffer *first, u32 tx_flags,
3348			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3349{
3350	unsigned int data_len = skb->data_len;
3351	unsigned int size = skb_headlen(skb);
3352	skb_frag_t *frag;
3353	struct i40e_tx_buffer *tx_bi;
3354	struct i40e_tx_desc *tx_desc;
3355	u16 i = tx_ring->next_to_use;
3356	u32 td_tag = 0;
3357	dma_addr_t dma;
3358	u16 desc_count = 1;
3359
3360	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3361		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3362		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3363			 I40E_TX_FLAGS_VLAN_SHIFT;
3364	}
3365
3366	first->tx_flags = tx_flags;
3367
3368	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3369
3370	tx_desc = I40E_TX_DESC(tx_ring, i);
3371	tx_bi = first;
3372
3373	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3374		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3375
3376		if (dma_mapping_error(tx_ring->dev, dma))
3377			goto dma_error;
3378
3379		/* record length, and DMA address */
3380		dma_unmap_len_set(tx_bi, len, size);
3381		dma_unmap_addr_set(tx_bi, dma, dma);
3382
3383		/* align size to end of page */
3384		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3385		tx_desc->buffer_addr = cpu_to_le64(dma);
3386
3387		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3388			tx_desc->cmd_type_offset_bsz =
3389				build_ctob(td_cmd, td_offset,
3390					   max_data, td_tag);
3391
3392			tx_desc++;
3393			i++;
3394			desc_count++;
3395
3396			if (i == tx_ring->count) {
3397				tx_desc = I40E_TX_DESC(tx_ring, 0);
3398				i = 0;
3399			}
3400
3401			dma += max_data;
3402			size -= max_data;
3403
3404			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3405			tx_desc->buffer_addr = cpu_to_le64(dma);
3406		}
3407
3408		if (likely(!data_len))
3409			break;
3410
3411		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3412							  size, td_tag);
3413
3414		tx_desc++;
3415		i++;
3416		desc_count++;
3417
3418		if (i == tx_ring->count) {
3419			tx_desc = I40E_TX_DESC(tx_ring, 0);
3420			i = 0;
3421		}
3422
3423		size = skb_frag_size(frag);
3424		data_len -= size;
3425
3426		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3427				       DMA_TO_DEVICE);
3428
3429		tx_bi = &tx_ring->tx_bi[i];
3430	}
3431
3432	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3433
3434	i++;
3435	if (i == tx_ring->count)
3436		i = 0;
3437
3438	tx_ring->next_to_use = i;
3439
3440	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3441
3442	/* write last descriptor with EOP bit */
3443	td_cmd |= I40E_TX_DESC_CMD_EOP;
3444
3445	/* We OR these values together to check both against 4 (WB_STRIDE)
3446	 * below. This is safe since we don't re-use desc_count afterwards.
3447	 */
3448	desc_count |= ++tx_ring->packet_stride;
3449
3450	if (desc_count >= WB_STRIDE) {
3451		/* write last descriptor with RS bit set */
3452		td_cmd |= I40E_TX_DESC_CMD_RS;
3453		tx_ring->packet_stride = 0;
3454	}
3455
3456	tx_desc->cmd_type_offset_bsz =
3457			build_ctob(td_cmd, td_offset, size, td_tag);
3458
3459	skb_tx_timestamp(skb);
3460
3461	/* Force memory writes to complete before letting h/w know there
3462	 * are new descriptors to fetch.
3463	 *
3464	 * We also use this memory barrier to make certain all of the
3465	 * status bits have been updated before next_to_watch is written.
3466	 */
3467	wmb();
3468
3469	/* set next_to_watch value indicating a packet is present */
3470	first->next_to_watch = tx_desc;
3471
3472	/* notify HW of packet */
3473	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3474		writel(i, tx_ring->tail);
3475	}
3476
3477	return 0;
3478
3479dma_error:
3480	dev_info(tx_ring->dev, "TX DMA map failed\n");
3481
3482	/* clear dma mappings for failed tx_bi map */
3483	for (;;) {
3484		tx_bi = &tx_ring->tx_bi[i];
3485		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3486		if (tx_bi == first)
3487			break;
3488		if (i == 0)
3489			i = tx_ring->count;
3490		i--;
3491	}
3492
3493	tx_ring->next_to_use = i;
3494
3495	return -1;
3496}
3497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498/**
3499 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3500 * @xdp: data to transmit
3501 * @xdp_ring: XDP Tx ring
3502 **/
3503static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3504			      struct i40e_ring *xdp_ring)
3505{
3506	u16 i = xdp_ring->next_to_use;
3507	struct i40e_tx_buffer *tx_bi;
3508	struct i40e_tx_desc *tx_desc;
 
 
 
3509	void *data = xdpf->data;
3510	u32 size = xdpf->len;
3511	dma_addr_t dma;
3512
3513	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3514		xdp_ring->tx_stats.tx_busy++;
3515		return I40E_XDP_CONSUMED;
3516	}
3517	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3518	if (dma_mapping_error(xdp_ring->dev, dma))
3519		return I40E_XDP_CONSUMED;
3520
3521	tx_bi = &xdp_ring->tx_bi[i];
3522	tx_bi->bytecount = size;
3523	tx_bi->gso_segs = 1;
3524	tx_bi->xdpf = xdpf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525
3526	/* record length, and DMA address */
3527	dma_unmap_len_set(tx_bi, len, size);
3528	dma_unmap_addr_set(tx_bi, dma, dma);
 
3529
3530	tx_desc = I40E_TX_DESC(xdp_ring, i);
3531	tx_desc->buffer_addr = cpu_to_le64(dma);
3532	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3533						  | I40E_TXD_CMD,
3534						  0, size, 0);
3535
3536	/* Make certain all of the status bits have been updated
3537	 * before next_to_watch is written.
3538	 */
3539	smp_wmb();
3540
3541	i++;
3542	if (i == xdp_ring->count)
3543		i = 0;
3544
3545	tx_bi->next_to_watch = tx_desc;
3546	xdp_ring->next_to_use = i;
3547
3548	return I40E_XDP_TX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549}
3550
3551/**
3552 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3553 * @skb:     send buffer
3554 * @tx_ring: ring to send buffer on
3555 *
3556 * Returns NETDEV_TX_OK if sent, else an error code
3557 **/
3558static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3559					struct i40e_ring *tx_ring)
3560{
3561	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3562	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3563	struct i40e_tx_buffer *first;
3564	u32 td_offset = 0;
3565	u32 tx_flags = 0;
3566	__be16 protocol;
3567	u32 td_cmd = 0;
3568	u8 hdr_len = 0;
3569	int tso, count;
3570	int tsyn;
3571
3572	/* prefetch the data, we'll need it later */
3573	prefetch(skb->data);
3574
3575	i40e_trace(xmit_frame_ring, skb, tx_ring);
3576
3577	count = i40e_xmit_descriptor_count(skb);
3578	if (i40e_chk_linearize(skb, count)) {
3579		if (__skb_linearize(skb)) {
3580			dev_kfree_skb_any(skb);
3581			return NETDEV_TX_OK;
3582		}
3583		count = i40e_txd_use_count(skb->len);
3584		tx_ring->tx_stats.tx_linearize++;
3585	}
3586
3587	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3588	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3589	 *       + 4 desc gap to avoid the cache line where head is,
3590	 *       + 1 desc for context descriptor,
3591	 * otherwise try next time
3592	 */
3593	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3594		tx_ring->tx_stats.tx_busy++;
3595		return NETDEV_TX_BUSY;
3596	}
3597
3598	/* record the location of the first descriptor for this packet */
3599	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3600	first->skb = skb;
3601	first->bytecount = skb->len;
3602	first->gso_segs = 1;
3603
3604	/* prepare the xmit flags */
3605	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3606		goto out_drop;
3607
3608	/* obtain protocol of skb */
3609	protocol = vlan_get_protocol(skb);
3610
3611	/* setup IPv4/IPv6 offloads */
3612	if (protocol == htons(ETH_P_IP))
3613		tx_flags |= I40E_TX_FLAGS_IPV4;
3614	else if (protocol == htons(ETH_P_IPV6))
3615		tx_flags |= I40E_TX_FLAGS_IPV6;
3616
3617	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3618
3619	if (tso < 0)
3620		goto out_drop;
3621	else if (tso)
3622		tx_flags |= I40E_TX_FLAGS_TSO;
3623
3624	/* Always offload the checksum, since it's in the data descriptor */
3625	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3626				  tx_ring, &cd_tunneling);
3627	if (tso < 0)
3628		goto out_drop;
3629
3630	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3631
3632	if (tsyn)
3633		tx_flags |= I40E_TX_FLAGS_TSYN;
3634
3635	/* always enable CRC insertion offload */
3636	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637
3638	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639			   cd_tunneling, cd_l2tag2);
3640
3641	/* Add Flow Director ATR if it's enabled.
3642	 *
3643	 * NOTE: this must always be directly before the data descriptor.
3644	 */
3645	i40e_atr(tx_ring, skb, tx_flags);
3646
3647	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648			td_cmd, td_offset))
3649		goto cleanup_tx_tstamp;
3650
3651	return NETDEV_TX_OK;
3652
3653out_drop:
3654	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655	dev_kfree_skb_any(first->skb);
3656	first->skb = NULL;
3657cleanup_tx_tstamp:
3658	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660
3661		dev_kfree_skb_any(pf->ptp_tx_skb);
3662		pf->ptp_tx_skb = NULL;
3663		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664	}
3665
3666	return NETDEV_TX_OK;
3667}
3668
3669/**
3670 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671 * @skb:    send buffer
3672 * @netdev: network interface device structure
3673 *
3674 * Returns NETDEV_TX_OK if sent, else an error code
3675 **/
3676netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677{
3678	struct i40e_netdev_priv *np = netdev_priv(netdev);
3679	struct i40e_vsi *vsi = np->vsi;
3680	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681
3682	/* hardware can't handle really short frames, hardware padding works
3683	 * beyond this point
3684	 */
3685	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686		return NETDEV_TX_OK;
3687
3688	return i40e_xmit_frame_ring(skb, tx_ring);
3689}
3690
3691/**
3692 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693 * @dev: netdev
3694 * @xdp: XDP buffer
 
 
3695 *
3696 * Returns number of frames successfully sent. Frames that fail are
3697 * free'ed via XDP return API.
3698 *
3699 * For error cases, a negative errno code is returned and no-frames
3700 * are transmitted (caller must handle freeing frames).
3701 **/
3702int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703		  u32 flags)
3704{
3705	struct i40e_netdev_priv *np = netdev_priv(dev);
3706	unsigned int queue_index = smp_processor_id();
3707	struct i40e_vsi *vsi = np->vsi;
3708	struct i40e_pf *pf = vsi->back;
3709	struct i40e_ring *xdp_ring;
3710	int drops = 0;
3711	int i;
3712
3713	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3714		return -ENETDOWN;
3715
3716	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3717	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3718		return -ENXIO;
3719
3720	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3721		return -EINVAL;
3722
3723	xdp_ring = vsi->xdp_rings[queue_index];
3724
3725	for (i = 0; i < n; i++) {
3726		struct xdp_frame *xdpf = frames[i];
3727		int err;
3728
3729		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3730		if (err != I40E_XDP_TX) {
3731			xdp_return_frame_rx_napi(xdpf);
3732			drops++;
3733		}
3734	}
3735
3736	if (unlikely(flags & XDP_XMIT_FLUSH))
3737		i40e_xdp_ring_update_tail(xdp_ring);
3738
3739	return n - drops;
3740}