Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include "i40e_alloc.h"
   7#include "i40e_prototype.h"
   8
   9/**
  10 * i40e_init_nvm - Initialize NVM function pointers
  11 * @hw: pointer to the HW structure
  12 *
  13 * Setup the function pointers and the NVM info structure. Should be called
  14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  15 * Please notice that the NVM term is used here (& in all methods covered
  16 * in this file) as an equivalent of the FLASH part mapped into the SR.
  17 * We are accessing FLASH always thru the Shadow RAM.
  18 **/
  19int i40e_init_nvm(struct i40e_hw *hw)
  20{
  21	struct i40e_nvm_info *nvm = &hw->nvm;
  22	int ret_code = 0;
  23	u32 fla, gens;
  24	u8 sr_size;
  25
  26	/* The SR size is stored regardless of the nvm programming mode
  27	 * as the blank mode may be used in the factory line.
  28	 */
  29	gens = rd32(hw, I40E_GLNVM_GENS);
  30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
 
  31	/* Switching to words (sr_size contains power of 2KB) */
  32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  33
  34	/* Check if we are in the normal or blank NVM programming mode */
  35	fla = rd32(hw, I40E_GLNVM_FLA);
  36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  37		/* Max NVM timeout */
  38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  39		nvm->blank_nvm_mode = false;
  40	} else { /* Blank programming mode */
  41		nvm->blank_nvm_mode = true;
  42		ret_code = -EIO;
  43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  44	}
  45
  46	return ret_code;
  47}
  48
  49/**
  50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  51 * @hw: pointer to the HW structure
  52 * @access: NVM access type (read or write)
  53 *
  54 * This function will request NVM ownership for reading
  55 * via the proper Admin Command.
  56 **/
  57int i40e_acquire_nvm(struct i40e_hw *hw,
  58		     enum i40e_aq_resource_access_type access)
  59{
 
  60	u64 gtime, timeout;
  61	u64 time_left = 0;
  62	int ret_code = 0;
  63
  64	if (hw->nvm.blank_nvm_mode)
  65		goto i40e_i40e_acquire_nvm_exit;
  66
  67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  68					    0, &time_left, NULL);
  69	/* Reading the Global Device Timer */
  70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  71
  72	/* Store the timeout */
  73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  74
  75	if (ret_code)
  76		i40e_debug(hw, I40E_DEBUG_NVM,
  77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  78			   access, time_left, ret_code, hw->aq.asq_last_status);
  79
  80	if (ret_code && time_left) {
  81		/* Poll until the current NVM owner timeouts */
  82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  83		while ((gtime < timeout) && time_left) {
  84			usleep_range(10000, 20000);
  85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  86			ret_code = i40e_aq_request_resource(hw,
  87							I40E_NVM_RESOURCE_ID,
  88							access, 0, &time_left,
  89							NULL);
  90			if (!ret_code) {
  91				hw->nvm.hw_semaphore_timeout =
  92					    I40E_MS_TO_GTIME(time_left) + gtime;
  93				break;
  94			}
  95		}
  96		if (ret_code) {
  97			hw->nvm.hw_semaphore_timeout = 0;
  98			i40e_debug(hw, I40E_DEBUG_NVM,
  99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 100				   time_left, ret_code, hw->aq.asq_last_status);
 101		}
 102	}
 103
 104i40e_i40e_acquire_nvm_exit:
 105	return ret_code;
 106}
 107
 108/**
 109 * i40e_release_nvm - Generic request for releasing the NVM ownership
 110 * @hw: pointer to the HW structure
 111 *
 112 * This function will release NVM resource via the proper Admin Command.
 113 **/
 114void i40e_release_nvm(struct i40e_hw *hw)
 115{
 
 116	u32 total_delay = 0;
 117	int ret_code = 0;
 118
 119	if (hw->nvm.blank_nvm_mode)
 120		return;
 121
 122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 123
 124	/* there are some rare cases when trying to release the resource
 125	 * results in an admin Q timeout, so handle them correctly
 126	 */
 127	while ((ret_code == -EIO) &&
 128	       (total_delay < hw->aq.asq_cmd_timeout)) {
 129		usleep_range(1000, 2000);
 130		ret_code = i40e_aq_release_resource(hw,
 131						    I40E_NVM_RESOURCE_ID,
 132						    0, NULL);
 133		total_delay++;
 134	}
 135}
 136
 137/**
 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 139 * @hw: pointer to the HW structure
 140 *
 141 * Polls the SRCTL Shadow RAM register done bit.
 142 **/
 143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 144{
 145	int ret_code = -EIO;
 146	u32 srctl, wait_cnt;
 147
 148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 152			ret_code = 0;
 153			break;
 154		}
 155		udelay(5);
 156	}
 157	if (ret_code == -EIO)
 158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 159	return ret_code;
 160}
 161
 162/**
 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 164 * @hw: pointer to the HW structure
 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 166 * @data: word read from the Shadow RAM
 167 *
 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 169 **/
 170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 171				    u16 *data)
 172{
 173	int ret_code = -EIO;
 174	u32 sr_reg;
 175
 176	if (offset >= hw->nvm.sr_size) {
 177		i40e_debug(hw, I40E_DEBUG_NVM,
 178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 179			   offset, hw->nvm.sr_size);
 180		ret_code = -EINVAL;
 181		goto read_nvm_exit;
 182	}
 183
 184	/* Poll the done bit first */
 185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 186	if (!ret_code) {
 187		/* Write the address and start reading */
 188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 191
 192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 194		if (!ret_code) {
 195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
 197					  sr_reg);
 
 198		}
 199	}
 200	if (ret_code)
 201		i40e_debug(hw, I40E_DEBUG_NVM,
 202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 203			   offset);
 204
 205read_nvm_exit:
 206	return ret_code;
 207}
 208
 209/**
 210 * i40e_read_nvm_aq - Read Shadow RAM.
 211 * @hw: pointer to the HW structure.
 212 * @module_pointer: module pointer location in words from the NVM beginning
 213 * @offset: offset in words from module start
 214 * @words: number of words to read
 215 * @data: buffer with words to read to the Shadow RAM
 216 * @last_command: tells the AdminQ that this is the last command
 217 *
 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
 219 **/
 220static int i40e_read_nvm_aq(struct i40e_hw *hw,
 221			    u8 module_pointer, u32 offset,
 222			    u16 words, void *data,
 223			    bool last_command)
 224{
 
 225	struct i40e_asq_cmd_details cmd_details;
 226	int ret_code = -EIO;
 227
 228	memset(&cmd_details, 0, sizeof(cmd_details));
 229	cmd_details.wb_desc = &hw->nvm_wb_desc;
 230
 231	/* Here we are checking the SR limit only for the flat memory model.
 232	 * We cannot do it for the module-based model, as we did not acquire
 233	 * the NVM resource yet (we cannot get the module pointer value).
 234	 * Firmware will check the module-based model.
 235	 */
 236	if ((offset + words) > hw->nvm.sr_size)
 237		i40e_debug(hw, I40E_DEBUG_NVM,
 238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 239			   (offset + words), hw->nvm.sr_size);
 240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 241		/* We can read only up to 4KB (one sector), in one AQ write */
 242		i40e_debug(hw, I40E_DEBUG_NVM,
 243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
 244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 247		/* A single read cannot spread over two sectors */
 248		i40e_debug(hw, I40E_DEBUG_NVM,
 249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
 250			   offset, words);
 251	else
 252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 253					    2 * offset,  /*bytes*/
 254					    2 * words,   /*bytes*/
 255					    data, last_command, &cmd_details);
 256
 257	return ret_code;
 258}
 259
 260/**
 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 262 * @hw: pointer to the HW structure
 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 264 * @data: word read from the Shadow RAM
 265 *
 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 267 **/
 268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 269				 u16 *data)
 270{
 271	int ret_code = -EIO;
 272
 273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 274	*data = le16_to_cpu(*(__le16 *)data);
 275
 276	return ret_code;
 277}
 278
 279/**
 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 281 * @hw: pointer to the HW structure
 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 283 * @data: word read from the Shadow RAM
 284 *
 285 * Reads one 16 bit word from the Shadow RAM.
 286 *
 287 * Do not use this function except in cases where the nvm lock is already
 288 * taken via i40e_acquire_nvm().
 289 **/
 290static int __i40e_read_nvm_word(struct i40e_hw *hw,
 291				u16 offset, u16 *data)
 292{
 293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 294		return i40e_read_nvm_word_aq(hw, offset, data);
 295
 296	return i40e_read_nvm_word_srctl(hw, offset, data);
 297}
 298
 299/**
 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 301 * @hw: pointer to the HW structure
 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 303 * @data: word read from the Shadow RAM
 304 *
 305 * Reads one 16 bit word from the Shadow RAM.
 306 **/
 307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 308		       u16 *data)
 309{
 310	int ret_code = 0;
 311
 312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 314	if (ret_code)
 315		return ret_code;
 316
 317	ret_code = __i40e_read_nvm_word(hw, offset, data);
 318
 319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 320		i40e_release_nvm(hw);
 321
 322	return ret_code;
 323}
 324
 325/**
 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 327 * @hw: Pointer to the HW structure
 328 * @module_ptr: Pointer to module in words with respect to NVM beginning
 329 * @module_offset: Offset in words from module start
 330 * @data_offset: Offset in words from reading data area start
 331 * @words_data_size: Words to read from NVM
 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 333 **/
 334int i40e_read_nvm_module_data(struct i40e_hw *hw,
 335			      u8 module_ptr,
 336			      u16 module_offset,
 337			      u16 data_offset,
 338			      u16 words_data_size,
 339			      u16 *data_ptr)
 340{
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 344	int status;
 345
 346	if (module_ptr != 0) {
 347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 348		if (status) {
 349			i40e_debug(hw, I40E_DEBUG_ALL,
 350				   "Reading nvm word failed.Error code: %d.\n",
 351				   status);
 352			return -EIO;
 353		}
 354	}
 355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 356#define I40E_NVM_INVALID_VAL 0xFFFF
 357
 358	/* Pointer not initialized */
 359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 360	    ptr_value == I40E_NVM_INVALID_VAL) {
 361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 362		return -EINVAL;
 363	}
 364
 365	/* Check whether the module is in SR mapped area or outside */
 366	if (ptr_value & I40E_PTR_TYPE) {
 367		/* Pointer points outside of the Shared RAM mapped area */
 368		i40e_debug(hw, I40E_DEBUG_ALL,
 369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 370
 371		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372	} else {
 373		/* Read from the Shadow RAM */
 374
 375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 376					    &specific_ptr);
 377		if (status) {
 378			i40e_debug(hw, I40E_DEBUG_ALL,
 379				   "Reading nvm word failed.Error code: %d.\n",
 380				   status);
 381			return -EIO;
 382		}
 383
 384		offset = ptr_value + module_offset + specific_ptr +
 385			data_offset;
 386
 387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 388					      data_ptr);
 389		if (status) {
 390			i40e_debug(hw, I40E_DEBUG_ALL,
 391				   "Reading nvm buffer failed.Error code: %d.\n",
 392				   status);
 393		}
 394	}
 395
 396	return status;
 397}
 398
 399/**
 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 401 * @hw: pointer to the HW structure
 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 403 * @words: (in) number of words to read; (out) number of words actually read
 404 * @data: words read from the Shadow RAM
 405 *
 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 407 * method. The buffer read is preceded by the NVM ownership take
 408 * and followed by the release.
 409 **/
 410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 411				      u16 *words, u16 *data)
 412{
 413	int ret_code = 0;
 414	u16 index, word;
 415
 416	/* Loop thru the selected region */
 417	for (word = 0; word < *words; word++) {
 418		index = offset + word;
 419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 420		if (ret_code)
 421			break;
 422	}
 423
 424	/* Update the number of words read from the Shadow RAM */
 425	*words = word;
 426
 427	return ret_code;
 428}
 429
 430/**
 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 432 * @hw: pointer to the HW structure
 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 434 * @words: (in) number of words to read; (out) number of words actually read
 435 * @data: words read from the Shadow RAM
 436 *
 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 438 * method. The buffer read is preceded by the NVM ownership take
 439 * and followed by the release.
 440 **/
 441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 442				   u16 *words, u16 *data)
 443{
 
 
 444	bool last_cmd = false;
 445	u16 words_read = 0;
 446	u16 read_size;
 447	int ret_code;
 448	u16 i = 0;
 449
 450	do {
 451		/* Calculate number of bytes we should read in this step.
 452		 * FVL AQ do not allow to read more than one page at a time or
 453		 * to cross page boundaries.
 454		 */
 455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 456			read_size = min(*words,
 457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 459		else
 460			read_size = min((*words - words_read),
 461					I40E_SR_SECTOR_SIZE_IN_WORDS);
 462
 463		/* Check if this is last command, if so set proper flag */
 464		if ((words_read + read_size) >= *words)
 465			last_cmd = true;
 466
 467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 468					    data + words_read, last_cmd);
 469		if (ret_code)
 470			goto read_nvm_buffer_aq_exit;
 471
 472		/* Increment counter for words already read and move offset to
 473		 * new read location
 474		 */
 475		words_read += read_size;
 476		offset += read_size;
 477	} while (words_read < *words);
 478
 479	for (i = 0; i < *words; i++)
 480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 481
 482read_nvm_buffer_aq_exit:
 483	*words = words_read;
 484	return ret_code;
 485}
 486
 487/**
 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 489 * @hw: pointer to the HW structure
 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 491 * @words: (in) number of words to read; (out) number of words actually read
 492 * @data: words read from the Shadow RAM
 493 *
 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 495 * method.
 496 **/
 497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
 498				  u16 offset, u16 *words,
 499				  u16 *data)
 500{
 501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 503
 504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 505}
 506
 507/**
 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 509 * @hw: pointer to the HW structure
 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 511 * @words: (in) number of words to read; (out) number of words actually read
 512 * @data: words read from the Shadow RAM
 513 *
 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 515 * method. The buffer read is preceded by the NVM ownership take
 516 * and followed by the release.
 517 **/
 518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 519			 u16 *words, u16 *data)
 520{
 521	int ret_code = 0;
 522
 523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
 524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 525		if (!ret_code) {
 526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 527							   data);
 528			i40e_release_nvm(hw);
 529		}
 530	} else {
 531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 532	}
 533
 534	return ret_code;
 535}
 536
 537/**
 538 * i40e_write_nvm_aq - Writes Shadow RAM.
 539 * @hw: pointer to the HW structure.
 540 * @module_pointer: module pointer location in words from the NVM beginning
 541 * @offset: offset in words from module start
 542 * @words: number of words to write
 543 * @data: buffer with words to write to the Shadow RAM
 544 * @last_command: tells the AdminQ that this is the last command
 545 *
 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 547 **/
 548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 549			     u32 offset, u16 words, void *data,
 550			     bool last_command)
 551{
 
 552	struct i40e_asq_cmd_details cmd_details;
 553	int ret_code = -EIO;
 554
 555	memset(&cmd_details, 0, sizeof(cmd_details));
 556	cmd_details.wb_desc = &hw->nvm_wb_desc;
 557
 558	/* Here we are checking the SR limit only for the flat memory model.
 559	 * We cannot do it for the module-based model, as we did not acquire
 560	 * the NVM resource yet (we cannot get the module pointer value).
 561	 * Firmware will check the module-based model.
 562	 */
 563	if ((offset + words) > hw->nvm.sr_size)
 564		i40e_debug(hw, I40E_DEBUG_NVM,
 565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 566			   (offset + words), hw->nvm.sr_size);
 567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 568		/* We can write only up to 4KB (one sector), in one AQ write */
 569		i40e_debug(hw, I40E_DEBUG_NVM,
 570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 574		/* A single write cannot spread over two sectors */
 575		i40e_debug(hw, I40E_DEBUG_NVM,
 576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 577			   offset, words);
 578	else
 579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 580					      2 * offset,  /*bytes*/
 581					      2 * words,   /*bytes*/
 582					      data, last_command, 0,
 583					      &cmd_details);
 584
 585	return ret_code;
 586}
 587
 588/**
 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 590 * @hw: pointer to hardware structure
 591 * @checksum: pointer to the checksum
 592 *
 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 595 * is customer specific and unknown. Therefore, this function skips all maximum
 596 * possible size of VPD (1kB).
 597 **/
 598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
 599				  u16 *checksum)
 600{
 
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 605	int ret_code;
 606	u16 *data;
 607	u16 i = 0;
 608
 609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 611	if (ret_code)
 612		goto i40e_calc_nvm_checksum_exit;
 613	data = (u16 *)vmem.va;
 614
 615	/* read pointer to VPD area */
 616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 617	if (ret_code) {
 618		ret_code = -EIO;
 619		goto i40e_calc_nvm_checksum_exit;
 620	}
 621
 622	/* read pointer to PCIe Alt Auto-load module */
 623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 624					&pcie_alt_module);
 625	if (ret_code) {
 626		ret_code = -EIO;
 627		goto i40e_calc_nvm_checksum_exit;
 628	}
 629
 630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 631	 * except the VPD and PCIe ALT Auto-load modules
 632	 */
 633	for (i = 0; i < hw->nvm.sr_size; i++) {
 634		/* Read SR page */
 635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 637
 638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 639			if (ret_code) {
 640				ret_code = -EIO;
 641				goto i40e_calc_nvm_checksum_exit;
 642			}
 643		}
 644
 645		/* Skip Checksum word */
 646		if (i == I40E_SR_SW_CHECKSUM_WORD)
 647			continue;
 648		/* Skip VPD module (convert byte size to word count) */
 649		if ((i >= (u32)vpd_module) &&
 650		    (i < ((u32)vpd_module +
 651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 652			continue;
 653		}
 654		/* Skip PCIe ALT module (convert byte size to word count) */
 655		if ((i >= (u32)pcie_alt_module) &&
 656		    (i < ((u32)pcie_alt_module +
 657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 658			continue;
 659		}
 660
 661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 662	}
 663
 664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 665
 666i40e_calc_nvm_checksum_exit:
 667	i40e_free_virt_mem(hw, &vmem);
 668	return ret_code;
 669}
 670
 671/**
 672 * i40e_update_nvm_checksum - Updates the NVM checksum
 673 * @hw: pointer to hardware structure
 674 *
 675 * NVM ownership must be acquired before calling this function and released
 676 * on ARQ completion event reception by caller.
 677 * This function will commit SR to NVM.
 678 **/
 679int i40e_update_nvm_checksum(struct i40e_hw *hw)
 680{
 681	__le16 le_sum;
 682	int ret_code;
 683	u16 checksum;
 
 684
 685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 686	if (!ret_code) {
 687		le_sum = cpu_to_le16(checksum);
 688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 689					     1, &le_sum, true);
 690	}
 691
 692	return ret_code;
 693}
 694
 695/**
 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 697 * @hw: pointer to hardware structure
 698 * @checksum: calculated checksum
 699 *
 700 * Performs checksum calculation and validates the NVM SW checksum. If the
 701 * caller does not need checksum, the value can be NULL.
 702 **/
 703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
 704			       u16 *checksum)
 705{
 706	u16 checksum_local = 0;
 707	u16 checksum_sr = 0;
 708	int ret_code = 0;
 709
 710	/* We must acquire the NVM lock in order to correctly synchronize the
 711	 * NVM accesses across multiple PFs. Without doing so it is possible
 712	 * for one of the PFs to read invalid data potentially indicating that
 713	 * the checksum is invalid.
 714	 */
 715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 716	if (ret_code)
 717		return ret_code;
 718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 720	i40e_release_nvm(hw);
 721	if (ret_code)
 722		return ret_code;
 723
 724	/* Verify read checksum from EEPROM is the same as
 725	 * calculated checksum
 726	 */
 727	if (checksum_local != checksum_sr)
 728		ret_code = -EIO;
 729
 730	/* If the user cares, return the calculated checksum */
 731	if (checksum)
 732		*checksum = checksum_local;
 733
 734	return ret_code;
 735}
 736
 737static int i40e_nvmupd_state_init(struct i40e_hw *hw,
 738				  struct i40e_nvm_access *cmd,
 739				  u8 *bytes, int *perrno);
 740static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
 741				     struct i40e_nvm_access *cmd,
 742				     u8 *bytes, int *perrno);
 743static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
 744				     struct i40e_nvm_access *cmd,
 745				     u8 *bytes, int *errno);
 746static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 747						struct i40e_nvm_access *cmd,
 748						int *perrno);
 749static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 750				 struct i40e_nvm_access *cmd,
 751				 int *perrno);
 752static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 753				 struct i40e_nvm_access *cmd,
 754				 u8 *bytes, int *perrno);
 755static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 756				struct i40e_nvm_access *cmd,
 757				u8 *bytes, int *perrno);
 758static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 759			       struct i40e_nvm_access *cmd,
 760			       u8 *bytes, int *perrno);
 761static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 762				     struct i40e_nvm_access *cmd,
 763				     u8 *bytes, int *perrno);
 764static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 765				    struct i40e_nvm_access *cmd,
 766				    u8 *bytes, int *perrno);
 767static inline u8 i40e_nvmupd_get_module(u32 val)
 768{
 769	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 770}
 771static inline u8 i40e_nvmupd_get_transaction(u32 val)
 772{
 773	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
 774}
 775
 776static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 777{
 778	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
 
 779}
 780
 781static const char * const i40e_nvm_update_state_str[] = {
 782	"I40E_NVMUPD_INVALID",
 783	"I40E_NVMUPD_READ_CON",
 784	"I40E_NVMUPD_READ_SNT",
 785	"I40E_NVMUPD_READ_LCB",
 786	"I40E_NVMUPD_READ_SA",
 787	"I40E_NVMUPD_WRITE_ERA",
 788	"I40E_NVMUPD_WRITE_CON",
 789	"I40E_NVMUPD_WRITE_SNT",
 790	"I40E_NVMUPD_WRITE_LCB",
 791	"I40E_NVMUPD_WRITE_SA",
 792	"I40E_NVMUPD_CSUM_CON",
 793	"I40E_NVMUPD_CSUM_SA",
 794	"I40E_NVMUPD_CSUM_LCB",
 795	"I40E_NVMUPD_STATUS",
 796	"I40E_NVMUPD_EXEC_AQ",
 797	"I40E_NVMUPD_GET_AQ_RESULT",
 798	"I40E_NVMUPD_GET_AQ_EVENT",
 799};
 800
 801/**
 802 * i40e_nvmupd_command - Process an NVM update command
 803 * @hw: pointer to hardware structure
 804 * @cmd: pointer to nvm update command
 805 * @bytes: pointer to the data buffer
 806 * @perrno: pointer to return error code
 807 *
 808 * Dispatches command depending on what update state is current
 809 **/
 810int i40e_nvmupd_command(struct i40e_hw *hw,
 811			struct i40e_nvm_access *cmd,
 812			u8 *bytes, int *perrno)
 813{
 
 814	enum i40e_nvmupd_cmd upd_cmd;
 815	int status;
 816
 817	/* assume success */
 818	*perrno = 0;
 819
 820	/* early check for status command and debug msgs */
 821	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 822
 823	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 824		   i40e_nvm_update_state_str[upd_cmd],
 825		   hw->nvmupd_state,
 826		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 827		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 828
 829	if (upd_cmd == I40E_NVMUPD_INVALID) {
 830		*perrno = -EFAULT;
 831		i40e_debug(hw, I40E_DEBUG_NVM,
 832			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 833			   upd_cmd, *perrno);
 834	}
 835
 836	/* a status request returns immediately rather than
 837	 * going into the state machine
 838	 */
 839	if (upd_cmd == I40E_NVMUPD_STATUS) {
 840		if (!cmd->data_size) {
 841			*perrno = -EFAULT;
 842			return -EINVAL;
 843		}
 844
 845		bytes[0] = hw->nvmupd_state;
 846
 847		if (cmd->data_size >= 4) {
 848			bytes[1] = 0;
 849			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 850		}
 851
 852		/* Clear error status on read */
 853		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 854			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 855
 856		return 0;
 857	}
 858
 859	/* Clear status even it is not read and log */
 860	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 861		i40e_debug(hw, I40E_DEBUG_NVM,
 862			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 863		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 864	}
 865
 866	/* Acquire lock to prevent race condition where adminq_task
 867	 * can execute after i40e_nvmupd_nvm_read/write but before state
 868	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 869	 *
 870	 * During NVMUpdate, it is observed that lock could be held for
 871	 * ~5ms for most commands. However lock is held for ~60ms for
 872	 * NVMUPD_CSUM_LCB command.
 873	 */
 874	mutex_lock(&hw->aq.arq_mutex);
 875	switch (hw->nvmupd_state) {
 876	case I40E_NVMUPD_STATE_INIT:
 877		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 878		break;
 879
 880	case I40E_NVMUPD_STATE_READING:
 881		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 882		break;
 883
 884	case I40E_NVMUPD_STATE_WRITING:
 885		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 886		break;
 887
 888	case I40E_NVMUPD_STATE_INIT_WAIT:
 889	case I40E_NVMUPD_STATE_WRITE_WAIT:
 890		/* if we need to stop waiting for an event, clear
 891		 * the wait info and return before doing anything else
 892		 */
 893		if (cmd->offset == 0xffff) {
 894			i40e_nvmupd_clear_wait_state(hw);
 895			status = 0;
 896			break;
 897		}
 898
 899		status = -EBUSY;
 900		*perrno = -EBUSY;
 901		break;
 902
 903	default:
 904		/* invalid state, should never happen */
 905		i40e_debug(hw, I40E_DEBUG_NVM,
 906			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 907		status = -EOPNOTSUPP;
 908		*perrno = -ESRCH;
 909		break;
 910	}
 911
 912	mutex_unlock(&hw->aq.arq_mutex);
 913	return status;
 914}
 915
 916/**
 917 * i40e_nvmupd_state_init - Handle NVM update state Init
 918 * @hw: pointer to hardware structure
 919 * @cmd: pointer to nvm update command buffer
 920 * @bytes: pointer to the data buffer
 921 * @perrno: pointer to return error code
 922 *
 923 * Process legitimate commands of the Init state and conditionally set next
 924 * state. Reject all other commands.
 925 **/
 926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
 927				  struct i40e_nvm_access *cmd,
 928				  u8 *bytes, int *perrno)
 929{
 
 930	enum i40e_nvmupd_cmd upd_cmd;
 931	int status = 0;
 932
 933	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 934
 935	switch (upd_cmd) {
 936	case I40E_NVMUPD_READ_SA:
 937		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 938		if (status) {
 939			*perrno = i40e_aq_rc_to_posix(status,
 940						     hw->aq.asq_last_status);
 941		} else {
 942			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 943			i40e_release_nvm(hw);
 944		}
 945		break;
 946
 947	case I40E_NVMUPD_READ_SNT:
 948		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 949		if (status) {
 950			*perrno = i40e_aq_rc_to_posix(status,
 951						     hw->aq.asq_last_status);
 952		} else {
 953			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 954			if (status)
 955				i40e_release_nvm(hw);
 956			else
 957				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 958		}
 959		break;
 960
 961	case I40E_NVMUPD_WRITE_ERA:
 962		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 963		if (status) {
 964			*perrno = i40e_aq_rc_to_posix(status,
 965						     hw->aq.asq_last_status);
 966		} else {
 967			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 968			if (status) {
 969				i40e_release_nvm(hw);
 970			} else {
 971				hw->nvm_release_on_done = true;
 972				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 973				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 974			}
 975		}
 976		break;
 977
 978	case I40E_NVMUPD_WRITE_SA:
 979		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 980		if (status) {
 981			*perrno = i40e_aq_rc_to_posix(status,
 982						     hw->aq.asq_last_status);
 983		} else {
 984			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 985			if (status) {
 986				i40e_release_nvm(hw);
 987			} else {
 988				hw->nvm_release_on_done = true;
 989				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 990				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 991			}
 992		}
 993		break;
 994
 995	case I40E_NVMUPD_WRITE_SNT:
 996		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 997		if (status) {
 998			*perrno = i40e_aq_rc_to_posix(status,
 999						     hw->aq.asq_last_status);
1000		} else {
1001			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002			if (status) {
1003				i40e_release_nvm(hw);
1004			} else {
1005				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007			}
1008		}
1009		break;
1010
1011	case I40E_NVMUPD_CSUM_SA:
1012		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013		if (status) {
1014			*perrno = i40e_aq_rc_to_posix(status,
1015						     hw->aq.asq_last_status);
1016		} else {
1017			status = i40e_update_nvm_checksum(hw);
1018			if (status) {
1019				*perrno = hw->aq.asq_last_status ?
1020				   i40e_aq_rc_to_posix(status,
1021						       hw->aq.asq_last_status) :
1022				   -EIO;
1023				i40e_release_nvm(hw);
1024			} else {
1025				hw->nvm_release_on_done = true;
1026				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028			}
1029		}
1030		break;
1031
1032	case I40E_NVMUPD_EXEC_AQ:
1033		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_RESULT:
1037		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038		break;
1039
1040	case I40E_NVMUPD_GET_AQ_EVENT:
1041		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042		break;
1043
1044	default:
1045		i40e_debug(hw, I40E_DEBUG_NVM,
1046			   "NVMUPD: bad cmd %s in init state\n",
1047			   i40e_nvm_update_state_str[upd_cmd]);
1048		status = -EIO;
1049		*perrno = -ESRCH;
1050		break;
1051	}
1052	return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held.  Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066				     struct i40e_nvm_access *cmd,
1067				     u8 *bytes, int *perrno)
1068{
 
1069	enum i40e_nvmupd_cmd upd_cmd;
1070	int status = 0;
1071
1072	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074	switch (upd_cmd) {
1075	case I40E_NVMUPD_READ_SA:
1076	case I40E_NVMUPD_READ_CON:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		break;
1079
1080	case I40E_NVMUPD_READ_LCB:
1081		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082		i40e_release_nvm(hw);
1083		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084		break;
1085
1086	default:
1087		i40e_debug(hw, I40E_DEBUG_NVM,
1088			   "NVMUPD: bad cmd %s in reading state.\n",
1089			   i40e_nvm_update_state_str[upd_cmd]);
1090		status = -EOPNOTSUPP;
1091		*perrno = -ESRCH;
1092		break;
1093	}
1094	return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held.  Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108				     struct i40e_nvm_access *cmd,
1109				     u8 *bytes, int *perrno)
1110{
 
1111	enum i40e_nvmupd_cmd upd_cmd;
1112	bool retry_attempt = false;
1113	int status = 0;
1114
1115	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118	switch (upd_cmd) {
1119	case I40E_NVMUPD_WRITE_CON:
1120		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121		if (!status) {
1122			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124		}
1125		break;
1126
1127	case I40E_NVMUPD_WRITE_LCB:
1128		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129		if (status) {
1130			*perrno = hw->aq.asq_last_status ?
1131				   i40e_aq_rc_to_posix(status,
1132						       hw->aq.asq_last_status) :
1133				   -EIO;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135		} else {
1136			hw->nvm_release_on_done = true;
1137			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139		}
1140		break;
1141
1142	case I40E_NVMUPD_CSUM_CON:
1143		/* Assumes the caller has acquired the nvm */
1144		status = i40e_update_nvm_checksum(hw);
1145		if (status) {
1146			*perrno = hw->aq.asq_last_status ?
1147				   i40e_aq_rc_to_posix(status,
1148						       hw->aq.asq_last_status) :
1149				   -EIO;
1150			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151		} else {
1152			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154		}
1155		break;
1156
1157	case I40E_NVMUPD_CSUM_LCB:
1158		/* Assumes the caller has acquired the nvm */
1159		status = i40e_update_nvm_checksum(hw);
1160		if (status) {
1161			*perrno = hw->aq.asq_last_status ?
1162				   i40e_aq_rc_to_posix(status,
1163						       hw->aq.asq_last_status) :
1164				   -EIO;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166		} else {
1167			hw->nvm_release_on_done = true;
1168			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170		}
1171		break;
1172
1173	default:
1174		i40e_debug(hw, I40E_DEBUG_NVM,
1175			   "NVMUPD: bad cmd %s in writing state.\n",
1176			   i40e_nvm_update_state_str[upd_cmd]);
1177		status = -EOPNOTSUPP;
1178		*perrno = -ESRCH;
1179		break;
1180	}
1181
1182	/* In some circumstances, a multi-write transaction takes longer
1183	 * than the default 3 minute timeout on the write semaphore.  If
1184	 * the write failed with an EBUSY status, this is likely the problem,
1185	 * so here we try to reacquire the semaphore then retry the write.
1186	 * We only do one retry, then give up.
1187	 */
1188	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189	    !retry_attempt) {
 
1190		u32 old_asq_status = hw->aq.asq_last_status;
1191		int old_status = status;
1192		u32 gtime;
1193
1194		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196			i40e_debug(hw, I40E_DEBUG_ALL,
1197				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198				   gtime, hw->nvm.hw_semaphore_timeout);
1199			i40e_release_nvm(hw);
1200			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201			if (status) {
1202				i40e_debug(hw, I40E_DEBUG_ALL,
1203					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204					   hw->aq.asq_last_status);
1205				status = old_status;
1206				hw->aq.asq_last_status = old_asq_status;
1207			} else {
1208				retry_attempt = true;
1209				goto retry;
1210			}
1211		}
1212	}
1213
1214	return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223	i40e_debug(hw, I40E_DEBUG_NVM,
1224		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1225		   hw->nvm_wait_opcode);
1226
1227	if (hw->nvm_release_on_done) {
1228		i40e_release_nvm(hw);
1229		hw->nvm_release_on_done = false;
1230	}
1231	hw->nvm_wait_opcode = 0;
1232
1233	if (hw->aq.arq_last_status) {
1234		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235		return;
1236	}
1237
1238	switch (hw->nvmupd_state) {
1239	case I40E_NVMUPD_STATE_INIT_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241		break;
1242
1243	case I40E_NVMUPD_STATE_WRITE_WAIT:
1244		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245		break;
1246
1247	default:
1248		break;
1249	}
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259				  struct i40e_aq_desc *desc)
1260{
1261	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263	if (opcode == hw->nvm_wait_opcode) {
1264		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265		i40e_nvmupd_clear_wait_state(hw);
1266	}
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278						 struct i40e_nvm_access *cmd,
1279						 int *perrno)
1280{
1281	enum i40e_nvmupd_cmd upd_cmd;
1282	u8 module, transaction;
1283
1284	/* anything that doesn't match a recognized case is an error */
1285	upd_cmd = I40E_NVMUPD_INVALID;
1286
1287	transaction = i40e_nvmupd_get_transaction(cmd->config);
1288	module = i40e_nvmupd_get_module(cmd->config);
1289
1290	/* limits on data size */
1291	if ((cmd->data_size < 1) ||
1292	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293		i40e_debug(hw, I40E_DEBUG_NVM,
1294			   "i40e_nvmupd_validate_command data_size %d\n",
1295			   cmd->data_size);
1296		*perrno = -EFAULT;
1297		return I40E_NVMUPD_INVALID;
1298	}
1299
1300	switch (cmd->command) {
1301	case I40E_NVM_READ:
1302		switch (transaction) {
1303		case I40E_NVM_CON:
1304			upd_cmd = I40E_NVMUPD_READ_CON;
1305			break;
1306		case I40E_NVM_SNT:
1307			upd_cmd = I40E_NVMUPD_READ_SNT;
1308			break;
1309		case I40E_NVM_LCB:
1310			upd_cmd = I40E_NVMUPD_READ_LCB;
1311			break;
1312		case I40E_NVM_SA:
1313			upd_cmd = I40E_NVMUPD_READ_SA;
1314			break;
1315		case I40E_NVM_EXEC:
1316			if (module == 0xf)
1317				upd_cmd = I40E_NVMUPD_STATUS;
1318			else if (module == 0)
1319				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320			break;
1321		case I40E_NVM_AQE:
1322			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323			break;
1324		}
1325		break;
1326
1327	case I40E_NVM_WRITE:
1328		switch (transaction) {
1329		case I40E_NVM_CON:
1330			upd_cmd = I40E_NVMUPD_WRITE_CON;
1331			break;
1332		case I40E_NVM_SNT:
1333			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334			break;
1335		case I40E_NVM_LCB:
1336			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337			break;
1338		case I40E_NVM_SA:
1339			upd_cmd = I40E_NVMUPD_WRITE_SA;
1340			break;
1341		case I40E_NVM_ERA:
1342			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343			break;
1344		case I40E_NVM_CSUM:
1345			upd_cmd = I40E_NVMUPD_CSUM_CON;
1346			break;
1347		case (I40E_NVM_CSUM|I40E_NVM_SA):
1348			upd_cmd = I40E_NVMUPD_CSUM_SA;
1349			break;
1350		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352			break;
1353		case I40E_NVM_EXEC:
1354			if (module == 0)
1355				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356			break;
1357		}
1358		break;
1359	}
1360
1361	return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374			       struct i40e_nvm_access *cmd,
1375			       u8 *bytes, int *perrno)
1376{
1377	struct i40e_asq_cmd_details cmd_details;
 
1378	struct i40e_aq_desc *aq_desc;
1379	u32 buff_size = 0;
1380	u8 *buff = NULL;
1381	u32 aq_desc_len;
1382	u32 aq_data_len;
1383	int status;
1384
1385	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386	if (cmd->offset == 0xffff)
1387		return 0;
1388
1389	memset(&cmd_details, 0, sizeof(cmd_details));
1390	cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392	aq_desc_len = sizeof(struct i40e_aq_desc);
1393	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395	/* get the aq descriptor */
1396	if (cmd->data_size < aq_desc_len) {
1397		i40e_debug(hw, I40E_DEBUG_NVM,
1398			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399			   cmd->data_size, aq_desc_len);
1400		*perrno = -EINVAL;
1401		return -EINVAL;
1402	}
1403	aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405	/* if data buffer needed, make sure it's ready */
1406	aq_data_len = cmd->data_size - aq_desc_len;
1407	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408	if (buff_size) {
1409		if (!hw->nvm_buff.va) {
1410			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411							hw->aq.asq_buf_size);
1412			if (status)
1413				i40e_debug(hw, I40E_DEBUG_NVM,
1414					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415					   status);
1416		}
1417
1418		if (hw->nvm_buff.va) {
1419			buff = hw->nvm_buff.va;
1420			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421		}
1422	}
1423
1424	if (cmd->offset)
1425		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427	/* and away we go! */
1428	status = i40e_asq_send_command(hw, aq_desc, buff,
1429				       buff_size, &cmd_details);
1430	if (status) {
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "%s err %pe aq_err %s\n",
1433			   __func__, ERR_PTR(status),
1434			   i40e_aq_str(hw, hw->aq.asq_last_status));
1435		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436		return status;
1437	}
1438
1439	/* should we wait for a followup event? */
1440	if (cmd->offset) {
1441		hw->nvm_wait_opcode = cmd->offset;
1442		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443	}
1444
1445	return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458				     struct i40e_nvm_access *cmd,
1459				     u8 *bytes, int *perrno)
1460{
1461	u32 aq_total_len;
1462	u32 aq_desc_len;
1463	int remainder;
1464	u8 *buff;
1465
1466	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468	aq_desc_len = sizeof(struct i40e_aq_desc);
1469	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471	/* check offset range */
1472	if (cmd->offset > aq_total_len) {
1473		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474			   __func__, cmd->offset, aq_total_len);
1475		*perrno = -EINVAL;
1476		return -EINVAL;
1477	}
1478
1479	/* check copylength range */
1480	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481		int new_len = aq_total_len - cmd->offset;
1482
1483		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484			   __func__, cmd->data_size, new_len);
1485		cmd->data_size = new_len;
1486	}
1487
1488	remainder = cmd->data_size;
1489	if (cmd->offset < aq_desc_len) {
1490		u32 len = aq_desc_len - cmd->offset;
1491
1492		len = min(len, cmd->data_size);
1493		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494			   __func__, cmd->offset, cmd->offset + len);
1495
1496		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497		memcpy(bytes, buff, len);
1498
1499		bytes += len;
1500		remainder -= len;
1501		buff = hw->nvm_buff.va;
1502	} else {
1503		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504	}
1505
1506	if (remainder > 0) {
1507		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510			   __func__, start_byte, start_byte + remainder);
1511		memcpy(bytes, buff, remainder);
1512	}
1513
1514	return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527				    struct i40e_nvm_access *cmd,
1528				    u8 *bytes, int *perrno)
1529{
1530	u32 aq_total_len;
1531	u32 aq_desc_len;
1532
1533	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535	aq_desc_len = sizeof(struct i40e_aq_desc);
1536	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538	/* check copylength range */
1539	if (cmd->data_size > aq_total_len) {
1540		i40e_debug(hw, I40E_DEBUG_NVM,
1541			   "%s: copy length %d too big, trimming to %d\n",
1542			   __func__, cmd->data_size, aq_total_len);
1543		cmd->data_size = aq_total_len;
1544	}
1545
1546	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548	return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561				struct i40e_nvm_access *cmd,
1562				u8 *bytes, int *perrno)
1563{
1564	struct i40e_asq_cmd_details cmd_details;
 
1565	u8 module, transaction;
1566	int status;
1567	bool last;
1568
1569	transaction = i40e_nvmupd_get_transaction(cmd->config);
1570	module = i40e_nvmupd_get_module(cmd->config);
1571	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573	memset(&cmd_details, 0, sizeof(cmd_details));
1574	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577				  bytes, last, &cmd_details);
1578	if (status) {
1579		i40e_debug(hw, I40E_DEBUG_NVM,
1580			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1581			   module, cmd->offset, cmd->data_size);
1582		i40e_debug(hw, I40E_DEBUG_NVM,
1583			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1584			   status, hw->aq.asq_last_status);
1585		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586	}
1587
1588	return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600				 struct i40e_nvm_access *cmd,
1601				 int *perrno)
1602{
 
1603	struct i40e_asq_cmd_details cmd_details;
1604	u8 module, transaction;
1605	int status = 0;
1606	bool last;
1607
1608	transaction = i40e_nvmupd_get_transaction(cmd->config);
1609	module = i40e_nvmupd_get_module(cmd->config);
1610	last = (transaction & I40E_NVM_LCB);
1611
1612	memset(&cmd_details, 0, sizeof(cmd_details));
1613	cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616				   last, &cmd_details);
1617	if (status) {
1618		i40e_debug(hw, I40E_DEBUG_NVM,
1619			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1620			   module, cmd->offset, cmd->data_size);
1621		i40e_debug(hw, I40E_DEBUG_NVM,
1622			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623			   status, hw->aq.asq_last_status);
1624		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625	}
1626
1627	return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640				 struct i40e_nvm_access *cmd,
1641				 u8 *bytes, int *perrno)
1642{
 
1643	struct i40e_asq_cmd_details cmd_details;
1644	u8 module, transaction;
1645	u8 preservation_flags;
1646	int status = 0;
1647	bool last;
1648
1649	transaction = i40e_nvmupd_get_transaction(cmd->config);
1650	module = i40e_nvmupd_get_module(cmd->config);
1651	last = (transaction & I40E_NVM_LCB);
1652	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654	memset(&cmd_details, 0, sizeof(cmd_details));
1655	cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658				    (u16)cmd->data_size, bytes, last,
1659				    preservation_flags, &cmd_details);
1660	if (status) {
1661		i40e_debug(hw, I40E_DEBUG_NVM,
1662			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663			   module, cmd->offset, cmd->data_size);
1664		i40e_debug(hw, I40E_DEBUG_NVM,
1665			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1666			   status, hw->aq.asq_last_status);
1667		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668	}
1669
1670	return status;
1671}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
 
   4#include "i40e_prototype.h"
   5
   6/**
   7 * i40e_init_nvm_ops - Initialize NVM function pointers
   8 * @hw: pointer to the HW structure
   9 *
  10 * Setup the function pointers and the NVM info structure. Should be called
  11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  12 * Please notice that the NVM term is used here (& in all methods covered
  13 * in this file) as an equivalent of the FLASH part mapped into the SR.
  14 * We are accessing FLASH always thru the Shadow RAM.
  15 **/
  16i40e_status i40e_init_nvm(struct i40e_hw *hw)
  17{
  18	struct i40e_nvm_info *nvm = &hw->nvm;
  19	i40e_status ret_code = 0;
  20	u32 fla, gens;
  21	u8 sr_size;
  22
  23	/* The SR size is stored regardless of the nvm programming mode
  24	 * as the blank mode may be used in the factory line.
  25	 */
  26	gens = rd32(hw, I40E_GLNVM_GENS);
  27	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
  28			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
  29	/* Switching to words (sr_size contains power of 2KB) */
  30	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  31
  32	/* Check if we are in the normal or blank NVM programming mode */
  33	fla = rd32(hw, I40E_GLNVM_FLA);
  34	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  35		/* Max NVM timeout */
  36		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  37		nvm->blank_nvm_mode = false;
  38	} else { /* Blank programming mode */
  39		nvm->blank_nvm_mode = true;
  40		ret_code = I40E_ERR_NVM_BLANK_MODE;
  41		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  42	}
  43
  44	return ret_code;
  45}
  46
  47/**
  48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  49 * @hw: pointer to the HW structure
  50 * @access: NVM access type (read or write)
  51 *
  52 * This function will request NVM ownership for reading
  53 * via the proper Admin Command.
  54 **/
  55i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
  56				       enum i40e_aq_resource_access_type access)
  57{
  58	i40e_status ret_code = 0;
  59	u64 gtime, timeout;
  60	u64 time_left = 0;
 
  61
  62	if (hw->nvm.blank_nvm_mode)
  63		goto i40e_i40e_acquire_nvm_exit;
  64
  65	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  66					    0, &time_left, NULL);
  67	/* Reading the Global Device Timer */
  68	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  69
  70	/* Store the timeout */
  71	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  72
  73	if (ret_code)
  74		i40e_debug(hw, I40E_DEBUG_NVM,
  75			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  76			   access, time_left, ret_code, hw->aq.asq_last_status);
  77
  78	if (ret_code && time_left) {
  79		/* Poll until the current NVM owner timeouts */
  80		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  81		while ((gtime < timeout) && time_left) {
  82			usleep_range(10000, 20000);
  83			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  84			ret_code = i40e_aq_request_resource(hw,
  85							I40E_NVM_RESOURCE_ID,
  86							access, 0, &time_left,
  87							NULL);
  88			if (!ret_code) {
  89				hw->nvm.hw_semaphore_timeout =
  90					    I40E_MS_TO_GTIME(time_left) + gtime;
  91				break;
  92			}
  93		}
  94		if (ret_code) {
  95			hw->nvm.hw_semaphore_timeout = 0;
  96			i40e_debug(hw, I40E_DEBUG_NVM,
  97				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
  98				   time_left, ret_code, hw->aq.asq_last_status);
  99		}
 100	}
 101
 102i40e_i40e_acquire_nvm_exit:
 103	return ret_code;
 104}
 105
 106/**
 107 * i40e_release_nvm - Generic request for releasing the NVM ownership
 108 * @hw: pointer to the HW structure
 109 *
 110 * This function will release NVM resource via the proper Admin Command.
 111 **/
 112void i40e_release_nvm(struct i40e_hw *hw)
 113{
 114	i40e_status ret_code = I40E_SUCCESS;
 115	u32 total_delay = 0;
 
 116
 117	if (hw->nvm.blank_nvm_mode)
 118		return;
 119
 120	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 121
 122	/* there are some rare cases when trying to release the resource
 123	 * results in an admin Q timeout, so handle them correctly
 124	 */
 125	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
 126	       (total_delay < hw->aq.asq_cmd_timeout)) {
 127		usleep_range(1000, 2000);
 128		ret_code = i40e_aq_release_resource(hw,
 129						    I40E_NVM_RESOURCE_ID,
 130						    0, NULL);
 131		total_delay++;
 132	}
 133}
 134
 135/**
 136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 137 * @hw: pointer to the HW structure
 138 *
 139 * Polls the SRCTL Shadow RAM register done bit.
 140 **/
 141static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 142{
 143	i40e_status ret_code = I40E_ERR_TIMEOUT;
 144	u32 srctl, wait_cnt;
 145
 146	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 147	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 148		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 149		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 150			ret_code = 0;
 151			break;
 152		}
 153		udelay(5);
 154	}
 155	if (ret_code == I40E_ERR_TIMEOUT)
 156		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 157	return ret_code;
 158}
 159
 160/**
 161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 162 * @hw: pointer to the HW structure
 163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 164 * @data: word read from the Shadow RAM
 165 *
 166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 167 **/
 168static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 169					    u16 *data)
 170{
 171	i40e_status ret_code = I40E_ERR_TIMEOUT;
 172	u32 sr_reg;
 173
 174	if (offset >= hw->nvm.sr_size) {
 175		i40e_debug(hw, I40E_DEBUG_NVM,
 176			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 177			   offset, hw->nvm.sr_size);
 178		ret_code = I40E_ERR_PARAM;
 179		goto read_nvm_exit;
 180	}
 181
 182	/* Poll the done bit first */
 183	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 184	if (!ret_code) {
 185		/* Write the address and start reading */
 186		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 187			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 188		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 189
 190		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 191		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 192		if (!ret_code) {
 193			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 194			*data = (u16)((sr_reg &
 195				       I40E_GLNVM_SRDATA_RDDATA_MASK)
 196				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
 197		}
 198	}
 199	if (ret_code)
 200		i40e_debug(hw, I40E_DEBUG_NVM,
 201			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 202			   offset);
 203
 204read_nvm_exit:
 205	return ret_code;
 206}
 207
 208/**
 209 * i40e_read_nvm_aq - Read Shadow RAM.
 210 * @hw: pointer to the HW structure.
 211 * @module_pointer: module pointer location in words from the NVM beginning
 212 * @offset: offset in words from module start
 213 * @words: number of words to write
 214 * @data: buffer with words to write to the Shadow RAM
 215 * @last_command: tells the AdminQ that this is the last command
 216 *
 217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 218 **/
 219static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
 220				    u8 module_pointer, u32 offset,
 221				    u16 words, void *data,
 222				    bool last_command)
 223{
 224	i40e_status ret_code = I40E_ERR_NVM;
 225	struct i40e_asq_cmd_details cmd_details;
 
 226
 227	memset(&cmd_details, 0, sizeof(cmd_details));
 228	cmd_details.wb_desc = &hw->nvm_wb_desc;
 229
 230	/* Here we are checking the SR limit only for the flat memory model.
 231	 * We cannot do it for the module-based model, as we did not acquire
 232	 * the NVM resource yet (we cannot get the module pointer value).
 233	 * Firmware will check the module-based model.
 234	 */
 235	if ((offset + words) > hw->nvm.sr_size)
 236		i40e_debug(hw, I40E_DEBUG_NVM,
 237			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 238			   (offset + words), hw->nvm.sr_size);
 239	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 240		/* We can write only up to 4KB (one sector), in one AQ write */
 241		i40e_debug(hw, I40E_DEBUG_NVM,
 242			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 243			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 244	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 245		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 246		/* A single write cannot spread over two sectors */
 247		i40e_debug(hw, I40E_DEBUG_NVM,
 248			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 249			   offset, words);
 250	else
 251		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 252					    2 * offset,  /*bytes*/
 253					    2 * words,   /*bytes*/
 254					    data, last_command, &cmd_details);
 255
 256	return ret_code;
 257}
 258
 259/**
 260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 261 * @hw: pointer to the HW structure
 262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 263 * @data: word read from the Shadow RAM
 264 *
 265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 266 **/
 267static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 268					 u16 *data)
 269{
 270	i40e_status ret_code = I40E_ERR_TIMEOUT;
 271
 272	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 273	*data = le16_to_cpu(*(__le16 *)data);
 274
 275	return ret_code;
 276}
 277
 278/**
 279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 280 * @hw: pointer to the HW structure
 281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 282 * @data: word read from the Shadow RAM
 283 *
 284 * Reads one 16 bit word from the Shadow RAM.
 285 *
 286 * Do not use this function except in cases where the nvm lock is already
 287 * taken via i40e_acquire_nvm().
 288 **/
 289static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
 290					u16 offset, u16 *data)
 291{
 292	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 293		return i40e_read_nvm_word_aq(hw, offset, data);
 294
 295	return i40e_read_nvm_word_srctl(hw, offset, data);
 296}
 297
 298/**
 299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 300 * @hw: pointer to the HW structure
 301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 302 * @data: word read from the Shadow RAM
 303 *
 304 * Reads one 16 bit word from the Shadow RAM.
 305 **/
 306i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 307			       u16 *data)
 308{
 309	i40e_status ret_code = 0;
 310
 311	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 312		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 313	if (ret_code)
 314		return ret_code;
 315
 316	ret_code = __i40e_read_nvm_word(hw, offset, data);
 317
 318	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 319		i40e_release_nvm(hw);
 320
 321	return ret_code;
 322}
 323
 324/**
 325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 326 * @hw: pointer to the HW structure
 327 * @module_ptr: Pointer to module in words with respect to NVM beginning
 328 * @offset: offset in words from module start
 
 329 * @words_data_size: Words to read from NVM
 330 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 331 **/
 332i40e_status i40e_read_nvm_module_data(struct i40e_hw *hw,
 333				      u8 module_ptr, u16 offset,
 334				      u16 words_data_size,
 335				      u16 *data_ptr)
 
 
 336{
 337	i40e_status status;
 338	u16 ptr_value = 0;
 339	u32 flat_offset;
 
 340
 341	if (module_ptr != 0) {
 342		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 343		if (status) {
 344			i40e_debug(hw, I40E_DEBUG_ALL,
 345				   "Reading nvm word failed.Error code: %d.\n",
 346				   status);
 347			return I40E_ERR_NVM;
 348		}
 349	}
 350#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 351#define I40E_NVM_INVALID_VAL 0xFFFF
 352
 353	/* Pointer not initialized */
 354	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 355	    ptr_value == I40E_NVM_INVALID_VAL)
 356		return I40E_ERR_BAD_PTR;
 
 
 357
 358	/* Check whether the module is in SR mapped area or outside */
 359	if (ptr_value & I40E_PTR_TYPE) {
 360		/* Pointer points outside of the Shared RAM mapped area */
 361		ptr_value &= ~I40E_PTR_TYPE;
 
 362
 363		/* PtrValue in 4kB units, need to convert to words */
 364		ptr_value /= 2;
 365		flat_offset = ((u32)ptr_value * 0x1000) + (u32)offset;
 366		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 367		if (!status) {
 368			status = i40e_aq_read_nvm(hw, 0, 2 * flat_offset,
 369						  2 * words_data_size,
 370						  data_ptr, true, NULL);
 371			i40e_release_nvm(hw);
 372			if (status) {
 373				i40e_debug(hw, I40E_DEBUG_ALL,
 374					   "Reading nvm aq failed.Error code: %d.\n",
 375					   status);
 376				return I40E_ERR_NVM;
 377			}
 378		} else {
 379			return I40E_ERR_NVM;
 380		}
 381	} else {
 382		/* Read from the Shadow RAM */
 383		status = i40e_read_nvm_buffer(hw, ptr_value + offset,
 384					      &words_data_size, data_ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 385		if (status) {
 386			i40e_debug(hw, I40E_DEBUG_ALL,
 387				   "Reading nvm buffer failed.Error code: %d.\n",
 388				   status);
 389		}
 390	}
 391
 392	return status;
 393}
 394
 395/**
 396 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 397 * @hw: pointer to the HW structure
 398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 399 * @words: (in) number of words to read; (out) number of words actually read
 400 * @data: words read from the Shadow RAM
 401 *
 402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 403 * method. The buffer read is preceded by the NVM ownership take
 404 * and followed by the release.
 405 **/
 406static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 407					      u16 *words, u16 *data)
 408{
 409	i40e_status ret_code = 0;
 410	u16 index, word;
 411
 412	/* Loop thru the selected region */
 413	for (word = 0; word < *words; word++) {
 414		index = offset + word;
 415		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 416		if (ret_code)
 417			break;
 418	}
 419
 420	/* Update the number of words read from the Shadow RAM */
 421	*words = word;
 422
 423	return ret_code;
 424}
 425
 426/**
 427 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 428 * @hw: pointer to the HW structure
 429 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 430 * @words: (in) number of words to read; (out) number of words actually read
 431 * @data: words read from the Shadow RAM
 432 *
 433 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 434 * method. The buffer read is preceded by the NVM ownership take
 435 * and followed by the release.
 436 **/
 437static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 438					   u16 *words, u16 *data)
 439{
 440	i40e_status ret_code;
 441	u16 read_size;
 442	bool last_cmd = false;
 443	u16 words_read = 0;
 
 
 444	u16 i = 0;
 445
 446	do {
 447		/* Calculate number of bytes we should read in this step.
 448		 * FVL AQ do not allow to read more than one page at a time or
 449		 * to cross page boundaries.
 450		 */
 451		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 452			read_size = min(*words,
 453					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 454				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 455		else
 456			read_size = min((*words - words_read),
 457					I40E_SR_SECTOR_SIZE_IN_WORDS);
 458
 459		/* Check if this is last command, if so set proper flag */
 460		if ((words_read + read_size) >= *words)
 461			last_cmd = true;
 462
 463		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 464					    data + words_read, last_cmd);
 465		if (ret_code)
 466			goto read_nvm_buffer_aq_exit;
 467
 468		/* Increment counter for words already read and move offset to
 469		 * new read location
 470		 */
 471		words_read += read_size;
 472		offset += read_size;
 473	} while (words_read < *words);
 474
 475	for (i = 0; i < *words; i++)
 476		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 477
 478read_nvm_buffer_aq_exit:
 479	*words = words_read;
 480	return ret_code;
 481}
 482
 483/**
 484 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 485 * @hw: pointer to the HW structure
 486 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 487 * @words: (in) number of words to read; (out) number of words actually read
 488 * @data: words read from the Shadow RAM
 489 *
 490 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 491 * method.
 492 **/
 493static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
 494					  u16 offset, u16 *words,
 495					  u16 *data)
 496{
 497	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 498		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 499
 500	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 501}
 502
 503/**
 504 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 505 * @hw: pointer to the HW structure
 506 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 507 * @words: (in) number of words to read; (out) number of words actually read
 508 * @data: words read from the Shadow RAM
 509 *
 510 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 511 * method. The buffer read is preceded by the NVM ownership take
 512 * and followed by the release.
 513 **/
 514i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 515				 u16 *words, u16 *data)
 516{
 517	i40e_status ret_code = 0;
 518
 519	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
 520		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 521		if (!ret_code) {
 522			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 523							   data);
 524			i40e_release_nvm(hw);
 525		}
 526	} else {
 527		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 528	}
 529
 530	return ret_code;
 531}
 532
 533/**
 534 * i40e_write_nvm_aq - Writes Shadow RAM.
 535 * @hw: pointer to the HW structure.
 536 * @module_pointer: module pointer location in words from the NVM beginning
 537 * @offset: offset in words from module start
 538 * @words: number of words to write
 539 * @data: buffer with words to write to the Shadow RAM
 540 * @last_command: tells the AdminQ that this is the last command
 541 *
 542 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 543 **/
 544static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 545				     u32 offset, u16 words, void *data,
 546				     bool last_command)
 547{
 548	i40e_status ret_code = I40E_ERR_NVM;
 549	struct i40e_asq_cmd_details cmd_details;
 
 550
 551	memset(&cmd_details, 0, sizeof(cmd_details));
 552	cmd_details.wb_desc = &hw->nvm_wb_desc;
 553
 554	/* Here we are checking the SR limit only for the flat memory model.
 555	 * We cannot do it for the module-based model, as we did not acquire
 556	 * the NVM resource yet (we cannot get the module pointer value).
 557	 * Firmware will check the module-based model.
 558	 */
 559	if ((offset + words) > hw->nvm.sr_size)
 560		i40e_debug(hw, I40E_DEBUG_NVM,
 561			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 562			   (offset + words), hw->nvm.sr_size);
 563	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 564		/* We can write only up to 4KB (one sector), in one AQ write */
 565		i40e_debug(hw, I40E_DEBUG_NVM,
 566			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 567			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 568	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 569		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 570		/* A single write cannot spread over two sectors */
 571		i40e_debug(hw, I40E_DEBUG_NVM,
 572			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 573			   offset, words);
 574	else
 575		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 576					      2 * offset,  /*bytes*/
 577					      2 * words,   /*bytes*/
 578					      data, last_command, 0,
 579					      &cmd_details);
 580
 581	return ret_code;
 582}
 583
 584/**
 585 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 586 * @hw: pointer to hardware structure
 587 * @checksum: pointer to the checksum
 588 *
 589 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 590 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 591 * is customer specific and unknown. Therefore, this function skips all maximum
 592 * possible size of VPD (1kB).
 593 **/
 594static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
 595						    u16 *checksum)
 596{
 597	i40e_status ret_code;
 598	struct i40e_virt_mem vmem;
 599	u16 pcie_alt_module = 0;
 600	u16 checksum_local = 0;
 601	u16 vpd_module = 0;
 
 602	u16 *data;
 603	u16 i = 0;
 604
 605	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 606				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 607	if (ret_code)
 608		goto i40e_calc_nvm_checksum_exit;
 609	data = (u16 *)vmem.va;
 610
 611	/* read pointer to VPD area */
 612	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 613	if (ret_code) {
 614		ret_code = I40E_ERR_NVM_CHECKSUM;
 615		goto i40e_calc_nvm_checksum_exit;
 616	}
 617
 618	/* read pointer to PCIe Alt Auto-load module */
 619	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 620					&pcie_alt_module);
 621	if (ret_code) {
 622		ret_code = I40E_ERR_NVM_CHECKSUM;
 623		goto i40e_calc_nvm_checksum_exit;
 624	}
 625
 626	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 627	 * except the VPD and PCIe ALT Auto-load modules
 628	 */
 629	for (i = 0; i < hw->nvm.sr_size; i++) {
 630		/* Read SR page */
 631		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 632			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 633
 634			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 635			if (ret_code) {
 636				ret_code = I40E_ERR_NVM_CHECKSUM;
 637				goto i40e_calc_nvm_checksum_exit;
 638			}
 639		}
 640
 641		/* Skip Checksum word */
 642		if (i == I40E_SR_SW_CHECKSUM_WORD)
 643			continue;
 644		/* Skip VPD module (convert byte size to word count) */
 645		if ((i >= (u32)vpd_module) &&
 646		    (i < ((u32)vpd_module +
 647		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 648			continue;
 649		}
 650		/* Skip PCIe ALT module (convert byte size to word count) */
 651		if ((i >= (u32)pcie_alt_module) &&
 652		    (i < ((u32)pcie_alt_module +
 653		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 654			continue;
 655		}
 656
 657		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 658	}
 659
 660	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 661
 662i40e_calc_nvm_checksum_exit:
 663	i40e_free_virt_mem(hw, &vmem);
 664	return ret_code;
 665}
 666
 667/**
 668 * i40e_update_nvm_checksum - Updates the NVM checksum
 669 * @hw: pointer to hardware structure
 670 *
 671 * NVM ownership must be acquired before calling this function and released
 672 * on ARQ completion event reception by caller.
 673 * This function will commit SR to NVM.
 674 **/
 675i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
 676{
 677	i40e_status ret_code;
 
 678	u16 checksum;
 679	__le16 le_sum;
 680
 681	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 682	le_sum = cpu_to_le16(checksum);
 683	if (!ret_code)
 684		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 685					     1, &le_sum, true);
 
 686
 687	return ret_code;
 688}
 689
 690/**
 691 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 692 * @hw: pointer to hardware structure
 693 * @checksum: calculated checksum
 694 *
 695 * Performs checksum calculation and validates the NVM SW checksum. If the
 696 * caller does not need checksum, the value can be NULL.
 697 **/
 698i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
 699						 u16 *checksum)
 700{
 701	i40e_status ret_code = 0;
 702	u16 checksum_sr = 0;
 703	u16 checksum_local = 0;
 704
 705	/* We must acquire the NVM lock in order to correctly synchronize the
 706	 * NVM accesses across multiple PFs. Without doing so it is possible
 707	 * for one of the PFs to read invalid data potentially indicating that
 708	 * the checksum is invalid.
 709	 */
 710	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 711	if (ret_code)
 712		return ret_code;
 713	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 714	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 715	i40e_release_nvm(hw);
 716	if (ret_code)
 717		return ret_code;
 718
 719	/* Verify read checksum from EEPROM is the same as
 720	 * calculated checksum
 721	 */
 722	if (checksum_local != checksum_sr)
 723		ret_code = I40E_ERR_NVM_CHECKSUM;
 724
 725	/* If the user cares, return the calculated checksum */
 726	if (checksum)
 727		*checksum = checksum_local;
 728
 729	return ret_code;
 730}
 731
 732static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 733					  struct i40e_nvm_access *cmd,
 734					  u8 *bytes, int *perrno);
 735static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 736					     struct i40e_nvm_access *cmd,
 737					     u8 *bytes, int *perrno);
 738static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 739					     struct i40e_nvm_access *cmd,
 740					     u8 *bytes, int *errno);
 741static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 742						struct i40e_nvm_access *cmd,
 743						int *perrno);
 744static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 745					 struct i40e_nvm_access *cmd,
 746					 int *perrno);
 747static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 748					 struct i40e_nvm_access *cmd,
 749					 u8 *bytes, int *perrno);
 750static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 751					struct i40e_nvm_access *cmd,
 752					u8 *bytes, int *perrno);
 753static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 754				       struct i40e_nvm_access *cmd,
 755				       u8 *bytes, int *perrno);
 756static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 757					     struct i40e_nvm_access *cmd,
 758					     u8 *bytes, int *perrno);
 759static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 760					    struct i40e_nvm_access *cmd,
 761					    u8 *bytes, int *perrno);
 762static inline u8 i40e_nvmupd_get_module(u32 val)
 763{
 764	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 765}
 766static inline u8 i40e_nvmupd_get_transaction(u32 val)
 767{
 768	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
 769}
 770
 771static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 772{
 773	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
 774		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
 775}
 776
 777static const char * const i40e_nvm_update_state_str[] = {
 778	"I40E_NVMUPD_INVALID",
 779	"I40E_NVMUPD_READ_CON",
 780	"I40E_NVMUPD_READ_SNT",
 781	"I40E_NVMUPD_READ_LCB",
 782	"I40E_NVMUPD_READ_SA",
 783	"I40E_NVMUPD_WRITE_ERA",
 784	"I40E_NVMUPD_WRITE_CON",
 785	"I40E_NVMUPD_WRITE_SNT",
 786	"I40E_NVMUPD_WRITE_LCB",
 787	"I40E_NVMUPD_WRITE_SA",
 788	"I40E_NVMUPD_CSUM_CON",
 789	"I40E_NVMUPD_CSUM_SA",
 790	"I40E_NVMUPD_CSUM_LCB",
 791	"I40E_NVMUPD_STATUS",
 792	"I40E_NVMUPD_EXEC_AQ",
 793	"I40E_NVMUPD_GET_AQ_RESULT",
 794	"I40E_NVMUPD_GET_AQ_EVENT",
 795};
 796
 797/**
 798 * i40e_nvmupd_command - Process an NVM update command
 799 * @hw: pointer to hardware structure
 800 * @cmd: pointer to nvm update command
 801 * @bytes: pointer to the data buffer
 802 * @perrno: pointer to return error code
 803 *
 804 * Dispatches command depending on what update state is current
 805 **/
 806i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
 807				struct i40e_nvm_access *cmd,
 808				u8 *bytes, int *perrno)
 809{
 810	i40e_status status;
 811	enum i40e_nvmupd_cmd upd_cmd;
 
 812
 813	/* assume success */
 814	*perrno = 0;
 815
 816	/* early check for status command and debug msgs */
 817	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 818
 819	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 820		   i40e_nvm_update_state_str[upd_cmd],
 821		   hw->nvmupd_state,
 822		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 823		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 824
 825	if (upd_cmd == I40E_NVMUPD_INVALID) {
 826		*perrno = -EFAULT;
 827		i40e_debug(hw, I40E_DEBUG_NVM,
 828			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 829			   upd_cmd, *perrno);
 830	}
 831
 832	/* a status request returns immediately rather than
 833	 * going into the state machine
 834	 */
 835	if (upd_cmd == I40E_NVMUPD_STATUS) {
 836		if (!cmd->data_size) {
 837			*perrno = -EFAULT;
 838			return I40E_ERR_BUF_TOO_SHORT;
 839		}
 840
 841		bytes[0] = hw->nvmupd_state;
 842
 843		if (cmd->data_size >= 4) {
 844			bytes[1] = 0;
 845			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 846		}
 847
 848		/* Clear error status on read */
 849		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 850			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 851
 852		return 0;
 853	}
 854
 855	/* Clear status even it is not read and log */
 856	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 857		i40e_debug(hw, I40E_DEBUG_NVM,
 858			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 859		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 860	}
 861
 862	/* Acquire lock to prevent race condition where adminq_task
 863	 * can execute after i40e_nvmupd_nvm_read/write but before state
 864	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 865	 *
 866	 * During NVMUpdate, it is observed that lock could be held for
 867	 * ~5ms for most commands. However lock is held for ~60ms for
 868	 * NVMUPD_CSUM_LCB command.
 869	 */
 870	mutex_lock(&hw->aq.arq_mutex);
 871	switch (hw->nvmupd_state) {
 872	case I40E_NVMUPD_STATE_INIT:
 873		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 874		break;
 875
 876	case I40E_NVMUPD_STATE_READING:
 877		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 878		break;
 879
 880	case I40E_NVMUPD_STATE_WRITING:
 881		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 882		break;
 883
 884	case I40E_NVMUPD_STATE_INIT_WAIT:
 885	case I40E_NVMUPD_STATE_WRITE_WAIT:
 886		/* if we need to stop waiting for an event, clear
 887		 * the wait info and return before doing anything else
 888		 */
 889		if (cmd->offset == 0xffff) {
 890			i40e_nvmupd_clear_wait_state(hw);
 891			status = 0;
 892			break;
 893		}
 894
 895		status = I40E_ERR_NOT_READY;
 896		*perrno = -EBUSY;
 897		break;
 898
 899	default:
 900		/* invalid state, should never happen */
 901		i40e_debug(hw, I40E_DEBUG_NVM,
 902			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 903		status = I40E_NOT_SUPPORTED;
 904		*perrno = -ESRCH;
 905		break;
 906	}
 907
 908	mutex_unlock(&hw->aq.arq_mutex);
 909	return status;
 910}
 911
 912/**
 913 * i40e_nvmupd_state_init - Handle NVM update state Init
 914 * @hw: pointer to hardware structure
 915 * @cmd: pointer to nvm update command buffer
 916 * @bytes: pointer to the data buffer
 917 * @perrno: pointer to return error code
 918 *
 919 * Process legitimate commands of the Init state and conditionally set next
 920 * state. Reject all other commands.
 921 **/
 922static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 923					  struct i40e_nvm_access *cmd,
 924					  u8 *bytes, int *perrno)
 925{
 926	i40e_status status = 0;
 927	enum i40e_nvmupd_cmd upd_cmd;
 
 928
 929	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 930
 931	switch (upd_cmd) {
 932	case I40E_NVMUPD_READ_SA:
 933		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 934		if (status) {
 935			*perrno = i40e_aq_rc_to_posix(status,
 936						     hw->aq.asq_last_status);
 937		} else {
 938			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 939			i40e_release_nvm(hw);
 940		}
 941		break;
 942
 943	case I40E_NVMUPD_READ_SNT:
 944		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 945		if (status) {
 946			*perrno = i40e_aq_rc_to_posix(status,
 947						     hw->aq.asq_last_status);
 948		} else {
 949			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 950			if (status)
 951				i40e_release_nvm(hw);
 952			else
 953				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 954		}
 955		break;
 956
 957	case I40E_NVMUPD_WRITE_ERA:
 958		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 959		if (status) {
 960			*perrno = i40e_aq_rc_to_posix(status,
 961						     hw->aq.asq_last_status);
 962		} else {
 963			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 964			if (status) {
 965				i40e_release_nvm(hw);
 966			} else {
 967				hw->nvm_release_on_done = true;
 968				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 969				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 970			}
 971		}
 972		break;
 973
 974	case I40E_NVMUPD_WRITE_SA:
 975		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 976		if (status) {
 977			*perrno = i40e_aq_rc_to_posix(status,
 978						     hw->aq.asq_last_status);
 979		} else {
 980			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 981			if (status) {
 982				i40e_release_nvm(hw);
 983			} else {
 984				hw->nvm_release_on_done = true;
 985				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 986				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 987			}
 988		}
 989		break;
 990
 991	case I40E_NVMUPD_WRITE_SNT:
 992		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 993		if (status) {
 994			*perrno = i40e_aq_rc_to_posix(status,
 995						     hw->aq.asq_last_status);
 996		} else {
 997			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 998			if (status) {
 999				i40e_release_nvm(hw);
1000			} else {
1001				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1002				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1003			}
1004		}
1005		break;
1006
1007	case I40E_NVMUPD_CSUM_SA:
1008		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1009		if (status) {
1010			*perrno = i40e_aq_rc_to_posix(status,
1011						     hw->aq.asq_last_status);
1012		} else {
1013			status = i40e_update_nvm_checksum(hw);
1014			if (status) {
1015				*perrno = hw->aq.asq_last_status ?
1016				   i40e_aq_rc_to_posix(status,
1017						       hw->aq.asq_last_status) :
1018				   -EIO;
1019				i40e_release_nvm(hw);
1020			} else {
1021				hw->nvm_release_on_done = true;
1022				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1023				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1024			}
1025		}
1026		break;
1027
1028	case I40E_NVMUPD_EXEC_AQ:
1029		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1030		break;
1031
1032	case I40E_NVMUPD_GET_AQ_RESULT:
1033		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_EVENT:
1037		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1038		break;
1039
1040	default:
1041		i40e_debug(hw, I40E_DEBUG_NVM,
1042			   "NVMUPD: bad cmd %s in init state\n",
1043			   i40e_nvm_update_state_str[upd_cmd]);
1044		status = I40E_ERR_NVM;
1045		*perrno = -ESRCH;
1046		break;
1047	}
1048	return status;
1049}
1050
1051/**
1052 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1053 * @hw: pointer to hardware structure
1054 * @cmd: pointer to nvm update command buffer
1055 * @bytes: pointer to the data buffer
1056 * @perrno: pointer to return error code
1057 *
1058 * NVM ownership is already held.  Process legitimate commands and set any
1059 * change in state; reject all other commands.
1060 **/
1061static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
1062					     struct i40e_nvm_access *cmd,
1063					     u8 *bytes, int *perrno)
1064{
1065	i40e_status status = 0;
1066	enum i40e_nvmupd_cmd upd_cmd;
 
1067
1068	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1069
1070	switch (upd_cmd) {
1071	case I40E_NVMUPD_READ_SA:
1072	case I40E_NVMUPD_READ_CON:
1073		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1074		break;
1075
1076	case I40E_NVMUPD_READ_LCB:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		i40e_release_nvm(hw);
1079		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1080		break;
1081
1082	default:
1083		i40e_debug(hw, I40E_DEBUG_NVM,
1084			   "NVMUPD: bad cmd %s in reading state.\n",
1085			   i40e_nvm_update_state_str[upd_cmd]);
1086		status = I40E_NOT_SUPPORTED;
1087		*perrno = -ESRCH;
1088		break;
1089	}
1090	return status;
1091}
1092
1093/**
1094 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1095 * @hw: pointer to hardware structure
1096 * @cmd: pointer to nvm update command buffer
1097 * @bytes: pointer to the data buffer
1098 * @perrno: pointer to return error code
1099 *
1100 * NVM ownership is already held.  Process legitimate commands and set any
1101 * change in state; reject all other commands
1102 **/
1103static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1104					     struct i40e_nvm_access *cmd,
1105					     u8 *bytes, int *perrno)
1106{
1107	i40e_status status = 0;
1108	enum i40e_nvmupd_cmd upd_cmd;
1109	bool retry_attempt = false;
 
1110
1111	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1112
1113retry:
1114	switch (upd_cmd) {
1115	case I40E_NVMUPD_WRITE_CON:
1116		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1117		if (!status) {
1118			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1119			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1120		}
1121		break;
1122
1123	case I40E_NVMUPD_WRITE_LCB:
1124		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1125		if (status) {
1126			*perrno = hw->aq.asq_last_status ?
1127				   i40e_aq_rc_to_posix(status,
1128						       hw->aq.asq_last_status) :
1129				   -EIO;
1130			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1131		} else {
1132			hw->nvm_release_on_done = true;
1133			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1135		}
1136		break;
1137
1138	case I40E_NVMUPD_CSUM_CON:
1139		/* Assumes the caller has acquired the nvm */
1140		status = i40e_update_nvm_checksum(hw);
1141		if (status) {
1142			*perrno = hw->aq.asq_last_status ?
1143				   i40e_aq_rc_to_posix(status,
1144						       hw->aq.asq_last_status) :
1145				   -EIO;
1146			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1147		} else {
1148			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1149			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1150		}
1151		break;
1152
1153	case I40E_NVMUPD_CSUM_LCB:
1154		/* Assumes the caller has acquired the nvm */
1155		status = i40e_update_nvm_checksum(hw);
1156		if (status) {
1157			*perrno = hw->aq.asq_last_status ?
1158				   i40e_aq_rc_to_posix(status,
1159						       hw->aq.asq_last_status) :
1160				   -EIO;
1161			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1162		} else {
1163			hw->nvm_release_on_done = true;
1164			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1166		}
1167		break;
1168
1169	default:
1170		i40e_debug(hw, I40E_DEBUG_NVM,
1171			   "NVMUPD: bad cmd %s in writing state.\n",
1172			   i40e_nvm_update_state_str[upd_cmd]);
1173		status = I40E_NOT_SUPPORTED;
1174		*perrno = -ESRCH;
1175		break;
1176	}
1177
1178	/* In some circumstances, a multi-write transaction takes longer
1179	 * than the default 3 minute timeout on the write semaphore.  If
1180	 * the write failed with an EBUSY status, this is likely the problem,
1181	 * so here we try to reacquire the semaphore then retry the write.
1182	 * We only do one retry, then give up.
1183	 */
1184	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1185	    !retry_attempt) {
1186		i40e_status old_status = status;
1187		u32 old_asq_status = hw->aq.asq_last_status;
 
1188		u32 gtime;
1189
1190		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1191		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1192			i40e_debug(hw, I40E_DEBUG_ALL,
1193				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1194				   gtime, hw->nvm.hw_semaphore_timeout);
1195			i40e_release_nvm(hw);
1196			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1197			if (status) {
1198				i40e_debug(hw, I40E_DEBUG_ALL,
1199					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1200					   hw->aq.asq_last_status);
1201				status = old_status;
1202				hw->aq.asq_last_status = old_asq_status;
1203			} else {
1204				retry_attempt = true;
1205				goto retry;
1206			}
1207		}
1208	}
1209
1210	return status;
1211}
1212
1213/**
1214 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1215 * @hw: pointer to the hardware structure
1216 **/
1217void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1218{
1219	i40e_debug(hw, I40E_DEBUG_NVM,
1220		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1221		   hw->nvm_wait_opcode);
1222
1223	if (hw->nvm_release_on_done) {
1224		i40e_release_nvm(hw);
1225		hw->nvm_release_on_done = false;
1226	}
1227	hw->nvm_wait_opcode = 0;
1228
1229	if (hw->aq.arq_last_status) {
1230		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1231		return;
1232	}
1233
1234	switch (hw->nvmupd_state) {
1235	case I40E_NVMUPD_STATE_INIT_WAIT:
1236		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1237		break;
1238
1239	case I40E_NVMUPD_STATE_WRITE_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1241		break;
1242
1243	default:
1244		break;
1245	}
1246}
1247
1248/**
1249 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1250 * @hw: pointer to the hardware structure
1251 * @opcode: the event that just happened
1252 * @desc: AdminQ descriptor
1253 **/
1254void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1255				  struct i40e_aq_desc *desc)
1256{
1257	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1258
1259	if (opcode == hw->nvm_wait_opcode) {
1260		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1261		i40e_nvmupd_clear_wait_state(hw);
1262	}
1263}
1264
1265/**
1266 * i40e_nvmupd_validate_command - Validate given command
1267 * @hw: pointer to hardware structure
1268 * @cmd: pointer to nvm update command buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * Return one of the valid command types or I40E_NVMUPD_INVALID
1272 **/
1273static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1274						 struct i40e_nvm_access *cmd,
1275						 int *perrno)
1276{
1277	enum i40e_nvmupd_cmd upd_cmd;
1278	u8 module, transaction;
1279
1280	/* anything that doesn't match a recognized case is an error */
1281	upd_cmd = I40E_NVMUPD_INVALID;
1282
1283	transaction = i40e_nvmupd_get_transaction(cmd->config);
1284	module = i40e_nvmupd_get_module(cmd->config);
1285
1286	/* limits on data size */
1287	if ((cmd->data_size < 1) ||
1288	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1289		i40e_debug(hw, I40E_DEBUG_NVM,
1290			   "i40e_nvmupd_validate_command data_size %d\n",
1291			   cmd->data_size);
1292		*perrno = -EFAULT;
1293		return I40E_NVMUPD_INVALID;
1294	}
1295
1296	switch (cmd->command) {
1297	case I40E_NVM_READ:
1298		switch (transaction) {
1299		case I40E_NVM_CON:
1300			upd_cmd = I40E_NVMUPD_READ_CON;
1301			break;
1302		case I40E_NVM_SNT:
1303			upd_cmd = I40E_NVMUPD_READ_SNT;
1304			break;
1305		case I40E_NVM_LCB:
1306			upd_cmd = I40E_NVMUPD_READ_LCB;
1307			break;
1308		case I40E_NVM_SA:
1309			upd_cmd = I40E_NVMUPD_READ_SA;
1310			break;
1311		case I40E_NVM_EXEC:
1312			if (module == 0xf)
1313				upd_cmd = I40E_NVMUPD_STATUS;
1314			else if (module == 0)
1315				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1316			break;
1317		case I40E_NVM_AQE:
1318			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1319			break;
1320		}
1321		break;
1322
1323	case I40E_NVM_WRITE:
1324		switch (transaction) {
1325		case I40E_NVM_CON:
1326			upd_cmd = I40E_NVMUPD_WRITE_CON;
1327			break;
1328		case I40E_NVM_SNT:
1329			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1330			break;
1331		case I40E_NVM_LCB:
1332			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1333			break;
1334		case I40E_NVM_SA:
1335			upd_cmd = I40E_NVMUPD_WRITE_SA;
1336			break;
1337		case I40E_NVM_ERA:
1338			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1339			break;
1340		case I40E_NVM_CSUM:
1341			upd_cmd = I40E_NVMUPD_CSUM_CON;
1342			break;
1343		case (I40E_NVM_CSUM|I40E_NVM_SA):
1344			upd_cmd = I40E_NVMUPD_CSUM_SA;
1345			break;
1346		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1347			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1348			break;
1349		case I40E_NVM_EXEC:
1350			if (module == 0)
1351				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1352			break;
1353		}
1354		break;
1355	}
1356
1357	return upd_cmd;
1358}
1359
1360/**
1361 * i40e_nvmupd_exec_aq - Run an AQ command
1362 * @hw: pointer to hardware structure
1363 * @cmd: pointer to nvm update command buffer
1364 * @bytes: pointer to the data buffer
1365 * @perrno: pointer to return error code
1366 *
1367 * cmd structure contains identifiers and data buffer
1368 **/
1369static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1370				       struct i40e_nvm_access *cmd,
1371				       u8 *bytes, int *perrno)
1372{
1373	struct i40e_asq_cmd_details cmd_details;
1374	i40e_status status;
1375	struct i40e_aq_desc *aq_desc;
1376	u32 buff_size = 0;
1377	u8 *buff = NULL;
1378	u32 aq_desc_len;
1379	u32 aq_data_len;
 
1380
1381	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1382	if (cmd->offset == 0xffff)
1383		return 0;
1384
1385	memset(&cmd_details, 0, sizeof(cmd_details));
1386	cmd_details.wb_desc = &hw->nvm_wb_desc;
1387
1388	aq_desc_len = sizeof(struct i40e_aq_desc);
1389	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1390
1391	/* get the aq descriptor */
1392	if (cmd->data_size < aq_desc_len) {
1393		i40e_debug(hw, I40E_DEBUG_NVM,
1394			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1395			   cmd->data_size, aq_desc_len);
1396		*perrno = -EINVAL;
1397		return I40E_ERR_PARAM;
1398	}
1399	aq_desc = (struct i40e_aq_desc *)bytes;
1400
1401	/* if data buffer needed, make sure it's ready */
1402	aq_data_len = cmd->data_size - aq_desc_len;
1403	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1404	if (buff_size) {
1405		if (!hw->nvm_buff.va) {
1406			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1407							hw->aq.asq_buf_size);
1408			if (status)
1409				i40e_debug(hw, I40E_DEBUG_NVM,
1410					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1411					   status);
1412		}
1413
1414		if (hw->nvm_buff.va) {
1415			buff = hw->nvm_buff.va;
1416			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1417		}
1418	}
1419
1420	if (cmd->offset)
1421		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1422
1423	/* and away we go! */
1424	status = i40e_asq_send_command(hw, aq_desc, buff,
1425				       buff_size, &cmd_details);
1426	if (status) {
1427		i40e_debug(hw, I40E_DEBUG_NVM,
1428			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1429			   i40e_stat_str(hw, status),
1430			   i40e_aq_str(hw, hw->aq.asq_last_status));
1431		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1432		return status;
1433	}
1434
1435	/* should we wait for a followup event? */
1436	if (cmd->offset) {
1437		hw->nvm_wait_opcode = cmd->offset;
1438		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1439	}
1440
1441	return status;
1442}
1443
1444/**
1445 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1446 * @hw: pointer to hardware structure
1447 * @cmd: pointer to nvm update command buffer
1448 * @bytes: pointer to the data buffer
1449 * @perrno: pointer to return error code
1450 *
1451 * cmd structure contains identifiers and data buffer
1452 **/
1453static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1454					     struct i40e_nvm_access *cmd,
1455					     u8 *bytes, int *perrno)
1456{
1457	u32 aq_total_len;
1458	u32 aq_desc_len;
1459	int remainder;
1460	u8 *buff;
1461
1462	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1463
1464	aq_desc_len = sizeof(struct i40e_aq_desc);
1465	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1466
1467	/* check offset range */
1468	if (cmd->offset > aq_total_len) {
1469		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1470			   __func__, cmd->offset, aq_total_len);
1471		*perrno = -EINVAL;
1472		return I40E_ERR_PARAM;
1473	}
1474
1475	/* check copylength range */
1476	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1477		int new_len = aq_total_len - cmd->offset;
1478
1479		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1480			   __func__, cmd->data_size, new_len);
1481		cmd->data_size = new_len;
1482	}
1483
1484	remainder = cmd->data_size;
1485	if (cmd->offset < aq_desc_len) {
1486		u32 len = aq_desc_len - cmd->offset;
1487
1488		len = min(len, cmd->data_size);
1489		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1490			   __func__, cmd->offset, cmd->offset + len);
1491
1492		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1493		memcpy(bytes, buff, len);
1494
1495		bytes += len;
1496		remainder -= len;
1497		buff = hw->nvm_buff.va;
1498	} else {
1499		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1500	}
1501
1502	if (remainder > 0) {
1503		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1504
1505		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1506			   __func__, start_byte, start_byte + remainder);
1507		memcpy(bytes, buff, remainder);
1508	}
1509
1510	return 0;
1511}
1512
1513/**
1514 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1515 * @hw: pointer to hardware structure
1516 * @cmd: pointer to nvm update command buffer
1517 * @bytes: pointer to the data buffer
1518 * @perrno: pointer to return error code
1519 *
1520 * cmd structure contains identifiers and data buffer
1521 **/
1522static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1523					    struct i40e_nvm_access *cmd,
1524					    u8 *bytes, int *perrno)
1525{
1526	u32 aq_total_len;
1527	u32 aq_desc_len;
1528
1529	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1530
1531	aq_desc_len = sizeof(struct i40e_aq_desc);
1532	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1533
1534	/* check copylength range */
1535	if (cmd->data_size > aq_total_len) {
1536		i40e_debug(hw, I40E_DEBUG_NVM,
1537			   "%s: copy length %d too big, trimming to %d\n",
1538			   __func__, cmd->data_size, aq_total_len);
1539		cmd->data_size = aq_total_len;
1540	}
1541
1542	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1543
1544	return 0;
1545}
1546
1547/**
1548 * i40e_nvmupd_nvm_read - Read NVM
1549 * @hw: pointer to hardware structure
1550 * @cmd: pointer to nvm update command buffer
1551 * @bytes: pointer to the data buffer
1552 * @perrno: pointer to return error code
1553 *
1554 * cmd structure contains identifiers and data buffer
1555 **/
1556static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1557					struct i40e_nvm_access *cmd,
1558					u8 *bytes, int *perrno)
1559{
1560	struct i40e_asq_cmd_details cmd_details;
1561	i40e_status status;
1562	u8 module, transaction;
 
1563	bool last;
1564
1565	transaction = i40e_nvmupd_get_transaction(cmd->config);
1566	module = i40e_nvmupd_get_module(cmd->config);
1567	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1568
1569	memset(&cmd_details, 0, sizeof(cmd_details));
1570	cmd_details.wb_desc = &hw->nvm_wb_desc;
1571
1572	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1573				  bytes, last, &cmd_details);
1574	if (status) {
1575		i40e_debug(hw, I40E_DEBUG_NVM,
1576			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1577			   module, cmd->offset, cmd->data_size);
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1580			   status, hw->aq.asq_last_status);
1581		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1582	}
1583
1584	return status;
1585}
1586
1587/**
1588 * i40e_nvmupd_nvm_erase - Erase an NVM module
1589 * @hw: pointer to hardware structure
1590 * @cmd: pointer to nvm update command buffer
1591 * @perrno: pointer to return error code
1592 *
1593 * module, offset, data_size and data are in cmd structure
1594 **/
1595static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1596					 struct i40e_nvm_access *cmd,
1597					 int *perrno)
1598{
1599	i40e_status status = 0;
1600	struct i40e_asq_cmd_details cmd_details;
1601	u8 module, transaction;
 
1602	bool last;
1603
1604	transaction = i40e_nvmupd_get_transaction(cmd->config);
1605	module = i40e_nvmupd_get_module(cmd->config);
1606	last = (transaction & I40E_NVM_LCB);
1607
1608	memset(&cmd_details, 0, sizeof(cmd_details));
1609	cmd_details.wb_desc = &hw->nvm_wb_desc;
1610
1611	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1612				   last, &cmd_details);
1613	if (status) {
1614		i40e_debug(hw, I40E_DEBUG_NVM,
1615			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1616			   module, cmd->offset, cmd->data_size);
1617		i40e_debug(hw, I40E_DEBUG_NVM,
1618			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1619			   status, hw->aq.asq_last_status);
1620		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1621	}
1622
1623	return status;
1624}
1625
1626/**
1627 * i40e_nvmupd_nvm_write - Write NVM
1628 * @hw: pointer to hardware structure
1629 * @cmd: pointer to nvm update command buffer
1630 * @bytes: pointer to the data buffer
1631 * @perrno: pointer to return error code
1632 *
1633 * module, offset, data_size and data are in cmd structure
1634 **/
1635static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1636					 struct i40e_nvm_access *cmd,
1637					 u8 *bytes, int *perrno)
1638{
1639	i40e_status status = 0;
1640	struct i40e_asq_cmd_details cmd_details;
1641	u8 module, transaction;
1642	u8 preservation_flags;
 
1643	bool last;
1644
1645	transaction = i40e_nvmupd_get_transaction(cmd->config);
1646	module = i40e_nvmupd_get_module(cmd->config);
1647	last = (transaction & I40E_NVM_LCB);
1648	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1649
1650	memset(&cmd_details, 0, sizeof(cmd_details));
1651	cmd_details.wb_desc = &hw->nvm_wb_desc;
1652
1653	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1654				    (u16)cmd->data_size, bytes, last,
1655				    preservation_flags, &cmd_details);
1656	if (status) {
1657		i40e_debug(hw, I40E_DEBUG_NVM,
1658			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1659			   module, cmd->offset, cmd->data_size);
1660		i40e_debug(hw, I40E_DEBUG_NVM,
1661			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1662			   status, hw->aq.asq_last_status);
1663		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1664	}
1665
1666	return status;
1667}