Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6#include "i40e_alloc.h"
7#include "i40e_prototype.h"
8
9/**
10 * i40e_init_nvm - Initialize NVM function pointers
11 * @hw: pointer to the HW structure
12 *
13 * Setup the function pointers and the NVM info structure. Should be called
14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15 * Please notice that the NVM term is used here (& in all methods covered
16 * in this file) as an equivalent of the FLASH part mapped into the SR.
17 * We are accessing FLASH always thru the Shadow RAM.
18 **/
19int i40e_init_nvm(struct i40e_hw *hw)
20{
21 struct i40e_nvm_info *nvm = &hw->nvm;
22 int ret_code = 0;
23 u32 fla, gens;
24 u8 sr_size;
25
26 /* The SR size is stored regardless of the nvm programming mode
27 * as the blank mode may be used in the factory line.
28 */
29 gens = rd32(hw, I40E_GLNVM_GENS);
30 sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
31 /* Switching to words (sr_size contains power of 2KB) */
32 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
33
34 /* Check if we are in the normal or blank NVM programming mode */
35 fla = rd32(hw, I40E_GLNVM_FLA);
36 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
37 /* Max NVM timeout */
38 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
39 nvm->blank_nvm_mode = false;
40 } else { /* Blank programming mode */
41 nvm->blank_nvm_mode = true;
42 ret_code = -EIO;
43 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
44 }
45
46 return ret_code;
47}
48
49/**
50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
51 * @hw: pointer to the HW structure
52 * @access: NVM access type (read or write)
53 *
54 * This function will request NVM ownership for reading
55 * via the proper Admin Command.
56 **/
57int i40e_acquire_nvm(struct i40e_hw *hw,
58 enum i40e_aq_resource_access_type access)
59{
60 u64 gtime, timeout;
61 u64 time_left = 0;
62 int ret_code = 0;
63
64 if (hw->nvm.blank_nvm_mode)
65 goto i40e_i40e_acquire_nvm_exit;
66
67 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
68 0, &time_left, NULL);
69 /* Reading the Global Device Timer */
70 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
71
72 /* Store the timeout */
73 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
74
75 if (ret_code)
76 i40e_debug(hw, I40E_DEBUG_NVM,
77 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
78 access, time_left, ret_code, hw->aq.asq_last_status);
79
80 if (ret_code && time_left) {
81 /* Poll until the current NVM owner timeouts */
82 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
83 while ((gtime < timeout) && time_left) {
84 usleep_range(10000, 20000);
85 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
86 ret_code = i40e_aq_request_resource(hw,
87 I40E_NVM_RESOURCE_ID,
88 access, 0, &time_left,
89 NULL);
90 if (!ret_code) {
91 hw->nvm.hw_semaphore_timeout =
92 I40E_MS_TO_GTIME(time_left) + gtime;
93 break;
94 }
95 }
96 if (ret_code) {
97 hw->nvm.hw_semaphore_timeout = 0;
98 i40e_debug(hw, I40E_DEBUG_NVM,
99 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
100 time_left, ret_code, hw->aq.asq_last_status);
101 }
102 }
103
104i40e_i40e_acquire_nvm_exit:
105 return ret_code;
106}
107
108/**
109 * i40e_release_nvm - Generic request for releasing the NVM ownership
110 * @hw: pointer to the HW structure
111 *
112 * This function will release NVM resource via the proper Admin Command.
113 **/
114void i40e_release_nvm(struct i40e_hw *hw)
115{
116 u32 total_delay = 0;
117 int ret_code = 0;
118
119 if (hw->nvm.blank_nvm_mode)
120 return;
121
122 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
123
124 /* there are some rare cases when trying to release the resource
125 * results in an admin Q timeout, so handle them correctly
126 */
127 while ((ret_code == -EIO) &&
128 (total_delay < hw->aq.asq_cmd_timeout)) {
129 usleep_range(1000, 2000);
130 ret_code = i40e_aq_release_resource(hw,
131 I40E_NVM_RESOURCE_ID,
132 0, NULL);
133 total_delay++;
134 }
135}
136
137/**
138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
139 * @hw: pointer to the HW structure
140 *
141 * Polls the SRCTL Shadow RAM register done bit.
142 **/
143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
144{
145 int ret_code = -EIO;
146 u32 srctl, wait_cnt;
147
148 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
149 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
150 srctl = rd32(hw, I40E_GLNVM_SRCTL);
151 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
152 ret_code = 0;
153 break;
154 }
155 udelay(5);
156 }
157 if (ret_code == -EIO)
158 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
159 return ret_code;
160}
161
162/**
163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
164 * @hw: pointer to the HW structure
165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
166 * @data: word read from the Shadow RAM
167 *
168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
169 **/
170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
171 u16 *data)
172{
173 int ret_code = -EIO;
174 u32 sr_reg;
175
176 if (offset >= hw->nvm.sr_size) {
177 i40e_debug(hw, I40E_DEBUG_NVM,
178 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
179 offset, hw->nvm.sr_size);
180 ret_code = -EINVAL;
181 goto read_nvm_exit;
182 }
183
184 /* Poll the done bit first */
185 ret_code = i40e_poll_sr_srctl_done_bit(hw);
186 if (!ret_code) {
187 /* Write the address and start reading */
188 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
189 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
190 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
191
192 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
193 ret_code = i40e_poll_sr_srctl_done_bit(hw);
194 if (!ret_code) {
195 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
196 *data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
197 sr_reg);
198 }
199 }
200 if (ret_code)
201 i40e_debug(hw, I40E_DEBUG_NVM,
202 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
203 offset);
204
205read_nvm_exit:
206 return ret_code;
207}
208
209/**
210 * i40e_read_nvm_aq - Read Shadow RAM.
211 * @hw: pointer to the HW structure.
212 * @module_pointer: module pointer location in words from the NVM beginning
213 * @offset: offset in words from module start
214 * @words: number of words to read
215 * @data: buffer with words to read to the Shadow RAM
216 * @last_command: tells the AdminQ that this is the last command
217 *
218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
219 **/
220static int i40e_read_nvm_aq(struct i40e_hw *hw,
221 u8 module_pointer, u32 offset,
222 u16 words, void *data,
223 bool last_command)
224{
225 struct i40e_asq_cmd_details cmd_details;
226 int ret_code = -EIO;
227
228 memset(&cmd_details, 0, sizeof(cmd_details));
229 cmd_details.wb_desc = &hw->nvm_wb_desc;
230
231 /* Here we are checking the SR limit only for the flat memory model.
232 * We cannot do it for the module-based model, as we did not acquire
233 * the NVM resource yet (we cannot get the module pointer value).
234 * Firmware will check the module-based model.
235 */
236 if ((offset + words) > hw->nvm.sr_size)
237 i40e_debug(hw, I40E_DEBUG_NVM,
238 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
239 (offset + words), hw->nvm.sr_size);
240 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
241 /* We can read only up to 4KB (one sector), in one AQ write */
242 i40e_debug(hw, I40E_DEBUG_NVM,
243 "NVM read fail error: tried to read %d words, limit is %d.\n",
244 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
245 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
246 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
247 /* A single read cannot spread over two sectors */
248 i40e_debug(hw, I40E_DEBUG_NVM,
249 "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
250 offset, words);
251 else
252 ret_code = i40e_aq_read_nvm(hw, module_pointer,
253 2 * offset, /*bytes*/
254 2 * words, /*bytes*/
255 data, last_command, &cmd_details);
256
257 return ret_code;
258}
259
260/**
261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
262 * @hw: pointer to the HW structure
263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
264 * @data: word read from the Shadow RAM
265 *
266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
267 **/
268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
269 u16 *data)
270{
271 int ret_code = -EIO;
272
273 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
274 *data = le16_to_cpu(*(__le16 *)data);
275
276 return ret_code;
277}
278
279/**
280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
281 * @hw: pointer to the HW structure
282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
283 * @data: word read from the Shadow RAM
284 *
285 * Reads one 16 bit word from the Shadow RAM.
286 *
287 * Do not use this function except in cases where the nvm lock is already
288 * taken via i40e_acquire_nvm().
289 **/
290static int __i40e_read_nvm_word(struct i40e_hw *hw,
291 u16 offset, u16 *data)
292{
293 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
294 return i40e_read_nvm_word_aq(hw, offset, data);
295
296 return i40e_read_nvm_word_srctl(hw, offset, data);
297}
298
299/**
300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
301 * @hw: pointer to the HW structure
302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
303 * @data: word read from the Shadow RAM
304 *
305 * Reads one 16 bit word from the Shadow RAM.
306 **/
307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
308 u16 *data)
309{
310 int ret_code = 0;
311
312 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
313 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
314 if (ret_code)
315 return ret_code;
316
317 ret_code = __i40e_read_nvm_word(hw, offset, data);
318
319 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
320 i40e_release_nvm(hw);
321
322 return ret_code;
323}
324
325/**
326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
327 * @hw: Pointer to the HW structure
328 * @module_ptr: Pointer to module in words with respect to NVM beginning
329 * @module_offset: Offset in words from module start
330 * @data_offset: Offset in words from reading data area start
331 * @words_data_size: Words to read from NVM
332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
333 **/
334int i40e_read_nvm_module_data(struct i40e_hw *hw,
335 u8 module_ptr,
336 u16 module_offset,
337 u16 data_offset,
338 u16 words_data_size,
339 u16 *data_ptr)
340{
341 u16 specific_ptr = 0;
342 u16 ptr_value = 0;
343 u32 offset = 0;
344 int status;
345
346 if (module_ptr != 0) {
347 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
348 if (status) {
349 i40e_debug(hw, I40E_DEBUG_ALL,
350 "Reading nvm word failed.Error code: %d.\n",
351 status);
352 return -EIO;
353 }
354 }
355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
356#define I40E_NVM_INVALID_VAL 0xFFFF
357
358 /* Pointer not initialized */
359 if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
360 ptr_value == I40E_NVM_INVALID_VAL) {
361 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
362 return -EINVAL;
363 }
364
365 /* Check whether the module is in SR mapped area or outside */
366 if (ptr_value & I40E_PTR_TYPE) {
367 /* Pointer points outside of the Shared RAM mapped area */
368 i40e_debug(hw, I40E_DEBUG_ALL,
369 "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
370
371 return -EINVAL;
372 } else {
373 /* Read from the Shadow RAM */
374
375 status = i40e_read_nvm_word(hw, ptr_value + module_offset,
376 &specific_ptr);
377 if (status) {
378 i40e_debug(hw, I40E_DEBUG_ALL,
379 "Reading nvm word failed.Error code: %d.\n",
380 status);
381 return -EIO;
382 }
383
384 offset = ptr_value + module_offset + specific_ptr +
385 data_offset;
386
387 status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
388 data_ptr);
389 if (status) {
390 i40e_debug(hw, I40E_DEBUG_ALL,
391 "Reading nvm buffer failed.Error code: %d.\n",
392 status);
393 }
394 }
395
396 return status;
397}
398
399/**
400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
401 * @hw: pointer to the HW structure
402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
403 * @words: (in) number of words to read; (out) number of words actually read
404 * @data: words read from the Shadow RAM
405 *
406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
407 * method. The buffer read is preceded by the NVM ownership take
408 * and followed by the release.
409 **/
410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
411 u16 *words, u16 *data)
412{
413 int ret_code = 0;
414 u16 index, word;
415
416 /* Loop thru the selected region */
417 for (word = 0; word < *words; word++) {
418 index = offset + word;
419 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
420 if (ret_code)
421 break;
422 }
423
424 /* Update the number of words read from the Shadow RAM */
425 *words = word;
426
427 return ret_code;
428}
429
430/**
431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
432 * @hw: pointer to the HW structure
433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
434 * @words: (in) number of words to read; (out) number of words actually read
435 * @data: words read from the Shadow RAM
436 *
437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
438 * method. The buffer read is preceded by the NVM ownership take
439 * and followed by the release.
440 **/
441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
442 u16 *words, u16 *data)
443{
444 bool last_cmd = false;
445 u16 words_read = 0;
446 u16 read_size;
447 int ret_code;
448 u16 i = 0;
449
450 do {
451 /* Calculate number of bytes we should read in this step.
452 * FVL AQ do not allow to read more than one page at a time or
453 * to cross page boundaries.
454 */
455 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
456 read_size = min(*words,
457 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
458 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
459 else
460 read_size = min((*words - words_read),
461 I40E_SR_SECTOR_SIZE_IN_WORDS);
462
463 /* Check if this is last command, if so set proper flag */
464 if ((words_read + read_size) >= *words)
465 last_cmd = true;
466
467 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
468 data + words_read, last_cmd);
469 if (ret_code)
470 goto read_nvm_buffer_aq_exit;
471
472 /* Increment counter for words already read and move offset to
473 * new read location
474 */
475 words_read += read_size;
476 offset += read_size;
477 } while (words_read < *words);
478
479 for (i = 0; i < *words; i++)
480 data[i] = le16_to_cpu(((__le16 *)data)[i]);
481
482read_nvm_buffer_aq_exit:
483 *words = words_read;
484 return ret_code;
485}
486
487/**
488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
489 * @hw: pointer to the HW structure
490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
491 * @words: (in) number of words to read; (out) number of words actually read
492 * @data: words read from the Shadow RAM
493 *
494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
495 * method.
496 **/
497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
498 u16 offset, u16 *words,
499 u16 *data)
500{
501 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
502 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
503
504 return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
505}
506
507/**
508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
509 * @hw: pointer to the HW structure
510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
511 * @words: (in) number of words to read; (out) number of words actually read
512 * @data: words read from the Shadow RAM
513 *
514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
515 * method. The buffer read is preceded by the NVM ownership take
516 * and followed by the release.
517 **/
518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
519 u16 *words, u16 *data)
520{
521 int ret_code = 0;
522
523 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
524 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
525 if (!ret_code) {
526 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
527 data);
528 i40e_release_nvm(hw);
529 }
530 } else {
531 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
532 }
533
534 return ret_code;
535}
536
537/**
538 * i40e_write_nvm_aq - Writes Shadow RAM.
539 * @hw: pointer to the HW structure.
540 * @module_pointer: module pointer location in words from the NVM beginning
541 * @offset: offset in words from module start
542 * @words: number of words to write
543 * @data: buffer with words to write to the Shadow RAM
544 * @last_command: tells the AdminQ that this is the last command
545 *
546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
547 **/
548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
549 u32 offset, u16 words, void *data,
550 bool last_command)
551{
552 struct i40e_asq_cmd_details cmd_details;
553 int ret_code = -EIO;
554
555 memset(&cmd_details, 0, sizeof(cmd_details));
556 cmd_details.wb_desc = &hw->nvm_wb_desc;
557
558 /* Here we are checking the SR limit only for the flat memory model.
559 * We cannot do it for the module-based model, as we did not acquire
560 * the NVM resource yet (we cannot get the module pointer value).
561 * Firmware will check the module-based model.
562 */
563 if ((offset + words) > hw->nvm.sr_size)
564 i40e_debug(hw, I40E_DEBUG_NVM,
565 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
566 (offset + words), hw->nvm.sr_size);
567 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
568 /* We can write only up to 4KB (one sector), in one AQ write */
569 i40e_debug(hw, I40E_DEBUG_NVM,
570 "NVM write fail error: tried to write %d words, limit is %d.\n",
571 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
572 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
573 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
574 /* A single write cannot spread over two sectors */
575 i40e_debug(hw, I40E_DEBUG_NVM,
576 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
577 offset, words);
578 else
579 ret_code = i40e_aq_update_nvm(hw, module_pointer,
580 2 * offset, /*bytes*/
581 2 * words, /*bytes*/
582 data, last_command, 0,
583 &cmd_details);
584
585 return ret_code;
586}
587
588/**
589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
590 * @hw: pointer to hardware structure
591 * @checksum: pointer to the checksum
592 *
593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
595 * is customer specific and unknown. Therefore, this function skips all maximum
596 * possible size of VPD (1kB).
597 **/
598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
599 u16 *checksum)
600{
601 struct i40e_virt_mem vmem;
602 u16 pcie_alt_module = 0;
603 u16 checksum_local = 0;
604 u16 vpd_module = 0;
605 int ret_code;
606 u16 *data;
607 u16 i = 0;
608
609 ret_code = i40e_allocate_virt_mem(hw, &vmem,
610 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
611 if (ret_code)
612 goto i40e_calc_nvm_checksum_exit;
613 data = (u16 *)vmem.va;
614
615 /* read pointer to VPD area */
616 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
617 if (ret_code) {
618 ret_code = -EIO;
619 goto i40e_calc_nvm_checksum_exit;
620 }
621
622 /* read pointer to PCIe Alt Auto-load module */
623 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
624 &pcie_alt_module);
625 if (ret_code) {
626 ret_code = -EIO;
627 goto i40e_calc_nvm_checksum_exit;
628 }
629
630 /* Calculate SW checksum that covers the whole 64kB shadow RAM
631 * except the VPD and PCIe ALT Auto-load modules
632 */
633 for (i = 0; i < hw->nvm.sr_size; i++) {
634 /* Read SR page */
635 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
636 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
637
638 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
639 if (ret_code) {
640 ret_code = -EIO;
641 goto i40e_calc_nvm_checksum_exit;
642 }
643 }
644
645 /* Skip Checksum word */
646 if (i == I40E_SR_SW_CHECKSUM_WORD)
647 continue;
648 /* Skip VPD module (convert byte size to word count) */
649 if ((i >= (u32)vpd_module) &&
650 (i < ((u32)vpd_module +
651 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
652 continue;
653 }
654 /* Skip PCIe ALT module (convert byte size to word count) */
655 if ((i >= (u32)pcie_alt_module) &&
656 (i < ((u32)pcie_alt_module +
657 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
658 continue;
659 }
660
661 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
662 }
663
664 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
665
666i40e_calc_nvm_checksum_exit:
667 i40e_free_virt_mem(hw, &vmem);
668 return ret_code;
669}
670
671/**
672 * i40e_update_nvm_checksum - Updates the NVM checksum
673 * @hw: pointer to hardware structure
674 *
675 * NVM ownership must be acquired before calling this function and released
676 * on ARQ completion event reception by caller.
677 * This function will commit SR to NVM.
678 **/
679int i40e_update_nvm_checksum(struct i40e_hw *hw)
680{
681 __le16 le_sum;
682 int ret_code;
683 u16 checksum;
684
685 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
686 if (!ret_code) {
687 le_sum = cpu_to_le16(checksum);
688 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
689 1, &le_sum, true);
690 }
691
692 return ret_code;
693}
694
695/**
696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
697 * @hw: pointer to hardware structure
698 * @checksum: calculated checksum
699 *
700 * Performs checksum calculation and validates the NVM SW checksum. If the
701 * caller does not need checksum, the value can be NULL.
702 **/
703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
704 u16 *checksum)
705{
706 u16 checksum_local = 0;
707 u16 checksum_sr = 0;
708 int ret_code = 0;
709
710 /* We must acquire the NVM lock in order to correctly synchronize the
711 * NVM accesses across multiple PFs. Without doing so it is possible
712 * for one of the PFs to read invalid data potentially indicating that
713 * the checksum is invalid.
714 */
715 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
716 if (ret_code)
717 return ret_code;
718 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
719 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
720 i40e_release_nvm(hw);
721 if (ret_code)
722 return ret_code;
723
724 /* Verify read checksum from EEPROM is the same as
725 * calculated checksum
726 */
727 if (checksum_local != checksum_sr)
728 ret_code = -EIO;
729
730 /* If the user cares, return the calculated checksum */
731 if (checksum)
732 *checksum = checksum_local;
733
734 return ret_code;
735}
736
737static int i40e_nvmupd_state_init(struct i40e_hw *hw,
738 struct i40e_nvm_access *cmd,
739 u8 *bytes, int *perrno);
740static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
741 struct i40e_nvm_access *cmd,
742 u8 *bytes, int *perrno);
743static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
744 struct i40e_nvm_access *cmd,
745 u8 *bytes, int *errno);
746static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
747 struct i40e_nvm_access *cmd,
748 int *perrno);
749static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
750 struct i40e_nvm_access *cmd,
751 int *perrno);
752static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
753 struct i40e_nvm_access *cmd,
754 u8 *bytes, int *perrno);
755static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
756 struct i40e_nvm_access *cmd,
757 u8 *bytes, int *perrno);
758static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
759 struct i40e_nvm_access *cmd,
760 u8 *bytes, int *perrno);
761static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
762 struct i40e_nvm_access *cmd,
763 u8 *bytes, int *perrno);
764static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
765 struct i40e_nvm_access *cmd,
766 u8 *bytes, int *perrno);
767static inline u8 i40e_nvmupd_get_module(u32 val)
768{
769 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
770}
771static inline u8 i40e_nvmupd_get_transaction(u32 val)
772{
773 return FIELD_GET(I40E_NVM_TRANS_MASK, val);
774}
775
776static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
777{
778 return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
779}
780
781static const char * const i40e_nvm_update_state_str[] = {
782 "I40E_NVMUPD_INVALID",
783 "I40E_NVMUPD_READ_CON",
784 "I40E_NVMUPD_READ_SNT",
785 "I40E_NVMUPD_READ_LCB",
786 "I40E_NVMUPD_READ_SA",
787 "I40E_NVMUPD_WRITE_ERA",
788 "I40E_NVMUPD_WRITE_CON",
789 "I40E_NVMUPD_WRITE_SNT",
790 "I40E_NVMUPD_WRITE_LCB",
791 "I40E_NVMUPD_WRITE_SA",
792 "I40E_NVMUPD_CSUM_CON",
793 "I40E_NVMUPD_CSUM_SA",
794 "I40E_NVMUPD_CSUM_LCB",
795 "I40E_NVMUPD_STATUS",
796 "I40E_NVMUPD_EXEC_AQ",
797 "I40E_NVMUPD_GET_AQ_RESULT",
798 "I40E_NVMUPD_GET_AQ_EVENT",
799};
800
801/**
802 * i40e_nvmupd_command - Process an NVM update command
803 * @hw: pointer to hardware structure
804 * @cmd: pointer to nvm update command
805 * @bytes: pointer to the data buffer
806 * @perrno: pointer to return error code
807 *
808 * Dispatches command depending on what update state is current
809 **/
810int i40e_nvmupd_command(struct i40e_hw *hw,
811 struct i40e_nvm_access *cmd,
812 u8 *bytes, int *perrno)
813{
814 enum i40e_nvmupd_cmd upd_cmd;
815 int status;
816
817 /* assume success */
818 *perrno = 0;
819
820 /* early check for status command and debug msgs */
821 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
822
823 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
824 i40e_nvm_update_state_str[upd_cmd],
825 hw->nvmupd_state,
826 hw->nvm_release_on_done, hw->nvm_wait_opcode,
827 cmd->command, cmd->config, cmd->offset, cmd->data_size);
828
829 if (upd_cmd == I40E_NVMUPD_INVALID) {
830 *perrno = -EFAULT;
831 i40e_debug(hw, I40E_DEBUG_NVM,
832 "i40e_nvmupd_validate_command returns %d errno %d\n",
833 upd_cmd, *perrno);
834 }
835
836 /* a status request returns immediately rather than
837 * going into the state machine
838 */
839 if (upd_cmd == I40E_NVMUPD_STATUS) {
840 if (!cmd->data_size) {
841 *perrno = -EFAULT;
842 return -EINVAL;
843 }
844
845 bytes[0] = hw->nvmupd_state;
846
847 if (cmd->data_size >= 4) {
848 bytes[1] = 0;
849 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
850 }
851
852 /* Clear error status on read */
853 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
854 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
855
856 return 0;
857 }
858
859 /* Clear status even it is not read and log */
860 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
861 i40e_debug(hw, I40E_DEBUG_NVM,
862 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
863 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
864 }
865
866 /* Acquire lock to prevent race condition where adminq_task
867 * can execute after i40e_nvmupd_nvm_read/write but before state
868 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
869 *
870 * During NVMUpdate, it is observed that lock could be held for
871 * ~5ms for most commands. However lock is held for ~60ms for
872 * NVMUPD_CSUM_LCB command.
873 */
874 mutex_lock(&hw->aq.arq_mutex);
875 switch (hw->nvmupd_state) {
876 case I40E_NVMUPD_STATE_INIT:
877 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
878 break;
879
880 case I40E_NVMUPD_STATE_READING:
881 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
882 break;
883
884 case I40E_NVMUPD_STATE_WRITING:
885 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
886 break;
887
888 case I40E_NVMUPD_STATE_INIT_WAIT:
889 case I40E_NVMUPD_STATE_WRITE_WAIT:
890 /* if we need to stop waiting for an event, clear
891 * the wait info and return before doing anything else
892 */
893 if (cmd->offset == 0xffff) {
894 i40e_nvmupd_clear_wait_state(hw);
895 status = 0;
896 break;
897 }
898
899 status = -EBUSY;
900 *perrno = -EBUSY;
901 break;
902
903 default:
904 /* invalid state, should never happen */
905 i40e_debug(hw, I40E_DEBUG_NVM,
906 "NVMUPD: no such state %d\n", hw->nvmupd_state);
907 status = -EOPNOTSUPP;
908 *perrno = -ESRCH;
909 break;
910 }
911
912 mutex_unlock(&hw->aq.arq_mutex);
913 return status;
914}
915
916/**
917 * i40e_nvmupd_state_init - Handle NVM update state Init
918 * @hw: pointer to hardware structure
919 * @cmd: pointer to nvm update command buffer
920 * @bytes: pointer to the data buffer
921 * @perrno: pointer to return error code
922 *
923 * Process legitimate commands of the Init state and conditionally set next
924 * state. Reject all other commands.
925 **/
926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
927 struct i40e_nvm_access *cmd,
928 u8 *bytes, int *perrno)
929{
930 enum i40e_nvmupd_cmd upd_cmd;
931 int status = 0;
932
933 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
934
935 switch (upd_cmd) {
936 case I40E_NVMUPD_READ_SA:
937 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
938 if (status) {
939 *perrno = i40e_aq_rc_to_posix(status,
940 hw->aq.asq_last_status);
941 } else {
942 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
943 i40e_release_nvm(hw);
944 }
945 break;
946
947 case I40E_NVMUPD_READ_SNT:
948 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
949 if (status) {
950 *perrno = i40e_aq_rc_to_posix(status,
951 hw->aq.asq_last_status);
952 } else {
953 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
954 if (status)
955 i40e_release_nvm(hw);
956 else
957 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
958 }
959 break;
960
961 case I40E_NVMUPD_WRITE_ERA:
962 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
963 if (status) {
964 *perrno = i40e_aq_rc_to_posix(status,
965 hw->aq.asq_last_status);
966 } else {
967 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
968 if (status) {
969 i40e_release_nvm(hw);
970 } else {
971 hw->nvm_release_on_done = true;
972 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
973 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
974 }
975 }
976 break;
977
978 case I40E_NVMUPD_WRITE_SA:
979 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
980 if (status) {
981 *perrno = i40e_aq_rc_to_posix(status,
982 hw->aq.asq_last_status);
983 } else {
984 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
985 if (status) {
986 i40e_release_nvm(hw);
987 } else {
988 hw->nvm_release_on_done = true;
989 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
991 }
992 }
993 break;
994
995 case I40E_NVMUPD_WRITE_SNT:
996 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
997 if (status) {
998 *perrno = i40e_aq_rc_to_posix(status,
999 hw->aq.asq_last_status);
1000 } else {
1001 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002 if (status) {
1003 i40e_release_nvm(hw);
1004 } else {
1005 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007 }
1008 }
1009 break;
1010
1011 case I40E_NVMUPD_CSUM_SA:
1012 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013 if (status) {
1014 *perrno = i40e_aq_rc_to_posix(status,
1015 hw->aq.asq_last_status);
1016 } else {
1017 status = i40e_update_nvm_checksum(hw);
1018 if (status) {
1019 *perrno = hw->aq.asq_last_status ?
1020 i40e_aq_rc_to_posix(status,
1021 hw->aq.asq_last_status) :
1022 -EIO;
1023 i40e_release_nvm(hw);
1024 } else {
1025 hw->nvm_release_on_done = true;
1026 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028 }
1029 }
1030 break;
1031
1032 case I40E_NVMUPD_EXEC_AQ:
1033 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034 break;
1035
1036 case I40E_NVMUPD_GET_AQ_RESULT:
1037 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038 break;
1039
1040 case I40E_NVMUPD_GET_AQ_EVENT:
1041 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042 break;
1043
1044 default:
1045 i40e_debug(hw, I40E_DEBUG_NVM,
1046 "NVMUPD: bad cmd %s in init state\n",
1047 i40e_nvm_update_state_str[upd_cmd]);
1048 status = -EIO;
1049 *perrno = -ESRCH;
1050 break;
1051 }
1052 return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held. Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066 struct i40e_nvm_access *cmd,
1067 u8 *bytes, int *perrno)
1068{
1069 enum i40e_nvmupd_cmd upd_cmd;
1070 int status = 0;
1071
1072 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074 switch (upd_cmd) {
1075 case I40E_NVMUPD_READ_SA:
1076 case I40E_NVMUPD_READ_CON:
1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078 break;
1079
1080 case I40E_NVMUPD_READ_LCB:
1081 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082 i40e_release_nvm(hw);
1083 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084 break;
1085
1086 default:
1087 i40e_debug(hw, I40E_DEBUG_NVM,
1088 "NVMUPD: bad cmd %s in reading state.\n",
1089 i40e_nvm_update_state_str[upd_cmd]);
1090 status = -EOPNOTSUPP;
1091 *perrno = -ESRCH;
1092 break;
1093 }
1094 return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held. Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108 struct i40e_nvm_access *cmd,
1109 u8 *bytes, int *perrno)
1110{
1111 enum i40e_nvmupd_cmd upd_cmd;
1112 bool retry_attempt = false;
1113 int status = 0;
1114
1115 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118 switch (upd_cmd) {
1119 case I40E_NVMUPD_WRITE_CON:
1120 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121 if (!status) {
1122 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124 }
1125 break;
1126
1127 case I40E_NVMUPD_WRITE_LCB:
1128 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129 if (status) {
1130 *perrno = hw->aq.asq_last_status ?
1131 i40e_aq_rc_to_posix(status,
1132 hw->aq.asq_last_status) :
1133 -EIO;
1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135 } else {
1136 hw->nvm_release_on_done = true;
1137 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139 }
1140 break;
1141
1142 case I40E_NVMUPD_CSUM_CON:
1143 /* Assumes the caller has acquired the nvm */
1144 status = i40e_update_nvm_checksum(hw);
1145 if (status) {
1146 *perrno = hw->aq.asq_last_status ?
1147 i40e_aq_rc_to_posix(status,
1148 hw->aq.asq_last_status) :
1149 -EIO;
1150 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151 } else {
1152 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154 }
1155 break;
1156
1157 case I40E_NVMUPD_CSUM_LCB:
1158 /* Assumes the caller has acquired the nvm */
1159 status = i40e_update_nvm_checksum(hw);
1160 if (status) {
1161 *perrno = hw->aq.asq_last_status ?
1162 i40e_aq_rc_to_posix(status,
1163 hw->aq.asq_last_status) :
1164 -EIO;
1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166 } else {
1167 hw->nvm_release_on_done = true;
1168 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170 }
1171 break;
1172
1173 default:
1174 i40e_debug(hw, I40E_DEBUG_NVM,
1175 "NVMUPD: bad cmd %s in writing state.\n",
1176 i40e_nvm_update_state_str[upd_cmd]);
1177 status = -EOPNOTSUPP;
1178 *perrno = -ESRCH;
1179 break;
1180 }
1181
1182 /* In some circumstances, a multi-write transaction takes longer
1183 * than the default 3 minute timeout on the write semaphore. If
1184 * the write failed with an EBUSY status, this is likely the problem,
1185 * so here we try to reacquire the semaphore then retry the write.
1186 * We only do one retry, then give up.
1187 */
1188 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189 !retry_attempt) {
1190 u32 old_asq_status = hw->aq.asq_last_status;
1191 int old_status = status;
1192 u32 gtime;
1193
1194 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196 i40e_debug(hw, I40E_DEBUG_ALL,
1197 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198 gtime, hw->nvm.hw_semaphore_timeout);
1199 i40e_release_nvm(hw);
1200 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201 if (status) {
1202 i40e_debug(hw, I40E_DEBUG_ALL,
1203 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204 hw->aq.asq_last_status);
1205 status = old_status;
1206 hw->aq.asq_last_status = old_asq_status;
1207 } else {
1208 retry_attempt = true;
1209 goto retry;
1210 }
1211 }
1212 }
1213
1214 return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223 i40e_debug(hw, I40E_DEBUG_NVM,
1224 "NVMUPD: clearing wait on opcode 0x%04x\n",
1225 hw->nvm_wait_opcode);
1226
1227 if (hw->nvm_release_on_done) {
1228 i40e_release_nvm(hw);
1229 hw->nvm_release_on_done = false;
1230 }
1231 hw->nvm_wait_opcode = 0;
1232
1233 if (hw->aq.arq_last_status) {
1234 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235 return;
1236 }
1237
1238 switch (hw->nvmupd_state) {
1239 case I40E_NVMUPD_STATE_INIT_WAIT:
1240 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241 break;
1242
1243 case I40E_NVMUPD_STATE_WRITE_WAIT:
1244 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245 break;
1246
1247 default:
1248 break;
1249 }
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259 struct i40e_aq_desc *desc)
1260{
1261 u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263 if (opcode == hw->nvm_wait_opcode) {
1264 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265 i40e_nvmupd_clear_wait_state(hw);
1266 }
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278 struct i40e_nvm_access *cmd,
1279 int *perrno)
1280{
1281 enum i40e_nvmupd_cmd upd_cmd;
1282 u8 module, transaction;
1283
1284 /* anything that doesn't match a recognized case is an error */
1285 upd_cmd = I40E_NVMUPD_INVALID;
1286
1287 transaction = i40e_nvmupd_get_transaction(cmd->config);
1288 module = i40e_nvmupd_get_module(cmd->config);
1289
1290 /* limits on data size */
1291 if ((cmd->data_size < 1) ||
1292 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293 i40e_debug(hw, I40E_DEBUG_NVM,
1294 "i40e_nvmupd_validate_command data_size %d\n",
1295 cmd->data_size);
1296 *perrno = -EFAULT;
1297 return I40E_NVMUPD_INVALID;
1298 }
1299
1300 switch (cmd->command) {
1301 case I40E_NVM_READ:
1302 switch (transaction) {
1303 case I40E_NVM_CON:
1304 upd_cmd = I40E_NVMUPD_READ_CON;
1305 break;
1306 case I40E_NVM_SNT:
1307 upd_cmd = I40E_NVMUPD_READ_SNT;
1308 break;
1309 case I40E_NVM_LCB:
1310 upd_cmd = I40E_NVMUPD_READ_LCB;
1311 break;
1312 case I40E_NVM_SA:
1313 upd_cmd = I40E_NVMUPD_READ_SA;
1314 break;
1315 case I40E_NVM_EXEC:
1316 if (module == 0xf)
1317 upd_cmd = I40E_NVMUPD_STATUS;
1318 else if (module == 0)
1319 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320 break;
1321 case I40E_NVM_AQE:
1322 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323 break;
1324 }
1325 break;
1326
1327 case I40E_NVM_WRITE:
1328 switch (transaction) {
1329 case I40E_NVM_CON:
1330 upd_cmd = I40E_NVMUPD_WRITE_CON;
1331 break;
1332 case I40E_NVM_SNT:
1333 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334 break;
1335 case I40E_NVM_LCB:
1336 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337 break;
1338 case I40E_NVM_SA:
1339 upd_cmd = I40E_NVMUPD_WRITE_SA;
1340 break;
1341 case I40E_NVM_ERA:
1342 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343 break;
1344 case I40E_NVM_CSUM:
1345 upd_cmd = I40E_NVMUPD_CSUM_CON;
1346 break;
1347 case (I40E_NVM_CSUM|I40E_NVM_SA):
1348 upd_cmd = I40E_NVMUPD_CSUM_SA;
1349 break;
1350 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352 break;
1353 case I40E_NVM_EXEC:
1354 if (module == 0)
1355 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356 break;
1357 }
1358 break;
1359 }
1360
1361 return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374 struct i40e_nvm_access *cmd,
1375 u8 *bytes, int *perrno)
1376{
1377 struct i40e_asq_cmd_details cmd_details;
1378 struct i40e_aq_desc *aq_desc;
1379 u32 buff_size = 0;
1380 u8 *buff = NULL;
1381 u32 aq_desc_len;
1382 u32 aq_data_len;
1383 int status;
1384
1385 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386 if (cmd->offset == 0xffff)
1387 return 0;
1388
1389 memset(&cmd_details, 0, sizeof(cmd_details));
1390 cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392 aq_desc_len = sizeof(struct i40e_aq_desc);
1393 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395 /* get the aq descriptor */
1396 if (cmd->data_size < aq_desc_len) {
1397 i40e_debug(hw, I40E_DEBUG_NVM,
1398 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399 cmd->data_size, aq_desc_len);
1400 *perrno = -EINVAL;
1401 return -EINVAL;
1402 }
1403 aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405 /* if data buffer needed, make sure it's ready */
1406 aq_data_len = cmd->data_size - aq_desc_len;
1407 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408 if (buff_size) {
1409 if (!hw->nvm_buff.va) {
1410 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411 hw->aq.asq_buf_size);
1412 if (status)
1413 i40e_debug(hw, I40E_DEBUG_NVM,
1414 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415 status);
1416 }
1417
1418 if (hw->nvm_buff.va) {
1419 buff = hw->nvm_buff.va;
1420 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421 }
1422 }
1423
1424 if (cmd->offset)
1425 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427 /* and away we go! */
1428 status = i40e_asq_send_command(hw, aq_desc, buff,
1429 buff_size, &cmd_details);
1430 if (status) {
1431 i40e_debug(hw, I40E_DEBUG_NVM,
1432 "%s err %pe aq_err %s\n",
1433 __func__, ERR_PTR(status),
1434 i40e_aq_str(hw, hw->aq.asq_last_status));
1435 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436 return status;
1437 }
1438
1439 /* should we wait for a followup event? */
1440 if (cmd->offset) {
1441 hw->nvm_wait_opcode = cmd->offset;
1442 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443 }
1444
1445 return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458 struct i40e_nvm_access *cmd,
1459 u8 *bytes, int *perrno)
1460{
1461 u32 aq_total_len;
1462 u32 aq_desc_len;
1463 int remainder;
1464 u8 *buff;
1465
1466 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468 aq_desc_len = sizeof(struct i40e_aq_desc);
1469 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471 /* check offset range */
1472 if (cmd->offset > aq_total_len) {
1473 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474 __func__, cmd->offset, aq_total_len);
1475 *perrno = -EINVAL;
1476 return -EINVAL;
1477 }
1478
1479 /* check copylength range */
1480 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481 int new_len = aq_total_len - cmd->offset;
1482
1483 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484 __func__, cmd->data_size, new_len);
1485 cmd->data_size = new_len;
1486 }
1487
1488 remainder = cmd->data_size;
1489 if (cmd->offset < aq_desc_len) {
1490 u32 len = aq_desc_len - cmd->offset;
1491
1492 len = min(len, cmd->data_size);
1493 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494 __func__, cmd->offset, cmd->offset + len);
1495
1496 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497 memcpy(bytes, buff, len);
1498
1499 bytes += len;
1500 remainder -= len;
1501 buff = hw->nvm_buff.va;
1502 } else {
1503 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504 }
1505
1506 if (remainder > 0) {
1507 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510 __func__, start_byte, start_byte + remainder);
1511 memcpy(bytes, buff, remainder);
1512 }
1513
1514 return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527 struct i40e_nvm_access *cmd,
1528 u8 *bytes, int *perrno)
1529{
1530 u32 aq_total_len;
1531 u32 aq_desc_len;
1532
1533 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535 aq_desc_len = sizeof(struct i40e_aq_desc);
1536 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538 /* check copylength range */
1539 if (cmd->data_size > aq_total_len) {
1540 i40e_debug(hw, I40E_DEBUG_NVM,
1541 "%s: copy length %d too big, trimming to %d\n",
1542 __func__, cmd->data_size, aq_total_len);
1543 cmd->data_size = aq_total_len;
1544 }
1545
1546 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548 return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561 struct i40e_nvm_access *cmd,
1562 u8 *bytes, int *perrno)
1563{
1564 struct i40e_asq_cmd_details cmd_details;
1565 u8 module, transaction;
1566 int status;
1567 bool last;
1568
1569 transaction = i40e_nvmupd_get_transaction(cmd->config);
1570 module = i40e_nvmupd_get_module(cmd->config);
1571 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573 memset(&cmd_details, 0, sizeof(cmd_details));
1574 cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577 bytes, last, &cmd_details);
1578 if (status) {
1579 i40e_debug(hw, I40E_DEBUG_NVM,
1580 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1581 module, cmd->offset, cmd->data_size);
1582 i40e_debug(hw, I40E_DEBUG_NVM,
1583 "i40e_nvmupd_nvm_read status %d aq %d\n",
1584 status, hw->aq.asq_last_status);
1585 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586 }
1587
1588 return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600 struct i40e_nvm_access *cmd,
1601 int *perrno)
1602{
1603 struct i40e_asq_cmd_details cmd_details;
1604 u8 module, transaction;
1605 int status = 0;
1606 bool last;
1607
1608 transaction = i40e_nvmupd_get_transaction(cmd->config);
1609 module = i40e_nvmupd_get_module(cmd->config);
1610 last = (transaction & I40E_NVM_LCB);
1611
1612 memset(&cmd_details, 0, sizeof(cmd_details));
1613 cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616 last, &cmd_details);
1617 if (status) {
1618 i40e_debug(hw, I40E_DEBUG_NVM,
1619 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1620 module, cmd->offset, cmd->data_size);
1621 i40e_debug(hw, I40E_DEBUG_NVM,
1622 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623 status, hw->aq.asq_last_status);
1624 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625 }
1626
1627 return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640 struct i40e_nvm_access *cmd,
1641 u8 *bytes, int *perrno)
1642{
1643 struct i40e_asq_cmd_details cmd_details;
1644 u8 module, transaction;
1645 u8 preservation_flags;
1646 int status = 0;
1647 bool last;
1648
1649 transaction = i40e_nvmupd_get_transaction(cmd->config);
1650 module = i40e_nvmupd_get_module(cmd->config);
1651 last = (transaction & I40E_NVM_LCB);
1652 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654 memset(&cmd_details, 0, sizeof(cmd_details));
1655 cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658 (u16)cmd->data_size, bytes, last,
1659 preservation_flags, &cmd_details);
1660 if (status) {
1661 i40e_debug(hw, I40E_DEBUG_NVM,
1662 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663 module, cmd->offset, cmd->data_size);
1664 i40e_debug(hw, I40E_DEBUG_NVM,
1665 "i40e_nvmupd_nvm_write status %d aq %d\n",
1666 status, hw->aq.asq_last_status);
1667 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668 }
1669
1670 return status;
1671}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "i40e_prototype.h"
5
6/**
7 * i40e_init_nvm_ops - Initialize NVM function pointers
8 * @hw: pointer to the HW structure
9 *
10 * Setup the function pointers and the NVM info structure. Should be called
11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
12 * Please notice that the NVM term is used here (& in all methods covered
13 * in this file) as an equivalent of the FLASH part mapped into the SR.
14 * We are accessing FLASH always thru the Shadow RAM.
15 **/
16i40e_status i40e_init_nvm(struct i40e_hw *hw)
17{
18 struct i40e_nvm_info *nvm = &hw->nvm;
19 i40e_status ret_code = 0;
20 u32 fla, gens;
21 u8 sr_size;
22
23 /* The SR size is stored regardless of the nvm programming mode
24 * as the blank mode may be used in the factory line.
25 */
26 gens = rd32(hw, I40E_GLNVM_GENS);
27 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
28 I40E_GLNVM_GENS_SR_SIZE_SHIFT);
29 /* Switching to words (sr_size contains power of 2KB) */
30 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
31
32 /* Check if we are in the normal or blank NVM programming mode */
33 fla = rd32(hw, I40E_GLNVM_FLA);
34 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
35 /* Max NVM timeout */
36 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
37 nvm->blank_nvm_mode = false;
38 } else { /* Blank programming mode */
39 nvm->blank_nvm_mode = true;
40 ret_code = I40E_ERR_NVM_BLANK_MODE;
41 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
42 }
43
44 return ret_code;
45}
46
47/**
48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
49 * @hw: pointer to the HW structure
50 * @access: NVM access type (read or write)
51 *
52 * This function will request NVM ownership for reading
53 * via the proper Admin Command.
54 **/
55i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
56 enum i40e_aq_resource_access_type access)
57{
58 i40e_status ret_code = 0;
59 u64 gtime, timeout;
60 u64 time_left = 0;
61
62 if (hw->nvm.blank_nvm_mode)
63 goto i40e_i40e_acquire_nvm_exit;
64
65 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
66 0, &time_left, NULL);
67 /* Reading the Global Device Timer */
68 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
69
70 /* Store the timeout */
71 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
72
73 if (ret_code)
74 i40e_debug(hw, I40E_DEBUG_NVM,
75 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
76 access, time_left, ret_code, hw->aq.asq_last_status);
77
78 if (ret_code && time_left) {
79 /* Poll until the current NVM owner timeouts */
80 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
81 while ((gtime < timeout) && time_left) {
82 usleep_range(10000, 20000);
83 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
84 ret_code = i40e_aq_request_resource(hw,
85 I40E_NVM_RESOURCE_ID,
86 access, 0, &time_left,
87 NULL);
88 if (!ret_code) {
89 hw->nvm.hw_semaphore_timeout =
90 I40E_MS_TO_GTIME(time_left) + gtime;
91 break;
92 }
93 }
94 if (ret_code) {
95 hw->nvm.hw_semaphore_timeout = 0;
96 i40e_debug(hw, I40E_DEBUG_NVM,
97 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
98 time_left, ret_code, hw->aq.asq_last_status);
99 }
100 }
101
102i40e_i40e_acquire_nvm_exit:
103 return ret_code;
104}
105
106/**
107 * i40e_release_nvm - Generic request for releasing the NVM ownership
108 * @hw: pointer to the HW structure
109 *
110 * This function will release NVM resource via the proper Admin Command.
111 **/
112void i40e_release_nvm(struct i40e_hw *hw)
113{
114 i40e_status ret_code = I40E_SUCCESS;
115 u32 total_delay = 0;
116
117 if (hw->nvm.blank_nvm_mode)
118 return;
119
120 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
121
122 /* there are some rare cases when trying to release the resource
123 * results in an admin Q timeout, so handle them correctly
124 */
125 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
126 (total_delay < hw->aq.asq_cmd_timeout)) {
127 usleep_range(1000, 2000);
128 ret_code = i40e_aq_release_resource(hw,
129 I40E_NVM_RESOURCE_ID,
130 0, NULL);
131 total_delay++;
132 }
133}
134
135/**
136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
137 * @hw: pointer to the HW structure
138 *
139 * Polls the SRCTL Shadow RAM register done bit.
140 **/
141static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
142{
143 i40e_status ret_code = I40E_ERR_TIMEOUT;
144 u32 srctl, wait_cnt;
145
146 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
147 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
148 srctl = rd32(hw, I40E_GLNVM_SRCTL);
149 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
150 ret_code = 0;
151 break;
152 }
153 udelay(5);
154 }
155 if (ret_code == I40E_ERR_TIMEOUT)
156 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
157 return ret_code;
158}
159
160/**
161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
162 * @hw: pointer to the HW structure
163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
164 * @data: word read from the Shadow RAM
165 *
166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
167 **/
168static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
169 u16 *data)
170{
171 i40e_status ret_code = I40E_ERR_TIMEOUT;
172 u32 sr_reg;
173
174 if (offset >= hw->nvm.sr_size) {
175 i40e_debug(hw, I40E_DEBUG_NVM,
176 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
177 offset, hw->nvm.sr_size);
178 ret_code = I40E_ERR_PARAM;
179 goto read_nvm_exit;
180 }
181
182 /* Poll the done bit first */
183 ret_code = i40e_poll_sr_srctl_done_bit(hw);
184 if (!ret_code) {
185 /* Write the address and start reading */
186 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
187 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
188 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
189
190 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
191 ret_code = i40e_poll_sr_srctl_done_bit(hw);
192 if (!ret_code) {
193 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
194 *data = (u16)((sr_reg &
195 I40E_GLNVM_SRDATA_RDDATA_MASK)
196 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
197 }
198 }
199 if (ret_code)
200 i40e_debug(hw, I40E_DEBUG_NVM,
201 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
202 offset);
203
204read_nvm_exit:
205 return ret_code;
206}
207
208/**
209 * i40e_read_nvm_aq - Read Shadow RAM.
210 * @hw: pointer to the HW structure.
211 * @module_pointer: module pointer location in words from the NVM beginning
212 * @offset: offset in words from module start
213 * @words: number of words to write
214 * @data: buffer with words to write to the Shadow RAM
215 * @last_command: tells the AdminQ that this is the last command
216 *
217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
218 **/
219static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
220 u8 module_pointer, u32 offset,
221 u16 words, void *data,
222 bool last_command)
223{
224 i40e_status ret_code = I40E_ERR_NVM;
225 struct i40e_asq_cmd_details cmd_details;
226
227 memset(&cmd_details, 0, sizeof(cmd_details));
228 cmd_details.wb_desc = &hw->nvm_wb_desc;
229
230 /* Here we are checking the SR limit only for the flat memory model.
231 * We cannot do it for the module-based model, as we did not acquire
232 * the NVM resource yet (we cannot get the module pointer value).
233 * Firmware will check the module-based model.
234 */
235 if ((offset + words) > hw->nvm.sr_size)
236 i40e_debug(hw, I40E_DEBUG_NVM,
237 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
238 (offset + words), hw->nvm.sr_size);
239 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
240 /* We can write only up to 4KB (one sector), in one AQ write */
241 i40e_debug(hw, I40E_DEBUG_NVM,
242 "NVM write fail error: tried to write %d words, limit is %d.\n",
243 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
244 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
245 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
246 /* A single write cannot spread over two sectors */
247 i40e_debug(hw, I40E_DEBUG_NVM,
248 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
249 offset, words);
250 else
251 ret_code = i40e_aq_read_nvm(hw, module_pointer,
252 2 * offset, /*bytes*/
253 2 * words, /*bytes*/
254 data, last_command, &cmd_details);
255
256 return ret_code;
257}
258
259/**
260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
261 * @hw: pointer to the HW structure
262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
263 * @data: word read from the Shadow RAM
264 *
265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
266 **/
267static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
268 u16 *data)
269{
270 i40e_status ret_code = I40E_ERR_TIMEOUT;
271
272 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
273 *data = le16_to_cpu(*(__le16 *)data);
274
275 return ret_code;
276}
277
278/**
279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
280 * @hw: pointer to the HW structure
281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
282 * @data: word read from the Shadow RAM
283 *
284 * Reads one 16 bit word from the Shadow RAM.
285 *
286 * Do not use this function except in cases where the nvm lock is already
287 * taken via i40e_acquire_nvm().
288 **/
289static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
290 u16 offset, u16 *data)
291{
292 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
293 return i40e_read_nvm_word_aq(hw, offset, data);
294
295 return i40e_read_nvm_word_srctl(hw, offset, data);
296}
297
298/**
299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
300 * @hw: pointer to the HW structure
301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
302 * @data: word read from the Shadow RAM
303 *
304 * Reads one 16 bit word from the Shadow RAM.
305 **/
306i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
307 u16 *data)
308{
309 i40e_status ret_code = 0;
310
311 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
312 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
313 if (ret_code)
314 return ret_code;
315
316 ret_code = __i40e_read_nvm_word(hw, offset, data);
317
318 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
319 i40e_release_nvm(hw);
320
321 return ret_code;
322}
323
324/**
325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
326 * @hw: pointer to the HW structure
327 * @module_ptr: Pointer to module in words with respect to NVM beginning
328 * @offset: offset in words from module start
329 * @words_data_size: Words to read from NVM
330 * @data_ptr: Pointer to memory location where resulting buffer will be stored
331 **/
332i40e_status i40e_read_nvm_module_data(struct i40e_hw *hw,
333 u8 module_ptr, u16 offset,
334 u16 words_data_size,
335 u16 *data_ptr)
336{
337 i40e_status status;
338 u16 ptr_value = 0;
339 u32 flat_offset;
340
341 if (module_ptr != 0) {
342 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
343 if (status) {
344 i40e_debug(hw, I40E_DEBUG_ALL,
345 "Reading nvm word failed.Error code: %d.\n",
346 status);
347 return I40E_ERR_NVM;
348 }
349 }
350#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
351#define I40E_NVM_INVALID_VAL 0xFFFF
352
353 /* Pointer not initialized */
354 if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
355 ptr_value == I40E_NVM_INVALID_VAL)
356 return I40E_ERR_BAD_PTR;
357
358 /* Check whether the module is in SR mapped area or outside */
359 if (ptr_value & I40E_PTR_TYPE) {
360 /* Pointer points outside of the Shared RAM mapped area */
361 ptr_value &= ~I40E_PTR_TYPE;
362
363 /* PtrValue in 4kB units, need to convert to words */
364 ptr_value /= 2;
365 flat_offset = ((u32)ptr_value * 0x1000) + (u32)offset;
366 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
367 if (!status) {
368 status = i40e_aq_read_nvm(hw, 0, 2 * flat_offset,
369 2 * words_data_size,
370 data_ptr, true, NULL);
371 i40e_release_nvm(hw);
372 if (status) {
373 i40e_debug(hw, I40E_DEBUG_ALL,
374 "Reading nvm aq failed.Error code: %d.\n",
375 status);
376 return I40E_ERR_NVM;
377 }
378 } else {
379 return I40E_ERR_NVM;
380 }
381 } else {
382 /* Read from the Shadow RAM */
383 status = i40e_read_nvm_buffer(hw, ptr_value + offset,
384 &words_data_size, data_ptr);
385 if (status) {
386 i40e_debug(hw, I40E_DEBUG_ALL,
387 "Reading nvm buffer failed.Error code: %d.\n",
388 status);
389 }
390 }
391
392 return status;
393}
394
395/**
396 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
397 * @hw: pointer to the HW structure
398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
399 * @words: (in) number of words to read; (out) number of words actually read
400 * @data: words read from the Shadow RAM
401 *
402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
403 * method. The buffer read is preceded by the NVM ownership take
404 * and followed by the release.
405 **/
406static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
407 u16 *words, u16 *data)
408{
409 i40e_status ret_code = 0;
410 u16 index, word;
411
412 /* Loop thru the selected region */
413 for (word = 0; word < *words; word++) {
414 index = offset + word;
415 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
416 if (ret_code)
417 break;
418 }
419
420 /* Update the number of words read from the Shadow RAM */
421 *words = word;
422
423 return ret_code;
424}
425
426/**
427 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
428 * @hw: pointer to the HW structure
429 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
430 * @words: (in) number of words to read; (out) number of words actually read
431 * @data: words read from the Shadow RAM
432 *
433 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
434 * method. The buffer read is preceded by the NVM ownership take
435 * and followed by the release.
436 **/
437static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
438 u16 *words, u16 *data)
439{
440 i40e_status ret_code;
441 u16 read_size;
442 bool last_cmd = false;
443 u16 words_read = 0;
444 u16 i = 0;
445
446 do {
447 /* Calculate number of bytes we should read in this step.
448 * FVL AQ do not allow to read more than one page at a time or
449 * to cross page boundaries.
450 */
451 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
452 read_size = min(*words,
453 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
454 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
455 else
456 read_size = min((*words - words_read),
457 I40E_SR_SECTOR_SIZE_IN_WORDS);
458
459 /* Check if this is last command, if so set proper flag */
460 if ((words_read + read_size) >= *words)
461 last_cmd = true;
462
463 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
464 data + words_read, last_cmd);
465 if (ret_code)
466 goto read_nvm_buffer_aq_exit;
467
468 /* Increment counter for words already read and move offset to
469 * new read location
470 */
471 words_read += read_size;
472 offset += read_size;
473 } while (words_read < *words);
474
475 for (i = 0; i < *words; i++)
476 data[i] = le16_to_cpu(((__le16 *)data)[i]);
477
478read_nvm_buffer_aq_exit:
479 *words = words_read;
480 return ret_code;
481}
482
483/**
484 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
485 * @hw: pointer to the HW structure
486 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
487 * @words: (in) number of words to read; (out) number of words actually read
488 * @data: words read from the Shadow RAM
489 *
490 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
491 * method.
492 **/
493static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
494 u16 offset, u16 *words,
495 u16 *data)
496{
497 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
498 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
499
500 return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
501}
502
503/**
504 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
505 * @hw: pointer to the HW structure
506 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
507 * @words: (in) number of words to read; (out) number of words actually read
508 * @data: words read from the Shadow RAM
509 *
510 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
511 * method. The buffer read is preceded by the NVM ownership take
512 * and followed by the release.
513 **/
514i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
515 u16 *words, u16 *data)
516{
517 i40e_status ret_code = 0;
518
519 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
520 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
521 if (!ret_code) {
522 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
523 data);
524 i40e_release_nvm(hw);
525 }
526 } else {
527 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
528 }
529
530 return ret_code;
531}
532
533/**
534 * i40e_write_nvm_aq - Writes Shadow RAM.
535 * @hw: pointer to the HW structure.
536 * @module_pointer: module pointer location in words from the NVM beginning
537 * @offset: offset in words from module start
538 * @words: number of words to write
539 * @data: buffer with words to write to the Shadow RAM
540 * @last_command: tells the AdminQ that this is the last command
541 *
542 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
543 **/
544static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
545 u32 offset, u16 words, void *data,
546 bool last_command)
547{
548 i40e_status ret_code = I40E_ERR_NVM;
549 struct i40e_asq_cmd_details cmd_details;
550
551 memset(&cmd_details, 0, sizeof(cmd_details));
552 cmd_details.wb_desc = &hw->nvm_wb_desc;
553
554 /* Here we are checking the SR limit only for the flat memory model.
555 * We cannot do it for the module-based model, as we did not acquire
556 * the NVM resource yet (we cannot get the module pointer value).
557 * Firmware will check the module-based model.
558 */
559 if ((offset + words) > hw->nvm.sr_size)
560 i40e_debug(hw, I40E_DEBUG_NVM,
561 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
562 (offset + words), hw->nvm.sr_size);
563 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
564 /* We can write only up to 4KB (one sector), in one AQ write */
565 i40e_debug(hw, I40E_DEBUG_NVM,
566 "NVM write fail error: tried to write %d words, limit is %d.\n",
567 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
568 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
569 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
570 /* A single write cannot spread over two sectors */
571 i40e_debug(hw, I40E_DEBUG_NVM,
572 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
573 offset, words);
574 else
575 ret_code = i40e_aq_update_nvm(hw, module_pointer,
576 2 * offset, /*bytes*/
577 2 * words, /*bytes*/
578 data, last_command, 0,
579 &cmd_details);
580
581 return ret_code;
582}
583
584/**
585 * i40e_calc_nvm_checksum - Calculates and returns the checksum
586 * @hw: pointer to hardware structure
587 * @checksum: pointer to the checksum
588 *
589 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
590 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
591 * is customer specific and unknown. Therefore, this function skips all maximum
592 * possible size of VPD (1kB).
593 **/
594static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
595 u16 *checksum)
596{
597 i40e_status ret_code;
598 struct i40e_virt_mem vmem;
599 u16 pcie_alt_module = 0;
600 u16 checksum_local = 0;
601 u16 vpd_module = 0;
602 u16 *data;
603 u16 i = 0;
604
605 ret_code = i40e_allocate_virt_mem(hw, &vmem,
606 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
607 if (ret_code)
608 goto i40e_calc_nvm_checksum_exit;
609 data = (u16 *)vmem.va;
610
611 /* read pointer to VPD area */
612 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
613 if (ret_code) {
614 ret_code = I40E_ERR_NVM_CHECKSUM;
615 goto i40e_calc_nvm_checksum_exit;
616 }
617
618 /* read pointer to PCIe Alt Auto-load module */
619 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
620 &pcie_alt_module);
621 if (ret_code) {
622 ret_code = I40E_ERR_NVM_CHECKSUM;
623 goto i40e_calc_nvm_checksum_exit;
624 }
625
626 /* Calculate SW checksum that covers the whole 64kB shadow RAM
627 * except the VPD and PCIe ALT Auto-load modules
628 */
629 for (i = 0; i < hw->nvm.sr_size; i++) {
630 /* Read SR page */
631 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
632 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
633
634 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
635 if (ret_code) {
636 ret_code = I40E_ERR_NVM_CHECKSUM;
637 goto i40e_calc_nvm_checksum_exit;
638 }
639 }
640
641 /* Skip Checksum word */
642 if (i == I40E_SR_SW_CHECKSUM_WORD)
643 continue;
644 /* Skip VPD module (convert byte size to word count) */
645 if ((i >= (u32)vpd_module) &&
646 (i < ((u32)vpd_module +
647 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
648 continue;
649 }
650 /* Skip PCIe ALT module (convert byte size to word count) */
651 if ((i >= (u32)pcie_alt_module) &&
652 (i < ((u32)pcie_alt_module +
653 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
654 continue;
655 }
656
657 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
658 }
659
660 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
661
662i40e_calc_nvm_checksum_exit:
663 i40e_free_virt_mem(hw, &vmem);
664 return ret_code;
665}
666
667/**
668 * i40e_update_nvm_checksum - Updates the NVM checksum
669 * @hw: pointer to hardware structure
670 *
671 * NVM ownership must be acquired before calling this function and released
672 * on ARQ completion event reception by caller.
673 * This function will commit SR to NVM.
674 **/
675i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
676{
677 i40e_status ret_code;
678 u16 checksum;
679 __le16 le_sum;
680
681 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
682 le_sum = cpu_to_le16(checksum);
683 if (!ret_code)
684 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
685 1, &le_sum, true);
686
687 return ret_code;
688}
689
690/**
691 * i40e_validate_nvm_checksum - Validate EEPROM checksum
692 * @hw: pointer to hardware structure
693 * @checksum: calculated checksum
694 *
695 * Performs checksum calculation and validates the NVM SW checksum. If the
696 * caller does not need checksum, the value can be NULL.
697 **/
698i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
699 u16 *checksum)
700{
701 i40e_status ret_code = 0;
702 u16 checksum_sr = 0;
703 u16 checksum_local = 0;
704
705 /* We must acquire the NVM lock in order to correctly synchronize the
706 * NVM accesses across multiple PFs. Without doing so it is possible
707 * for one of the PFs to read invalid data potentially indicating that
708 * the checksum is invalid.
709 */
710 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
711 if (ret_code)
712 return ret_code;
713 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
714 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
715 i40e_release_nvm(hw);
716 if (ret_code)
717 return ret_code;
718
719 /* Verify read checksum from EEPROM is the same as
720 * calculated checksum
721 */
722 if (checksum_local != checksum_sr)
723 ret_code = I40E_ERR_NVM_CHECKSUM;
724
725 /* If the user cares, return the calculated checksum */
726 if (checksum)
727 *checksum = checksum_local;
728
729 return ret_code;
730}
731
732static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
733 struct i40e_nvm_access *cmd,
734 u8 *bytes, int *perrno);
735static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
736 struct i40e_nvm_access *cmd,
737 u8 *bytes, int *perrno);
738static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
739 struct i40e_nvm_access *cmd,
740 u8 *bytes, int *errno);
741static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
742 struct i40e_nvm_access *cmd,
743 int *perrno);
744static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
745 struct i40e_nvm_access *cmd,
746 int *perrno);
747static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
748 struct i40e_nvm_access *cmd,
749 u8 *bytes, int *perrno);
750static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
751 struct i40e_nvm_access *cmd,
752 u8 *bytes, int *perrno);
753static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
754 struct i40e_nvm_access *cmd,
755 u8 *bytes, int *perrno);
756static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
757 struct i40e_nvm_access *cmd,
758 u8 *bytes, int *perrno);
759static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
760 struct i40e_nvm_access *cmd,
761 u8 *bytes, int *perrno);
762static inline u8 i40e_nvmupd_get_module(u32 val)
763{
764 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
765}
766static inline u8 i40e_nvmupd_get_transaction(u32 val)
767{
768 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
769}
770
771static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
772{
773 return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
774 I40E_NVM_PRESERVATION_FLAGS_SHIFT);
775}
776
777static const char * const i40e_nvm_update_state_str[] = {
778 "I40E_NVMUPD_INVALID",
779 "I40E_NVMUPD_READ_CON",
780 "I40E_NVMUPD_READ_SNT",
781 "I40E_NVMUPD_READ_LCB",
782 "I40E_NVMUPD_READ_SA",
783 "I40E_NVMUPD_WRITE_ERA",
784 "I40E_NVMUPD_WRITE_CON",
785 "I40E_NVMUPD_WRITE_SNT",
786 "I40E_NVMUPD_WRITE_LCB",
787 "I40E_NVMUPD_WRITE_SA",
788 "I40E_NVMUPD_CSUM_CON",
789 "I40E_NVMUPD_CSUM_SA",
790 "I40E_NVMUPD_CSUM_LCB",
791 "I40E_NVMUPD_STATUS",
792 "I40E_NVMUPD_EXEC_AQ",
793 "I40E_NVMUPD_GET_AQ_RESULT",
794 "I40E_NVMUPD_GET_AQ_EVENT",
795};
796
797/**
798 * i40e_nvmupd_command - Process an NVM update command
799 * @hw: pointer to hardware structure
800 * @cmd: pointer to nvm update command
801 * @bytes: pointer to the data buffer
802 * @perrno: pointer to return error code
803 *
804 * Dispatches command depending on what update state is current
805 **/
806i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
807 struct i40e_nvm_access *cmd,
808 u8 *bytes, int *perrno)
809{
810 i40e_status status;
811 enum i40e_nvmupd_cmd upd_cmd;
812
813 /* assume success */
814 *perrno = 0;
815
816 /* early check for status command and debug msgs */
817 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
818
819 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
820 i40e_nvm_update_state_str[upd_cmd],
821 hw->nvmupd_state,
822 hw->nvm_release_on_done, hw->nvm_wait_opcode,
823 cmd->command, cmd->config, cmd->offset, cmd->data_size);
824
825 if (upd_cmd == I40E_NVMUPD_INVALID) {
826 *perrno = -EFAULT;
827 i40e_debug(hw, I40E_DEBUG_NVM,
828 "i40e_nvmupd_validate_command returns %d errno %d\n",
829 upd_cmd, *perrno);
830 }
831
832 /* a status request returns immediately rather than
833 * going into the state machine
834 */
835 if (upd_cmd == I40E_NVMUPD_STATUS) {
836 if (!cmd->data_size) {
837 *perrno = -EFAULT;
838 return I40E_ERR_BUF_TOO_SHORT;
839 }
840
841 bytes[0] = hw->nvmupd_state;
842
843 if (cmd->data_size >= 4) {
844 bytes[1] = 0;
845 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
846 }
847
848 /* Clear error status on read */
849 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
850 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
851
852 return 0;
853 }
854
855 /* Clear status even it is not read and log */
856 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
857 i40e_debug(hw, I40E_DEBUG_NVM,
858 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
859 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
860 }
861
862 /* Acquire lock to prevent race condition where adminq_task
863 * can execute after i40e_nvmupd_nvm_read/write but before state
864 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
865 *
866 * During NVMUpdate, it is observed that lock could be held for
867 * ~5ms for most commands. However lock is held for ~60ms for
868 * NVMUPD_CSUM_LCB command.
869 */
870 mutex_lock(&hw->aq.arq_mutex);
871 switch (hw->nvmupd_state) {
872 case I40E_NVMUPD_STATE_INIT:
873 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
874 break;
875
876 case I40E_NVMUPD_STATE_READING:
877 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
878 break;
879
880 case I40E_NVMUPD_STATE_WRITING:
881 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
882 break;
883
884 case I40E_NVMUPD_STATE_INIT_WAIT:
885 case I40E_NVMUPD_STATE_WRITE_WAIT:
886 /* if we need to stop waiting for an event, clear
887 * the wait info and return before doing anything else
888 */
889 if (cmd->offset == 0xffff) {
890 i40e_nvmupd_clear_wait_state(hw);
891 status = 0;
892 break;
893 }
894
895 status = I40E_ERR_NOT_READY;
896 *perrno = -EBUSY;
897 break;
898
899 default:
900 /* invalid state, should never happen */
901 i40e_debug(hw, I40E_DEBUG_NVM,
902 "NVMUPD: no such state %d\n", hw->nvmupd_state);
903 status = I40E_NOT_SUPPORTED;
904 *perrno = -ESRCH;
905 break;
906 }
907
908 mutex_unlock(&hw->aq.arq_mutex);
909 return status;
910}
911
912/**
913 * i40e_nvmupd_state_init - Handle NVM update state Init
914 * @hw: pointer to hardware structure
915 * @cmd: pointer to nvm update command buffer
916 * @bytes: pointer to the data buffer
917 * @perrno: pointer to return error code
918 *
919 * Process legitimate commands of the Init state and conditionally set next
920 * state. Reject all other commands.
921 **/
922static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
923 struct i40e_nvm_access *cmd,
924 u8 *bytes, int *perrno)
925{
926 i40e_status status = 0;
927 enum i40e_nvmupd_cmd upd_cmd;
928
929 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
930
931 switch (upd_cmd) {
932 case I40E_NVMUPD_READ_SA:
933 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
934 if (status) {
935 *perrno = i40e_aq_rc_to_posix(status,
936 hw->aq.asq_last_status);
937 } else {
938 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
939 i40e_release_nvm(hw);
940 }
941 break;
942
943 case I40E_NVMUPD_READ_SNT:
944 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
945 if (status) {
946 *perrno = i40e_aq_rc_to_posix(status,
947 hw->aq.asq_last_status);
948 } else {
949 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
950 if (status)
951 i40e_release_nvm(hw);
952 else
953 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
954 }
955 break;
956
957 case I40E_NVMUPD_WRITE_ERA:
958 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
959 if (status) {
960 *perrno = i40e_aq_rc_to_posix(status,
961 hw->aq.asq_last_status);
962 } else {
963 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
964 if (status) {
965 i40e_release_nvm(hw);
966 } else {
967 hw->nvm_release_on_done = true;
968 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
969 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
970 }
971 }
972 break;
973
974 case I40E_NVMUPD_WRITE_SA:
975 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
976 if (status) {
977 *perrno = i40e_aq_rc_to_posix(status,
978 hw->aq.asq_last_status);
979 } else {
980 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
981 if (status) {
982 i40e_release_nvm(hw);
983 } else {
984 hw->nvm_release_on_done = true;
985 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
986 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
987 }
988 }
989 break;
990
991 case I40E_NVMUPD_WRITE_SNT:
992 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
993 if (status) {
994 *perrno = i40e_aq_rc_to_posix(status,
995 hw->aq.asq_last_status);
996 } else {
997 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
998 if (status) {
999 i40e_release_nvm(hw);
1000 } else {
1001 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1002 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1003 }
1004 }
1005 break;
1006
1007 case I40E_NVMUPD_CSUM_SA:
1008 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1009 if (status) {
1010 *perrno = i40e_aq_rc_to_posix(status,
1011 hw->aq.asq_last_status);
1012 } else {
1013 status = i40e_update_nvm_checksum(hw);
1014 if (status) {
1015 *perrno = hw->aq.asq_last_status ?
1016 i40e_aq_rc_to_posix(status,
1017 hw->aq.asq_last_status) :
1018 -EIO;
1019 i40e_release_nvm(hw);
1020 } else {
1021 hw->nvm_release_on_done = true;
1022 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1023 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1024 }
1025 }
1026 break;
1027
1028 case I40E_NVMUPD_EXEC_AQ:
1029 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1030 break;
1031
1032 case I40E_NVMUPD_GET_AQ_RESULT:
1033 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1034 break;
1035
1036 case I40E_NVMUPD_GET_AQ_EVENT:
1037 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1038 break;
1039
1040 default:
1041 i40e_debug(hw, I40E_DEBUG_NVM,
1042 "NVMUPD: bad cmd %s in init state\n",
1043 i40e_nvm_update_state_str[upd_cmd]);
1044 status = I40E_ERR_NVM;
1045 *perrno = -ESRCH;
1046 break;
1047 }
1048 return status;
1049}
1050
1051/**
1052 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1053 * @hw: pointer to hardware structure
1054 * @cmd: pointer to nvm update command buffer
1055 * @bytes: pointer to the data buffer
1056 * @perrno: pointer to return error code
1057 *
1058 * NVM ownership is already held. Process legitimate commands and set any
1059 * change in state; reject all other commands.
1060 **/
1061static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
1062 struct i40e_nvm_access *cmd,
1063 u8 *bytes, int *perrno)
1064{
1065 i40e_status status = 0;
1066 enum i40e_nvmupd_cmd upd_cmd;
1067
1068 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1069
1070 switch (upd_cmd) {
1071 case I40E_NVMUPD_READ_SA:
1072 case I40E_NVMUPD_READ_CON:
1073 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1074 break;
1075
1076 case I40E_NVMUPD_READ_LCB:
1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078 i40e_release_nvm(hw);
1079 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1080 break;
1081
1082 default:
1083 i40e_debug(hw, I40E_DEBUG_NVM,
1084 "NVMUPD: bad cmd %s in reading state.\n",
1085 i40e_nvm_update_state_str[upd_cmd]);
1086 status = I40E_NOT_SUPPORTED;
1087 *perrno = -ESRCH;
1088 break;
1089 }
1090 return status;
1091}
1092
1093/**
1094 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1095 * @hw: pointer to hardware structure
1096 * @cmd: pointer to nvm update command buffer
1097 * @bytes: pointer to the data buffer
1098 * @perrno: pointer to return error code
1099 *
1100 * NVM ownership is already held. Process legitimate commands and set any
1101 * change in state; reject all other commands
1102 **/
1103static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1104 struct i40e_nvm_access *cmd,
1105 u8 *bytes, int *perrno)
1106{
1107 i40e_status status = 0;
1108 enum i40e_nvmupd_cmd upd_cmd;
1109 bool retry_attempt = false;
1110
1111 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1112
1113retry:
1114 switch (upd_cmd) {
1115 case I40E_NVMUPD_WRITE_CON:
1116 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1117 if (!status) {
1118 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1119 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1120 }
1121 break;
1122
1123 case I40E_NVMUPD_WRITE_LCB:
1124 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1125 if (status) {
1126 *perrno = hw->aq.asq_last_status ?
1127 i40e_aq_rc_to_posix(status,
1128 hw->aq.asq_last_status) :
1129 -EIO;
1130 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1131 } else {
1132 hw->nvm_release_on_done = true;
1133 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1135 }
1136 break;
1137
1138 case I40E_NVMUPD_CSUM_CON:
1139 /* Assumes the caller has acquired the nvm */
1140 status = i40e_update_nvm_checksum(hw);
1141 if (status) {
1142 *perrno = hw->aq.asq_last_status ?
1143 i40e_aq_rc_to_posix(status,
1144 hw->aq.asq_last_status) :
1145 -EIO;
1146 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1147 } else {
1148 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1149 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1150 }
1151 break;
1152
1153 case I40E_NVMUPD_CSUM_LCB:
1154 /* Assumes the caller has acquired the nvm */
1155 status = i40e_update_nvm_checksum(hw);
1156 if (status) {
1157 *perrno = hw->aq.asq_last_status ?
1158 i40e_aq_rc_to_posix(status,
1159 hw->aq.asq_last_status) :
1160 -EIO;
1161 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1162 } else {
1163 hw->nvm_release_on_done = true;
1164 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1166 }
1167 break;
1168
1169 default:
1170 i40e_debug(hw, I40E_DEBUG_NVM,
1171 "NVMUPD: bad cmd %s in writing state.\n",
1172 i40e_nvm_update_state_str[upd_cmd]);
1173 status = I40E_NOT_SUPPORTED;
1174 *perrno = -ESRCH;
1175 break;
1176 }
1177
1178 /* In some circumstances, a multi-write transaction takes longer
1179 * than the default 3 minute timeout on the write semaphore. If
1180 * the write failed with an EBUSY status, this is likely the problem,
1181 * so here we try to reacquire the semaphore then retry the write.
1182 * We only do one retry, then give up.
1183 */
1184 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1185 !retry_attempt) {
1186 i40e_status old_status = status;
1187 u32 old_asq_status = hw->aq.asq_last_status;
1188 u32 gtime;
1189
1190 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1191 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1192 i40e_debug(hw, I40E_DEBUG_ALL,
1193 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1194 gtime, hw->nvm.hw_semaphore_timeout);
1195 i40e_release_nvm(hw);
1196 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1197 if (status) {
1198 i40e_debug(hw, I40E_DEBUG_ALL,
1199 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1200 hw->aq.asq_last_status);
1201 status = old_status;
1202 hw->aq.asq_last_status = old_asq_status;
1203 } else {
1204 retry_attempt = true;
1205 goto retry;
1206 }
1207 }
1208 }
1209
1210 return status;
1211}
1212
1213/**
1214 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1215 * @hw: pointer to the hardware structure
1216 **/
1217void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1218{
1219 i40e_debug(hw, I40E_DEBUG_NVM,
1220 "NVMUPD: clearing wait on opcode 0x%04x\n",
1221 hw->nvm_wait_opcode);
1222
1223 if (hw->nvm_release_on_done) {
1224 i40e_release_nvm(hw);
1225 hw->nvm_release_on_done = false;
1226 }
1227 hw->nvm_wait_opcode = 0;
1228
1229 if (hw->aq.arq_last_status) {
1230 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1231 return;
1232 }
1233
1234 switch (hw->nvmupd_state) {
1235 case I40E_NVMUPD_STATE_INIT_WAIT:
1236 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1237 break;
1238
1239 case I40E_NVMUPD_STATE_WRITE_WAIT:
1240 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1241 break;
1242
1243 default:
1244 break;
1245 }
1246}
1247
1248/**
1249 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1250 * @hw: pointer to the hardware structure
1251 * @opcode: the event that just happened
1252 * @desc: AdminQ descriptor
1253 **/
1254void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1255 struct i40e_aq_desc *desc)
1256{
1257 u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1258
1259 if (opcode == hw->nvm_wait_opcode) {
1260 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1261 i40e_nvmupd_clear_wait_state(hw);
1262 }
1263}
1264
1265/**
1266 * i40e_nvmupd_validate_command - Validate given command
1267 * @hw: pointer to hardware structure
1268 * @cmd: pointer to nvm update command buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * Return one of the valid command types or I40E_NVMUPD_INVALID
1272 **/
1273static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1274 struct i40e_nvm_access *cmd,
1275 int *perrno)
1276{
1277 enum i40e_nvmupd_cmd upd_cmd;
1278 u8 module, transaction;
1279
1280 /* anything that doesn't match a recognized case is an error */
1281 upd_cmd = I40E_NVMUPD_INVALID;
1282
1283 transaction = i40e_nvmupd_get_transaction(cmd->config);
1284 module = i40e_nvmupd_get_module(cmd->config);
1285
1286 /* limits on data size */
1287 if ((cmd->data_size < 1) ||
1288 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1289 i40e_debug(hw, I40E_DEBUG_NVM,
1290 "i40e_nvmupd_validate_command data_size %d\n",
1291 cmd->data_size);
1292 *perrno = -EFAULT;
1293 return I40E_NVMUPD_INVALID;
1294 }
1295
1296 switch (cmd->command) {
1297 case I40E_NVM_READ:
1298 switch (transaction) {
1299 case I40E_NVM_CON:
1300 upd_cmd = I40E_NVMUPD_READ_CON;
1301 break;
1302 case I40E_NVM_SNT:
1303 upd_cmd = I40E_NVMUPD_READ_SNT;
1304 break;
1305 case I40E_NVM_LCB:
1306 upd_cmd = I40E_NVMUPD_READ_LCB;
1307 break;
1308 case I40E_NVM_SA:
1309 upd_cmd = I40E_NVMUPD_READ_SA;
1310 break;
1311 case I40E_NVM_EXEC:
1312 if (module == 0xf)
1313 upd_cmd = I40E_NVMUPD_STATUS;
1314 else if (module == 0)
1315 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1316 break;
1317 case I40E_NVM_AQE:
1318 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1319 break;
1320 }
1321 break;
1322
1323 case I40E_NVM_WRITE:
1324 switch (transaction) {
1325 case I40E_NVM_CON:
1326 upd_cmd = I40E_NVMUPD_WRITE_CON;
1327 break;
1328 case I40E_NVM_SNT:
1329 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1330 break;
1331 case I40E_NVM_LCB:
1332 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1333 break;
1334 case I40E_NVM_SA:
1335 upd_cmd = I40E_NVMUPD_WRITE_SA;
1336 break;
1337 case I40E_NVM_ERA:
1338 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1339 break;
1340 case I40E_NVM_CSUM:
1341 upd_cmd = I40E_NVMUPD_CSUM_CON;
1342 break;
1343 case (I40E_NVM_CSUM|I40E_NVM_SA):
1344 upd_cmd = I40E_NVMUPD_CSUM_SA;
1345 break;
1346 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1347 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1348 break;
1349 case I40E_NVM_EXEC:
1350 if (module == 0)
1351 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1352 break;
1353 }
1354 break;
1355 }
1356
1357 return upd_cmd;
1358}
1359
1360/**
1361 * i40e_nvmupd_exec_aq - Run an AQ command
1362 * @hw: pointer to hardware structure
1363 * @cmd: pointer to nvm update command buffer
1364 * @bytes: pointer to the data buffer
1365 * @perrno: pointer to return error code
1366 *
1367 * cmd structure contains identifiers and data buffer
1368 **/
1369static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1370 struct i40e_nvm_access *cmd,
1371 u8 *bytes, int *perrno)
1372{
1373 struct i40e_asq_cmd_details cmd_details;
1374 i40e_status status;
1375 struct i40e_aq_desc *aq_desc;
1376 u32 buff_size = 0;
1377 u8 *buff = NULL;
1378 u32 aq_desc_len;
1379 u32 aq_data_len;
1380
1381 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1382 if (cmd->offset == 0xffff)
1383 return 0;
1384
1385 memset(&cmd_details, 0, sizeof(cmd_details));
1386 cmd_details.wb_desc = &hw->nvm_wb_desc;
1387
1388 aq_desc_len = sizeof(struct i40e_aq_desc);
1389 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1390
1391 /* get the aq descriptor */
1392 if (cmd->data_size < aq_desc_len) {
1393 i40e_debug(hw, I40E_DEBUG_NVM,
1394 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1395 cmd->data_size, aq_desc_len);
1396 *perrno = -EINVAL;
1397 return I40E_ERR_PARAM;
1398 }
1399 aq_desc = (struct i40e_aq_desc *)bytes;
1400
1401 /* if data buffer needed, make sure it's ready */
1402 aq_data_len = cmd->data_size - aq_desc_len;
1403 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1404 if (buff_size) {
1405 if (!hw->nvm_buff.va) {
1406 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1407 hw->aq.asq_buf_size);
1408 if (status)
1409 i40e_debug(hw, I40E_DEBUG_NVM,
1410 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1411 status);
1412 }
1413
1414 if (hw->nvm_buff.va) {
1415 buff = hw->nvm_buff.va;
1416 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1417 }
1418 }
1419
1420 if (cmd->offset)
1421 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1422
1423 /* and away we go! */
1424 status = i40e_asq_send_command(hw, aq_desc, buff,
1425 buff_size, &cmd_details);
1426 if (status) {
1427 i40e_debug(hw, I40E_DEBUG_NVM,
1428 "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1429 i40e_stat_str(hw, status),
1430 i40e_aq_str(hw, hw->aq.asq_last_status));
1431 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1432 return status;
1433 }
1434
1435 /* should we wait for a followup event? */
1436 if (cmd->offset) {
1437 hw->nvm_wait_opcode = cmd->offset;
1438 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1439 }
1440
1441 return status;
1442}
1443
1444/**
1445 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1446 * @hw: pointer to hardware structure
1447 * @cmd: pointer to nvm update command buffer
1448 * @bytes: pointer to the data buffer
1449 * @perrno: pointer to return error code
1450 *
1451 * cmd structure contains identifiers and data buffer
1452 **/
1453static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1454 struct i40e_nvm_access *cmd,
1455 u8 *bytes, int *perrno)
1456{
1457 u32 aq_total_len;
1458 u32 aq_desc_len;
1459 int remainder;
1460 u8 *buff;
1461
1462 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1463
1464 aq_desc_len = sizeof(struct i40e_aq_desc);
1465 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1466
1467 /* check offset range */
1468 if (cmd->offset > aq_total_len) {
1469 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1470 __func__, cmd->offset, aq_total_len);
1471 *perrno = -EINVAL;
1472 return I40E_ERR_PARAM;
1473 }
1474
1475 /* check copylength range */
1476 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1477 int new_len = aq_total_len - cmd->offset;
1478
1479 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1480 __func__, cmd->data_size, new_len);
1481 cmd->data_size = new_len;
1482 }
1483
1484 remainder = cmd->data_size;
1485 if (cmd->offset < aq_desc_len) {
1486 u32 len = aq_desc_len - cmd->offset;
1487
1488 len = min(len, cmd->data_size);
1489 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1490 __func__, cmd->offset, cmd->offset + len);
1491
1492 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1493 memcpy(bytes, buff, len);
1494
1495 bytes += len;
1496 remainder -= len;
1497 buff = hw->nvm_buff.va;
1498 } else {
1499 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1500 }
1501
1502 if (remainder > 0) {
1503 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1504
1505 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1506 __func__, start_byte, start_byte + remainder);
1507 memcpy(bytes, buff, remainder);
1508 }
1509
1510 return 0;
1511}
1512
1513/**
1514 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1515 * @hw: pointer to hardware structure
1516 * @cmd: pointer to nvm update command buffer
1517 * @bytes: pointer to the data buffer
1518 * @perrno: pointer to return error code
1519 *
1520 * cmd structure contains identifiers and data buffer
1521 **/
1522static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1523 struct i40e_nvm_access *cmd,
1524 u8 *bytes, int *perrno)
1525{
1526 u32 aq_total_len;
1527 u32 aq_desc_len;
1528
1529 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1530
1531 aq_desc_len = sizeof(struct i40e_aq_desc);
1532 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1533
1534 /* check copylength range */
1535 if (cmd->data_size > aq_total_len) {
1536 i40e_debug(hw, I40E_DEBUG_NVM,
1537 "%s: copy length %d too big, trimming to %d\n",
1538 __func__, cmd->data_size, aq_total_len);
1539 cmd->data_size = aq_total_len;
1540 }
1541
1542 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1543
1544 return 0;
1545}
1546
1547/**
1548 * i40e_nvmupd_nvm_read - Read NVM
1549 * @hw: pointer to hardware structure
1550 * @cmd: pointer to nvm update command buffer
1551 * @bytes: pointer to the data buffer
1552 * @perrno: pointer to return error code
1553 *
1554 * cmd structure contains identifiers and data buffer
1555 **/
1556static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1557 struct i40e_nvm_access *cmd,
1558 u8 *bytes, int *perrno)
1559{
1560 struct i40e_asq_cmd_details cmd_details;
1561 i40e_status status;
1562 u8 module, transaction;
1563 bool last;
1564
1565 transaction = i40e_nvmupd_get_transaction(cmd->config);
1566 module = i40e_nvmupd_get_module(cmd->config);
1567 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1568
1569 memset(&cmd_details, 0, sizeof(cmd_details));
1570 cmd_details.wb_desc = &hw->nvm_wb_desc;
1571
1572 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1573 bytes, last, &cmd_details);
1574 if (status) {
1575 i40e_debug(hw, I40E_DEBUG_NVM,
1576 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1577 module, cmd->offset, cmd->data_size);
1578 i40e_debug(hw, I40E_DEBUG_NVM,
1579 "i40e_nvmupd_nvm_read status %d aq %d\n",
1580 status, hw->aq.asq_last_status);
1581 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1582 }
1583
1584 return status;
1585}
1586
1587/**
1588 * i40e_nvmupd_nvm_erase - Erase an NVM module
1589 * @hw: pointer to hardware structure
1590 * @cmd: pointer to nvm update command buffer
1591 * @perrno: pointer to return error code
1592 *
1593 * module, offset, data_size and data are in cmd structure
1594 **/
1595static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1596 struct i40e_nvm_access *cmd,
1597 int *perrno)
1598{
1599 i40e_status status = 0;
1600 struct i40e_asq_cmd_details cmd_details;
1601 u8 module, transaction;
1602 bool last;
1603
1604 transaction = i40e_nvmupd_get_transaction(cmd->config);
1605 module = i40e_nvmupd_get_module(cmd->config);
1606 last = (transaction & I40E_NVM_LCB);
1607
1608 memset(&cmd_details, 0, sizeof(cmd_details));
1609 cmd_details.wb_desc = &hw->nvm_wb_desc;
1610
1611 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1612 last, &cmd_details);
1613 if (status) {
1614 i40e_debug(hw, I40E_DEBUG_NVM,
1615 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1616 module, cmd->offset, cmd->data_size);
1617 i40e_debug(hw, I40E_DEBUG_NVM,
1618 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1619 status, hw->aq.asq_last_status);
1620 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1621 }
1622
1623 return status;
1624}
1625
1626/**
1627 * i40e_nvmupd_nvm_write - Write NVM
1628 * @hw: pointer to hardware structure
1629 * @cmd: pointer to nvm update command buffer
1630 * @bytes: pointer to the data buffer
1631 * @perrno: pointer to return error code
1632 *
1633 * module, offset, data_size and data are in cmd structure
1634 **/
1635static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1636 struct i40e_nvm_access *cmd,
1637 u8 *bytes, int *perrno)
1638{
1639 i40e_status status = 0;
1640 struct i40e_asq_cmd_details cmd_details;
1641 u8 module, transaction;
1642 u8 preservation_flags;
1643 bool last;
1644
1645 transaction = i40e_nvmupd_get_transaction(cmd->config);
1646 module = i40e_nvmupd_get_module(cmd->config);
1647 last = (transaction & I40E_NVM_LCB);
1648 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1649
1650 memset(&cmd_details, 0, sizeof(cmd_details));
1651 cmd_details.wb_desc = &hw->nvm_wb_desc;
1652
1653 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1654 (u16)cmd->data_size, bytes, last,
1655 preservation_flags, &cmd_details);
1656 if (status) {
1657 i40e_debug(hw, I40E_DEBUG_NVM,
1658 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1659 module, cmd->offset, cmd->data_size);
1660 i40e_debug(hw, I40E_DEBUG_NVM,
1661 "i40e_nvmupd_nvm_write status %d aq %d\n",
1662 status, hw->aq.asq_last_status);
1663 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1664 }
1665
1666 return status;
1667}