Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
  4 */
  5#include <linux/efi.h>
  6#include <asm/efi.h>
  7
  8#include "efistub.h"
  9
 10static efi_guid_t cpu_state_guid = LINUX_EFI_ARM_CPU_STATE_TABLE_GUID;
 11
 12struct efi_arm_entry_state *efi_entry_state;
 13
 14static void get_cpu_state(u32 *cpsr, u32 *sctlr)
 15{
 16	asm("mrs %0, cpsr" : "=r"(*cpsr));
 17	if ((*cpsr & MODE_MASK) == HYP_MODE)
 18		asm("mrc p15, 4, %0, c1, c0, 0" : "=r"(*sctlr));
 19	else
 20		asm("mrc p15, 0, %0, c1, c0, 0" : "=r"(*sctlr));
 21}
 22
 23efi_status_t check_platform_features(void)
 24{
 25	efi_status_t status;
 26	u32 cpsr, sctlr;
 27	int block;
 28
 29	get_cpu_state(&cpsr, &sctlr);
 30
 31	efi_info("Entering in %s mode with MMU %sabled\n",
 32		 ((cpsr & MODE_MASK) == HYP_MODE) ? "HYP" : "SVC",
 33		 (sctlr & 1) ? "en" : "dis");
 34
 35	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
 36			     sizeof(*efi_entry_state),
 37			     (void **)&efi_entry_state);
 38	if (status != EFI_SUCCESS) {
 39		efi_err("allocate_pool() failed\n");
 40		return status;
 41	}
 42
 43	efi_entry_state->cpsr_before_ebs = cpsr;
 44	efi_entry_state->sctlr_before_ebs = sctlr;
 45
 46	status = efi_bs_call(install_configuration_table, &cpu_state_guid,
 47			     efi_entry_state);
 48	if (status != EFI_SUCCESS) {
 49		efi_err("install_configuration_table() failed\n");
 50		goto free_state;
 51	}
 52
 53	/* non-LPAE kernels can run anywhere */
 54	if (!IS_ENABLED(CONFIG_ARM_LPAE))
 55		return EFI_SUCCESS;
 56
 57	/* LPAE kernels need compatible hardware */
 58	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 59	if (block < 5) {
 60		efi_err("This LPAE kernel is not supported by your CPU\n");
 61		status = EFI_UNSUPPORTED;
 62		goto drop_table;
 63	}
 64	return EFI_SUCCESS;
 
 65
 66drop_table:
 67	efi_bs_call(install_configuration_table, &cpu_state_guid, NULL);
 68free_state:
 69	efi_bs_call(free_pool, efi_entry_state);
 70	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71}
 72
 73void efi_handle_post_ebs_state(void)
 74{
 75	get_cpu_state(&efi_entry_state->cpsr_after_ebs,
 76		      &efi_entry_state->sctlr_after_ebs);
 
 
 
 77}
 78
 79efi_status_t handle_kernel_image(unsigned long *image_addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80				 unsigned long *image_size,
 81				 unsigned long *reserve_addr,
 82				 unsigned long *reserve_size,
 83				 efi_loaded_image_t *image,
 84				 efi_handle_t image_handle)
 85{
 86	const int slack = TEXT_OFFSET - 5 * PAGE_SIZE;
 87	int alloc_size = MAX_UNCOMP_KERNEL_SIZE + EFI_PHYS_ALIGN;
 88	unsigned long alloc_base, kernel_base;
 89	efi_status_t status;
 90
 91	/*
 92	 * Allocate space for the decompressed kernel as low as possible.
 93	 * The region should be 16 MiB aligned, but the first 'slack' bytes
 94	 * are not used by Linux, so we allow those to be occupied by the
 95	 * firmware.
 
 96	 */
 97	status = efi_low_alloc_above(alloc_size, EFI_PAGE_SIZE, &alloc_base, 0x0);
 
 
 
 
 
 
 
 
 
 
 
 
 98	if (status != EFI_SUCCESS) {
 99		efi_err("Unable to allocate memory for uncompressed kernel.\n");
100		return status;
101	}
102
103	if ((alloc_base % EFI_PHYS_ALIGN) > slack) {
104		/*
105		 * More than 'slack' bytes are already occupied at the base of
106		 * the allocation, so we need to advance to the next 16 MiB block.
107		 */
108		kernel_base = round_up(alloc_base, EFI_PHYS_ALIGN);
109		efi_info("Free memory starts at 0x%lx, setting kernel_base to 0x%lx\n",
110			 alloc_base, kernel_base);
111	} else {
112		kernel_base = round_down(alloc_base, EFI_PHYS_ALIGN);
113	}
114
115	*reserve_addr = kernel_base + slack;
116	*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
117
118	/* now free the parts that we will not use */
119	if (*reserve_addr > alloc_base) {
120		efi_bs_call(free_pages, alloc_base,
121			    (*reserve_addr - alloc_base) / EFI_PAGE_SIZE);
122		alloc_size -= *reserve_addr - alloc_base;
123	}
124	efi_bs_call(free_pages, *reserve_addr + MAX_UNCOMP_KERNEL_SIZE,
125		    (alloc_size - MAX_UNCOMP_KERNEL_SIZE) / EFI_PAGE_SIZE);
126
127	*image_addr = kernel_base + TEXT_OFFSET;
128	*image_size = 0;
129
130	efi_debug("image addr == 0x%lx, reserve_addr == 0x%lx\n",
131		  *image_addr, *reserve_addr);
132
 
 
 
 
 
 
 
 
 
 
 
 
 
133	return EFI_SUCCESS;
134}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
  4 */
  5#include <linux/efi.h>
  6#include <asm/efi.h>
  7
  8#include "efistub.h"
  9
 10efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 11{
 
 
 12	int block;
 13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14	/* non-LPAE kernels can run anywhere */
 15	if (!IS_ENABLED(CONFIG_ARM_LPAE))
 16		return EFI_SUCCESS;
 17
 18	/* LPAE kernels need compatible hardware */
 19	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 20	if (block < 5) {
 21		pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
 22		return EFI_UNSUPPORTED;
 
 23	}
 24	return EFI_SUCCESS;
 25}
 26
 27static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
 28
 29struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
 30{
 31	struct screen_info *si;
 32	efi_status_t status;
 33
 34	/*
 35	 * Unlike on arm64, where we can directly fill out the screen_info
 36	 * structure from the stub, we need to allocate a buffer to hold
 37	 * its contents while we hand over to the kernel proper from the
 38	 * decompressor.
 39	 */
 40	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
 41				sizeof(*si), (void **)&si);
 42
 43	if (status != EFI_SUCCESS)
 44		return NULL;
 45
 46	status = efi_call_early(install_configuration_table,
 47				&screen_info_guid, si);
 48	if (status == EFI_SUCCESS)
 49		return si;
 50
 51	efi_call_early(free_pool, si);
 52	return NULL;
 53}
 54
 55void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
 56{
 57	if (!si)
 58		return;
 59
 60	efi_call_early(install_configuration_table, &screen_info_guid, NULL);
 61	efi_call_early(free_pool, si);
 62}
 63
 64static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
 65					unsigned long dram_base,
 66					unsigned long *reserve_addr,
 67					unsigned long *reserve_size)
 68{
 69	efi_physical_addr_t alloc_addr;
 70	efi_memory_desc_t *memory_map;
 71	unsigned long nr_pages, map_size, desc_size, buff_size;
 72	efi_status_t status;
 73	unsigned long l;
 74
 75	struct efi_boot_memmap map = {
 76		.map		= &memory_map,
 77		.map_size	= &map_size,
 78		.desc_size	= &desc_size,
 79		.desc_ver	= NULL,
 80		.key_ptr	= NULL,
 81		.buff_size	= &buff_size,
 82	};
 83
 84	/*
 85	 * Reserve memory for the uncompressed kernel image. This is
 86	 * all that prevents any future allocations from conflicting
 87	 * with the kernel. Since we can't tell from the compressed
 88	 * image how much DRAM the kernel actually uses (due to BSS
 89	 * size uncertainty) we allocate the maximum possible size.
 90	 * Do this very early, as prints can cause memory allocations
 91	 * that may conflict with this.
 92	 */
 93	alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
 94	nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
 95	status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
 96				EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
 97	if (status == EFI_SUCCESS) {
 98		if (alloc_addr == dram_base) {
 99			*reserve_addr = alloc_addr;
100			*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
101			return EFI_SUCCESS;
102		}
103		/*
104		 * If we end up here, the allocation succeeded but starts below
105		 * dram_base. This can only occur if the real base of DRAM is
106		 * not a multiple of 128 MB, in which case dram_base will have
107		 * been rounded up. Since this implies that a part of the region
108		 * was already occupied, we need to fall through to the code
109		 * below to ensure that the existing allocations don't conflict.
110		 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
111		 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
112		 * allocations that we want to disallow.
113		 */
114	}
115
116	/*
117	 * If the allocation above failed, we may still be able to proceed:
118	 * if the only allocations in the region are of types that will be
119	 * released to the OS after ExitBootServices(), the decompressor can
120	 * safely overwrite them.
121	 */
122	status = efi_get_memory_map(sys_table_arg, &map);
123	if (status != EFI_SUCCESS) {
124		pr_efi_err(sys_table_arg,
125			   "reserve_kernel_base(): Unable to retrieve memory map.\n");
126		return status;
127	}
128
129	for (l = 0; l < map_size; l += desc_size) {
130		efi_memory_desc_t *desc;
131		u64 start, end;
132
133		desc = (void *)memory_map + l;
134		start = desc->phys_addr;
135		end = start + desc->num_pages * EFI_PAGE_SIZE;
136
137		/* Skip if entry does not intersect with region */
138		if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
139		    end <= dram_base)
140			continue;
141
142		switch (desc->type) {
143		case EFI_BOOT_SERVICES_CODE:
144		case EFI_BOOT_SERVICES_DATA:
145			/* Ignore types that are released to the OS anyway */
146			continue;
147
148		case EFI_CONVENTIONAL_MEMORY:
149			/*
150			 * Reserve the intersection between this entry and the
151			 * region.
152			 */
153			start = max(start, (u64)dram_base);
154			end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
155
156			status = efi_call_early(allocate_pages,
157						EFI_ALLOCATE_ADDRESS,
158						EFI_LOADER_DATA,
159						(end - start) / EFI_PAGE_SIZE,
160						&start);
161			if (status != EFI_SUCCESS) {
162				pr_efi_err(sys_table_arg,
163					"reserve_kernel_base(): alloc failed.\n");
164				goto out;
165			}
166			break;
167
168		case EFI_LOADER_CODE:
169		case EFI_LOADER_DATA:
170			/*
171			 * These regions may be released and reallocated for
172			 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
173			 * at any time during the execution of the OS loader,
174			 * so we cannot consider them as safe.
175			 */
176		default:
177			/*
178			 * Treat any other allocation in the region as unsafe */
179			status = EFI_OUT_OF_RESOURCES;
180			goto out;
181		}
182	}
183
184	status = EFI_SUCCESS;
185out:
186	efi_call_early(free_pool, memory_map);
187	return status;
188}
189
190efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
191				 unsigned long *image_addr,
192				 unsigned long *image_size,
193				 unsigned long *reserve_addr,
194				 unsigned long *reserve_size,
195				 unsigned long dram_base,
196				 efi_loaded_image_t *image)
197{
198	unsigned long kernel_base;
 
 
199	efi_status_t status;
200
201	/*
202	 * Verify that the DRAM base address is compatible with the ARM
203	 * boot protocol, which determines the base of DRAM by masking
204	 * off the low 27 bits of the address at which the zImage is
205	 * loaded. These assumptions are made by the decompressor,
206	 * before any memory map is available.
207	 */
208	kernel_base = round_up(dram_base, SZ_128M);
209
210	/*
211	 * Note that some platforms (notably, the Raspberry Pi 2) put
212	 * spin-tables and other pieces of firmware at the base of RAM,
213	 * abusing the fact that the window of TEXT_OFFSET bytes at the
214	 * base of the kernel image is only partially used at the moment.
215	 * (Up to 5 pages are used for the swapper page tables)
216	 */
217	kernel_base += TEXT_OFFSET - 5 * PAGE_SIZE;
218
219	status = reserve_kernel_base(sys_table, kernel_base, reserve_addr,
220				     reserve_size);
221	if (status != EFI_SUCCESS) {
222		pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
223		return status;
224	}
225
226	/*
227	 * Relocate the zImage, so that it appears in the lowest 128 MB
228	 * memory window.
229	 */
230	*image_size = image->image_size;
231	status = efi_relocate_kernel(sys_table, image_addr, *image_size,
232				     *image_size,
233				     kernel_base + MAX_UNCOMP_KERNEL_SIZE, 0, 0);
234	if (status != EFI_SUCCESS) {
235		pr_efi_err(sys_table, "Failed to relocate kernel.\n");
236		efi_free(sys_table, *reserve_size, *reserve_addr);
237		*reserve_size = 0;
238		return status;
 
 
 
 
 
 
 
239	}
 
 
 
 
 
 
 
 
240
241	/*
242	 * Check to see if we were able to allocate memory low enough
243	 * in memory. The kernel determines the base of DRAM from the
244	 * address at which the zImage is loaded.
245	 */
246	if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
247		pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
248		efi_free(sys_table, *reserve_size, *reserve_addr);
249		*reserve_size = 0;
250		efi_free(sys_table, *image_size, *image_addr);
251		*image_size = 0;
252		return EFI_LOAD_ERROR;
253	}
254	return EFI_SUCCESS;
255}