Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * klist.c - Routines for manipulating klists.
  4 *
  5 * Copyright (C) 2005 Patrick Mochel
  6 *
  7 * This klist interface provides a couple of structures that wrap around
  8 * struct list_head to provide explicit list "head" (struct klist) and list
  9 * "node" (struct klist_node) objects. For struct klist, a spinlock is
 10 * included that protects access to the actual list itself. struct
 11 * klist_node provides a pointer to the klist that owns it and a kref
 12 * reference count that indicates the number of current users of that node
 13 * in the list.
 14 *
 15 * The entire point is to provide an interface for iterating over a list
 16 * that is safe and allows for modification of the list during the
 17 * iteration (e.g. insertion and removal), including modification of the
 18 * current node on the list.
 19 *
 20 * It works using a 3rd object type - struct klist_iter - that is declared
 21 * and initialized before an iteration. klist_next() is used to acquire the
 22 * next element in the list. It returns NULL if there are no more items.
 23 * Internally, that routine takes the klist's lock, decrements the
 24 * reference count of the previous klist_node and increments the count of
 25 * the next klist_node. It then drops the lock and returns.
 26 *
 27 * There are primitives for adding and removing nodes to/from a klist.
 28 * When deleting, klist_del() will simply decrement the reference count.
 29 * Only when the count goes to 0 is the node removed from the list.
 30 * klist_remove() will try to delete the node from the list and block until
 31 * it is actually removed. This is useful for objects (like devices) that
 32 * have been removed from the system and must be freed (but must wait until
 33 * all accessors have finished).
 34 */
 35
 36#include <linux/klist.h>
 37#include <linux/export.h>
 38#include <linux/sched.h>
 39
 40/*
 41 * Use the lowest bit of n_klist to mark deleted nodes and exclude
 42 * dead ones from iteration.
 43 */
 44#define KNODE_DEAD		1LU
 45#define KNODE_KLIST_MASK	~KNODE_DEAD
 46
 47static struct klist *knode_klist(struct klist_node *knode)
 48{
 49	return (struct klist *)
 50		((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
 51}
 52
 53static bool knode_dead(struct klist_node *knode)
 54{
 55	return (unsigned long)knode->n_klist & KNODE_DEAD;
 56}
 57
 58static void knode_set_klist(struct klist_node *knode, struct klist *klist)
 59{
 60	knode->n_klist = klist;
 61	/* no knode deserves to start its life dead */
 62	WARN_ON(knode_dead(knode));
 63}
 64
 65static void knode_kill(struct klist_node *knode)
 66{
 67	/* and no knode should die twice ever either, see we're very humane */
 68	WARN_ON(knode_dead(knode));
 69	*(unsigned long *)&knode->n_klist |= KNODE_DEAD;
 70}
 71
 72/**
 73 * klist_init - Initialize a klist structure.
 74 * @k: The klist we're initializing.
 75 * @get: The get function for the embedding object (NULL if none)
 76 * @put: The put function for the embedding object (NULL if none)
 77 *
 78 * Initialises the klist structure.  If the klist_node structures are
 79 * going to be embedded in refcounted objects (necessary for safe
 80 * deletion) then the get/put arguments are used to initialise
 81 * functions that take and release references on the embedding
 82 * objects.
 83 */
 84void klist_init(struct klist *k, void (*get)(struct klist_node *),
 85		void (*put)(struct klist_node *))
 86{
 87	INIT_LIST_HEAD(&k->k_list);
 88	spin_lock_init(&k->k_lock);
 89	k->get = get;
 90	k->put = put;
 91}
 92EXPORT_SYMBOL_GPL(klist_init);
 93
 94static void add_head(struct klist *k, struct klist_node *n)
 95{
 96	spin_lock(&k->k_lock);
 97	list_add(&n->n_node, &k->k_list);
 98	spin_unlock(&k->k_lock);
 99}
100
101static void add_tail(struct klist *k, struct klist_node *n)
102{
103	spin_lock(&k->k_lock);
104	list_add_tail(&n->n_node, &k->k_list);
105	spin_unlock(&k->k_lock);
106}
107
108static void klist_node_init(struct klist *k, struct klist_node *n)
109{
110	INIT_LIST_HEAD(&n->n_node);
111	kref_init(&n->n_ref);
112	knode_set_klist(n, k);
113	if (k->get)
114		k->get(n);
115}
116
117/**
118 * klist_add_head - Initialize a klist_node and add it to front.
119 * @n: node we're adding.
120 * @k: klist it's going on.
121 */
122void klist_add_head(struct klist_node *n, struct klist *k)
123{
124	klist_node_init(k, n);
125	add_head(k, n);
126}
127EXPORT_SYMBOL_GPL(klist_add_head);
128
129/**
130 * klist_add_tail - Initialize a klist_node and add it to back.
131 * @n: node we're adding.
132 * @k: klist it's going on.
133 */
134void klist_add_tail(struct klist_node *n, struct klist *k)
135{
136	klist_node_init(k, n);
137	add_tail(k, n);
138}
139EXPORT_SYMBOL_GPL(klist_add_tail);
140
141/**
142 * klist_add_behind - Init a klist_node and add it after an existing node
143 * @n: node we're adding.
144 * @pos: node to put @n after
145 */
146void klist_add_behind(struct klist_node *n, struct klist_node *pos)
147{
148	struct klist *k = knode_klist(pos);
149
150	klist_node_init(k, n);
151	spin_lock(&k->k_lock);
152	list_add(&n->n_node, &pos->n_node);
153	spin_unlock(&k->k_lock);
154}
155EXPORT_SYMBOL_GPL(klist_add_behind);
156
157/**
158 * klist_add_before - Init a klist_node and add it before an existing node
159 * @n: node we're adding.
160 * @pos: node to put @n after
161 */
162void klist_add_before(struct klist_node *n, struct klist_node *pos)
163{
164	struct klist *k = knode_klist(pos);
165
166	klist_node_init(k, n);
167	spin_lock(&k->k_lock);
168	list_add_tail(&n->n_node, &pos->n_node);
169	spin_unlock(&k->k_lock);
170}
171EXPORT_SYMBOL_GPL(klist_add_before);
172
173struct klist_waiter {
174	struct list_head list;
175	struct klist_node *node;
176	struct task_struct *process;
177	int woken;
178};
179
180static DEFINE_SPINLOCK(klist_remove_lock);
181static LIST_HEAD(klist_remove_waiters);
182
183static void klist_release(struct kref *kref)
184{
185	struct klist_waiter *waiter, *tmp;
186	struct klist_node *n = container_of(kref, struct klist_node, n_ref);
187
188	WARN_ON(!knode_dead(n));
189	list_del(&n->n_node);
190	spin_lock(&klist_remove_lock);
191	list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
192		if (waiter->node != n)
193			continue;
194
195		list_del(&waiter->list);
196		waiter->woken = 1;
197		mb();
198		wake_up_process(waiter->process);
199	}
200	spin_unlock(&klist_remove_lock);
201	knode_set_klist(n, NULL);
202}
203
204static int klist_dec_and_del(struct klist_node *n)
205{
206	return kref_put(&n->n_ref, klist_release);
207}
208
209static void klist_put(struct klist_node *n, bool kill)
210{
211	struct klist *k = knode_klist(n);
212	void (*put)(struct klist_node *) = k->put;
213
214	spin_lock(&k->k_lock);
215	if (kill)
216		knode_kill(n);
217	if (!klist_dec_and_del(n))
218		put = NULL;
219	spin_unlock(&k->k_lock);
220	if (put)
221		put(n);
222}
223
224/**
225 * klist_del - Decrement the reference count of node and try to remove.
226 * @n: node we're deleting.
227 */
228void klist_del(struct klist_node *n)
229{
230	klist_put(n, true);
231}
232EXPORT_SYMBOL_GPL(klist_del);
233
234/**
235 * klist_remove - Decrement the refcount of node and wait for it to go away.
236 * @n: node we're removing.
237 */
238void klist_remove(struct klist_node *n)
239{
240	struct klist_waiter waiter;
241
242	waiter.node = n;
243	waiter.process = current;
244	waiter.woken = 0;
245	spin_lock(&klist_remove_lock);
246	list_add(&waiter.list, &klist_remove_waiters);
247	spin_unlock(&klist_remove_lock);
248
249	klist_del(n);
250
251	for (;;) {
252		set_current_state(TASK_UNINTERRUPTIBLE);
253		if (waiter.woken)
254			break;
255		schedule();
256	}
257	__set_current_state(TASK_RUNNING);
258}
259EXPORT_SYMBOL_GPL(klist_remove);
260
261/**
262 * klist_node_attached - Say whether a node is bound to a list or not.
263 * @n: Node that we're testing.
264 */
265int klist_node_attached(struct klist_node *n)
266{
267	return (n->n_klist != NULL);
268}
269EXPORT_SYMBOL_GPL(klist_node_attached);
270
271/**
272 * klist_iter_init_node - Initialize a klist_iter structure.
273 * @k: klist we're iterating.
274 * @i: klist_iter we're filling.
275 * @n: node to start with.
276 *
277 * Similar to klist_iter_init(), but starts the action off with @n,
278 * instead of with the list head.
279 */
280void klist_iter_init_node(struct klist *k, struct klist_iter *i,
281			  struct klist_node *n)
282{
283	i->i_klist = k;
284	i->i_cur = NULL;
285	if (n && kref_get_unless_zero(&n->n_ref))
286		i->i_cur = n;
287}
288EXPORT_SYMBOL_GPL(klist_iter_init_node);
289
290/**
291 * klist_iter_init - Iniitalize a klist_iter structure.
292 * @k: klist we're iterating.
293 * @i: klist_iter structure we're filling.
294 *
295 * Similar to klist_iter_init_node(), but start with the list head.
296 */
297void klist_iter_init(struct klist *k, struct klist_iter *i)
298{
299	klist_iter_init_node(k, i, NULL);
300}
301EXPORT_SYMBOL_GPL(klist_iter_init);
302
303/**
304 * klist_iter_exit - Finish a list iteration.
305 * @i: Iterator structure.
306 *
307 * Must be called when done iterating over list, as it decrements the
308 * refcount of the current node. Necessary in case iteration exited before
309 * the end of the list was reached, and always good form.
310 */
311void klist_iter_exit(struct klist_iter *i)
312{
313	if (i->i_cur) {
314		klist_put(i->i_cur, false);
315		i->i_cur = NULL;
316	}
317}
318EXPORT_SYMBOL_GPL(klist_iter_exit);
319
320static struct klist_node *to_klist_node(struct list_head *n)
321{
322	return container_of(n, struct klist_node, n_node);
323}
324
325/**
326 * klist_prev - Ante up prev node in list.
327 * @i: Iterator structure.
328 *
329 * First grab list lock. Decrement the reference count of the previous
330 * node, if there was one. Grab the prev node, increment its reference
331 * count, drop the lock, and return that prev node.
332 */
333struct klist_node *klist_prev(struct klist_iter *i)
334{
335	void (*put)(struct klist_node *) = i->i_klist->put;
336	struct klist_node *last = i->i_cur;
337	struct klist_node *prev;
338	unsigned long flags;
339
340	spin_lock_irqsave(&i->i_klist->k_lock, flags);
341
342	if (last) {
343		prev = to_klist_node(last->n_node.prev);
344		if (!klist_dec_and_del(last))
345			put = NULL;
346	} else
347		prev = to_klist_node(i->i_klist->k_list.prev);
348
349	i->i_cur = NULL;
350	while (prev != to_klist_node(&i->i_klist->k_list)) {
351		if (likely(!knode_dead(prev))) {
352			kref_get(&prev->n_ref);
353			i->i_cur = prev;
354			break;
355		}
356		prev = to_klist_node(prev->n_node.prev);
357	}
358
359	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
360
361	if (put && last)
362		put(last);
363	return i->i_cur;
364}
365EXPORT_SYMBOL_GPL(klist_prev);
366
367/**
368 * klist_next - Ante up next node in list.
369 * @i: Iterator structure.
370 *
371 * First grab list lock. Decrement the reference count of the previous
372 * node, if there was one. Grab the next node, increment its reference
373 * count, drop the lock, and return that next node.
374 */
375struct klist_node *klist_next(struct klist_iter *i)
376{
377	void (*put)(struct klist_node *) = i->i_klist->put;
378	struct klist_node *last = i->i_cur;
379	struct klist_node *next;
380	unsigned long flags;
381
382	spin_lock_irqsave(&i->i_klist->k_lock, flags);
383
384	if (last) {
385		next = to_klist_node(last->n_node.next);
386		if (!klist_dec_and_del(last))
387			put = NULL;
388	} else
389		next = to_klist_node(i->i_klist->k_list.next);
390
391	i->i_cur = NULL;
392	while (next != to_klist_node(&i->i_klist->k_list)) {
393		if (likely(!knode_dead(next))) {
394			kref_get(&next->n_ref);
395			i->i_cur = next;
396			break;
397		}
398		next = to_klist_node(next->n_node.next);
399	}
400
401	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
402
403	if (put && last)
404		put(last);
405	return i->i_cur;
406}
407EXPORT_SYMBOL_GPL(klist_next);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * klist.c - Routines for manipulating klists.
  4 *
  5 * Copyright (C) 2005 Patrick Mochel
  6 *
  7 * This klist interface provides a couple of structures that wrap around
  8 * struct list_head to provide explicit list "head" (struct klist) and list
  9 * "node" (struct klist_node) objects. For struct klist, a spinlock is
 10 * included that protects access to the actual list itself. struct
 11 * klist_node provides a pointer to the klist that owns it and a kref
 12 * reference count that indicates the number of current users of that node
 13 * in the list.
 14 *
 15 * The entire point is to provide an interface for iterating over a list
 16 * that is safe and allows for modification of the list during the
 17 * iteration (e.g. insertion and removal), including modification of the
 18 * current node on the list.
 19 *
 20 * It works using a 3rd object type - struct klist_iter - that is declared
 21 * and initialized before an iteration. klist_next() is used to acquire the
 22 * next element in the list. It returns NULL if there are no more items.
 23 * Internally, that routine takes the klist's lock, decrements the
 24 * reference count of the previous klist_node and increments the count of
 25 * the next klist_node. It then drops the lock and returns.
 26 *
 27 * There are primitives for adding and removing nodes to/from a klist.
 28 * When deleting, klist_del() will simply decrement the reference count.
 29 * Only when the count goes to 0 is the node removed from the list.
 30 * klist_remove() will try to delete the node from the list and block until
 31 * it is actually removed. This is useful for objects (like devices) that
 32 * have been removed from the system and must be freed (but must wait until
 33 * all accessors have finished).
 34 */
 35
 36#include <linux/klist.h>
 37#include <linux/export.h>
 38#include <linux/sched.h>
 39
 40/*
 41 * Use the lowest bit of n_klist to mark deleted nodes and exclude
 42 * dead ones from iteration.
 43 */
 44#define KNODE_DEAD		1LU
 45#define KNODE_KLIST_MASK	~KNODE_DEAD
 46
 47static struct klist *knode_klist(struct klist_node *knode)
 48{
 49	return (struct klist *)
 50		((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
 51}
 52
 53static bool knode_dead(struct klist_node *knode)
 54{
 55	return (unsigned long)knode->n_klist & KNODE_DEAD;
 56}
 57
 58static void knode_set_klist(struct klist_node *knode, struct klist *klist)
 59{
 60	knode->n_klist = klist;
 61	/* no knode deserves to start its life dead */
 62	WARN_ON(knode_dead(knode));
 63}
 64
 65static void knode_kill(struct klist_node *knode)
 66{
 67	/* and no knode should die twice ever either, see we're very humane */
 68	WARN_ON(knode_dead(knode));
 69	*(unsigned long *)&knode->n_klist |= KNODE_DEAD;
 70}
 71
 72/**
 73 * klist_init - Initialize a klist structure.
 74 * @k: The klist we're initializing.
 75 * @get: The get function for the embedding object (NULL if none)
 76 * @put: The put function for the embedding object (NULL if none)
 77 *
 78 * Initialises the klist structure.  If the klist_node structures are
 79 * going to be embedded in refcounted objects (necessary for safe
 80 * deletion) then the get/put arguments are used to initialise
 81 * functions that take and release references on the embedding
 82 * objects.
 83 */
 84void klist_init(struct klist *k, void (*get)(struct klist_node *),
 85		void (*put)(struct klist_node *))
 86{
 87	INIT_LIST_HEAD(&k->k_list);
 88	spin_lock_init(&k->k_lock);
 89	k->get = get;
 90	k->put = put;
 91}
 92EXPORT_SYMBOL_GPL(klist_init);
 93
 94static void add_head(struct klist *k, struct klist_node *n)
 95{
 96	spin_lock(&k->k_lock);
 97	list_add(&n->n_node, &k->k_list);
 98	spin_unlock(&k->k_lock);
 99}
100
101static void add_tail(struct klist *k, struct klist_node *n)
102{
103	spin_lock(&k->k_lock);
104	list_add_tail(&n->n_node, &k->k_list);
105	spin_unlock(&k->k_lock);
106}
107
108static void klist_node_init(struct klist *k, struct klist_node *n)
109{
110	INIT_LIST_HEAD(&n->n_node);
111	kref_init(&n->n_ref);
112	knode_set_klist(n, k);
113	if (k->get)
114		k->get(n);
115}
116
117/**
118 * klist_add_head - Initialize a klist_node and add it to front.
119 * @n: node we're adding.
120 * @k: klist it's going on.
121 */
122void klist_add_head(struct klist_node *n, struct klist *k)
123{
124	klist_node_init(k, n);
125	add_head(k, n);
126}
127EXPORT_SYMBOL_GPL(klist_add_head);
128
129/**
130 * klist_add_tail - Initialize a klist_node and add it to back.
131 * @n: node we're adding.
132 * @k: klist it's going on.
133 */
134void klist_add_tail(struct klist_node *n, struct klist *k)
135{
136	klist_node_init(k, n);
137	add_tail(k, n);
138}
139EXPORT_SYMBOL_GPL(klist_add_tail);
140
141/**
142 * klist_add_behind - Init a klist_node and add it after an existing node
143 * @n: node we're adding.
144 * @pos: node to put @n after
145 */
146void klist_add_behind(struct klist_node *n, struct klist_node *pos)
147{
148	struct klist *k = knode_klist(pos);
149
150	klist_node_init(k, n);
151	spin_lock(&k->k_lock);
152	list_add(&n->n_node, &pos->n_node);
153	spin_unlock(&k->k_lock);
154}
155EXPORT_SYMBOL_GPL(klist_add_behind);
156
157/**
158 * klist_add_before - Init a klist_node and add it before an existing node
159 * @n: node we're adding.
160 * @pos: node to put @n after
161 */
162void klist_add_before(struct klist_node *n, struct klist_node *pos)
163{
164	struct klist *k = knode_klist(pos);
165
166	klist_node_init(k, n);
167	spin_lock(&k->k_lock);
168	list_add_tail(&n->n_node, &pos->n_node);
169	spin_unlock(&k->k_lock);
170}
171EXPORT_SYMBOL_GPL(klist_add_before);
172
173struct klist_waiter {
174	struct list_head list;
175	struct klist_node *node;
176	struct task_struct *process;
177	int woken;
178};
179
180static DEFINE_SPINLOCK(klist_remove_lock);
181static LIST_HEAD(klist_remove_waiters);
182
183static void klist_release(struct kref *kref)
184{
185	struct klist_waiter *waiter, *tmp;
186	struct klist_node *n = container_of(kref, struct klist_node, n_ref);
187
188	WARN_ON(!knode_dead(n));
189	list_del(&n->n_node);
190	spin_lock(&klist_remove_lock);
191	list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
192		if (waiter->node != n)
193			continue;
194
195		list_del(&waiter->list);
196		waiter->woken = 1;
197		mb();
198		wake_up_process(waiter->process);
199	}
200	spin_unlock(&klist_remove_lock);
201	knode_set_klist(n, NULL);
202}
203
204static int klist_dec_and_del(struct klist_node *n)
205{
206	return kref_put(&n->n_ref, klist_release);
207}
208
209static void klist_put(struct klist_node *n, bool kill)
210{
211	struct klist *k = knode_klist(n);
212	void (*put)(struct klist_node *) = k->put;
213
214	spin_lock(&k->k_lock);
215	if (kill)
216		knode_kill(n);
217	if (!klist_dec_and_del(n))
218		put = NULL;
219	spin_unlock(&k->k_lock);
220	if (put)
221		put(n);
222}
223
224/**
225 * klist_del - Decrement the reference count of node and try to remove.
226 * @n: node we're deleting.
227 */
228void klist_del(struct klist_node *n)
229{
230	klist_put(n, true);
231}
232EXPORT_SYMBOL_GPL(klist_del);
233
234/**
235 * klist_remove - Decrement the refcount of node and wait for it to go away.
236 * @n: node we're removing.
237 */
238void klist_remove(struct klist_node *n)
239{
240	struct klist_waiter waiter;
241
242	waiter.node = n;
243	waiter.process = current;
244	waiter.woken = 0;
245	spin_lock(&klist_remove_lock);
246	list_add(&waiter.list, &klist_remove_waiters);
247	spin_unlock(&klist_remove_lock);
248
249	klist_del(n);
250
251	for (;;) {
252		set_current_state(TASK_UNINTERRUPTIBLE);
253		if (waiter.woken)
254			break;
255		schedule();
256	}
257	__set_current_state(TASK_RUNNING);
258}
259EXPORT_SYMBOL_GPL(klist_remove);
260
261/**
262 * klist_node_attached - Say whether a node is bound to a list or not.
263 * @n: Node that we're testing.
264 */
265int klist_node_attached(struct klist_node *n)
266{
267	return (n->n_klist != NULL);
268}
269EXPORT_SYMBOL_GPL(klist_node_attached);
270
271/**
272 * klist_iter_init_node - Initialize a klist_iter structure.
273 * @k: klist we're iterating.
274 * @i: klist_iter we're filling.
275 * @n: node to start with.
276 *
277 * Similar to klist_iter_init(), but starts the action off with @n,
278 * instead of with the list head.
279 */
280void klist_iter_init_node(struct klist *k, struct klist_iter *i,
281			  struct klist_node *n)
282{
283	i->i_klist = k;
284	i->i_cur = NULL;
285	if (n && kref_get_unless_zero(&n->n_ref))
286		i->i_cur = n;
287}
288EXPORT_SYMBOL_GPL(klist_iter_init_node);
289
290/**
291 * klist_iter_init - Iniitalize a klist_iter structure.
292 * @k: klist we're iterating.
293 * @i: klist_iter structure we're filling.
294 *
295 * Similar to klist_iter_init_node(), but start with the list head.
296 */
297void klist_iter_init(struct klist *k, struct klist_iter *i)
298{
299	klist_iter_init_node(k, i, NULL);
300}
301EXPORT_SYMBOL_GPL(klist_iter_init);
302
303/**
304 * klist_iter_exit - Finish a list iteration.
305 * @i: Iterator structure.
306 *
307 * Must be called when done iterating over list, as it decrements the
308 * refcount of the current node. Necessary in case iteration exited before
309 * the end of the list was reached, and always good form.
310 */
311void klist_iter_exit(struct klist_iter *i)
312{
313	if (i->i_cur) {
314		klist_put(i->i_cur, false);
315		i->i_cur = NULL;
316	}
317}
318EXPORT_SYMBOL_GPL(klist_iter_exit);
319
320static struct klist_node *to_klist_node(struct list_head *n)
321{
322	return container_of(n, struct klist_node, n_node);
323}
324
325/**
326 * klist_prev - Ante up prev node in list.
327 * @i: Iterator structure.
328 *
329 * First grab list lock. Decrement the reference count of the previous
330 * node, if there was one. Grab the prev node, increment its reference
331 * count, drop the lock, and return that prev node.
332 */
333struct klist_node *klist_prev(struct klist_iter *i)
334{
335	void (*put)(struct klist_node *) = i->i_klist->put;
336	struct klist_node *last = i->i_cur;
337	struct klist_node *prev;
338	unsigned long flags;
339
340	spin_lock_irqsave(&i->i_klist->k_lock, flags);
341
342	if (last) {
343		prev = to_klist_node(last->n_node.prev);
344		if (!klist_dec_and_del(last))
345			put = NULL;
346	} else
347		prev = to_klist_node(i->i_klist->k_list.prev);
348
349	i->i_cur = NULL;
350	while (prev != to_klist_node(&i->i_klist->k_list)) {
351		if (likely(!knode_dead(prev))) {
352			kref_get(&prev->n_ref);
353			i->i_cur = prev;
354			break;
355		}
356		prev = to_klist_node(prev->n_node.prev);
357	}
358
359	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
360
361	if (put && last)
362		put(last);
363	return i->i_cur;
364}
365EXPORT_SYMBOL_GPL(klist_prev);
366
367/**
368 * klist_next - Ante up next node in list.
369 * @i: Iterator structure.
370 *
371 * First grab list lock. Decrement the reference count of the previous
372 * node, if there was one. Grab the next node, increment its reference
373 * count, drop the lock, and return that next node.
374 */
375struct klist_node *klist_next(struct klist_iter *i)
376{
377	void (*put)(struct klist_node *) = i->i_klist->put;
378	struct klist_node *last = i->i_cur;
379	struct klist_node *next;
380	unsigned long flags;
381
382	spin_lock_irqsave(&i->i_klist->k_lock, flags);
383
384	if (last) {
385		next = to_klist_node(last->n_node.next);
386		if (!klist_dec_and_del(last))
387			put = NULL;
388	} else
389		next = to_klist_node(i->i_klist->k_list.next);
390
391	i->i_cur = NULL;
392	while (next != to_klist_node(&i->i_klist->k_list)) {
393		if (likely(!knode_dead(next))) {
394			kref_get(&next->n_ref);
395			i->i_cur = next;
396			break;
397		}
398		next = to_klist_node(next->n_node.next);
399	}
400
401	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
402
403	if (put && last)
404		put(last);
405	return i->i_cur;
406}
407EXPORT_SYMBOL_GPL(klist_next);